
Developer Guide

AWS Lambda

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Lambda Developer Guide

AWS Lambda: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Lambda Developer Guide

Table of Contents

What is AWS Lambda? .. 1
When to use Lambda .. 1
How Lambda works ... 2
Key features ... 2

.. 2

.. 3

.. 3
Related information ... 3
How it works ... 3

Lambda functions and function handlers .. 4
Lambda execution environment and runtimes ... 5
Events and triggers ... 5
Lambda permissions and roles ... 6
Running code ... 9
Creating event-driven architectures .. 23
Designing an application ... 35

Create your first function ... 42
Prerequisites .. 42
Create the function .. 44
Invoke the function ... 50
Clean up ... 53
Next steps .. 54

Example apps and patterns .. 56
File Processing .. 56
Database Integration ... 56
Scheduled Tasks ... 56
Additional resources .. 57
File-processing app .. 57

Create the source code files ... 59
Deploy the app .. 61
Test the app ... 73
Next steps ... 80

Scheduled-maintenance app ... 81
Prerequisites ... 82

iii

AWS Lambda Developer Guide

Downloading the example app files ... 82
Creating and populating the example DynamoDB table .. 92
Creating the scheduled-maintenance app ... 95
Testing the app ... 100
Next steps .. 100

Management tools ... 101
Local development tools .. 101
Infrastructure as Code (IaC) tools .. 101
Workflow and event management tools .. 102
Local development .. 102

Key benefits of local development ... 102
Prerequisites .. 103
Authentication and access control .. 103
Moving from console to local development ... 106
Working with functions locally .. 107
Convert your function to an AWS SAM template and use IaC tools .. 109
Next steps .. 110

GitHub Actions ... 110
Example workflow .. 110
Additional resources ... 111

Infrastructure as code (IaC) ... 111
IaC tools for Lambda ... 111
Using AWS SAM and Infrastructure Composer .. 113
Using AWS CDK ... 125

Workflows and events .. 135
Orchestrating workflows with Step Functions ... 135
Managing events with EventBridge and EventBridge Scheduler .. 137

Lambda runtimes ... 138
Supported runtimes .. 138
New runtime releases ... 141
Runtime deprecation policy ... 142
Shared responsibility model .. 143
Runtime use after deprecation ... 144
Receiving runtime deprecation notifications ... 146
Deprecated runtimes ... 147
Runtime version updates ... 151

iv

AWS Lambda Developer Guide

Backward compatibility ... 152
Runtime update modes ... 153
Two-phase runtime version rollout .. 154
Configuring runtime management ... 155
Runtime version roll-back ... 156
Runtime version updates .. 158
Shared responsibility model ... 160
Permissions .. 162

Get data about functions by runtime ... 163
Listing function versions that use a particular runtime ... 163
Identifying most commonly and most recently invoked functions .. 165

Runtime modifications .. 170
Language-specific environment variables ... 170
Wrapper scripts ... 170

Runtime API .. 174
Next invocation ... 174
Invocation response ... 176
Initialization error ... 176
Invocation error ... 178

OS-only runtimes ... 180
Building a custom runtime ... 181
Custom runtime tutorial ... 184

Open source repositories ... 193
Runtime Interface Clients ... 193
Event libraries .. 194
Container base images .. 194
Development tools ... 194
Sample projects .. 195

Configuring functions ... 196
.zip file archives .. 198

Creating the function .. 198
Using the console code editor ... 200
Updating function code .. 200
Changing the runtime ... 201
Changing the architecture .. 201
Using the Lambda API ... 202

v

AWS Lambda Developer Guide

Downloading your function code .. 202
AWS CloudFormation ... 203
Encryption .. 203

Container images ... 211
Requirements ... 212
Using an AWS base image .. 213
Using an AWS OS-only base image .. 214
Using a non-AWS base image ... 215
Runtime interface clients .. 215
Amazon ECR permissions .. 216
Function lifecycle .. 219

Memory .. 220
When to increase memory ... 220
Using the console ... 221
Using the AWS CLI ... 221
Using AWS SAM .. 222
Accepting function memory recommendations (console) .. 222

Ephemeral storage ... 223
Use cases .. 223
Using the console ... 224
Using the AWS CLI ... 224
Using AWS SAM .. 224

Instruction sets (ARM/x86) .. 226
Advantages of using arm64 architecture .. 226
Requirements for migration to arm64 architecture .. 227
Function code compatibility with arm64 architecture .. 227
How to migrate to arm64 architecture ... 227
Configuring the instruction set architecture ... 228

Timeout .. 230
When to increase timeout .. 230
Using the console ... 230
Using the AWS CLI ... 231
Using AWS SAM .. 231

Environment variables .. 233
Create environment variables .. 233
Example scenario for environment variables .. 237

vi

AWS Lambda Developer Guide

Retrieve environment variables ... 239
Defined runtime environment variables .. 240
Securing environment variables .. 242

Attaching functions to a VPC .. 246
Required IAM permissions .. 246
Attaching Lambda functions to an Amazon VPC in your AWS account 248
Internet access when attached to a VPC ... 251
IPv6 support .. 252
Best practices for using Lambda with Amazon VPCs .. 253
Understanding Hyperplane Elastic Network Interfaces (ENIs) .. 254
Using IAM condition keys for VPC settings ... 255
VPC tutorials .. 260

Attaching functions to resources in another account .. 261
Prerequisites .. 261
Create an Amazon VPC in your function's account ... 262
Grant VPC permissions to your function's execution role .. 262
.. 263
Create a VPC peering connection request ... 263
Prepare your resource's account .. 264
Update VPC configuration in your function's account .. 265
Test your function .. 266

Internet access for VPC functions .. 268
Inbound networking .. 293

Considerations for Lambda interface endpoints .. 293
Creating an interface endpoint for Lambda ... 294
Creating an interface endpoint policy for Lambda ... 295

File system ... 297
Execution role and user permissions .. 297
Configuring a file system and access point .. 298
Connecting to a file system (console) .. 299

Aliases ... 300
Using aliases .. 302
Weighted aliases ... 303

Versions .. 308
Creating function versions .. 309
Using versions ... 310

vii

AWS Lambda Developer Guide

Granting permissions ... 311
Tags ... 312

Permissions required for working with tags ... 312
Using tags with the console ... 312
Using tags with the AWS CLI ... 314

Response streaming .. 316
Bandwidth limits for response streaming ... 317
VPC compatibility with response streaming ... 317
Writing functions .. 317
Invoking functions .. 319
Tutorial: Creating a response streaming function with a function URL 321

Invoking functions ... 325
Invoke a function synchronously .. 327
Asynchronous invocation .. 331

Error handling ... 332
Configuration ... 333
Retaining records .. 335

Event source mappings .. 345
Event source mappings and triggers .. 345
Batching behavior ... 346
Provisioned mode ... 349
Event source mapping API ... 350
Event source mapping tags .. 350

Event filtering ... 355
Understanding event filtering basics ... 356
Handling records that don't meet filter criteria ... 358
Filter rule syntax ... 359
Attaching filter criteria to an event source mapping (console) ... 360
Attaching filter criteria to an event source mapping (AWS CLI) ... 361
Attaching filter criteria to an event source mapping (AWS SAM) ... 363
Encryption of filter criteria ... 363
Using filters with different AWS services .. 369

Testing in console .. 371
Invoking functions with test events ... 371
Creating private test events ... 372
Creating shareable test events .. 372

viii

AWS Lambda Developer Guide

Deleting shareable test event schemas ... 374
Function states ... 375

Function states during updates ... 376
Retries ... 378
Recursive loop detection .. 380

Understanding recursive loop detection ... 380
Supported AWS services and SDKs ... 382
Recursive loop notifications ... 384
Responding to recursive loop detection notifications .. 385
Allowing a Lambda function to run in a recursive loop ... 386
Supported regions for Lambda recursive loop detection .. 388

Function URLs ... 390
Creating a function URL (console) .. 391
Creating a function URL (AWS CLI) .. 393
Adding a function URL to a CloudFormation template .. 394
Cross-origin resource sharing (CORS) ... 395
Throttling function URLs .. 397
Deactivating function URLs .. 397
Deleting function URLs ... 397
Access control .. 398
Invoking function URLs ... 407
Monitoring function URLs ... 419
Function URLs vs Amazon API Gateway .. 420
Tutorial: Creating a webhook endpoint ... 426

Function scaling ... 440
Understanding and visualizing concurrency ... 440
Calculating concurrency for a function ... 445
Understanding reserved concurrency and provisioned concurrency ... 446

Reserved concurrency .. 447
Provisioned concurrency ... 449
How Lambda allocates provisioned concurrency ... 453
Comparing reserved concurrency and provisioned concurrency ... 454

Understanding concurrency and requests per second ... 455
Concurrency quotas ... 457
Configuring reserved concurrency .. 459

Configuring reserved concurrency .. 460

ix

AWS Lambda Developer Guide

Accurately estimating required reserved concurrency for a function 462
Configuring provisioned concurrency .. 463

Configuring provisioned concurrency ... 464
Accurately estimating required provisioned concurrency for a function 466
Optimizing function code when using provisioned concurrency .. 467
Using environment variables to view and control provisioned concurrency behavior 468
Understanding logging and billing behavior with provisioned concurrency 468
Using Application Auto Scaling to automate provisioned concurrency management 469

Scaling behavior ... 474
Concurrency scaling rate ... 474

Monitoring concurrency .. 476
General concurrency metrics .. 476
Provisioned concurrency metrics ... 476
Working with the ClaimedAccountConcurrency metric .. 479

Building with Node.js .. 482
Node.js initialization .. 484

Designating a function handler as an ES module ... 484
Runtime-included SDK versions .. 486
Using keep-alive ... 486
CA certificate loading ... 486
Handler ... 488

Set up your project .. 488
Example function .. 489
Handler naming conventions ... 491
Input event object .. 492
Valid handler patterns ... 492
Using the SDK for JavaScript ... 494
Accessing environment variables .. 495
Using global state .. 495
Best practices .. 495

Deploy .zip file archives .. 498
Runtime dependencies in Node.js ... 498
Creating a .zip deployment package with no dependencies ... 499
Creating a .zip deployment package with dependencies ... 499
Creating a Node.js layer for your dependencies .. 500
Dependency search path and runtime-included libraries .. 501

x

AWS Lambda Developer Guide

Creating and updating Node.js Lambda functions using .zip files ... 502
Deploy container images .. 509

AWS base images for Node.js .. 510
Using an AWS base image .. 511
Using a non-AWS base image ... 517

Layers .. 527
Package your layer content .. 527
Create the layer in Lambda .. 532
Add the layer to your function .. 533
Sample app .. 534

Context ... 535
Logging .. 537

Creating a function that returns logs .. 537
Using Lambda advanced logging controls with Node.js .. 539
Viewing logs in the Lambda console ... 545
Viewing logs in the CloudWatch console .. 545
Viewing logs using the AWS Command Line Interface (AWS CLI) .. 546
Deleting logs ... 549

Tracing .. 550
Using ADOT to instrument your Node.js functions ... 551
Using the X-Ray SDK to instrument your Node.js functions .. 551
Activating tracing with the Lambda console .. 552
Activating tracing with the Lambda API ... 553
Activating tracing with AWS CloudFormation .. 553
Interpreting an X-Ray trace .. 554
Storing runtime dependencies in a layer (X-Ray SDK) .. 557

Building with TypeScript .. 558
Development environment .. 559
Type definitions for Lambda ... 560
Handler ... 562

Set up your project .. 562
Example function .. 563
Handler naming conventions ... 565
Input event object .. 566
Valid handler patterns ... 567
Using the SDK for JavaScript ... 569

xi

AWS Lambda Developer Guide

Accessing environment variables .. 570
Using global state .. 570
Best practices .. 570

Deploy .zip file archives .. 573
Using AWS SAM .. 573
Using the AWS CDK ... 575
Using the AWS CLI and esbuild ... 578

Deploy container images .. 581
Using a Node.js base image to build and package TypeScript function code 581

Context ... 589
Logging .. 591

Tools and libraries .. 591
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging 592
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured
logging .. 594
Viewing logs in the Lambda console ... 598
Viewing logs in the CloudWatch console .. 598

Tracing .. 600
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracing 601
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 603
Interpreting an X-Ray trace .. 607

Building with Python .. 608
Runtime-included SDK versions .. 609
Experimental features in Python 3.13 .. 610
Response format .. 610
Graceful shutdown for extensions ... 610
Handler ... 612

Example Python Lambda function code ... 612
Handler naming conventions ... 614
Using the Lambda event object .. 615
Accessing and using the Lambda context object ... 616
Valid handler signatures for Python handlers .. 616
Returning a value ... 617
Using the AWS SDK for Python (Boto3) in your handler ... 618
Accessing environment variables .. 619
Code best practices for Python Lambda functions ... 619

xii

AWS Lambda Developer Guide

Deploy .zip file archives .. 622
Runtime dependencies in Python ... 622
Creating a .zip deployment package with no dependencies ... 623
Creating a .zip deployment package with dependencies ... 623
Dependency search path and runtime-included libraries .. 626
Using __pycache__ folders .. 628
Creating .zip deployment packages with native libraries ... 628
Creating and updating Python Lambda functions using .zip files .. 629

Deploy container images .. 637
AWS base images for Python .. 638
Using an AWS base image .. 639
Using a non-AWS base image ... 646

Layers .. 656
Package your layer content .. 656
Create the layer in Lambda .. 532
Add the layer to your function .. 662
Sample app .. 663

Context ... 664
Logging .. 666

Printing to the log ... 666
Using a logging library .. 667
Using Lambda advanced logging controls with Python ... 669
Viewing logs in Lambda console ... 673
Viewing logs in CloudWatch console ... 674
Viewing logs with AWS CLI .. 674
Deleting logs ... 677
Tools and libraries .. 677
Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 678
Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 682

Testing .. 689
Testing your serverless applications ... 690

Tracing .. 692
Using Powertools for AWS Lambda (Python) and AWS SAM for tracing 693
Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing 695
Using ADOT to instrument your Python functions ... 700
Using the X-Ray SDK to instrument your Python functions .. 701

xiii

AWS Lambda Developer Guide

Activating tracing with the Lambda console .. 702
Activating tracing with the Lambda API ... 702
Activating tracing with AWS CloudFormation .. 702
Interpreting an X-Ray trace .. 703
Storing runtime dependencies in a layer (X-Ray SDK) .. 706

Building with Ruby .. 708
Runtime-included SDK versions .. 709
Enabling Yet Another Ruby JIT (YJIT) .. 710
Handler ... 711

Ruby handler basics ... 711
Code best practices for Ruby Lambda functions ... 712

Deploy .zip file archives .. 715
Dependencies in Ruby ... 715
Creating a .zip deployment package with no dependencies ... 716
Creating a .zip deployment package with dependencies ... 716
Creating a Ruby layer for your dependencies .. 718
Creating .zip deployment packages with native libraries ... 718
Creating and updating Ruby Lambda functions using .zip files .. 720

Deploy container images .. 727
AWS base images for Ruby .. 728
Using an AWS base image .. 728
Using a non-AWS base image ... 735

Layers .. 745
Package your layer content .. 745
Create the layer in Lambda .. 532
Using gems from layers in a function .. 752
Add the layer to your function .. 753
Sample app .. 754

Context ... 755
Logging .. 756

Creating a function that returns logs .. 756
Viewing logs in the Lambda console ... 757
Viewing logs in the CloudWatch console .. 758
Viewing logs using the AWS Command Line Interface (AWS CLI) .. 758
Deleting logs ... 761
Working with the Ruby logger library ... 761

xiv

AWS Lambda Developer Guide

Tracing .. 763
Enabling active tracing with the Lambda API .. 768
Enabling active tracing with AWS CloudFormation ... 769
Storing runtime dependencies in a layer .. 769

Building with Java ... 771
Handler ... 775

Setting up your Java handler project ... 775
Example Java Lambda function code ... 776
Valid class definitions for Java handlers ... 781
Handler naming conventions ... 782
Defining and accessing the input event object .. 783
Accessing and using the Lambda context object ... 784
Using the AWS SDK for Java v2 in your handler ... 785
Accessing environment variables .. 786
Using global state .. 787
Code best practices for Java Lambda functions .. 787

Deploy .zip file archives .. 790
Prerequisites .. 790
Tools and libraries .. 790
Building a deployment package with Gradle ... 792
Using layers for dependencies ... 793
Building a deployment package with Maven .. 793
Uploading a deployment package with the Lambda console ... 795
Uploading a deployment package with the AWS CLI ... 797
Uploading a deployment package with AWS SAM .. 798

Deploy container images .. 801
AWS base images for Java ... 802
Using an AWS base image .. 803
Using a non-AWS base image ... 812

Layers .. 823
Package your layer content .. 823
Create the layer in Lambda .. 532
Add the layer to your function .. 826

Custom serialization .. 828
When to use custom serialization ... 828
Implementing custom serialization .. 829

xv

AWS Lambda Developer Guide

Testing custom serialization ... 830
Custom startup behavior ... 831

Understanding the JAVA_TOOL_OPTIONS environment variable .. 831
Context ... 834

Context in sample applications ... 836
Logging .. 838

Creating a function that returns logs .. 838
Using Lambda advanced logging controls with Java .. 840
Implementing advanced logging with Log4j2 and SLF4J .. 843
Tools and libraries .. 846
Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 847
Viewing logs in the Lambda console ... 851
Viewing logs in the CloudWatch console .. 851
Viewing logs using the AWS Command Line Interface (AWS CLI) .. 852
Deleting logs ... 855
Sample logging code ... 855

Tracing .. 857
Using Powertools for AWS Lambda (Java) and AWS SAM for tracing 858
Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 860
Using ADOT to instrument your Java functions .. 872
Using the X-Ray SDK to instrument your Java functions ... 872
Activating tracing with the Lambda console .. 873
Activating tracing with the Lambda API ... 873
Activating tracing with AWS CloudFormation .. 874
Interpreting an X-Ray trace .. 874
Storing runtime dependencies in a layer (X-Ray SDK) .. 877
X-Ray tracing in sample applications (X-Ray SDK) .. 878

Sample apps ... 880
Building with Go .. 882

Go runtime support ... 882
Tools and libraries ... 883
Handler ... 884

Setting up your Go handler project ... 884
Example Go Lambda function code ... 885
Handler naming conventions ... 888
Defining and accessing the input event object .. 888

xvi

AWS Lambda Developer Guide

Accessing and using the Lambda context object ... 889
Valid handler signatures for Go handlers .. 890
Using the AWS SDK for Go v2 in your handler .. 891
Accessing environment variables .. 892
Using global state .. 892
Code best practices for Go Lambda functions ... 893

Context ... 895
Supported variables, methods, and properties in the context object 895
Accessing invoke context information ... 896
Using the context in AWS SDK client initializations and calls ... 898

Deploy .zip file archives .. 899
Creating a .zip file on macOS and Linux ... 899
Creating a .zip file on Windows ... 901
Creating and updating Go Lambda functions using .zip files .. 904

Deploy container images .. 911
AWS base images for deploying Go functions ... 911
Go runtime interface client .. 912
Using an AWS OS-only base image .. 912
Using a non-AWS base image ... 919

Layers .. 928
Logging .. 929

Creating a function that returns logs .. 929
Viewing logs in the Lambda console ... 931
Viewing logs in the CloudWatch console .. 931
Viewing logs using the AWS Command Line Interface (AWS CLI) .. 931
Deleting logs ... 935

Tracing .. 936
Using ADOT to instrument your Go functions ... 937
Using the X-Ray SDK to instrument your Go functions .. 937
Activating tracing with the Lambda console .. 937
Activating tracing with the Lambda API ... 938
Activating tracing with AWS CloudFormation .. 938
Interpreting an X-Ray trace .. 939

Building with C# .. 942
Development environment .. 942

Installing the .NET project templates ... 942

xvii

AWS Lambda Developer Guide

Installing and updating the CLI tools .. 942
Handler ... 944

Setting up your C# handler project .. 944
Example C# Lambda function code .. 945
Class library handlers .. 949
Executable assembly handlers ... 950
Valid handler signatures for C# functions ... 951
Handler naming conventions ... 951
Serialization in C# Lambda functions .. 952
Accessing and using the Lambda context object ... 954
Using the SDK for .NET v3 in your handler .. 955
Accessing environment variables .. 956
Using global state .. 957
Simplify function code with the Lambda Annotations framework .. 957
Code best practices for C# Lambda functions ... 958

Deployment package .. 961
NET Lambda Global CLI .. 962
AWS SAM .. 968
AWS CDK .. 971
ASP.NET ... 975

Layers .. 980
Deploy container images .. 981

AWS base images for .NET ... 982
Using an AWS base image .. 982
Using a non-AWS base image ... 984

Native AOT compilation ... 989
Lambda runtime ... 989
Prerequisites .. 990
Getting started .. 990
Serialization ... 993
Trimming .. 994
Troubleshooting .. 995

Context ... 996
Logging .. 998

Creating a function that returns logs .. 998
Using Lambda advanced logging controls with .NET .. 999

xviii

AWS Lambda Developer Guide

Tools and libraries .. 1006
Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging 1007
Viewing logs in the Lambda console ... 1010
Viewing logs in the CloudWatch console .. 1010
Viewing logs using the AWS Command Line Interface (AWS CLI) .. 1010
Deleting logs ... 1014

Tracing .. 1015
Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing 1016
Using the X-Ray SDK to instrument your .NET functions .. 1019
Activating tracing with the Lambda console .. 1020
Activating tracing with the Lambda API ... 1021
Activating tracing with AWS CloudFormation .. 1021
Interpreting an X-Ray trace .. 1022

Testing .. 1025
Testing your serverless applications .. 1026

Building with PowerShell ... 1029
Development Environment .. 1031
Deployment package .. 1032

Creating a Lambda function .. 1032
Handler .. 1034

Returning data .. 1035
Context ... 1036
Logging .. 1037

Creating a function that returns logs .. 1037
Viewing logs in the Lambda console ... 1039
Viewing logs in the CloudWatch console .. 1039
Viewing logs using the AWS Command Line Interface (AWS CLI) .. 1039
Deleting logs ... 1043

Building with Rust ... 1044
Handler .. 1046

Setting up your Rust handler project .. 1046
Example Rust Lambda function code .. 1047
Valid class definitions for Rust handlers ... 1050
Handler naming conventions ... 1051
Defining and accessing the input event object .. 1052
Accessing and using the Lambda context object .. 1053

xix

AWS Lambda Developer Guide

Using the AWS SDK for Rust in your handler .. 1053
Accessing environment variables .. 1054
Using shared state ... 1054
Code best practices for Rust Lambda functions .. 1055

Context ... 1057
Accessing invoke context information ... 1057

HTTP events ... 1059
Deploy .zip file archives .. 1062

Prerequisites .. 1062
Building the function .. 1062
Deploying the function ... 1063
Invoking the function .. 1065

Layers ... 1066
Logging .. 1067

Creating a function that writes logs .. 1067
Implementing advanced logging with the Tracing crate ... 1067

Best practices ... 1070
Function code ... 1070
Function configuration ... 1071
Function scalability ... 1073
Metrics and alarms .. 1073
Working with streams .. 1074
Security best practices ... 1075

Testing serverless functions ... 1076
Targeted business outcomes ... 1077
What to test ... 1077
How to test serverless .. 1078
Testing techniques .. 1079

Testing in the cloud ... 1079
Testing with mocks .. 1082
Testing with emulation ... 1083

Best practices ... 1084
Prioritize testing in the cloud .. 1084
Structure your code for testability ... 1084
Accelerate development feedback loops .. 1085
Focus on integration tests .. 1085

xx

AWS Lambda Developer Guide

Create isolated test environments .. 1086
Use mocks for isolated business logic ... 1087
Use emulators sparingly ... 1087

Challenges testing locally .. 1088
Example: Lambda function creates an S3 bucket ... 1088
Example: Lambda function processes messages from an Amazon SQS queue 1089

FAQ ... 1089
Next steps and resources ... 1090

Lambda SnapStart ... 1092
Use cases ... 1093
Supported features and limitations .. 1093
Supported Regions .. 1094
Compatibility considerations ... 1094
Pricing .. 1095
Activating SnapStart ... 1096

Activating SnapStart (console) .. 1096
Activating SnapStart (AWS CLI) .. 1097
Activating SnapStart (API) .. 1099
Function states ... 1100
Updating a snapshot ... 1100
Using SnapStart with AWS SDKs .. 1100
Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDK 1101
Deleting snapshots .. 1101

Handling uniqueness .. 1102
Avoid saving state .. 1102
Use CSPRNGs .. 1104
Scanning tool (Java) .. 1107

Runtime hooks ... 1108
Java .. 1108
Python .. 1112
.NET ... 1114

Monitoring ... 1117
CloudWatch logs .. 1117
AWS X-Ray ... 1118
Telemetry API .. 1118
API Gateway and function URL metrics .. 1119

xxi

AWS Lambda Developer Guide

Security model ... 1120
Best practices ... 1121

Performance tuning ... 1121
Networking best practices .. 1125

Troubleshooting ... 1127
SnapStartNotReadyException .. 1127
SnapStartTimeoutException ... 1127
500 Internal Service Error .. 1128
401 Unauthorized .. 1128
UnknownHostException (Java) .. 1128
Snapshot creation failures .. 1129
Snapshot creation latency .. 1129

Integrating other services ... 1130
Creating a trigger .. 1130
Services list ... 1131
Apache Kafka .. 1133

MSK ... 1134
Self-managed Apache Kafka .. 1198
Schema registries with event sources .. 1234
Low latency Apache Kafka ... 1262

API Gateway .. 1264
Choosing an API type .. 1265
Adding an endpoint to your Lambda function .. 1266
Proxy integration .. 1266
Event format ... 1267
Response format .. 1267
Permissions .. 1268
Sample application .. 1270
Tutorial ... 1270
Errors ... 1287
API Gateway vs function URLs .. 1288

Infrastructure Composer .. 1293
Exporting a Lambda function to Infrastructure Composer ... 1293
Other resources .. 1295

CloudFormation ... 1296
Amazon DocumentDB ... 1299

xxii

AWS Lambda Developer Guide

Example Amazon DocumentDB event ... 1300
Prerequisites and permissions ... 1301
Configure network security .. 1302
Creating an Amazon DocumentDB event source mapping (console) 1306
Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1307
Polling and stream starting positions .. 1310
Monitoring your Amazon DocumentDB event source .. 1310
Tutorial ... 1311

DynamoDB .. 1337
Polling and batching streams .. 1337
Polling and stream starting positions .. 1338
Simultaneous readers .. 1339
Example event .. 1339
Create mapping .. 1341
Batch item failures ... 1343
Error handling ... 1356
Stateful processing .. 1362
Parameters ... 1367
Event filtering ... 1369
Tutorial ... 1378

EC2 .. 1394
Granting permissions to EventBridge (CloudWatch Events) .. 1394

Elastic Load Balancing (Application Load Balancer) ... 1396
Invoke using an EventBridge Scheduler ... 1398

Set up the execution role ... 1398
Create a schedule ... 1398
Related resources ... 1403

IoT ... 1404
Kinesis Data Streams .. 1406

Polling and batching streams .. 1406
Example event ... 1408
Create mapping .. 1409
Batch item failures ... 1415
Error handling ... 1430
Stateful processing .. 1436
Parameters ... 1439

xxiii

AWS Lambda Developer Guide

Event filtering ... 1442
Tutorial ... 1446

Kubernetes .. 1463
AWS Controllers for Kubernetes (ACK) .. 1463
Crossplane .. 1463

MQ .. 1465
Understanding the Lambda consumer group for Amazon MQ ... 1467
Configure event source ... 1471
Parameters ... 1477
Event filtering ... 1478
Troubleshoot ... 1484

RDS ... 1486
Configuring your function to work with RDS resources ... 1486
Connecting to an Amazon RDS database in a Lambda function .. 1492
Processing event notifications from Amazon RDS .. 1511
Complete Lambda and Amazon RDS tutorial .. 1512
Amazon RDS vs DynamoDB ... 1512

S3 .. 1517
Tutorial: Use an S3 trigger ... 1518
Tutorial: Use an Amazon S3 trigger to create thumbnails .. 1544

Secrets Manager .. 1573
When to use Secrets Manager .. 1573
Use Secrets Manager in a function .. 1573
Environment variables ... 1582
Secret rotation .. 1584

SQS ... 1585
Understanding polling and batching behavior for Amazon SQS event source mappings .. 1585
Example standard queue message event .. 1586
Example FIFO queue message event .. 1588
Create mapping .. 1589
Scaling behavior ... 1592
Error handling ... 1594
Parameters ... 1607
Event filtering ... 1608
Tutorial ... 1613
SQS cross-account tutorial ... 1631

xxiv

AWS Lambda Developer Guide

Step Functions ... 1638
When to use Step Functions ... 1638
When not to use Step Functions .. 1644

S3 Batch .. 1646
Invoking Lambda functions from Amazon S3 batch operations .. 1647

SNS ... 1649
Adding an Amazon SNS topic trigger for a Lambda function using the console 1649
Manually adding an Amazon SNS topic trigger for a Lambda function 1650
Sample SNS event shape ... 1651
Tutorial ... 1652

Lambda permissions .. 1671
Execution role (permissions for functions to access other resources) ... 1673

Creating an execution role in the IAM console .. 1673
Creating and managing roles with the AWS CLI ... 1674
Grant least privilege access to your Lambda execution role ... 1676
Update execution role ... 1676
AWS managed policies .. 1678
Source function ARN ... 1681

Access permissions (permissions for other entities to access your functions) 1686
Identity-based policies .. 1686
Resource-based policies .. 1693
Attribute-based access control .. 1701
Resources and Conditions .. 1709

Security, governance, and compliance ... 1716
Data protection .. 1717

Encryption in transit .. 1718
Encryption at rest .. 1718

Identity and Access Management .. 1723
Audience ... 1724
Authenticating with identities ... 1724
Managing access using policies ... 1728
How AWS Lambda works with IAM .. 1730
Identity-based policy examples ... 1737
AWS managed policies .. 1740
Troubleshooting .. 1745

Governance ... 1747

xxv

AWS Lambda Developer Guide

Proactive controls with Guard ... 1749
Proactive controls with AWS Config .. 1753
Detective controls with AWS Config .. 1760
Code signing .. 1764
Code scanning ... 1767
Observability ... 1772

Compliance validation .. 1779
Resilience ... 1779
Infrastructure security .. 1780
Securing workloads with public endpoints .. 1781

Authentication and authorization ... 1781
Protecting API endpoints ... 1781

Code signing ... 1783
Signature validation ... 1783
Create configuration .. 1784
Permissions .. 1786
Code signing configuration tags ... 1787

Monitoring and debugging functions .. 1791
Pricing .. 1791
Function metrics .. 1792

View function metrics ... 1792
Metric types ... 1793

Function logs .. 1801
Choosing a service destination to send logs to ... 1801
Configuring log destinations ... 1802
Configuring advanced logging controls for Lambda functions .. 1802
Log formats ... 1803
Log-level filtering ... 1809
Log with CloudWatch Logs .. 1814
Log with Firehose ... 1831
Log with Amazon S3 ... 1833

CloudTrail logs ... 1838
Lambda data events in CloudTrail .. 1839
Lambda management events in CloudTrail .. 1841
Using CloudTrail to troubleshoot disabled Lambda event sources .. 1843
Lambda event examples ... 1844

xxvi

AWS Lambda Developer Guide

AWS X-Ray .. 1846
Understanding X-Ray traces ... 1847
Default tracing behavior in Lambda .. 1851
Execution role permissions ... 1852
Enabling Active tracing with the Lambda API .. 1852
Enabling Active tracing with AWS CloudFormation ... 1853

Function insights ... 1854
How it works ... 1854
Pricing ... 1855
Supported runtimes ... 1855
Enabling Lambda Insights in the console ... 1855
Enabling Lambda Insights programmatically ... 1855
Using the Lambda Insights dashboard .. 1856
Detecting function anomalies ... 1857
Troubleshooting a function .. 1859
What's next? .. 1861

View application metrics .. 1862
Application Signals .. 1864

How Application Signals integrates with Lambda .. 1864
Pricing ... 1865
Supported runtimes ... 1865
Enabling Application Signals in the Lambda console ... 1865
Using the Application Signals dashboard ... 1866

Debug with VS Code ... 1868
Supported runtimes ... 1868
Security and remote debugging ... 1868
Prerequisites .. 1869
Remotely debug Lambda functions ... 1869
Disable remote debugging ... 1870
Additional information .. 1871

Lambda layers .. 1872
How to use layers .. 1874
Layers and layer versions ... 1874
Packaging layers .. 1875

Layer paths for each Lambda runtime .. 1875
Creating and deleting layers ... 1879

xxvii

AWS Lambda Developer Guide

Creating a layer .. 1879
Deleting a layer version .. 1880

Adding layers .. 1881
Finding layer information ... 1882

Layers with AWS CloudFormation .. 1885
Layers with AWS SAM .. 1886

Lambda extensions .. 1887
Execution environment ... 1888
Impact on performance and resources ... 1889
Permissions ... 1889
Configuring extensions ... 1890

Configuring extensions (.zip file archive) .. 1890
Using extensions in container images ... 1890
Next steps .. 1891

Extensions partners ... 1892
AWS managed extensions .. 1893

Extensions API .. 1894
Lambda execution environment lifecycle ... 1895
Extensions API reference .. 1904

Telemetry API ... 1910
Creating extensions using the Telemetry API .. 1911
Registering your extension ... 1913
Creating a telemetry listener ... 1913
Specifying a destination protocol ... 1915
Configuring memory usage and buffering ... 1916
Sending a subscription request to the Telemetry API .. 1917
Inbound Telemetry API messages .. 1918
API reference ... 1922
Event schema reference .. 1926
Converting events to OTel Spans ... 1947
Logs API ... 1953

Troubleshooting ... 1966
Configuration .. 1966

Memory configurations ... 1967
CPU-bound configurations ... 1967
Timeouts ... 1967

xxviii

AWS Lambda Developer Guide

Memory leakage between invocations .. 1968
Asynchronous results returned to a later invocation .. 1971

Deployment ... 1975
General: Permission is denied / Cannot load such file ... 1976
General: Error occurs when calling the UpdateFunctionCode .. 1977
Amazon S3: Error Code PermanentRedirect. .. 1977
General: Cannot find, cannot load, unable to import, class not found, no such file or
directory ... 1978
General: Undefined method handler ... 1978
General: Lambda code storage limit exceeded .. 1979
Lambda: Layer conversion failed .. 1979
Lambda: InvalidParameterValueException or RequestEntityTooLargeException 1980
Lambda: InvalidParameterValueException .. 1981
Lambda: Concurrency and memory quotas .. 1981
Lambda: Invalid alias configuration for provisioned concurrency .. 1981

Invocation .. 1982
Lambda: Function times out during Init phase (Sandbox.Timedout) 1983
IAM: lambda:InvokeFunction not authorized .. 1984
Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint) 1984
Lambda: Operation cannot be performed ResourceConflictException 1984
Lambda: Function is stuck in Pending ... 1985
Lambda: One function is using all concurrency ... 1985
General: Cannot invoke function with other accounts or services ... 1985
General: Function invocation is looping .. 1985
Lambda: Alias routing with provisioned concurrency ... 1986
Lambda: Cold starts with provisioned concurrency .. 1986
Lambda: Cold starts with new versions .. 1987
EFS: Function could not mount the EFS file system ... 1987
EFS: Function could not connect to the EFS file system .. 1987
EFS: Function could not mount the EFS file system due to timeout 1988
Lambda: Lambda detected an IO process that was taking too long 1988
Container: CodeArtifactUserException errors ... 1988
Container: InvalidEntrypoint errors .. 1988

Execution ... 1989
Lambda: Remote debugging with Visual Studio Code ... 1990
Lambda: Execution takes too long ... 1990

xxix

AWS Lambda Developer Guide

Lambda: Unexpected event payload .. 1990
Lambda: Unexpectedly large payload sizes .. 1991
Lambda: JSON encoding and decoding errors ... 1992
Lambda: Logs or traces don't appear .. 1992
Lambda: Not all of my function's logs appear ... 1993
Lambda: The function returns before execution finishes .. 1994
Lambda: Running an unintended function version or alias ... 1994
Lambda: Detecting infinite loops ... 1995
General: Downstream service unavailability ... 1996
AWS SDK: Versions and updates ... 1996
Python: Libraries load incorrectly ... 1997
Java: Your function takes longer to process events after updating to Java 17 from Java
11 ... 1998

Event source mapping .. 1998
Identifying and managing throttling ... 1998
Errors in the processing function ... 2000
Identifying and handling backpressure ... 2002

Networking .. 2003
VPC: Function loses internet access or times out .. 2003
VPC: TCP or UDP connection intermittently fails .. 2004
VPC: Function needs access to AWS services without using the internet 2004
VPC: Elastic network interface limit reached ... 2004
EC2: Elastic network interface with type of "lambda" .. 2005
DNS: Fail to connect to hosts with UNKNOWNHOSTEXCEPTION .. 2005

Sample applications .. 2006
Working with AWS SDKs ... 2009
Code examples ... 2011

Basics .. 2023
Hello Lambda .. 2024
Learn the basics .. 2033
Actions .. 2170

Scenarios .. 2304
Automatically confirm known users with a Lambda function .. 2305
Automatically migrate known users with a Lambda function .. 2345
Create a REST API to track COVID-19 data .. 2369
Create a lending library REST API .. 2370

xxx

AWS Lambda Developer Guide

Create a messenger application .. 2371
Create a serverless application to manage photos ... 2372
Create a websocket chat application ... 2376
Create an application to analyze customer feedback ... 2376
Invoke a Lambda function from a browser .. 2383
Transform data with S3 Object Lambda ... 2384
Use API Gateway to invoke a Lambda function .. 2384
Use Step Functions to invoke Lambda functions .. 2386
Use scheduled events to invoke a Lambda function .. 2387
Use the Neptune API to query graph data ... 2389
Write custom activity data with a Lambda function after Amazon Cognito user
authentication ... 2390

Serverless examples .. 2412
Connecting to an Amazon RDS database in a Lambda function .. 2413
Invoke a Lambda function from a Kinesis trigger ... 2432
Invoke a Lambda function from a DynamoDB trigger ... 2442
Invoke a Lambda function from a Amazon DocumentDB trigger .. 2452
Invoke a Lambda function from an Amazon MSK trigger ... 2464
Invoke a Lambda function from an Amazon S3 trigger ... 2474
Invoke a Lambda function from an Amazon SNS trigger .. 2486
Invoke a Lambda function from an Amazon SQS trigger .. 2495
Reporting batch item failures for Lambda functions with a Kinesis trigger 2504
Reporting batch item failures for Lambda functions with a DynamoDB trigger 2517
Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2528

AWS community contributions ... 2538
Build and test a serverless application .. 2538

Lambda quotas .. 2541
Compute and storage ... 2542
Function configuration, deployment, and execution ... 2544
Lambda API requests .. 2546
Other services ... 2547

Document history .. 2548
Earlier updates ... 2571

xxxi

AWS Lambda Developer Guide

What is AWS Lambda?

You can use AWS Lambda to run code without provisioning or managing servers. Lambda runs
your code on a high-availability compute infrastructure and manages all the computing resources,
including server and operating system maintenance, capacity provisioning, automatic scaling, and
logging. You organize your code into Lambda functions. The Lambda service runs your function
only when needed and scales automatically. For pricing information, see AWS Lambda Pricing for
details.

When using Lambda, you are responsible only for your code. Lambda manages the compute fleet
that offers a balance of memory, CPU, network, and other resources to run your code. Because
Lambda manages these resources, you cannot log in to compute instances or customize the
operating system on provided runtimes.

When to use Lambda

Lambda is an ideal compute service for application scenarios that need to scale up rapidly, and
scale down to zero when not in demand. For example, you can use Lambda for:

• Stream processing: Use Lambda and Amazon Kinesis to process real-time streaming data for
application activity tracking, transaction order processing, clickstream analysis, data cleansing,
log filtering, indexing, social media analysis, Internet of Things (IoT) device data telemetry, and
metering.

• Web applications: Combine Lambda with other AWS services to build powerful web applications
that automatically scale up and down and run in a highly available configuration across multiple
data centers. To build web applications with AWS services, developers can use infrastructure as
code (IaC) and orchestration tools such as AWS CloudFormation, AWS Cloud Development Kit
(AWS CDK), AWS Serverless Application Model, or coordinate complex workflows using AWS Step
Functions.

• Mobile backends: Build backends using Lambda and Amazon API Gateway to authenticate and
process API requests. Use AWS Amplify to easily integrate with your iOS, Android, Web, and
React Native frontends.

• IoT backends: Build serverless backends using Lambda to handle web, mobile, IoT, and third-
party API requests.

• File processing: Use Amazon Simple Storage Service (Amazon S3) to trigger Lambda data
processing in real time after an upload.

When to use Lambda 1

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/cloudformation
https://aws.amazon.com/cdk
https://aws.amazon.com/cdk
https://aws.amazon.com/serverless/sam
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions

AWS Lambda Developer Guide

• Database Operations and Integration: Use Lambda to process database interactions both
reactively and proactively, from handling queue messages for Amazon RDS operations like user
registrations and order submissions, to responding to DynamoDB changes for audit logging, data
replication, and automated workflows.

• Scheduled and Periodic Tasks: Use Lambda with EventBridge rules to execute time-based
operations such as database maintenance, data archiving, report generation, and other
scheduled business processes using cron-like expressions.

How Lambda works

Because Lambda is a serverless, event-driven compute service, it uses a different programming
paradigm than traditional web applications. The following model illustrates how Lambda
fundamentally works:

1. You write and organize your code in Lambda functions, which are the basic building blocks you
use to create a Lambda application.

2. You control security and access through Lambda permissions, using execution roles to manage
what AWS services your functions can interact with and what resource policies can interact with
your code.

3. Event sources and AWS services trigger your Lambda functions, passing event data in JSON
format, which your functions process (this includes event source mappings).

4. Lambda runs your code with language-specific runtimes (like Node.js and Python) in execution
environments that package your runtime, layers, and extensions.

Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Key features

Configure, control, and deploy secure applications:

• Environment variables modify application behavior without new code deployments.

• Versions safely test new features while maintaining stable production environments.

How Lambda works 2

https://docs.aws.amazon.com/serverless/latest/devguide/

AWS Lambda Developer Guide

• Lambda layers optimize code reuse and maintenance by sharing common components across
multiple functions.

• Code signing enforce security compliance by ensuring only approved code reaches production
systems.

Scale and perform reliably:

• Concurrency and scaling controls precisely manage application responsiveness and resource
utilization during traffic spikes.

• Lambda SnapStart significantly reduce cold start times. Lambda SnapStart can provide as low as
sub-second startup performance, typically with no changes to your function code.

• Response streaming optimize function performance by delivering large payloads incrementally
for real-time processing.

• Container images package functions with complex dependencies using container workflows.

Connect and integrate seamlessly:

• VPC networks secure sensitive resources and internal services.

• File system integration that shares persistent data and manage stateful operations across
function invocations.

• Function URLs create public-facing APIs and endpoints without additional services.

• Lambda extensions augment functions with monitoring, security, and operational tools.

Related information

• For information on how Lambda works, see How Lambda works.

• To start using Lambda, see Create your first Lambda function.

• For a list of example applications, see Getting started with example applications and patterns.

How Lambda works

Lambda functions are the basic building blocks you use to build Lambda applications. To write
functions, it's essential to understand the core concepts and components that make up the Lambda

Related information 3

AWS Lambda Developer Guide

programming model. This section will guide you through the fundamental elements you need to
know to start building serverless applications with Lambda.

• Lambda functions and function handlers - A Lambda function is a small block of code that
runs in response to events. functions are the basic building blocks you use to build applications.
Function handlers are the entry point for event objects that your Lambda function code
processes.

• Lambda execution environment and runtimes - Lambda execution environments manage the
resources required to run your function. Run times are the language-specific environments your
functions run in.

• Events and triggers - how other AWS services invoke your functions in response to specific
events.

• Lambda permissions and roles - how you control who can access your functions and what other
AWS services your functions can interact with.

Tip

If you want to start by understanding serverless development more generally, see
Understanding the difference between traditional and serverless development in the AWS
Serverless Developer Guide.

Lambda functions and function handlers

In Lambda, functions are the fundamental building blocks you use to create applications. A
Lambda function is a piece of code that runs in response to events, such as a user clicking a button
on a website or a file being uploaded to an Amazon Simple Storage Service (Amazon S3) bucket.
You can think of a function as a kind of self-contained program with the following properties.
A Lambda function handler is the method in your function code that processes events. When a
function runs in response to an event, Lambda runs the function handler. Data about the event
that caused the function to run is passed directly to the handler. While the code in a Lambda
function can contain more than one method or function, Lambda functions can only have one
handler.

To create a Lambda function, you bundle your function code and its dependencies in a deployment
package. Lambda supports two types of deployment package, .zip file archives and container
images.

Lambda functions and function handlers 4

https://docs.aws.amazon.com/serverless/latest/devguide/serverless-shift-mindset.html

AWS Lambda Developer Guide

• A function has one specific job or purpose

• They run only when needed in response to specific events

• They automatically stop running when finished

Lambda execution environment and runtimes

Lambda functions run inside a secure, isolated execution environment which Lambda manages for
you. This execution environment manages the processes and resources that are needed to run your
function. When a function is first invoked, Lambda creates a new execution environment for the
function to run in. After the function has finished running, Lambda doesn't stop the execution
environment right away; if the function is invoked again, Lambda can re-use the existing execution
environment.

The Lambda execution environment also contains a runtime, a language-specific environment that
relays event information and responses between Lambda and your function. Lambda provides a
number of managed runtimes for the most popular programming languages, or you can create
your own.

For managed runtimes, Lambda automatically applies security updates and patches to functions
using the runtime.

Events and triggers

You can also invoke a Lambda function directly by using the Lambda console, AWS CLI, or one of
the AWS Software Development Kits (SDKs). It's more usual in a production application for your
function to be invoked by another AWS service in response to a particular event. For example, you
might want a function to run whenever an item is added to an Amazon DynamoDB table.

To make your function respond to events, you set up a trigger. A trigger connects your function
to an event source, and your function can have multiple triggers. When an event occurs, Lambda
receives event data as a JSON document and converts it into an object that your code can process.
You might define the following JSON format for your event and the Lambda runtime converts this
JSON to an object before passing it to your function's handler.

Example custom Lambda event

{
 "Location": "SEA",
 "WeatherData":{

Lambda execution environment and runtimes 5

https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/

AWS Lambda Developer Guide

 "TemperaturesF":{
 "MinTempF": 22,
 "MaxTempF": 78
 },
 "PressuresHPa":{
 "MinPressureHPa": 1015,
 "MaxPressureHPa": 1027
 }
 }
}

Stream and queue services like Amazon Kinesis or Amazon SQS, Lambda use an event source
mapping instead of a standard trigger. Event source mappings poll the source for new data, batch
records together, and then invoke your function with the batched events. For more information,
see How event source mappings differ from direct triggers.

To understand how a trigger works, start by completing the Use an Amazon S3 trigger tutorial, or
for a general overview of using triggers and instructions on creating a trigger using the Lambda
console, see Integrating other services.

Lambda permissions and roles

For Lambda, there are two main types of permissions that you need to configure:

• Permissions that your function needs to access other AWS services

• Permissions that other users and AWS services need to access your function

The following sections describe both of these permission types and discuss best practices for
applying least-privilege permissions.

Permissions for functions to access other AWS resources

Lambda functions often need to access other AWS resources and perform actions on them. For
example, a function might read items from a DynamoDB table, store an object in an S3 bucket,
or write to an Amazon SQS queue. To give functions the permissions they need to perform these
actions, you use an execution role.

A Lambda execution role is a special kind of AWS Identity and Access Management (IAM) role, an
identity you create in your account that has specific permissions associated with it defined in a
policy.

Lambda permissions and roles 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Lambda Developer Guide

Every Lambda function must have an execution role, and a single role can be used by more than
one function. When a function is invoked, Lambda assumes the function's execution role and is
granted permission to take the actions defined in the role's policy.

When you create a function in the Lambda console, Lambda automatically creates an execution
role for your function. The role's policy gives your function basic permissions to write log outputs
to Amazon CloudWatch Logs. To give your function permission to perform actions on other
AWS resources, you need to edit the role to add the extra permissions. The easiest way to add
permissions is to use an AWS managed policy. Managed policies are created and administered by
AWS and provide permissions for many common use cases. For example, if your function performs
CRUD operations on a DynamoDB table, you can add the AmazonDynamoDBFullAccess policy to
your role.

Permissions for other users and resources to access your function

To grant other AWS service permission to access your Lambda function, you use a resource-
based policy. In IAM, resource-based policies are attached to a resource (in this case, your Lambda
function) and define who can access the resource and what actions they are allowed to take.

For another AWS service to invoke your function through a trigger, your function's resource-based
policy must grant that service permission to use the lambda:InvokeFunction action. If you
create the trigger using the console, Lambda automatically adds this permission for you.

To grant permission to other AWS users to access your function, you can define this in your
function's resource-based policy in exactly the same way as for another AWS service or resource.
You can also use an identity-based policy that's associated with the user.

Best practices for Lambda permissions

When you set permissions using IAM policies, security best practice is to grant only the permissions
required to perform a task. This is known as the principle of least privilege. To get started granting
permissions for your function, you might choose to use an AWS managed policy. Managed policies
can be the quickest and easiest way to grant permissions to perform a task, but they might also
include other permissions you don't need. As you move from early development through test and
production, we recommend you reduce permissions to only those needed by defining your own
customer-managed policies.

The same principle applies when granting permissions to access your function using a resource-
based policy. For example, if you want to give permission to Amazon S3 to invoke your function,

Lambda permissions and roles 7

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

AWS Lambda Developer Guide

best practice is to limit access to individual buckets, or buckets in particular AWS accounts, rather
than giving blanket permissions to the S3 service.

Lambda permissions and roles 8

AWS Lambda Developer Guide

Running code with Lambda

When you write a Lambda function, you are creating code that will run in a unique serverless
environment. Understanding how Lambda actually runs your code involves two key aspects:
the programming model that defines how your code interacts with Lambda, and the execution
environment lifecycle that determines how Lambda manages your code's runtime environment.

The Lambda programming model

Programming model functions as a common set of rules for how Lambda works with your code,
regardless of whether you're writing in Python, Java, or any other supported language. The
programming model includes your runtime and handler.

1. Lambda receives an event.

2. Lambda uses the runtime (like Python or Java) to prepare the event in a format your code can
use.

3. The runtime sends the formatted event to your handler.

4. Your handler processes the event using the code you've written in your Lambda function.

Essential to this model is the handler, where Lambda sends events to be processed by your code.
Think of it as the entry point to your code. When Lambda receives an event, it passes this event and
some context information to your handler. The handler then runs your code to process these events
- for example, it might read a file when it's uploaded to Amazon S3, analyze an image, or update
a database. Once your code finishes processing an event, the handler is ready to process the next
one.

The Lambda execution model

While the programming model defines how Lambda interacts with your code, Execution
environment is where Lambda actually runs your function — it's a secure, isolated compute space
created specifically for your function. Each environment follows a lifecycle of three phases.

1. Initialization: Lambda creates the environment and gets everything ready to run your function.
This includes setting up your chosen runtime, loading your code, and running any startup code
you've written.

2. Invocation: When events arrive, Lambda uses this environment to run your function. The
environment can process many events over time, one after another. As more events come in,

Running code 9

foundation-progmodel.html
lambda-runtime-environment.html
lambda-runtime-environment.html

AWS Lambda Developer Guide

Lambda creates additional environments to handle the increased demand. When demand drops,
Lambda stops environments that are no longer needed.

3. Shutdown: Eventually, Lambda will shut down environments. Before doing this, it gives your
function a chance to clean up any remaining tasks.

This environment handles important aspects of running your function. It provides your
function with memory and a /tmp directory for temporary storage. It maintains resources like
database connections between invocations, so your function can reuse them. It offers features
like provisioned concurrency, where Lambda prepares environments in advance to improve
performance.

Understanding the Lambda programming model

Lambda provides a programming model that is common to all of the runtimes. The programming
model defines the interface between your code and the Lambda system. You tell Lambda the entry
point to your function by defining a handler in the function configuration. The runtime passes in
objects to the handler that contain the invocation event and the context, such as the function name
and request ID.

When the handler finishes processing the first event, the runtime sends it another. The function's
class stays in memory, so clients and variables that are declared outside of the handler method in
initialization code can be reused. To save processing time on subsequent events, create reusable
resources like AWS SDK clients during initialization. Once initialized, each instance of your function
can process thousands of requests.

Your function also has access to local storage in the /tmp directory, a transient cache that can be
used for multiple invocations. For more information, see Execution environment.

When AWS X-Ray tracing is enabled, the runtime records separate subsegments for initialization
and execution.

The runtime captures logging output from your function and sends it to Amazon CloudWatch
Logs. In addition to logging your function's output, the runtime also logs entries when function
invocation starts and ends. This includes a report log with the request ID, billed duration,
initialization duration, and other details. If your function throws an error, the runtime returns that
error to the invoker.

Running code 10

AWS Lambda Developer Guide

Note

Logging is subject to CloudWatch Logs quotas. Log data can be lost due to throttling or, in
some cases, when an instance of your function is stopped.

Lambda scales your function by running additional instances of it as demand increases, and by
stopping instances as demand decreases. This model leads to variations in application architecture,
such as:

• Unless noted otherwise, incoming requests might be processed out of order or concurrently.

• Do not rely on instances of your function being long lived, instead store your application's state
elsewhere.

• Use local storage and class-level objects to increase performance, but keep to a minimum the
size of your deployment package and the amount of data that you transfer onto the execution
environment.

For a hands-on introduction to the programming model in your preferred programming language,
see the following chapters.

• Building Lambda functions with Node.js

• Building Lambda functions with Python

• Building Lambda functions with Ruby

• Building Lambda functions with Java

• Building Lambda functions with Go

• Building Lambda functions with C#

• Building Lambda functions with PowerShell

Understanding the Lambda execution environment lifecycle

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function. The execution environment also provides lifecycle support for the function's runtime and
any external extensions associated with your function.

Running code 11

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

AWS Lambda Developer Guide

The function's runtime communicates with Lambda using the Runtime API. Extensions
communicate with Lambda using the Extensions API. Extensions can also receive log messages and
other telemetry from the function by using the Telemetry API.

When you create your Lambda function, you specify configuration information, such as the amount
of memory available and the maximum execution time allowed for your function. Lambda uses this
information to set up the execution environment.

The function's runtime and each external extension are processes that run within the execution
environment. Permissions, resources, credentials, and environment variables are shared between
the function and the extensions.

Topics

• Lambda execution environment lifecycle

• Cold starts and latency

• Reducing cold starts with Provisioned Concurrency

• Optimizing static initialization

Lambda execution environment lifecycle

Running code 12

AWS Lambda Developer Guide

Each phase starts with an event that Lambda sends to the runtime and to all registered extensions.
The runtime and each extension indicate completion by sending a Next API request. Lambda
freezes the execution environment when the runtime and each extension have completed and
there are no pending events.

Topics

• Init phase

• Failures during the Init phase

• Restore phase (Lambda SnapStart only)

• Invoke phase

• Failures during the invoke phase

• Shutdown phase

Init phase

In the Init phase, Lambda performs three tasks:

• Start all extensions (Extension init)

• Bootstrap the runtime (Runtime init)

• Run the function's static code (Function init)

• Run any before-checkpoint runtime hooks (Lambda SnapStart only)

The Init phase ends when the runtime and all extensions signal that they are ready by sending
a Next API request. The Init phase is limited to 10 seconds. If all three tasks do not complete
within 10 seconds, Lambda retries the Init phase at the time of the first function invocation with
the configured function timeout.

When Lambda SnapStart is activated, the Init phase happens when you publish a function
version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
before-checkpoint runtime hook, then the code runs at the end of Init phase.

Note

The 10-second timeout doesn't apply to functions that are using provisioned concurrency
or SnapStart. For provisioned concurrency and SnapStart functions, your initialization code

Running code 13

AWS Lambda Developer Guide

can run for up to 15 minutes. The time limit is 130 seconds or the configured function
timeout (maximum 900 seconds), whichever is higher.

When you use provisioned concurrency, Lambda initializes the execution environment when
you configure the PC settings for a function. Lambda also ensures that initialized execution
environments are always available in advance of invocations. You may see gaps between your
function's invocation and initialization phases. Depending on your function's runtime and memory
configuration, you may also see variable latency on the first invocation on an initialized execution
environment.

For functions using on-demand concurrency, Lambda may occasionally initialize execution
environments ahead of invocation requests. When this happens, you may also observe a time gap
between your function's initialization and invocation phases. We recommend you to not take a
dependency on this behavior.

Failures during the Init phase

If a function crashes or times out during the Init phase, Lambda emits error information in the
INIT_REPORT log.

Example — INIT_REPORT log for timeout

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: timeout

Example — INIT_REPORT log for extension failure

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: error Error Type:
 Extension.Crash

If the Init phase is successful, Lambda doesn't emit the INIT_REPORT log unless SnapStart or
provisioned concurrency is enabled. SnapStart and provisioned concurrency functions always emit
INIT_REPORT. For more information, see Monitoring for Lambda SnapStart.

Restore phase (Lambda SnapStart only)

When you first invoke a SnapStart function and as the function scales up, Lambda resumes new
execution environments from the persisted snapshot instead of initializing the function from
scratch. If you have an after-restore runtime hook, the code runs at the end of the Restore phase.
You are charged for the duration of after-restore runtime hooks. The runtime must load and after-

Running code 14

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

AWS Lambda Developer Guide

restore runtime hooks must complete within the timeout limit (10 seconds). Otherwise, you'll get
a SnapStartTimeoutException. When the Restore phase completes, Lambda invokes the function
handler (the Invoke phase).

Failures during the Restore phase

If the Restore phase fails, Lambda emits error information in the RESTORE_REPORT log.

Example — RESTORE_REPORT log for timeout

RESTORE_REPORT Restore Duration: 1236.04 ms Status: timeout

Example — RESTORE_REPORT log for runtime hook failure

RESTORE_REPORT Restore Duration: 1236.04 ms Status: error Error Type: Runtime.ExitError

For more information about the RESTORE_REPORT log, see Monitoring for Lambda SnapStart.

Invoke phase

When a Lambda function is invoked in response to a Next API request, Lambda sends an Invoke
event to the runtime and to each extension.

The function's timeout setting limits the duration of the entire Invoke phase. For example, if you
set the function timeout as 360 seconds, the function and all extensions need to complete within
360 seconds. Note that there is no independent post-invoke phase. The duration is the sum of all
invocation time (runtime + extensions) and is not calculated until the function and all extensions
have finished executing.

The invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Failures during the invoke phase

If the Lambda function crashes or times out during the Invoke phase, Lambda resets the
execution environment. The following diagram illustrates Lambda execution environment behavior
when there's an invoke failure:

Running code 15

AWS Lambda Developer Guide

In the previous diagram:

• The first phase is the INIT phase, which runs without errors.

• The second phase is the INVOKE phase, which runs without errors.

• At some point, suppose your function runs into an invoke failure (common causes include
function timeouts, runtime errors, memory exhaustion, VPC connectivity issues, permission
errors, concurrency limits, and various configuration problems). For a complete list of possible
invocation failures, see the section called “Invocation”. The third phase, labeled INVOKE WITH
ERROR , illustrates this scenario. When this happens, the Lambda service performs a reset.
The reset behaves like a Shutdown event. First, Lambda shuts down the runtime, then sends a
Shutdown event to each registered external extension. The event includes the reason for the
shutdown. If this environment is used for a new invocation, Lambda re-initializes the extension
and runtime together with the next invocation.

Note that the Lambda reset does not clear the /tmp directory content prior to the next init
phase. This behavior is consistent with the regular shutdown phase.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes,
you may see minor differences between the structure and content of system log
messages and trace segments emitted by different Lambda functions in your AWS
account.
If your function's system log configuration is set to plain text, this change affects the
log messages captured in CloudWatch Logs when your function experiences an invoke
failure. The following examples show log outputs in both old and new formats.
These changes will be implemented during the coming weeks, and all functions in all
AWS Regions except the China and GovCloud regions will transition to use the new-
format log messages and trace segments.

Example CloudWatch Logs log output (runtime or extension crash) - old style

START RequestId: c3252230-c73d-49f6-8844-968c01d1e2e1 Version: $LATEST
RequestId: c3252230-c73d-49f6-8844-968c01d1e2e1 Error: Runtime exited without
 providing a reason
Runtime.ExitError

Running code 16

AWS Lambda Developer Guide

END RequestId: c3252230-c73d-49f6-8844-968c01d1e2e1
REPORT RequestId: c3252230-c73d-49f6-8844-968c01d1e2e1 Duration: 933.59 ms Billed
 Duration: 934 ms Memory Size: 128 MB Max Memory Used: 9 MB

Example CloudWatch Logs log output (function timeout) - old style

START RequestId: b70435cc-261c-4438-b9b6-efe4c8f04b21 Version: $LATEST
2024-03-04T17:22:38.033Z b70435cc-261c-4438-b9b6-efe4c8f04b21 Task timed out after
 3.00 seconds
END RequestId: b70435cc-261c-4438-b9b6-efe4c8f04b21
REPORT RequestId: b70435cc-261c-4438-b9b6-efe4c8f04b21 Duration: 3004.92 ms Billed
 Duration: 3000 ms Memory Size: 128 MB Max Memory Used: 33 MB Init Duration: 111.23
 ms

The new format for CloudWatch logs includes an additional statusfield in the REPORT line. In
the case of a runtime or extension crash, the REPORT line also includes a field ErrorType.

Example CloudWatch Logs log output (runtime or extension crash) - new style

START RequestId: 5b866fb1-7154-4af6-8078-6ef6ca4c2ddd Version: $LATEST
END RequestId: 5b866fb1-7154-4af6-8078-6ef6ca4c2ddd
REPORT RequestId: 5b866fb1-7154-4af6-8078-6ef6ca4c2ddd Duration: 133.61 ms Billed
 Duration: 133 ms Memory Size: 128 MB Max Memory Used: 31 MB Init Duration: 80.00
 ms Status: error Error Type: Runtime.ExitError

Example CloudWatch Logs log output (function timeout) - new style

START RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f0fda Version: $LATEST
END RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f0fda
REPORT RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f0fda Duration: 3016.78 ms Billed
 Duration: 3016 ms Memory Size: 128 MB Max Memory Used: 31 MB Init Duration: 84.00
 ms Status: timeout

• The fourth phase represents the INVOKE phase immediately following an invoke failure.
Here, Lambda initializes the environment again by re-running the INIT phase. This is called a
suppressed init. When suppressed inits occur, Lambda doesn't explicitly report an additional INIT
phase in CloudWatch Logs. Instead, you may notice that the duration in the REPORT line includes
an additional INIT duration + the INVOKE duration. For example, suppose you see the following
logs in CloudWatch:

Running code 17

AWS Lambda Developer Guide

2022-12-20T01:00:00.000-08:00 START RequestId: XXX Version: $LATEST
2022-12-20T01:00:02.500-08:00 END RequestId: XXX
2022-12-20T01:00:02.500-08:00 REPORT RequestId: XXX Duration: 3022.91 ms
Billed Duration: 3000 ms Memory Size: 512 MB Max Memory Used: 157 MB

In this example, the difference between the REPORT and START timestamps is 2.5 seconds.
This doesn't match the reported duration of 3022.91 millseconds, because it doesn't take into
account the extra INIT (suppressed init) that Lambda performed. In this example, you can infer
that the actual INVOKE phase took 2.5 seconds.

For more insight into this behavior, you can use the Accessing real-time telemetry
data for extensions using the Telemetry API. The Telemetry API emits INIT_START,
INIT_RUNTIME_DONE, and INIT_REPORT events with phase=invoke whenever suppressed
inits occur in between invoke phases.

• The fifth phase represents the SHUTDOWN phase, which runs without errors.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown event to each registered
external extension. Extensions can use this time for final cleanup tasks. The Shutdown event is a
response to a Next API request.

Duration limit: The maximum duration of the Shutdown phase depends on the configuration of
registered extensions:

• 0 ms – A function with no registered extensions

• 500 ms – A function with a registered internal extension

• 2,000 ms – A function with one or more registered external extensions

If the runtime or an extension does not respond to the Shutdown event within the limit, Lambda
ends the process using a SIGKILL signal.

After the function and all extensions have completed, Lambda maintains the execution
environment for some time in anticipation of another function invocation. However, Lambda
terminates execution environments every few hours to allow for runtime updates and maintenance
—even for functions that are invoked continuously. You should not assume that the execution

Running code 18

AWS Lambda Developer Guide

environment will persist indefinitely. For more information, see Implement statelessness in
functions.

When the function is invoked again, Lambda thaws the environment for reuse. Reusing the
execution environment has the following implications:

• Objects declared outside of the function's handler method remain initialized, providing
additional optimization when the function is invoked again. For example, if your Lambda
function establishes a database connection, instead of reestablishing the connection, the original
connection is used in subsequent invocations. We recommend adding logic in your code to check
if a connection exists before creating a new one.

• Each execution environment provides between 512 MB and 10,240 MB, in 1-MB increments, of
disk space in the /tmp directory. The directory content remains when the execution environment
is frozen, providing a transient cache that can be used for multiple invocations. You can add extra
code to check if the cache has the data that you stored. For more information on deployment
size limits, see Lambda quotas.

• Background processes or callbacks that were initiated by your Lambda function and did not
complete when the function ended resume if Lambda reuses the execution environment. Make
sure that any background processes or callbacks in your code are complete before the code exits.

Cold starts and latency

When Lambda receives a request to run a function via the Lambda API, the service first prepares an
execution environment. During this initialization phase, the service downloads your code, starts the
environment, and runs any initialization code outside of the main handler. Finally, Lambda runs the
handler code.

In this diagram, the first two steps of downloading the code and setting up the environment are
frequently referred to as a “cold start”. You are not charged for this time, but it does add latency to
your overall invocation duration.

Running code 19

AWS Lambda Developer Guide

After the invocation completes, the execution environment is frozen. To improve resource
management and performance, Lambda retains the execution environment for a period of
time. During this time, if another request arrives for the same function, Lambda can reuse the
environment. This second request typically finishes more quickly, since the execution environment
is already fully set up. This is called a “warm start”.

Cold starts typically occur in under 1% of invocations. The duration of a cold start varies from
under 100 ms to over 1 second. In general, cold starts are typically more common in development
and test functions than production workloads. This is because development and test functions are
usually invoked less frequently.

Reducing cold starts with Provisioned Concurrency

If you need predictable function start times for your workload, provisioned concurrency is the
recommended solution to ensure the lowest possible latency. This feature pre-initializes execution
environments, reducing cold starts.

For example, a function with a provisioned concurrency of 6 has 6 execution environments pre-
warmed.

Optimizing static initialization

Static initialization happens before the handler code starts running in a function. This is the
initialization code that you provide, that is outside of the main handler. This code is often used
to import libraries and dependencies, set up configurations, and initialize connections to other
services.

Running code 20

AWS Lambda Developer Guide

The following Python example shows importing, and configuring modules, and creating the
Amazon S3 client during the initialization phase, before the lambda_handler function runs
during invoke.

import os
import json
import cv2
import logging
import boto3

s3 = boto3.client('s3')
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):

 # Handler logic...

The largest contributor of latency before function execution comes from initialization code. This
code runs when a new execution environment is created for the first time. The initialization code is
not run again if an invocation uses a warm execution environment. Factors that affect initialization
code latency include:

• The size of the function package, in terms of imported libraries and dependencies, and Lambda
layers.

• The amount of code and initialization work.

• The performance of libraries and other services in setting up connections and other resources.

There are a number of steps that developers can take to optimize static initialization latency. If a
function has many objects and connections, you may be able to rearchitect a single function into
multiple, specialized functions. These are individually smaller and each have less initialization code.

It’s important that functions only import the libraries and dependencies that they need. For
example, if you only use Amazon DynamoDB in the AWS SDK, you can require an individual service
instead of the entire SDK. Compare the following three examples:

// Instead of const AWS = require('aws-sdk'), use:
const DynamoDB = require('aws-sdk/clients/dynamodb')

Running code 21

AWS Lambda Developer Guide

// Instead of const AWSXRay = require('aws-xray-sdk'), use:
const AWSXRay = require('aws-xray-sdk-core')

// Instead of const AWS = AWSXRay.captureAWS(require('aws-sdk')), use:
const dynamodb = new DynamoDB.DocumentClient()
AWSXRay.captureAWSClient(dynamodb.service)

Static initialization is also often the best place to open database connections to allow a function to
reuse connections over multiple invocations to the same execution environment. However, you may
have large numbers of objects that are only used in certain execution paths in your function. In this
case, you can lazily load variables in the global scope to reduce the static initialization duration.

Avoid global variables for context-specific information. If your function has a global variable
that is used only for the lifetime of a single invocation and is reset for the next invocation, use a
variable scope that is local to the handler. Not only does this prevent global variable leaks across
invocations, it also improves the static initialization performance.

Running code 22

AWS Lambda Developer Guide

Creating event-driven architectures with Lambda

An event is anything triggers a Lambda function to run. There are two fundamental ways that
events can trigger Lambda: through direct invocation (push) and event source mappings (pull).

Many AWS services can directly invoke your Lambda functions. These services push events to
your Lambda function. Events that trigger a function can be almost anything, from an HTTP
request through API Gateway, a schedule managed by an EventBridge rule, an AWS IoT event, or
an Amazon S3 event. With event source mapping, Lambda actively fetches (or pulls) events from a
queue or stream. You configure Lambda to check for events from a supported service, and Lambda
handles the polling and invocation of your function.

When passed to your function, events are structured in JSON format. The JSON structure varies
depending on the service that generates it and the event type. While Lambda function invocations
can last up to 15 minutes, Lambda is best-suited for short invocations that last one second or less.
This is particularly true of event-driven architectures, where each Lambda function is treated as a
microservice responsible for performing a narrow set of specific instructions.

Note

Event-driven architectures communicate across different systems using networks, which
introduce variable latency. For workloads that require very low latency, such as real-time
trading systems, this design may not be the best choice. However, for highly scalable and
available workloads, or those with unpredictable traffic patterns, event-driven architectures
can provide an effective way to meet these demands.

Topics

• Benefits of event-driven architectures

• Trade-offs of event-driven architectures

• Anti-patterns in Lambda-based event-driven applications

Benefits of event-driven architectures

Lambda supports two methods of invocation in event-driven architectures:

1. Direct invocation (push method): AWS services trigger Lambda functions directly. For example:

Creating event-driven architectures 23

AWS Lambda Developer Guide

• Amazon S3 triggers a function when a file is uploaded

• API Gateway triggers a function when it receives an HTTP request

2. Event source mapping (pull method): Lambda retrieves events and invokes functions. For
example:

• Lambda retrieves messages from an Amazon SQS queue and invokes a function

• Lambda reads records from a DynamoDB stream and invokes a function

Both methods contribute to the benefits of event-driven architectures, as described below.

Replacing polling and webhooks with events

Many traditional architectures use polling and webhook mechanisms to communicate state
between different components. Polling can be highly inefficient for fetching updates since there
is a lag between new data becoming available and synchronization with downstream services.
Webhooks are not always supported by other microservices that you want to integrate with. They
may also require custom authorization and authentication configurations. In both cases, these
integration methods are challenging to scale on-demand without additional work by development
teams.

Creating event-driven architectures 24

AWS Lambda Developer Guide

Both of these mechanisms can be replaced by events, which can be filtered, routed, and pushed
downstream to consuming microservices. This approach can result in less bandwidth consumption,
CPU utilization, and potentially lower cost. These architectures can also reduce complexity, since
each functional unit is smaller and there is often less code.

Creating event-driven architectures 25

AWS Lambda Developer Guide

Event-driven architectures can also make it easier to design near-real-time systems, helping
organizations move away from batch-based processing. Events are generated at the time when
state in the application changes, so the custom code of a microservice should be designed to
handle the processing of a single event. Since scaling is handled by the Lambda service, this
architecture can handle significant increases in traffic without changing custom code. As events
scale up, so does the compute layer that processes events.

Reducing complexity

Microservices enable developers and architects to decompose complex workflows. For example,
an ecommerce monolith may be broken down into order acceptance and payment processes
with separate inventory, fulfillment and accounting services. What may be complex to manage
and orchestrate in a monolith becomes a series of decoupled services that communicate
asynchronously with events.

This approach also makes it possible to assemble services that process data at different rates. In
this case, an order acceptance microservice can store high volumes of incoming orders by buffering
the messages in an SQS queue.

A payment processing service, which is typically slower due to the complexity of handling
payments, can take a steady stream of messages from the SQS queue. It can orchestrate complex
retry and error handling logic using AWS Step Functions, and coordinate active payment workflows
for hundreds of thousands of orders.

Improving scalability and extensibility

Microservices generate events that are typically published to messaging services like Amazon
SNS and Amazon SQS. These behave like an elastic buffer between microservices and help handle

Creating event-driven architectures 26

AWS Lambda Developer Guide

scaling when traffic increases. Services like Amazon EventBridge can then filter and route messages
depending upon the content of the event, as defined in rules. As a result, event-based applications
can be more scalable and offer greater redundancy than monolithic applications.

This system is also highly extensible, allowing other teams to extend features and add functionality
without impacting the order processing and payment processing microservices. By publishing
events using EventBridge, this application integrates with existing systems, such as the inventory
microservice, but also enables any future application to integrate as an event consumer. Producers
of events have no knowledge of event consumers, which can help simplify the microservice logic.

Trade-offs of event-driven architectures

Variable latency

Unlike monolithic applications, which may process everything within the same memory space on
a single device, event-driven applications communicate across networks. This design introduces
variable latency. While it’s possible to engineer applications to minimize latency, monolithic
applications can almost always be optimized for lower latency at the expense of scalability and
availability.

Workloads that require consistent low-latency performance, such as high-frequency trading
applications in banks or sub-millisecond robotics automation in warehouses, are not good
candidates for event-driven architecture.

Eventual consistency

An event represents a change in state, and with many events flowing through different services
in an architecture at any given point of time, such workloads are often eventually consistent. This
makes it more complex to process transactions, handle duplicates, or determine the exact overall
state of a system.

Some workloads contain a combination of requirements that are eventually consistent (for
example, total orders in the current hour) or strongly consistent (for example, current inventory).
For workloads needing strong data consistency, there are architecture patterns to support this. For
example:

• DynamoDB can provide strongly consistent reads, sometimes at a higher latency, consuming a
greater throughput than the default mode. DynamoDB can also support transactions to help
maintain data consistency.

Creating event-driven architectures 27

https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html

AWS Lambda Developer Guide

• You can use Amazon RDS for features needing ACID properties, though relational databases
are generally less scalable than NoSQL databases like DynamoDB. Amazon RDS Proxy can help
manage connection pooling and scaling from ephemeral consumers like Lambda functions.

Event-based architectures are usually designed around individual events instead of large batches
of data. Generally, workflows are designed to manage the steps of an individual event or execution
flow instead of operating on multiple events simultaneously. In serverless, real-time event
processing is preferred over batch processing: batches should be replaced with many smaller
incremental updates. While this can make workloads more available and scalable, it also makes it
more challenging for events to have awareness of other events.

Returning values to callers

In many cases, event-based applications are asynchronous. This means that caller services do not
wait for requests from other services before continuing with other work. This is a fundamental
characteristic of event-driven architectures that enables scalability and flexibility. This means that
passing return values or the result of a workflow is more complex than in synchronous execution
flows.

Most Lambda invocations in production systems are asynchronous, responding to events from
services like Amazon S3 or Amazon SQS. In these cases, the success or failure of processing an
event is often more important than returning a value. Features such as dead letter queues (DLQs)
in Lambda are provided to ensure you can identify and retry failed events, without needing to
notify the caller.

Debugging across services and functions

Debugging event-driven systems is also different compared to a monolithic application. With
different systems and services passing events, it's not possible to record and reproduce the exact
state of multiple services when errors occur. Since each service and function invocation has
separate log files, it can be more complicated to determine what happened to a specific event that
caused an error.

There are three important requirements for building a successful debugging approach in event-
driven systems. First, a robust logging system is critical, and this is provided across AWS services
and embedded in Lambda functions by Amazon CloudWatch. Second, in these systems, it’s
important to ensure that every event has a transaction identifier that is logged at each step
throughout a transaction, to help when searching for logs.

Creating event-driven architectures 28

https://en.wikipedia.org/wiki/ACID
https://aws.amazon.com/rds/proxy/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html

AWS Lambda Developer Guide

Finally, it’s highly recommended to automate the parsing and analysis of logs by using a debugging
and monitoring service like AWS X-Ray. This can consume logs across multiple Lambda invocations
and services, making it much easier to pinpoint the root cause of issues. See Troubleshooting
walkthrough for in-depth coverage of using X-Ray for troubleshooting.

Anti-patterns in Lambda-based event-driven applications

When building event-driven architectures with Lambda, be careful of anti-patterns that are
technically functional, but may be suboptimal from an architecture and cost perspective. This
section provides general guidance about these anti-patterns, but is not prescriptive.

The Lambda monolith

In many applications migrated from traditional servers, such as Amazon EC2 instances or Elastic
Beanstalk applications, developers “lift and shift” existing code. Frequently, this results in a single
Lambda function that contains all of the application logic that is triggered for all events. For a basic
web application, a monolithic Lambda function would handle all API Gateway routes and integrate
with all necessary downstream resources.

This approach has several drawbacks:

• Package size – The Lambda function may be much larger because it contains all possible code
for all paths, which makes it slower for the Lambda service to run.

• Hard to enforce least privilege – The function’s execution role must allow permissions to all
resources needed for all paths, making the permissions very broad. This is a security concern.
Many paths in the functional monolith do not need all the permissions that have been granted.

Creating event-driven architectures 29

AWS Lambda Developer Guide

• Harder to upgrade – In a production system, any upgrades to the single function are more risky
and could break the entire application. Upgrading a single path in the Lambda function is an
upgrade to the entire function.

• Harder to maintain – It’s more difficult to have multiple developers working on the service since
it’s a monolithic code repository. It also increases the cognitive burden on developers and makes
it harder to create appropriate test coverage for code.

• Harder to reuse code – It's harder to separate reusable libraries from monoliths, making code
reuse more difficult. As you develop and support more projects, this can make it harder to
support the code and scale your team’s velocity.

• Harder to test – As the lines of code increase, it becomes harder to unit test all the possible
combinations of inputs and entry points in the code base. It’s generally easier to implement unit
testing for smaller services with less code.

The preferred alternative is to decompose the monolithic Lambda function into individual
microservices, mapping a single Lambda function to a single, well-defined task. In this simple web
application with a few API endpoints, the resulting microservice-based architecture can be based
upon the API Gateway routes.

Creating event-driven architectures 30

AWS Lambda Developer Guide

Recursive patterns that cause run-away Lambda functions

AWS services generate events that invoke Lambda functions, and Lambda functions can send
messages to AWS services. Generally, the service or resource that invokes a Lambda function
should be different to the service or resource that the function outputs to. Failure to manage this
can result in infinite loops.

For example, a Lambda function writes an object to an Amazon S3 object, which in turn invokes the
same Lambda function via a put event. The invocation causes a second object to be written to the
bucket, which invokes the same Lambda function:

While the potential for infinite loops exists in most programming languages, this anti-pattern has
the potential to consume more resources in serverless applications. Both Lambda and Amazon
S3 automatically scale based upon traffic, so the loop may cause Lambda to scale to consume all
available concurrency and Amazon S3 will continue to write objects and generate more events for
Lambda.

This example uses S3, but the risk of recursive loops also exists in Amazon SNS, Amazon SQS,
DynamoDB, and other services. You can use recursive loop detection to find and avoid this anti-
pattern.

Creating event-driven architectures 31

AWS Lambda Developer Guide

Lambda functions calling Lambda functions

Functions enable encapsulation and code re-use. Most programming languages support the
concept of code synchronously calling functions within a code base. In this case, the caller waits
until the function returns a response.

When this happens on a traditional server or virtual instance, the operating system scheduler
switches to other available work. Whether the CPU runs at 0% or 100% does not affect the overall
cost of the application, since you are paying for the fixed cost of owning and operating a server.

This model often does not adapt well to serverless development. For example, consider a simple
ecommerce application consisting of three Lambda functions that process an order:

In this case, the Create order function calls the Process payment function, which in turn calls the
Create invoice function. While this synchronous flow may work within a single application on a
server, it introduces several avoidable problems in a distributed serverless architecture:

• Cost – With Lambda, you pay for the duration of an invocation. In this example, while the Create
invoice functions runs, two other functions are also running in a wait state, shown in red on the
diagram.

• Error handling – In nested invocations, error handling can become much more complex. For
example, an error in Create invoice might require the Process payment function to reverse the
charge, or it may instead retry the Create invoice process.

• Tight coupling – Processing a payment typically takes longer than creating an invoice. In this
model, the availability of the entire workflow is limited by the slowest function.

Creating event-driven architectures 32

AWS Lambda Developer Guide

• Scaling – The concurrency of all three functions must be equal. In a busy system, this uses more
concurrency than would otherwise be needed.

In serverless applications, there are two common approaches to avoid this pattern. First, use
an Amazon SQS queue between Lambda functions. If a downstream process is slower than an
upstream process, the queue durably persists messages and decouples the two functions. In this
example, the Create order function would publish a message to an SQS queue, and the Process
payment function consumes messages from the queue.

The second approach is to use AWS Step Functions. For complex processes with multiple types
of failure and retry logic, Step Functions can help reduce the amount of custom code needed to
orchestrate the workflow. As a result, Step Functions orchestrates the work and robustly handles
errors and retries, and the Lambda functions contain only business logic.

Synchronous waiting within a single Lambda function

Within a single Lambda, ensure that any potentially concurrent activities are not scheduled
synchronously. For example, a Lambda function might write to an S3 bucket and then write to a
DynamoDB table:

In this design, wait times are compounded because the activities are sequential. In cases where the
second task depends on the completion of the first task, you can reduce the total waiting time and
the cost of execution by have two separate Lambda functions:

Creating event-driven architectures 33

AWS Lambda Developer Guide

In this design, the first Lambda function responds immediately after putting the object to the
Amazon S3 bucket. The S3 service invokes the second Lambda function, which then writes data
to the DynamoDB table. This approach minimizes the total wait time in the Lambda function
executions.

Creating event-driven architectures 34

AWS Lambda Developer Guide

Designing a Lambda applications

A well-architected event-driven application uses a combination of AWS services and custom
code to process and manage requests and data. This chapter focuses on Lambda-specific topics
in application design. There are many important considerations for serverless architects when
designing applications for busy production systems.

Many of the best practices that apply to software development and distributed systems also apply
to serverless application development. The overall goal is to develop workloads that are:

• Reliable – offering your end users a high level of availability. AWS serverless services are reliable
because they are also designed for failure.

• Durable – providing storage options that meet the durability needs of your workload.

• Secure – following best practices and using the tools provided to secure access to workloads and
limit the blast radius.

• Performant – using computing resources efficiently and meeting the performance needs of your
end users.

• Cost-efficient– designing architectures that avoid unnecessary cost that can scale without
overspending, and also be decommissioned without significant overhead.

The following design principles can help you build workloads that meet these goals. Not every
principle may apply to every architecture, but they should guide you in general architecture
decisions.

Topics

• Use services instead of custom code

• Understand Lambda abstraction levels

• Implement statelessness in functions

• Minimize coupling

• Build for on-demand data instead of batches

• Consider AWS Step Functions for orchestration

• Implement idempotency

• Use multiple AWS accounts for managing quotas

Designing an application 35

AWS Lambda Developer Guide

Use services instead of custom code

Serverless applications usually comprise several AWS services, integrated with custom code run
in Lambda functions. While Lambda can be integrated with most AWS services, the services most
commonly used in serverless applications are:

Category AWS service

Compute AWS Lambda

Data storage Amazon S3

Amazon DynamoDB

Amazon RDS

API Amazon API Gateway

Application integration Amazon EventBridge

Amazon SNS

Amazon SQS

Orchestration AWS Step Functions

Streaming data and analytics Amazon Data Firehose

Note

Many serverless services provide replication and support for multiple Regions, including
DynamoDB and Amazon S3. Lambda functions can be deployed in multiple Regions as part
of a deployment pipeline, and API Gateway can be configured to support this configuration.
See this example architecture that shows how this can be achieved.

There are many well-established, common patterns in distributed architectures that you can build
yourself or implement using AWS services. For most customers, there is little commercial value in

Designing an application 36

https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/serverless-architecture-for-global-applications-ra.pdf?did=wp_card&trk=wp_card

AWS Lambda Developer Guide

investing time to develop these patterns from scratch. When your application needs one of these
patterns, use the corresponding AWS service:

Pattern AWS service

Queue Amazon SQS

Event bus Amazon EventBridge

Publish/subscribe (fan-out) Amazon SNS

Orchestration AWS Step Functions

API Amazon API Gateway

Event streams Amazon Kinesis

These services are designed to integrate with Lambda and you can use infrastructure as code
(IaC) to create and discard resources in the services. You can use any of these services via the AWS
SDK without needing to install applications or configure servers. Becoming proficient with using
these services via code in your Lambda functions is an important step to producing well-designed
serverless applications.

Understand Lambda abstraction levels

The Lambda service limits your access to the underlying operating systems, hypervisors, and
hardware running your Lambda functions. The service continuously improves and changes
infrastructure to add features, reduce cost and make the service more performant. Your code
should assume no knowledge of how Lambda is architected and assume no hardware affinity.

Similarly, Lambda's integrations with other services are managed by AWS, with only a small
number of configuration options exposed to you. For example, when API Gateway and Lambda
interact, there is no concept of load balancing since it is entirely managed by the services. You also
have no direct control over which Availability Zones the services use when invoking functions at
any point in time, or how Lambda determines when to scale up or down the number of execution
environments.

This abstraction helps you focus on the integration aspects of your application, the flow of data,
and the business logic where your workload provides value to your end users. Allowing the services

Designing an application 37

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

AWS Lambda Developer Guide

to manage the underlying mechanics helps you develop applications more quickly with less custom
code to maintain.

Implement statelessness in functions

When building Lambda functions, you should assume that the environment exists only for a single
invocation. The function should initialize any required state when it is first started. For example,
your function may require fetching data from a DynamoDB table. It should commit any permanent
data changes to a durable store such as Amazon S3, DynamoDB, or Amazon SQS before exiting. It
should not rely on any existing data structures or temporary files, or any internal state that would
be managed by multiple invocations.

To initialize database connections and libraries, or load state, you can take advantage of static
initialization. Since execution environments are reused where possible to improve performance,
you can amortize the time taken to initialize these resources over multiple invocations. However,
you should not store any variables or data used in the function within this global scope.

Minimize coupling

Most architectures should prefer many, shorter functions over fewer, larger ones. The purpose
of each function should be to handle the event passed into the function, with no knowledge or
expectations of the overall workflow or volume of transactions. This makes the function agnostic
to the source of the event with minimal coupling to other services.

Any global-scope constants that change infrequently should be implemented as environment
variables to allow updates without deployments. Any secrets or sensitive information should be
stored in AWS Systems Manager Parameter Store or AWS Secrets Manager and loaded by the
function. Since these resources are account-specific, you can create build pipelines across multiple
accounts. The pipelines load the appropriate secrets per environment, without exposing these to
developers or requiring any code changes.

Build for on-demand data instead of batches

Many traditional systems are designed to run periodically and process batches of transactions that
have built up over time. For example, a banking application may run every hour to process ATM
transactions into central ledgers. In Lambda-based applications, the custom processing should be
triggered by every event, allowing the service to scale up concurrency as needed, to provide near-
real time processing of transactions.

Designing an application 38

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/secrets-manager/

AWS Lambda Developer Guide

While you can run cron tasks in serverless applications by using scheduled expressions for rules in
Amazon EventBridge, these should be used sparingly or as a last-resort. In any scheduled task that
processes a batch, there is the potential for the volume of transactions to grow beyond what can
be processed within the 15-minute Lambda duration limit. If the limitations of external systems
force you to use a scheduler, you should generally schedule for the shortest reasonable recurring
time period.

For example, it’s not best practice to use a batch process that triggers a Lambda function to fetch
a list of new Amazon S3 objects. This is because the service may receive more new objects in
between batches than can be processed within a 15-minute Lambda function.

Instead, Amazon S3 should invoke the Lambda function each time a new object is put into the
bucket. This approach is significantly more scalable and works in near-real time.

Designing an application 39

https://en.wikipedia.org/wiki/Cron
https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html

AWS Lambda Developer Guide

Consider AWS Step Functions for orchestration

Workflows that involve branching logic, different types of failure models, and retry logic typically
use an orchestrator to keep track of the state of the overall execution. Avoid using Lambda
functions for this purpose, since it results in tight coupling and complex code handling routing.

With AWS Step Functions, you use state machines to manage orchestration. This extracts the
error handling, routing, and branching logic from your code, replacing it with state machines
declared using JSON. Apart from making workflows more robust and observable, you can also add
versioning to workflows and make the state machine a codified resource that you can add to a code
repository.

It’s common for simpler workflows in Lambda functions to become more complex over time. When
operating a production serverless application, it’s important to identify when this is happening, so
you can migrate this logic to a state machine.

Implement idempotency

AWS serverless services, including Lambda, are fault-tolerant and designed to handle failures. For
example, if a service invokes a Lambda function and there is a service disruption, Lambda invokes
your function in a different Availability Zone. If your function throws an error, Lambda retries the
invocation.

Since the same event may be received more than once, functions should be designed to be
idempotent. This means that receiving the same event multiple times does not change the result
beyond the first time the event was received.

You can implement idempotency in Lambda functions by using a DynamoDB table to track recently
processed identifiers to determine if the transaction has already been handled previously. The
DynamoDB table usually implements a Time To Live (TTL) value to expire items to limit the storage
space used.

Use multiple AWS accounts for managing quotas

Many service quotas in AWS are set at the account level. This means that as you add more
workloads, you can quickly exhaust your limits.

An effective way to solve this issue is to use multiple AWS accounts, dedicating each workload to
its own account. This prevents quotas from being shared with other workloads or non-production
resources.

Designing an application 40

https://aws.amazon.com/step-functions/
https://en.wikipedia.org/wiki/Idempotence
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html

AWS Lambda Developer Guide

In addition, by using AWS Organizations, you can centrally manage the billing, compliance, and
security of these accounts. You can attach policies to groups of accounts to avoid custom scripts
and manual processes.

One common approach is to provide each developer with an AWS account, and then use separate
accounts for a beta deployment stage and production:

In this model, each developer has their own set of limits for the account, so their usage does
not impact your production environment. This approach also allows developers to test Lambda
functions locally on their development machines against live cloud resources in their individual
accounts.

Designing an application 41

https://aws.amazon.com/organizations/

AWS Lambda Developer Guide

Create your first Lambda function

To get started with Lambda, use the Lambda console to create a function. In a few minutes, you
can create and deploy a function and test it in the console.

As you carry out the tutorial, you'll learn some fundamental Lambda concepts, like how to
pass arguments to your function using the Lambda event object. You'll also learn how to return
log outputs from your function, and how to view your function's invocation logs in Amazon
CloudWatch Logs.

To keep things simple, you create your function using either the Python or Node.js runtime. With
these interpreted languages, you can edit function code directly in the console's built-in code
editor. With compiled languages like Java and C#, you must create a deployment package on your
local build machine and upload it to Lambda. To learn about deploying functions to Lambda using
other runtimes, see the links in the the section called “Next steps” section.

Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Prerequisites

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Prerequisites 42

https://docs.aws.amazon.com/serverless/latest/devguide/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS Lambda Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Prerequisites 43

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Lambda Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a Lambda function with the console

In this example, your function takes a JSON object containing two integer values labeled
"length" and "width". The function multiplies these values to calculate an area and returns this
as a JSON string.

Your function also prints the calculated area, along with the name of its CloudWatch log group.
Later in the tutorial, you’ll learn to use CloudWatch Logs to view records of your functions’
invocation.

To create a Hello world Lambda function with the console

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Select Author from scratch.

4. In the Basic information pane, for Function name, enter myLambdaFunction.

5. For Runtime, choose either Node.js 22 or Python 3.13.

6. Leave architecture set to x86_64, and then choose Create function.

In addition to a simple function that returns the message Hello from Lambda!, Lambda also
creates an execution role for your function. An execution role is an AWS Identity and Access
Management (IAM) role that grants a Lambda function permission to access AWS services and

Create the function 44

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

resources. For your function, the role that Lambda creates grants basic permissions to write to
CloudWatch Logs.

Use the console's built-in code editor to replace the Hello world code that Lambda created with
your own function code.

Node.js

To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the index.mjs tab in the code editor, select index.mjs in the file explorer as
shown on the following diagram.

2. Paste the following code into the index.mjs tab, replacing the code that Lambda created.

export const handler = async (event, context) => {

 const length = event.length;
 const width = event.width;
 let area = calculateArea(length, width);
 console.log(`The area is ${area}`);

 console.log('CloudWatch log group: ', context.logGroupName);

 let data = {
 "area": area,
 };

Create the function 45

AWS Lambda Developer Guide

 return JSON.stringify(data);

 function calculateArea(length, width) {
 return length * width;
 }
};

3. In the DEPLOY section, choose Deploy to update your function's code:

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

• The Lambda handler:

Your Lambda function contains a Node.js function named handler. A Lambda function in
Node.js can contain more than one Node.js function, but the handler function is always the
entry point to your code. When your function is invoked, Lambda runs this method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to handler. Be sure not to edit the name of
this Node.js function. If you do, Lambda won’t be able to run your code when you invoke your
function.

To learn more about the Lambda handler in Node.js, see the section called “Handler”.

• The Lambda event object:

The function handler takes two arguments, event and context. An event in Lambda is a
JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if your function is invoked when

Create the function 46

AWS Lambda Developer Guide

an object is uploaded to an Amazon Simple Storage Service (Amazon S3) bucket, the event
contains the name of the bucket and the object key.

In this example, you’ll create an event in the console by entering a JSON formatted document
with two key-value pairs.

• The Lambda context object:

The second argument that your function takes is context. Lambda passes the context object
to your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the logGroupName parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Node.js, see the section called “Context”.

• Logging in Lambda:

With Node.js, you can use console methods like console.log and console.error to send
information to your function's log. The example code uses console.log statements to
output the calculated area and the name of the function's CloudWatch Logs group. You can
also use any logging library that writes to stdout or stderr.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Python

To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the lambda_function.py tab in the code editor, select lambda_function.py
in the file explorer as shown on the following diagram.

Create the function 47

AWS Lambda Developer Guide

2. Paste the following code into the lambda_function.py tab, replacing the code that Lambda
created.

import json
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):

 # Get the length and width parameters from the event object. The
 # runtime converts the event object to a Python dictionary
 length = event['length']
 width = event['width']

 area = calculate_area(length, width)
 print(f"The area is {area}")

 logger.info(f"CloudWatch logs group: {context.log_group_name}")

 # return the calculated area as a JSON string
 data = {"area": area}
 return json.dumps(data)

def calculate_area(length, width):
 return length*width

3. In the DEPLOY section, choose Deploy to update your function's code:

Create the function 48

AWS Lambda Developer Guide

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

• The Lambda handler:

Your Lambda function contains a Python function named lambda_handler. A Lambda
function in Python can contain more than one Python function, but the handler function
is always the entry point to your code. When your function is invoked, Lambda runs this
method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to lambda_handler. Be sure not to edit the
name of this Python function. If you do, Lambda won’t be able to run your code when you
invoke your function.

To learn more about the Lambda handler in Python, see the section called “Handler”.

• The Lambda event object:

The function lambda_handler takes two arguments, event and context. An event in
Lambda is a JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if your function is invoked when
an object is uploaded to an Amazon Simple Storage Service (Amazon S3) bucket, the event
contains the name of the bucket and the object key.

In this example, you’ll create an event in the console by entering a JSON formatted document
with two key-value pairs.

• The Lambda context object:

Create the function 49

AWS Lambda Developer Guide

The second argument that your function takes is context. Lambda passes the context object
to your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the log_group_name parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Python, see the section called “Context”.

• Logging in Lambda:

With Python, you can use either a print statement or a Python logging library to send
information to your function's log. To illustrate the difference in what's captured, the example
code uses both methods. In a production application, we recommend that you use a logging
library.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Invoke the Lambda function using the console code editor

To invoke your function using the Lambda console code editor, create a test event to send to your
function. The event is a JSON formatted document containing two key-value pairs with the keys
"length" and "width".

To create the test event

1. In the TEST EVENTS section of the console code editor, choose Create test event.

2. For Event Name, enter myTestEvent.

3. In the Event JSON section, replace the default JSON with the following:

{

Invoke the function 50

AWS Lambda Developer Guide

 "length": 6,
 "width": 7
}

4. Choose Save.

To test your function and view invocation records

In the TEST EVENTS section of the console code editor, choose the run icon next to your test event:

When your function finishes running, the response and function logs are displayed in the OUTPUT
tab. You should see results similar to the following:

Node.js

Status: Succeeded
Test Event Name: myTestEvent

Response
"{\"area\":42}"

Function Logs
START RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a Version: $LATEST
2024-08-31T23:39:45.313Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area is 42
2024-08-31T23:39:45.331Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO CloudWatch log
 group: /aws/lambda/myLambdaFunction
END RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a
REPORT RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a Duration: 20.67 ms Billed
 Duration: 21 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration: 163.87 ms

Request ID
5c012b0a-18f7-4805-b2f6-40912935034a

Python

Status: Succeeded
Test Event Name: myTestEvent

Invoke the function 51

AWS Lambda Developer Guide

Response
"{\"area\": 42}"

Function Logs
START RequestId: 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b Version: $LATEST
The area is 42
[INFO] 2024-08-31T23:43:26.428Z 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b CloudWatch logs
 group: /aws/lambda/myLambdaFunction
END RequestId: 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b
REPORT RequestId: 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b Duration: 1.42 ms Billed
 Duration: 2 ms Memory Size: 128 MB Max Memory Used: 39 MB Init Duration: 123.74 ms

Request ID
2d0b1579-46fb-4bf7-a6e1-8e08840eae5b

When you invoke your function outside of the Lambda console, you must use CloudWatch Logs to
view your function's execution results.

To view your function's invocation records in CloudWatch Logs

1. Open the Log groups page of the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/myLambdaFunction). This is the log
group name that your function printed to the console.

3. Scroll down and choose the Log stream for the function invocations you want to look at.

You should see output similar to the following:

Invoke the function 52

https://console.aws.amazon.com/cloudwatch/home#logs:

AWS Lambda Developer Guide

Node.js

INIT_START Runtime Version: nodejs:22.v13 Runtime Version ARN:
 arn:aws:lambda:us-
west-2::runtime:e3aaabf6b92ef8755eaae2f4bfdcb7eb8c4536a5e044900570a42bdba7b869d9
START RequestId: aba6c0fc-cf99-49d7-a77d-26d805dacd20 Version: $LATEST
2024-08-23T22:04:15.809Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area
 is 42
2024-08-23T22:04:15.810Z aba6c0fc-cf99-49d7-a77d-26d805dacd20 INFO
 CloudWatch log group: /aws/lambda/myLambdaFunction
END RequestId: aba6c0fc-cf99-49d7-a77d-26d805dacd20
REPORT RequestId: aba6c0fc-cf99-49d7-a77d-26d805dacd20 Duration: 17.77 ms
 Billed Duration: 18 ms Memory Size: 128 MB Max Memory Used: 67 MB Init
 Duration: 178.85 ms

Python

INIT_START Runtime Version: python:3.13.v16 Runtime Version ARN:
 arn:aws:lambda:us-
west-2::runtime:ca202755c87b9ec2b58856efb7374b4f7b655a0ea3deb1d5acc9aee9e297b072
START RequestId: 9d4096ee-acb3-4c25-be10-8a210f0a9d8e Version: $LATEST
The area is 42
[INFO] 2024-09-01T00:05:22.464Z 9315ab6b-354a-486e-884a-2fb2972b7d84 CloudWatch
 logs group: /aws/lambda/myLambdaFunction
END RequestId: 9d4096ee-acb3-4c25-be10-8a210f0a9d8e
REPORT RequestId: 9d4096ee-acb3-4c25-be10-8a210f0a9d8e Duration: 1.15 ms
 Billed Duration: 2 ms Memory Size: 128 MB Max Memory Used: 40 MB

Clean up

When you're finished working with the example function, delete it. You can also delete the log
group that stores the function's logs, and the execution role that the console created.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

Clean up 53

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To delete the log group

1. Open the Log groups page of the CloudWatch console.

2. Select the function's log group (/aws/lambda/myLambdaFunction).

3. Choose Actions, Delete log group(s).

4. In the Delete log group(s) dialog box, choose Delete.

To delete the execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.

2. Select the function's execution role (for example, myLambdaFunction-role-31exxmpl).

3. Choose Delete.

4. In the Delete role dialog box, enter the role name, and then choose Delete.

Additional resources and next steps

Now that you’ve created and tested a simple Lambda function using the console, take these next
steps:

• Learn to add dependencies to your function and deploy it using a .zip deployment package.
Choose your preferred language from the following links.

Node.js

the section called “Deploy .zip file archives”

Typescript

the section called “Deploy .zip file archives”

Python

the section called “Deploy .zip file archives”

Ruby

the section called “Deploy .zip file archives”

Java

the section called “Deploy .zip file archives”
Next steps 54

https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles

AWS Lambda Developer Guide

Go

the section called “Deploy .zip file archives”

C#

the section called “Deployment package”

• To learn how to invoke a Lambda function using another AWS service, see Tutorial: Using an
Amazon S3 trigger to invoke a Lambda function.

• Choose one of the following tutorials for more complex examples of using Lambda with other
AWS services.

• Tutorial: Using Lambda with API Gateway: Create an Amazon API Gateway REST API that
invokes a Lambda function.

• Using a Lambda function to access an Amazon RDS database: Use a Lambda function to write
data to an Amazon Relational Database Service (Amazon RDS) database through RDS Proxy.

• Using an Amazon S3 trigger to create thumbnail images: Use a Lambda function to create a
thumbnail every time an image file is uploaded to an Amazon S3 bucket.

Next steps 55

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

Getting started with example applications and patterns

The following resources can be used to quickly create and deploy serverless apps that implement
some common Lambda uses cases. For each of the example apps, we provide instructions to either
create and configure resources manually using the AWS Management Console, or to use the AWS
Serverless Application Model to deploy the resources using IaC. Follow the console intructions to
learn more about configuring the individual AWS resources for each app, or use to AWS SAM to
quickly deploy resources as you would in a production environment.

File Processing

• PDF Encryption Application: Create a serverless application that encrypts PDF files when they
are uploaded to an Amazon Simple Storage Service bucket and saves them to another bucket,
which is useful for securing sensitive documents upon upload.

• Image Analysis Application: Create a serverless application that extracts text from images
using Amazon Rekognition, which is useful for document processing, content moderation, and
automated image analysis.

Database Integration

• Queue-to-Database Application: Create a serverless application that writes queue messages to
an Amazon RDS database, which is useful for processing user registrations and handling order
submissions.

• Database Event Handler: Create a serverless application that responds to Amazon DynamoDB
table changes, which is useful for audit logging, data replication, and automated workflows.

Scheduled Tasks

• Database Maintenance Application: Create a serverless application that automatically deletes
entries more than 12 months old from an Amazon DynamoDB table using a cron schedule, which
is useful for automated database maintenance and data lifecycle management.

File Processing 56

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-example-s3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-example-ddb.html

AWS Lambda Developer Guide

• Create an EventBridge scheduled rule for Lambda functions: Use scheduled expressions for
rules in EventBridge to trigger a Lambda function on a timed schedule. This format uses cron
syntax and can be set with a one-minute granularity.

Additional resources

Use the following resources to further explore Lambda and serverless application development:

• Serverless Land: a library of ready-to-use patterns for building serverless apps. It helps
developers create applications faster using AWS services like Lambda, API Gateway, and
EventBridge. The site offers pre-built solutions and best practices, making it easier to develop
serverless systems.

• Lambda sample applications: Applications that are available in the GitHub repository for this
guide. These samples demonstrate the use of various languages and AWS services. Each sample
application includes scripts for easy deployment and cleanup and supporting resources.

• Code examples for Lambda using AWS SDKs: Examples that show you how to use Lambda with
AWS software development kits (SDKs). These examples include basics, actions, scenarios, and
AWS community contributions. Examples cover essential operations, individual service functions,
and specific tasks using multiple functions or AWS services.

Create a serverless file-processing app

One of the most common use cases for Lambda is to perform file processing tasks. For example,
you might use a Lambda function to automatically create PDF files from HTML files or images, or
to create thumbnails when a user uploads an image.

In this example, you create an app which automatically encrypts PDF files when they are uploaded
to an Amazon Simple Storage Service (Amazon S3) bucket. To implement this app, you create the
following resources:

• An S3 bucket for users to upload PDF files to

• A Lambda function in Python which reads the uploaded file and creates an encrypted, password-
protected version of it

• A second S3 bucket for Lambda to save the encrypted file in

Additional resources 57

https://docs.aws.amazon.com/eventbridge/latest/userguide/run-lambda-schedule.html
https://serverlessland.com/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-samples.html
https://docs.aws.amazon.com/lambda/latest/dg/service_code_examples.html

AWS Lambda Developer Guide

You also create an AWS Identity and Access Management (IAM) policy to give your Lambda function
permission to perform read and write operations on your S3 buckets.

Tip

If you’re brand new to Lambda, we recommend that you start with the tutorial Create your
first function before creating this example app.

You can deploy your app manually by creating and configuring resources with the AWS
Management Console or the AWS Command Line Interface (AWS CLI). You can also deploy the app
by using the AWS Serverless Application Model (AWS SAM). AWS SAM is an infrastructure as code
(IaC) tool. With IaC, you don’t create resources manually, but define them in code and then deploy
them automatically.

If you want to learn more about using Lambda with IaC before deploying this example app, see the
section called “Infrastructure as code (IaC)”.

File-processing app 58

AWS Lambda Developer Guide

Create the Lambda function source code files

Create the following files in your project directory:

• lambda_function.py - the Python function code for the Lambda function that performs the
file encryption

• requirements.txt - a manifest file defining the dependencies that your Python function code
requires

Expand the following sections to view the code and to learn more about the role of each file. To
create the files on your local machine, either copy and paste the code below, or download the files
from the aws-lambda-developer-guide GitHub repo.

Python function code

Copy and paste the following code into a file named lambda_function.py.

from pypdf import PdfReader, PdfWriter
import uuid
import os
from urllib.parse import unquote_plus
import boto3

Create the S3 client to download and upload objects from S3
s3_client = boto3.client('s3')

def lambda_handler(event, context):
 # Iterate over the S3 event object and get the key for all uploaded files
 for record in event['Records']:
 bucket = record['s3']['bucket']['name']
 key = unquote_plus(record['s3']['object']['key']) # Decode the S3 object key to
 remove any URL-encoded characters
 download_path = f'/tmp/{uuid.uuid4()}.pdf' # Create a path in the Lambda tmp
 directory to save the file to
 upload_path = f'/tmp/converted-{uuid.uuid4()}.pdf' # Create another path to
 save the encrypted file to

 # If the file is a PDF, encrypt it and upload it to the destination S3 bucket
 if key.lower().endswith('.pdf'):
 s3_client.download_file(bucket, key, download_path)
 encrypt_pdf(download_path, upload_path)

Create the source code files 59

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/file-processing-python

AWS Lambda Developer Guide

 encrypted_key = add_encrypted_suffix(key)
 s3_client.upload_file(upload_path, f'{bucket}-encrypted', encrypted_key)

Define the function to encrypt the PDF file with a password
def encrypt_pdf(file_path, encrypted_file_path):
 reader = PdfReader(file_path)
 writer = PdfWriter()

 for page in reader.pages:
 writer.add_page(page)

 # Add a password to the new PDF
 writer.encrypt("my-secret-password")

 # Save the new PDF to a file
 with open(encrypted_file_path, "wb") as file:
 writer.write(file)

Define a function to add a suffix to the original filename after encryption
def add_encrypted_suffix(original_key):
 filename, extension = original_key.rsplit('.', 1)
 return f'{filename}_encrypted.{extension}'

Note

In this example code, a password for the encrypted file (my-secret-password) is
hardcoded into the function code. In a production application, don't include sensitive
information like passwords in your function code. Instead, create an AWS Secrets Manager
secret and then use the AWS Parameters and Secrets Lambda extension to retrieve your
credentials in your Lambda function.

The python function code contains three functions - the handler function that Lambda runs
when your function is invoked, and two separate function named add_encrypted_suffix and
encrypt_pdf that the handler calls to perform the PDF encryption.

When your function is invoked by Amazon S3, Lambda passes a JSON formatted event argument
to the function that contains details about the event that caused the invocation. In this case, the
information includes name of the S3 bucket and the object keys for the uploaded files. To learn
more about the format of event object for Amazon S3, see the section called “S3”.

Create the source code files 60

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Lambda Developer Guide

Your function then uses the AWS SDK for Python (Boto3) to download the PDF files specified in
the event object to its local temporary storage directory, before encrypting them using the pypdf
library.

Finally, the function uses the Boto3 SDK to store the encrypted file in your S3 destination bucket.

requirements.txt manifest file

Copy and paste the following code into a file named requirements.txt.

boto3
pypdf

For this example, your function code has only two dependencies that aren't part of the standard
Python library - the SDK for Python (Boto3) and the pypdf package the function uses to perform
the PDF encryption.

Note

A version of the SDK for Python (Boto3) is included as part of the Lambda runtime, so your
code would run without adding Boto3 to your function's deployment package. However, to
maintain full control of your function's dependencies and avoid possible issues with version
misalignment, best practice for Python is to include all function dependencies in your
function's deployment package. See the section called “Runtime dependencies in Python”
to learn more.

Deploy the app

You can create and deploy the resources for this example app either manually or by using AWS
SAM. In a production environment, we recommend that you use an IaC tool like AWS SAM to
quickly and repeatably deploy whole serverless applications without using manual processes.

Deploy the resources manually

To deploy your app manually:

• Create source and destination Amazon S3 buckets

• Create a Lambda function that encrypts a PDF file and saves the encrypted version to an S3
bucket

Deploy the app 61

https://pypi.org/project/pypdf/

AWS Lambda Developer Guide

• Configure a Lambda trigger that invokes your function when objects are uploaded to your source
bucket

Before you begin, make sure that Python is installed on your build machine.

Create two S3 buckets

First create two S3 buckets. The first bucket is the source bucket you will upload your PDF files to.
The second bucket is used by Lambda to save the encrypted file when you invoke your function.

Console

To create the S3 buckets (console)

1. Open the General purpose buckets page of the Amazon S3 console.

2. Select the AWS Region closest to your geographical location. You can change your region
using the drop-down list at the top of the screen.

3. Choose Create bucket.

4. Under General configuration, do the following:

a. For Bucket type, ensure General purpose is selected.

b. For Bucket name, enter a globally unique name that meets the Amazon S3 bucket
naming rules. Bucket names can contain only lower case letters, numbers, dots (.), and
hyphens (-).

5. Leave all other options set to their default values and choose Create bucket.

6. Repeat steps 1 to 4 to create your destination bucket. For Bucket name, enter amzn-s3-
demo-bucket-encrypted, where amzn-s3-demo-bucket is the name of the source
bucket you just created.

Deploy the app 62

https://www.python.org/downloads/
https://console.aws.amazon.com/s3/buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

AWS CLI

Before you begin, make sure that the AWS CLI is installed on your build machine.

To create the Amazon S3 buckets (AWS CLI)

1. Run the following CLI command to create your source bucket. The name you choose for
your bucket must be globally unique and follow the Amazon S3 bucket naming rules.
Names can only contain lower case letters, numbers, dots (.), and hyphens (-). For region
and LocationConstraint, choose the AWS Region closest to your geographical location.

aws s3api create-bucket --bucket amzn-s3-demo-bucket --region us-east-2 \
--create-bucket-configuration LocationConstraint=us-east-2

Later in the tutorial, you must create your Lambda function in the same AWS Region as
your source bucket, so make a note of the region you chose.

2. Run the following command to create your destination bucket. For the bucket name, you
must use amzn-s3-demo-bucket-encrypted, where amzn-s3-demo-bucket is the
name of the source bucket you created in step 1. For region and LocationConstraint,
choose the same AWS Region you used to create your source bucket.

aws s3api create-bucket --bucket amzn-s3-demo-bucket-encrypted --region us-
east-2 \
--create-bucket-configuration LocationConstraint=us-east-2

Create an execution role

An execution role is an IAM role that grants a Lambda function permission to access AWS services
and resources. To give your function read and write access to Amazon S3, you attach the AWS
managed policy AmazonS3FullAccess.

Console

To create an execution role and attach the AmazonS3FullAccess managed policy (console)

1. Open the Roles page in the IAM console.

2. Choose Create role.

3. For Trusted entity type, select AWS service, and for Use case, select Lambda.

Deploy the app 63

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home/roles

AWS Lambda Developer Guide

4. Choose Next.

5. Add the AmazonS3FullAccess managed policy by doing the following:

a. In Permissions policies, enter AmazonS3FullAccess into the search bar.

b. Select the checkbox next to the policy.

c. Choose Next.

6. In Role details, for Role name enter LambdaS3Role.

7. Choose Create Role.

AWS CLI

To create an execution role and attach the AmazonS3FullAccess managed policy (AWS CLI)

1. Save the following JSON in a file named trust-policy.json. This trust policy
allows Lambda to use the role’s permissions by giving the service principal
lambda.amazonaws.com permission to call the AWS Security Token Service (AWS STS)
AssumeRole action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. From the directory you saved the JSON trust policy document in, run the following CLI
command to create the execution role.

aws iam create-role --role-name LambdaS3Role --assume-role-policy-document
 file://trust-policy.json

3. To attach the AmazonS3FullAccess managed policy, run the following CLI command.

Deploy the app 64

AWS Lambda Developer Guide

aws iam attach-role-policy --role-name LambdaS3Role --policy-arn
 arn:aws:iam::aws:policy/AmazonS3FullAccess

Create the function deployment package

To create your function, you create a deployment package containing your function code and
its dependencies. For this application, your function code uses a separate library for the PDF
encryption.

To create the deployment package

1. Navigate to the project directory containing the lambda_function.py and
requirements.txt files you created or downloaded from GitHub earlier and create a new
directory named package.

2. Install the dependencies specified in the requirements.txt file in your package directory
by running the following command.

pip install -r requirements.txt --target ./package/

3. Create a .zip file containing your application code and its dependencies. In Linux or MacOS, run
the following commands from your command line interface.

cd package
zip -r ../lambda_function.zip .
cd ..
zip lambda_function.zip lambda_function.py

In Windows, use your preferred zip tool to create the lambda_function.zip file. Make sure
that your lambda_function.py file and the folders containing your dependencies are all at
the root of the .zip file.

You can also create your deployment package using a Python virtual environment. See Working
with .zip file archives for Python Lambda functions

Deploy the app 65

AWS Lambda Developer Guide

Create the Lambda function

You now use the deployment package you created in the previous step to deploy your Lambda
function.

Console

To create the function (console)

To create your Lambda function using the console, you first create a basic function containing
some ‘Hello world’ code. You then replace this code with your own function code by uploading
the.zip file you created in the previous step.

To ensure that your function doesn't time out when encrypting large PDF files, you configure
the function's memory and timeout settings. You also set the function's log format to JSON.
Configuring JSON formatted logs is necessary when using the provided test script so it can read
the function's invocation status from CloudWatch Logs to confirm successful invocation.

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same AWS Region you created your S3 bucket in. You can
change your region using the drop-down list at the top of the screen.

3. Choose Create function.

4. Choose Author from scratch.

5. Under Basic information, do the following:

a. For Function name, enter EncryptPDF.

b. For Runtime choose Python 3.12.

c. For Architecture, choose x86_64.

6. Attach the execution role you created in the previous step by doing the following:

Deploy the app 66

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. Expand the Change default execution role section.

b. Select Use an existing role.

c. Under Existing role, select your role (LambdaS3Role).

7. Choose Create function.

To upload the function code (console)

1. In the Code source pane, choose Upload from.

2. Choose .zip file.

3. Choose Upload.

4. In the file selector, select your .zip file and choose Open.

5. Choose Save.

To configure the function memory and timeout (console)

1. Select the Configuration tab for your function.

2. In the General configuration pane, choose Edit.

3. Set Memory to 256 MB and Timeout to 15 seconds.

4. Choose Save.

To configure the log format (console)

1. Select the Configuration tab for your function.

2. Select Monitoring and operations tools.

3. In the Logging configuration pane, choose Edit.

4. For Logging configuration, select JSON.

5. Choose Save.

Deploy the app 67

AWS Lambda Developer Guide

AWS CLI

To create the function (AWS CLI)

• Run the following command from the directory containing your lambda_function.zip
file.For the region parameter, replace us-east-2 with the region you created your S3
buckets in.

aws lambda create-function --function-name EncryptPDF \
--zip-file fileb://lambda_function.zip --handler lambda_function.lambda_handler
 \
--runtime python3.12 --timeout 15 --memory-size 256 \
--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-east-2 \
--logging-config LogFormat=JSON

Configure an Amazon S3 trigger to invoke the function

For your Lambda function to run when you upload a file to your source bucket, you need to
configure a trigger for your function. You can configure the Amazon S3 trigger using either the
console or the AWS CLI.

Important

This procedure configures the S3 bucket to invoke your function every time that an object
is created in the bucket. Be sure to configure this only on the source bucket. If your Lambda
function creates objects in the same bucket that invokes it, your function can be invoked
continuously in a loop. This can result in un expected charges being billed to your AWS
account.

Console

To configure the Amazon S3 trigger (console)

1. Open the Functions page of the Lambda console and choose your function (EncryptPDF).

2. Choose Add trigger.

3. Select S3.

4. Under Bucket, select your source bucket.

Deploy the app 68

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. Under Event types, select All object create events.

6. Under Recursive invocation, select the check box to acknowledge that using the same
S3 bucket for input and output is not recommended. You can learn more about recursive
invocation patterns in Lambda by reading Recursive patterns that cause run-away Lambda
functions in Serverless Land.

7. Choose Add.

When you create a trigger using the Lambda console, Lambda automatically creates a
resource based policy to give the service you select permission to invoke your function.

AWS CLI

To configure the Amazon S3 trigger (AWS CLI)

1. Add a resource based policy to your function that allows your Amazon S3 source bucket to
invoke your function when you add a file. A resource-based policy statement gives other
AWS services permission to invoke your function. To give Amazon S3 permission to invoke
your function, run the following CLI command. Be sure to replace the source-account
parameter with your own AWS account ID and to use your own source bucket name.

aws lambda add-permission --function-name EncryptPDF \
--principal s3.amazonaws.com --statement-id s3invoke --action
 "lambda:InvokeFunction" \
--source-arn arn:aws:s3:::amzn-s3-demo-bucket \
--source-account 123456789012

The policy you define with this command allows Amazon S3 to invoke your function only
when an action takes place on your source bucket.

Note

Although S3 bucket names are globally unique, when using resource-based policies
it is best practice to specify that the bucket must belong to your account. This is
because if you delete a bucket, it is possible for another AWS account to create a
bucket with the same Amazon Resource Name (ARN).

2. Save the following JSON in a file named notification.json. When applied to your
source bucket, this JSON configures the bucket to send a notification to your Lambda

Deploy the app 69

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Lambda Developer Guide

function every time a new object is added. Replace the AWS account number and AWS
Region in the Lambda function ARN with your own account number and region.

{
"LambdaFunctionConfigurations": [
 {
 "Id": "EncryptPDFEventConfiguration",
 "LambdaFunctionArn": "arn:aws:lambda:us-
east-2:123456789012:function:EncryptPDF",
 "Events": ["s3:ObjectCreated:Put"]
 }
]
}

3. Run the following CLI command to apply the notification settings in the JSON file you
created to your source bucket. Replace amzn-s3-demo-bucket with the name of your
own source bucket.

aws s3api put-bucket-notification-configuration --bucket amzn-s3-demo-bucket \
--notification-configuration file://notification.json

To learn more about the put-bucket-notification-configuration command and
the notification-configuration option, see put-bucket-notification-configuration in
the AWS CLI Command Reference.

Deploy the resources using AWS SAM

Before you begin, make sure that Docker and the latest version of the AWS SAM CLI are installed on
your build machine.

1. In your project directory, copy and paste the following code into a file named
template.yaml. Replace the placeholder bucket names:

• For the source bucket, replace amzn-s3-demo-bucket with any name that complies with
the S3 bucket naming rules.

• For the destination bucket, replace amzn-s3-demo-bucket-encrypted with <source-
bucket-name>-encrypted, where <source-bucket> is the name you chose for your
source bucket.

Deploy the app 70

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-notification-configuration.html
https://docs.docker.com/get-docker/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Resources:
 EncryptPDFFunction:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: EncryptPDF
 Architectures: [x86_64]
 CodeUri: ./
 Handler: lambda_function.lambda_handler
 Runtime: python3.12
 Timeout: 15
 MemorySize: 256
 LoggingConfig:
 LogFormat: JSON
 Policies:
 - AmazonS3FullAccess
 Events:
 S3Event:
 Type: S3
 Properties:
 Bucket: !Ref PDFSourceBucket
 Events: s3:ObjectCreated:*

 PDFSourceBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket

 EncryptedPDFBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket-encrypted

The AWS SAM template defines the resources you create for your app. In this example, the
template defines a Lambda function using the AWS::Serverless::Function type and two
S3 buckets using the AWS::S3::Bucket type. The bucket names specified in the template
are placeholders. Before you deploy the app using AWS SAM, you need to edit the template to

Deploy the app 71

AWS Lambda Developer Guide

rename the buckets with globally unique names that meet the S3 bucket naming rules. This
step is explained further in the section called “Deploy the resources using AWS SAM”.

The definition of the Lambda function resource configures a trigger for the function using the
S3Event event property. This trigger causes your function to be invoked whenever an object is
created in your source bucket.

The function definition also specifies an AWS Identity and Access Management (IAM) policy to
be attached to the function's execution role. The AWS managed policy AmazonS3FullAccess
gives your function the permissions it needs to read and write objects to Amazon S3.

2. Run the following command from the directory in which you saved your template.yaml,
lambda_function.py, and requirements.txtfiles.

sam build --use-container

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them. Specifying the --use-container option builds your
function inside a Lambda-like Docker container. We use it here so you don't need to have
Python 3.12 installed on your local machine for the build to work.

During the build process, AWS SAM looks for the Lambda function code in the location you
specified with the CodeUri property in the template. In this case, we specified the current
directory as the location (./).

If a requirements.txt file is present, AWS SAM uses it to gather the specified dependencies.
By default, AWS SAM creates a .zip deployment package with your function code and
dependencies. You can also choose to deploy your function as a container image using the
PackageType property.

3. To deploy your application and create the Lambda and Amazon S3 resources specified in your
AWS SAM template, run the following command.

sam deploy --guided

Using the --guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

Deploy the app 72

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-packagetype

AWS Lambda Developer Guide

• An AWS CloudFormation stack named sam-app

• A Lambda function with the name EncryptPDF

• Two S3 buckets with the names you chose when you edited the template.yaml AWS SAM
template file

• An IAM execution role for your function with the name format sam-app-
EncryptPDFFunctionRole-2qGaapHFWOQ8

When AWS SAM finishes creating your resources, you should see the following message:

Successfully created/updated stack - sam-app in us-east-2

Test the app

To test your app, upload a PDF file to your source bucket, and confirm that Lambda creates an
encrypted version of the file in your destination bucket. In this example, you can either test this
manually using the console or the AWS CLI, or by using the provided test script.

For production applications, you can use traditional test methods and techniques, such as unit
testing, to confirm the correct functioning of your Lambda function code. Best practice is also to
conduct tests like those in the provided test script which perform integration testing with real,
cloud-based resources. Integration testing in the cloud confirms that your infrastructure has been
correctly deployed and that events flow between different services as expected. To learn more, see
Testing serverless functions.

Testing the app manually

You can test your function manually by adding a PDF file to your Amazon S3 source bucket. When
you add your file to the source bucket, your Lambda function should be automatically invoked and
should store an encrypted version of the file in your target bucket.

Console

To test your app by uploading a file (console)

1. To upload a PDF file to your S3 bucket, do the following:

a. Open the Buckets page of the Amazon S3 console and choose your source bucket.

b. Choose Upload.

Test the app 73

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks
https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

c. Choose Add files and use the file selector to choose the PDF file you want to upload.

d. Choose Open, then choose Upload.

2. Verify that Lambda has saved an encrypted version of your PDF file in your target bucket by
doing the following:

a. Navigate back to the Buckets page of the Amazon S3 console and choose your
destination bucket.

b. In the Objects pane, you should now see a file with name format
filename_encrypted.pdf (where filename.pdf was the name of the file you
uploaded to your source bucket). To download your encrypted PDF, select the file, then
choose Download.

c. Confirm that you can open the downloaded file with the password your Lambda
function protected it with (my-secret-password).

AWS CLI

To test your app by uploading a file (AWS CLI)

1. From the directory containing the PDF file you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test file.

aws s3api put-object --bucket amzn-s3-demo-bucket --key test.pdf --body ./
test.pdf

2. Verify that your function has created an encrypted version of your file and saved it to your
target S3 bucket. Run the following CLI command, replacing amzn-s3-demo-bucket-
encrypted with the name of your own destination bucket.

aws s3api list-objects-v2 --bucket amzn-s3-demo-bucket-encrypted

If your function runs successfully, you’ll see output similar to the following. Your target
bucket should contain a file with the name format <your_test_file>_encrypted.pdf,
where <your_test_file> is the name of the file you uploaded.

{
 "Contents": [

Test the app 74

https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

 {
 "Key": "test_encrypted.pdf",
 "LastModified": "2023-06-07T00:15:50+00:00",
 "ETag": "\"7781a43e765a8301713f533d70968a1e\"",
 "Size": 2763,
 "StorageClass": "STANDARD"
 }
]
}

3. To download the file that Lambda saved in your destination bucket, run the following CLI
command. Replace the --bucket parameter with the name of your destination bucket.
For the --key parameter, use the filename <your_test_file>_encrypted.pdf, where
<your_test_file> is the name of the the test file you uploaded.

aws s3api get-object --bucket amzn-s3-demo-bucket-encrypted --
key test_encrypted.pdf my_encrypted_file.pdf

This command downloads the file to your current directory and saves it as
my_encrypted_file.pdf.

4. Confirm the you can open the downloaded file with the password your Lambda function
protected it with (my-secret-password).

Testing the app with the automated script

Create the following files in your project directory:

• test_pdf_encrypt.py - a test script you can use to automatically test your application

• pytest.ini - a configuration file for the the test script

Expand the following sections to view the code and to learn more about the role of each file.

Automated test script

Copy and paste the following code into a file named test_pdf_encrypt.py. Be sure to replace
the placeholder bucket names:

• In the test_source_bucket_available function, replace amzn-s3-demo-bucket with the
name of your source bucket.

Test the app 75

AWS Lambda Developer Guide

• In the test_encrypted_file_in_bucket function, replace amzn-s3-demo-bucket-
encrypted with source-bucket-encrypted, where source-bucket> is the name of your
source bucket.

• In the cleanup function, replace amzn-s3-demo-bucket with the name of your source bucket,
and replace amzn-s3-demo-bucket-encrypted with the name of your destination bucket.

import boto3
import json
import pytest
import time
import os

@pytest.fixture
def lambda_client():
 return boto3.client('lambda')

@pytest.fixture
def s3_client():
 return boto3.client('s3')

@pytest.fixture
def logs_client():
 return boto3.client('logs')

@pytest.fixture(scope='session')
def cleanup():
 # Create a new S3 client for cleanup
 s3_client = boto3.client('s3')

 yield
 # Cleanup code will be executed after all tests have finished

 # Delete test.pdf from the source bucket
 source_bucket = 'amzn-s3-demo-bucket'
 source_file_key = 'test.pdf'
 s3_client.delete_object(Bucket=source_bucket, Key=source_file_key)
 print(f"\nDeleted {source_file_key} from {source_bucket}")

 # Delete test_encrypted.pdf from the destination bucket
 destination_bucket = 'amzn-s3-demo-bucket-encrypted'
 destination_file_key = 'test_encrypted.pdf'

Test the app 76

AWS Lambda Developer Guide

 s3_client.delete_object(Bucket=destination_bucket, Key=destination_file_key)
 print(f"Deleted {destination_file_key} from {destination_bucket}")

@pytest.mark.order(1)
def test_source_bucket_available(s3_client):
 s3_bucket_name = 'amzn-s3-demo-bucket'
 file_name = 'test.pdf'
 file_path = os.path.join(os.path.dirname(__file__), file_name)

 file_uploaded = False
 try:
 s3_client.upload_file(file_path, s3_bucket_name, file_name)
 file_uploaded = True
 except:
 print("Error: couldn't upload file")

 assert file_uploaded, "Could not upload file to S3 bucket"

@pytest.mark.order(2)
def test_lambda_invoked(logs_client):

 # Wait for a few seconds to make sure the logs are available
 time.sleep(5)

 # Get the latest log stream for the specified log group
 log_streams = logs_client.describe_log_streams(
 logGroupName='/aws/lambda/EncryptPDF',
 orderBy='LastEventTime',
 descending=True,
 limit=1
)

 latest_log_stream_name = log_streams['logStreams'][0]['logStreamName']

 # Retrieve the log events from the latest log stream
 log_events = logs_client.get_log_events(
 logGroupName='/aws/lambda/EncryptPDF',
 logStreamName=latest_log_stream_name
)

 success_found = False

Test the app 77

AWS Lambda Developer Guide

 for event in log_events['events']:
 message = json.loads(event['message'])
 status = message.get('record', {}).get('status')
 if status == 'success':
 success_found = True
 break

 assert success_found, "Lambda function execution did not report 'success' status in
 logs."

@pytest.mark.order(3)
def test_encrypted_file_in_bucket(s3_client):
 # Specify the destination S3 bucket and the expected converted file key
 destination_bucket = 'amzn-s3-demo-bucket-encrypted'
 converted_file_key = 'test_encrypted.pdf'

 try:
 # Attempt to retrieve the metadata of the converted file from the destination
 S3 bucket
 s3_client.head_object(Bucket=destination_bucket, Key=converted_file_key)
 except s3_client.exceptions.ClientError as e:
 # If the file is not found, the test will fail
 pytest.fail(f"Converted file '{converted_file_key}' not found in the
 destination bucket: {str(e)}")

def test_cleanup(cleanup):
 # This test uses the cleanup fixture and will be executed last
 pass

The automated test script executes three test functions to confirm correct operation of your app:

• The test test_source_bucket_available confirms that your source bucket has been
successfully created by uploading a test PDF file to the bucket.

• The test test_lambda_invoked interrogates the latest CloudWatch Logs log stream for
your function to confirm that when you uploaded the test file, your Lambda function ran and
reported success.

• The test test_encrypted_file_in_bucket confirms that your destination bucket contains
the encrypted test_encrypted.pdf file.

After all these tests have run, the script runs an additional cleanup step to delete the test.pdf
and test_encrypted.pdf files from both your source and destination buckets.

Test the app 78

AWS Lambda Developer Guide

As with the AWS SAM template, the bucket names specified in this file are placeholders. Before
running the test, you need to edit this file with your app's real bucket names. This step is explained
further in the section called “Testing the app with the automated script”

Test script configuration file

Copy and paste the following code into a file named pytest.ini.

[pytest]
markers =
 order: specify test execution order

This is needed to specify the order in which the tests in the test_pdf_encrypt.py script run.

To run the tests do the following:

1. Ensure that the pytest module is installed in your local environment. You can install pytest
by running the following command:

pip install pytest

2. Save a PDF file named test.pdf in the directory containing the test_pdf_encrypt.py and
pytest.ini files.

3. Open a terminal or shell program and run the following command from the directory
containing the test files.

pytest -s -v

When the test completes, you should see output like the following:

== test session starts
 ===
platform linux -- Python 3.12.2, pytest-7.2.2, pluggy-1.0.0 -- /usr/bin/python3
cachedir: .pytest_cache
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/
pdf_encrypt_app/.hypothesis/examples')
Test order randomisation NOT enabled. Enable with --random-order or --random-order-
bucket=<bucket_type>
rootdir: /home/pdf_encrypt_app, configfile: pytest.ini

Test the app 79

AWS Lambda Developer Guide

plugins: anyio-3.7.1, hypothesis-6.70.0, localserver-0.7.1, random-order-1.1.0
collected 4 items

test_pdf_encrypt.py::test_source_bucket_available PASSED
test_pdf_encrypt.py::test_lambda_invoked PASSED
test_pdf_encrypt.py::test_encrypted_file_in_bucket PASSED
test_pdf_encrypt.py::test_cleanup PASSED
Deleted test.pdf from amzn-s3-demo-bucket
Deleted test_encrypted.pdf from amzn-s3-demo-bucket-encrypted

=== 4 passed in 7.32s
 ==

Next steps

Now you've created this example app, you can use the provided code as a basis to create other
types of file-processing application. Modify the code in the lambda_function.py file to
implement the file-processing logic for your use case.

Many typical file-processing use cases involve image processing. When using Python, the most
popular image-processing libraries like pillow typically contain C or C++ components. In order
to ensure that your function's deployment package is compatible with the Lambda execution
environment, it's important to use the correct source distribution binary.

When deploying your resources with AWS SAM, you need to take some extra steps to include
the right source distribution in your deployment package. Because AWS SAM won't install
dependencies for a different platform than your build machine, specifying the correct source
distribution (.whl file) in your requirements.txt file won't work if your build machine uses an
operating system or architecture that's different from the Lambda execution environment. Instead,
you should do one of the following:

• Use the --use-container option when running sam build. When you specify this option,
AWS SAM downloads a container base image that's compatible with the Lambda execution
environment and builds your function's deployment package in a Docker container using that
image. To learn more, see Building a Lambda function inside of a provided container.

• Build your function's .zip deployment package yourself using the correct source distribution
binary and save the .zip file in the directory you specify as the CodeUri in the AWS SAM
template. To learn more about building .zip deployment packages for Python using binary

Next steps 80

https://pypi.org/project/pillow/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-build.html#using-sam-cli-build-options-container

AWS Lambda Developer Guide

distributions, see the section called “Creating a .zip deployment package with dependencies” and
the section called “Creating .zip deployment packages with native libraries”.

Create an app to perform scheduled database maintenance

You can use AWS Lambda to replace scheduled processes such as automated system backups,
file conversions, and maintenance tasks. In this example, you create a serverless application that
performs regular scheduled maintenance on a DynamoDB table by deleting old entries. The app
uses EventBridge Scheduler to invoke a Lambda function on a cron schedule. When invoked, the
function queries the table for items older than one year, and deletes them. The function logs each
deleted item in CloudWatch Logs.

To implement this example, first create a DynamoDB table and populate it with some test data
for your function to query. Then, create a Python Lambda function with an EventBridge Scheduler
trigger and an IAM execution role that gives the function permission to read, and delete, items
from your table.

Tip

If you’re new to Lambda, we recommend that you complete the tutorial Create your first
function before creating this example app.

You can deploy your app manually by creating and configuring resources with the AWS
Management Console. You can also deploy the app by using the AWS Serverless Application Model

Scheduled-maintenance app 81

AWS Lambda Developer Guide

(AWS SAM). AWS SAM is an infrastructure as code (IaC) tool. With IaC, you don’t create resources
manually, but define them in code and then deploy them automatically.

If you want to learn more about using Lambda with IaC before deploying this example app, see the
section called “Infrastructure as code (IaC)”.

Prerequisites

Before you can create the example app, make sure you have the required command line tools and
programs installed.

• Python

To populate the DynamoDB table you create to test your app, this example uses a Python script
and a CSV file to write data into the table. Make sure you have Python version 3.8 or later
installed on your machine.

• AWS SAM CLI

If you want to create the DynamoDB table and deploy the example app using AWS SAM, you
need to install the AWS SAM CLI. Follow the installation instructions in the AWS SAM User Guide.

• AWS CLI

To use the provided Python script to populate your test table, you need to have installed and
configured the AWS CLI. This is because the script uses the AWS SDK for Python (Boto3), which
needs access to your AWS Identity and Access Management (IAM) credentials. You also need
the AWS CLI installed to deploy resources using AWS SAM. Install the CLI by following the
installation instructions in the AWS Command Line Interface User Guide.

• Docker

To deploy the app using AWS SAM, Docker must also be installed on your build machine. Follow
the instructions in Install Docker Engine on the Docker documentation website.

Downloading the example app files

To create the example database and the scheduled-maintenance app, you need to create the
following files in your project directory:

Example database files

Prerequisites 82

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/engine/install/

AWS Lambda Developer Guide

• template.yaml - an AWS SAM template you can use to create the DynamoDB table

• sample_data.csv - a CSV file containing sample data to load into your table

• load_sample_data.py - a Python script that writes the data in the CSV file into the table

Scheduled-maintenance app files

• lambda_function.py - the Python function code for the Lambda function that performs the
database maintenance

• requirements.txt - a manifest file defining the dependencies that your Python function code
requires

• template.yaml - an AWS SAM template you can use to deploy the app

Test file

• test_app.py - a Python script that scans the table and confirms successful operation of your
function by outputting all records older than one year

Expand the following sections to view the code and to learn more about the role of each file in
creating and testing your app. To create the files on your local machine, copy and paste the code
below.

AWS SAM template (example DynamoDB table)

Copy and paste the following code into a file named template.yaml.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: SAM Template for DynamoDB Table with Order_number as Partition Key and
 Date as Sort Key

Resources:
 MyDynamoDBTable:
 Type: AWS::DynamoDB::Table
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 TableName: MyOrderTable
 BillingMode: PAY_PER_REQUEST

Downloading the example app files 83

AWS Lambda Developer Guide

 AttributeDefinitions:
 - AttributeName: Order_number
 AttributeType: S
 - AttributeName: Date
 AttributeType: S
 KeySchema:
 - AttributeName: Order_number
 KeyType: HASH
 - AttributeName: Date
 KeyType: RANGE
 SSESpecification:
 SSEEnabled: true
 GlobalSecondaryIndexes:
 - IndexName: Date-index
 KeySchema:
 - AttributeName: Date
 KeyType: HASH
 Projection:
 ProjectionType: ALL
 PointInTimeRecoverySpecification:
 PointInTimeRecoveryEnabled: true

Outputs:
 TableName:
 Description: DynamoDB Table Name
 Value: !Ref MyDynamoDBTable
 TableArn:
 Description: DynamoDB Table ARN
 Value: !GetAtt MyDynamoDBTable.Arn

Note

AWS SAM templates use a standard naming convention of template.yaml. In this
example, you have two template files - one to create the example database and another to
create the app itself. Save them in separate sub-directories in your project folder.

This AWS SAM template defines the DynamoDB table resource you create to test your app. The
table uses a primary key of Order_number with a sort key of Date. In order for your Lambda
function to find items directly by date, we also define a Global Secondary Index named Date-
index.

Downloading the example app files 84

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

AWS Lambda Developer Guide

To learn more about creating and configuring a DynamoDB table using the
AWS::DynamoDB::Table resource, see AWS::DynamoDB::Table in the AWS CloudFormation User
Guide.

Sample database data file

Copy and paste the following code into a file named sample_data.csv.

Date,Order_number,CustomerName,ProductID,Quantity,TotalAmount
2023-09-01,ORD001,Alejandro Rosalez,PROD123,2,199.98
2023-09-01,ORD002,Akua Mansa,PROD456,1,49.99
2023-09-02,ORD003,Ana Carolina Silva,PROD789,3,149.97
2023-09-03,ORD004,Arnav Desai,PROD123,1,99.99
2023-10-01,ORD005,Carlos Salazar,PROD456,2,99.98
2023-10-02,ORD006,Diego Ramirez,PROD789,1,49.99
2023-10-03,ORD007,Efua Owusu,PROD123,4,399.96
2023-10-04,ORD008,John Stiles,PROD456,2,99.98
2023-10-05,ORD009,Jorge Souza,PROD789,3,149.97
2023-10-06,ORD010,Kwaku Mensah,PROD123,1,99.99
2023-11-01,ORD011,Li Juan,PROD456,5,249.95
2023-11-02,ORD012,Marcia Oliveria,PROD789,2,99.98
2023-11-03,ORD013,Maria Garcia,PROD123,3,299.97
2023-11-04,ORD014,Martha Rivera,PROD456,1,49.99
2023-11-05,ORD015,Mary Major,PROD789,4,199.96
2023-12-01,ORD016,Mateo Jackson,PROD123,2,199.99
2023-12-02,ORD017,Nikki Wolf,PROD456,3,149.97
2023-12-03,ORD018,Pat Candella,PROD789,1,49.99
2023-12-04,ORD019,Paulo Santos,PROD123,5,499.95
2023-12-05,ORD020,Richard Roe,PROD456,2,99.98
2024-01-01,ORD021,Saanvi Sarkar,PROD789,3,149.97
2024-01-02,ORD022,Shirley Rodriguez,PROD123,1,99.99
2024-01-03,ORD023,Sofia Martinez,PROD456,4,199.96
2024-01-04,ORD024,Terry Whitlock,PROD789,2,99.98
2024-01-05,ORD025,Wang Xiulan,PROD123,3,299.97

This file contains some example test data to populate your DynamoDB table with in a standard
comma-separated values (CSV) format.

Python script to load sample data

Copy and paste the following code into a file named load_sample_data.py.

import boto3

Downloading the example app files 85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda Developer Guide

import csv
from decimal import Decimal

Initialize the DynamoDB client
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('MyOrderTable')
print("DDB client initialized.")

def load_data_from_csv(filename):
 with open(filename, 'r') as file:
 csv_reader = csv.DictReader(file)
 for row in csv_reader:
 item = {
 'Order_number': row['Order_number'],
 'Date': row['Date'],
 'CustomerName': row['CustomerName'],
 'ProductID': row['ProductID'],
 'Quantity': int(row['Quantity']),
 'TotalAmount': Decimal(str(row['TotalAmount']))
 }
 table.put_item(Item=item)
 print(f"Added item: {item['Order_number']} - {item['Date']}")

if __name__ == "__main__":
 load_data_from_csv('sample_data.csv')
 print("Data loading completed.")

This Python script first uses the AWS SDK for Python (Boto3) to create a connection to your
DynamoDB table. It then iterates over each row in the example-data CSV file, creates an item from
that row, and writes the item to the DynamoDB table using the boto3 SDK.

Python function code

Copy and paste the following code into a file named lambda_function.py.

import boto3
from datetime import datetime, timedelta
from boto3.dynamodb.conditions import Key, Attr
import logging

logger = logging.getLogger()
logger.setLevel("INFO")

Downloading the example app files 86

AWS Lambda Developer Guide

def lambda_handler(event, context):
 # Initialize the DynamoDB client
 dynamodb = boto3.resource('dynamodb')

 # Specify the table name
 table_name = 'MyOrderTable'
 table = dynamodb.Table(table_name)

 # Get today's date
 today = datetime.now()

 # Calculate the date one year ago
 one_year_ago = (today - timedelta(days=365)).strftime('%Y-%m-%d')

 # Scan the table using a global secondary index
 response = table.scan(
 IndexName='Date-index',
 FilterExpression='#date < :one_year_ago',
 ExpressionAttributeNames={
 '#date': 'Date'
 },
 ExpressionAttributeValues={
 ':one_year_ago': one_year_ago
 }
)

 # Delete old items
 with table.batch_writer() as batch:
 for item in response['Items']:
 Order_number = item['Order_number']
 batch.delete_item(
 Key={
 'Order_number': Order_number,
 'Date': item['Date']
 }
)
 logger.info(f'deleted order number {Order_number}')

 # Check if there are more items to scan
 while 'LastEvaluatedKey' in response:
 response = table.scan(
 IndexName='DateIndex',
 FilterExpression='#date < :one_year_ago',
 ExpressionAttributeNames={

Downloading the example app files 87

AWS Lambda Developer Guide

 '#date': 'Date'
 },
 ExpressionAttributeValues={
 ':one_year_ago': one_year_ago
 },
 ExclusiveStartKey=response['LastEvaluatedKey']
)

 # Delete old items
 with table.batch_writer() as batch:
 for item in response['Items']:
 batch.delete_item(
 Key={
 'Order_number': item['Order_number'],
 'Date': item['Date']
 }
)

 return {
 'statusCode': 200,
 'body': 'Cleanup completed successfully'
 }

The Python function code contains the handler function (lambda_handler) that Lambda runs
when your function is invoked.

When the function is invoked by EventBridge Scheduler, it uses the AWS SDK for Python (Boto3)
to create a connection to the DynamoDB table on which the scheduled maintenance task is to be
performed. It then uses the Python datetime library to calculate the date one year ago, before
scanning the table for items older than this and deleting them.

Note that responses from DynamoDB query and scan operations are limited to a maximum of
1 MB in size. If the response is larger than 1 MB, DynamoDB paginates the data and returns a
LastEvaluatedKey element in the response. To ensure that our function processes all the records
in the table, we check for the presence of this key and continue performing table scans from the
last evaluated position until the whole table has been scanned.

requirements.txt manifest file

Copy and paste the following code into a file named requirements.txt.

boto3

Downloading the example app files 88

AWS Lambda Developer Guide

For this example, your function code has only one dependency that isn't part of the standard
Python library - the SDK for Python (Boto3) that the function uses to scan and delete items from
the DynamoDB table.

Note

A version of the SDK for Python (Boto3) is included as part of the Lambda runtime, so your
code would run without adding Boto3 to your function's deployment package. However, to
maintain full control of your function's dependencies and avoid possible issues with version
misalignment, best practice for Python is to include all function dependencies in your
function's deployment package. See the section called “Runtime dependencies in Python”
to learn more.

AWS SAM template (scheduled-maintenance app)

Copy and paste the following code into a file named template.yaml.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: SAM Template for Lambda function and EventBridge Scheduler rule

Resources:
 MyLambdaFunction:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: ScheduledDBMaintenance
 CodeUri: ./
 Handler: lambda_function.lambda_handler
 Runtime: python3.11
 Architectures:
 - x86_64
 Events:
 ScheduleEvent:
 Type: ScheduleV2
 Properties:
 ScheduleExpression: cron(0 3 1 * ? *)
 Description: Run on the first day of every month at 03:00 AM
 Policies:
 - CloudWatchLogsFullAccess
 - Statement:
 - Effect: Allow

Downloading the example app files 89

AWS Lambda Developer Guide

 Action:
 - dynamodb:Scan
 - dynamodb:BatchWriteItem
 Resource: !Sub 'arn:aws:dynamodb:${AWS::Region}:${AWS::AccountId}:table/
MyOrderTable'

 LambdaLogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub /aws/lambda/${MyLambdaFunction}
 RetentionInDays: 30

Outputs:
 LambdaFunctionName:
 Description: Lambda Function Name
 Value: !Ref MyLambdaFunction
 LambdaFunctionArn:
 Description: Lambda Function ARN
 Value: !GetAtt MyLambdaFunction.Arn

Note

AWS SAM templates use a standard naming convention of template.yaml. In this
example, you have two template files - one to create the example database and another to
create the app itself. Save them in separate sub-directories in your project folder.

This AWS SAM template defines the resources for your app. We define the Lambda function using
the AWS::Serverless::Function resource. The EventBridge Scheduler schedule and the trigger
to invoke the Lambda function are created by using the Events property of this resource using a
type of ScheduleV2. To learn more about defining EventBridge Scheduler schedules in AWS SAM
templates, see ScheduleV2 in the AWS Serverless Application Model Developer Guide.

In addition to the Lambda function and the EventBridge Scheduler schedule, we also define a
CloudWatch log group for your function to send records of deleted items to.

Test script

Copy and paste the following code into a file named test_app.py.

import boto3
from datetime import datetime, timedelta

Downloading the example app files 90

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-schedulev2.html

AWS Lambda Developer Guide

import json

Initialize the DynamoDB client
dynamodb = boto3.resource('dynamodb')

Specify your table name
table_name = 'YourTableName'
table = dynamodb.Table(table_name)

Get the current date
current_date = datetime.now()

Calculate the date one year ago
one_year_ago = current_date - timedelta(days=365)

Convert the date to string format (assuming the date in DynamoDB is stored as a
 string)
one_year_ago_str = one_year_ago.strftime('%Y-%m-%d')

Scan the table
response = table.scan(
 FilterExpression='#date < :one_year_ago',
 ExpressionAttributeNames={
 '#date': 'Date'
 },
 ExpressionAttributeValues={
 ':one_year_ago': one_year_ago_str
 }
)

Process the results
old_records = response['Items']

Continue scanning if we have more items (pagination)
while 'LastEvaluatedKey' in response:
 response = table.scan(
 FilterExpression='#date < :one_year_ago',
 ExpressionAttributeNames={
 '#date': 'Date'
 },
 ExpressionAttributeValues={
 ':one_year_ago': one_year_ago_str
 },
 ExclusiveStartKey=response['LastEvaluatedKey']

Downloading the example app files 91

AWS Lambda Developer Guide

)
 old_records.extend(response['Items'])

for record in old_records:
 print(json.dumps(record))

The total number of old records should be zero.
print(f"Total number of old records: {len(old_records)}")

This test script uses the AWS SDK for Python (Boto3) to create a connection to your DynamoDB
table and scan for items older than one year. To confirm if the Lambda function has run
successfully, at the end of the test, the function prints the number of records older than one year
still in the table. If the Lambda function was successful, the number of old records in the table
should be zero.

Creating and populating the example DynamoDB table

To test your scheduled-maintenance app, you first create a DynamoDB table and populate it with
some sample data. You can create the table either manually using the AWS Management Console
or by using AWS SAM. We recommend that you use AWS SAM to quickly create and configure the
table using a few AWS CLI commands.

Console

To create the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Choose Create table.

3. Create the table by doing the following:

a. Under Table details, for Table name, enter MyOrderTable.

b. For Partition key, enter Order_number and leave the type as String.

c. For Sort key, enter Date and leave the type as String.

d. Leave Table settings set to Default settings and choose Create table.

4. When your table has finished creating and its Status shows as Active, create a global
secondary index (GSI) by doing the following. Your app will use this GSI to search for items
directly by date to determine what to delete.

a. Choose MyOrderTable from the list of tables.

Creating and populating the example DynamoDB table 92

https://console.aws.amazon.com/dynamodbv2/home#tables

AWS Lambda Developer Guide

b. Choose the Indexes tab.

c. Under Global secondary indexes, choose Create index.

d. Under Index details, enter Date for the Partition key and leave the Data type set to
String.

e. For Index name, enter Date-index.

f. Leave all other parameters set to their default values, scroll to the bottom of the page,
and choose Create index.

AWS SAM

To create the DynamoDB table

1. Navigate to the folder you saved the template.yaml file for the DynamoDB table in. Note
that this example uses two template.yaml files. Make sure they are saved in separate
sub-folders and that you are in the correct folder containing the template to create your
DynamoDB table.

2. Run the following command.

sam build

This command gathers the build artifacts for the resources you want to deploy and places
them in the proper format and location to deploy them.

3. To create the DynamoDB resource specified in the template.yaml file, run the following
command.

sam deploy --guided

Using the --guided flag means that AWS SAM will show you prompts to guide you
through the deployment process. For this deployment, enter a Stack name of cron-app-
test-db, and accept the defaults for all other options by using Enter.

When AWS SAM has finished creating the DynamoDB resource, you should see the
following message.

Successfully created/updated stack - cron-app-test-db in us-west-2

Creating and populating the example DynamoDB table 93

AWS Lambda Developer Guide

4. You can additionally confirm that the DynamoDB table has been created by opening the
Tables page of the DynamoDB console. You should see a table named MyOrderTable.

After you've created your table, you next add some sample data to test your app. The CSV file
sample_data.csv you downloaded earlier contains a number of example entries comprised
of order numbers, dates, and customer and order information. Use the provided python script
load_sample_data.py to add this data to your table.

To add the sample data to the table

1. Navigate to the directory containing the sample_data.csv and load_sample_data.py
files. If these files are in separate directories, move them so they're saved in the same location.

2. Create a Python virtual environment to run the script in by running the following command.
We recommend that you use a virtual environment because in a following step you'll need to
install the AWS SDK for Python (Boto3).

python -m venv venv

3. Activate the virtual environment by running the following command.

source venv/bin/activate

4. Install the SDK for Python (Boto3) in your virtual environment by running the following
command. The script uses this library to connect to your DynamoDB table and add the items.

pip install boto3

5. Run the script to populate the table by running the following command.

python load_sample_data.py

If the script runs successfully, it should print each item to the console as it loads it and report
Data loading completed.

6. Deactivate the virtual environment by running the following command.

deactivate

7. You can verify that the data has been loaded to your DynamoDB table by doing the following:

Creating and populating the example DynamoDB table 94

https://console.aws.amazon.com/dynamodbv2/home#tables

AWS Lambda Developer Guide

a. Open the Explore items page of the DynamoDB console and select your table
(MyOrderTable).

b. In the Items returned pane, you should see the 25 items from the CSV file that the script
added to the table.

Creating the scheduled-maintenance app

You can create and deploy the resources for this example app step by step using the AWS
Management Console or by using AWS SAM. In a production environment, we recommend that you
use an Infrustracture-as-Code (IaC) tool like AWS SAM to repeatably deploy serverless applications
without using manual processes.

For this example, follow the console instructions to learn how to configure each AWS resource
separately, or follow the AWS SAM instructions to quickly deploy the app using AWS CLI
commands.

Console

To create the function using the AWS Management Console

First, create a function containing basic starter code. You then replace this code with your own
function code by either copying and pasting the code directly in the Lambda code editor, or by
uploading your code as a .zip package. For this task, we recommend copying and pasting the
code.

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Choose Author from scratch.

4. Under Basic information, do the following:

a. For Function name, enter ScheduledDBMaintenance.

b. For Runtime choose the latest Python version.

c. For Architecture, choose x86_64.

5. Choose Create function.

6. After your function is created, you can configure your function with the provided function
code.

Creating the scheduled-maintenance app 95

https://console.aws.amazon.com/dynamodbv2/home#item-explorer
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. In the Code source pane, replace the Hello world code that Lambda created with the
Python function code from the lambda_function.py file that you saved earlier.

b. In the DEPLOY section, choose Deploy to update your function's code:

To configure the function memory and timeout (console)

1. Select the Configuration tab for your function.

2. In the General configuration pane, choose Edit.

3. Set Memory to 256 MB and Timeout to 15 seconds. If you are processing a large table with
many records, for example in the case of a production environment, you might consider
setting Timeout to a larger number. This gives your function more time to scan, and clean
the database.

4. Choose Save.

To configure the log format (console)

You can configure Lambda functions to output logs in either unstructured text or JSON
format. We recommend that you use JSON format for logs to make it easier to search and
filter log data. To learn more about Lambda log configuration options, see the section called
“Configuring advanced logging controls for Lambda functions”.

1. Select the Configuration tab for your function.

2. Select Monitoring and operations tools.

3. In the Logging configuration pane, choose Edit.

4. For Logging configuration, select JSON.

5. Choose Save.

Creating the scheduled-maintenance app 96

AWS Lambda Developer Guide

To set Up IAM permissions

To give your function the permissions it needs to read and delete DynamoDB items, you need to
add a policy to your function's execution role defining the necessary permissions.

1. Open the Configuration tab, then choose Permissions from the left navigation bar.

2. Choose the role name under Execution role.

3. In the IAM console, choose Add permissions, then Create inline policy.

4. Use the JSON editor and enter the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:Scan",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/MyOrderTable"
 }
]
}

5. Name the policy DynamoDBCleanupPolicy, then create it.

To set up EventBridge Scheduler as a trigger (console)

1. Open the EventBridge console.

2. In the left navigation pane, choose Schedulers under the Scheduler section.

3. Choose Create schedule.

4. Configure the schedule by doing the following:

a. Under Schedule name, enter a name for your schedule (for example,
DynamoDBCleanupSchedule).

b. Under Schedule pattern, choose Recurring schedule.

Creating the scheduled-maintenance app 97

https://console.aws.amazon.com/events/home

AWS Lambda Developer Guide

c. For Schedule type leave the default as Cron-based schedule, then enter the following
schedule details:

• Minutes: 0

• Hours: 3

• Day of month: 1

• Month: *

• Day of the week: ?

• Year: *

When evaluated, this cron expression runs on the first day of every month at 03:00 AM.

d. For Flexible time window, select Off.

5. Choose Next.

6. Configure the trigger for your Lambda function by doing the following:

a. In the Target detail pane, leave Target API set to Templated targets, then select AWS
Lambda Invoke.

b. Under Invoke, select your Lambda function (ScheduledDBMaintenance) from the
dropdown list.

c. Leave the Payload empty and choose Next.

d. Scroll down to Permissions and select Create a new role for this schedule. When you
create a new EventBridge Scheduler schedule using the console, EventBridge Scheduler
creates a new policy with the required permissions the schedule needs to invoke your
function. For more information about managing your schedule permissions, see Cron-
based schedules. in the EventBridge Scheduler User Guide.

e. Choose Next.

7. Review your settings and choose Create schedule to complete creation of the schedule and
Lambda trigger.

Creating the scheduled-maintenance app 98

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

AWS Lambda Developer Guide

AWS SAM

To deploy the app using AWS SAM

1. Navigate to the folder you saved the template.yaml file for the app in. Note that this
example uses two template.yaml files. Make sure they are saved in separate sub-folders
and that you are in the correct folder containing the template to create the app.

2. Copy the lambda_function.py and requirements.txt files you downloaded earlier
to the same folder. The code location specified in the AWS SAM template is ./, meaning
the current location. AWS SAM will search in this folder for the Lambda function code when
you try to deploy the app.

3. Run the following command.

sam build --use-container

This command gathers the build artifacts for the resources you want to deploy and places
them in the proper format and location to deploy them. Specifying the --use-container
option builds your function inside a Lambda-like Docker container. We use it here so you
don't need to have Python 3.12 installed on your local machine for the build to work.

4. To create the Lambda and EventBridge Scheduler resources specified in the
template.yaml file, run the following command.

sam deploy --guided

Using the --guided flag means that AWS SAM will show you prompts to guide you
through the deployment process. For this deployment, enter a Stack name of cron-
maintenance-app, and accept the defaults for all other options by using Enter.

When AWS SAM has finished creating the Lambda and EventBridge Scheduler resources,
you should see the following message.

Successfully created/updated stack - cron-maintenance-app in us-west-2

5. You can additionally confirm that the Lambda function has been created by opening
the Functions page of the Lambda console. You should see a function named
ScheduledDBMaintenance.

Creating the scheduled-maintenance app 99

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Testing the app

To test that your schedule correctly triggers your function, and that your function correctly cleans
records from the database, you can temporarily modify your schedule to run once at a specific
time. You can then run sam deploy again to reset your recurrence schedule to run once a month.

To run the application using the AWS Management Console

1. Navigate back to the EventBridge Scheduler console page.

2. Choose your schedule, then choose Edit.

3. In the Schedule pattern section, under Recurrence, choose One-time schedule.

4. Set your invocation time to a few minutes from now, review your settings, then choose Save.

After the schedule runs and invokes its target, you run the test_app.py script to verify that your
function successfully removed all old records from the DynamoDB table.

To verify that old records are deleted using a Python script

1. In your command line, navigate to the folder where you saved test_app.py.

2. Run the script.

python test_app.py

If successful, you will see the following output.

Total number of old records: 0

Next steps

You can now modify the EventBridge Scheduler schedule to meet your particular application
requirements. EventBridge Scheduler supports the following schedule expressions: cron, rate, and
one-time schedules.

For more information about EventBridge Scheduler schedule expressions, see Schedule types in the
EventBridge Scheduler User Guide. Access Management in the IAM User Guide

Testing the app 100

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

AWS Lambda Developer Guide

Development, deployment, and management tools

As a Lambda developer, you have access to a variety of tools that can streamline your workflow,
from local development to deployment and management of complex serverless applications. This
section explores local development environments and Infrastructure as Code (IaC) tools that can
enhance your productivity and improve the quality of your Lambda-based solutions.

Local development tools

Local development environments enable you to work offline and leverage advanced IDE features
while iterating quickly on your Lambda functions. These tools help you debug complex functions
and develop in environments with limited connectivity. They also support team collaboration and
integration with version control systems.

For more information on developing Lambda functions locally, see Developing Lambda functions
locally with VS Code. This page describes how to move Lambda function development from the
AWS console to Visual Studio Code, which provides a rich development environment with features
like debugging and code completion. To make the transition, you need to set up the AWS Toolkit
for Visual Studio Code and credentials, after which you can use advanced features in VS Code while
maintaining the ability to deploy directly to AWS.

Local development for Lambda provides several key capabilities:

• Use Visual Studio Code integration with the Lambda console

• Configure local Lambda development environments

• Debug and test functions locally

• Apply best practices for local function management

For more information, see Developing Lambda functions locally with VS Code.

Infrastructure as Code (IaC) tools

With Infrastructure as Code (IaC) tools, you can define and manage your serverless architecture
using code. This approach helps maintain consistency across environments, lets you control your
infrastructure versions, and facilitates DevOps practices. IaC is especially valuable for automating
deployments, ensuring consistent environments, and managing multi-region deployments.

Local development tools 101

AWS Lambda Developer Guide

Key IaC tools and concepts for Lambda include frameworks for template creation, deployment
management, and best practices for serverless infrastructure::

• Core IaC principles for Lambda development

• AWS CloudFormation, AWS SAM, and AWS CDK capabilities

• Tool selection criteria and comparison

• Best practices for Lambda IaC implementation

Whether you're working independently on a small project or as part of a large team managing
enterprise-scale serverless applications, these development and deployment tools can help you
write, deploy, and manage your Lambda functions more effectively.

For more information, see Using Lambda with infrastructure as code (IaC).

Workflow and event management tools

Lambda applications can be used in orchestration of complex workflows and handling of
various events. AWS provides specialized tools to help you manage these aspects of serverless
development. Learn about AWS Step Functions for workflow orchestration and Amazon
EventBridge for event management, and how to integrate them with your Lambda functions.
These tools can significantly enhance the scalability and reliability of your serverless applications
by providing robust state management and event-driven architectures. By leveraging these
services, you can build more sophisticated and resilient Lambda-based solutions that can handle
complex business processes and react to a wide range of system and application events.

For more information, see Managing Lambda workflows and events.

Developing Lambda functions locally with VS Code

You can move your Lambda functions from the Lambda console to Visual Studio Code, which
provides a full development environment and allows you to use other local development options
like AWS SAM and AWS CDK.

Key benefits of local development

While the Lambda console provides a quick way to edit and test functions, local development
offers more advanced capabilities:

Workflow and event management tools 102

AWS Lambda Developer Guide

• Advanced IDE features: Debugging, code completion, and refactoring tools

• Offline development: Work and test changes locally before cloud deployment

• Infrastructure as code integration: Seamless use with AWS SAM, AWS CDK, and Infrastructure
Composer

• Dependency management: Full control over function dependencies

Prerequisites

Before developing Lambda functions locally in VS Code, you must have:

• VS Code: For installation instructions, see Download VS Code.

• AWS Toolkit for Visual Studio Code: For installation instructions, see Setting up the AWS Toolkit
for Visual Studio Code. For an overview, see AWS Toolkit for Visual Studio Code.

• AWS credentials: For information about configuring credentials, see Setting up your AWS
credentials.

• AWS SAM CLI: For installation instructions, see Installing the AWS SAM CLI.

• Docker installed (optional, but required for local testing): For installation instructions, see Get
Docker.

Note

If you already have an AWS account and profile configured locally, ensure that the
AdministratorAccess managed policy is added to your configured AWS profile.

Authentication and access control

To develop Lambda functions locally, you need AWS credentials to securely access and manage
AWS resources on your behalf, just like they would in the cloud. The AWS Toolkit for VS Code
supports the following authentication methods:

The AWS Toolkit for VS Code supports the following authentication methods:

• IAM user long-term credentials

• Temporary credentials from assumed roles

Prerequisites 103

https://code.visualstudio.com/download
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://aws.amazon.com/visualstudiocode/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

AWS Lambda Developer Guide

• Identity federation

• AWS account root user credentials (not recommended)

This section guides you through obtaining and configuring these credentials using IAM user long-
term credentials.

Get IAM Credentials

If you already have an IAM user with access keys, have both the access key ID and secret access key
ready for the next section. If you don't have these keys, follow these steps to create them:

Note

You must use both the access key ID and secret access key together to authenticate your
requests.

To create an IAM user and access keys:

1. Open the IAM console at https://console.aws.amazon.com/iam/

2. In the navigation pane, choose Users.

3. Choose Create user.

4. For User name, enter a name and choose Next.

5. Under Set permissions, choose Attach policies directly.

6. Select AdministratorAccess and choose Next.

7. Choose Create user.

8. In the success banner, choose View user.

9. Choose Create access key.

10.For Use case, select Local code.

11.Select the confirmation check box and choose Next.

12.(Optional) Enter a description tag value.

13.Choose Create access key.

14.Copy your access key and secret access key immediately. You won't be able to access the secret
access key again after you leave this page.

Authentication and access control 104

https://console.aws.amazon.com/iam/

AWS Lambda Developer Guide

Important

Never share your secret key or commit it to source control. Store these keys securely and
delete them when no longer needed.

Note

For more information, see Create an IAM user in your AWS account and Manage access keys
for IAM users in the IAM User Guide.

Configure AWS credentials using the AWS Toolkit

The following table summarizes the credential setup process you will complete in the following
procedure.

What to Do Why?

Open Sign In panel Start authentication

Use Command Palette, search for AWS Add a
New Connection

Access the sign-in UI

Choose IAM Credential Use your access keys for programmatic access

Enter profile name, access key, secret key Provide credentials for connection

See AWS Explorer update Confirm you're connected

Complete the following steps authenticate to your AWS account:

1. Open the Sign In panel in VS Code:

a. To start the authentication process, select the AWS icon in the left navigation pane or open
the Command Palette (Cmd+Shift+P on Mac or Ctrl+Shift+P on Windows/Linux) and search
for and select AWS Add a New Connection.

2. In the sign in panel, choose IAM Credentials and select Continue.

Authentication and access control 105

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Lambda Developer Guide

Note

To proceed, you will need to allow AWS IDE Extensions for VS Code to access your data.

3. Enter your profile name, access key ID, and secret access key, then select Continue.

4. Verify the connection by checking the AWS Explorer in VS Code for your AWS services and
resources.

For information on setting up authentication with long-term credentials, see Using long-term
credentials to authenticate AWS SDKs and tools.

For information about configuring authentication, see AWS IAM credentials in the AWS Toolkit for
Visual Studio Code User Guide.

Moving from console to local development

Note

If you've made changes in the console, make sure you don't have any undeployed changes
before transitioning to local development.

To move a Lambda function from the Lambda console to VS Code, complete the following steps:

1. Open the Lambda console.

2. Choose the name of your function.

3. Select the Code source tab.

4. Choose Open in Visual Studio Code.

Note

The Open in Visual Studio Code button is only available in AWS Toolkit version 3.69.0
and later. If you have an earlier version of the AWS Toolkit installed, you may see a
Cannot open the handler message in VS Code. To resolve this, update your AWS
Toolkit to the latest version.

Moving from console to local development 106

https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

5. When prompted, allow your browser to open VS Code.

When you open your function in VS Code, Lambda creates a local project with your function
code in a temporary location that's designed for quick testing and deployment. This includes the
function code, dependencies, and a basic project structure that you can use for local development.

For details on using AWS in VS Code, see the AWS Toolkit for Visual Studio Code User Guide.

Working with functions locally

After opening your function in VS Code, follow these steps to access and manage your functions:

1. Select the AWS icon in the sidebar to open the AWS Explorer:

2. In the AWS Explorer, select the region with your Lambda function:

Working with functions locally 107

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html

AWS Lambda Developer Guide

3. Under your selected region, expand the Lambda section to view and manage your functions:

Working with functions locally 108

AWS Lambda Developer Guide

With your function opened in VS Code, you can:

• Edit function code with full language support and code completion.

• Test your function locally using the AWS Toolkit.

• Debug your function with breakpoints and variable inspection.

• Deploy your updated function back to AWS using the cloud icon.

• Install and manage dependencies for your function.

For more information, see Working with AWS Lambda functions in the AWS Toolkit for Visual
Studio Code User Guide.

Convert your function to an AWS SAM template and use IaC tools

In VS Code, you can convert your Lambda function to an AWS SAM template by choosing the
Convert to AWS SAM Application icon next to your Lambda function. You will be prompted to
select an AWS SAM project location. Once selected, your Lambda function will be converted to a
template.yaml file that is saved in your new AWS SAM project.

With your function converted to an AWS SAM template, you can:

• Control the versioning of your infrastructure

• Automate deployments

• Remotely debug functions

• Add additional AWS resources to your application

• Maintain consistent environments across your development lifecycle

• Use Infrastructure Composer to visually edit your AWS SAM template

For more information on using IaC tools, refer to the following guides:

• The AWS Serverless Application Model Developer Guide

• The AWS Cloud Development Kit (AWS CDK) Developer Guide

• The Infrastructure Composer Developer Guide

• The AWS CloudFormation User Guide

Convert your function to an AWS SAM template and use IaC tools 109

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/building-lambda.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS Lambda Developer Guide

These tools provide additional capabilities for defining, testing, and deploying your serverless
applications.

Next steps

To learn more about working with Lambda functions in VS Code, see the following resources:

• Working with AWS Lambda functions in the AWS Toolkit for VS Code User Guide

• Working with serverless applications in the AWS Toolkit for VS Code User Guide

• Infrastructure as code in the Lambda Developer Guide

Using GitHub Actions to deploy Lambda functions

You can use GitHub Actions to automatically deploy Lambda functions when you push code
or configuration changes to your repository. The Deploy Lambda Function action provides a
declarative, simple YAML interface that eliminates the complexity of manual deployment steps.

Example workflow

To configure automated Lambda function deployment, create a workflow file in your repository's
.github/workflows/ directory:

Example GitHub Actions workflow for Lambda deployment

name: Deploy AWS Lambda

on:
 push:
 branches:
 - main

jobs:
 deploy:
 runs-on: ubuntu-latest
 permissions:
 id-token: write # Required for OIDC authentication
 contents: read # Required to check out the repository
 steps:
 - uses: actions/checkout@v4

Next steps 110

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/building-lambda.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/serverless-apps.html
https://docs.aws.amazon.com/lambda/latest/dg/foundation-iac.html
https://github.com/features/actions
https://github.com/aws-actions/aws-lambda-deploy

AWS Lambda Developer Guide

 - name: Configure AWS credentials
 uses: aws-actions/configure-aws-credentials@v4
 with:
 role-to-assume: arn:aws:iam::123456789012:role/GitHubActionRole
 aws-region: us-east-1

 - name: Deploy Lambda Function
 uses: aws-actions/aws-lambda-deploy@v1
 with:
 function-name: my-lambda-function
 code-artifacts-dir: ./dist

This workflow runs when you push changes to the main branch. It checks out your repository,
configures AWS credentials using OpenID Connect (OIDC), and deploys your function using the
code in the ./dist directory.

For additional examples including updating function configuration, deploying via S3 buckets, and
dry run validation, see the Deploy Lambda Function README.

Additional resources

• Configure AWS Credentials GitHub Action

• Configuring OpenID Connect in AWS

Using Lambda with infrastructure as code (IaC)

Lambda functions rarely run in isolation. Instead, they often form part of a serverless application
with other resources such as databases, queues, and storage. With infrastructure as code (IaC),
you can automate your deployment processes to quickly and repeatably deploy and update whole
serverless applications involving many separate AWS resources. This approach speeds up your
development cycle, makes configuration management easier, and ensures that your resources are
deployed the same way every time.

IaC tools for Lambda

AWS CloudFormation

CloudFormation is the foundational IaC service from AWS. You can use YAML or JSON
templates to model and provision your entire AWS infrastructure, including Lambda functions.

Additional resources 111

https://github.com/aws-actions/aws-lambda-deploy
https://github.com/aws-actions/configure-aws-credentials
https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://aws.amazon.com/what-is/iac/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

AWS Lambda Developer Guide

CloudFormation handles the complexities of creating, updating, and deleting your AWS
resources.

AWS Serverless Application Model (AWS SAM)

AWS SAM is an open-source framework built on top of CloudFormation. It provides a simplified
syntax for defining serverless applications. Use AWS SAM templates to quickly provision
Lambda functions, APIs, databases, and event sources with just a few lines of YAML.

AWS Cloud Development Kit (AWS CDK)

The CDK is a code-first approach to IaC. You can define your Lambda-based architecture using
TypeScript, JavaScript, Python, Java, C#/.Net, or Go. Choose your preferred language and use
programming elements like parameters, conditionals, loops, composition, and inheritance to
define the desired outcome of your infrastructure. The CDK then generates the underlying
CloudFormation templates for deployment. For an example of how to use Lambda with CDK,
see Deploying Lambda functions with AWS CDK.

AWS also provides a service called AWS Infrastructure Composer to develop IaC templates using a
simple graphical interface. With Infrastructure Composer, you design an application architecture by
dragging, grouping, and connecting AWS services in a visual canvas. Infrastructure Composer then
creates an AWS SAM template or an AWS CloudFormation template from your design that you can
use to deploy your application.

IaC tools for Lambda 112

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html

AWS Lambda Developer Guide

In the the section called “Using AWS SAM and Infrastructure Composer” section below, you use
Infrastructure Composer to develop a template for a serverless application based on an existing
Lambda function.

Using Lambda functions in AWS SAM and Infrastructure Composer

In this tutorial, you can get started using IaC with Lambda by creating an AWS SAM template
from an existing Lambda function and then building out a serverless application in Infrastructure
Composer by adding other AWS resources.

As you carry out this tutorial, you’ll learn some fundamental concepts, like how AWS resources are
specified in AWS SAM. You’ll also learn how to use Infrastructure Composer to build a serverless
application you can deploy using AWS SAM or AWS CloudFormation.

To complete this tutorial, you’ll carry out the following steps:

• Create an example Lambda function

• Use the Lambda console to view the AWS SAM template for the function

• Export your function’s configuration to AWS Infrastructure Composer and design a simple
serverless application based on your function’s configuration

• Save an updated AWS SAM template you can use as a basis to deploy your serverless application

Prerequisites

In this tutorial, you use Infrastructure Composer’s local sync feature to save your template and
code files to your local build machine. To use this feature, you need a browser that supports the
File System Access API, which allows web applications to read, write, and save files in your local
file system . We recommend using either Google Chrome or Microsoft Edge. For more information
about the File System Access API, see What is the File System Access API?

Create a Lambda function

In this first step, you create a Lambda function you can use to complete the rest of the tutorial. To
keep things simple, you use the Lambda console to create a basic 'Hello world' function using the
Python 3.11 runtime.

To create a 'Hello world' Lambda function using the console

1. Open the Lambda console.

Using AWS SAM and Infrastructure Composer 113

https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-fsa.html#reference-fsa-api
https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

2. Choose Create function.

3. Leave Author from scratch selected, and under Basic information, enter LambdaIaCDemo for
Function name.

4. For Runtime, select Python 3.11.

5. Choose Create function.

View the AWS SAM template for your function

Before you export your function configuration to Infrastructure Composer, use the Lambda console
to view your function's current configuration as an AWS SAM template. By following the steps in
this section, you'll learn about the anatomy of an AWS SAM template and how to define resources
like Lambda functions to start specifying a serverless application.

To view the AWS SAM template for your function

1. Open the Functions page of the Lambda console.

2. Choose the function you just created (LambdaIaCDemo).

3. In the Function overview pane, choose Template.

In place of the diagram representing your function’s configuration, you’ll see an AWS SAM
template for your function. The template should look like the following.

This AWS SAM template has been generated from your function's
configuration. If your function has one or more triggers, note
that the AWS resources associated with these triggers aren't fully
specified in this template and include placeholder values.Open this template
in AWS Application Composer or your favorite IDE and modify
it to specify a serverless application with other AWS resources.
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
 LambdaIaCDemo:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 3

Using AWS SAM and Infrastructure Composer 114

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

 Handler: lambda_function.lambda_handler
 Runtime: python3.11
 Architectures:
 - x86_64
 EventInvokeConfig:
 MaximumEventAgeInSeconds: 21600
 MaximumRetryAttempts: 2
 EphemeralStorage:
 Size: 512
 RuntimeManagementConfig:
 UpdateRuntimeOn: Auto
 SnapStart:
 ApplyOn: None
 PackageType: Zip
 Policies:
 Statement:
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 Resource: arn:aws:logs:us-east-1:123456789012:*
 - Effect: Allow
 Action:
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource:
 - >-
 arn:aws:logs:us-east-1:123456789012:log-group:/aws/lambda/
LambdaIaCDemo:*

Let’s take a moment to look at the YAML template for your function and understand some key
concepts.

The template starts with the declaration Transform: AWS::Serverless-2016-10-31. This
declaration is required because behind the scenes, AWS SAM templates are deployed through AWS
CloudFormation. Using the Transform statement identifies the template as an AWS SAM template
file.

Following the Transform declaration comes the Resources section. This is where the AWS
resources you want to deploy with your AWS SAM template are defined. AWS SAM templates can
contain a combination of AWS SAM resources and AWS CloudFormation resources. This is because

Using AWS SAM and Infrastructure Composer 115

AWS Lambda Developer Guide

during deployment, AWS SAM templates expand to AWS CloudFormation templates, so any valid
AWS CloudFormation syntax can be added to an AWS SAM template.

At the moment, there is just one resource defined in the Resources section of the template,
your Lambda function LambdaIaCDemo. To add a Lambda function to an AWS SAM template, you
use the AWS::Serverless::Function resource type. The Properties of a Lambda function
resource define the function’s runtime, function handler, and other configuration options. The path
to your function’s source code that AWS SAM should use to deploy the function is also defined
here. To learn more about Lambda function resources in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

As well as the function properties and configurations, the template also specifies an AWS Identity
and Access Management (IAM) policy for your function. This policy gives your function permission
to write logs to Amazon CloudWatch Logs. When you create a function in the Lambda console,
Lambda automatically attaches this policy to your function. To learn more about specifying
an IAM policy for a function in an AWS SAM template, see the policies property on the
AWS::Serverless::Function page of the AWS SAM Developer Guide.

To learn more about the structure of AWS SAM templates, see AWS SAM template anatomy.

Use AWS Infrastructure Composer to design a serverless application

To start building out a simple serverless application using your function’s AWS SAM template as
a starting point, you export your function configuration to Infrastructure Composer and activate
Infrastructure Composer’s local sync mode. Local sync automatically saves your function’s code and
your AWS SAM template to your local build machine and keeps your saved template synced as you
add other AWS resources in Infrastructure Composer.

To export your function to Infrastructure Composer

1. In the Function Overview pane, choose Export to Application Composer.

To export your function's configuration and code to Infrastructure Composer, Lambda creates
an Amazon S3 bucket in your account to temporarily store this data.

2. In the dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Infrastructure Composer.

3. (Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

Using AWS SAM and Infrastructure Composer 116

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

Selecting Confirm and create project opens the Infrastructure Composer console. On the
canvas, you’ll see your Lambda function.

4. From the Menu dropdown, choose Activate local sync.

5. In the dialog box that opens, choose Select folder and select a folder on your local build
machine.

6. Choose Activate to activate local sync.

To export your function to Infrastructure Composer, you need permission to use certain API actions.
If you're unable to export your function, see the section called “Required permissions” and make
sure you have the permissions you need.

Note

Standard Amazon S3 pricing applies for the bucket Lambda creates when you export a
function to Infrastructure Composer. The objects that Lambda puts into the bucket are
automatically deleted after 10 days, but Lambda doesn't delete the bucket itself.
To avoid additional charges being added to your AWS account, follow the instructions in
Deleting a bucket after you have exported your function to Infrastructure Composer. For
more information about the Amazon S3 bucket Lambda creates, see the section called
“Infrastructure Composer”.

To design your serverless application in Infrastructure Composer

After activating local sync, changes you make in Infrastructure Composer will be reflected in the
AWS SAM template saved on your local build machine. You can now drag and drop additional AWS
resources onto the Infrastructure Composer canvas to build out your application. In this example,
you add an Amazon SQS simple queue as a trigger for your Lambda function and a DynamoDB
table for the function to write data to.

1. Add an Amazon SQS trigger to your Lambda function by doing the following:

a. In the search field in the Resources palette, enter SQS.

b. Drag the SQS Queue resource onto your canvas and position it to the left of your Lambda
function.

c. Choose Details, and for Logical ID enter LambdaIaCQueue.

Using AWS SAM and Infrastructure Composer 117

https://aws.amazon.com/s3/pricing
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html

AWS Lambda Developer Guide

d. Choose Save.

e. Connect your Amazon SQS and Lambda resources by clicking on the Subscription port on
the SQS queue card and dragging it to the left hand port on the Lambda function card.
The appearance of a line between the two resources indicates a successful connection.
Infrastructure Composer also displays a message at the bottom of the canvas indicating
that the two resources are successfully connected.

2. Add an Amazon DynamoDB table for your Lambda function to write data to by doing the
following:

a. In the search field in the Resources palette, enter DynamoDB.

b. Drag the DynamoDB Table resource onto your canvas and position it to the right of your
Lambda function.

c. Choose Details, and for Logical ID enter LambdaIaCTable.

d. Choose Save.

e. Connect the DynamoDB table to your Lambda function by clicking on the right hand port
of the Lambda function card and dragging it to the left hand port on the DynamoDB card.

Now that you’ve added these extra resources, let’s take a look at the updated AWS SAM template
Infrastructure Composer has created.

To view your updated AWS SAM template

• On the Infrastructure Composer canvas, choose Template to switch from the canvas view to
the template view.

Your AWS SAM template should now contain the following additional resources and properties:

• An Amazon SQS queue with the identifier LambdaIaCQueue

LambdaIaCQueue:
 Type: AWS::SQS::Queue
 Properties:
 MessageRetentionPeriod: 345600

Using AWS SAM and Infrastructure Composer 118

AWS Lambda Developer Guide

When you add an Amazon SQS queue using Infrastructure Composer, Infrastructure Composer
sets the MessageRetentionPeriod property. You can also set the FifoQueue property by
selecting Details on the SQS Queue card and checking or unchecking Fifo queue.

To set other properties for your queue, you can manually edit the template to add them. To learn
more about the AWS::SQS::Queue resource and its available properties, see AWS::SQS::Queue
in the AWS CloudFormation User Guide.

• An Events property in your Lambda function definition that specifies the Amazon SQS queue as
a trigger for the function

Events:
 LambdaIaCQueue:
 Type: SQS
 Properties:
 Queue: !GetAtt LambdaIaCQueue.Arn
 BatchSize: 1

The Events property consists of an event type and a set of properties that depend on the type.
To learn about the different AWS services you can configure to trigger a Lambda function and
the properties you can set, see EventSource in the AWS SAM Developer Guide.

• A DynamoDB table with the identifier LambdaIaCTable

LambdaIaCTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 BillingMode: PAY_PER_REQUEST
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 StreamSpecification:
 StreamViewType: NEW_AND_OLD_IMAGES

When you add a DynamoDB table using Infrastructure Composer, you can set your table's keys
by choosing Details on the DynamoDB table card and editing the key values. Infrastructure

Using AWS SAM and Infrastructure Composer 119

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html

AWS Lambda Developer Guide

Composer also sets default values for a number of other properties including BillingMode and
StreamViewType.

To learn more about these properties and other properties you can add to your AWS SAM
template, see AWS::DynamoDB::Table in the AWS CloudFormation User Guide.

• A new IAM policy that gives your function permission to perform CRUD operations on the
DynamoDB table you added.

Policies:
...
 - DynamoDBCrudPolicy:
 TableName: !Ref LambdaIaCTable

The complete final AWS SAM template should look like the following.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
 LambdaIaCDemo:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 3
 Handler: lambda_function.lambda_handler
 Runtime: python3.11
 Architectures:
 - x86_64
 EventInvokeConfig:
 MaximumEventAgeInSeconds: 21600
 MaximumRetryAttempts: 2
 EphemeralStorage:
 Size: 512
 RuntimeManagementConfig:
 UpdateRuntimeOn: Auto
 SnapStart:
 ApplyOn: None
 PackageType: Zip
 Policies:

Using AWS SAM and Infrastructure Composer 120

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda Developer Guide

 - Statement:
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 Resource: arn:aws:logs:us-east-1:594035263019:*
 - Effect: Allow
 Action:
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource:
 - arn:aws:logs:us-east-1:594035263019:log-group:/aws/lambda/
LambdaIaCDemo:*
 - DynamoDBCrudPolicy:
 TableName: !Ref LambdaIaCTable
 Events:
 LambdaIaCQueue:
 Type: SQS
 Properties:
 Queue: !GetAtt LambdaIaCQueue.Arn
 BatchSize: 1
 Environment:
 Variables:
 LAMBDAIACTABLE_TABLE_NAME: !Ref LambdaIaCTable
 LAMBDAIACTABLE_TABLE_ARN: !GetAtt LambdaIaCTable.Arn
 LambdaIaCQueue:
 Type: AWS::SQS::Queue
 Properties:
 MessageRetentionPeriod: 345600
 LambdaIaCTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 BillingMode: PAY_PER_REQUEST
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 StreamSpecification:
 StreamViewType: NEW_AND_OLD_IMAGES

Using AWS SAM and Infrastructure Composer 121

AWS Lambda Developer Guide

Deploy your serverless application using AWS SAM (optional)

If you want to use AWS SAM to deploy a serverless application using the template you just created
in Infrastructure Composer, you first need to install the AWS SAM CLI. To do this, follow the
instructions in Installing the AWS SAM CLI.

Before you deploy your application, you also need to update the function code that Infrastructure
Composer saved along with your template. At the moment, the lambda_function.py file that
Infrastructure Composer saved contains only the basic 'Hello world' code that Lambda provided
when you created the function.

To update your function code, copy the following code and paste it into the
lambda_function.py file Infrastructure Composer saved to your local build machine. You
specified the directory for Infrastructure Composer to save this file to when you activated Local
Sync mode.

This code accepts a key value pair in a message from the Amazon SQS queue you created in
Infrastructure Composer. If both the key and value are strings, the code then uses them to write an
item to the DynamoDB table defined in your template.

Updated Python function code

import boto3
import os
import json

define the DynamoDB table that Lambda will connect to
tablename = os.environ['LAMBDAIACTABLE_TABLE_NAME']

create the DynamoDB resource
dynamo = boto3.client('dynamodb')

def lambda_handler(event, context):
 # get the message out of the SQS event
 message = event['Records'][0]['body']
 data = json.loads(message)
 # write event data to DDB table
 if check_message_format(data):
 key = next(iter(data))
 value = data[key]
 dynamo.put_item(

Using AWS SAM and Infrastructure Composer 122

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Lambda Developer Guide

 TableName=tablename,
 Item={
 'id': {'S': key},
 'Value': {'S': value}
 }
)
 else:
 raise ValueError("Input data not in the correct format")

check that the event object contains a single key value
pair that can be written to the database
def check_message_format(message):
 if len(message) != 1:
 return False

 key, value = next(iter(message.items()))

 if not (isinstance(key, str) and isinstance(value, str)):
 return False

 else:
 return True

To deploy your serverless application

To deploy your application using the AWS SAM CLI, carry out the following steps. For your function
to build and deploy correctly, Python version 3.11 must be installed on your build machine and on
your PATH.

1. Run the following command from the directory in which Infrastructure Composer saved your
template.yaml and lambda_function.py files.

sam build

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them.

2. To deploy your application and create the Lambda, Amazon SQS, and DynamoDB resources
specified in your AWS SAM template, run the following command.

sam deploy --guided

Using AWS SAM and Infrastructure Composer 123

AWS Lambda Developer Guide

Using the --guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

• An AWS CloudFormation stack named sam-app

• A Lambda function with the name format sam-app-LambdaIaCDemo-99VXPpYQVv1M

• An Amazon SQS queue with the name format sam-app-LambdaIaCQueue-xL87VeKsGiIo

• A DynamoDB table with the name format sam-app-LambdaIaCTable-CN0S66C0VLNV

AWS SAM also creates the necessary IAM roles and policies so that your Lambda function can read
messages from the Amazon SQS queue and perform CRUD operations on the DynamoDB table.

Testing your deployed application (optional)

To confirm that your serverless application deployed correctly, send a message to your Amazon
SQS queue containing a key value pair and check that Lambda writes an item into your DynamoDB
table using these values.

To test your serverless application

1. Open the Queues page of the Amazon SQS console and select the queue that
AWS SAM created from your template. The name has the format sam-app-
LambdaIaCQueue-xL87VeKsGiIo.

2. Choose Send and receive messages and paste the following JSON into the Message body in
the Send message section.

{
 "myKey": "myValue"
}

3. Choose Send message.

Sending your message to the queue causes Lambda to invoke your function through the event
source mapping defined in your AWS SAM template. To confirm that Lambda has invoked your
function as expected, confirm that an item has been added to your DynamoDB table.

Using AWS SAM and Infrastructure Composer 124

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks
https://console.aws.amazon.com/sqs/v2/home#/queues

AWS Lambda Developer Guide

4. Open the Tables page of the DynamoDB console and select your table. The name has the
format sam-app-LambdaIaCTable-CN0S66C0VLNV.

5. Choose Explore table items. In the Items returned pane, you should see an item with the id
myKey and the Value myValue.

Deploying Lambda functions with AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an infrastructure as code (IaC) framework that you
can use to define AWS cloud infrastructure by using a programming language of your choosing.
To define your own cloud infrastructure, you first write an app (in one of the CDK's supported
languages) that contains one or more stacks. Then, you synthesize it to an AWS CloudFormation
template and deploy your resources to your AWS account. Follow the steps in this topic to deploy a
Lambda function that returns an event from an Amazon API Gateway endpoint.

The AWS Construct Library, included with the CDK, provides modules that you can use to model
the resources that AWS services provide. For popular services, the library provides curated
constructs with smart defaults and best practices. You can use the aws_lambda module to define
your function and supporting resources with just a few lines of code.

Prerequisites

Before starting this tutorial, install the AWS CDK by running the following command.

npm install -g aws-cdk

Step 1: Set up your AWS CDK project

Create a directory for your new AWS CDK app and initialize the project.

JavaScript

mkdir hello-lambda
cd hello-lambda
cdk init --language javascript

TypeScript

mkdir hello-lambda

Using AWS CDK 125

https://console.aws.amazon.com/dynamodbv2#tables
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html

AWS Lambda Developer Guide

cd hello-lambda
cdk init --language typescript

Python

mkdir hello-lambda
cd hello-lambda
cdk init --language python

After the project starts, activate the project's virtual environment and install the baseline
dependencies for AWS CDK.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

mkdir hello-lambda
cd hello-lambda
cdk init --language java

Import this Maven project to your Java integrated development environment (IDE). For
example, in Eclipse, choose File, Import, Maven, Existing Maven Projects.

C#

mkdir hello-lambda
cd hello-lambda
cdk init --language csharp

Note

The AWS CDK application template uses the name of the project directory to generate
names for source files and classes. In this example, the directory is named hello-lambda.
If you use a different project directory name, your app won't match these instructions.

AWS CDK v2 includes stable constructs for all AWS services in a single package that's called aws-
cdk-lib. This package is installed as a dependency when you initialize the project. When working

Using AWS CDK 126

AWS Lambda Developer Guide

with certain programming languages, the package is installed when you build the project for the
first time.

Step 2: Define the AWS CDK stack

A CDK stack is a collection of one or more constructs, which define AWS resources. Each CDK stack
represents an AWS CloudFormation stack in your CDK app.

To define your CDK stack, follow the instructions for your preferred programming language. This
stack defines the following:

• The function's logical name: MyFunction

• The location of the function code, specified in the code property. For more information, see
Handler code in the AWS Cloud Development Kit (AWS CDK) API Reference.

• The REST API's logical name: HelloApi

• The API Gateway endpoint's logical name: ApiGwEndpoint

Note that all of the CDK stacks in this tutorial use the Node.js runtime for the Lambda function.
You can use different programming languages for the CDK stack and the Lambda function to
leverage the strengths of each language. For example, you can use TypeScript for the CDK stack
to leverage the benefits of static typing for your infrastructure code. You can use JavaScript for
the Lambda function to take advantage of the flexibility and rapid development of a dynamically
typed language.

JavaScript

Open the lib/hello-lambda-stack.js file and replace the contents with the following.

const { Stack } = require('aws-cdk-lib');
const lambda = require('aws-cdk-lib/aws-lambda');
const apigw = require('aws-cdk-lib/aws-apigateway');

class HelloLambdaStack extends Stack {
 /**
 *
 * @param {Construct} scope
 * @param {string} id
 * @param {StackProps=} props
 */
 constructor(scope, id, props) {

Using AWS CDK 127

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html#handler-code

AWS Lambda Developer Guide

 super(scope, id, props);
 const fn = new lambda.Function(this, 'MyFunction', {
 code: lambda.Code.fromAsset('lib/lambda-handler'),
 runtime: lambda.Runtime.NODEJS_LATEST,
 handler: 'index.handler'
 });

 const endpoint = new apigw.LambdaRestApi(this, 'MyEndpoint', {
 handler: fn,
 restApiName: "HelloApi"
 });

 }
}

module.exports = { HelloLambdaStack }

TypeScript

Open the lib/hello-lambda-stack.ts file and replace the contents with the following.

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';
import * as apigw from "aws-cdk-lib/aws-apigateway";
import * as lambda from "aws-cdk-lib/aws-lambda";
import * as path from 'node:path';

export class HelloLambdaStack extends cdk.Stack {
 constructor(scope: Construct, id: string, props?: cdk.StackProps){
 super(scope, id, props)
 const fn = new lambda.Function(this, 'MyFunction', {
 runtime: lambda.Runtime.NODEJS_LATEST,
 handler: 'index.handler',
 code: lambda.Code.fromAsset(path.join(__dirname, 'lambda-handler')),
 });

 const endpoint = new apigw.LambdaRestApi(this, `ApiGwEndpoint`, {
 handler: fn,
 restApiName: `HelloApi`,
 });

 }
}

Using AWS CDK 128

AWS Lambda Developer Guide

Python

Open the /hello-lambda/hello_lambda/hello_lambda_stack.py file and replace the
contents with the following.

from aws_cdk import (
 Stack,
 aws_apigateway as apigw,
 aws_lambda as _lambda
)
from constructs import Construct

class HelloLambdaStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 fn = _lambda.Function(
 self,
 "MyFunction",
 runtime=_lambda.Runtime.NODEJS_LATEST,
 handler="index.handler",
 code=_lambda.Code.from_asset("lib/lambda-handler")
)

 endpoint = apigw.LambdaRestApi(
 self,
 "ApiGwEndpoint",
 handler=fn,
 rest_api_name="HelloApi"
)

Java

Open the /hello-lambda/src/main/java/com/myorg/HelloLambdaStack.java file
and replace the contents with the following.

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.services.apigateway.LambdaRestApi;

Using AWS CDK 129

AWS Lambda Developer Guide

import software.amazon.awscdk.services.lambda.Function;

public class HelloLambdaStack extends Stack {
 public HelloLambdaStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloLambdaStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 Function hello = Function.Builder.create(this, "MyFunction")

 .runtime(software.amazon.awscdk.services.lambda.Runtime.NODEJS_LATEST)

 .code(software.amazon.awscdk.services.lambda.Code.fromAsset("lib/lambda-handler"))
 .handler("index.handler")
 .build();

 LambdaRestApi api = LambdaRestApi.Builder.create(this, "ApiGwEndpoint")
 .restApiName("HelloApi")
 .handler(hello)
 .build();

 }
}

C#

Open the src/HelloLambda/HelloLambdaStack.cs file and replace the contents with the
following.

using Amazon.CDK;
using Amazon.CDK.AWS.APIGateway;
using Amazon.CDK.AWS.Lambda;
using Constructs;

namespace HelloLambda
{
 public class HelloLambdaStack : Stack
 {
 internal HelloLambdaStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)

Using AWS CDK 130

AWS Lambda Developer Guide

 {
 var fn = new Function(this, "MyFunction", new FunctionProps
 {
 Runtime = Runtime.NODEJS_LATEST,
 Code = Code.FromAsset("lib/lambda-handler"),
 Handler = "index.handler"
 });

 var api = new LambdaRestApi(this, "ApiGwEndpoint", new
 LambdaRestApiProps
 {
 Handler = fn
 });
 }
 }
}

Step 3: Create the Lambda function code

1. From the root of your project (hello-lambda), create the /lib/lambda-handler directory
for the Lambda function code. This directory is specified in the code property of your AWS
CDK stack.

2. Create a new file called index.js in the /lib/lambda-handler directory. Paste the
following code into the file. The function extracts specific properties from the API request and
returns them as a JSON response.

exports.handler = async (event) => {
 // Extract specific properties from the event object
 const { resource, path, httpMethod, headers, queryStringParameters, body } =
 event;
 const response = {
 resource,
 path,
 httpMethod,
 headers,
 queryStringParameters,
 body,
 };
 return {
 body: JSON.stringify(response, null, 2),
 statusCode: 200,

Using AWS CDK 131

AWS Lambda Developer Guide

 };
};

Step 4: Deploy the AWS CDK stack

1. From the root of your project, run the cdk synth command:

cdk synth

This command synthesizes an AWS CloudFormation template from your CDK stack. The
template is an approximately 400-line YAML file, similar to the following.

Note

If you get the following error, make sure that you are in the root of your project
directory.

--app is required either in command-line, in cdk.json or in ~/.cdk.json

Example AWS CloudFormation template

Resources:
 MyFunctionServiceRole3C357FF2:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Action: sts:AssumeRole
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Version: "2012-10-17"
 ManagedPolicyArns:
 - Fn::Join:
 - ""
 - - "arn:"
 - Ref: AWS::Partition
 - :iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Using AWS CDK 132

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-synth.html

AWS Lambda Developer Guide

 Metadata:
 aws:cdk:path: HelloLambdaStack/MyFunction/ServiceRole/Resource
 MyFunction1BAA52E7:
 Type: AWS::Lambda::Function
 Properties:
 Code:
 S3Bucket:
 Fn::Sub: cdk-hnb659fds-assets-${AWS::AccountId}-${AWS::Region}
 S3Key:
 ab1111111cd32708dc4b83e81a21c296d607ff2cdef00f1d7f48338782f92l3901.zip
 Handler: index.handler
 Role:
 Fn::GetAtt:
 - MyFunctionServiceRole3C357FF2
 - Arn
 Runtime: nodejs22.x
 ...

2. Run the cdk deploy command:

cdk deploy

Wait while your resources are created. The final output includes the URL for your API Gateway
endpoint. Example:

Outputs:
HelloLambdaStack.ApiGwEndpoint77F417B1 = https://abcd1234.execute-api.us-
east-1.amazonaws.com/prod/

Step 5: Test the function

To invoke the Lambda function, copy the API Gateway endpoint and paste it into a web browser or
run a curl command:

curl -s https://abcd1234.execute-api.us-east-1.amazonaws.com/prod/

The response is a JSON representation of selected properties from the original event object, which
contains information about the request made to the API Gateway endpoint. Example:

{

Using AWS CDK 133

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-deploy.html

AWS Lambda Developer Guide

 "resource": "/",
 "path": "/",
 "httpMethod": "GET",
 "headers": {
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/
webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
 "Accept-Encoding": "gzip, deflate, br, zstd",
 "Accept-Language": "en-US,en;q=0.9",
 "CloudFront-Forwarded-Proto": "https",
 "CloudFront-Is-Desktop-Viewer": "true",
 "CloudFront-Is-Mobile-Viewer": "false",
 "CloudFront-Is-SmartTV-Viewer": "false",
 "CloudFront-Is-Tablet-Viewer": "false",
 "CloudFront-Viewer-ASN": "16509",
 "CloudFront-Viewer-Country": "US",
 "Host": "abcd1234.execute-api.us-east-1.amazonaws.com",
 ...

Step 6: Clean up your resources

The API Gateway endpoint is publicly accessible. To prevent unexpected charges, run the cdk
destroy command to delete the stack and all associated resources.

cdk destroy

Next steps

For information about writing AWS CDK apps in your language of choice, see the following:

TypeScript

Working with the AWS CDK in TypeScript

JavaScript

Working with the AWS CDK in JavaScript

Python

Working with the AWS CDK in Python

Java

Working with the AWS CDK in Java

Using AWS CDK 134

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-destroy.html
https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-destroy.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html

AWS Lambda Developer Guide

C#

Working with the AWS CDK in C#

Go

Working with the AWS CDK in Go

Managing Lambda workflows and events

When building serverless applications with Lambda, you often need ways to orchestrate function
execution and handle events. AWS provides two key services that help coordinate Lambda
functions:

• AWS Step Functions for workflow orchestration

• Amazon EventBridge Scheduler and Amazon EventBridge for event management

Additionally, you can integrate Step Functions and EventBridge together in your applications. For
example, you might use EventBridge Scheduler to trigger Step Functions workflows when specific
events occur, or configure Step Functions workflows to publish events to EventBridge Scheduler at
defined execution points. The following topics in this section provide more information on how you
can use these services.

Orchestrating workflows with Step Functions

AWS Step Functions is a workflow orchestration service that helps you coordinate multiple Lambda
functions and other AWS services into structured workflows. These workflows can maintain state,
handle errors with sophisticated retry mechanisms, and process data at scale.

Step Functions offers two types of workflows to meet different orchestration needs:

Standard workflows

Ideal for long-running, auditable workflows that require exactly-once execution semantics.
Standard workflows can run for up to one year, provide detailed execution history, and support
visual debugging. They are suitable for processes like order fulfillment, data processing
pipelines, or multi-step analytics jobs.

Workflows and events 135

https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-go.html

AWS Lambda Developer Guide

Express workflows

Designed for high-event-rate, short-duration workloads with at-least-once execution semantics.
Express workflows can run for up to five minutes and are ideal for high-volume event
processing, streaming data transformations, or IoT data ingestion scenarios. They offer higher
throughput and potentially lower cost compared to Standard workflows.

Note

For more information on Step Functions workflow types, see Choosing workflow type in
Step Functions.

Within these workflows, Step Functions provides two types of Map states for parallel processing:

Inline Map

Processes items from a JSON array within the execution history of the parent workflow. Inline
Map supports up to 40 concurrent iterations and is suitable for smaller datasets or when you
need to keep all processing within a single execution. For more information, see Using Map
state in Inline mode.

Distributed Map

Enables processing of large-scale parallel workloads by iterating over datasets that exceed
256 KiB or require more than 40 concurrent iterations. With support for up to 10,000 parallel
child workflow executions, Distributed Map excels at processing semi-structured data stored in
Amazon S3, such as JSON or CSV files, making it ideal for batch processing and ETL operations.
For more information, see Using Map state in Distributed mode.

By combining these workflow types and Map states, Step Functions provides a flexible and
powerful toolset for orchestrating complex serverless applications, from small-scale operations to
large-scale data processing pipelines.

To get started with using Lambda with Step Functions, see Orchestrating Lambda functions with
Step Functions.

Orchestrating workflows with Step Functions 136

https://docs.aws.amazon.com/step-functions/latest/dg/choosing-workflow-type.html
https://docs.aws.amazon.com/step-functions/latest/dg/choosing-workflow-type.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/state-map-distributed.html

AWS Lambda Developer Guide

Managing events with EventBridge and EventBridge Scheduler

Amazon EventBridge is an event bus service that helps you build event-driven architectures. It
routes events between AWS services, integrated applications, and software as a service (SaaS)
applications. EventBridge Scheduler is a serverless scheduler that enables you to create, run, and
manage tasks from one central service, allowing you to invoke Lambda functions on a schedule
using cron and rate expressions, or configure one-time invocations.

Amazon EventBridge and EventBridge Scheduler help you build event-driven architectures with
Lambda. EventBridge routes events between AWS services, integrated applications, and SaaS
applications, while EventBridge Scheduler provides specific scheduling capabilities for invoking
Lambda functions on a recurring or one-time basis.

These services provide several key capabilities for working with Lambda functions:

• Create rules that match and route events to Lambda functions using EventBridge

• Set up recurring function invocations using cron and rate expressions with EventBridge Scheduler

• Configure one-time function invocations at specific dates and times

• Define flexible time windows and retry policies for scheduled invocations

For more information, see Invoke a Lambda function on a schedule.

Managing events with EventBridge and EventBridge Scheduler 137

AWS Lambda Developer Guide

Lambda runtimes

Lambda supports multiple languages through the use of runtimes. A runtime provides a language-
specific environment that relays invocation events, context information, and responses between
Lambda and the function. You can use runtimes that Lambda provides, or build your own.

Lambda is agnostic to your choice of runtime. For simple functions, interpreted languages like
Python and Node.js offer the fastest performance. For functions with more complex computation,
compiled languages like Java are often slower to initialize but run quickly in the Lambda handler.
Choice of runtime is also influenced by developer preference and language familiarity.

Each major programming language release has a separate runtime, with a unique runtime identifier,
such as nodejs22.x or python3.13. To configure a function to use a new major language
version, you need to change the runtime identifier. Since AWS Lambda cannot guarantee backward
compatibility between major versions, this is a customer-driven operation.

For a function defined as a container image, you choose a runtime and the Linux distribution when
you create the container image. To change the runtime, you create a new container image.

When you use a .zip file archive for the deployment package, you choose a runtime when you
create the function. To change the runtime, you can update your function's configuration.
The runtime is paired with one of the Amazon Linux distributions. The underlying execution
environment provides additional libraries and environment variables that you can access from your
function code.

Lambda invokes your function in an execution environment. The execution environment provides
a secure and isolated runtime environment that manages the resources required to run your
function. Lambda re-uses the execution environment from a previous invocation if one is available,
or it can create a new execution environment.

To use other languages in Lambda, such as Go or Rust, use an OS-only runtime. The Lambda
execution environment provides a runtime interface for getting invocation events and sending
responses. You can deploy other languages by implementing a custom runtime alongside your
function code, or in a layer.

Supported runtimes

The following table lists the supported Lambda runtimes and projected deprecation dates. After
a runtime is deprecated, you're still able to create and update functions for a limited period. For

Supported runtimes 138

AWS Lambda Developer Guide

more information, see the section called “Runtime use after deprecation”. The table provides the
currently forecasted dates for runtime deprecation, based on our the section called “Runtime
deprecation policy”. These dates are provided for planning purposes and are subject to change.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 22 nodejs22.
x

Amazon
Linux 2023

Apr 30, 2027 Jun 1, 2027 Jul 1, 2027

Node.js 20 nodejs20.
x

Amazon
Linux 2023

Apr 30, 2026 Jun 1, 2026 Jul 1, 2026

Node.js 18 nodejs18.
x

Amazon
Linux 2

Sep 1, 2025 Feb 3, 2026 Mar 9, 2026

Python 3.13 python3.1
3

Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

Python 3.12 python3.1
2

Amazon
Linux 2023

Oct 31, 2028 Nov 30, 2028 Jan 10, 2029

Python 3.11 python3.1
1

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Python 3.10 python3.1
0

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Python 3.9 python3.9 Amazon
Linux 2

Dec 15, 2025 Feb 3, 2026 Mar 9, 2026

Java 21 java21 Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

Java 17 java17 Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Supported runtimes 139

AWS Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Java 11 java11 Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Java 8 java8.al2 Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

.NET 9
(container
only)

dotnet9 Amazon
Linux 2023

Not
scheduled

Not
scheduled

Not
scheduled

.NET 8 dotnet8 Amazon
Linux 2023

Nov 10, 2026 Dec 10, 2026 Jan 11, 2027

Ruby 3.4 ruby3.4 Amazon
Linux 2023

Not
scheduled

Not
scheduled

Not
scheduled

Ruby 3.3 ruby3.3 Amazon
Linux 2023

Mar 31, 2027 Apr 30, 2027 May 31, 2027

Ruby 3.2 ruby3.2 Amazon
Linux 2

Mar 31, 2026 Apr 30, 2026 May 31, 2026

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Note

For new regions, Lambda will not support runtimes that are set to be deprecated within the
next 6 months.

Supported runtimes 140

AWS Lambda Developer Guide

Lambda keeps managed runtimes and their corresponding container base images up to date
with patches and support for minor version releases. For more information see Lambda runtime
updates.

To programmatically interact with other AWS services and resources from your Lambda function,
you can use one of AWS SDKs. The Node.js, Python, and Ruby runtimes include a version of the
AWS SDK. However, to maintain full control of your dependencies, and to maximize backward
compatibility during automatic runtime updates, we recommend that you always include the SDK
modules your code uses (along with any dependencies) in your function's deployment package or in
a Lambda layer.

We recommend that you use the runtime-included SDK version only when you can't include
additional packages in your deployment. For example, when you create your function using the
Lambda console code editor or using inline function code in an AWS CloudFormation template.

Lambda periodically updates the versions of the AWS SDKs included in the Node.js, Python, and
Ruby runtimes. To determine the version of the AWS SDK included in the runtime you're using, see
the following sections:

• Runtime-included SDK versions (Node.js)

• Runtime-included SDK versions (Python)

• Runtime-included SDK versions (Ruby)

Lambda continues to support the Go programming language after deprecation of the Go 1.x
runtime. For more information, see Migrating AWS Lambda functions from the Go1.x runtime to
the custom runtime on Amazon Linux 2 on the AWS Compute Blog.

All supported Lambda runtimes support both x86_64 and arm64 architectures.

New runtime releases

Lambda provides managed runtimes for new language versions only when the release reaches the
long-term support (LTS) phase of the language's release cycle. For example, for the Node.js release
cycle, when the release reaches the Active LTS phase.

Before the release reaches the long-term support phase, it remains in development and can still
be subject to breaking changes. Lambda applies runtime updates automatically by default, so
breaking changes to a runtime version could stop your functions from working as expected.

New runtime releases 141

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://nodejs.org/en/about/previous-releases
https://nodejs.org/en/about/previous-releases

AWS Lambda Developer Guide

Lambda doesn't provide managed runtimes for language versions which aren't scheduled for LTS
release.

The following list shows the target launch month for upcoming Lambda runtimes. These dates are
indicative only and subject to change.

• Java 25 - October 2025

• Python 3.14 - November 2025

• Node.js 24 - November 2025

• .NET 10 - December 2025

Runtime deprecation policy

Lambda runtimes for .zip file archives are built around a combination of operating system,
programming language, and software libraries that are subject to maintenance and security
updates. Lambda’s standard deprecation policy is to deprecate a runtime when any major
component of the runtime reaches the end of community long-term support (LTS) and security
updates are no longer available. Most usually, this is the language runtime, though in some cases, a
runtime can be deprecated because the operating system (OS) reaches end of LTS.

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities.

To learn more about managing runtime upgrades and deprecation, see the following sections and
Managing AWS Lambda runtime upgrades on the AWS Compute Blog.

Important

Lambda occasionally delays deprecation of a Lambda runtime for a limited period beyond
the end of support date of the language version that the runtime supports. During this
period, Lambda only applies security patches to the runtime OS. Lambda doesn’t apply
security patches to programming language runtimes after they reach their end of support
date.

Runtime deprecation policy 142

https://aws.amazon.com/blogs/compute/managing-aws-lambda-runtime-upgrades/

AWS Lambda Developer Guide

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container base images. By default, Lambda will apply these updates automatically
to functions using managed runtimes. Where the default automatic runtime update setting has
been changed, see the runtime management controls shared responsibility model. For functions
deployed using container images, you're responsible for rebuilding your function's container image
from the latest base image and redeploying the container image.

When a runtime is deprecated, Lambda’s responsibility for updating the managed runtime and
container base images ceases. You are responsible for upgrading your functions to use a supported
runtime or base image.

In all cases, you are responsible for applying updates to your function code, including its
dependencies. Your responsibilities under the shared responsibility model are summarized in the
following table.

Runtime lifecycle phase Lambda's responsibilities Your responsibilities

Supported managed runtime Provide regular runtime
updates with security patches
and other updates.

Apply runtime updates
automatically by default (see
the section called “Runtime
update modes” for non-defau
lt behaviors).

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Supported container image Provide regular updates to
container base image with
security patches and other
updates.

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Regularly re-build and re-
deploy your container image
using the latest base image.

Shared responsibility model 143

AWS Lambda Developer Guide

Runtime lifecycle phase Lambda's responsibilities Your responsibilities

Managed runtime approachi
ng deprecation

Notify customers prior to
runtime deprecation via
documentation, AWS Health
Dashboard, email, and
Trusted Advisor.

Responsibility for runtime
updates ends at deprecation.

Monitor Lambda documenta
tion, AWS Health Dashboard
, email, or Trusted Advisor
for runtime deprecation
information.

Upgrade functions to a
supported runtime before the
previous runtime is deprecate
d.

Container image approaching
deprecation

Deprecation notifications are
not available for functions
using container images.

Responsibility for container
base image updates ends at
deprecation.

Be aware of deprecation
schedules and upgrade
functions to a supported base
image before the previous
image is deprecated.

Runtime use after deprecation

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. While
you can continue to invoke your functions indefinitely, AWS strongly recommends migrating to
a supported runtime. Deprecated runtimes are provided 'as-is', without any warranties, and may
contain bugs, errors, defects, or other vulnerabilities. Functions that use a deprecated runtime may
also experience degraded performance or other issues, such as a certificate expiry, that can cause
them to stop working properly.

You can update a function to use a newer supported runtime at any time after a runtime is
deprecated. We recommend testing your function with the new runtime before applying changes
in production environments. You will not be able to revert to the deprecated runtime after
function updates are blocked. We recommend using function versions and aliases to enable safe
deployment with rollback.

The following timeline describes what happens when a runtime is deprecated:

Runtime use after deprecation 144

AWS Lambda Developer Guide

Runtime lifecycle
phase

When What

Deprecation notice
period

At least 180 days
before deprecation

• AWS sends notifications through email and
the AWS Health Dashboard to accounts that
have functions using this runtime in their
$LATEST version.

• Affected functions are also listed in the AWS
Health Dashboard Scheduled changes tab
and the AWS Trusted Advisor deprecated
runtimes check.

Deprecation Deprecation date • AWS may no longer apply security updates
or other updates.

• Functions are no longer eligible for technical
support.

• You can no longer create or update
functions using the deprecated runtime in
the Lambda console. You can continue to
create and update functions through the
AWS CLI, AWS SAM, or AWS CloudForm
ation.

Block function create At least 30 days after
deprecation

• Lambda begins blocking creation of new
functions.

• You can continue to update code and
configuration for existing functions through
the AWS CLI, AWS SAM, or AWS CloudForm
ation..

Block function
update

At least 60 days after
deprecation

• Lambda begins blocking the update of code
and configuration for existing functions.

• You can still upgrade the function configura
tion to a supported runtime. However,
rolling back to the deprecated runtime may
be blocked.

Runtime use after deprecation 145

https://docs.aws.amazon.com/health/latest/ug/aws-health-account-views.html
https://docs.aws.amazon.com/health/latest/ug/aws-health-account-views.html
https://docs.aws.amazon.com/awssupport/latest/user/security-checks.html#aws-lambda-functions-deprecated-runtimes
https://docs.aws.amazon.com/awssupport/latest/user/security-checks.html#aws-lambda-functions-deprecated-runtimes

AWS Lambda Developer Guide

Note

For some runtimes, AWS is delaying the block-function-create and block-function-update
dates beyond the usual 30 and 60 days after deprecation. AWS has made this change in
response to customer feedback to give you more time to upgrade your functions. Refer to
the tables in the section called “Supported runtimes” and the section called “Deprecated
runtimes” to see the dates for your runtime. Lambda will not start blocking function
creates or updates before the dates given in these tables.

Receiving runtime deprecation notifications

When a runtime approaches its deprecation date, Lambda sends you an email alert if any functions
in your AWS account use that runtime. Notifications are also displayed in the AWS Health
Dashboard and in AWS Trusted Advisor.

• Receiving email notifications:

Lambda sends you an email alert at least 180 days before a runtime is deprecated. This email
lists the $LATEST versions of all functions using the runtime. To see a full list of affected function
versions, use Trusted Advisor or see the section called “Get data about functions by runtime”.

Lambda sends email notification to your AWS account's primary account contact. For information
about viewing or updating the email addresses in your account, see Updating contact
information in the AWS General Reference.

• Receiving notifications through the AWS Health Dashboard:

The AWS Health Dashboard displays a notification at least 180 days before a runtime is
deprecated. Notifications appear on the Your account health page under Other notifications.
The Affected resources tab of the notification lists the $LATEST versions of all functions using
the runtime.

Note

To see a full and up-to-date list of affected function versions, use Trusted Advisor or see
the section called “Get data about functions by runtime”.

Receiving runtime deprecation notifications 146

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://health.aws.amazon.com/health/home#/account/dashboard/other-notifications

AWS Lambda Developer Guide

AWS Health Dashboard notifications expire 90 days after the affected runtime is deprecated.

• Using AWS Trusted Advisor

Trusted Advisor displays a notification at least 180 days before a runtime is deprecated.
Notifications appear on the Security page. A list of your affected functions is displayed under
AWS Lambda Functions Using Deprecated Runtimes. This list of functions shows both $LATEST
and published versions and updates automatically to reflect your functions' current status.

You can turn on weekly email notifications from Trusted Advisor in the Preferences page of the
Trusted Advisor console.

Deprecated runtimes

The following runtimes have reached end of support:

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

.NET 6 dotnet6 Amazon
Linux 2

Dec 20, 2024 Feb 3, 2026 Mar 9, 2026

Python 3.8 python3.8 Amazon
Linux 2

Oct 14, 2024 Feb 3, 2026 Mar 9, 2026

Node.js 16 nodejs16.
x

Amazon
Linux 2

Jun 12, 2024 Feb 3, 2026 Mar 9, 2026

.NET 7
(container
only)

dotnet7 Amazon
Linux 2

May 14, 2024 N/A N/A

Java 8 java8 Amazon
Linux

Jan 8, 2024 Feb 8, 2024 Mar 9, 2026

Go 1.x go1.x Amazon
Linux

Jan 8, 2024 Feb 8, 2024 Mar 9, 2026

Deprecated runtimes 147

https://console.aws.amazon.com/trustedadvisor/home#/category/security
https://console.aws.amazon.com/trustedadvisor/home?#/preferences

AWS Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided Amazon
Linux

Jan 8, 2024 Feb 8, 2024 Mar 9, 2026

Ruby 2.7 ruby2.7 Amazon
Linux 2

Dec 7, 2023 Jan 9, 2024 Mar 9, 2026

Node.js 14 nodejs14.
x

Amazon
Linux 2

Dec 4, 2023 Jan 9, 2024 Mar 9, 2026

Python 3.7 python3.7 Amazon
Linux

Dec 4, 2023 Jan 9, 2024 Mar 9, 2026

.NET Core 3.1 dotnetcor
e3.1

Amazon
Linux 2

Apr 3, 2023 Apr 3, 2023 May 3, 2023

Node.js 12 nodejs12.
x

Amazon
Linux 2

Mar 31, 2023 Mar 31, 2023 Apr 30, 2023

Python 3.6 python3.6 Amazon
Linux

Jul 18, 2022 Jul 18, 2022 Aug 29, 2022

.NET 5
(container
only)

dotnet5.0 Amazon
Linux 2

May 10, 2022 N/A N/A

.NET Core 2.1 dotnetcor
e2.1

Amazon
Linux

Jan 5, 2022 Jan 5, 2022 Apr 13, 2022

Node.js 10 nodejs10.
x

Amazon
Linux 2

Jul 30, 2021 Jul 30, 2021 Feb 14, 2022

Ruby 2.5 ruby2.5 Amazon
Linux

Jul 30, 2021 Jul 30, 2021 Mar 31, 2022

Deprecated runtimes 148

AWS Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Python 2.7 python2.7 Amazon
Linux

Jul 15, 2021 Jul 15, 2021 May 30, 2022

Node.js 8.10 nodejs8.1
0

Amazon
Linux

Mar 6, 2020 Feb 4, 2020 Mar 6, 2020

Node.js 4.3 nodejs4.3 Amazon
Linux

Mar 5, 2020 Feb 3, 2020 Mar 5, 2020

Node.js 4.3
edge

nodejs4.3
-edge

Amazon
Linux

Mar 5, 2020 Mar 31, 2019 Apr 30, 2019

Node.js 6.10 nodejs6.1
0

Amazon
Linux

Aug 12, 2019 Jul 12, 2019 Aug 12, 2019

.NET Core 1.0 dotnetcor
e1.0

Amazon
Linux

Jun 27, 2019 Jun 30, 2019 Jul 30, 2019

.NET Core 2.0 dotnetcor
e2.0

Amazon
Linux

May 30, 2019 Apr 30, 2019 May 30, 2019

Node.js 0.10 nodejs Amazon
Linux

Aug 30, 2016 Sep 30, 2016 Oct 31, 2016

In almost all cases, the end-of-life date of a language version or operating system is known well in
advance. The following links give end-of-life schedules for each language that Lambda supports as
a managed runtime.

Language and framework support policies

• Node.js – github.com

• Python – devguide.python.org

• Ruby – www.ruby-lang.org

• Java – www.oracle.com and Corretto FAQs

Deprecated runtimes 149

https://github.com/nodejs/Release#release-schedule
https://devguide.python.org/versions/#versions
https://www.ruby-lang.org/en/downloads/branches/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://aws.amazon.com/corretto/faqs/

AWS Lambda Developer Guide

• Go – golang.org

• .NET – dotnet.microsoft.com

Deprecated runtimes 150

https://golang.org/doc/devel/release.html
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

AWS Lambda Developer Guide

Understanding how Lambda manages runtime version updates

Lambda keeps each managed runtime up to date with security updates, bug fixes, new features,
performance enhancements, and support for minor version releases. These runtime updates are
published as runtime versions. Lambda applies runtime updates to functions by migrating the
function from an earlier runtime version to a new runtime version.

By default, for functions using managed runtimes, Lambda applies runtime updates automatically.
With automatic runtime updates, Lambda takes on the operational burden of patching the runtime
versions. For most customers, automatic updates are the right choice. You can change this default
behavior by configuring runtime management settings.

Lambda also publishes each new runtime version as a container image. To update runtime versions
for container-based functions, you must create a new container image from the updated base
image and redeploy your function.

Each runtime version is associated with a version number and an ARN (Amazon Resource Name).
Runtime version numbers use a numbering scheme that Lambda defines, independent of the
version numbers that the programming language uses. Runtime version numbers are not always
sequential. For example, version 42 might be followed by version 45. The runtime version ARN is a
unique identifier for each runtime version. You can view the ARN of your function's current runtime
version in the Lambda console, or the INIT_START line of your function logs.

Runtime versions should not be confused with runtime identifiers. Each runtime has a unique
runtime identifier, such as python3.13 or nodejs22.x. These correspond to each major
programming language release. Runtime versions describe the patch version of an individual
runtime.

Note

The ARN for the same runtime version number can vary between AWS Regions and CPU
architectures.

Topics

• Backward compatibility

• Runtime update modes

• Two-phase runtime version rollout

Runtime version updates 151

AWS Lambda Developer Guide

• Configuring Lambda runtime management settings

• Rolling back a Lambda runtime version

• Identifying Lambda runtime version changes

• Understanding the shared responsibility model for Lambda runtime management

• Controlling Lambda runtime update permissions for high-compliance applications

Backward compatibility

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an
existing function that depends on the previous, insecure behavior.

When building and deploying your function, it is important to understand how to manage your
dependencies to avoid potential incompatibilities with a future runtime update. For example,
suppose your function has a dependency on package A, which in turn depends on package B. Both
packages are included in the Lambda runtime (for example, they could be parts of the SDK or its
dependencies, or parts of the runtime system libraries).

Consider the following scenarios:

Deployment Patching compatible Reason

• Package A: Use from
runtime

• Package B: Use from
runtime

Yes Future runtime updates
to packages A and B are
backward compatible.

• Package A: In deployment
package

• Package B: In deployment
package

Yes Your deployment takes
precedence, so future runtime
updates to packages A and B
have no effect.

• Package A: In deployment
package

Yes* Future runtime updates to
package B are backward
compatible.

Backward compatibility 152

AWS Lambda Developer Guide

Deployment Patching compatible Reason

• Package B: Use from
runtime

*If A and B are tightly
coupled, compatibility issues
can occur. For example,
the boto3 and botocore
packages in the AWS SDK for
Python should be deployed
together.

• Package A: Use from
runtime

• Package B: In deployment
package

No Future runtime updates to
package A might require an
updated version of package
B. However, the deployed
version of package B takes
precedence, and might not be
forward compatible with the
updated version of package
A.

To maintain compatibility with future runtime updates, follow these best practices:

• When possible, package all dependencies: Include all required libraries, including the AWS
SDK and its dependencies, in your deployment package. This ensures a stable, compatible set of
components.

• Use runtime-provided SDKs sparingly: Only rely on the runtime-provided SDK when you can't
include additional packages (for example, when using the Lambda console code editor or inline
code in an AWS CloudFormation template).

• Avoid overriding system libraries: Don't deploy custom operating system libraries that may
conflict with future runtime updates.

Runtime update modes

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an

Runtime update modes 153

AWS Lambda Developer Guide

existing function that depends on the previous, insecure behavior. Lambda runtime management
controls help reduce the risk of impact to your workloads in the rare event of a runtime version
incompatibility. For each function version ($LATEST or published version), you can choose one of
the following runtime update modes:

• Auto (default) – Automatically update to the most recent and secure runtime version using Two-
phase runtime version rollout. We recommend this mode for most customers so that you always
benefit from runtime updates.

• Function update – Update to the most recent and secure runtime version when you update
your function. When you update your function, Lambda updates the runtime of your function to
the most recent and secure runtime version. This approach synchronizes runtime updates with
function deployments, giving you control over when Lambda applies runtime updates. With this
mode, you can detect and mitigate rare runtime update incompatibilities early. When using this
mode, you must regularly update your functions to keep their runtime up to date.

• Manual – Manually update your runtime version. You specify a runtime version in your function
configuration. The function uses this runtime version indefinitely. In the rare case in which a new
runtime version is incompatible with an existing function, you can use this mode to roll back
your function to an earlier runtime version. We recommend against using Manual mode to try
to achieve runtime consistency across deployments. For more information, see Rolling back a
Lambda runtime version.

Responsibility for applying runtime updates to your functions varies according to which runtime
update mode you choose. For more information, see Understanding the shared responsibility
model for Lambda runtime management.

Two-phase runtime version rollout

Lambda introduces new runtime versions in the following order:

1. In the first phase, Lambda applies the new runtime version whenever you create or
update a function. A function gets updated when you call the UpdateFunctionCode or
UpdateFunctionConfiguration API operations.

2. In the second phase, Lambda updates any function that uses the Auto runtime update mode and
that hasn't already been updated to the new runtime version.

Two-phase runtime version rollout 154

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

The overall duration of the rollout process varies according to multiple factors, including the
severity of any security patches included in the runtime update.

If you're actively developing and deploying your functions, you will most likely pick up new runtime
versions during the first phase. This synchronizes runtime updates with function updates. In the
rare event that the latest runtime version negatively impacts your application, this approach lets
you take prompt corrective action. Functions that aren't in active development still receive the
operational benefit of automatic runtime updates during the second phase.

This approach doesn't affect functions set to Function update or Manual mode. Functions using
Function update mode receive the latest runtime updates only when you create or update them.
Functions using Manual mode don't receive runtime updates.

Lambda publishes new runtime versions in a gradual, rolling fashion across AWS Regions. If your
functions are set to Auto or Function update modes, it's possible that functions deployed at the
same time to different Regions, or at different times in the same Region, will pick up different
runtime versions. Customers who require guaranteed runtime version consistency across their
environments should use container images to deploy their Lambda functions. The Manual mode
is designed as a temporary mitigation to enable runtime version rollback in the rare event that a
runtime version is incompatible with your function.

Configuring Lambda runtime management settings

You can configure runtime management settings using the Lambda console or the AWS Command
Line Interface (AWS CLI).

Note

You can configure runtime management settings separately for each function version.

To configure how Lambda updates your runtime version (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. On the Code tab, under Runtime settings, choose Edit runtime management configuration.

4. Under Runtime management configuration, choose one of the following:

• To have your function update to the latest runtime version automatically, choose Auto.

Configuring runtime management 155

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

• To have your function update to the latest runtime version when you change the function,
choose Function update.

• To have your function update to the latest runtime version only when you change the
runtime version ARN, choose Manual. You can find the runtime version ARN under Runtime
management configuration. You can also find the ARN in the INIT_START line of your
function logs.

For more information about these options, see Runtime update modes.

5. Choose Save.

To configure how Lambda updates your runtime version (AWS CLI)

To configure runtime management for a function, run the put-runtime-management-config AWS
CLI command. When using Manual mode, you must also provide the runtime version ARN.

aws lambda put-runtime-management-config \
 --function-name my-function \
 --update-runtime-on Manual \
 --runtime-version-arn arn:aws:lambda:us-
east-2::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1

You should see output similar to the following:

{
 "UpdateRuntimeOn": "Manual",
 "FunctionArn": "arn:aws:lambda:us-east-2:111122223333:function:my-function",
 "RuntimeVersionArn": "arn:aws:lambda:us-
east-2::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1"
}

Rolling back a Lambda runtime version

In the rare event that a new runtime version is incompatible with your existing function, you can
roll back its runtime version to an earlier one. This keeps your application working and minimizes
disruption, providing time to remedy the incompatibility before returning to the latest runtime
version.

Runtime version roll-back 156

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html

AWS Lambda Developer Guide

Lambda doesn't impose a time limit on how long you can use any particular runtime version.
However, we strongly recommend updating to the latest runtime version as soon as possible
to benefit from the latest security patches, performance improvements, and features. Lambda
provides the option to roll back to an earlier runtime version only as a temporary mitigation in
the rare event of a runtime update compatibility issue. Functions using an earlier runtime version
for an extended period may eventually experience degraded performance or issues, such as a
certificate expiry, which can cause them to stop working properly.

You can roll back a runtime version in the following ways:

• Using the Manual runtime update mode

• Using published function versions

For more information, see Introducing AWS Lambda runtime management controls on the AWS
Compute Blog.

Roll back a runtime version using Manual runtime update mode

If you're using the Auto runtime version update mode, or you're using the $LATEST runtime
version, you can roll back your runtime version using the Manual mode. For the function version
you want to roll back, change the runtime version update mode to Manual and specify the ARN of
the previous runtime version. For more information about finding the ARN of the previous runtime
version, see Identifying Lambda runtime version changes.

Note

If the $LATEST version of your function is configured to use Manual mode, then you can't
change the CPU architecture or runtime version that your function uses. To make these
changes, you must change to Auto or Function update mode.

Roll back a runtime version using published function versions

Published function versions are an immutable snapshot of the $LATEST function code and
configuration at the time that you created them. In Auto mode, Lambda automatically updates the
runtime version of published function versions during phase two of the runtime version rollout.
In Function update mode, Lambda doesn't update the runtime version of published function
versions.

Runtime version roll-back 157

https://aws.amazon.com/blogs/compute/introducing-aws-lambda-runtime-management-controls/

AWS Lambda Developer Guide

Published function versions using Function update mode therefore create a static snapshot of the
function code, configuration, and runtime version. By using Function update mode with function
versions, you can synchronize runtime updates with your deployments. You can also coordinate
rollback of code, configuration, and runtime versions by redirecting traffic to an earlier published
function version. You can integrate this approach into your continuous integration and continuous
delivery (CI/CD) for fully automatic rollback in the rare event of runtime update incompatibility.
When using this approach, you must update your function regularly and publish new function
versions to pick up the latest runtime updates. For more information, see Understanding the
shared responsibility model for Lambda runtime management.

Identifying Lambda runtime version changes

The runtime version number and ARN are logged in the INIT_START log line, which Lambda
emits to CloudWatch Logs each time that it creates a new execution environment. Because the
execution environment uses the same runtime version for all function invocations, Lambda emits
the INIT_START log line only when Lambda executes the init phase. Lambda doesn't emit this
log line for each function invocation. Lambda emits the log line to CloudWatch Logs, but it is not
visible in the console.

Note

Runtime version numbers are not always sequential. For example, version 42 might be
followed by version 45.

Example Example INIT_START log line

INIT_START Runtime Version: python:3.13.v14 Runtime Version ARN: arn:aws:lambda:eu-
south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a011fad1fa65127e9e6I

Rather than working directly with the logs, you can use Amazon CloudWatch Contributor Insights
to identify transitions between runtime versions. The following rule counts the distinct runtime
versions from each INIT_START log line. To use the rule, replace the example log group name /
aws/lambda/* with the appropriate prefix for your function or group of functions.

{
 "Schema": {
 "Name": "CloudWatchLogRule",

Runtime version updates 158

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights-CreateRule.html

AWS Lambda Developer Guide

 "Version": 1
 },
 "AggregateOn": "Count",
 "Contribution": {
 "Filters": [
 {
 "Match": "eventType",
 "In": [
 "INIT_START"
]
 }
],
 "Keys": [
 "runtimeVersion",
 "runtimeVersionArn"
]
 },
 "LogFormat": "CLF",
 "LogGroupNames": [
 "/aws/lambda/*"
],
 "Fields": {
 "1": "eventType",
 "4": "runtimeVersion",
 "8": "runtimeVersionArn"
 }
}

The following CloudWatch Contributor Insights report shows an example of a runtime version
transition as captured by the preceding rule. The orange line shows execution environment
initialization for the earlier runtime version (python:3.13.v12), and the blue line shows execution
environment initialization for the new runtime version (python:3.13.v14).

Runtime version updates 159

AWS Lambda Developer Guide

Understanding the shared responsibility model for Lambda runtime
management

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container images. Responsibility for updating existing functions to use the latest
runtime version varies depending on which runtime update mode you use.

Lambda is responsible for applying runtime updates to all functions configured to use the Auto
runtime update mode.

For functions configured with the Function update runtime update mode, you're responsible for
regularly updating your function. Lambda is responsible for applying runtime updates when you
make those updates. If you don't update your function, then Lambda doesn't update the runtime. If
you don't regularly update your function, then we strongly recommend configuring it for automatic
runtime updates so that it continues to receive security updates.

For functions configured to use the Manual runtime update mode, you're responsible for updating
your function to use the latest runtime version. We strongly recommend that you use this mode
only to roll back the runtime version as a temporary mitigation in the rare event of runtime update
incompatibility. We also recommend that you change to Auto mode as quickly as possible to
minimize the time in which your functions aren't patched.

Shared responsibility model 160

AWS Lambda Developer Guide

If you're using container images to deploy your functions, then Lambda is responsible for
publishing updated base images. In this case, you're responsible for rebuilding your function's
container image from the latest base image and redeploying the container image.

This is summarized in the following table:

Deployment
mode

Lambda's responsibility Customer's responsibility

Managed
runtime,
Auto mode

Publish new runtime versions
containing the latest patches.

Apply runtime patches to
existing functions.

Roll back to a previous runtime version in
the rare event of a runtime update compatibi
lity issue. Follow best practices for backward
compatibility.

Managed
runtime,
Function
update mode

Publish new runtime versions
containing the latest patches.

Update functions regularly to pick up the
latest runtime version.

Switch a function to Auto mode when you're
not regularly updating the function.

Roll back to a previous runtime version in
the rare event of a runtime update compatibi
lity issue. Follow best practices for backward
compatibility.

Managed
runtime,
Manual
mode

Publish new runtime versions
containing the latest patches.

Use this mode only for temporary runtime
rollback in the rare event of a runtime update
compatibility issue.

Switch functions to Auto or Function update
mode and the latest runtime version as soon
as possible.

Container
image

Publish new container images
containing the latest patches.

Redeploy functions regularly using the latest
container base image to pick up the latest
patches.

For more information about shared responsibility with AWS, see Shared Responsibility Model.

Shared responsibility model 161

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Lambda Developer Guide

Controlling Lambda runtime update permissions for high-compliance
applications

To meet patching requirements, Lambda customers typically rely on automatic runtime updates.
If your application is subject to strict patching freshness requirements, you may want to limit use
of earlier runtime versions. You can restrict Lambda's runtime management controls by using
AWS Identity and Access Management (IAM) to deny users in your AWS account access to the
PutRuntimeManagementConfig API operation. This operation is used to choose the runtime
update mode for a function. Denying access to this operation causes all functions to default to
the Auto mode. You can apply this restriction across your organization by using a service control
policies (SCP). If you must roll back a function to an earlier runtime version, you can grant a policy
exception on a case-by-case basis.

Permissions 162

https://docs.aws.amazon.com/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

Retrieve data about Lambda functions that use a deprecated
runtime

When a Lambda runtime is approaching deprecation, Lambda alerts you through email and
provides notifications in the AWS Health Dashboard and Trusted Advisor. These emails and
notifications list the $LATEST versions of functions using the runtime. To list all of your function
versions that use a particular runtime, you can use the AWS Command Line Interface (AWS CLI) or
one of the AWS SDKs.

If you have a large number of functions which use a runtime that is due to be deprecated, you can
also use the AWS CLI or AWS SDKs to help you prioritize updates to your most commonly invoked
functions.

Refer to the following sections to learn how to use the AWS CLI and AWS SDKs to gather data
about functions that use a particular runtime.

Listing function versions that use a particular runtime

To use the AWS CLI to list all of your function versions that use a particular runtime, run the
following command. Replace RUNTIME_IDENTIFIER with the name of the runtime that’s being
deprecated and choose your own AWS Region. To list only $LATEST function versions, omit --
function-version ALL from the command.

aws lambda list-functions --function-version ALL --region us-east-1 --output text --
query "Functions[?Runtime=='RUNTIME_IDENTIFIER'].FunctionArn"

Tip

The example command lists functions in the us-east-1 region for a particular AWS
account You’ll need to repeat this command for each region in which your account has
functions and for each of your AWS accounts.

You can also list functions that use a particular runtime using one of the AWS SDKs. The following
example code uses the V3 AWS SDK for JavaScript and the AWS SDK for Python (Boto3) to return
a list of the function ARNs for functions using a particular runtime. The example code also returns
the CloudWatch log group for each of the listed functions. You can use this log group to find the

Get data about functions by runtime 163

AWS Lambda Developer Guide

last invocation date for the function. See the following section the section called “Identifying most
commonly and most recently invoked functions” for more information.

Node.js

Example JavaScript code to list functions using a particular runtime

import { LambdaClient, ListFunctionsCommand } from "@aws-sdk/client-lambda";
const lambdaClient = new LambdaClient();

const command = new ListFunctionsCommand({
 FunctionVersion: "ALL",
 MaxItems: 50
});
const response = await lambdaClient.send(command);

for (const f of response.Functions){
 if (f.Runtime == '<your_runtime>'){ // Use the runtime id, e.g. 'nodejs22.x' or
 'python3.13'
 console.log(f.FunctionArn);
 // get the CloudWatch log group of the function to
 // use later for finding the last invocation date
 console.log(f.LoggingConfig.LogGroup);
 }
}
// If your account has more functions than the specified
// MaxItems, use the returned pagination token in the
// next request with the 'Marker' parameter
if ('NextMarker' in response){
 let paginationToken = response.NextMarker;
 }

Python

Example Python code to list functions using a particular runtime

import boto3
from botocore.exceptions import ClientError

def list_lambda_functions(target_runtime):

 lambda_client = boto3.client('lambda')

Listing function versions that use a particular runtime 164

AWS Lambda Developer Guide

 response = lambda_client.list_functions(
 FunctionVersion='ALL',
 MaxItems=50
)
 if not response['Functions']:
 print("No Lambda functions found")
 else:
 for function in response['Functions']:
 if function['PackageType']=='Zip' and function['Runtime'] ==
 target_runtime:
 print(function['FunctionArn'])
 # Print the CloudWatch log group of the function
 # to use later for finding last invocation date
 print(function['LoggingConfig']['LogGroup'])

 if 'NextMarker' in response:
 pagination_token = response['NextMarker']

if __name__ == "__main__":
 # Replace python3.12 with the appropriate runtime ID for your Lambda functions
 list_lambda_functions('python3.12')

To learn more about using an AWS SDK to list your functions using the ListFunctions action, see the
SDK documentation for your preferred programming language.

You can also use the AWS Config Advanced queries feature to list all your functions that use an
affected runtime. This query only returns function $LATEST versions, but you can aggregate
queries to list function across all regions and multiple AWS accounts with a single command. To
learn more, see Querying the Current Configuration State of AWS Auto Scaling Resources in the
AWS Config Developer Guide.

Identifying most commonly and most recently invoked functions

If your AWS account contains functions that use a runtime that's due to be deprecated, you might
want to prioritize updating functions that are frequently invoked or functions that have been
invoked recently.

If you have only a few functions, you can use the CloudWatch Logs console to gather this
information by looking at your functions' log streams. See View log data sent to CloudWatch Logs
for more information.

Identifying most commonly and most recently invoked functions 165

https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/config/latest/developerguide/querying-AWS-resources.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData

AWS Lambda Developer Guide

To see the number of recent function invocations, you can also use the CloudWatch metrics
information shown in the Lambda console. To view this information, do the following:

1. Open the Functions page of the Lambda console.

2. Select the function you want to see invocation statistics for.

3. Choose the Monitor tab.

4. Set the time period you wish to view statistics for using the date range picker. Recent
invocations are displayed in the Invocations pane.

For accounts with larger numbers of functions, it can be more efficient to gather this data
programmatically using the AWS CLI or one of the AWS SDKs using the DescribeLogStreams and
GetMetricStatistics API actions.

The following examples provide code snippets using the V3 AWS SDK for JavaScript and the AWS
SDK for Python (Boto3) to identify the last invoke date for a particular function and to determine
the number of invocations for a particular function in the last 14 days.

Node.js

Example JavaScript code to find last invocation time for a function

import { CloudWatchLogsClient, DescribeLogStreamsCommand } from "@aws-sdk/client-
cloudwatch-logs";
const cloudWatchLogsClient = new CloudWatchLogsClient();
const command = new DescribeLogStreamsCommand({
 logGroupName: '<your_log_group_name>',
 orderBy: 'LastEventTime',
 descending: true,
 limit: 1
});
try {
 const response = await cloudWatchLogsClient.send(command);
 const lastEventTimestamp = response.logStreams.length > 0 ?
 response.logStreams[0].lastEventTimestamp : null;
 // Convert the UNIX timestamp to a human-readable format for display
 const date = new Date(lastEventTimestamp).toLocaleDateString();
 const time = new Date(lastEventTimestamp).toLocaleTimeString();
 console.log(`${date} ${time}`);

} catch (e){
 console.error('Log group not found.')

Identifying most commonly and most recently invoked functions 166

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogStreams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

AWS Lambda Developer Guide

}

Python

Example Python code to find last invocation time for a function

import boto3
from datetime import datetime

cloudwatch_logs_client = boto3.client('logs')

response = cloudwatch_logs_client.describe_log_streams(
 logGroupName='<your_log_group_name>',
 orderBy='LastEventTime',
 descending=True,
 limit=1
)

try:
 if len(response['logStreams']) > 0:
 last_event_timestamp = response['logStreams'][0]['lastEventTimestamp']
 print(datetime.fromtimestamp(last_event_timestamp/1000)) # Convert timestamp
 from ms to seconds
 else:
 last_event_timestamp = None
except:
 print('Log group not found')

Tip

You can find your function's log group name using the ListFunctions API operation. See the
code in the section called “Listing function versions that use a particular runtime” for an
example of how to do this.

Node.js

Example JavaScript code to find number of invocations in last 14 days

import { CloudWatchClient, GetMetricStatisticsCommand } from "@aws-sdk/client-
cloudwatch";

Identifying most commonly and most recently invoked functions 167

https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html

AWS Lambda Developer Guide

const cloudWatchClient = new CloudWatchClient();
const command = new GetMetricStatisticsCommand({
 Namespace: 'AWS/Lambda',
 MetricName: 'Invocations',
 StartTime: new Date(Date.now()-86400*1000*14), // 14 days ago
 EndTime: new Date(Date.now()),
 Period: 86400 * 14, // 14 days.
 Statistics: ['Sum'],
 Dimensions: [{
 Name: 'FunctionName',
 Value: '<your_function_name>'
 }]
});
const response = await cloudWatchClient.send(command);
const invokesInLast14Days = response.Datapoints.length > 0 ?
 response.Datapoints[0].Sum : 0;

console.log('Number of invocations: ' + invokesInLast14Days);

Python

Example Python code to find number of invocations in last 14 days

import boto3
from datetime import datetime, timedelta

cloudwatch_client = boto3.client('cloudwatch')

response = cloudwatch_client.get_metric_statistics(
 Namespace='AWS/Lambda',
 MetricName='Invocations',
 Dimensions=[
 {
 'Name': 'FunctionName',
 'Value': '<your_function_name>'
 },
],
 StartTime=datetime.now() - timedelta(days=14),
 EndTime=datetime.now(),
 Period=86400 * 14, # 14 days
 Statistics=[
 'Sum'
]

Identifying most commonly and most recently invoked functions 168

AWS Lambda Developer Guide

)

if len(response['Datapoints']) > 0:
 invokes_in_last_14_days = int(response['Datapoints'][0]['Sum'])
else:
 invokes_in_last_14_days = 0

print(f'Number of invocations: {invokes_in_last_14_days}')

Identifying most commonly and most recently invoked functions 169

AWS Lambda Developer Guide

Modifying the runtime environment

You can use internal extensions to modify the runtime process. Internal extensions are not separate
processes—they run as part of the runtime process.

Lambda provides language-specific environment variables that you can set to add options and
tools to the runtime. Lambda also provides wrapper scripts, which allow Lambda to delegate the
runtime startup to your script. You can create a wrapper script to customize the runtime startup
behavior.

Language-specific environment variables

Lambda supports configuration-only ways to enable code to be pre-loaded during function
initialization through the following language-specific environment variables:

• JAVA_TOOL_OPTIONS – On Java, Lambda supports this environment variable to set additional
command-line variables in Lambda. This environment variable allows you to specify the
initialization of tools, specifically the launching of native or Java programming language agents
using the agentlib or javaagent options. For more information, see JAVA_TOOL_OPTIONS
environment variable.

• NODE_OPTIONS – Available in Node.js runtimes.

• DOTNET_STARTUP_HOOKS – On .NET Core 3.1 and above, this environment variable specifies a
path to an assembly (dll) that Lambda can use.

Using language-specific environment variables is the preferred way to set startup properties.

Wrapper scripts

You can create a wrapper script to customize the runtime startup behavior of your Lambda
function. A wrapper script enables you to set configuration parameters that cannot be set through
language-specific environment variables.

Note

Invocations may fail if the wrapper script does not successfully start the runtime process.

Runtime modifications 170

https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options
https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options

AWS Lambda Developer Guide

Wrapper scripts are supported on all native Lambda runtimes. Wrapper scripts are not supported
on OS-only runtimes (the provided runtime family).

When you use a wrapper script for your function, Lambda starts the runtime using your script.
Lambda sends to your script the path to the interpreter and all of the original arguments for the
standard runtime startup. Your script can extend or transform the startup behavior of the program.
For example, the script can inject and alter arguments, set environment variables, or capture
metrics, errors, and other diagnostic information.

You specify the script by setting the value of the AWS_LAMBDA_EXEC_WRAPPER environment
variable as the file system path of an executable binary or script.

Example: Create and use a wrapper script as a Lambda layer

In the following example, you create a wrapper script to start the Python interpreter with the -
X importtime option. When you run the function, Lambda generates a log entry to show the
duration of the import time for each import.

To create and use a wrapper script as a layer

1. Create a directory for the layer:

mkdir -p python-wrapper-layer/bin
cd python-wrapper-layer/bin

2. In the bin directory, paste the following code into a new file named importtime_wrapper.
This is the wrapper script.

#!/bin/bash

the path to the interpreter and all of the originally intended arguments
args=("$@")

the extra options to pass to the interpreter
extra_args=("-X" "importtime")

insert the extra options
args=("${args[@]:0:$#-1}" "${extra_args[@]}" "${args[@]: -1}")

start the runtime with the extra options
exec "${args[@]}"

Wrapper scripts 171

AWS Lambda Developer Guide

3. Give the script executable permissions:

chmod +x importtime_wrapper

4. Create a .zip file for the layer:

cd ..
zip -r ../python-wrapper-layer.zip .

5. Confirm that your .zip file has the following directory structure:

python-wrapper-layer.zip
bin
 # importtime_wrapper

6. Create a layer using the .zip package.

7. Create a function using the Lambda console.

a. Open the Lambda console.

b. Choose Create function.

c. Enter a Function name.

d. For Runtime, choose the Latest supported Python runtime.

e. Choose Create function.

8. Add the layer to your function.

a. Choose your function, and then choose the Code tab if it's not already selected.

b. Scroll down to the Layers section, and then choose Add a layer.

c. For Layer source, select Custom layers, and then choose your layer from the Custom
layers dropdown list.

d. For Version, choose 1.

e. Choose Add.

9. Add the wrapper environment variable.

a. Choose the Configuration tab, then choose Environment variables.

b. Under Environment variables, choose Edit.

c. Choose Add environment variable.

d. For Key, enter AWS_LAMBDA_EXEC_WRAPPER.

Wrapper scripts 172

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

e. For Value, enter /opt/bin/importtime_wrapper (/opt/ + your .zip layer's folder
structure).

f. Choose Save.

10. Test the wrapper script.

a. Choose the Test tab.

b. Under Test event, choose Test. You don't need to create a test event—the default event
will work.

c. Scroll down to Log output. Because your wrapper script started the Python interpreter
with the -X importtime option, the logs show the time required for each import. For
example:

532 | collections
import time: 63 | 63 | _functools
import time: 1053 | 3646 | functools
import time: 2163 | 7499 | enum
import time: 100 | 100 | _sre
import time: 446 | 446 | re._constants
import time: 691 | 1136 | re._parser
import time: 378 | 378 | re._casefix
import time: 670 | 2283 | re._compiler
import time: 416 | 416 | copyreg

Wrapper scripts 173

AWS Lambda Developer Guide

Using the Lambda runtime API for custom runtimes

AWS Lambda provides an HTTP API for custom runtimes to receive invocation events from Lambda
and send response data back within the Lambda execution environment. This section contains the
API reference for the Lambda runtime API.

The OpenAPI specification for the runtime API version 2018-06-01 is available in runtime-api.zip

To create an API request URL, runtimes get the API endpoint from the
AWS_LAMBDA_RUNTIME_API environment variable, add the API version, and add the desired
resource path.

Example Request

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next"

API methods

• Next invocation

• Invocation response

• Initialization error

• Invocation error

Next invocation

Path – /runtime/invocation/next

Method – GET

Runtime API 174

samples/runtime-api.zip

AWS Lambda Developer Guide

The runtime sends this message to Lambda to request an invocation event. The response body
contains the payload from the invocation, which is a JSON document that contains event data from
the function trigger. The response headers contain additional data about the invocation.

Response headers

• Lambda-Runtime-Aws-Request-Id – The request ID, which identifies the request that
triggered the function invocation.

For example, 8476a536-e9f4-11e8-9739-2dfe598c3fcd.

• Lambda-Runtime-Deadline-Ms – The date that the function times out in Unix time
milliseconds.

For example, 1542409706888.

• Lambda-Runtime-Invoked-Function-Arn – The ARN of the Lambda function, version, or
alias that's specified in the invocation.

For example, arn:aws:lambda:us-east-2:123456789012:function:custom-runtime.

• Lambda-Runtime-Trace-Id – The AWS X-Ray tracing header.

For example, Root=1-5bef4de7-
ad49b0e87f6ef6c87fc2e700;Parent=9a9197af755a6419;Sampled=1.

• Lambda-Runtime-Client-Context – For invocations from the AWS Mobile SDK, data about
the client application and device.

• Lambda-Runtime-Cognito-Identity – For invocations from the AWS Mobile SDK, data
about the Amazon Cognito identity provider.

Do not set a timeout on the GET request as the response may be delayed. Between when Lambda
bootstraps the runtime and when the runtime has an event to return, the runtime process may be
frozen for several seconds.

The request ID tracks the invocation within Lambda. Use it to specify the invocation when you send
the response.

The tracing header contains the trace ID, parent ID, and sampling decision. If the request is
sampled, the request was sampled by Lambda or an upstream service. The runtime should set the
_X_AMZN_TRACE_ID with the value of the header. The X-Ray SDK reads this to get the IDs and
determine whether to trace the request.

Next invocation 175

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

AWS Lambda Developer Guide

Invocation response

Path – /runtime/invocation/AwsRequestId/response

Method – POST

After the function has run to completion, the runtime sends an invocation response to Lambda. For
synchronous invocations, Lambda sends the response to the client.

Example success request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "SUCCESS"

Initialization error

If the function returns an error or the runtime encounters an error during initialization, the runtime
uses this method to report the error to Lambda.

Path – /runtime/init/error

Method – POST

Headers

Lambda-Runtime-Function-Error-Type – Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

• Runtime.NoSuchHandler

• Runtime.APIKeyNotFound

• Runtime.ConfigInvalid

• Runtime.UnknownReason

Body parameters

Invocation response 176

AWS Lambda Developer Guide

ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response body parameters

• StatusResponse – String. Status information, sent with 202 response codes.

• ErrorResponse – Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

• 202 – Accepted

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Runtime should exit promptly.

Example initialization error request

ERROR="{\"errorMessage\" : \"Failed to load function.\", \"errorType\" :
 \"InvalidFunctionException\"}"

Initialization error 177

AWS Lambda Developer Guide

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/init/error" -d "$ERROR" --
header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error

If the function returns an error or the runtime encounters an error, the runtime uses this method to
report the error to Lambda.

Path – /runtime/invocation/AwsRequestId/error

Method – POST

Headers

Lambda-Runtime-Function-Error-Type – Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

• Runtime.NoSuchHandler

• Runtime.APIKeyNotFound

• Runtime.ConfigInvalid

• Runtime.UnknownReason

Body parameters

ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Invocation error 178

AWS Lambda Developer Guide

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response body parameters

• StatusResponse – String. Status information, sent with 202 response codes.

• ErrorResponse – Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

• 202 – Accepted

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Runtime should exit promptly.

Example error request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
ERROR="{\"errorMessage\" : \"Error parsing event data.\", \"errorType\" :
 \"InvalidEventDataException\"}"
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/error"
 -d "$ERROR" --header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error 179

AWS Lambda Developer Guide

When to use Lambda's OS-only runtimes

Lambda provides managed runtimes for Java, Python, Node.js, .NET, and Ruby. To create Lambda
functions in a programming language that is not available as a managed runtime, use an OS-only
runtime (the provided runtime family). There are three primary use cases for OS-only runtimes:

• Native ahead-of-time (AOT) compilation: Languages such as Go, Rust, and C++ compile natively
to an executable binary, which doesn't require a dedicated language runtime. These languages
only need an OS environment in which the compiled binary can run. You can also use Lambda
OS-only runtimes to deploy binaries compiled with .NET Native AOT and Java GraalVM Native.

You must include a runtime interface client in your binary. The runtime interface client calls the
Using the Lambda runtime API for custom runtimes to retrieve function invocations and then
calls your function handler. Lambda provides runtime interface clients for Go, .NET Native AOT, C
++ (experimental), and Rust (experimental).

You must compile your binary for a Linux environment and for the same instruction set
architecture that you plan to use for the function (x86_64 or arm64).

• Third-party runtimes: You can run Lambda functions using off-the-shelf runtimes such as Bref
for PHP or the Swift AWS Lambda Runtime for Swift.

• Custom runtimes: You can build your own runtime for a language or language version that
Lambda doesn't provide a managed runtime for, such as Node.js 19. For more information, see
Building a custom runtime for AWS Lambda. This is the least common use case for OS-only
runtimes.

Lambda supports the following OS-only runtimes:

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

OS-only runtimes 180

https://github.com/awslabs/aws-lambda-cpp
https://github.com/awslabs/aws-lambda-cpp
https://bref.sh/docs/news/01-bref-1.0.html#amazon-linux-2
https://github.com/swift-server/swift-aws-lambda-runtime#swift-aws-lambda-runtime

AWS Lambda Developer Guide

The Amazon Linux 2023 (provided.al2023) runtime provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

The provided.al2023 runtime uses dnf as the package manager instead of yum, which is the
default package manager in Amazon Linux 2. For more information about the differences between
provided.al2023 and provided.al2, see Introducing the Amazon Linux 2023 runtime for AWS
Lambda on the AWS Compute Blog.

Building a custom runtime for AWS Lambda

You can implement an AWS Lambda runtime in any programming language. A runtime is a
program that runs a Lambda function's handler method when the function is invoked. You can
include the runtime in your function's deployment package or distribute it in a layer. When you
create the Lambda function, choose an OS-only runtime (the provided runtime family).

Note

Creating a custom runtime is an advanced use case. If you're looking for information about
compiling to a native binary or using a third-party off-the-shelf runtime, see When to use
Lambda's OS-only runtimes.

For a walkthrough of the custom runtime deployment process, see Tutorial: Building a custom
runtime.

Topics

• Requirements

• Implementing response streaming in a custom runtime

Requirements

Custom runtimes must complete certain initialization and processing tasks. A runtime runs the
function's setup code, reads the handler name from an environment variable, and reads invocation
events from the Lambda runtime API. The runtime passes the event data to the function handler,
and posts the response from the handler back to Lambda.

Building a custom runtime 181

https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

Initialization tasks

The initialization tasks run once per instance of the function to prepare the environment to handle
invocations.

• Retrieve settings – Read environment variables to get details about the function and
environment.

• _HANDLER – The location to the handler, from the function's configuration. The standard
format is file.method, where file is the name of the file without an extension, and method
is the name of a method or function that's defined in the file.

• LAMBDA_TASK_ROOT – The directory that contains the function code.

• AWS_LAMBDA_RUNTIME_API – The host and port of the runtime API.

For a full list of available variables, see Defined runtime environment variables.

• Initialize the function – Load the handler file and run any global or static code that it contains.
Functions should create static resources like SDK clients and database connections once, and
reuse them for multiple invocations.

• Handle errors – If an error occurs, call the initialization error API and exit immediately.

Initialization counts towards billed execution time and timeout. When an execution triggers the
initialization of a new instance of your function, you can see the initialization time in the logs and
AWS X-Ray trace.

Example log

REPORT RequestId: f8ac1208... Init Duration: 48.26 ms Duration: 237.17 ms Billed
 Duration: 300 ms Memory Size: 128 MB Max Memory Used: 26 MB

Processing tasks

While it runs, a runtime uses the Lambda runtime interface to manage incoming events and report
errors. After completing initialization tasks, the runtime processes incoming events in a loop. In
your runtime code, perform the following steps in order.

• Get an event – Call the next invocation API to get the next event. The response body contains
the event data. Response headers contain the request ID and other information.

Building a custom runtime 182

AWS Lambda Developer Guide

• Propagate the tracing header – Get the X-Ray tracing header from the Lambda-Runtime-
Trace-Id header in the API response. Set the _X_AMZN_TRACE_ID environment variable locally
with the same value. The X-Ray SDK uses this value to connect trace data between services.

• Create a context object – Create an object with context information from environment variables
and headers in the API response.

• Invoke the function handler – Pass the event and context object to the handler.

• Handle the response – Call the invocation response API to post the response from the handler.

• Handle errors – If an error occurs, call the invocation error API.

• Cleanup – Release unused resources, send data to other services, or perform additional tasks
before getting the next event.

Entrypoint

A custom runtime's entry point is an executable file named bootstrap. The bootstrap file
can be the runtime, or it can invoke another file that creates the runtime. If the root of your
deployment package doesn't contain a file named bootstrap, Lambda looks for the file in the
function's layers. If the bootstrap file doesn't exist or isn't executable, your function returns a
Runtime.InvalidEntrypoint error upon invocation.

Here's an example bootstrap file that uses a bundled version of Node.js to run a JavaScript
runtime in a separate file named runtime.js.

Example bootstrap

#!/bin/sh
 cd $LAMBDA_TASK_ROOT
 ./node-v11.1.0-linux-x64/bin/node runtime.js

Implementing response streaming in a custom runtime

For response streaming functions, the response and error endpoints have slightly modified
behavior that lets the runtime stream partial responses to the client and return payloads in chunks.
For more information about the specific behavior, see the following:

• /runtime/invocation/AwsRequestId/response – Propagates the Content-Type header
from the runtime to send to the client. Lambda returns the response payload in chunks via

Building a custom runtime 183

AWS Lambda Developer Guide

HTTP/1.1 chunked transfer encoding. The response stream can be a maximum size of 20 MiB. To
stream the response to Lambda, the runtime must:

• Set the Lambda-Runtime-Function-Response-Mode HTTP header to streaming.

• Set the Transfer-Encoding header to chunked.

• Write the response conforming to the HTTP/1.1 chunked transfer encoding specification.

• Close the underlying connection after it has successfully written the response.

• /runtime/invocation/AwsRequestId/error – The runtime can use this endpoint to report
function or runtime errors to Lambda, which also accepts the Transfer-Encoding header. This
endpoint can only be called before the runtime begins sending an invocation response.

• Report midstream errors using error trailers in /runtime/invocation/AwsRequestId/
response – To report errors that occur after the runtime starts writing the invocation response,
the runtime can optionally attach HTTP trailing headers named Lambda-Runtime-Function-
Error-Type and Lambda-Runtime-Function-Error-Body. Lambda treats this as a
successful response and forwards the error metadata that the runtime provides to the client.

Note

To attach trailing headers, the runtime must set the Trailer header value at the
beginning of the HTTP request. This is a requirement of the HTTP/1.1 chunked transfer
encoding specification.

• Lambda-Runtime-Function-Error-Type – The error type that the runtime encountered.
This header consists of a string value. Lambda accepts any string, but we recommend a format
of <category.reason>. For example, Runtime.APIKeyNotFound.

• Lambda-Runtime-Function-Error-Body – Base64-encoded information about the error.

Tutorial: Building a custom runtime

In this tutorial, you create a Lambda function with a custom runtime. You start by including the
runtime in the function's deployment package. Then you migrate it to a layer that you manage
independently from the function. Finally, you share the runtime layer with the world by updating
its resource-based permissions policy.

Custom runtime tutorial 184

AWS Lambda Developer Guide

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the AWS CLI version 2. Commands and the expected
output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

You need an IAM role to create a Lambda function. The role needs permission to send logs to
CloudWatch Logs and access the AWS services that your function uses. If you don't have a role for
function development, create one now.

To create an execution role

1. Open the roles page in the IAM console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Lambda.

Custom runtime tutorial 185

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

• Permissions – AWSLambdaBasicExecutionRole.

• Role name – lambda-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to CloudWatch Logs.

Create a function

Create a Lambda function with a custom runtime. This example includes two files: a runtime
bootstrap file and a function handler. Both are implemented in Bash.

1. Create a directory for the project, and then switch to that directory.

mkdir runtime-tutorial
cd runtime-tutorial

2. Create a new file called bootstrap. This is the custom runtime.

Example bootstrap

#!/bin/sh

set -euo pipefail

Initialization - load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
 HEADERS="$(mktemp)"
 # Get an event. The HTTP request will block until one is received
 EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

 # Extract request ID by scraping response headers received above
 REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
 '[:space:]' | cut -d: -f2)

 # Run the handler function from the script

Custom runtime tutorial 186

AWS Lambda Developer Guide

 RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

 # Send the response
 curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

The runtime loads a function script from the deployment package. It uses two variables
to locate the script. LAMBDA_TASK_ROOT tells it where the package was extracted, and
_HANDLER includes the name of the script.

After the runtime loads the function script, it uses the runtime API to retrieve an invocation
event from Lambda, passes the event to the handler, and posts the response back to Lambda.
To get the request ID, the runtime saves the headers from the API response to a temporary file,
and reads the Lambda-Runtime-Aws-Request-Id header from the file.

Note

Runtimes have additional responsibilities, including error handling, and providing
context information to the handler. For details, see Requirements.

3. Create a script for the function. The following example script defines a handler function that
takes event data, logs it to stderr, and returns it.

Example function.sh

function handler () {
 EVENT_DATA=$1
 echo "$EVENT_DATA" 1>&2;
 RESPONSE="Echoing request: '$EVENT_DATA'"

 echo $RESPONSE
}

The runtime-tutorial directory should now look like this:

runtime-tutorial
bootstrap
function.sh

Custom runtime tutorial 187

AWS Lambda Developer Guide

4. Make the files executable and add them to a .zip file archive. This is the deployment package.

chmod 755 function.sh bootstrap
zip function.zip function.sh bootstrap

5. Create a function named bash-runtime. For --role, enter the ARN of your Lambda
execution role.

aws lambda create-function --function-name bash-runtime \
--zip-file fileb://function.zip --handler function.handler --runtime
 provided.al2023 \
--role arn:aws:iam::123456789012:role/lambda-role

6. Invoke the function.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
 response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

You should see a response like this:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

7. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Custom runtime tutorial 188

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Create a layer

To separate the runtime code from the function code, create a layer that only contains the runtime.
Layers let you develop your function's dependencies independently, and can reduce storage usage
when you use the same layer with multiple functions. For more information, see Managing Lambda
dependencies with layers.

1. Create a .zip file that contains the bootstrap file.

zip runtime.zip bootstrap

2. Create a layer with the publish-layer-version command.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

This creates the first version of the layer.

Update the function

To use the runtime layer in the function, configure the function to use the layer, and remove the
runtime code from the function.

1. Update the function configuration to pull in the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws:lambda:us-east-1:123456789012:layer:bash-runtime:1

This adds the runtime to the function in the /opt directory. To ensure that Lambda uses the
runtime in the layer, you must remove the boostrap from the function's deployment package,
as shown in the next two steps.

2. Create a .zip file that contains the function code.

zip function-only.zip function.sh

3. Update the function code to only include the handler script.

Custom runtime tutorial 189

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html?highlight=nodejs16%20x

AWS Lambda Developer Guide

aws lambda update-function-code --function-name bash-runtime --zip-file fileb://
function-only.zip

4. Invoke the function to confirm that it works with the runtime layer.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
 response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

You should see a response like this:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

5. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Update the runtime

1. To log information about the execution environment, update the runtime script to output
environment variables.

Example bootstrap

#!/bin/sh

set -euo pipefail

Custom runtime tutorial 190

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Configure runtime to output environment variables
echo "## Environment variables:"
env

Load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
 HEADERS="$(mktemp)"
 # Get an event. The HTTP request will block until one is received
 EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

 # Extract request ID by scraping response headers received above
 REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
 '[:space:]' | cut -d: -f2)

 # Run the handler function from the script
 RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

 # Send the response
 curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

2. Create a .zip file that contains the new version of the bootstrap file.

zip runtime.zip bootstrap

3. Create a new version of the bash-runtime layer.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

4. Configure the function to use the new version of the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws:lambda:us-east-1:123456789012:layer:bash-runtime:2

Custom runtime tutorial 191

AWS Lambda Developer Guide

Share the layer

To share a layer with another AWS account, add a cross-account permissions statement to the
layer's resource-based policy. Run the add-layer-version-permission command and specify the
account ID as the principal. In each statement, you can grant permission to a single account, all
accounts, or an organization in AWS Organizations.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission \
 --layer-name bash-runtime \
 --version-number 2 \
 --statement-id xaccount \
 --action lambda:GetLayerVersion \
 --principal 111122223333 \
 --output text

You should see output similar to the following:

{"Sid":"xaccount","Effect":"Allow","Principal":
{"AWS":"arn:aws:iam::111122223333:root"},"Action":"lambda:GetLayerVersion","Resource":"arn:aws:lambda:us-
east-1:123456789012:layer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

Clean up

Delete each version of the layer.

aws lambda delete-layer-version --layer-name bash-runtime --version-number 1
aws lambda delete-layer-version --layer-name bash-runtime --version-number 2

Because the function holds a reference to version 2 of the layer, it still exists in Lambda. The
function continues to work, but functions can no longer be configured to use the deleted version.
If you modify the list of layers on the function, you must specify a new version or omit the deleted
layer.

Delete the function with the delete-function command.

Custom runtime tutorial 192

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html

AWS Lambda Developer Guide

aws lambda delete-function --function-name bash-runtime

Open source repositories

AWS Lambda provides a variety of open source tools, libraries, and components to help you build,
customize, and optimize your serverless applications. These resources include runtime interface
clients, event libraries, container base images, development tools, and sample projects that are
maintained by AWS and available on GitHub. By leveraging these open source repositories, you can
extend Lambda's capabilities, create custom runtimes, process events from various AWS services,
and gain deeper insights into your function's performance. This page provides an overview of the
key open source projects that support Lambda development.

Runtime Interface Clients

Lambda Runtime Interface Clients (RICs) are open source libraries that implement the Runtime API
and manage the interaction between your function code and the Lambda service. These clients
handle receiving invocation events, passing context information, and reporting errors.

The runtime interface clients used by Lambda's managed runtimes and container base images are
published as open source. When you build custom runtimes or extend existing ones, you can use
these open source libraries to simplify your implementation. The following open source GitHub
repositories contain the source code for Lambda's RICs:

• Node.js Runtime Interface Client

• Python Runtime Interface Client

• Java Runtime Interface Client

• Ruby Runtime Interface Client

• .NET Runtime Interface Client

• Go Runtime Interface Client

• Lambda Base Images

• Rust Runtime Interface Client (experimental)

For more information about using these clients to build custom runtimes, see the section called
“Building a custom runtime”.

Open source repositories 193

https://github.com/aws/aws-lambda-nodejs-runtime-interface-client
https://github.com/aws/aws-lambda-python-runtime-interface-client
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client
https://github.com/aws/aws-lambda-ruby-runtime-interface-client
https://github.com/aws/aws-lambda-dotnet
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-base-images
https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

Event libraries

Lambda event libraries provide type definitions and helper utilities for processing events from
various AWS services. These libraries help you parse and handle event data in a type-safe manner,
making it easier to work with events from services like Amazon S3, Amazon DynamoDB, and
Amazon API Gateway.

For compiled languages, AWS provides the following event libraries:

• Java Event Library

• .NET Event Libraries

• Go Event Library

• Rust Event Library

For interpreted languages like Node.js, Python, and Ruby, events can be parsed directly as JSON
objects without requiring a separate library. However, developers using Node.js and Python can
leverage powertools for AWS Lambda, which provides built-in schemas for AWS events that offer
type hinting, data validation, and functionality similar to what compiled language libraries provide.

• Powertools for TypeScript

• Powertools for Python

Container base images

AWS provides open source container base images that you can use as a starting point for building
container images for your Lambda functions. These base images include the runtime interface
client and other components needed to run your functions in the Lambda execution environment.

For more information about the available base images and how to use them, see the AWS Lambda
Base Images repository and the section called “Container images”.

Development tools

AWS provides additional open source development tools to help you build and optimize your
Lambda functions:

Event libraries 194

https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-events
https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src
https://github.com/aws/aws-lambda-go/tree/main/events
https://github.com/awslabs/aws-lambda-rust-runtime
https://docs.powertools.aws.dev/lambda/typescript/latest/features/parser/#built-in-schemas
https://docs.powertools.aws.dev/lambda/python/latest/utilities/parser/#built-in-models
https://github.com/aws/aws-lambda-base-images
https://github.com/aws/aws-lambda-base-images

AWS Lambda Developer Guide

Powertools for AWS Lambda

Powertools for AWS Lambda simplifies serverless development with essential utilities to prevent
duplicate processing, and batch processing for multi-record handling and Kafka consumer library.
These features help you minimize code complexity and operational overhead.

You can also leverage built-in event schema validation, structured logging and tracing, and
parameter store integration which are designed to accelerate the creation of production-ready
Lambda functions while following AWS well-architected best practices.

GitHub repositories:

• Python

• TypeScript

• Java

• .NET

Java development tools

• Java Profiler (experimental) - A tool for profiling Java Lambda functions.

• Java Libraries - A repository that contains a comprehensive collection of Java libraries and tools
for Lambda development, including key projects such as JUnit testing utilities and profiling tools.

• Serverless Java Container - A library that enables you to run existing Java applications on
Lambda with minimal changes.

.NET development tools

The AWS Lambda .NET repository provides .NET libraries and tools for Lambda development,
including key projects such as for AWS Lambda tools for the .NET CLI and .NET Core server for
hosting .NET Core applications.

Sample projects

Explore a comprehensive collection of sample Lambda projects and applications at Serverless Land
repositories. These samples demonstrate various Lambda use cases, integration patterns, and best
practices to help you get started with your serverless applications.

Sample projects 195

https://github.com/aws-powertools/powertools-lambda-python
https://github.com/aws-powertools/powertools-lambda-typescript
https://github.com/aws-powertools/powertools-lambda-java
https://github.com/aws-powertools/powertools-lambda-dotnet
https://github.com/aws/aws-lambda-java-libs/tree/main/experimental/aws-lambda-java-profiler
https://github.com/aws/aws-lambda-java-libs
https://github.com/aws/serverless-java-container
https://github.com/aws/aws-lambda-dotnet
https://serverlessland.com/repos
https://serverlessland.com/repos

AWS Lambda Developer Guide

Configuring AWS Lambda functions

Learn how to configure the core capabilities and options for your Lambda function using the
Lambda API or console.

Memory

Learn how and when to increase function memory.

Ephemeral storage

Learn how and when to increase your function's temporary storage capacity.

Timeout

Learn how and when to increase your function's timeout value.

Environment variables

You can make your function code portable and keep secrets out of your code by storing them in
your function's configuration by using environment variables.

Outbound networking

You can use your Lambda function with AWS resources in an Amazon VPC. Connecting your
function to a VPC lets you access resources in a private subnet such as relational databases and
caches.

Inbound networking

You can use an interface VPC endpoint to invoke your Lambda functions without crossing the
public internet.

File system

You can use your Lambda function to mount a Amazon EFS to a local directory. A file system
allows your function code to access and modify shared resources safely and at high concurrency.

Aliases

You can configure your clients to invoke a specific Lambda function version by using an alias,
instead of updating the client.

Versions

By publishing a version of your function, you can store your code and configuration as a
separate resource that cannot be changed.

196

AWS Lambda Developer Guide

Tags

Use tags to enable attribute-based access control (ABAC), to organize your Lambda functions,
and to filter and generate reports on your functions using the AWS Cost Explorer or AWS Billing
and Cost Management services.

Response streaming

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they
become available. Additionally, you can use response streaming to build functions that return
larger payloads.

197

AWS Lambda Developer Guide

Deploying Lambda functions as .zip file archives

When you create a Lambda function, you package your function code into a deployment package.
Lambda supports two types of deployment packages: container images and .zip file archives. The
workflow to create a function depends on the deployment package type. To configure a function
defined as a container image, see the section called “Container images”.

You can use the Lambda console and the Lambda API to create a function defined with a .zip file
archive. You can also upload an updated .zip file to change the function code.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

• Creating the function

• Using the console code editor

• Updating function code

• Changing the runtime

• Changing the architecture

• Using the Lambda API

• Downloading your function code

• AWS CloudFormation

• Encrypting Lambda .zip deployment packages

Creating the function

When you create a function defined with a .zip file archive, you choose a code template, the
language version, and the execution role for the function. You add your function code after
Lambda creates the function.

.zip file archives 198

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType

AWS Lambda Developer Guide

To create the function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Choose Author from scratch or Use a blueprint to create your function.

4. Under Basic information, do the following:

a. For Function name, enter the function name. Function names are limited to 64 characters
in length.

b. For Runtime, choose the language version to use for your function.

c. (Optional) For Architecture, choose the instruction set architecture to use for your
function. The default architecture is x86_64. When you build the deployment package for
your function, make sure that it is compatible with this instruction set architecture.

5. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing role.

6. (Optional) Expand Advanced settings. You can choose a Code signing configuration for the
function. You can also configure an (Amazon VPC) for the function to access.

7. Choose Create function.

Lambda creates the new function. You can now use the console to add the function code and
configure other function parameters and features. For code deployment instructions, see the
handler page for the runtime your function uses.

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Deploy Ruby Lambda functions with .zip file archives

Java

Deploy Java Lambda functions with .zip or JAR file archives

Creating the function 199

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using the console code editor

The console creates a Lambda function with a single source file. For scripting languages, you can
edit this file and add more files using the built-in code editor. To save your changes, choose Save.
Then, to run your code, choose Test.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Updating function code

For scripting languages (Node.js, Python, and Ruby), you can edit your function code in the
embedded code editor. If the code is larger than 3MB, or if you need to add libraries, or for
languages that the editor doesn't support (Java, Go, C#), you must upload your function code as
a .zip archive. If the .zip file archive is smaller than 50 MB, you can upload the .zip file archive from
your local machine. If the file is larger than 50 MB, upload the file to the function from an Amazon
S3 bucket.

To upload function code as a .zip archive

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.

3. Under Code source, choose Upload from.

4. Choose .zip file, and then choose Upload.

• In the file chooser, select the new image version, choose Open, and then choose Save.

Using the console code editor 200

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. (Alternative to step 4) Choose Amazon S3 location.

• In the text box, enter the S3 link URL of the .zip file archive, then choose Save.

Changing the runtime

If you update the function configuration to use a new runtime, you may need to update the
function code to be compatible with the new runtime. If you update the function configuration to
use a different runtime, you must provide new function code that is compatible with the runtime
and architecture. For instructions on how to create a deployment package for the function code,
see the handler page for the runtime that the function uses.

The Node.js 20, Python 3.12, Java 21, .NET 8, Ruby 3.3, and later base images are based on the
Amazon Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023
provides several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc. For more information, see Introducing the Amazon
Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

To change the runtime

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.

3. Scroll down to the Runtime settings section, which is under the code editor.

4. Choose Edit.

a. For Runtime, select the runtime identifier.

b. For Handler, specify file name and handler for your function.

c. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Changing the architecture

Before you can change the instruction set architecture, you need to ensure that your function's
code is compatible with the target architecture.

If you use Node.js, Python, or Ruby and you edit your function code in the embedded editor, the
existing code may run without modification.

Changing the runtime 201

https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

However, if you provide your function code using a .zip file archive deployment package, you
must prepare a new .zip file archive that is compiled and built correctly for the target runtime and
instruction-set architecture. For instructions, see the handler page for your function runtime.

To change the instruction set architecture

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.

3. Under Runtime settings, choose Edit.

4. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Using the Lambda API

To create and configure a function that uses a .zip file archive, use the following API operations:

• CreateFunction

• UpdateFunctionCode

• UpdateFunctionConfiguration

Downloading your function code

You can download the current unpublished ($LATEST) version of your function code .zip via the
Lambda console. To do this, first ensure that you have the following IAM permissions:

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:GetRole

• iam:GetRolePolicy

• iam:ListAttachedRolePolicies

• iam:ListRolePolicies

• iam:ListRoles

Using the Lambda API 202

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

To download the function code .zip

1. Open the Functions page of the Lambda console.

2. Choose the function you want to download the function code .zip for.

3. In the Function overview, choose the Download button, then choose Download function
code .zip.

• Alternatively, choose Download AWS SAM file to generate and download a SAM template
based on your function's configuration. You can also choose Download both to download
both the .zip and the SAM template.

AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function that uses a .zip file archive. In your
AWS CloudFormation template, the AWS::Lambda::Function resource specifies the Lambda
function. For descriptions of the properties in the AWS::Lambda::Function resource, see
AWS::Lambda::Function in the AWS CloudFormation User Guide.

In the AWS::Lambda::Function resource, set the following properties to create a function
defined as a .zip file archive:

• AWS::Lambda::Function

• PackageType – Set to Zip.

• Code – Enter the Amazon S3 bucket name and .zip file name in the S3Bucket and
S3Keyfields. For Node.js or Python, you can provide inline source code of your Lambda
function.

• Runtime – Set the runtime value.

• Architecture – Set the architecture value to arm64 to use the AWS Graviton2 processor. By
default, the architecture value is x86_64.

Encrypting Lambda .zip deployment packages

Lambda always provides server-side encryption at rest for .zip deployment packages and function
configuration details with an AWS KMS key. By default, Lambda uses an AWS owned key. If this
default behavior suits your workflow, you don't need to set up anything else. AWS doesn't charge
you to use this key.

AWS CloudFormation 203

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

AWS Lambda Developer Guide

If you prefer, you can provide an AWS KMS customer managed key instead. You might do this
to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage the function's code or configuration.

Customer managed keys incur standard AWS KMS charges. For more information, see AWS Key
Management Service pricing.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric encryption Creating symmetric KMS keys in the AWS Key
Management Service Developer Guide.

Permissions

Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. For more information, see How to change a key policy in the AWS Key Management
Service Developer Guide.

When you use a customer managed key to encrypt a .zip deployment package, Lambda doesn't add
a grant to the key. Instead, your AWS KMS key policy must allow Lambda to call the following AWS
KMS API operations on your behalf:

• kms:GenerateDataKey

• kms:Decrypt

The following example key policy allows all Lambda functions in account 111122223333 to call
the required AWS KMS operations for the specified customer managed key:

Encryption 204

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-how-to
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Lambda Developer Guide

Example AWS KMS key policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-east-1:111122223333:key/key-id",
 "Condition": {
 "StringLike": {
 "kms:EncryptionContext:aws:lambda:FunctionArn":
 "arn:aws:lambda:us-east-1:111122223333:function:*"
 }
 }
 }
]
}

For more information about troubleshooting key access, see the AWS Key Management Service
Developer Guide.

Principal permissions

When you use a customer managed key to encrypt a .zip deployment package, only principals with
access to that key can access the .zip deployment package. For example, principals who don't have
access to the customer managed key can't download the .zip package using the presigned S3 URL
that's included in the GetFunction response. An AccessDeniedException is returned in the Code
section of the response.

Example AWS KMS AccessDeniedException

{

Encryption 205

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html

AWS Lambda Developer Guide

 "Code": {
 "RepositoryType": "S3",
 "Error": {
 "ErrorCode": "AccessDeniedException",
 "Message": "KMS access is denied. Check your KMS permissions. KMS
 Exception: AccessDeniedException KMS Message: User: arn:aws:sts::111122223333:assumed-
role/LambdaTestRole/session is not authorized to perform: kms:Decrypt on resource:
 arn:aws:kms:us-east-1:111122223333:key/key-id with an explicit deny in a resource-
based policy"
 },
 "SourceKMSKeyArn": "arn:aws:kms:us-east-1:111122223333:key/key-id"
 },
 ...

For more information about permissions for AWS KMS keys, see Authentication and access control
for AWS KMS.

Using a customer managed key for your .zip deployment package

Use the following API parameters to configure customer managed keys for .zip deployment
packages:

• SourceKMSKeyArn: Encrypts the source .zip deployment package (the file that you upload).

• KMSKeyArn: Encrypts environment variables and Lambda SnapStart snapshots.

When SourceKMSKeyArn and KMSKeyArn are both specified, Lambda uses the KMSKeyArn key
to encrypt the unzipped version of the package that Lambda uses to invoke the function. When
SourceKMSKeyArn is specified but KMSKeyArn is not, Lambda uses an AWS managed key to
encrypt the unzipped version of the package.

Lambda console

To add customer managed key encryption when you create a function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Choose Author from scratch or Container image.

4. Under Basic information, do the following:

a. For Function name, enter the function name.

Encryption 206

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/lambda/latest/api/API_FunctionCode.html#lambda-Type-FunctionCode-SourceKMSKeyArn
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-KMSKeyArn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

b. For Runtime, choose the language version to use for your function.

5. Expand Advanced settings, and then select Enable encryption with an AWS KMS
customer managed key.

6. Choose a customer managed key.

7. Choose Create function.

To remove customer managed key encryption, or to use a different key, you must upload
the .zip deployment package again.

To add customer managed key encryption to an existing function

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. In the Code source pane, choose Upload from.

4. Choose .zip file or Amazon S3 location.

5. Upload the file or enter the Amazon S3 location.

6. Choose Enable encryption with an AWS KMS customer managed key.

7. Choose a customer managed key.

8. Choose Save.

AWS CLI

To add customer managed key encryption when you create a function

In the following create-function example:

• --zip-file: Specifies the local path to the .zip deployment package.

• --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package.

Encryption 207

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

AWS Lambda Developer Guide

• --kms-key-arn: Specifies the customer managed key to encrypt the environment variables
and the unzipped version of the deployment package.

aws lambda create-function \
 --function-name myFunction \
 --runtime nodejs22.x \
 --handler index.handler \
 --role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
 --zip-file fileb://myFunction.zip \
 --source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id \
 --kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key2-id

In the following create-function example:

• --code: Specifies the location of .zip file in an Amazon S3 bucket. You only need to use the
S3ObjectVersion parameter for versioned objects.

• --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package.

• --kms-key-arn: Specifies the customer managed key to encrypt the environment variables
and the unzipped version of the deployment package.

aws lambda create-function \
 --function-name myFunction \
 --runtime nodejs22.x --handler index.handler \
 --role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
 --code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion \
 --source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id \
 --kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key2-id

To add customer managed key encryption to an existing function

In the following update-function-code example:

• --zip-file: Specifies the local path to the .zip deployment package.

• --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package. Lambda uses an AWS owned key to encrypt the unzipped
package for function invocations. If you want to use a customer managed key to encrypt the

Encryption 208

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

unzipped version of the package, run the update-function-configuration command with the
--kms-key-arn option.

aws lambda update-function-code \
 --function-name myFunction \
 --zip-file fileb://myFunction.zip \
 --source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id

In the following update-function-code example:

• --s3-bucket: Specifies the location of the .zip file in an Amazon S3 bucket.

• --s3-key: Specifies the Amazon S3 key of the deployment package.

• --s3-object-version: For versioned objects, the version of the deployment package
object to use.

• --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package. Lambda uses an AWS owned key to encrypt the unzipped
package for function invocations. If you want to use a customer managed key to encrypt the
unzipped version of the package, run the update-function-configuration command with the
--kms-key-arn option.

aws lambda update-function-code \
 --function-name myFunction \
 --s3-bucket amzn-s3-demo-bucket \
 --s3-key myFileName.zip \
 --s3-object-version myObject Version
 --source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id

To remove customer managed key encryption from an existing function

In the following update-function-code example, --zip-file specifies the local path to the .zip
deployment package. When you run this command without the --source-kms-key-arn
option, Lambda uses an AWS owned key to encrypt the zipped version of the deployment
package.

aws lambda update-function-code \
 --function-name myFunction \
 --zip-file fileb://myFunction.zip

Encryption 209

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Encryption 210

AWS Lambda Developer Guide

Create a Lambda function using a container image

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

There are three ways to build a container image for a Lambda function:

• Using an AWS base image for Lambda

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface
client for your language in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include a runtime interface client for your language in the
image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

To create a Lambda function from a container image, build your image locally and upload it to
an Amazon Elastic Container Registry (Amazon ECR) repository. If you're using a container image
provided by an AWS Marketplace seller, you need to clone the image to your private Amazon ECR

Container images 211

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html

AWS Lambda Developer Guide

repository first. Then, specify the repository URI when you create the function. The Amazon ECR
repository must be in the same AWS Region as the Lambda function. You can create a function
using an image in a different AWS account, as long as the image is in the same Region as the
Lambda function. For more information, see Amazon ECR cross-account permissions.

Note

Lambda does not support Amazon ECR FIPS endpoints for container images. If
your repository URI includes ecr-fips, you are using a FIPS endpoint. Example:
111122223333.dkr.ecr-fips.us-east-1.amazonaws.com.

This page explains the base image types and requirements for creating Lambda-compatible
container images.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

• Requirements

• Using an AWS base image for Lambda

• Using an AWS OS-only base image

• Using a non-AWS base image

• Runtime interface clients

• Amazon ECR permissions

• Function lifecycle

Requirements

Install the AWS CLI version 2 and the Docker CLI. Additionally, note the following requirements:

Requirements 212

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

• The container image must implement the Using the Lambda runtime API for custom runtimes.
The AWS open-source runtime interface clients implement the API. You can add a runtime
interface client to your preferred base image to make it compatible with Lambda.

• The container image must be able to run on a read-only file system. Your function code can
access a writable /tmp directory with between 512 MB and 10,240 MB, in 1-MB increments, of
storage.

• The default Lambda user must be able to read all the files required to run your function code.
Lambda follows security best practices by defining a default Linux user with least-privileged
permissions. This means that you don't need to specify a USER in your Dockerfile. Verify that
your application code does not rely on files that other Linux users are restricted from running.

• Lambda supports only Linux-based container images.

• Lambda provides multi-architecture base images. However, the image you build for your function
must target only one of the architectures. Lambda does not support functions that use multi-
architecture container images.

Using an AWS base image for Lambda

You can use one of the AWS base images for Lambda to build the container image for your
function code. The base images are preloaded with a language runtime and other components
required to run a container image on Lambda. You add your function code and dependencies to the
base image and then package it as a container image.

AWS periodically provides updates to the AWS base images for Lambda. If your Dockerfile includes
the image name in the FROM property, your Docker client pulls the latest version of the image
from the Amazon ECR repository. To use the updated base image, you must rebuild your container
image and update the function code.

The Node.js 20, Python 3.12, Java 21, .NET 8, Ruby 3.3, and later base images are based on the
Amazon Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023
provides several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container

Using an AWS base image 213

https://docs.docker.com/reference/dockerfile/#user
https://gallery.ecr.aws/lambda/
https://gallery.ecr.aws/lambda/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html

AWS Lambda Developer Guide

Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

To build a container image using an AWS base image, choose the instructions for your preferred
language:

• Node.js

• TypeScript (uses a Node.js base image)

• Python

• Java

• Go

• .NET

• Ruby

Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Tags Runtime Operating
system

Dockerfile Deprecation

al2023 OS-only
Runtime

Amazon
Linux 2023

Dockerfile for OS-only
Runtime on GitHub

Jun 30, 2029

Using an AWS OS-only base image 214

https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023

AWS Lambda Developer Guide

Tags Runtime Operating
system

Dockerfile Deprecation

al2 OS-only
Runtime

Amazon
Linux 2

Dockerfile for OS-only
Runtime on GitHub

Jun 30, 2026

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Using a non-AWS base image

Lambda supports any image that conforms to one of the following image manifest formats:

• Docker image manifest V2, schema 2 (used with Docker version 1.10 and newer)

• Open Container Initiative (OCI) Specifications (v1.0.0 and up)

Lambda supports a maximum uncompressed image size of 10 GB, including all layers.

Note

To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Runtime interface clients

If you use an OS-only base image or an alternative base image, you must include a runtime
interface client in your image. The runtime interface client must extend the Using the Lambda
runtime API for custom runtimes, which manages the interaction between Lambda and your
function code. AWS provides open-source runtime interface clients for the following languages:

• Node.js

• Python

• Java

• .NET

• Go

• Ruby

Using a non-AWS base image 215

https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided

AWS Lambda Developer Guide

• Rust – The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

If you're using a language that doesn't have an AWS-provided runtime interface client, you must
create your own.

Amazon ECR permissions

Before you create a Lambda function from a container image, you must build the image locally and
upload it to an Amazon ECR repository. When you create the function, specify the Amazon ECR
repository URI.

Make sure that the permissions for the user or role that creates the function includes
GetRepositoryPolicy and SetRepositoryPolicy.

For example, use the IAM console to create a role with the following policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "ecr:SetRepositoryPolicy",
 "ecr:GetRepositoryPolicy"
],
 "Resource": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world"
 }
]
}

Amazon ECR repository policies

For a function in the same account as the container image in Amazon ECR, you can add
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer permissions to your Amazon ECR
repository policy. The following example shows the minimum policy:

Amazon ECR permissions 216

https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

{
 "Sid": "LambdaECRImageRetrievalPolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
]
 }

For more information about Amazon ECR repository permissions, see Private repository policies in
the Amazon Elastic Container Registry User Guide.

If the Amazon ECR repository does not include these permissions, Lambda attempts to add
them automatically. Lambda can add permissions only if the principal calling Lambda has
ecr:getRepositoryPolicy and ecr:setRepositoryPolicy permissions.

To view or edit your Amazon ECR repository permissions, follow the directions in Setting a private
repository policy statement in the Amazon Elastic Container Registry User Guide.

Amazon ECR cross-account permissions

A different account in the same region can create a function that uses a container image owned by
your account. In the following example, your Amazon ECR repository permissions policy needs the
following statements to grant access to account number 123456789012.

• CrossAccountPermission – Allows account 123456789012 to create and update Lambda
functions that use images from this ECR repository.

• LambdaECRImageCrossAccountRetrievalPolicy – Lambda will eventually set a function's state
to inactive if it is not invoked for an extended period. This statement is required so that Lambda
can retrieve the container image for optimization and caching on behalf of the function owned
by 123456789012.

Amazon ECR permissions 217

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html

AWS Lambda Developer Guide

Example — Add cross-account permission to your repository

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountPermission",
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Resource": "arn:aws:ecr:us-east-1:123456789012:repository/example-lambda-
repository"
 },
 {
 "Sid": "LambdaECRImageCrossAccountRetrievalPolicy",
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Condition": {
 "ArnLike": {
 "aws:sourceARN": "arn:aws:lambda:us-east-1:123456789012:function:*"
 }
 },
 "Resource": "arn:aws:ecr:us-east-1:123456789012:repository/example-lambda-
repository"
 }
]
}

Amazon ECR permissions 218

AWS Lambda Developer Guide

To give access to multiple accounts, you add the account IDs to the Principal list in
the CrossAccountPermission policy and to the Condition evaluation list in the
LambdaECRImageCrossAccountRetrievalPolicy.

If you are working with multiple accounts in an AWS Organization, we recommend that you
enumerate each account ID in the ECR permissions policy. This approach aligns with the AWS
security best practice of setting narrow permissions in IAM policies.

In addition to Lambda permissions, the user or role that creates the function must also have
BatchGetImage and GetDownloadUrlForLayer permissions.

Function lifecycle

After you upload a new or updated container image, Lambda optimizes the image before the
function can process invocations. The optimization process can take a few seconds. The function
remains in the Pending state until the process completes, when the state transitions to Active.
You can't invoke the function until it reaches the Active state.

If a function is not invoked for multiple weeks, Lambda reclaims its optimized version, and the
function transitions to the Inactive state. To reactivate the function, you must invoke it. Lambda
rejects the first invocation and the function enters the Pending state until Lambda re-optimizes
the image. The function then returns to the Active state.

Lambda periodically fetches the associated container image from the Amazon ECR repository. If
the corresponding container image no longer exists on Amazon ECR or permissions are revoked,
the function enters the Failed state, and Lambda returns a failure for any function invocations.

You can use the Lambda API to get information about a function's state. For more information, see
Lambda function states.

Function lifecycle 219

AWS Lambda Developer Guide

Configure Lambda function memory

Lambda allocates CPU power in proportion to the amount of memory configured. Memory is the
amount of memory available to your Lambda function at runtime. You can increase or decrease the
memory and CPU power allocated to your function using the Memory setting. You can configure
memory between 128 MB and 10,240 MB in 1-MB increments. At 1,769 MB, a function has the
equivalent of one vCPU (one vCPU-second of credits per second).

This page describes how and when to update the memory setting for a Lambda function.

Sections

• Determining the appropriate memory setting for a Lambda function

• Configuring function memory (console)

• Configuring function memory (AWS CLI)

• Configuring function memory (AWS SAM)

• Accepting function memory recommendations (console)

Determining the appropriate memory setting for a Lambda function

Memory is the principal lever for controlling the performance of a function. The default setting,
128 MB, is the lowest possible setting. We recommend that you only use 128 MB for simple
Lambda functions, such as those that transform and route events to other AWS services. A higher
memory allocation can improve performance for functions that use imported libraries, Lambda
layers, Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon
EFS). Adding more memory proportionally increases the amount of CPU, increasing the overall
computational power available. If a function is CPU, network or memory-bound, then increasing
the memory setting can dramatically improve its performance.

To find the right memory configuration, monitor your functions with Amazon CloudWatch and set
alarms if memory consumption is approaching the configured maximums. This can help identify
memory-bound functions. For CPU-bound and IO-bound functions, monitoring the duration
can also provide insight. In these cases, increasing the memory can help resolve the compute or
network bottlenecks.

You can also consider using the open source AWS Lambda Power Tuning tool. This tool uses
AWS Step Functions to run multiple concurrent versions of a Lambda function at different

Memory 220

https://github.com/alexcasalboni/aws-lambda-power-tuning

AWS Lambda Developer Guide

memory allocations and measure the performance. The input function runs in your AWS account,
performing live HTTP calls and SDK interaction, to measure likely performance in a live production
scenario. You can also implement a CI/CD process to use this tool to automatically measure the
performance of new functions that you deploy.

Configuring function memory (console)

You can configure the memory of your function in the Lambda console.

To update the memory of a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

4. Under General configuration, choose Edit.

5. For Memory, set a value from 128 MB to 10,240 MB.

6. Choose Save.

Configuring function memory (AWS CLI)

You can use the update-function-configuration command to configure the memory of your
function.

Example

aws lambda update-function-configuration \
 --function-name my-function \
 --memory-size 1024

Using the console 221

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

Configuring function memory (AWS SAM)

You can use the AWS Serverless Application Model to configure memory for your function. Update
the MemorySize property in your template.yaml file and then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 1024
 # Other function properties...

Accepting function memory recommendations (console)

If you have administrator permissions in AWS Identity and Access Management (IAM), you can opt
in to receive Lambda function memory setting recommendations from AWS Compute Optimizer.
For instructions on opting in to memory recommendations for your account or organization, see
Opting in your account in the AWS Compute Optimizer User Guide.

Note

Compute Optimizer supports only functions that use x86_64 architecture.

When you've opted in and your Lambda function meets Compute Optimizer requirements, you
can view and accept function memory recommendations from Compute Optimizer in the Lambda
console in General configuration.

Using AWS SAM 222

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-memorysize
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/getting-started.html#account-opt-in
https://docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions

AWS Lambda Developer Guide

Configure ephemeral storage for Lambda functions

Lambda provides ephemeral storage for functions in the /tmp directory. This storage is temporary
and unique to each execution environment. You can control the amount of ephemeral storage
allocated to your function using the Ephemeral storage setting. You can configure ephemeral
storage between 512 MB and 10,240 MB, in 1-MB increments. All data stored in /tmp is encrypted
at rest with a key managed by AWS.

This page describes common use cases and how to update the ephemeral storage for a Lambda
function.

Sections

• Common use cases for increased ephemeral storage

• Configuring ephemeral storage (console)

• Configuring ephemeral storage (AWS CLI)

• Configuring ephemeral storage (AWS SAM)

Common use cases for increased ephemeral storage

Here are several common use cases that benefit from increased ephemeral storage:

• Extract-transform-load (ETL) jobs: Increase ephemeral storage when your code performs
intermediate computation or downloads other resources to complete processing. More
temporary space enables more complex ETL jobs to run in Lambda functions.

• Machine learning (ML) inference: Many inference tasks rely on large reference data files,
including libraries and models. With more ephemeral storage, you can download larger models
from Amazon Simple Storage Service (Amazon S3) to /tmp and use them in your processing.

• Data processing: For workloads that download objects from Amazon S3 in response to S3
events, more /tmp space makes it possible to handle larger objects without using in-memory
processing. Workloads that create PDFs or process media also benefit from more ephemeral
storage.

• Graphics processing: Image processing is a common use case for Lambda-based applications.
For workloads that process large TIFF files or satellite images, more ephemeral storage makes it
easier to use libraries and perform the computation in Lambda.

Ephemeral storage 223

AWS Lambda Developer Guide

Configuring ephemeral storage (console)

You can configure ephemeral storage in the Lambda console.

To modify ephemeral storage for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

4. Under General configuration, choose Edit.

5. For Ephemeral storage, set a value between 512 MB and 10,240 MB, in 1-MB increments.

6. Choose Save.

Configuring ephemeral storage (AWS CLI)

You can use the update-function-configuration command to configure ephemeral storage.

Example

aws lambda update-function-configuration \
 --function-name my-function \
 --ephemeral-storage '{"Size": 1024}'

Configuring ephemeral storage (AWS SAM)

You can use the AWS Serverless Application Model to configure ephemeral storage for your
function. Update the EphemeralStorage property in your template.yaml file and then run sam
deploy.

Using the console 224

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-ephemeralstorage
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

AWS Lambda Developer Guide

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 120
 Handler: index.handler
 Runtime: nodejs22.x
 Architectures:
 - x86_64
 EphemeralStorage:
 Size: 10240
 # Other function properties...

Using AWS SAM 225

AWS Lambda Developer Guide

Selecting and configuring an instruction set architecture for
your Lambda function

The instruction set architecture of a Lambda function determines the type of computer processor
that Lambda uses to run the function. Lambda provides a choice of instruction set architectures:

• arm64 – 64-bit ARM architecture, for the AWS Graviton2 processor.

• x86_64 – 64-bit x86 architecture, for x86-based processors.

Note

The arm64 architecture is available in most AWS Regions. For more information, see AWS
Lambda Pricing. In the memory prices table, choose the Arm Price tab, and then open the
Region dropdown list to see which AWS Regions support arm64 with Lambda.
For an example of how to create a function with arm64 architecture, see AWS Lambda
Functions Powered by AWS Graviton2 Processor.

Topics

• Advantages of using arm64 architecture

• Requirements for migration to arm64 architecture

• Function code compatibility with arm64 architecture

• How to migrate to arm64 architecture

• Configuring the instruction set architecture

Advantages of using arm64 architecture

Lambda functions that use arm64 architecture (AWS Graviton2 processor) can achieve significantly
better price and performance than the equivalent function running on x86_64 architecture.
Consider using arm64 for compute-intensive applications such as high-performance computing,
video encoding, and simulation workloads.

The Graviton2 CPU uses the Neoverse N1 core and supports Armv8.2 (including CRC and crypto
extensions) plus several other architectural extensions.

Instruction sets (ARM/x86) 226

https://aws.amazon.com/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://aws.amazon.com/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/

AWS Lambda Developer Guide

Graviton2 reduces memory read time by providing a larger L2 cache per vCPU, which improves the
latency performance of web and mobile backends, microservices, and data processing systems.
Graviton2 also provides improved encryption performance and supports instruction sets that
improve the latency of CPU-based machine learning inference.

For more information about AWS Graviton2, see AWS Graviton Processor.

Requirements for migration to arm64 architecture

When you select a Lambda function to migrate to arm64 architecture, to ensure a smooth
migration, make sure that your function meets the following requirements:

• The deployment package contains only open-source components and source code that you
control, so that you can make any necessary updates for the migration.

• If the function code includes third-party dependencies, each library or package provides an
arm64 version.

Function code compatibility with arm64 architecture

Your Lambda function code must be compatible with the instruction set architecture of the
function. Before you migrate a function to arm64 architecture, note the following points about the
current function code:

• If you added your function code using the embedded code editor, your code probably runs on
either architecture without modification.

• If you uploaded your function code, you must upload new code that is compatible with your
target architecture.

• If your function uses layers, you must check each layer to ensure that it is compatible with the
new architecture. If a layer is not compatible, edit the function to replace the current layer
version with a compatible layer version.

• If your function uses Lambda extensions, you must check each extension to ensure that it is
compatible with the new architecture.

• If your function uses a container image deployment package type, you must create a new
container image that is compatible with the architecture of the function.

How to migrate to arm64 architecture

Requirements for migration to arm64 architecture 227

https://aws.amazon.com/ec2/graviton

AWS Lambda Developer Guide

To migrate a Lambda function to the arm64 architecture, we recommend following these steps:

1. Build the list of dependencies for your application or workload. Common dependencies include:

• All the libraries and packages that the function uses.

• The tools that you use to build, deploy, and test the function, such as compilers, test suites,
continuous integration and continuous delivery (CI/CD) pipelines, provisioning tools, and
scripts.

• The Lambda extensions and third-party tools that you use to monitor the function in
production.

2. For each of the dependencies, check the version, and then check whether arm64 versions are
available.

3. Build an environment to migrate your application.

4. Bootstrap the application.

5. Test and debug the application.

6. Test the performance of the arm64 function. Compare the performance with the x86_64
version.

7. Update your infrastructure pipeline to support arm64 Lambda functions.

8. Stage your deployment to production.

For example, use alias routing configuration to split traffic between the x86 and arm64 versions
of the function, and compare the performance and latency.

For more information about how to create a code environment for arm64 architecture, including
language-specific information for Java, Go, .NET, and Python, see the Getting started with AWS
Graviton GitHub repository.

Configuring the instruction set architecture

You can configure the instruction set architecture for new and existing Lambda functions using
the Lambda console, AWS SDKs, AWS Command Line Interface (AWS CLI), or AWS CloudFormation.
Follow these steps to change the instruction set architecture for an existing Lambda function from
the console.

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to configure the instruction set architecture
for.

Configuring the instruction set architecture 228

https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. On the main Code tab, for the Runtime settings section, choose Edit.

4. Under Architecture, choose the instruction set architecture you want your function to use.

5. Choose Save.

Configuring the instruction set architecture 229

AWS Lambda Developer Guide

Configure Lambda function timeout

Lambda runs your code for a set amount of time before timing out. Timeout is the maximum
amount of time in seconds that a Lambda function can run. The default value for this setting is 3
seconds, but you can adjust this in increments of 1 second up to a maximum value of 900 seconds
(15 minutes).

This page describes how and when to update the timeout setting for a Lambda function.

Sections

• Determining the appropriate timeout value for a Lambda function

• Configuring timeout (console)

• Configuring timeout (AWS CLI)

• Configuring timeout (AWS SAM)

Determining the appropriate timeout value for a Lambda function

If the timeout value is close to the average duration of a function, there is a higher risk that the
function will time out unexpectedly. The duration of a function can vary based on the amount of
data transfer and processing, and the latency of any services the function interacts with. Some
common causes of timeout include:

• Downloads from Amazon Simple Storage Service (Amazon S3) are larger or take longer than
average.

• A function makes a request to another service, which takes longer to respond.

• The parameters provided to a function require more computational complexity in the function,
which causes the invocation to take longer.

When testing your application, ensure that your tests accurately reflect the size and quantity of
data and realistic parameter values. Tests often use small samples for convenience, but you should
use datasets at the upper bounds of what is reasonably expected for your workload.

Configuring timeout (console)

You can configure function timeout in the Lambda console.

Timeout 230

AWS Lambda Developer Guide

To modify the timeout for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

4. Under General configuration, choose Edit.

5. For Timeout, set a value between 1 and 900 seconds (15 minutes).

6. Choose Save.

Configuring timeout (AWS CLI)

You can use the update-function-configuration command to configure the timeout value, in
seconds. The following example command increases the function timeout to 120 seconds (2
minutes).

Example

aws lambda update-function-configuration \
 --function-name my-function \
 --timeout 120

Configuring timeout (AWS SAM)

You can use the AWS Serverless Application Model to configure the timeout value for your
function. Update the Timeout property in your template.yaml file and then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Using the AWS CLI 231

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-timeout
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

AWS Lambda Developer Guide

Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 120
 # Other function properties...

Using AWS SAM 232

AWS Lambda Developer Guide

Working with Lambda environment variables

You can use environment variables to adjust your function's behavior without updating code. An
environment variable is a pair of strings that is stored in a function's version-specific configuration.
The Lambda runtime makes environment variables available to your code and sets additional
environment variables that contain information about the function and invocation request.

Note

To increase security, we recommend that you use AWS Secrets Manager instead of
environment variables to store database credentials and other sensitive information like
API keys or authorization tokens. For more information, see Use Secrets Manager secrets in
Lambda functions.

Environment variables are not evaluated before the function invocation. Any value you define is
considered a literal string and not expanded. Perform the variable evaluation in your function code.

Creating Lambda environment variables

You can configure environment variables in Lambda using the Lambda console, the AWS Command
Line Interface (AWS CLI), AWS Serverless Application Model (AWS SAM), or using an AWS SDK.

Console

You define environment variables on the unpublished version of your function. When you
publish a version, the environment variables are locked for that version along with other
version-specific configuration settings.

You create an environment variable for your function by defining a key and a value. Your
function uses the name of the key to retrieve the value of the environment variable.

To set environment variables in the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab, then choose Environment variables.

4. Under Environment variables, choose Edit.

5. Choose Add environment variable.

Environment variables 233

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

6. Enter a key and value.

Requirements

• Keys start with a letter and are at least two characters.

• Keys only contain letters, numbers, and the underscore character (_).

• Keys aren't reserved by Lambda.

• The total size of all environment variables doesn't exceed 4 KB.

7. Choose Save.

To generate a list of environment variables in the console code editor

You can generate a list of environment variables in the Lambda code editor. This is a quick way
to reference your environment variables while you code.

1. Choose the Code tab.

2. Scroll down to the ENVIRONMENT VARIABLES section of the code editor. Existing
environment variables are listed here:

3. To create new environment variables, choose the choose the plus sign

():

Environment variables remain encrypted when listed in the console code editor. If you enabled
encryption helpers for encryption in transit, then those settings remain unchanged. For more
information, see Securing Lambda environment variables.

The environment variables list is read-only and is available only on the Lambda console. This
file is not included when you download the function's .zip file archive, and you can't add
environment variables by uploading this file.

Create environment variables 234

AWS Lambda Developer Guide

AWS CLI

The following example sets two environment variables on a function named my-function.

aws lambda update-function-configuration \
 --function-name my-function \
 --environment "Variables={BUCKET=amzn-s3-demo-bucket,KEY=file.txt}"

When you apply environment variables with the update-function-configuration
command, the entire contents of the Variables structure is replaced. To retain existing
environment variables when you add a new one, include all existing values in your request.

To get the current configuration, use the get-function-configuration command.

aws lambda get-function-configuration \
 --function-name my-function

You should see the following output:

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws:lambda:us-east-2:111122223333:function:my-function",
 "Runtime": "nodejs22.x",
 "Role": "arn:aws:iam::111122223333:role/lambda-role",
 "Environment": {
 "Variables": {
 "BUCKET": "amzn-s3-demo-bucket",
 "KEY": "file.txt"
 }
 },
 "RevisionId": "0894d3c1-2a3d-4d48-bf7f-abade99f3c15",
 ...
}

You can pass the revision ID from the output of get-function-configuration as a
parameter to update-function-configuration. This ensures that the values don't change
between when you read the configuration and when you update it.

To configure a function's encryption key, set the KMSKeyARN option.

aws lambda update-function-configuration \

Create environment variables 235

AWS Lambda Developer Guide

 --function-name my-function \
 --kms-key-arn arn:aws:kms:us-east-2:111122223333:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

AWS SAM

You can use the AWS Serverless Application Model to configure environment variables for your
function. Update the Environment and Variables properties in your template.yaml file and
then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 120
 Handler: index.handler
 Runtime: nodejs22.x
 Architectures:
 - x86_64
 EphemeralStorage:
 Size: 10240
 Environment:
 Variables:
 BUCKET: amzn-s3-demo-bucket
 KEY: file.txt
 # Other function properties...

AWS SDKs

To manage environment variables using an AWS SDK, use the following API operations.

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

Create environment variables 236

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-environment
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-environment.html#cfn-lambda-function-environment-variables
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

To learn more, refer to the AWS SDK documentation for your preferred programming language.

Example scenario for environment variables

You can use environment variables to customize function behavior in your test environment and
production environment. For example, you can create two functions with the same code but
different configurations. One function connects to a test database, and the other connects to a
production database. In this situation, you use environment variables to pass the hostname and
other connection details for the database to the function.

The following example shows how to define the database host and database name as environment
variables.

If you want your test environment to generate more debug information than the production
environment, you could set an environment variable to configure your test environment to use
more verbose logging or more detailed tracing.

For example, in your test environment, you could set an environment variable with the key
LOG_LEVEL and a value indicating a log level of debug or trace. In your Lambda function's code,
you can then use this environment variable to set the log level.

The following code examples in Python and Node.js illustrate how you can achieve this. These
examples assume your environment variable has a value of DEBUG in Python or debug in Node.js.

Python

Example Python code to set log level

import os
import logging

Example scenario for environment variables 237

https://aws.amazon.com/developer/tools/

AWS Lambda Developer Guide

Initialize the logger
logger = logging.getLogger()

Get the log level from the environment variable and default to INFO if not set
log_level = os.environ.get('LOG_LEVEL', 'INFO')

Set the log level
logger.setLevel(log_level)

def lambda_handler(event, context):
 # Produce some example log outputs
 logger.debug('This is a log with detailed debug information - shown only in test
 environment')
 logger.info('This is a log with standard information - shown in production and
 test environments')

Node.js (ES module format)

Example Node.js code to set log level

This example uses the winston logging library. Use npm to add this library to your function's
deployment package. For more information, see the section called “Creating a .zip deployment
package with dependencies”.

import winston from 'winston';

// Initialize the logger using the log level from environment variables, defaulting
 to INFO if not set
const logger = winston.createLogger({
 level: process.env.LOG_LEVEL || 'info',
 format: winston.format.json(),
 transports: [new winston.transports.Console()]
});

export const handler = async (event) => {
 // Produce some example log outputs
 logger.debug('This is a log with detailed debug information - shown only in test
 environment');
 logger.info('This is a log with standard information - shown in production and
 test environment');

};

Example scenario for environment variables 238

AWS Lambda Developer Guide

Retrieving Lambda environment variables

To retrieve environment variables in your function code, use the standard method for your
programming language.

Node.js

let region = process.env.AWS_REGION

Python

import os
 region = os.environ['AWS_REGION']

Note

In some cases, you may need to use the following format:

region = os.environ.get('AWS_REGION')

Ruby

region = ENV["AWS_REGION"]

Java

String region = System.getenv("AWS_REGION");

Go

var region = os.Getenv("AWS_REGION")

C#

string region = Environment.GetEnvironmentVariable("AWS_REGION");

Retrieve environment variables 239

AWS Lambda Developer Guide

PowerShell

$region = $env:AWS_REGION

Lambda stores environment variables securely by encrypting them at rest. You can configure
Lambda to use a different encryption key, encrypt environment variable values on the client side,
or set environment variables in an AWS CloudFormation template with AWS Secrets Manager.

Defined runtime environment variables

Lambda runtimes set several environment variables during initialization. Most of the environment
variables provide information about the function or runtime. The keys for these environment
variables are reserved and cannot be set in your function configuration.

Reserved environment variables

• _HANDLER – The handler location configured on the function.

• _X_AMZN_TRACE_ID – The X-Ray tracing header. This environment variable changes with each
invocation.

• This environment variable is not defined for OS-only runtimes (the provided runtime family).
You can set _X_AMZN_TRACE_ID for custom runtimes using the Lambda-Runtime-Trace-Id
response header from the Next invocation.

• For Java runtime versions 17 and later, this environment variable is not used. Instead, Lambda
stores tracing information in the com.amazonaws.xray.traceHeader system property.

• AWS_DEFAULT_REGION – The default AWS Region where the Lambda function is executed.

• AWS_REGION – The AWS Region where the Lambda function is executed. If defined, this value
overrides the AWS_DEFAULT_REGION.

• For more information about using the AWS Region environment variables with AWS SDKs, see
AWS Region in the AWS SDKs and Tools Reference Guide.

• AWS_EXECUTION_ENV – The runtime identifier, prefixed by AWS_Lambda_ (for example,
AWS_Lambda_java8). This environment variable is not defined for OS-only runtimes (the
provided runtime family).

• AWS_LAMBDA_FUNCTION_NAME – The name of the function.

• AWS_LAMBDA_FUNCTION_MEMORY_SIZE – The amount of memory available to the function in
MB.

Defined runtime environment variables 240

https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html#feature-region-sdk-compat

AWS Lambda Developer Guide

• AWS_LAMBDA_FUNCTION_VERSION – The version of the function being executed.

• AWS_LAMBDA_INITIALIZATION_TYPE – The initialization type of the function, which is on-
demand, provisioned-concurrency, or snap-start. For information, see Configuring
provisioned concurrency or Improving startup performance with Lambda SnapStart.

• AWS_LAMBDA_LOG_GROUP_NAME, AWS_LAMBDA_LOG_STREAM_NAME – The name of the Amazon
CloudWatch Logs group and stream for the function. The AWS_LAMBDA_LOG_GROUP_NAME and
AWS_LAMBDA_LOG_STREAM_NAME environment variables are not available in Lambda SnapStart
functions.

• AWS_ACCESS_KEY, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN –
The access keys obtained from the function's execution role.

• AWS_LAMBDA_RUNTIME_API – (Custom runtime) The host and port of the runtime API.

• LAMBDA_TASK_ROOT – The path to your Lambda function code.

• LAMBDA_RUNTIME_DIR – The path to runtime libraries.

The following additional environment variables aren't reserved and can be extended in your
function configuration.

Unreserved environment variables

• LANG – The locale of the runtime (en_US.UTF-8).

• PATH – The execution path (/usr/local/bin:/usr/bin/:/bin:/opt/bin).

• LD_LIBRARY_PATH – The system library path (/var/lang/lib:/lib64:/usr/lib64:
$LAMBDA_RUNTIME_DIR:$LAMBDA_RUNTIME_DIR/lib:$LAMBDA_TASK_ROOT:
$LAMBDA_TASK_ROOT/lib:/opt/lib).

• NODE_PATH – (Node.js) The Node.js library path (/opt/nodejs/node12/node_modules/:/
opt/nodejs/node_modules:$LAMBDA_RUNTIME_DIR/node_modules).

• PYTHONPATH – (Python) The Python library path ($LAMBDA_RUNTIME_DIR).

• GEM_PATH – (Ruby) The Ruby library path ($LAMBDA_TASK_ROOT/vendor/bundle/
ruby/3.3.0:/opt/ruby/gems/3.3.0).

• AWS_XRAY_CONTEXT_MISSING – For X-Ray tracing, Lambda sets this to LOG_ERROR to avoid
throwing runtime errors from the X-Ray SDK.

• AWS_XRAY_DAEMON_ADDRESS – For X-Ray tracing, the IP address and port of the X-Ray daemon.

Defined runtime environment variables 241

AWS Lambda Developer Guide

• AWS_LAMBDA_DOTNET_PREJIT – (.NET) Set this variable to enable or disable .NET specific
runtime optimizations. Values include always, never, and provisioned-concurrency. For
more information, see Configuring provisioned concurrency for a function.

• TZ – The environment's time zone (:UTC). The execution environment uses NTP to synchronize
the system clock.

The sample values shown reflect the latest runtimes. The presence of specific variables or their
values can vary on earlier runtimes.

Securing Lambda environment variables

For securing your environment variables, you can use server-side encryption to protect your data at
rest and client-side encryption to protect your data in transit.

Note

To increase database security, we recommend that you use AWS Secrets Manager instead of
environment variables to store database credentials. For more information, see Use Secrets
Manager secrets in Lambda functions.

Security at rest

Lambda always provides server-side encryption at rest with an AWS KMS key. By default, Lambda
uses an AWS managed key. If this default behavior suits your workflow, you don't need to set
up anything else. Lambda creates the AWS managed key in your account and manages the
permissions for you. AWS doesn't charge you to use this key.

If you prefer, you can provide an AWS KMS customer managed key instead. You might do this
to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage environment variables on the function.

Customer managed keys incur standard AWS KMS charges. For more information, see AWS Key
Management Service pricing.

Security in transit

Securing environment variables 242

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/

AWS Lambda Developer Guide

For additional security, you can enable helpers for encryption in transit, which ensures that your
environment variables are encrypted client-side for protection in transit.

To configure encryption for your environment variables

1. Use the AWS Key Management Service (AWS KMS) to create any customer managed keys for
Lambda to use for server-side and client-side encryption. For more information, see Creating
keys in the AWS Key Management Service Developer Guide.

2. Using the Lambda console, navigate to the Edit environment variables page.

a. Open the Functions page of the Lambda console.

b. Choose a function.

c. Choose Configuration, then choose Environment variables from the left navigation bar.

d. In the Environment variables section, choose Edit.

e. Expand Encryption configuration.

3. (Optional) Enable console encryption helpers to use client-side encryption to protect your data
in transit.

a. Under Encryption in transit, choose Enable helpers for encryption in transit.

b. For each environment variable that you want to enable console encryption helpers for,
choose Encrypt next to the environment variable.

c. Under AWS KMS key to encrypt in transit, choose a customer managed key that you
created at the beginning of this procedure.

d. Choose Execution role policy and copy the policy. This policy grants permission to your
function's execution role to decrypt the environment variables.

Save this policy to use in the last step of this procedure.

e. Add code to your function that decrypts the environment variables. To see an example,
choose Decrypt secrets snippet.

4. (Optional) Specify your customer managed key for encryption at rest.

a. Choose Use a customer master key.

b. Choose a customer managed key that you created at the beginning of this procedure.

5. Choose Save.

6. Set up permissions.
Securing environment variables 243

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

If you're using a customer managed key with server-side encryption, grant permissions to
any users or roles that you want to be able to view or manage environment variables on the
function. For more information, see Managing permissions to your server-side encryption KMS
key.

If you're enabling client-side encryption for security in transit, your function needs permission
to call the kms:Decrypt API operation. Add the policy that you saved previously in this
procedure to the function's execution role.

Managing permissions to your server-side encryption KMS key

No AWS KMS permissions are required for your user or the function's execution role to use the
default encryption key. To use a customer managed key, you need permission to use the key.
Lambda uses your permissions to create a grant on the key. This allows Lambda to use it for
encryption.

• kms:ListAliases – To view keys in the Lambda console.

• kms:CreateGrant, kms:Encrypt – To configure a customer managed key on a function.

• kms:Decrypt – To view and manage environment variables that are encrypted with a customer
managed key.

You can get these permissions from your AWS account or from a key's resource-based permissions
policy. ListAliases is provided by the managed policies for Lambda. Key policies grant the
remaining permissions to users in the Key users group.

Users without Decrypt permissions can still manage functions, but they can't view environment
variables or manage them in the Lambda console. To prevent a user from viewing environment
variables, add a statement to the user's permissions that denies access to the default key, a
customer managed key, or all keys.

Example IAM policy – Deny access by key ARN

JSON

{
 "Version": "2012-10-17",
 "Statement": [

Securing environment variables 244

AWS Lambda Developer Guide

 {
 "Sid": "VisualEditor0",
 "Effect": "Deny",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-east-2:111122223333:key/3be10e2d-
xmpl-4be4-bc9d-0405a71945cc"
 }
]
}

For details on managing key permissions, see Key policies in AWS KMS in the AWS Key Management
Service Developer Guide.

Securing environment variables 245

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

AWS Lambda Developer Guide

Giving Lambda functions access to resources in an Amazon VPC

With Amazon Virtual Private Cloud (Amazon VPC), you can create private networks in your AWS
account to host resources such as Amazon Elastic Compute Cloud (Amazon EC2) instances, Amazon
Relational Database Service (Amazon RDS) instances, and Amazon ElastiCache instances. You
can give your Lambda function access to resources hosted in an Amazon VPC by attaching your
function to the VPC through the private subnets that contain the resources. Follow the instructions
in the following sections to attach a Lambda function to an Amazon VPC using the Lambda
console, the AWS Command Line Interface (AWS CLI), or AWS SAM.

Note

Every Lambda function runs inside a VPC that is owned and managed by the Lambda
service. These VPCs are maintained automatically by Lambda and are not visible to
customers. Configuring your function to access other AWS resources in an Amazon VPC has
no effect on the Lambda-managed VPC your function runs inside.

Sections

• Required IAM permissions

• Attaching Lambda functions to an Amazon VPC in your AWS account

• Internet access when attached to a VPC

• IPv6 support

• Best practices for using Lambda with Amazon VPCs

• Understanding Hyperplane Elastic Network Interfaces (ENIs)

• Using IAM condition keys for VPC settings

• VPC tutorials

Required IAM permissions

To attach a Lambda function to an Amazon VPC in your AWS account, Lambda needs permissions
to create and manage the network interfaces it uses to give your function access to the resources in
the VPC.

Attaching functions to a VPC 246

AWS Lambda Developer Guide

The network interfaces that Lambda creates are known as Hyperplane Elastic Network Interfaces,
or Hyperplane ENIs. To learn more about these network interfaces, see the section called
“Understanding Hyperplane Elastic Network Interfaces (ENIs)”.

You can give your function the permissions it needs by attaching the AWS managed policy
AWSLambdaVPCAccessExecutionRole to your function's execution role. When you create a new
function in the Lambda console and attach it to a VPC, Lambda automatically adds this permissions
policy for you.

If you prefer to create your own IAM permissions policy, make sure to add all of the following
permissions and allow them on all resources ("Resource": "*"):

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSubnets

• ec2:DeleteNetworkInterface

• ec2:AssignPrivateIpAddresses

• ec2:UnassignPrivateIpAddresses

Note that your function's role only needs these permissions to create the network interfaces, not
to invoke your function. You can still invoke your function successfully when it’s attached to an
Amazon VPC, even if you remove these permissions from your function’s execution role.

To attach your function to a VPC, Lambda also needs to verify network resources using your IAM
user role. Ensure that your user role has the following IAM permissions:

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcs

• ec2:GetSecurityGroupsForVpc

Note

The Amazon EC2 permissions that you grant to your function's execution role are used
by the Lambda service to attach your function to a VPC. However, you're also implicitly

Required IAM permissions 247

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html

AWS Lambda Developer Guide

granting these permissions to your function's code. This means that your function code is
able to make these Amazon EC2 API calls. For advice on following security best practices,
see the section called “Security best practices”.

Attaching Lambda functions to an Amazon VPC in your AWS account

Attach your function to an Amazon VPC in your AWS account by using the Lambda console, the
AWS CLI or AWS SAM. If you're using the AWS CLI or AWS SAM, or attaching an existing function to
a VPC using the Lambda console, make sure that your function's execution role has the necessary
permissions listed in the previous section.

Lambda functions can't connect directly to a VPC with dedicated instance tenancy. To connect to
resources in a dedicated VPC, peer it to a second VPC with default tenancy.

Lambda console

To attach a function to an Amazon VPC when you create it

1. Open the Functions page of the Lambda console and choose Create function.

2. Under Basic information, for Function name, enter a name for your function.

3. Configure VPC settings for the function by doing the following:

a. Expand Advanced settings.

b. Select Enable VPC, and then select the VPC you want to attach the function to.

c. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack
subnets.

d. Choose the subnets and security groups to create the network interface for. If you
selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must have an
IPv4 CIDR block and an IPv6 CIDR block.

Note

To access private resources, connect your function to private subnets. If your
function needs internet access, see the section called “Internet access for VPC
functions”. Connecting a function to a public subnet doesn't give it internet
access or a public IP address.

Attaching Lambda functions to an Amazon VPC in your AWS account 248

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-dedicated-vpc/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Choose Create function.

To attach an existing function to an Amazon VPC

1. Open the Functions page of the Lambda console and select your function.

2. Choose the Configuration tab, then choose VPC.

3. Choose Edit.

4. Under VPC, select the Amazon VPC you want to attach your function to.

5. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

6. Choose the subnets and security groups to create the network interface for. If you selected
Allow IPv6 traffic for dual-stack subnets, all selected subnets must have an IPv4 CIDR
block and an IPv6 CIDR block.

Note

To access private resources, connect your function to private subnets. If your
function needs internet access, see the section called “Internet access for VPC
functions”. Connecting a function to a public subnet doesn't give it internet access
or a public IP address.

7. Choose Save.

AWS CLI

To attach a function to an Amazon VPC when you create it

• To create a Lambda function and attach it to a VPC, run the following CLI create-
function command.

aws lambda create-function --function-name my-function \
--runtime nodejs22.x --handler index.js --zip-file fileb://function.zip \
--role arn:aws:iam::123456789012:role/lambda-role \
--vpc-config
 Ipv6AllowedForDualStack=true,SubnetIds=subnet-071f712345678e7c8,subnet-07fd123456788a036,SecurityGroupIds=sg-085912345678492fb

Specify your own subnets and security groups and set Ipv6AllowedForDualStack to
true or false according to your use case.

Attaching Lambda functions to an Amazon VPC in your AWS account 249

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To attach an existing function to an Amazon VPC

• To attach an existing function to a VPC, run the following CLI update-function-
configuration command.

aws lambda update-function-configuration --function-name my-function \
--vpc-config Ipv6AllowedForDualStack=true,
 SubnetIds=subnet-071f712345678e7c8,subnet-07fd123456788a036,SecurityGroupIds=sg-085912345678492fb

To unattach your function from a VPC

• To unattach your function from a VPC, run the following update-function-
configurationCLI command with an empty list of VPC subnets and security groups.

aws lambda update-function-configuration --function-name my-function \
--vpc-config SubnetIds=[],SecurityGroupIds=[]

AWS SAM

To attach your function to a VPC

• To attach a Lambda function to an Amazon VPC, add the VpcConfig property to your
function definition as shown in the following example template. For more information
about this property, see AWS::Lambda::Function VpcConfig in the AWS CloudFormation User
Guide (the AWS SAM VpcConfig property is passed directly to the VpcConfig property of
an AWS CloudFormation AWS::Lambda::Function resource).

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Resources:
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: ./lambda_function/
 Handler: lambda_function.handler
 Runtime: python3.12
 VpcConfig:
 SecurityGroupIds:

Attaching Lambda functions to an Amazon VPC in your AWS account 250

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-vpcconfig.html

AWS Lambda Developer Guide

 - !Ref MySecurityGroup
 SubnetIds:
 - !Ref MySubnet1
 - !Ref MySubnet2
 Policies:
 - AWSLambdaVPCAccessExecutionRole

 MySecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security group for Lambda function
 VpcId: !Ref MyVPC

 MySubnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref MyVPC
 CidrBlock: 10.0.1.0/24

 MySubnet2:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref MyVPC
 CidrBlock: 10.0.2.0/24

 MyVPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: 10.0.0.0/16

For more information about configuring your VPC in AWS SAM, see AWS::EC2::VPC in the
AWS CloudFormation User Guide.

Internet access when attached to a VPC

By default, Lambda functions have access to the public internet. When you attach your function
to a VPC, it can only access resources available within that VPC. To give your function access to the
internet, you also need to configure the VPC to have internet access. To learn more, see the section
called “Internet access for VPC functions”.

Internet access when attached to a VPC 251

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc.html

AWS Lambda Developer Guide

IPv6 support

Your function can connect to resources in dual-stack VPC subnets over IPv6. This option is
turned off by default. To allow outbound IPv6 traffic, use the console or the --vpc-config
Ipv6AllowedForDualStack=true option with the create-function or update-function-
configuration command.

Note

To allow outbound IPv6 traffic in a VPC, all of the subnets that are connected to the
function must be dual-stack subnets. Lambda doesn't support outbound IPv6 connections
for IPv6-only subnets in a VPC or outbound IPv6 connections for functions that are not
connected to a VPC.

You can update your function code to explicitly connect to subnet resources over IPv6. The
following Python example opens a socket and connects to an IPv6 server.

Example — Connect to IPv6 server

def connect_to_server(event, context):
 server_address = event['host']
 server_port = event['port']
 message = event['message']
 run_connect_to_server(server_address, server_port, message)

def run_connect_to_server(server_address, server_port, message):
 sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM, 0)
 try:
 # Send data
 sock.connect((server_address, int(server_port), 0, 0))
 sock.sendall(message.encode())
 BUFF_SIZE = 4096
 data = b''
 while True:
 segment = sock.recv(BUFF_SIZE)
 data += segment
 # Either 0 or end of data
 if len(segment) < BUFF_SIZE:
 break
 return data

IPv6 support 252

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

 finally:
 sock.close()

Best practices for using Lambda with Amazon VPCs

To ensure that your Lambda VPC configuration meets best practice guidelines, follow the advice in
the following sections.

Security best practices

To attach your Lambda function to a VPC, you need to give your function’s execution role a number
of Amazon EC2 permissions. These permissions are required to create the network interfaces your
function uses to access the resources in the VPC. However, these permissions are also implicitly
granted to your function’s code. This means that your function code has permission to make these
Amazon EC2 API calls.

To follow the principle of least-privilege access, add a deny policy like the following example to
your function’s execution role. This policy prevents your function from making calls to the Amazon
EC2 APIs that the Lambda service uses to attach your function to a VPC.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSubnets",
 "ec2:DetachNetworkInterface",
 "ec2:AssignPrivateIpAddresses",
 "ec2:UnassignPrivateIpAddresses"
],
 "Resource": ["*"],
 "Condition": {
 "ArnEquals": {
 "lambda:SourceFunctionArn": [

Best practices for using Lambda with Amazon VPCs 253

AWS Lambda Developer Guide

 "arn:aws:lambda:us-
west-2:123456789012:function:my_function"
]
 }
 }
 }
]
}

AWS provides security groups and network Access Control Lists (ACLs) to increase security in your
VPC. Security groups control inbound and outbound traffic for your resources, and network ACLs
control inbound and outbound traffic for your subnets. Security groups provide enough access
control for most subnets. You can use network ACLs if you want an additional layer of security for
your VPC. For general guidelines on security best practices when using Amazon VPCs, see Security
best practices for your VPC in the Amazon Virtual Private Cloud User Guide.

Performance best practices

When you attach your function to a VPC, Lambda checks to see if there is an available network
resource (Hyperplane ENI) it can use to connect to. Hyperplane ENIs are associated with a particular
combination of security groups and VPC subnets. If you’ve already attached one function to a VPC,
specifying the same subnets and security groups when you attach another function means that
Lambda can share the network resources and avoid the need to create a new Hyperplane ENI. For
more information about Hyperplane ENIs and their lifecycle, see the section called “Understanding
Hyperplane Elastic Network Interfaces (ENIs)”.

Understanding Hyperplane Elastic Network Interfaces (ENIs)

A Hyperplane ENI is a managed resource that acts as a network interface between your Lambda
function and the resources you want your function to connect to. The Lambda service creates and
manages these ENIs automatically when you attach your function to a VPC.

Hyperplane ENIs are not directly visible to you, and you don’t need to configure or manage them.
However, knowing how they work can help you to understand your function’s behavior when you
attach it to a VPC.

The first time you attach a function to a VPC using a particular subnet and security group
combination, Lambda creates a Hyperplane ENI. Other functions in your account that use the
same subnet and security group combination can also use this ENI. Wherever possible, Lambda

Understanding Hyperplane Elastic Network Interfaces (ENIs) 254

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

AWS Lambda Developer Guide

reuses existing ENIs to optimize resource utilization and minimize the creation of new ENIs.
Each Hyperplane ENI supports up to 65,000 connections/ports. If the number of connections
exceeds this limit, Lambda scales the number of ENIs automatically based on network traffic and
concurrency requirements.

For new functions, while Lambda is creating a Hyperplane ENI, your function remains in the
Pending state and you can’t invoke it. Your function transitions to the Active state only when the
Hyperplane ENI is ready, which can take several minutes. For existing functions, you can’t perform
additional operations that target the function, such as creating versions or updating the function’s
code, but you can continue to invoke previous versions of the function.

As part of managing the ENI lifecycle, Lambda may delete and recreate ENIs to load balance
network traffic across ENIs or to address issues found in ENI health-checks. Additionally, if a
Lambda function remains idle for 30 days, Lambda reclaims any unused Hyperplane ENIs and sets
the function state to Inactive. The next invocation attempt will fail, and the function re-enters
the Pending state until Lambda completes the creation or allocation of a Hyperplane ENI. We
recommend that your design doesn't rely on the persistence of ENIs.

When you update a function to remove its VPC configuration, Lambda requires up to 20 minutes
to delete the attached Hyperplane ENI. Lambda only deletes the ENI if no other function (or
published function version) is using that Hyperplane ENI.

Lambda relies on permissions in the function execution role to delete the Hyperplane ENI. If you
delete the execution role before Lambda deletes the Hyperplane ENI, Lambda won't be able to
delete the Hyperplane ENI. You can manually perform the deletion.

Using IAM condition keys for VPC settings

You can use Lambda-specific condition keys for VPC settings to provide additional permission
controls for your Lambda functions. For example, you can require that all functions in your
organization are connected to a VPC. You can also specify the subnets and security groups that the
function's users can and can't use.

Lambda supports the following condition keys in IAM policies:

• lambda:VpcIds – Allow or deny one or more VPCs.

• lambda:SubnetIds – Allow or deny one or more subnets.

• lambda:SecurityGroupIds – Allow or deny one or more security groups.

Using IAM condition keys for VPC settings 255

AWS Lambda Developer Guide

The Lambda API operations CreateFunction and UpdateFunctionConfiguration support these
condition keys. For more information about using condition keys in IAM policies, see IAM JSON
Policy Elements: Condition in the IAM User Guide.

Tip

If your function already includes a VPC configuration from a previous API request, you can
send an UpdateFunctionConfiguration request without the VPC configuration.

Example policies with condition keys for VPC settings

The following examples demonstrate how to use condition keys for VPC settings. After you create
a policy statement with the desired restrictions, append the policy statement for the target user or
role.

Ensure that users deploy only VPC-connected functions

To ensure that all users deploy only VPC-connected functions, you can deny function create and
update operations that don't include a valid VPC ID.

Note that VPC ID is not an input parameter to the CreateFunction or
UpdateFunctionConfiguration request. Lambda retrieves the VPC ID value based on the
subnet and security group parameters.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceVPCFunction",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "Null": {
 "lambda:VpcIds": "true"

Using IAM condition keys for VPC settings 256

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Lambda Developer Guide

 }
 }
 }
]
}

Deny users access to specific VPCs, subnets, or security groups

To deny users access to specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example denies users access to vpc-1 and vpc-2.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceOutOfVPC",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lambda:VpcIds": [
 "vpc-1",
 "vpc-2"
]
 }
 }
 }
]
}

To deny users access to specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example denies users access to subnet-1 and
subnet-2.

Using IAM condition keys for VPC settings 257

AWS Lambda Developer Guide

{
 "Sid": "EnforceOutOfSubnet",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "lambda:SubnetIds": ["subnet-1", "subnet-2"]
 }
 }
 }

To deny users access to specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example denies users access to sg-1 and
sg-2.

{
 "Sid": "EnforceOutOfSecurityGroups",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "lambda:SecurityGroupIds": ["sg-1", "sg-2"]
 }
 }
 }
]
}

Allow users to create and update functions with specific VPC settings

To allow users to access specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example allows users to access vpc-1 and vpc-2.

Using IAM condition keys for VPC settings 258

AWS Lambda Developer Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceStayInSpecificVpc",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lambda:VpcIds": [
 "vpc-1",
 "vpc-2"
]
 }
 }
 }
]
}

To allow users to access specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example allows users to access subnet-1 and
subnet-2.

{
 "Sid": "EnforceStayInSpecificSubnets",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "lambda:SubnetIds": ["subnet-1", "subnet-2"]
 }

Using IAM condition keys for VPC settings 259

AWS Lambda Developer Guide

 }
 }

To allow users to access specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example allows users to access sg-1 and
sg-2.

{
 "Sid": "EnforceStayInSpecificSecurityGroup",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "lambda:SecurityGroupIds": ["sg-1", "sg-2"]
 }
 }
 }
]
}

VPC tutorials

In the following tutorials, you connect a Lambda function to resources in your VPC.

• Tutorial: Using a Lambda function to access Amazon RDS in an Amazon VPC

• Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC

VPC tutorials 260

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/dg/LambdaRedis.html

AWS Lambda Developer Guide

Giving Lambda functions access to a resource in an Amazon
VPC in another account

You can give your AWS Lambda function access to a resource in a Amazon VPC in Amazon Virtual
Private Cloud managed by another account, without exposing either VPC to the internet. This
access pattern allows you to share data with other organizations using AWS. Using this access
pattern, you can share data between VPCs with a greater level of security and performance than
over the internet. Configure your Lambda function to use a Amazon VPC peering connection to
access these resources.

Warning

When you allow access between accounts or VPCs, check that your plan meets the security
requirements of the respective organizations that manage these accounts. Following the
instructions in this document will affect the security posture of your resources.

In this tutorial, you connect two accounts together with a peering connection using IPv4. You
configure a Lambda function that is not already connected to a Amazon VPC. You configure DNS
resolution to connect your function to resources that do not provide static IPs. To adapt these
instructions to other peering scenarios, consult the VPC Peering Guide.

Prerequisites

To give a Lambda function access to a resource in another acccount, you must have:

• A Lambda function, configured to authenticate with and then read from your resource.

• A resource in another account, such as an Amazon RDS cluster, available through Amazon VPC.

• Credentials for your Lambda function's account and your resource's account. If you are not
authorized to use your resource's account, contact an authorized user to prepare that account.

• Permission to create and update a VPC (and supporting Amazon VPC resources) to associate with
your Lambda function.

• Permission to update the execution role and VPC configuration for your Lambda function.

• Permission to create a VPC peering connection in your Lambda function's account.

• Permission to accept a VPC peering connection in your resource's account.

Attaching functions to resources in another account 261

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Lambda Developer Guide

• Permission to update the configuration of your resource's VPC (and supporting Amazon VPC
resources).

• Permission to invoke your Lambda function.

Create an Amazon VPC in your function's account

Create an Amazon VPC, subnets, route tables, and a security group in your Lambda function's
account.

To create a VPC, subnets, and other VPC resources using the console

1. Open the Amazon VPC Console at https://console.aws.amazon.com/vpc/.

2. On the dashboard, choose Create VPC.

3. For IPv4 CIDR block, provide a private CIDR block. Your CIDR block must not overlap with
blocks used in your resource's VPC. Don't pick a block your resources' VPC uses to assign IPs
to resources or a block already defined in the route tables in your resources VPC. For more
information about defining appropriate CIDR blocks, see VPC CIDR blocks.

4. Choose Customize AZs.

5. Select the same AZs as your resource.

6. For Number of public subnets, choose 0.

7. For VPC endpoints, choose None.

8. Choose Create VPC.

Grant VPC permissions to your function's execution role

Attach AWSLambdaVPCAccessExecutionRole to your function’s execution role to allow it to connect
to VPCs.

To grant VPC permissions to your function's execution role

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Choose Configuration.

4. Choose Permissions.

Create an Amazon VPC in your function's account 262

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-cidr-blocks.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. Under Role name, choose the execution role.

6. In the Permissions policies section, choose Add permissions.

7. In the dropdown list, choose Attach policies.

8. In the search box, enter AWSLambdaVPCAccessExecutionRole.

9. To the left of the policy name, choose the checkbox.

10. Choose Add permissions.

To attach your function to your Amazon VPC

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Choose the Configuration tab, then choose VPC.

4. Choose Edit.

5. Under VPC, select your VPC

6. Under Subnets, choose your subnets.

7. Under Security groups, choose the default security group for your VPC.

8. Choose Save.

Create a VPC peering connection request

Create a VPC peering connection request from your function's VPC (the requester VPC) to your
resource's VPC (the accepter VPC).

To request a VPC peering connection from your function's VPC

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Peering connections.

3. Choose Create peering connection.

4. For VPC ID (Requester), select your function's VPC.

5. For Account ID, enter the ID of your resource's account.

6. For VPC ID (Accepter), enter your resource's VPC.

Create a VPC peering connection request 263

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

Prepare your resource's account

To create your peering connection and prepare your resource's VPC to use the connection, log in to
your resource's account with a role that holds the permissions listed in the prerequisites. The steps
to log in may be different based on how the account is secured. For more information about how to
sign in to an AWS account, see the AWS Sign-in User Guide. In your resource's account, perform the
following procedures.

To accept the VPC peering connection request

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Peering connections.

3. Select the pending VPC peering connection (the status is pending-acceptance).

4. Choose Actions

5. From the dropdown list, choose Accept request.

6. When prompted for confirmation, choose Accept request.

7. Choose Modify my route tables now to add a route to the main route table for your VPC so
that you can send and receive traffic across the peering connection.

Inspect the route tables for the resource's VPC. The route generated by Amazon VPC might not
establish connectivity, based on how your resource's VPC is set up. Check for conflicts between the
new route and existing configuration for the VPC. For more information about troubleshooting, see
Troubleshoot a VPC peering connection in the Amazon Virtual Private Cloud VPC Peering Guide.

To update the security group for your resource

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Security groups.

3. Select the security group for your resource.

4. Choose Actions.

5. From the dropdown list, choose Edit inbound rules.

6. Choose Add rule.

7. For Source enter your function's account ID and security group ID, separated by a forward
slash (for example, 111122223333/sg-1a2b3c4d).

8. Choose Edit outbound rules.

Prepare your resource's account 264

https://docs.aws.amazon.com/signin/latest/userguide/what-is-sign-in.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/peering/troubleshoot-vpc-peering-connections.html
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

9. Check whether outbound traffic is restricted. Default VPC settings allow all outbound traffic. If
outbound traffic is restricted, continue to the next step.

10. Choose Add rule.

11. For Destination enter your function's account ID and security group ID, separated by a forward
slash (for example, 111122223333/sg-1a2b3c4d).

12. Choose Save rules.

To enable DNS resolution for your peering connection

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Peering connections.

3. Select your peering connection.

4. Choose Actions.

5. Choose Edit DNS settings.

6. Below Accepter DNS resolution, select Allow requester VPC to resolve DNS of accepter VPC
hosts to private IP.

7. Choose Save changes.

Update VPC configuration in your function's account

Log in to your function's account, then update the VPC configuration.

To add a route for your VPC peering connection

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Route tables.

3. Select the check box next to the name of the route table for the subnet you associated with
your function.

4. Choose Actions.

5. Choose Edit routes.

6. Choose Add route.

7. For Destination, enter the CIDR block for your resource's VPC.

8. For Target, select your VPC peering connection.

9. Choose Save changes.

Update VPC configuration in your function's account 265

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

For more information about considerations you may encounter while updating your route tables,
consult Update your route tables for a VPC peering connection.

To update the security group for your Lambda function

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Security groups.

3. Choose Actions.

4. Choose Edit inbound rules.

5. Choose Add rule.

6. For Source enter your resource's account ID and security group ID, separated by a forward
slash (for example, 111122223333/sg-1a2b3c4d).

7. Choose Save rules.

To enable DNS resolution for your peering connection

1. Open the https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Peering connections.

3. Select your peering connection.

4. Choose Actions.

5. Choose Edit DNS settings.

6. Below Requester DNS resolution, select Allow accepter VPC to resolve DNS of requester VPC
hosts to private IP.

7. Choose Save changes.

Test your function

To create a test event and inspect your function's output

1. In the Code source pane, choose Test.

2. Select Create new event.

3. In the Event JSON panel, replace the default values with an input appropriate for your Lambda
function.

4. Choose Invoke.

Test your function 266

https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-routing.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

5. In the Execution results tab, confirm that Response contains your expected output.

Additionally, you can check your function's logs to verify the logs are as you expect.

To view your function's invocation records in CloudWatch Logs

1. Choose the Monitor tab.

2. Choose View CloudWatch logs.

3. In the Log streams tab, choose the log stream for your function's invocation.

4. Confirm your logs are as you expect.

Test your function 267

AWS Lambda Developer Guide

Enable internet access for VPC-connected Lambda functions

By default, Lambda functions run in a Lambda-managed VPC that has internet access. To access
resources in a VPC in your account, you can add a VPC configuration to a function. This restricts the
function to resources within that VPC, unless the VPC has internet access. This page explains how
to provide internet access to VPC-connected Lambda functions.

I don't have a VPC yet

Create the VPC

The Create VPC workflow creates all VPC resources required for a Lambda function to access the
public internet from a private subnet, including subnets, NAT gateway, internet gateway, and route
table entries.

To create the VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. On the dashboard, choose Create VPC.

3. For Resources to create, choose VPC and more.

4. Configure the VPC

a. For Name tag auto-generation, enter a name for the VPC.

b. For IPv4 CIDR block, you can keep the default suggestion, or alternatively you can enter
the CIDR block required by your application or network.

c. If your application communicates by using IPv6 addresses, choose IPv6 CIDR block,
Amazon-provided IPv6 CIDR block.

5. Configure the subnets

a. For Number of Availability Zones, choose 2. We recommend at least two AZs for high
availability.

b. For Number of public subnets, choose 2.

c. For Number of private subnets, choose 2.

d. You can keep the default CIDR block for the public subnet, or alternatively you can expand
Customize subnet CIDR blocks and enter a CIDR block. For more information, see Subnet
CIDR blocks .

6. For NAT gateways, choose 1 per AZ to improve resiliency.

Internet access for VPC functions 268

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/subnet-sizing.html
https://docs.aws.amazon.com/vpc/latest/userguide/subnet-sizing.html

AWS Lambda Developer Guide

7. For Egress only internet gateway, choose Yes if you opted to include an IPv6 CIDR block.

8. For VPC endpoints, keep the default (S3 Gateway). There is no cost for this option. For more
information, see Types of VPC endpoints for Amazon S3.

9. For DNS options, keep the default settings.

10. Choose Create VPC.

Configure the Lambda function

To configure a VPC when you create a function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, for Function name, enter a name for your function.

4. Expand Advanced settings.

5. Select Enable VPC, and then choose a VPC.

6. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

7. For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.

9. Choose Create function.

Lambda automatically creates an execution role with the AWSLambdaVPCAccessExecutionRole
AWS managed policy. The permissions in this policy are required only to create elastic network
interfaces for the VPC configuration, not to invoke your function. To apply least-privilege
permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy from your execution
role after you create the function and VPC configuration. For more information, see Required IAM
permissions.

Internet access for VPC functions 269

https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#types-of-vpc-endpoints-for-s3
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html

AWS Lambda Developer Guide

To configure a VPC for an existing function

To add a VPC configuration to an existing function, the function's execution role
must have permission to create and manage elastic network interfaces. The
AWSLambdaVPCAccessExecutionRole AWS managed policy includes the required permissions. To
apply least-privilege permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy
from your execution role after you create the VPC configuration.

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab, and then choose VPC.

4. Under VPC, choose Edit.

5. Select the VPC.

6. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

7. For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.

9. Choose Save.

Test the function

Use the following sample code to confirm that your VPC-connected function can reach the public
internet. If successful, the code returns a 200 status code. If unsuccessful, the function times out.

Node.js

1. In the Code source pane on the Lambda console, paste the following code into the
index.mjs file. The function makes an HTTP GET request to a public endpoint and returns
the HTTP response code to test if the function has access to the public internet.

Internet access for VPC functions 270

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Example — HTTP request with async/await

const url = "https://aws.amazon.com/";

export const handler = async(event) => {
 try {
 const res = await fetch(url);
 console.info("status", res.status);
 return res.status;
 }
 catch (e) {
 console.error(e);
 return 500;
 }
};

2. In the DEPLOY section, choose Deploy to update your function's code:

3. Choose the Test tab.

Internet access for VPC functions 271

AWS Lambda Developer Guide

4. Choose Test.

5. The function returns a 200 status code. This means that the function has outbound
internet access.

If the function can't reach the public internet, you get an error message like this:

{
 "errorMessage": "2024-04-11T17:22:20.857Z abe12jlc-640a-8157-0249-9be825c2y110
 Task timed out after 3.01 seconds"
}

Python

1. In the Code source pane on the Lambda console, paste the following code into the
lambda_function.py file. The function makes an HTTP GET request to a public endpoint
and returns the HTTP response code to test if the function has access to the public internet.

Internet access for VPC functions 272

AWS Lambda Developer Guide

import urllib.request

def lambda_handler(event, context):
 try:
 response = urllib.request.urlopen('https://aws.amazon.com')
 status_code = response.getcode()
 print('Response Code:', status_code)
 return status_code
 except Exception as e:
 print('Error:', e)
 raise e

2. In the DEPLOY section, choose Deploy to update your function's code:

3. Choose the Test tab.

4. Choose Test.

Internet access for VPC functions 273

AWS Lambda Developer Guide

5. The function returns a 200 status code. This means that the function has outbound
internet access.

If the function can't reach the public internet, you get an error message like this:

{
 "errorMessage": "2024-04-11T17:22:20.857Z abe12jlc-640a-8157-0249-9be825c2y110
 Task timed out after 3.01 seconds"
}

I already have a VPC

If you already have a VPC but you need to configure public internet access for a Lambda function,
follow these steps. This procedure assumes that your VPC has at least two subnets. If you don't
have two subnets, see Create a subnet in the Amazon VPC User Guide.

Verify the route table configuration

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose the VPC ID.

3. Scroll down to the Resource map section. Note the route table mappings. Open each route
table that is mapped to a subnet.

Internet access for VPC functions 274

https://docs.aws.amazon.com/vpc/latest/userguide/create-subnets.html
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

4. Scroll down to the Routes tab. Review the routes to determine if your VPC has both of the
following route tables. Each of these requirements must be satisfied by a separate route table.

• Internet-bound traffic (0.0.0.0/0 for IPv4, ::/0 for IPv6) is routed to an internet gateway
(igw-xxxxxxxxxx). This means that the subnet associated with the route table is a public
subnet.

Note

If your subnet doesn't have an IPv6 CIDR block, you will only see the IPv4 route
(0.0.0.0/0).

Internet access for VPC functions 275

AWS Lambda Developer Guide

Example public subnet route table

• Internet-bound traffic for IPv4 (0.0.0.0/0) is routed to a NAT gateway (nat-xxxxxxxxxx)
that is associated with a public subnet. This means that the subnet is a private subnet that
can access the internet through the NAT gateway.

Note

If your subnet has an IPv6 CIDR block, the route table must also route internet-
bound IPv6 traffic (::/0) to an egress-only internet gateway (eigw-xxxxxxxxxx).
If your subnet doesn't have an IPv6 CIDR block, you will only see the IPv4 route
(0.0.0.0/0).

Internet access for VPC functions 276

AWS Lambda Developer Guide

Example private subnet route table

5. Repeat the previous step until you have reviewed each route table associated with a subnet
in your VPC and confirmed that you have a route table with an internet gateway and a route
table with a NAT gateway.

If you don't have two route tables, one with a route to an internet gateway and one with a
route to a NAT gateway, follow these steps to create the missing resources and route table
entries.

Create a route table

Follow these steps to create a route table and associate it with a subnet.

To create a custom route table using the Amazon VPC console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Route tables.

3. Choose Create route table.

4. (Optional) For Name, enter a name for your route table.

5. For VPC, choose your VPC.

6. (Optional) To add a tag, choose Add new tag and enter the tag key and tag value.

7. Choose Create route table.

Internet access for VPC functions 277

https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

8. On the Subnet associations tab, choose Edit subnet associations.

9. Select the check box for the subnet to associate with the route table.

10. Choose Save associations.

Create an internet gateway

Follow these steps to create an internet gateway, attach it to your VPC, and add it to your public
subnet's route table.

To create an internet gateway

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Internet gateways.

3. Choose Create internet gateway.

4. (Optional) Enter a name for your internet gateway.

5. (Optional) To add a tag, choose Add new tag and enter the tag key and value.

6. Choose Create internet gateway.

7. Choose Attach to a VPC from the banner at the top of the screen, select an available VPC, and
then choose Attach internet gateway.

8. Choose the VPC ID.

Internet access for VPC functions 278

https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

9. Choose the VPC ID again to open the VPC details page.

10. Scroll down to the Resource map section and then choose a subnet. The subnet details are
displayed in a new tab.

Internet access for VPC functions 279

AWS Lambda Developer Guide

11. Choose the link under Route table.

12. Choose the Route table ID to open the route table details page.

Internet access for VPC functions 280

AWS Lambda Developer Guide

13. Under Routes, choose Edit routes.

14. Choose Add route, and then enter 0.0.0.0/0 in the Destination box.

15. For Target, select Internet gateway, and then choose the internet gateway that you created
earlier. If your subnet has an IPv6 CIDR block, you must also add a route for ::/0 to the same
internet gateway.

Internet access for VPC functions 281

AWS Lambda Developer Guide

16. Choose Save changes.

Create a NAT gateway

Follow these steps to create a NAT gateway, associate it with a public subnet, and then add it to
your private subnet's route table.

To create a NAT gateway and associate it with a public subnet

1. In the navigation pane, choose NAT gateways.

2. Choose Create NAT gateway.

3. (Optional) Enter a name for your NAT gateway.

4. For Subnet, select a public subnet in your VPC. (A public subnet is a subnet that has a direct
route to an internet gateway in its route table.)

Note

NAT gateways are associated with a public subnet, but the route table entry is in the
private subnet.

5. For Elastic IP allocation ID, select an elastic IP address or choose Allocate Elastic IP.

6. Choose Create NAT gateway.

Internet access for VPC functions 282

AWS Lambda Developer Guide

To add a route to the NAT gateway in the private subnet's route table

1. In the navigation pane, choose Subnets.

2. Select a private subnet in your VPC. (A private subnet is a subnet that doesn't have a route to
an internet gateway in its route table.)

3. Choose the link under Route table.

4. Choose the Route table ID to open the route table details page.

5. Scroll down and choose the Routes tab, then choose Edit routes

Internet access for VPC functions 283

AWS Lambda Developer Guide

6. Choose Add route, and then enter 0.0.0.0/0 in the Destination box.

7. For Target, select NAT gateway, and then choose the NAT gateway that you created earlier.

8. Choose Save changes.

Create an egress-only internet gateway (IPv6 only)

Follow these steps to create an egress-only internet gateway and add it to your private subnet's
route table.

Internet access for VPC functions 284

AWS Lambda Developer Guide

To create an egress-only internet gateway

1. In the navigation pane, choose Egress-only internet gateways.

2. Choose Create egress only internet gateway.

3. (Optional) Enter a name.

4. Select the VPC in which to create the egress-only internet gateway.

5. Choose Create egress only internet gateway.

6. Choose the link under Attached VPC ID.

7. Choose the link under VPC ID to open the VPC details page.

8. Scroll down to the Resource map section and then choose a private subnet. (A private subnet
is a subnet that doesn't have a route to an internet gateway in its route table.) The subnet
details are displayed in a new tab.

9. Choose the link under Route table.

Internet access for VPC functions 285

AWS Lambda Developer Guide

10. Choose the Route table ID to open the route table details page.

11. Under Routes, choose Edit routes.

12. Choose Add route, and then enter ::/0 in the Destination box.

Internet access for VPC functions 286

AWS Lambda Developer Guide

13. For Target, select Egress Only Internet Gateway, and then choose the gateway that you
created earlier.

14. Choose Save changes.

Configure the Lambda function

To configure a VPC when you create a function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, for Function name, enter a name for your function.

4. Expand Advanced settings.

5. Select Enable VPC, and then choose a VPC.

6. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

7. For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.

9. Choose Create function.

Internet access for VPC functions 287

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Lambda automatically creates an execution role with the AWSLambdaVPCAccessExecutionRole
AWS managed policy. The permissions in this policy are required only to create elastic network
interfaces for the VPC configuration, not to invoke your function. To apply least-privilege
permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy from your execution
role after you create the function and VPC configuration. For more information, see Required IAM
permissions.

To configure a VPC for an existing function

To add a VPC configuration to an existing function, the function's execution role
must have permission to create and manage elastic network interfaces. The
AWSLambdaVPCAccessExecutionRole AWS managed policy includes the required permissions. To
apply least-privilege permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy
from your execution role after you create the VPC configuration.

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab, and then choose VPC.

4. Under VPC, choose Edit.

5. Select the VPC.

6. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

7. For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.

9. Choose Save.

Test the function

Use the following sample code to confirm that your VPC-connected function can reach the public
internet. If successful, the code returns a 200 status code. If unsuccessful, the function times out.

Internet access for VPC functions 288

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Node.js

1. In the Code source pane on the Lambda console, paste the following code into the
index.mjs file. The function makes an HTTP GET request to a public endpoint and returns
the HTTP response code to test if the function has access to the public internet.

Example — HTTP request with async/await

const url = "https://aws.amazon.com/";

export const handler = async(event) => {
 try {
 const res = await fetch(url);
 console.info("status", res.status);
 return res.status;
 }
 catch (e) {
 console.error(e);
 return 500;
 }
};

2. In the DEPLOY section, choose Deploy to update your function's code:

3. Choose the Test tab.

Internet access for VPC functions 289

AWS Lambda Developer Guide

4. Choose Test.

5. The function returns a 200 status code. This means that the function has outbound
internet access.

If the function can't reach the public internet, you get an error message like this:

{
 "errorMessage": "2024-04-11T17:22:20.857Z abe12jlc-640a-8157-0249-9be825c2y110
 Task timed out after 3.01 seconds"
}

Python

1. In the Code source pane on the Lambda console, paste the following code into the
lambda_function.py file. The function makes an HTTP GET request to a public endpoint
and returns the HTTP response code to test if the function has access to the public internet.

Internet access for VPC functions 290

AWS Lambda Developer Guide

import urllib.request

def lambda_handler(event, context):
 try:
 response = urllib.request.urlopen('https://aws.amazon.com')
 status_code = response.getcode()
 print('Response Code:', status_code)
 return status_code
 except Exception as e:
 print('Error:', e)
 raise e

2. In the DEPLOY section, choose Deploy to update your function's code:

3. Choose the Test tab.

4. Choose Test.

Internet access for VPC functions 291

AWS Lambda Developer Guide

5. The function returns a 200 status code. This means that the function has outbound
internet access.

If the function can't reach the public internet, you get an error message like this:

{
 "errorMessage": "2024-04-11T17:22:20.857Z abe12jlc-640a-8157-0249-9be825c2y110
 Task timed out after 3.01 seconds"
}

Internet access for VPC functions 292

AWS Lambda Developer Guide

Connecting inbound interface VPC endpoints for Lambda

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a connection between your VPC and Lambda. You can use this connection to invoke your
Lambda function without crossing the public internet.

To establish a private connection between your VPC and Lambda, create an interface VPC
endpoint. Interface endpoints are powered by AWS PrivateLink, which enables you to privately
access Lambda APIs without an internet gateway, NAT device, VPN connection, or AWS Direct
Connect connection. Instances in your VPC don't need public IP addresses to communicate with
Lambda APIs. Traffic between your VPC and Lambda does not leave the AWS network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets. A
network interface provides a private IP address that serves as an entry point for traffic to Lambda.

Sections

• Considerations for Lambda interface endpoints

• Creating an interface endpoint for Lambda

• Creating an interface endpoint policy for Lambda

Considerations for Lambda interface endpoints

Before you set up an interface endpoint for Lambda, be sure to review Interface endpoint
properties and limitations in the Amazon VPC User Guide.

You can call any of the Lambda API operations from your VPC. For example, you can invoke the
Lambda function by calling the Invoke API from within your VPC. For the full list of Lambda APIs,
see Actions in the Lambda API reference.

use1-az3 is a limited capacity Region for Lambda VPC functions. You shouldn't use subnets in this
availability zone with your Lambda functions because this can result in reduced zonal redundancy
in the event of an outage.

Keep-alive for persistent connections

Lambda purges idle connections over time, so you must use a keep-alive directive to maintain
persistent connections. Attempting to reuse an idle connection when invoking a function results in
a connection error. To maintain your persistent connection, use the keep-alive directive associated

Inbound networking 293

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/lambda/latest/dg/API_Operations.html

AWS Lambda Developer Guide

with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js in the AWS
SDK for JavaScript Developer Guide.

Billing Considerations

There is no additional cost to access a Lambda function through an interface endpoint. For more
Lambda pricing information, see AWS Lambda Pricing.

Standard pricing for AWS PrivateLink applies to interface endpoints for Lambda. Your AWS account
is billed for every hour an interface endpoint is provisioned in each Availability Zone and for data
processed through the interface endpoint. For more interface endpoint pricing information, see
AWS PrivateLink pricing.

VPC Peering Considerations

You can connect other VPCs to the VPC with interface endpoints using VPC peering. VPC peering is
a networking connection between two VPCs. You can establish a VPC peering connection between
your own two VPCs, or with a VPC in another AWS account. The VPCs can also be in two different
AWS Regions.

Traffic between peered VPCs stays on the AWS network and does not traverse the public internet.
Once VPCs are peered, resources like Amazon Elastic Compute Cloud (Amazon EC2) instances,
Amazon Relational Database Service (Amazon RDS) instances, or VPC-enabled Lambda functions in
both VPCs can access the Lambda API through interface endpoints created in the one of the VPCs.

Creating an interface endpoint for Lambda

You can create an interface endpoint for Lambda using either the Amazon VPC console or the AWS
Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint in
the Amazon VPC User Guide.

To create an interface endpoint for Lambda (console)

1. Open the Endpoints page of the Amazon VPC console.

2. Choose Create Endpoint.

3. For Service category, verify that AWS services is selected.

4. For Service Name, choose com.amazonaws.region.lambda. Verify that the Type is Interface.

5. Choose a VPC and subnets.

Creating an interface endpoint for Lambda 294

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/privatelink/pricing/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://console.aws.amazon.com/vpc/home?#Endpoints

AWS Lambda Developer Guide

6. To enable private DNS for the interface endpoint, select the Enable DNS Name check box. We
recommend that you enable private DNS names for your VPC endpoints for AWS services. This
ensures that requests that use the public service endpoints, such as requests made through an
AWS SDK, resolve to your VPC endpoint.

7. For Security group, choose one or more security groups.

8. Choose Create endpoint.

To use the private DNS option, you must set the enableDnsHostnames and
enableDnsSupportattributes of your VPC. For more information, see Viewing and updating
DNS support for your VPC in the Amazon VPC User Guide. If you enable private DNS for the
interface endpoint, you can make API requests to Lambda using its default DNS name for the
Region, for example, lambda.us-east-1.amazonaws.com. For more service endpoints, see
Service endpoints and quotas in the AWS General Reference.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

To create an interface endpoint for Lambda (AWS CLI)

Use the create-vpc-endpoint command and specify the VPC ID, VPC endpoint type (interface),
service name, subnets that will use the endpoint, and security groups to associate with the
endpoint's network interfaces. For example:

aws ec2 create-vpc-endpoint
 --vpc-id vpc-ec43eb89
 --vpc-endpoint-type Interface
 --service-name com.amazonaws.us-east-1.lambda
 --subnet-id subnet-abababab
 --security-group-id sg-1a2b3c4d

Creating an interface endpoint policy for Lambda

To control who can use your interface endpoint and which Lambda functions the user can access,
you can attach an endpoint policy to your endpoint. The policy specifies the following information:

• The principal that can perform actions.

Creating an interface endpoint policy for Lambda 295

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-vpc-endpoint.html

AWS Lambda Developer Guide

• The actions that the principal can perform.

• The resources on which the principal can perform actions.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: Interface endpoint policy for Lambda actions

The following is an example of an endpoint policy for Lambda. When attached to an endpoint, this
policy allows user MyUser to invoke the function my-function.

Note

You need to include both the qualified and the unqualified function ARN in the resource.

{
 "Statement":[
 {
 "Principal":
 {
 "AWS": "arn:aws:iam::111122223333:user/MyUser"
 },
 "Effect":"Allow",
 "Action":[
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-2:123456789012:function:my-function",
 "arn:aws:lambda:us-east-2:123456789012:function:my-function:*"
]
 }
]
}

Creating an interface endpoint policy for Lambda 296

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Lambda Developer Guide

Configuring file system access for Lambda functions

You can configure a function to mount an Amazon Elastic File System (Amazon EFS) file system
to a local directory. With Amazon EFS, your function code can access and modify shared resources
safely and at high concurrency.

Sections

• Execution role and user permissions

• Configuring a file system and access point

• Connecting to a file system (console)

Execution role and user permissions

If the file system doesn't have a user-configured AWS Identity and Access Management (IAM)
policy, EFS uses a default policy that grants full access to any client that can connect to the file
system using a file system mount target. If the file system has a user-configured IAM policy, your
function's execution role must have the correct elasticfilesystem permissions.

Execution role permissions

• elasticfilesystem:ClientMount

• elasticfilesystem:ClientWrite (not required for read-only connections)

These permissions are included in the AmazonElasticFileSystemClientReadWriteAccess managed
policy. Additionally, your execution role must have the permissions required to connect to the file
system's VPC.

When you configure a file system, Lambda uses your permissions to verify mount targets. To
configure a function to connect to a file system, your user needs the following permissions:

User permissions

• elasticfilesystem:DescribeMountTargets

File system 297

AWS Lambda Developer Guide

Configuring a file system and access point

Create a file system in Amazon EFS with a mount target in every Availability Zone that your
function connects to. For performance and resilience, use at least two Availability Zones. For
example, in a simple configuration you could have a VPC with two private subnets in separate
Availability Zones. The function connects to both subnets and a mount target is available in each.
Ensure that NFS traffic (port 2049) is allowed by the security groups used by the function and
mount targets.

Note

When you create a file system, you choose a performance mode that can't be changed later.
General purpose mode has lower latency, and Max I/O mode supports a higher maximum
throughput and IOPS. For help choosing, see Amazon EFS performance in the Amazon
Elastic File System User Guide.

An access point connects each instance of the function to the right mount target for the
Availability Zone it connects to. For best performance, create an access point with a non-root path,
and limit the number of files that you create in each directory. The following example creates a
directory named my-function on the file system and sets the owner ID to 1001 with standard
directory permissions (755).

Example access point configuration

• Name – files

• User ID – 1001

• Group ID – 1001

• Path – /my-function

• Permissions – 755

• Owner user ID – 1001

• Group user ID – 1001

When a function uses the access point, it is given user ID 1001 and has full access to the directory.

For more information, see the following topics in the Amazon Elastic File System User Guide:

Configuring a file system and access point 298

https://docs.aws.amazon.com/efs/latest/ug/performance.html

AWS Lambda Developer Guide

• Creating resources for Amazon EFS

• Working with users, groups, and permissions

Connecting to a file system (console)

A function connects to a file system over the local network in a VPC. The subnets that your
function connects to can be the same subnets that contain mount points for your file system, or
subnets in the same Availability Zone that can route NFS traffic (port 2049) to the file system.

Note

If your function is not already connected to a VPC, see Giving Lambda functions access to
resources in an Amazon VPC.

To configure file system access

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose File systems.

4. Under File system, choose Add file system.

5. Configure the following properties:

• EFS file system – The access point for a file system in the same VPC.

• Local mount path – The location where the file system is mounted on the Lambda function,
starting with /mnt/.

Pricing

Amazon EFS charges for storage and throughput, with rates that vary by storage class. For
details, see Amazon EFS pricing.
Lambda charges for data transfer between VPCs. This only applies if your function's VPC is
peered to another VPC with a file system. The rates are the same as for Amazon EC2 data
transfer between VPCs in the same Region. For details, see Lambda pricing.

Connecting to a file system (console) 299

https://docs.aws.amazon.com/efs/latest/ug/creating-using.html
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html
https://console.aws.amazon.com/lambda/home#/functions
https://aws.amazon.com/efs/pricing
https://aws.amazon.com/lambda/pricing

AWS Lambda Developer Guide

Create an alias for a Lambda function

You can create aliases for your Lambda function. A Lambda alias is a pointer to a function version
that you can update. The function's users can access the function version using the alias Amazon
Resource Name (ARN). When you deploy a new version, you can update the alias to use the new
version, or split traffic between two versions.

Console

To create an alias using the console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Aliases and then choose Create alias.

4. On the Create alias page, do the following:

a. Enter a Name for the alias.

b. (Optional) Enter a Description for the alias.

c. For Version, choose a function version that you want the alias to point to.

d. (Optional) To configure routing on the alias, expand Weighted alias. For more
information, see Implement Lambda canary deployments using a weighted alias.

e. Choose Save.

AWS CLI

To create an alias using the AWS Command Line Interface (AWS CLI), use the create-alias
command.

aws lambda create-alias \
 --function-name my-function \
 --name alias-name \
 --function-version version-number \
 --description " "

To change an alias to point a new version of the function, use the update-alias command.

aws lambda update-alias \
 --function-name my-function \

Aliases 300

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-alias.html

AWS Lambda Developer Guide

 --name alias-name \
 --function-version version-number

To delete an alias, use the delete-alias command.

aws lambda delete-alias \
 --function-name my-function \
 --name alias-name

The AWS CLI commands in the preceding steps correspond to the following Lambda API
operations:

• CreateAlias

• UpdateAlias

• DeleteAlias

Aliases 301

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-alias.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteAlias.html

AWS Lambda Developer Guide

Using Lambda aliases in event sources and permissions policies

Each alias has a unique ARN. An alias can point only to a function version, not to another alias. You
can update an alias to point to a new version of the function.

Event sources such as Amazon Simple Storage Service (Amazon S3) invoke your Lambda function.
These event sources maintain a mapping that identifies the function to invoke when events occur.
If you specify a Lambda function alias in the mapping configuration, you don't need to update the
mapping when the function version changes. For more information, see How Lambda processes
records from stream and queue-based event sources.

In a resource policy, you can grant permissions for event sources to use your Lambda function.
If you specify an alias ARN in the policy, you don't need to update the policy when the function
version changes.

Resource policies

You can use a resource-based policy to give a service, resource, or account access to your function.
The scope of that permission depends on whether you apply it to an alias, a version, or the entire
function. For example, if you use an alias name (such as helloworld:PROD), the permission allows
you to invoke the helloworld function using the alias ARN (helloworld:PROD).

If you attempt to invoke the function without an alias or a specific version, then you get a
permission error. This permission error still occurs even if you attempt to directly invoke the
function version associated with the alias.

For example, the following AWS CLI command grants Amazon S3 permissions to invoke the PROD
alias of the helloworld function when Amazon S3 is acting on behalf of amzn-s3-demo-
bucket.

aws lambda add-permission \
 --function-name helloworld \
 --qualifier PROD \
 --statement-id 1 \
 --principal s3.amazonaws.com \
 --action lambda:InvokeFunction \
 --source-arn arn:aws:s3:::amzn-s3-demo-bucket \
 --source-account 123456789012

For more information about using resource names in policies, see Fine-tuning the Resources and
Conditions sections of policies.

Using aliases 302

AWS Lambda Developer Guide

Implement Lambda canary deployments using a weighted alias

You can use a weighted alias to split traffic between two different versions of the same function.
With this approach, you can test new versions of your functions with a small percentage of traffic
and quickly roll back if necessary. This is known as a canary deployment. Canary deployments differ
from blue/green deployments by exposing the new version to only a portion of requests rather
than switching all traffic at once.

You can point an alias to a maximum of two Lambda function versions. The versions must meet the
following criteria:

• Both versions must have the same execution role.

• Both versions must have the same dead-letter queue configuration, or no dead-letter queue
configuration.

• Both versions must be published. The alias cannot point to $LATEST.

Note

Lambda uses a simple probabilistic model to distribute the traffic between the two function
versions. At low traffic levels, you might see a high variance between the configured and
actual percentage of traffic on each version. If your function uses provisioned concurrency,
you can avoid spillover invocations by configuring a higher number of provisioned
concurrency instances during the time that alias routing is active.

Create a weighted alias

Console

To configure routing on an alias using the console

Note

Verify that the function has at least two published versions. To create additional
versions, follow the instructions in Creating function versions.

1. Open the Functions page of the Lambda console.

Weighted aliases 303

https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/canary-deployments.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose a function.

3. Choose Aliases and then choose Create alias.

4. On the Create alias page, do the following:

a. Enter a Name for the alias.

b. (Optional) Enter a Description for the alias.

c. For Version, choose the first function version that you want the alias to point to.

d. Expand Weighted alias.

e. For Additional version, choose the second function version that you want the alias to
point to.

f. For Weight (%), enter a weight value for the function. Weight is the percentage of
traffic that is assigned to that version when the alias is invoked. The first version
receives the residual weight. For example, if you specify 10 percent to Additional
version, the first version is assigned 90 percent automatically.

g. Choose Save.

AWS CLI

Use the create-alias and update-alias AWS CLI commands to configure the traffic weights
between two function versions. When you create or update the alias, you specify the traffic
weight in the routing-config parameter.

The following example creates a Lambda function alias named routing-alias that points
to version 1 of the function. Version 2 of the function receives 3 percent of the traffic. The
remaining 97 percent of traffic is routed to version 1.

aws lambda create-alias \
 --name routing-alias \
 --function-name my-function \
 --function-version 1 \
 --routing-config AdditionalVersionWeights={"2"=0.03}

Use the update-alias command to increase the percentage of incoming traffic to version 2.
In the following example, you increase the traffic to 5 percent.

aws lambda update-alias \
 --name routing-alias \

Weighted aliases 304

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-alias.html

AWS Lambda Developer Guide

 --function-name my-function \
 --routing-config AdditionalVersionWeights={"2"=0.05}

To route all traffic to version 2, use the update-alias command to change the function-
version property to point the alias to version 2. The command also resets the routing
configuration.

aws lambda update-alias \
 --name routing-alias \
 --function-name my-function \
 --function-version 2 \
 --routing-config AdditionalVersionWeights={}

The AWS CLI commands in the preceding steps correspond to the following Lambda API
operations:

• CreateAlias

• UpdateAlias

Determining which version was invoked

When you configure traffic weights between two function versions, there are two ways to
determine the Lambda function version that has been invoked:

• CloudWatch Logs – Lambda automatically emits a START log entry that contains the invoked
version ID for every function invocation. Example:

START RequestId: 1dh194d3759ed-4v8b-a7b4-1e541f60235f Version: 2

For alias invocations, Lambda uses the ExecutedVersion dimension to filter the metric data by
the invoked version. For more information, see Viewing metrics for Lambda functions.

• Response payload (synchronous invocations) – Responses to synchronous function invocations
include an x-amz-executed-version header to indicate which function version has been
invoked.

Create a rolling deployment with weighted aliases

Use AWS CodeDeploy and AWS Serverless Application Model (AWS SAM) to create a rolling
deployment that automatically detects changes to your function code, deploys a new version of

Weighted aliases 305

https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html

AWS Lambda Developer Guide

your function, and gradually increase the amount of traffic flowing to the new version. The amount
of traffic and rate of increase are parameters that you can configure.

In a rolling deployment, AWS SAM performs these tasks:

• Configures your Lambda function and creates an alias. The weighted alias routing configuration
is the underlying capability that implements the rolling deployment.

• Creates a CodeDeploy application and deployment group. The deployment group manages the
rolling deployment and the rollback, if needed.

• Detects when you create a new version of your Lambda function.

• Triggers CodeDeploy to start the deployment of the new version.

Example AWS SAM template

The following example shows an AWS SAM template for a simple rolling deployment.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: A sample SAM template for deploying Lambda functions

Resources:
Details about the myDateTimeFunction Lambda function
 myDateTimeFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: myDateTimeFunction.handler
 Runtime: nodejs22.x
Creates an alias named "live" for the function, and automatically publishes when you
 update the function.
 AutoPublishAlias: live
 DeploymentPreference:
Specifies the deployment configuration
 Type: Linear10PercentEvery2Minutes

This template defines a Lambda function named myDateTimeFunction with the following
properties.

Weighted aliases 306

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-basics.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

AutoPublishAlias

The AutoPublishAlias property creates an alias named live. In addition, the AWS SAM
framework automatically detects when you save new code for the function. The framework
then publishes a new function version and updates the live alias to point to the new version.

DeploymentPreference

The DeploymentPreference property determines the rate at which the CodeDeploy
application shifts traffic from the original version of the Lambda function to the new version.
The value Linear10PercentEvery2Minutes shifts an additional ten percent of the traffic to
the new version every two minutes.

For a list of the predefined deployment configurations, see Deployment configurations.

For more information on how to create rolling deployments with CodeDeploy and AWS SAM, see
the following:

• Tutorial: Deploy an updated Lambda function with CodeDeploy and the AWS Serverless
Application Model

• Deploying serverless applications gradually with AWS SAM

Weighted aliases 307

https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-lambda-sam.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-lambda-sam.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/automating-updates-to-serverless-apps.html

AWS Lambda Developer Guide

Manage Lambda function versions

You can use versions to manage the deployment of your functions. For example, you can publish a
new version of a function for beta testing without affecting users of the stable production version.
Lambda creates a new version of your function each time that you publish the function. The new
version is a copy of the unpublished version of the function. The unpublished version is named
$LATEST.

Importantly, any time you deploy your function code, you overwrite the current code in $LATEST.
To save the current iteration of $LATEST, create a new function version. If $LATEST is identical to a
previously published version, you won't be able to create a new version until you deploy changes to
$LATEST. These changes can include updating the code, or modifying the function configuration
settings.

After you publish a function version, its code, runtime, architecture, memory, layers, and most
other configuration settings are immutable. This means that you can't change these settings
without publishing a new version from $LATEST. You can configure the following items for a
published function version:

• Triggers

• Destinations

• Provisioned concurrency

• Asynchronous invocation

• Database connections and proxies

Note

When using runtime management controls with Auto mode, the runtime version used by
the function version is updated automatically. When using Function update or Manual
mode, the runtime version is not updated. For more information, see the section called
“Runtime version updates”.

Sections

• Creating function versions

• Using versions

Versions 308

AWS Lambda Developer Guide

• Granting permissions

Creating function versions

You can change the function code and settings only on the unpublished version of a function.
When you publish a version, Lambda locks the code and most of the settings to maintain a
consistent experience for users of that version.

You can create a function version using the Lambda console.

To create a new function version

1. Open the Functions page of the Lambda console.

2. Choose a function and then choose the Versions tab.

3. On the versions configuration page, choose Publish new version.

4. (Optional) Enter a version description.

5. Choose Publish.

Alternatively, you can publish a version of a function using the PublishVersion API operation.

The following AWS CLI command publishes a new version of a function. The response returns
configuration information about the new version, including the version number and the function
ARN with the version suffix.

aws lambda publish-version --function-name my-function

You should see the following output:

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function:1",
 "Version": "1",
 "Role": "arn:aws:iam::123456789012:role/lambda-role",
 "Handler": "function.handler",
 "Runtime": "nodejs22.x",
 ...
}

Creating function versions 309

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html

AWS Lambda Developer Guide

Note

Lambda assigns monotonically increasing sequence numbers for versioning. Lambda never
reuses version numbers, even after you delete and recreate a function.

Using versions

You can reference your Lambda function using either a qualified ARN or an unqualified ARN.

• Qualified ARN – The function ARN with a version suffix. The following example refers to version
42 of the helloworld function.

arn:aws:lambda:aws-region:acct-id:function:helloworld:42

• Unqualified ARN – The function ARN without a version suffix.

arn:aws:lambda:aws-region:acct-id:function:helloworld

You can use a qualified or an unqualified ARN in all relevant API operations. However, you can't use
an unqualified ARN to create an alias.

If you decide not to publish function versions, you can invoke the function using either the
qualified or unqualified ARN in your event source mapping. When you invoke a function using an
unqualified ARN, Lambda implicitly invokes $LATEST.

The qualified ARN for each Lambda function version is unique. After you publish a version, you
can't change the ARN or the function code.

Lambda publishes a new function version only if the code has never been published, or if the code
has changed from the last published version. If there is no change, the function version remains at
the last published version.

When you publish a version, Lambda creates an immutable snapshot of your function's code and
configuration. Not all configuration changes trigger the publication of a new version. The following
configuration changes qualify a function for version publication:

• Function code

• Environment variables

Using versions 310

AWS Lambda Developer Guide

• Runtime

• Handler

• Layers

• Memory size

• Timeout

• VPC configuration

• Dead Letter Queue (DLQ) configuration

• IAM role

• Description

• Architecture (x86_64 or arm64)

• Ephemeral storage size

• Package type

• Logging configuration

• File system configuration

• SnapStart

• Tracing configuration

Operational settings such as reserved concurrency don't trigger the publication of a new version
when changed.

Granting permissions

You can use a resource-based policy or an identity-based policy to grant access to your function.
The scope of the permission depends on whether you apply the policy to a function or to one
version of a function. For more information about function resource names in policies, see Fine-
tuning the Resources and Conditions sections of policies.

You can simplify the management of event sources and AWS Identity and Access Management
(IAM) policies by using function aliases. For more information, see Create an alias for a Lambda
function.

Granting permissions 311

AWS Lambda Developer Guide

Using tags on Lambda functions

You can tag functions to organize and manage your resources. Tags are free-form key-value pairs
associated with your resources that are supported across AWS services. For more information about
use cases for tags, see Common tagging strategies in the Tagging AWS Resources and Tag Editor
Guide.

Tags apply at the function level, not to versions or aliases. Tags are not part of the version-specific
configuration that AWS Lambda creates a snapshot of when you publish a version. You can use the
Lambda API to view and update tags. You can also view and update tags while managing a specific
function in the Lambda console.

Sections

• Permissions required for working with tags

• Using tags with the Lambda console

• Using tags with the AWS CLI

Permissions required for working with tags

To allow an AWS Identity and Access Management (IAM) identity (user, group, or role) to read or set
tags on a resource, grant it the corresponding permissions:

• lambda:ListTags–When a resource has tags, grant this permission to anyone who needs to call
ListTags on it. For tagged functions, this permission is also necessary for GetFunction.

• lambda:TagResource–Grant this permission to anyone who needs to call TagResource or
perform a tag on create.

Optionally, consider granting the lambda:UntagResource permission as well to allow
UntagResource calls to the resource.

For more information, see Identity-based IAM policies for Lambda.

Using tags with the Lambda console

You can use the Lambda console to create functions that have tags, add tags to existing functions,
and filter functions by tags that you add.

Tags 312

https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

AWS Lambda Developer Guide

To add tags when you create a function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Choose Author from scratch or Container image.

4. Under Basic information, set up your function. For more information about configuring
functions, see Configuring functions.

5. Expand Advanced settings, and then select Enable tags.

6. Choose Add new tag, and then enter a Key and an optional Value. To add more tags, repeat
this step.

7. Choose Create function.

To add tags to an existing function

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose Tags.

4. Under Tags, choose Manage tags.

5. Choose Add new tag, and then enter a Key and an optional Value. To add more tags, repeat
this step.

6. Choose Save.

To filter functions with tags

1. Open the Functions page of the Lambda console.

2. Choose the search box to see a list of function properties and tag keys.

3. Choose a tag key to see a list of values that are in use in the current AWS Region.

4. Select Use: "tag-name" to see all functions tagged with this key, or choose an Operator to
further filter by value.

5. Select your tag value to filter by a combination of tag key and value.

The search bar also supports searching for tag keys. Enter tag to see only a list of tag keys, or
enter the name of a key to find it in the list.

Using tags with the console 313

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Using tags with the AWS CLI

You can add and remove tags on existing Lambda resources, including functions, with the Lambda
API. You can also add tags when creating a function, which allows you to keep a resource tagged
through its entire lifecycle.

Updating tags with the Lambda tag APIs

You can add and remove tags for supported Lambda resources through the TagResource and
UntagResource API operations.

You can call these operations using the AWS CLI. To add tags to an existing resource, use the tag-
resource command. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda tag-resource \
--resource arn:aws:lambda:us-east-2:123456789012:resource-type:my-resource \
--tags Department=Marketing,CostCenter=1234ABCD

To remove tags, use the untag-resource command. This example removes the tag with the key
Department.

aws lambda untag-resource --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier \
--tag-keys Department

Adding tags when creating a function

To create a new Lambda function with tags, use the CreateFunction API operation. Specify the
Tags parameter. You can call this operation with the create-function CLI command and the
--tags option. Before using the tags parameter with CreateFunction, ensure that your role
has permission to tag resources alongside the usual permissions needed for this operation. For
more information about permissions for tagging, see the section called “Permissions required for
working with tags”. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda create-function --function-name my-function
--handler index.js --runtime nodejs22.x \
--role arn:aws:iam::123456789012:role/lambda-role \

Using tags with the AWS CLI 314

https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

--tags Department=Marketing,CostCenter=1234ABCD

Viewing tags on a function

To view the tags that are applied to a specific Lambda resource, use the ListTags API operation.
For more information, see ListTags.

You can call this operation with the list-tags AWS CLI command by providing an ARN (Amazon
Resource Name).

aws lambda list-tags --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier

You can view the tags that are applied to a specific resource with the GetFunction API operation.
Comparable functionality is not available for other resource types.

You can call this operation with the get-function CLI command:

aws lambda get-function --function-name my-function

Filtering resources by tag

You can use the AWS Resource Groups Tagging API GetResources API operation to filter your
resources by tags. The GetResources operation receives up to 10 filters, with each filter
containing a tag key and up to 10 tag values. You provide GetResources with a ResourceType
to filter by specific resource types.

You can call this operation using the get-resources AWS CLI command. For examples of using
get-resources, see get-resources in the AWS CLI Command Reference.

Using tags with the AWS CLI 315

https://docs.aws.amazon.com/lambda/latest/api/API_ListTags.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/resourcegroupstaggingapi/get-resources.html#examples

AWS Lambda Developer Guide

Response streaming for Lambda functions

Lambda functions can stream response payloads back to clients through Lambda function URLs
or by using the InvokeWithResponseStream API (via the AWS SDK or direct API calls). Response
streaming can benefit latency sensitive applications by improving time to first byte (TTFB)
performance. This is because you can send partial responses back to the client as they become
available. Additionally, response streaming functions can return payloads up to 200 MB, compared
to the 6 MB maximum for buffered responses. Streaming a response also means that your function
doesn’t need to fit the entire response in memory. For very large responses, this can reduce the
amount of memory you need to configure for your function.

The speed at which Lambda streams your responses depends on the response size. The streaming
rate for the first 6 MB of your function’s response is uncapped. For responses larger than 6 MB,
the remainder of the response is subject to a bandwidth cap. For more information on streaming
bandwidth, see Bandwidth limits for response streaming.

Streaming responses incurs a cost. For more information, see AWS Lambda Pricing.

Lambda supports response streaming on Node.js managed runtimes. For other languages, you
can use a custom runtime with a custom Runtime API integration to stream responses or use the
Lambda Web Adapter.

Note

When testing your function through the Lambda console, you'll always see responses as
buffered.

Topics

• Bandwidth limits for response streaming

• VPC compatibility with response streaming

• Writing response streaming-enabled Lambda functions

• Invoking a response streaming enabled function using Lambda function URLs

• Tutorial: Creating a response streaming Lambda function with a function URL

Response streaming 316

https://docs.aws.amazon.com/lambda/latest/dg/API_InvokeWithResponseStream.html
https://aws.amazon.com/lambda/pricing/
https://github.com/awslabs/aws-lambda-web-adapter

AWS Lambda Developer Guide

Bandwidth limits for response streaming

The first 6 MB of your function’s response payload has uncapped bandwidth. After this initial burst,
Lambda streams your response at a maximum rate of 2 MBps. If your function responses never
exceed 6 MB, then this bandwidth limit never applies.

Note

Bandwidth limits only apply to your function’s response payload, and not to network access
by your function.

The rate of uncapped bandwidth varies depending on a number of factors, including your
function’s processing speed. You can normally expect a rate higher than 2 MBps for the first 6 MB
of your function’s response. If your function is streaming a response to a destination outside of
AWS, the streaming rate also depends on the speed of the external internet connection.

VPC compatibility with response streaming

When using Lambda functions in a VPC environment, there are important considerations for
response streaming:

• Lambda function URLs do not support response streaming within a VPC environment.

• You can use response streaming within a VPC by invoking your Lambda function through the
AWS SDK using the InvokeWithResponseStream API. This requires setting up the appropriate
VPC endpoints for Lambda.

• For VPC environments, you'll need to create an interface VPC endpoint for Lambda to enable
communication between your resources in the VPC and the Lambda service.

A typical architecture for response streaming in a VPC might include:

Client in VPC -> Interface VPC endpoint for Lambda -> Lambda function -> Response
 streaming back through the same path

Writing response streaming-enabled Lambda functions

Writing the handler for response streaming functions is different than typical handler patterns.
When writing streaming functions, be sure to do the following:

Bandwidth limits for response streaming 317

AWS Lambda Developer Guide

• Wrap your function with the awslambda.streamifyResponse() decorator that the native
Node.js runtimes provide.

• End the stream gracefully to ensure that all data processing is complete.

Configuring a handler function to stream responses

To indicate to the runtime that Lambda should stream your function's responses, you must wrap
your function with the streamifyResponse() decorator. This tells the runtime to use the proper
logic path for streaming responses and enables the function to stream responses.

The streamifyResponse() decorator accepts a function that accepts the following parameters:

• event – Provides information about the function URL's invocation event, such as the HTTP
method, query parameters, and the request body.

• responseStream – Provides a writable stream.

• context – Provides methods and properties with information about the invocation, function,
and execution environment.

The responseStream object is a Node.js writableStream. As with any such stream, you should
use the pipeline() method.

Example response streaming-enabled handler

import { pipeline } from 'node:stream/promises';
import { Readable } from 'node:stream';

export const echo = awslambda.streamifyResponse(async (event, responseStream, _context)
 => {
 // As an example, convert event to a readable stream.
 const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));

 await pipeline(requestStream, responseStream);
});

While responseStream offers the write() method to write to the stream, we recommend that
you use pipeline() wherever possible. Using pipeline() ensures that the writable stream is
not overwhelmed by a faster readable stream.

Writing functions 318

https://nodesource.com/blog/understanding-streams-in-nodejs/
https://nodejs.org/api/stream.html#streampipelinesource-transforms-destination-callback

AWS Lambda Developer Guide

Ending the stream

Make sure that you properly end the stream before the handler returns. The pipeline() method
handles this automatically.

For other use cases, call the responseStream.end() method to properly end a stream. This
method signals that no more data should be written to the stream. This method isn't required if
you write to the stream with pipeline() or pipe().

Example Example ending a stream with pipeline()

import { pipeline } from 'node:stream/promises';

export const handler = awslambda.streamifyResponse(async (event, responseStream,
 _context) => {
 await pipeline(requestStream, responseStream);
});

Example Example ending a stream without pipeline()

export const handler = awslambda.streamifyResponse(async (event, responseStream,
 _context) => {
 responseStream.write("Hello ");
 responseStream.write("world ");
 responseStream.write("from ");
 responseStream.write("Lambda!");
 responseStream.end();
});

Invoking a response streaming enabled function using Lambda
function URLs

Note

You must invoke your function using a function URL to stream the responses.

You can invoke response streaming enabled functions by changing the invoke mode of your
function's URL. The invoke mode determines which API operation Lambda uses to invoke your
function. The available invoke modes are:

Invoking functions 319

AWS Lambda Developer Guide

• BUFFERED – This is the default option. Lambda invokes your function using the Invoke API
operation. Invocation results are available when the payload is complete. The maximum payload
size is 6 MB.

• RESPONSE_STREAM – Enables your function to stream payload results as they become available.
Lambda invokes your function using the InvokeWithResponseStream API operation. The
maximum response payload size is 200 MB.

You can still invoke your function without response streaming by directly calling the Invoke API
operation. However, Lambda streams all response payloads for invocations that come through the
function's URL until you change the invoke mode to BUFFERED.

Console

To set the invoke mode of a function URL (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to set the invoke mode for.

3. Choose the Configuration tab, and then choose Function URL.

4. Choose Edit, then choose Additional settings.

5. Under Invoke mode, choose your desired invoke mode.

6. Choose Save.

AWS CLI

To set the invoke mode of a function's URL (AWS CLI)

aws lambda update-function-url-config \
 --function-name my-function \
 --invoke-mode RESPONSE_STREAM

AWS CloudFormation

To set the invoke mode of a function's URL (AWS CloudFormation)

MyFunctionUrl:
 Type: AWS::Lambda::Url
 Properties:
 AuthType: AWS_IAM

Invoking functions 320

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

 InvokeMode: RESPONSE_STREAM

For more information about configuring function URLs, see Lambda function URLs.

Tutorial: Creating a response streaming Lambda function with a
function URL

In this tutorial, you create a Lambda function defined as a .zip file archive with a function URL
endpoint that returns a response stream. For more information about configuring function URLs,
see Function URLs.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the AWS CLI version 2. Commands and the expected
output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Tutorial: Creating a response streaming function with a function URL 321

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Create an execution role

Create the execution role that gives your Lambda function permission to access AWS resources.

To create an execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.

2. Choose Create role.

3. Create a role with the following properties:

• Trusted entity type – AWS service

• Use case – Lambda

• Permissions – AWSLambdaBasicExecutionRole

• Role name – response-streaming-role

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to write
logs to Amazon CloudWatch Logs. After you create the role, note down the its Amazon Resource
Name (ARN). You'll need it in the next step.

Create a response streaming function (AWS CLI)

Create a response streaming Lambda function with a function URL endpoint using the AWS
Command Line Interface (AWS CLI).

To create a function that can stream responses

1. Copy the following code example into a file named index.mjs.

import util from 'util';
import stream from 'stream';
const { Readable } = stream;
const pipeline = util.promisify(stream.pipeline);

/* global awslambda */
export const handler = awslambda.streamifyResponse(async (event, responseStream,
 _context) => {
 const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));
 await pipeline(requestStream, responseStream);
});

Tutorial: Creating a response streaming function with a function URL 322

https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

2. Create a deployment package.

zip function.zip index.mjs

3. Create a Lambda function with the create-function command. Replace the value of --
role with the role ARN from the previous step.

aws lambda create-function \
 --function-name my-streaming-function \
 --runtime nodejs16.x \
 --zip-file fileb://function.zip \
 --handler index.handler \
 --role arn:aws:iam::123456789012:role/response-streaming-role

To create a function URL

1. Add a resource-based policy to your function to allow access to your function URL. Replace the
value of --principal with your AWS account ID.

aws lambda add-permission \
 --function-name my-streaming-function \
 --action lambda:InvokeFunctionUrl \
 --statement-id 12345 \
 --principal 123456789012 \
 --function-url-auth-type AWS_IAM \
 --statement-id url

2. Create a URL endpoint for the function with the create-function-url-config command.

aws lambda create-function-url-config \
 --function-name my-streaming-function \
 --auth-type AWS_IAM \
 --invoke-mode RESPONSE_STREAM

Test the function URL endpoint

Test your integration by invoking your function. You can open your function's URL in a browser, or
you can use curl.

Tutorial: Creating a response streaming function with a function URL 323

AWS Lambda Developer Guide

curl --request GET "<function_url>" --user "<key:token>" --aws-sigv4 "aws:amz:us-
east-1:lambda" --no-buffer

Our function URL uses the IAM_AUTH authentication type. This means that you need to sign
requests with both your AWS access key and secret key. In the previous command, replace
<key:token> with the AWS access key ID. Enter your AWS secret key when prompted. If you don't
have your AWS secret key, you can use temporary AWS credentials instead.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

Tutorial: Creating a response streaming function with a function URL 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Understanding Lambda function invocation methods

After you deploy your Lambda function, you can invoke it in several ways:

• The Lambda console – Use the Lambda console to quickly create a test event to invoke your
function.

• The AWS SDK – Use the AWS SDK to programmatically invoke your function.

• The Invoke API – Use the Lambda Invoke API to directly invoke your function.

• The AWS Command Line Interface (AWS CLI) – Use the aws lambda invoke AWS CLI command
to directly invoke your function from the command line.

• A function URL HTTP(S) endpoint – Use function URLs to create a dedicated HTTP(S) endpoint
that you can use to invoke your function.

All of these methods are direct ways to invoke your function. In Lambda, a common use case is to
invoke your function based on an event that occurs elsewhere in your application. Some services
can invoke a Lambda function with each new event. This is called a trigger. For stream and queue-
based services, Lambda invokes the function with batches of records. This is called an event source
mapping.

When you invoke a function, you can choose to invoke it synchronously or asynchronously. With
synchronous invocation, you wait for the function to process the event and return a response.
With asynchronous invocation, Lambda queues the event for processing and returns a response
immediately. The InvocationType request parameter in the Invoke API determines how Lambda
invokes your function. A value of RequestResponse indicates synchronous invocation, and a value
of Event indicates asynchronous invocation.

To invoke your function over IPv6, use Lambda's public dual-stack endpoints. Dual-stack endpoints
support both IPv4 and IPv6. Lambda dual-stack endpoints use the following syntax:

protocol://lambda.us-east-1.api.aws

You can also use Lambda function URLs to invoke functions over IPv6. Function URL endpoints
have the following format:

https://url-id.lambda-url.us-east-1.on.aws

325

https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints

AWS Lambda Developer Guide

If the function invocation results in an error, for synchronous invocations, view the error message
in the response and retry the invocation manually. For asynchronous invocations, Lambda handles
retries automatically and can send invocation records to a destination.

326

AWS Lambda Developer Guide

Invoke a Lambda function synchronously

When you invoke a function synchronously, Lambda runs the function and waits for a response.
When the function completes, Lambda returns the response from the function's code with
additional data, such as the version of the function that was invoked. To invoke a function
synchronously with the AWS CLI, use the invoke command.

aws lambda invoke --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "key": "value" }' response.json

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

The following diagram shows clients invoking a Lambda function synchronously. Lambda sends the
events directly to the function and sends the function's response back to the invoker.

The payload is a string that contains an event in JSON format. The name of the file where the
AWS CLI writes the response from the function is response.json. If the function returns an

Invoke a function synchronously 327

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

object or error, the response body is the object or error in JSON format. If the function exits
without error, the response body is null.

Note

Lambda does not wait for external extensions to complete before sending the response.
External extensions run as independent processes in the execution environment and
continue to run after the function invocation is complete. For more information, see
Augment Lambda functions using Lambda extensions.

The output from the command, which is displayed in the terminal, includes information from
headers in the response from Lambda. This includes the version that processed the event (useful
when you use aliases), and the status code returned by Lambda. If Lambda was able to run the
function, the status code is 200, even if the function returned an error.

Note

For functions with a long timeout, your client might be disconnected during synchronous
invocation while it waits for a response. Configure your HTTP client, SDK, firewall, proxy, or
operating system to allow for long connections with timeout or keep-alive settings.

If Lambda isn't able to run the function, the error is displayed in the output.

aws lambda invoke --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload value response.json

You should see the following output:

An error occurred (InvalidRequestContentException) when calling the Invoke operation:
 Could not parse request body into json: Unrecognized token 'value': was expecting
 ('true', 'false' or 'null')
 at [Source: (byte[])"value"; line: 1, column: 11]

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

Invoke a function synchronously 328

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8

Invoke a function synchronously 329

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

For more information about the Invoke API, including a full list of parameters, headers, and
errors, see Invoke.

When you invoke a function directly, you can check the response for errors and retry. The AWS CLI
and AWS SDK also automatically retry on client timeouts, throttling, and service errors. For more
information, see Understanding retry behavior in Lambda.

Invoke a function synchronously 330

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

Invoking a Lambda function asynchronously

Several AWS services, such as Amazon Simple Storage Service (Amazon S3) and Amazon Simple
Notification Service (Amazon SNS), invoke functions asynchronously to process events. You can
also invoke a Lambda function asynchronously using the AWS Command Line Interface (AWS CLI)
or one of the AWS SDKs. When you invoke a function asynchronously, you don't wait for a response
from the function code. You hand off the event to Lambda and Lambda handles the rest. You can
configure how Lambda handles errors, and can send invocation records to a downstream resource
such as Amazon Simple Queue Service (Amazon SQS) or Amazon EventBridge (EventBridge) to
chain together components of your application.

The following diagram shows clients invoking a Lambda function asynchronously. Lambda queues
the events before sending them to the function.

For asynchronous invocation, Lambda places the event in a queue and returns a success response
without additional information. A separate process reads events from the queue and sends them to
your function.

To invoke a Lambda function asynchronously using the AWS Command Line Interface (AWS CLI) or
one of the AWS SDKs, set the InvocationType parameter to Event. The following example shows
an AWS CLI command to invoke a function.

aws lambda invoke \
 --function-name my-function \
 --invocation-type Event \
 --cli-binary-format raw-in-base64-out \

Asynchronous invocation 331

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html#lambda-Invoke-request-InvocationType

AWS Lambda Developer Guide

 --payload '{ "key": "value" }' response.json

You should see the following output:

{
 "StatusCode": 202
}

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

The output file (response.json) doesn't contain any information, but is still created when you
run this command. If Lambda isn't able to add the event to the queue, the error message appears
in the command output.

How Lambda handles errors and retries with asynchronous invocation

Lambda manages your function's asynchronous event queue and attempts to retry on errors. If the
function returns an error, by default Lambda attempts to run it two more times, with a one-minute
wait between the first two attempts, and two minutes between the second and third attempts.
Function errors include errors returned by the function's code and errors returned by the function's
runtime, such as timeouts.

If the function doesn't have enough concurrency available to process all events, additional requests
are throttled. For throttling errors (429) and system errors (500-series), Lambda returns the event
to the queue and attempts to run the function again for up to 6 hours by default. The retry interval
increases exponentially from 1 second after the first attempt to a maximum of 5 minutes. If the
queue contains many entries, Lambda increases the retry interval and reduces the rate at which it
reads events from the queue.

Even if your function doesn't return an error, it's possible for it to receive the same event from
Lambda multiple times because the queue itself is eventually consistent. If the function can't keep
up with incoming events, events might also be deleted from the queue without being sent to the
function. Ensure that your function code gracefully handles duplicate events, and that you have
enough concurrency available to handle all invocations.

Error handling 332

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

When the queue is very long, new events might age out before Lambda has a chance to send them
to your function. When an event expires or fails all processing attempts, Lambda discards it. You
can configure error handling for a function to reduce the number of retries that Lambda performs,
or to discard unprocessed events more quickly. To capture discarded events, configure a dead-
letter queue for the function. To capture records of failed invocations (such as timeouts or runtime
errors), create an on-failure destination.

Configuring error handling settings for Lambda asynchronous
invocations

Use the following settings to configure how Lambda handles errors and retries for asynchronous
function invocations:

• MaximumEventAgeInSeconds: The maximum amount of time, in seconds, that Lambda keeps an
event in the asynchronous event queue before discarding it.

• MaximumRetryAttempts: The maximum number of times that Lambda retries events when the
function returns an error.

Use the Lambda console or AWS CLI to configure error handling settings on a function, a version, or
an alias.

Console

To configure error handling

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Asynchronous invocation.

4. Under Asynchronous invocation, choose Edit.

5. Configure the following settings.

• Maximum age of event – The maximum amount of time Lambda retains an event in the
asynchronous event queue, up to 6 hours.

• Retry attempts – The number of times Lambda retries when the function returns an
error, between 0 and 2.

6. Choose Save.

Configuration 333

https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionEventInvokeConfig.html#lambda-PutFunctionEventInvokeConfig-request-MaximumEventAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionEventInvokeConfig.html#lambda-PutFunctionEventInvokeConfig-request-MaximumRetryAttempts
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

AWS CLI

To configure asynchronous invocation with the AWS CLI, use the put-function-event-invoke-
config command. The following example configures a function with a maximum event age of 1
hour and no retries.

aws lambda put-function-event-invoke-config \
 --function-name error \
 --maximum-event-age-in-seconds 3600 \
 --maximum-retry-attempts 0

The put-function-event-invoke-config command overwrites any existing configuration
on the function, version, or alias. To configure an option without resetting others, use update-
function-event-invoke-config. The following example configures Lambda to send a record to a
standard SQS queue named destination when an event can't be processed.

aws lambda update-function-event-invoke-config \
 --function-name my-function \
 --destination-config '{"OnFailure":{"Destination": "arn:aws:sqs:us-
east-1:123456789012:destination"}}'

You should see the following output:

{
 "LastModified": 1573686021.479,
 "FunctionArn": "arn:aws:lambda:us-east-1:123456789012:function:my-function:
$LATEST",
 "MaximumRetryAttempts": 0,
 "MaximumEventAgeInSeconds": 3600,
 "DestinationConfig": {
 "OnSuccess": {},
 "OnFailure": {}
 }
}

When an invocation event exceeds the maximum age or fails all retry attempts, Lambda discards it.
To retain a copy of discarded events, configure a failed-event destination.

Configuration 334

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-event-invoke-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-event-invoke-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html

AWS Lambda Developer Guide

Capturing records of Lambda asynchronous invocations

Lambda can send records of asynchronous invocations to one of the following AWS services.

• Amazon SQS – A standard SQS queue

• Amazon SNS – A standard SNS topic

• Amazon S3 – An Amazon S3 bucket (on failure only)

• AWS Lambda – A Lambda function

• Amazon EventBridge – An EventBridge event bus

The invocation record contains details about the request and response in JSON format. You can
configure separate destinations for events that are processed successfully, and events that fail all
processing attempts. Alternatively, you can configure a standard Amazon SQS queue or standard
Amazon SNS topic as a dead-letter queue for discarded events. For dead-letter queues, Lambda
only sends the content of the event, without details about the response.

If Lambda can't send a record to a destination you have configured, it sends a
DestinationDeliveryFailures metric to Amazon CloudWatch. This can happen if your
configuration includes an unsupported destination type, such as an Amazon SQS FIFO queue or an
Amazon SNS FIFO topic. Delivery errors can also occur due to permissions errors and size limits. For
more information on Lambda invocation metrics, see the section called “Invocation metrics”.

Note

To prevent a function from triggering, you can set the function's reserved concurrency to
zero. When you set reserved concurrency to zero for an asynchronously invoked function,
Lambda begins sending new events to the configured dead-letter queue or the on-failure
event destination, without any retries. To process events that were sent while reserved
concurrency was set to zero, you must consume the events from the dead-letter queue or
the on-failure event destination.

Adding a destination

To retain records of asynchronous invocations, add a destination to your function. You can choose
to send either successful or failed invocations to a destination. Each function can have multiple

Retaining records 335

AWS Lambda Developer Guide

destinations, so you can configure separate destinations for successful and failed events. Each
record sent to the destination is a JSON document with details about the invocation. Like error
handling settings, you can configure destinations on a function, function version, or alias.

Tip

You can also retain records of failed invocations for the following event source mapping
types: Amazon Kinesis, Amazon DynamoDB, self-managed Apache Kafka, and Amazon MSK.

The following table lists supported destinations for asynchronous invocation records. For Lambda
to successfully send records to your chosen destination, ensure that your function's execution role
also contains the relevant permissions. The table also describes how each destination type receives
the JSON invocation record.

Destination type Required permission Destination-specific JSON
format

Amazon SQS queue sqs:SendMessage Lambda passes the invocation
record as the Message to the
destination.

Amazon SNS topic sns:Publish Lambda passes the invocation
record as the Message to the
destination.

Amazon S3 bucket (on failure
only)

s3:PutObject

s3:ListBucket

• Lambda stores the
invocation record as a JSON
object in the destination
bucket.

• The S3 object name uses
the following naming
convention:

aws/lambda/async/<
function-name>/YYY
Y/MM/DD/YYYY-MM-DD

Retaining records 336

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html

AWS Lambda Developer Guide

Destination type Required permission Destination-specific JSON
format

THH.MM.SS-<Random
 UUID>

Lambda function lambda:InvokeFunction Lambda passes the invocatio
n record as the payload to the
function.

EventBridge events:PutEvents • Lambda passes the
invocation record as the
detail in the PutEvents
call.

• The value for the source
event field is lambda.

• The value for the detail-
type event field is either
"Lambda Function Invocatio
n Result - Success" or
"Lambda Function Invocatio
n Result - Failure".

• The resource event field
contains the function
and destination Amazon
Resource Names (ARNs).

• For other event fields,
see Amazon EventBridge
events.

Note

For Amazon S3 destinations, if you have enabled encryption on the bucket using a KMS key,
your function also needs the kms:GenerateDataKey permission.

Retaining records 337

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Lambda Developer Guide

The following steps describe how to configure a destination for a function using the Lambda
console and the AWS CLI.

Console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Asynchronous invocation.

5. For Condition, choose from the following options:

• On failure – Send a record when the event fails all processing attempts or exceeds the
maximum age.

• On success – Send a record when the function successfully processes an asynchronous
invocation.

6. For Destination type, choose the type of resource that receives the invocation record.

7. For Destination, choose a resource.

8. Choose Save.

AWS CLI

To configure a destination using the AWS CLI, run the update-function-event-invoke-config
command. The following example configures Lambda to send a record to a standard SQS queue
named destination when an event can't be processed.

aws lambda update-function-event-invoke-config \
 --function-name my-function \
 --destination-config '{"OnFailure":{"Destination": "arn:aws:sqs:us-
east-1:123456789012:destination"}}'

Security best practices for Amazon S3 destinations

Deleting an S3 bucket that's configured as a destination without removing the destination from
your function's configuration can create a security risk. If another user knows your destination
bucket's name, they can recreate the bucket in their AWS account. Records of failed invocations will
be sent to their bucket, potentially exposing data from your function.

Retaining records 338

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html

AWS Lambda Developer Guide

Warning

To ensure that invocation records from your function can't be sent to an S3 bucket
in another AWS account, add a condition to your function's execution role that limits
s3:PutObject permissions to buckets in your account.

The following example shows an IAM policy that limits your function's s3:PutObject permissions
to buckets in your account. This policy also gives Lambda the s3:ListBucket permission it needs
to use an S3 bucket as a destination.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3BucketResourceAccountWrite",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*/*",
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEquals": {
 "s3:ResourceAccount": "111122223333"
 }
 }
 }
]
}

To add a permissions policy to your funcion's execution role using the AWS Management Console
or AWS CLI, refer to the instructions in the following procedures:

Retaining records 339

AWS Lambda Developer Guide

Console

To add a permissions policy to a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Select the Lambda function whose execution role you want to modify.

3. In the Configuration tab, select Permissions.

4. In the Execution role tab, select your function's Role name to open the role's IAM console
page.

5. Add a permissions policy to the role by doing the following:

a. In the Permissions policies pane, choose Add permissions and select Create inline
policy.

b. In Policy editor, select JSON.

c. Paste the policy you want to add into the editor (replacing the existing JSON), and
then choose Next.

d. Under Policy details, enter a Policy name.

e. Choose Create policy.

AWS CLI

To add a permissions policy to a function's execution role (CLI)

1. Create a JSON policy document with the required permissions and save it in a local
directory.

2. Use the IAM put-role-policy CLI command to add the permissions to your function's
execution role. Run the following command from the directory you saved your JSON policy
document in and replace the role name, policy name, and policy document with your own
values.

aws iam put-role-policy \
--role-name my_lambda_role \
--policy-name LambdaS3DestinationPolicy \
--policy-document file://my_policy.json

Retaining records 340

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Example invocation record

When an invocation matches the condition, Lambda sends a JSON document with details about the
invocation to the destination. The following example shows an invocation record for an event that
failed three processing attempts due to a function error.

Example

{
 "version": "1.0",
 "timestamp": "2019-11-14T18:16:05.568Z",
 "requestContext": {
 "requestId": "e4b46cbf-b738-xmpl-8880-a18cdf61200e",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:my-function:
$LATEST",
 "condition": "RetriesExhausted",
 "approximateInvokeCount": 3
 },
 "requestPayload": {
 "ORDER_IDS": [
 "9e07af03-ce31-4ff3-xmpl-36dce652cb4f",
 "637de236-e7b2-464e-xmpl-baf57f86bb53",
 "a81ddca6-2c35-45c7-xmpl-c3a03a31ed15"
]
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "responsePayload": {
 "errorMessage": "RequestId: e4b46cbf-b738-xmpl-8880-a18cdf61200e Process exited
 before completing request"
 }
}

The invocation record contains details about the event, the response, and the reason that the
record was sent.

Tracing requests to destinations

You can use AWS X-Ray to see a connected view of each request as it's queued, processed by a
Lambda function, and passed to the destination service. When you activate X-Ray tracing for a

Retaining records 341

AWS Lambda Developer Guide

function or a service that invokes a function, Lambda adds an X-Ray header to the request and
passes the header to the destination service. Traces from upstream services are automatically
linked to traces from downstream Lambda functions and destination services, creating an end-
to-end view of the entire application. For more information about tracing, see Visualize Lambda
function invocations using AWS X-Ray.

Adding a dead-letter queue

As an alternative to an on-failure destination, you can configure your function with a dead-letter
queue to save discarded events for further processing. A dead-letter queue acts the same as an on-
failure destination in that it is used when an event fails all processing attempts or expires without
being processed. However, you can only add or remove a dead-letter queue at the function level.
Function versions use the same dead-letter queue settings as the unpublished version ($LATEST).
On-failure destinations also support additional targets and include details about the function's
response in the invocation record.

To reprocess events in a dead-letter queue, you can set it as an event source for your Lambda
function. Alternatively, you can manually retrieve the events.

You can choose an Amazon SQS standard queue or Amazon SNS standard topic for your dead-
letter queue. FIFO queues and Amazon SNS FIFO topics are not supported.

• Amazon SQS queue – A queue holds failed events until they're retrieved. Choose an Amazon SQS
standard queue if you expect a single entity, such as a Lambda function or CloudWatch alarm, to
process the failed event. For more information, see Using Lambda with Amazon SQS.

• Amazon SNS topic – A topic relays failed events to one or more destinations. Choose an Amazon
SNS standard topic if you expect multiple entities to act on a failed event. For example, you
can configure a topic to send events to an email address, a Lambda function, and/or an HTTP
endpoint. For more information, see Invoking Lambda functions with Amazon SNS notifications.

To send events to a queue or topic, your function needs additional permissions. Add a policy with
the required permissions to your function's execution role. If the target queue or topic is encrypted
with a customer managed AWS KMS key, ensure that both your function's execution role and the
key's resource-based policy contains the relevant permissions.

After creating the target and updating your function's execution role, add the dead-letter queue to
your function. You can configure multiple functions to send events to the same target.

Retaining records 342

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html
https://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

AWS Lambda Developer Guide

Console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Asynchronous invocation.

4. Under Asynchronous invocation, choose Edit.

5. Set Dead-letter queue service to Amazon SQS or Amazon SNS.

6. Choose the target queue or topic.

7. Choose Save.

AWS CLI

To configure a dead-letter queue with the AWS CLI, use the update-function-configuration
command.

aws lambda update-function-configuration \
 --function-name my-function \
 --dead-letter-config TargetArn=arn:aws:sns:us-east-1:123456789012:my-topic

Lambda sends the event to the dead-letter queue as-is, with additional information in attributes.
You can use this information to identify the error that the function returned, or to correlate the
event with logs or an AWS X-Ray trace.

Dead-letter queue message attributes

• RequestID (String) – The ID of the invocation request. Request IDs appear in function logs. You
can also use the X-Ray SDK to record the request ID on an attribute in the trace. You can then
search for traces by request ID in the X-Ray console.

• ErrorCode (Number) – The HTTP status code.

• ErrorMessage (String) – The first 1 KB of the error message.

If Lambda can't send a message to the dead-letter queue, it deletes the event and emits the
DeadLetterErrors metric. This can happen because of lack of permissions, or if the total size of the
message exceeds the limit for the target queue or topic. For example, say that an Amazon SNS
notification with a body close to 256 KB in size triggers a function that results in an error. In that

Retaining records 343

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

case, the event data that Amazon SNS adds, combined with the attributes that Lambda adds, can
cause the message to exceed the maximum size allowed in the dead-letter queue.

If you're using Amazon SQS as an event source, configure a dead-letter queue on the Amazon
SQS queue itself and not on the Lambda function. For more information, see Using Lambda with
Amazon SQS.

Retaining records 344

AWS Lambda Developer Guide

How Lambda processes records from stream and queue-based
event sources

An event source mapping is a Lambda resource that reads items from stream and queue-based
services and invokes a function with batches of records. Within an event source mapping, resources
called event pollers actively poll for new messages and invoke functions. By default, Lambda
automatically scales event pollers, but for certain event source types, you can use provisioned
mode to control the minimum and maximum number of event pollers dedicated to your event
source mapping.

The following services use event source mappings to invoke Lambda functions:

• Amazon DocumentDB (with MongoDB compatibility) (Amazon DocumentDB)

• Amazon DynamoDB

• Amazon Kinesis

• Amazon MQ

• Amazon Managed Streaming for Apache Kafka (Amazon MSK)

• Self-managed Apache Kafka

• Amazon Simple Queue Service (Amazon SQS)

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

How event source mappings differ from direct triggers

Some AWS services can directly invoke Lambda functions using triggers. These services push
events to Lambda, and the function is invoked immediately when the specified event occurs.
Triggers are suitable for discrete events and real-time processing. When you create a trigger using
the Lambda console, the console interacts with the corresponding AWS service to configure the
event notification on that service. The trigger is actually stored and managed by the service that

Event source mappings 345

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

AWS Lambda Developer Guide

generates the events, not by Lambda. Here are some examples of services that use triggers to
invoke Lambda functions:

• Amazon Simple Storage Service (Amazon S3): Invokes a function when an object is created,
deleted, or modified in a bucket. For more information, see Tutorial: Using an Amazon S3 trigger
to invoke a Lambda function.

• Amazon Simple Notification Service (Amazon SNS): Invokes a function when a message is
published to an SNS topic. For more information, see Tutorial: Using AWS Lambda with Amazon
Simple Notification Service.

• Amazon API Gateway: Invokes a function when an API request is made to a specific endpoint.
For more information, see Invoking a Lambda function using an Amazon API Gateway endpoint.

Event source mappings are Lambda resources created and managed within the Lambda service.
Event source mappings are designed for processing high-volume streaming data or messages from
queues. Processing records from a stream or queue in batches is more efficient than processing
records individually.

Batching behavior

By default, an event source mapping batches records together into a single payload that Lambda
sends to your function. To fine-tune batching behavior, you can configure a batching window
(MaximumBatchingWindowInSeconds) and a batch size (BatchSize). A batching window is the
maximum amount of time to gather records into a single payload. A batch size is the maximum
number of records in a single batch. Lambda invokes your function when one of the following
three criteria is met:

• The batching window reaches its maximum value. Default batching window behavior varies
depending on the specific event source.

• For Kinesis, DynamoDB, and Amazon SQS event sources: The default batching window is 0
seconds. This means that Lambda invokes your function as soon as records are available. To
set a batching window, configure MaximumBatchingWindowInSeconds. You can set this
parameter to any value from 0 to 300 seconds in increments of 1 second. If you configure
a batching window, the next window begins as soon as the previous function invocation
completes.

• For Amazon MSK, self-managed Apache Kafka, Amazon MQ, and Amazon
DocumentDB event sources: The default batching window is 500 ms. You can configure
MaximumBatchingWindowInSeconds to any value from 0 seconds to 300 seconds in

Batching behavior 346

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumBatchingWindowInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-response-BatchSize

AWS Lambda Developer Guide

increments of seconds. In provisioned mode for Kafka event source mappings, when you
configure a batching window, the next window begins as soon as the previous batch is
completed. In non-provisioned Kafka event source mappings, when you configure a batching
window, the next window begins as soon as the previous function invocation completes.
To minimize latency when using Kafka event source mappings in provisioned mode, set
MaximumBatchingWindowInSeconds to 0. This setting ensures that Lambda will start
processing the next batch immediately after completing the current function invocation. For
additional information on low latency processing, see Low latency Apache Kafka.

• For Amazon MQ and Amazon DocumentDB event sources: The default batching window
is 500 ms. You can configure MaximumBatchingWindowInSeconds to any value from 0
seconds to 300 seconds in increments of seconds. A batching window begins as soon as the
first record arrives.

Note

Because you can only change MaximumBatchingWindowInSeconds in increments
of seconds, you cannot revert to the 500 ms default batching window after you have
changed it. To restore the default batching window, you must create a new event
source mapping.

• The batch size is met. The minimum batch size is 1. The default and maximum batch size
depend on the event source. For details about these values, see the BatchSize specification for
the CreateEventSourceMapping API operation.

• The payload size reaches 6 MB. You cannot modify this limit.

The following diagram illustrates these three conditions. Suppose a batching window begins at t
= 7 seconds. In the first scenario, the batching window reaches its 40 second maximum at t = 47
seconds after accumulating 5 records. In the second scenario, the batch size reaches 10 before the
batching window expires, so the batching window ends early. In the third scenario, the maximum
payload size is reached before the batching window expires, so the batching window ends early.

Batching behavior 347

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-BatchSize
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

AWS Lambda Developer Guide

Batching behavior 348

AWS Lambda Developer Guide

We recommend that you test with different batch and record sizes so that the polling frequency
of each event source is tuned to how quickly your function is able to complete its task. The
CreateEventSourceMapping BatchSize parameter controls the maximum number of records that
can be sent to your function with each invoke. A larger batch size can often more efficiently absorb
the invoke overhead across a larger set of records, increasing your throughput.

Lambda doesn't wait for any configured extensions to complete before sending the next batch
for processing. In other words, your extensions may continue to run as Lambda processes the next
batch of records. This can cause throttling issues if you breach any of your account's concurrency
settings or limits. To detect whether this is a potential issue, monitor your functions and check
whether you're seeing higher concurrency metrics than expected for your event source mapping.
Due to short times in between invokes, Lambda may briefly report higher concurrency usage than
the number of shards. This can be true even for Lambda functions without extensions.

By default, if your function returns an error, the event source mapping reprocesses the entire batch
until the function succeeds, or the items in the batch expire. To ensure in-order processing, the
event source mapping pauses processing for the affected shard until the error is resolved. For
stream sources (DynamoDB and Kinesis), you can configure the maximum number of times that
Lambda retries when your function returns an error. Service errors or throttles where the batch
does not reach your function do not count toward retry attempts. You can also configure the event
source mapping to send an invocation record to a destination when it discards an event batch.

Provisioned mode

Lambda event source mappings use event pollers to poll your event source for new messages. By
default, Lambda manages the autoscaling of these pollers depending on message volume. When
message traffic increases, Lambda automatically increases the number of event pollers to handle
the load, and reduces them when traffic decreases.

In provisioned mode, you can fine-tune the throughput of your event source mapping by defining
minimum and maximum limits for the number of provisioned event pollers. Lambda then scales
your event source mapping between the minimum and maximum number of event pollers in a
responsive manner. These provisioned event pollers are dedicated to your event source mapping,
enhancing your ability to handle unpredictable spikes in events.

In Lambda, an event poller is a compute unit capable of handling up to 5 MBps of throughput.
For reference, suppose your event source produces an average payload of 1MB, and the average
function duration is 1 sec. If the payload doesn’t undergo any transformation (such as filtering),

Provisioned mode 349

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html

AWS Lambda Developer Guide

a single poller can support 5 MBps throughput, and 5 concurrent Lambda invocations. Using
provisioned mode incurs additional costs. For pricing estimates, see AWS Lambda pricing.

Provisioned mode is supported only for Amazon MSK and self-managed Apache Kafka event
sources. While concurrency settings give you control over the scaling of your function, provisioned
mode gives you control over the throughput of your event source mapping. To ensure maximum
performance, you may need to adjust both settings independently. For details about configuring
provisioned mode, see the following sections:

• Configuring provisioned mode for Amazon MSK event source mappings

• Configuring provisioned mode for self-managed Apache Kafka event source mappings

To minimize latency when using Kafka event source mappings in provisioned mode, set
MaximumBatchingWindowInSeconds to 0. This setting ensures that Lambda will start processing
the next batch immediately after completing the current function invocation. For additional
information on low latency processing, see Low latency Apache Kafka.

After configuring provisioned mode, you can observe the usage of event pollers for your workload
by monitoring the ProvisionedPollers metric. For more information, see the section called
“Event source mapping metrics”.

Event source mapping API

To manage an event source with the AWS Command Line Interface (AWS CLI) or an AWS SDK, you
can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

Using tags on event source mappings

You can tag event source mappings to organize and manage your resources. Tags are free-form
key-value pairs associated with your resources that are supported across AWS services. For more

Event source mapping API 350

https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html

AWS Lambda Developer Guide

information about use cases for tags, see Common tagging strategies in the Tagging AWS Resources
and Tag Editor Guide.

Event source mappings are associated with functions, which can have their own tags. Event source
mappings do not automatically inherit tags from functions. You can use the AWS Lambda API to
view and update tags. You can also view and update tags while managing a specific event source
mapping in the Lambda console.

Permissions required for working with tags

To allow an AWS Identity and Access Management (IAM) identity (user, group, or role) to read or set
tags on a resource, grant it the corresponding permissions:

• lambda:ListTags–When a resource has tags, grant this permission to anyone who needs to call
ListTags on it. For tagged functions, this permission is also necessary for GetFunction.

• lambda:TagResource–Grant this permission to anyone who needs to call TagResource or
perform a tag on create.

Optionally, consider granting the lambda:UntagResource permission as well to allow
UntagResource calls to the resource.

For more information, see Identity-based IAM policies for Lambda.

Using tags with the Lambda console

You can use the Lambda console to create event source mappings that have tags, add tags to
existing event source mappings, and filter event source mappings by tag.

When you add a trigger for supported stream and queue-based services using the Lambda console,
Lambda automatically creates an event source mapping. For more information about these event
sources, see the section called “Event source mappings”. To create an event source mapping in the
console, you will need the following prerequisites:

• A function.

• An event source from an affected service.

You can add the tags as part of the same user interface you use to create or update triggers.

Event source mapping tags 351

https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

AWS Lambda Developer Guide

To add a tag when you create a event source mapping

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, in the dropdown list, choose the name of the service your event
source comes from.

5. Provide the core configuration for your event source. For more information about configuring
your event source, consult the section for the related service in Integrating other services.

6. Under Event source mapping configuration, choose Additional settings.

7. Under Tags, choose Add new tag

8. In the Key field, enter your tag key. For information about tagging restrictions, see Tag naming
limits and requirements in the Tagging AWS Resources and Tag Editor Guide.

9. Choose Add.

To add tags to an existing event source mapping

1. Open Event source mappings in the Lambda console.

2. From the resource list, choose the UUID for the event source mapping corresponding to your
Function and Event source ARN.

3. From the tab list below the General configuration pane, choose Tags.

4. Choose Manage tags.

5. Choose Add new tag.

6. In the Key field, enter your tag key. For information about tagging restrictions, see Tag naming
limits and requirements in the Tagging AWS Resources and Tag Editor Guide.

7. Choose Save.

To filter event source mappings by tag

1. Open Event source mappings in the Lambda console.

2. Choose the search box.

3. From the dropdown list, select your tag key from below the Tags subheading.

Event source mapping tags 352

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://console.aws.amazon.com/lambda/home#/event-source-mappings
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://console.aws.amazon.com/lambda/home#/event-source-mappings

AWS Lambda Developer Guide

4. Select Use: "tag-name" to see all event source mappings tagged with this key, or choose an
Operator to further filter by value.

5. Select your tag value to filter by a combination of tag key and value.

The search box also supports searching for tag keys. Enter the name of a key to find it in the list.

Using tags with the AWS CLI

You can add and remove tags on existing Lambda resources, including event source mappings, with
the Lambda API. You can also add tags when creating an event source mapping, which allows you
to keep a resource tagged through its entire lifecycle.

Updating tags with the Lambda tag APIs

You can add and remove tags for supported Lambda resources through the TagResource and
UntagResource API operations.

You can call these operations using the AWS CLI. To add tags to an existing resource, use the tag-
resource command. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda tag-resource \
--resource arn:aws:lambda:us-east-2:123456789012:resource-type:my-resource \
--tags Department=Marketing,CostCenter=1234ABCD

To remove tags, use the untag-resource command. This example removes the tag with the key
Department.

aws lambda untag-resource --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier \
--tag-keys Department

Adding tags when you create an event source mapping

To create a new Lambda event source mapping with tags, use the CreateEventSourceMapping
API operation. Specify the Tags parameter. You can call this operation with the create-event-
source-mapping AWS CLI command and the --tags option. For more information about the CLI
command, see create-event-source-mapping in the AWS CLI Command Reference.

Event source mapping tags 353

https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

AWS Lambda Developer Guide

Before using the Tags parameter with CreateEventSourceMapping, ensure that your role
has permission to tag resources alongside the usual permissions needed for this operation. For
more information about permissions for tagging, see the section called “Permissions required for
working with tags”.

Viewing tags with the Lambda tag APIs

To view the tags that are applied to a specific Lambda resource, use the ListTags API operation.
For more information, see ListTags.

You can call this operation with the list-tags AWS CLI command by providing an ARN (Amazon
Resource Name).

aws lambda list-tags --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier

Filtering resources by tag

You can use the AWS Resource Groups Tagging API GetResources API operation to filter your
resources by tags. The GetResources operation receives up to 10 filters, with each filter
containing a tag key and up to 10 tag values. You provide GetResources with a ResourceType
to filter by specific resource types.

You can call this operation using the get-resources AWS CLI command. For examples of using
get-resources, see get-resources in the AWS CLI Command Reference.

Event source mapping tags 354

https://docs.aws.amazon.com/lambda/latest/api/API_ListTags.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/resourcegroupstaggingapi/get-resources.html#examples

AWS Lambda Developer Guide

Control which events Lambda sends to your function

You can use event filtering to control which records from a stream or queue Lambda sends to
your function. For example, you can add a filter so that your function only processes Amazon SQS
messages containing certain data parameters. Event filtering works only with certain event source
mappings. You can add filters to event source mappings for the following AWS services:

• Amazon DynamoDB

• Amazon Kinesis Data Streams

• Amazon MQ

• Amazon Managed Streaming for Apache Kafka (Amazon MSK)

• Self-managed Apache Kafka

• Amazon Simple Queue Service (Amazon SQS)

For specific information about filtering with specific event sources, see the section called
“Using filters with different AWS services”. Lambda doesn't support event filtering for Amazon
DocumentDB.

By default, you can define up to five different filters for a single event source mapping. Your filters
are logically ORed together. If a record from your event source satisfies one or more of your filters,
Lambda includes the record in the next event it sends to your function. If none of your filters are
satisfied, Lambda discards the record.

Note

If you need to define more than five filters for an event source, you can request a quota
increase for up to 10 filters for each event source. If you attempt to add more filters than
your current quota permits, Lambda will return an error when you try to create the event
source.

Topics

• Understanding event filtering basics

• Handling records that don't meet filter criteria

• Filter rule syntax

Event filtering 355

AWS Lambda Developer Guide

• Attaching filter criteria to an event source mapping (console)

• Attaching filter criteria to an event source mapping (AWS CLI)

• Attaching filter criteria to an event source mapping (AWS SAM)

• Encryption of filter criteria

• Using filters with different AWS services

Understanding event filtering basics

A filter criteria (FilterCriteria) object is a structure that consists of a list of filters (Filters).
Each filter is a structure that defines an event filtering pattern (Pattern). A pattern is a string
representation of a JSON filter rule. The structure of a FilterCriteria object is as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata1\": [rule1], \"data\": { \"Data1\":
 [rule2] }}"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "Metadata1": [rule1],
 "data": {
 "Data1": [rule2]
 }
}

Your filter pattern can include metadata properties, data properties, or both. The available
metadata parameters and the format of the data parameters vary according to the AWS service
which is acting as the event source. For example, suppose your event source mapping receives the
following record from an Amazon SQS queue:

{
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",

Understanding event filtering basics 356

AWS Lambda Developer Guide

 "body": "{\\n \"City\": \"Seattle\",\\n \"State\": \"WA\",\\n \"Temperature\":
 \"46\"\\n}",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
 "awsRegion": "us-east-2"
}

• Metadata properties are the fields containing information about the event that created the
record. In the example Amazon SQS record, the metadata properties include fields such as
messageID, eventSourceArn, and awsRegion.

• Data properties are the fields of the record containing the data from your stream or queue. In
the Amazon SQS event example, the key for the data field is body, and the data properties are
the fields City State, and Temperature.

Different types of event source use different key values for their data fields. To filter on data
properties, make sure that you use the correct key in your filter’s pattern. For a list of data filtering
keys, and to see examples of filter patterns for each supported AWS service, refer to Using filters
with different AWS services.

Event filtering can handle multi-level JSON filtering. For example, consider the following fragment
of a record from a DynamoDB stream:

"dynamodb": {
 "Keys": {
 "ID": {
 "S": "ABCD"
 }
 "Number": {
 "N": "1234"
 },
 ...
}

Understanding event filtering basics 357

AWS Lambda Developer Guide

Suppose you want to process only those records where the value of the sort key Number is 4567. In
this case, your FilterCriteria object would look like this:

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\": { \"Keys\": { \"Number\": { \"N\":
 ["4567"] } } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb": {
 "Keys": {
 "Number": {
 "N": ["4567"]
 }
 }
 }
}

Handling records that don't meet filter criteria

How Lambda handles records that don't meet your filter criteria depends on the event source.

• For Amazon SQS, if a message doesn't satisfy your filter criteria, Lambda automatically removes
the message from the queue. You don't have to manually delete these messages in Amazon SQS.

• For Kinesis and DynamoDB, after your filter criteria evaluates a record, the streams iterator
advances past this record. If the record doesn't satisfy your filter criteria, you don't have to
manually delete the record from your event source. After the retention period, Kinesis and
DynamoDB automatically delete these old records. If you want records to be deleted sooner, see
Changing the Data Retention Period.

• For Amazon MSK, self-managed Apache Kafka, and Amazon MQ messages, Lambda drops
messages that don't match all fields included in the filter. For Amazon MSK and self-managed
Apache Kafka, Lambda commits offsets for matched and unmatched messages after successfully
invoking the function. For Amazon MQ, Lambda acknowledges matched messages after
successfully invoking the function, and acknowledges unmatched messages when filtering them.

Handling records that don't meet filter criteria 358

https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html

AWS Lambda Developer Guide

Filter rule syntax

For filter rules, Lambda supports the Amazon EventBridge rules and uses the same syntax as
EventBridge. For more information, see Amazon EventBridge event patterns in the Amazon
EventBridge User Guide.

The following is a summary of all the comparison operators available for Lambda event filtering.

Comparison operator Example Rule syntax

Null UserID is null "UserID": [null]

Empty LastName is empty "LastName": [""]

Equals Name is "Alice" "Name": ["Alice"]

Equals (ignore case) Name is "Alice" "Name": [{ "equals-ignore-cas
e": "alice" }]

And Location is "New York" and
Day is "Monday"

"Location": ["New York"],
"Day": ["Monday"]

Or PaymentType is "Credit" or
"Debit"

"PaymentType": ["Credit",
"Debit"]

Or (multiple fields) Location is "New York", or Day
is "Monday".

"$or": [{ "Location":
["New York"] }, { "Day":
["Monday"] }]

Not Weather is anything but
"Raining"

"Weather": [{ "anything-but":
["Raining"] }]

Numeric (equals) Price is 100 "Price": [{ "numeric": ["=",
100] }]

Numeric (range) Price is more than 10, and
less than or equal to 20

"Price": [{ "numeric": [">", 10,
"<=", 20] }]

Exists ProductName exists "ProductName": [{ "exists":
true }]

Filter rule syntax 359

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html

AWS Lambda Developer Guide

Comparison operator Example Rule syntax

Does not exist ProductName does not exist "ProductName": [{ "exists":
false }]

Begins with Region is in the US "Region": [{"prefix": "us-" }]

Ends with FileName ends with a .png
extension.

"FileName": [{ "suffix":
".png" }]

Note

Like EventBridge, for strings, Lambda uses exact character-by-character matching without
case-folding or any other string normalization. For numbers, Lambda also uses string
representation. For example, 300, 300.0, and 3.0e2 are not considered equal.

Note that the Exists operator only works on leaf nodes in your event source JSON. It doesn't
match intermediate nodes. For example, with the following JSON, the filter pattern { "person":
{ "address": [{ "exists": true }] } }" wouldn't find a match because "address" is
an intermediate node.

{
 "person": {
 "name": "John Doe",
 "age": 30,
 "address": {
 "street": "123 Main St",
 "city": "Anytown",
 "country": "USA"
 }
 }
}

Attaching filter criteria to an event source mapping (console)

Follow these steps to create a new event source mapping with filter criteria using the Lambda
console.

Attaching filter criteria to an event source mapping (console) 360

AWS Lambda Developer Guide

To create a new event source mapping with filter criteria (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function to create an event source mapping for.

3. Under Function overview, choose Add trigger.

4. For Trigger configuration, choose a trigger type that supports event filtering. For a list of
supported services, refer to the list at the beginning of this page.

5. Expand Additional settings.

6. Under Filter criteria, choose Add, and then define and enter your filters. For example, you can
enter the following.

{ "Metadata" : [1, 2] }

This instructs Lambda to process only the records where field Metadata is equal to 1 or 2. You
can continue to select Add to add more filters up to the maximum allowed amount.

7. When you have finished adding your filters, choose Save.

When you enter filter criteria using the console, you enter only the filter pattern and don't
need to provide the Pattern key or escape quotes. In step 6 of the preceding instructions,
{ "Metadata" : [1, 2] } corresponds to the following FilterCriteria.

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata\" : [1, 2] }"
 }
]
}

After creating your event source mapping in the console, you can see the formatted
FilterCriteria in the trigger details. For more examples of creating event filters using the
console, see Using filters with different AWS services.

Attaching filter criteria to an event source mapping (AWS CLI)

Suppose you want an event source mapping to have the following FilterCriteria:

Attaching filter criteria to an event source mapping (AWS CLI) 361

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata\" : [1, 2] }"
 }
]
}

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"Metadata\" : [1, 2]}"}]}'

This create-event-source-mapping command creates a new Amazon SQS event source mapping for
function my-function with the specified FilterCriteria.

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"Metadata\" : [1, 2]}"}]}'

Note that to update an event source mapping, you need its UUID. You can get the UUID from
a list-event-source-mappings call. Lambda also returns the UUID in the create-event-source-
mapping CLI response.

To remove filter criteria from an event source, you can run the following update-event-source-
mapping command with an empty FilterCriteria object.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria "{}"

For more examples of creating event filters using the AWS CLI, see Using filters with different AWS
services.

Attaching filter criteria to an event source mapping (AWS CLI) 362

https://docs.aws.amazon.com/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/list-event-source-mappings.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

Attaching filter criteria to an event source mapping (AWS SAM)

Suppose you want to configure an event source in AWS SAM to use the following filter criteria:

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata\" : [1, 2] }"
 }
]
}

To add these filter criteria to your event source mapping, insert the following snippet into the
YAML template for your event source.

FilterCriteria:
 Filters:
 - Pattern: '{"Metadata": [1, 2]}'

For more information on creating and configuring an AWS SAM template for an event source
mapping, see the EventSource section of the AWS SAM Developer Guide. Fore more examples of
creating event filters using AWS SAM templates, see Using filters with different AWS services.

Encryption of filter criteria

By default, Lambda doesn't encrypt your filter criteria object. For use cases where you may include
sensitive information in your filter criteria object, you can use your own KMS key to encrypt it.

After you encrypt your filter criteria object, you can view its plaintext version using a
GetEventSourceMapping API call. You must have kms:Decrypt permissions to be able to
successfully view the filter criteria in plaintext.

Note

If your filter criteria object is encrypted, Lambda redacts the value of the FilterCriteria
field in the response of ListEventSourceMappings calls. Instead, this field displays as null.
To see the true value of FilterCriteria, use the GetEventSourceMapping API.
To view the decrypted value of FilterCriteria in the console, ensure that your IAM role
contains permissions for GetEventSourceMapping.

Attaching filter criteria to an event source mapping (AWS SAM) 363

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html

AWS Lambda Developer Guide

You can specify your own KMS key via the console, API/CLI, or AWS CloudFormation.

To encrypt filter criteria with a customer-owned KMS key (console)

1. Open the Functions page of the Lambda console.

2. Choose Add trigger. If you already have an existing trigger, choose the Configuration tab, and
then choose Triggers. Select the existing trigger, and choose Edit.

3. Select the checkbox next to Encrypt with customer managed KMS key.

4. For Choose a customer managed KMS encryption key, select an existing enabled key
or create a new key. Depending on the operation, you need some or all of the following
permissions: kms:DescribeKey, kms:GenerateDataKey, and kms:Decrypt. Use the KMS
key policy to grant these permissions.

If you use your own KMS key, the following API operations must be permitted in the key policy:

• kms:Decrypt – Must be granted to the regional Lambda service principal
(lambda.AWS_region.amazonaws.com). This allows Lambda to decrypt data with this KMS
key.

• To prevent a cross-service confused deputy problem, the key policy uses the aws:SourceArn
global condition key. The correct value of the aws:SourceArn key is the ARN of your event
source mapping resource, so you can add this to your policy only after you know its ARN.
Lambda also forwards the aws:lambda:FunctionArn and aws:lambda:EventSourceArn
keys and their respective values in the encryption context when making a decryption request
to KMS. These values must match the specified conditions in the key policy for the decryption
request to succeed. You don't need to include EventSourceArn for Self-managed Kafka event
sources since they don't have an EventSourceArn.

• kms:Decrypt – Must also be granted to the principal that intends to use the key to view the
plaintext filter criteria in GetEventSourceMapping or DeleteEventSourceMapping API calls.

• kms:DescribeKey – Provides the customer managed key details to allow the specified principal
to use the key.

• kms:GenerateDataKey – Provides permissions for Lambda to generate a data key to encrypt
the filter criteria, on behalf of the specified principal (envelope encryption).

You can use AWS CloudTrail to track AWS KMS requests that Lambda makes on your behalf. For
sample CloudTrail events, see ???.

Encryption of filter criteria 364

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

AWS Lambda Developer Guide

We also recommend using the kms:ViaService condition key to limit the use of the KMS key
to requests from Lambda only. The value of this key is the regional Lambda service principal
(lambda.AWS_region.amazonaws.com). The following is a sample key policy that grants all the
relevant permissions:

Example AWS KMS key policy

JSON

{
 "Version": "2012-10-17",
 "Id": "example-key-policy-1",
 "Statement": [
 {
 "Sid": "Allow Lambda to decrypt using the key",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.us-east-1.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals" : {
 "aws:SourceArn": [
 "arn:aws:lambda:us-east-1:123456789012:event-source-
mapping:<esm_uuid>"
]
 },
 "StringEquals": {

 "kms:EncryptionContext:aws:lambda:FunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:test-function",

 "kms:EncryptionContext:aws:lambda:EventSourceArn": "arn:aws:sqs:us-
east-1:123456789012:test-queue"
 }
 }
 },
 {
 "Sid": "Allow actions by an AWS account on the key",

Encryption of filter criteria 365

https://docs.aws.amazon.com/kms/latest/developerguide/conditions-kms.html#conditions-kms-via-service

AWS Lambda Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow use of the key to specific roles",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/ExampleRole"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals" : {
 "kms:ViaService": "lambda.us-east-1.amazonaws.com"
 }
 }
 }
]
}

To use your own KMS key to encrypt filter criteria, you can also use the following
CreateEventSourceMapping AWS CLI command. Specify the KMS key ARN with the --kms-key-
arn flag.

aws lambda create-event-source-mapping --function-name my-function \
 --maximum-batching-window-in-seconds 60 \
 --event-source-arn arn:aws:sqs:us-east-1:123456789012:my-queue \
 --filter-criteria "{\"filters\": [{\"pattern\": \"{\"a\": [\"1\", \"2\"]}\" }]}" \
 --kms-key-arn arn:aws:kms:us-east-1:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

If you have an existing event source mapping, use the UpdateEventSourceMapping AWS CLI
command instead. Specify the KMS key ARN with the --kms-key-arn flag.

Encryption of filter criteria 366

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

aws lambda update-event-source-mapping --function-name my-function \
 --maximum-batching-window-in-seconds 60 \
 --event-source-arn arn:aws:sqs:us-east-1:123456789012:my-queue \
 --filter-criteria "{\"filters\": [{\"pattern\": \"{\"a\": [\"1\", \"2\"]}\" }]}" \
 --kms-key-arn arn:aws:kms:us-east-1:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

This operation overwrites any KMS key that was previously specified. If you specify the --kms-
key-arn flag along with an empty argument, Lambda stops using your KMS key to encrypt filter
criteria. Instead, Lambda defaults back to using an Amazon-owned key.

To specify your own KMS key in a AWS CloudFormation template, use the KMSKeyArn property
of the AWS::Lambda::EventSourceMapping resource type. For example, you can insert the
following snippet into the YAML template for your event source.

MyEventSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 ...
 FilterCriteria:
 Filters:
 - Pattern: '{"a": [1, 2]}'
 KMSKeyArn: "arn:aws:kms:us-east-1:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599"
 ...

To be able to view your encrypted filter criteria in plaintext in a GetEventSourceMapping or
DeleteEventSourceMapping API call, you must have kms:Decrypt permissions.

Starting August 6, 2024, the FilterCriteria field no longer shows up in AWS CloudTrail logs
from CreateEventSourceMapping, UpdateEventSourceMapping, and DeleteEventSourceMapping
API calls if your function doesn't use event filtering. If your function does use event filtering, the
FilterCriteria field shows up as empty ({}). You can still view your filter criteria in plaintext in
the response of GetEventSourceMapping API calls if you have kms:Decrypt permissions for the
correct KMS key.

Sample CloudTrail log entry for Create/Update/DeleteEventSourceMapping calls

In the following AWS CloudTrail sample log entry for a CreateEventSourceMapping call,
FilterCriteria shows up as empty ({}) because the function uses event filtering. This is the

Encryption of filter criteria 367

https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html

AWS Lambda Developer Guide

case even if FilterCriteria object contains valid filter criteria that your function is actively
using. If the function doesn't use event filtering, CloudTrail won't display the FilterCriteria
field at all in log entries.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA123456789EXAMPLE:userid1",
 "arn": "arn:aws:sts::123456789012:assumed-role/Example/example-role",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROA987654321EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/User1",
 "accountId": "123456789012",
 "userName": "User1"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2024-05-09T20:35:01Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "AWS Internal"
 },
 "eventTime": "2024-05-09T21:05:41Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "CreateEventSourceMapping20150331",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "eventSourceArn": "arn:aws:sqs:us-east-2:123456789012:example-queue",
 "functionName": "example-function",
 "enabled": true,
 "batchSize": 10,
 "filterCriteria": {},
 "kMSKeyArn": "arn:aws:kms:us-east-2:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "scalingConfig": {},

Encryption of filter criteria 368

AWS Lambda Developer Guide

 "maximumBatchingWindowInSeconds": 0,
 "sourceAccessConfigurations": []
 },
 "responseElements": {
 "uUID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "batchSize": 10,
 "maximumBatchingWindowInSeconds": 0,
 "eventSourceArn": "arn:aws:sqs:us-east-2:123456789012:example-queue",
 "filterCriteria": {},
 "kMSKeyArn": "arn:aws:kms:us-east-2:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:example-
function",
 "lastModified": "May 9, 2024, 9:05:41 PM",
 "state": "Creating",
 "stateTransitionReason": "USER_INITIATED",
 "functionResponseTypes": [],
 "eventSourceMappingArn": "arn:aws:lambda:us-east-2:123456789012:event-source-
mapping:a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb"
 },
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management",
 "sessionCredentialFromConsole": "true"
}

Using filters with different AWS services

Different types of event source use different key values for their data fields. To filter on data
properties, make sure that you use the correct key in your filter’s pattern. The following table gives
the filtering keys for each supported AWS service.

AWS service Filtering key

DynamoDB dynamodb

Kinesis data

Using filters with different AWS services 369

AWS Lambda Developer Guide

AWS service Filtering key

Amazon MQ data

Amazon MSK value

Self-managed Apache Kafka value

Amazon SQS body

The following sections give examples of filter patterns for different types of event sources. They
also provide definitions of supported incoming data formats and filter pattern body formats for
each supported service.

• the section called “Event filtering”

• the section called “Event filtering”

• the section called “Event filtering”

• the section called “Event filtering”

• the section called “Event filtering”

• the section called “Event filtering”

Using filters with different AWS services 370

AWS Lambda Developer Guide

Testing Lambda functions in the console

You can test your Lambda function in the console by invoking your function with a test event. A
test event is a JSON input to your function. If your function doesn't require input, the event can be
an empty document ({}).

When you run a test in the console, Lambda synchronously invokes your function with the test
event. The function runtime converts the event JSON into an object and passes it to your code's
handler method for processing.

Create a test event

Before you can test in the console, you need to create a private or shareable test event.

Invoking functions with test events

To test a function

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, choose Create new event or Edit saved event and then choose the saved
event that you want to use.

5. Optionally - choose a Template for the event JSON.

6. Choose Test.

7. To review the test results, under Execution result, expand Details.

To invoke your function without saving your test event, choose Test before saving. This creates an
unsaved test event that Lambda preserves only for the duration of the session.

For the Node.js, Python, and Ruby runtimes, you can also access your existing saved and unsaved
test events on the Code tab. Use the TEST EVENTS section to create, edit, and run tests.

Testing in console 371

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Creating private test events

Private test events are available only to the event creator, and they require no additional
permissions to use. You can create and save up to 10 private test events per function.

To create a private test event

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

c. In the text entry box, enter the JSON test event.

d. Under Event sharing settings, choose Private.

5. Choose Save changes.

For the Node.js, Python, and Ruby runtimes, you can also create test events on the Code tab. Use
the TEST EVENTS section to create, edit, and run tests.

Creating shareable test events

Shareable test events are test events that you can share with other users in the same AWS account.
You can edit other users' shareable test events and invoke your function with them.

Lambda saves shareable test events as schemas in an Amazon EventBridge (CloudWatch Events)
schema registry named lambda-testevent-schemas. As Lambda utilizes this registry to store
and call shareable test events you create, we recommend that you do not edit this registry or
create a registry using the lambda-testevent-schemas name.

To see, share, and edit shareable test events, you must have permissions for all of the following
EventBridge (CloudWatch Events) schema registry API operations:

• schemas.CreateRegistry

• schemas.CreateSchema

• schemas.DeleteSchema

Creating private test events 372

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/operations.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#CreateRegistry
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#CreateSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DeleteSchema

AWS Lambda Developer Guide

• schemas.DeleteSchemaVersion

• schemas.DescribeRegistry

• schemas.DescribeSchema

• schemas.GetDiscoveredSchema

• schemas.ListSchemaVersions

• schemas.UpdateSchema

Note that saving edits made to a shareable test event overwrites that event.

If you cannot create, edit, or see shareable test events, check that your account has the required
permissions for these operations. If you have the required permissions but still cannot access
shareable test events, check for any resource-based policies that might limit access to the
EventBridge (CloudWatch Events) registry.

To create a shareable test event

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

c. In the text entry box, enter the JSON test event.

d. Under Event sharing settings, choose Shareable.

5. Choose Save changes.

Use shareable test events with AWS Serverless Application Model.

You can use AWS SAM to invoke shareable test events. See sam remote test-event in
the AWS Serverless Application Model Developer Guide

Creating shareable test events 373

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-version-schemaversion.html#DeleteSchemaVersion
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#DescribeRegistry
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DescribeSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-discover.html#GetDiscoveredSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-versions.html#ListSchemaVersions
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#UpdateSchema
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html

AWS Lambda Developer Guide

Deleting shareable test event schemas

When you delete shareable test events, Lambda removes them from the lambda-testevent-
schemas registry. If you remove the last shareable test event from the registry, Lambda deletes
the registry.

If you delete the function, Lambda does not delete any associated shareable test event schemas.
You must clean up these resources manually from the EventBridge (CloudWatch Events) console.

Deleting shareable test event schemas 374

https://console.aws.amazon.com/events

AWS Lambda Developer Guide

Lambda function states

Lambda includes a State field in the function configuration for all functions to indicate when your
function is ready to invoke. State provides information about the current status of the function,
including whether you can successfully invoke the function. Function states do not change the
behavior of function invocations or how your function runs the code.

Note

Function state definitions differ slightly for SnapStart functions. For more information, see
Lambda SnapStart and function states.

In many cases, a DynamoDB table is an ideal way to retain state between invocations since it
provides low-latency data access and can scale with the Lambda service. You can also store data in
Amazon EFS for Lambda if you are using this service, and this provides low-latency access to file
system storage.

Function states include:

• Pending – After Lambda creates the function, it sets the state to pending. While in pending
state, Lambda attempts to create or configure resources for the function, such as VPC or EFS
resources. Lambda does not invoke a function during pending state. Any invocations or other API
actions that operate on the function will fail.

• Active – Your function transitions to active state after Lambda completes resource
configuration and provisioning. Functions can only be successfully invoked while active.

• Failed – Indicates that resource configuration or provisioning encountered an error.

• Inactive – A function becomes inactive when it has been idle long enough for Lambda to
reclaim the external resources that were configured for it. When you try to invoke a function that
is inactive, the invocation fails and Lambda sets the function to pending state until the function
resources are recreated. If Lambda fails to recreate the resources, the function returns to the
inactive state. You might need to resolve any errors and redeploy your function to restore it to
the active state.

If you are using SDK-based automation workflows or calling Lambda’s service APIs directly, ensure
that you check a function's state before invocation to verify that it is active. You can do this with
the Lambda API action GetFunction, or by configuring a waiter using the AWS SDK for Java 2.0.

Function states 375

https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://github.com/aws/aws-sdk-java-v2

AWS Lambda Developer Guide

aws lambda get-function --function-name my-function --query 'Configuration.[State,
 LastUpdateStatus]'

You should see the following output:

[
 "Active",
 "Successful"
]

The following operations fail while function creation is pending:

• Invoke

• UpdateFunctionCode

• UpdateFunctionConfiguration

• PublishVersion

Function states during updates

Lambda has two operations for updating functions:

• UpdateFunctionCode: Updates the function's deployment package

• UpdateFunctionConfiguration: Updates the function's configuration

Lambda uses the LastUpdateStatus attribute to track the progress of these update operations.
While an update is in progress (when "LastUpdateStatus": "InProgress"):

• The function's State remains Active.

• Invocations continue to use the function's previous code and configuration until the update
completes.

• The following operations fail:

• UpdateFunctionCode

• UpdateFunctionConfiguration

• PublishVersion

• TagResource

Function states during updates 376

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_FunctionConfiguration.html#lambda-Type-FunctionConfiguration-LastUpdateStatus
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html

AWS Lambda Developer Guide

Example GetFunctionConfiguration response

The following example is the result of GetFunctionConfiguration request on a function undergoing
an update.

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws:lambda:us-east-1:123456789012:function:my-function",
 "Runtime": "nodejs22.x",
 "VpcConfig": {
 "SubnetIds": [
 "subnet-071f712345678e7c8",
 "subnet-07fd123456788a036",
 "subnet-0804f77612345cacf"
],
 "SecurityGroupIds": [
 "sg-085912345678492fb"
],
 "VpcId": "vpc-08e1234569e011e83"
 },
 "State": "Active",
 "LastUpdateStatus": "InProgress",
 ...
}

Function states during updates 377

https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html

AWS Lambda Developer Guide

Understanding retry behavior in Lambda

When you invoke a function directly, you determine the strategy for handling errors related to
your function code. Lambda does not automatically retry these types of errors on your behalf. To
retry, you can manually re-invoke your function, send the failed event to a queue for debugging,
or ignore the error. Your function's code might have run completely, partially, or not at all. If you
retry, ensure that your function's code can handle the same event multiple times without causing
duplicate transactions or other unwanted side effects.

When you invoke a function indirectly, you need to be aware of the retry behavior of the invoker
and any service that the request encounters along the way. This includes the following scenarios.

• Asynchronous invocation – Lambda retries function errors twice. If the function doesn't have
enough capacity to handle all incoming requests, events might wait in the queue for hours to be
sent to the function. You can configure a dead-letter queue on the function to capture events
that weren't successfully processed. For more information, see the section called “Dead-letter
queues”.

• Event source mappings – Event source mappings that read from streams retry the entire batch
of items. Repeated errors block processing of the affected shard until the error is resolved or the
items expire. To detect stalled shards, you can monitor the Iterator Age metric.

For event source mappings that read from a queue, you determine the length of time between
retries and destination for failed events by configuring the visibility timeout and redrive policy
on the source queue. For more information, see How Lambda processes records from stream and
queue-based event sources and the service-specific topics under Invoking Lambda with events
from other AWS services.

• AWS services – AWS services can invoke your function synchronously or asynchronously. For
synchronous invocation, the service decides whether to retry. For example, Amazon S3 batch
operations retries the operation if the Lambda function returns a TemporaryFailure response
code. Services that proxy requests from an upstream user or client may have a retry strategy or
may relay the error response back to the requester. For example, API Gateway always relays the
error response back to the requester.

For asynchronous invocation, the retry logic is the same regardless of the invocation source. By
default, Lambda retries a failed asynchronous invocation up to two times. For more information,
see How Lambda handles errors and retries with asynchronous invocation.

Retries 378

AWS Lambda Developer Guide

• Other accounts and clients – When you grant access to other accounts, you can use resource-
based policies to restrict the services or resources they can configure to invoke your function.
To protect your function from being overloaded, consider putting an API layer in front of your
function with Amazon API Gateway.

To help you deal with errors in Lambda applications, Lambda integrates with services like Amazon
CloudWatch and AWS X-Ray. You can use a combination of logs, metrics, alarms, and tracing to
quickly detect and identify issues in your function code, API, or other resources that support your
application. For more information, see Monitoring, debugging, and troubleshooting Lambda
functions.

Retries 379

AWS Lambda Developer Guide

Use Lambda recursive loop detection to prevent infinite loops

When you configure a Lambda function to output to the same service or resource that invokes the
function, it's possible to create an infinite recursive loop. For example, a Lambda function might
write a message to an Amazon Simple Queue Service (Amazon SQS) queue, which then invokes the
same function. This invocation causes the function to write another message to the queue, which in
turn invokes the function again.

Unintentional recursive loops can result in unexpected charges being billed to your AWS account.
Loops can also cause Lambda to scale and use all of your account's available concurrency. To help
reduce the impact of unintentional loops, Lambda detects certain types of recursive loops shortly
after they occur. By default, when Lambda detects a recursive loop, it stops your function being
invoked and notifies you. If your design intentionally uses recursive patterns, you can a change
a function's default configuration to allow it to be invoked recursively. See the section called
“Allowing a Lambda function to run in a recursive loop” for more information.

Sections

• Understanding recursive loop detection

• Supported AWS services and SDKs

• Recursive loop notifications

• Responding to recursive loop detection notifications

• Allowing a Lambda function to run in a recursive loop

• Supported regions for Lambda recursive loop detection

Understanding recursive loop detection

Recursive loop detection in Lambda works by tracking events. Lambda is an event-driven compute
service that runs your function code when certain events occur. For example, when an item is
added to an Amazon SQS queue or Amazon Simple Notification Service (Amazon SNS) topic.
Lambda passes events to your function as JSON objects, which contain information about the
change in the system state. When an event causes your function to run, this is called an invocation.

To detect recursive loops, Lambda uses AWS X-Ray tracing headers. When AWS services that
support recursive loop detection send events to Lambda, those events are automatically annotated
with metadata. When your Lambda function writes one of these events to another supported AWS

Recursive loop detection 380

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

AWS Lambda Developer Guide

service using a supported version of an AWS SDK, it updates this metadata. The updated metadata
includes a count of the number of times that the event has invoked the function.

Note

You don't need to enable X-Ray active tracing for this feature to work. Recursive loop
detection is turned on by default for all AWS customers. There is no charge to use the
feature.

A chain of requests is a sequence of Lambda invocations caused by the same triggering event.
For example, imagine that an Amazon SQS queue invokes your Lambda function. Your Lambda
function then sends the processed event back to the same Amazon SQS queue, which invokes
your function again. In this example, each invocation of your function falls in the same chain of
requests.

If your function is invoked approximately 16 times in the same chain of requests, then Lambda
automatically stops the next function invocation in that request chain and notifies you. If your
function is configured with multiple triggers, then invocations from other triggers aren't affected.

Note

Even when the maxReceiveCount setting on the source queue's redrive policy is
higher than 16, Lambda recursion protection does not prevent Amazon SQS from
retrying the message after a recursive loop is detected and terminated. When
Lambda detects a recursive loop and drops subsequent invocations, it returns a
RecursiveInvocationException to the event source mapping. This increments
the receiveCount value on the message. Lambda continues to retry the message,
and continues to block function invocations, until Amazon SQS determines that the
maxReceiveCount is exceeded and sends the message to the configured dead-letter
queue.

If you have an on-failure destination or dead-letter queue configured for your function, then
Lambda also sends the event from the stopped invocation to your destination or dead-letter
queue. When configuring a destination or dead-letter queue for your function, be sure not to use
an event trigger or event source mapping that your function also uses. If you send events to the

Understanding recursive loop detection 381

AWS Lambda Developer Guide

same resource that invokes your function, then you can create another recursive loop and this loop
will also be terminated. If you opt out of recursion loop detection, this loop will not be terminated.

Supported AWS services and SDKs

Lambda can detect only recursive loops that include certain supported AWS services. For recursive
loops to be detected, your function must also use one of the supported AWS SDKs.

Supported AWS services

Lambda currently detects recursive loops between your functions, Amazon SQS, Amazon S3, and
Amazon SNS. Lambda also detects loops comprised only of Lambda functions, which may invoke
each other synchronously or asynchronously. The following diagrams show some examples of loops
that Lambda can detect:

When another AWS service such as Amazon DynamoDB forms part of the loop, Lambda can't
currently detect and stop it.

Supported AWS services and SDKs 382

AWS Lambda Developer Guide

Because Lambda currently detects only recursive loops involving Amazon SQS, Amazon S3, and
Amazon SNS, it's still possible that loops involving other AWS services can result in unintended
usage of your Lambda functions.

To guard against unexpected charges being billed to your AWS account, we recommend that you
configure Amazon CloudWatch alarms to alert you to unusual usage patterns. For example, you can
configure CloudWatch to notify you about spikes in Lambda function concurrency or invocations.
You can also configure a billing alarm to notify you when spending in your account exceeds a
threshold that you specify. Or, you can use AWS Cost Anomaly Detection to alert you to unusual
billing patterns.

Supported AWS SDKs

For Lambda to detect recursive loops, your function must use one of the following SDK versions or
higher:

Runtime Minimum required AWS SDK version

Node.js 2.1147.0 (SDK version 2)

3.105.0 (SDK version 3)

Python 1.24.46 (boto3)

1.27.46 (botocore)

Java 8 and Java 11 2.17.135

Java 17 2.20.81

Java 21 2.21.24

.NET 3.7.293.0

Ruby 3.134.0

PHP 3.232.0

Go V2 SDK 1.57.0

Supported AWS services and SDKs 383

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/cost-management/latest/userguide/manage-ad.html

AWS Lambda Developer Guide

Some Lambda runtimes such as Python and Node.js include a version of the AWS SDK. If the SDK
version included in your function's runtime is lower than the minimum required, then you can
add a supported version of the SDK to your function's deployment package. You can also add a
supported SDK version to your function using a Lambda layer. For a list of the SDKs included with
each Lambda runtime, see Lambda runtimes.

Recursive loop notifications

When Lambda stops a recursive loop, you receive notifications through the AWS Health Dashboard
and through email. You can also use CloudWatch metrics to monitor the number of recursive
invocations that Lambda has stopped.

AWS Health Dashboard notifications

When Lambda stops a recursive invocation, the AWS Health Dashboard displays a notification
on the Your account health page, under Open and recent issues. Note that it can take up to 3.5
hours after Lambda stops a recursive invocation before this notification is displayed. For more
information about viewing account events in the AWS Health Dashboard, see Getting started with
your AWS Health Dashboard – Your account health in the AWS Health User Guide.

Email alerts

When Lambda first stops a recursive invocation of your function, it sends you an email alert.
Lambda sends a maximum of one email every 24 hours for each function in your AWS account.
After Lambda sends an email notification, you won't receive any more emails for that function for
another 24 hours, even if Lambda stops further recursive invocations of the function. Note that it
can take up to 3.5 hours after Lambda stops a recursive invocation before you receive this email
alert.

Lambda sends recursive loop email alerts to your AWS account's primary account contact and
alternate operations contact. For information about viewing or updating the email addresses in
your account, see Updating contact information in the AWS General Reference.

Amazon CloudWatch metrics

The CloudWatch metric RecursiveInvocationsDropped records the number of function
invocations that Lambda has stopped because your function has been invoked more than
approximately 16 times in a single chain of requests. Lambda emits this metric as soon as it stops
a recursive invocation. To view this metric, follow the instructions for Viewing metrics on the
CloudWatch console and choose the metric RecursiveInvocationsDropped.

Recursive loop notifications 384

https://aws.amazon.com/premiumsupport/technology/aws-health-dashboard/
https://health.aws.amazon.com/health/home#/account/dashboard/open-issues
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html#monitoring-metrics-console
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html#monitoring-metrics-console

AWS Lambda Developer Guide

Responding to recursive loop detection notifications

When your function is invoked more than approximately 16 times by the same triggering event,
Lambda stops the next function invocation for that event to break the recursive loop. To prevent a
reoccurrence of a recursive loop that Lambda has broken, do the following:

• Reduce your function's available concurrency to zero, which throttles all future invocations.

• Remove or disable the trigger or event source mapping that's invoking your function.

• Identify and fix code defects that write events back to the AWS resource that's invoking your
function. A common source of defects occurs when you use variables to define a function's event
source and target. Check that you're not using the same value for both variables.

Additionally, if the event source for your Lambda function is an Amazon SQS queue, then consider
configuring a dead-letter queue on the source queue.

Note

Make sure that you configure the dead-letter queue on the source queue, not on the
Lambda function. The dead-letter queue that you configure on a function is used for the
function's asynchronous invocation queue, not for event source queues.

If the event source is an Amazon SNS topic, then consider adding an on-failure destination for your
function.

To reduce your function's available concurrency to zero (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Choose Throttle.

4. In the Throttle your function dialog box, choose Confirm.

To remove a trigger or event source mapping for your function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

Responding to recursive loop detection notifications 385

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue.html
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. Choose the Configuration tab, then choose Triggers.

4. Under Triggers, select the trigger or event source mapping that you want to delete, then
choose Delete.

5. In the Delete triggers dialog box, choose Delete.

To disable an event source mapping for your function (AWS CLI)

1. To find the UUID for the event source mapping that you want to disable, run the AWS
Command Line Interface (AWS CLI) list-event-source-mappings command.

aws lambda list-event-source-mappings

2. To disable the event source mapping, run the following AWS CLI update-event-source-
mapping command.

aws lambda update-event-source-mapping --function-name MyFunction \
--uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 --no-enabled

Allowing a Lambda function to run in a recursive loop

If your design intentionally uses a recursive loop, you can configure a Lambda function to allow
it to be invoked recursively. We recommend that you avoid using recursive loops in your design.
Implementation errors can lead to recursive invocations using all of your AWS account's available
concurrency and to unexpected charges being billed to your account.

Important

If you use recursive loops, treat them with caution. Implement best practice guard rails
to minimize the risks of implementation errors. To learn more about best practices for
using recursive patterns, see Recursive patterns that cause run-away Lambda functions in
Serverless Land.

You can configure functions to allow recursive loops using the Lambda console, the AWS Command
Line Interface (AWS CLI), and the PutFunctionRecursionConfig API. You can also configure a
function's recursive loop detection setting in AWS SAM and AWS CloudFormation.

Allowing a Lambda function to run in a recursive loop 386

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-event-source-mappings.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionRecursionConfig.html

AWS Lambda Developer Guide

By default, Lambda detects and terminates recursive loops. Unless your design intentionally uses a
recursive loop, we recommend that you don't change your functions' default configuration.

Note that when you configure a function to allow recursive loops, the CloudWatch metric
RecursiveInvocationsDropped isn't emitted.

Console

To allow a function to run in a recursive loop (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function to open the function detail page.

3. Choose the Configuration tab, then choose Concurrency and recursion detection.

4. Beside Recursive loop detection, choose Edit.

5. Select Allow recursive loops.

6. Choose Save.

AWS CLI

You can use the PutFunctionRecursionConfig API to allow your function to be invoked in a
recursive loop. Specify Allow for the recursive loop parameter. For example, you can call this
API with the put-function-recursion-config AWS CLI command:

aws lambda put-function-recursion-config --function-name yourFunctionName --
recursive-loop Allow

You can change your function's configuration back to the default setting so that Lambda
terminates recursive loops when it detects them. Edit your function's configuration using the
Lambda console or the AWS CLI.

Console

To configure a function so that recursive loops are terminated (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function to open the function detail page.

3. Choose the Configuration tab, then choose Concurrency and recursion detection.

Allowing a Lambda function to run in a recursive loop 387

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionRecursionConfig.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Beside Recursive loop detection, choose Edit.

5. Select Terminate recursive loops.

6. Choose Save.

AWS CLI

You can use the PutFunctionRecursionConfig API to configure your function so that Lambda
terminates recursive loops when it detects them. Specify Terminate for the recursive loop
parameter. For example, you can call this API with the put-function-recursion-config
AWS CLI command:

aws lambda put-function-recursion-config --function-name yourFunctionName --
recursive-loop Terminate

Supported regions for Lambda recursive loop detection

Lambda recursive loop detection is supported in the following AWS Regions.

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Jakarta)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

Supported regions for Lambda recursive loop detection 388

https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionRecursionConfig.html

AWS Lambda Developer Guide

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (Sao Paulo)

Supported regions for Lambda recursive loop detection 389

AWS Lambda Developer Guide

Creating and managing Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API.

Tip

Lambda offers two ways to invoke your function through an HTTP endpoint: function URLs
and Amazon API Gateway. If you're not sure which is the best method for your use case, see
the section called “Function URLs vs Amazon API Gateway”.

When you create a function URL, Lambda automatically generates a unique URL endpoint for you.
Once you create a function URL, its URL endpoint never changes. Function URL endpoints have the
following format:

https://<url-id>.lambda-url.<region>.on.aws

Note

Function URLs are not supported in the following AWS Regions: Asia Pacific (Hyderabad)
(ap-south-2), Asia Pacific (Melbourne) (ap-southeast-4), Asia Pacific (Malaysia) (ap-
southeast-5), Asia Pacific (Thailand) (ap-southeast-7), Asia Pacific (Taipei) (ap-
east-2), Canada West (Calgary) (ca-west-1), Europe (Spain) (eu-south-2), Europe
(Zurich) (eu-central-2), Israel (Tel Aviv) (il-central-1), and Middle East (UAE) (me-
central-1).

Function URLs are dual stack-enabled, supporting IPv4 and IPv6. After you configure a function
URL for your function, you can invoke your function through its HTTP(S) endpoint via a web
browser, curl, Postman, or any HTTP client.

Note

You can access your function URL through the public Internet only. While Lambda functions
do support AWS PrivateLink, function URLs do not.

Function URLs 390

AWS Lambda Developer Guide

Lambda function URLs use resource-based policies for security and access control. Function URLs
also support cross-origin resource sharing (CORS) configuration options.

You can apply function URLs to any function alias, or to the $LATEST unpublished function version.
You can't add a function URL to any other function version.

The following section show how to create and manage a function URL using the Lambda console,
AWS CLI, and AWS CloudFormation template

Topics

• Creating a function URL (console)

• Creating a function URL (AWS CLI)

• Adding a function URL to a CloudFormation template

• Cross-origin resource sharing (CORS)

• Throttling function URLs

• Deactivating function URLs

• Deleting function URLs

• Control access to Lambda function URLs

• Invoking Lambda function URLs

• Monitoring Lambda function URLs

• Select a method to invoke your Lambda function using an HTTP request

• Tutorial: Creating a webhook endpoint using a Lambda function URL

Creating a function URL (console)

Follow these steps to create a function URL using the console.

To create a function URL for an existing function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to create the function URL for.

3. Choose the Configuration tab, and then choose Function URL.

4. Choose Create function URL.

Creating a function URL (console) 391

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Access control.

6. (Optional) Select Configure cross-origin resource sharing (CORS), and then configure the
CORS settings for your function URL. For more information about CORS, see Cross-origin
resource sharing (CORS).

7. Choose Save.

This creates a function URL for the $LATEST unpublished version of your function. The function
URL appears in the Function overview section of the console.

To create a function URL for an existing alias (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function with the alias that you want to create the function URL for.

3. Choose the Aliases tab, and then choose the name of the alias that you want to create the
function URL for.

4. Choose the Configuration tab, and then choose Function URL.

5. Choose Create function URL.

6. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Access control.

7. (Optional) Select Configure cross-origin resource sharing (CORS), and then configure the
CORS settings for your function URL. For more information about CORS, see Cross-origin
resource sharing (CORS).

8. Choose Save.

This creates a function URL for your function alias. The function URL appears in the console's
Function overview section for your alias.

To create a new function with a function URL (console)

To create a new function with a function URL (console)

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, do the following:

Creating a function URL (console) 392

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. For Function name, enter a name for your function, such as my-function.

b. For Runtime, choose the language runtime that you prefer, such as Node.js 22.

c. For Architecture, choose either x86_64 or arm64.

d. Expand Permissions, then choose whether to create a new execution role or use an
existing one.

4. Expand Advanced settings, and then select Function URL.

5. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Access control.

6. (Optional) Select Configure cross-origin resource sharing (CORS). By selecting this option
during function creation, your function URL allows requests from all origins by default.
You can edit the CORS settings for your function URL after creating the function. For more
information about CORS, see Cross-origin resource sharing (CORS).

7. Choose Create function.

This creates a new function with a function URL for the $LATEST unpublished version of the
function. The function URL appears in the Function overview section of the console.

Creating a function URL (AWS CLI)

To create a function URL for an existing Lambda function using the AWS Command Line Interface
(AWS CLI), run the following command:

aws lambda create-function-url-config \
 --function-name my-function \
 --qualifier prod \ // optional
 --auth-type AWS_IAM
 --cors-config {AllowOrigins="https://example.com"} // optional

This adds a function URL to the prod qualifier for the function my-function. For more
information about these configuration parameters, see CreateFunctionUrlConfig in the API
reference.

Note

To create a function URL via the AWS CLI, the function must already exist.

Creating a function URL (AWS CLI) 393

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunctionUrlConfig.html

AWS Lambda Developer Guide

Adding a function URL to a CloudFormation template

To add an AWS::Lambda::Url resource to your AWS CloudFormation template, use the following
syntax:

JSON

{
 "Type" : "AWS::Lambda::Url",
 "Properties" : {
 "AuthType" : String,
 "Cors" : Cors,
 "Qualifier" : String,
 "TargetFunctionArn" : String
 }
}

YAML

Type: AWS::Lambda::Url
Properties:
 AuthType: String
 Cors:
 Cors
 Qualifier: String
 TargetFunctionArn: String

Parameters

• (Required) AuthType – Defines the type of authentication for your function URL. Possible values
are either AWS_IAM or NONE. To restrict access to authenticated users only, set to AWS_IAM. To
bypass IAM authentication and allow any user to make requests to your function, set to NONE.

• (Optional) Cors – Defines the CORS settings for your function URL. To add Cors to your
AWS::Lambda::Url resource in CloudFormation, use the following syntax.

Example AWS::Lambda::Url.Cors (JSON)

{
 "AllowCredentials" : Boolean,
 "AllowHeaders" : [String, ...],

Adding a function URL to a CloudFormation template 394

AWS Lambda Developer Guide

 "AllowMethods" : [String, ...],
 "AllowOrigins" : [String, ...],
 "ExposeHeaders" : [String, ...],
 "MaxAge" : Integer
}

Example AWS::Lambda::Url.Cors (YAML)

 AllowCredentials: Boolean
 AllowHeaders:
 - String
 AllowMethods:
 - String
 AllowOrigins:
 - String
 ExposeHeaders:
 - String
 MaxAge: Integer

• (Optional) Qualifier – The alias name.

• (Required) TargetFunctionArn – The name or Amazon Resource Name (ARN) of the Lambda
function. Valid name formats include the following:

• Function name – my-function

• Function ARN – arn:aws:lambda:us-west-2:123456789012:function:my-function

• Partial ARN – 123456789012:function:my-function

Cross-origin resource sharing (CORS)

To define how different origins can access your function URL, use cross-origin resource sharing
(CORS). We recommend configuring CORS if you intend to call your function URL from a different
domain. Lambda supports the following CORS headers for function URLs.

CORS header CORS configuration property Example values

Access-Control-Allow-Origin AllowOrigins * (allow all origins)

https://www.exampl
e.com

Cross-origin resource sharing (CORS) 395

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

AWS Lambda Developer Guide

CORS header CORS configuration property Example values

http://localhost:6
0905

Access-Control-Allow-Method
s

AllowMethods GET, POST, DELETE, *

Access-Control-Allow-Header
s

AllowHeaders Date, Keep-Alive , X-
Custom-Header

Access-Control-Expose-Heade
rs

ExposeHeaders Date, Keep-Alive , X-
Custom-Header

Access-Control-Allow-Creden
tials

AllowCredentials TRUE

Access-Control-Max-Age MaxAge 5 (default), 300

When you configure CORS for a function URL using the Lambda console or the AWS CLI, Lambda
automatically adds the CORS headers to all responses through the function URL. Alternatively, you
can manually add CORS headers to your function response. If there are conflicting headers, the
expected behavior depends on the type of request:

• For preflight requests such as OPTIONS requests, the configured CORS headers on the function
URL take precedence. Lambda returns only these CORS headers in the response.

• For non-preflight requests such as GET or POST requests, Lambda returns both the configured
CORS headers on the function URL, as well as the CORS headers returned by the function.
This can result in duplicate CORS headers in the response. You may see an error similar to the
following: The 'Access-Control-Allow-Origin' header contains multiple values
'*, *', but only one is allowed.

In general, we recommend configuring all CORS settings on the function URL, rather than sending
CORS headers manually in the function response.

Cross-origin resource sharing (CORS) 396

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age

AWS Lambda Developer Guide

Throttling function URLs

Throttling limits the rate at which your function processes requests. This is useful in many
situations, such as preventing your function from overloading downstream resources, or handling a
sudden surge in requests.

You can throttle the rate of requests that your Lambda function processes through a function
URL by configuring reserved concurrency. Reserved concurrency limits the number of maximum
concurrent invocations for your function. Your function's maximum request rate per second (RPS)
is equivalent to 10 times the configured reserved concurrency. For example, if you configure your
function with a reserved concurrency of 100, then the maximum RPS is 1,000.

Whenever your function concurrency exceeds the reserved concurrency, your function URL returns
an HTTP 429 status code. If your function receives a request that exceeds the 10x RPS maximum
based on your configured reserved concurrency, you also receive an HTTP 429 error. For more
information about reserved concurrency, see Configuring reserved concurrency for a function.

Deactivating function URLs

In an emergency, you might want to reject all traffic to your function URL. To deactivate your
function URL, set the reserved concurrency to zero. This throttles all requests to your function
URL, resulting in HTTP 429 status responses. To reactivate your function URL, delete the reserved
concurrency configuration, or set the configuration to an amount greater than zero.

Deleting function URLs

When you delete a function URL, you can’t recover it. Creating a new function URL will result in a
different URL address.

Note

If you delete a function URL with auth type NONE, Lambda doesn't automatically delete the
associated resource-based policy. If you want to delete this policy, you must manually do
so.

1. Open the Functions page of the Lambda console.

2. Choose the name of the function.

3. Choose the Configuration tab, and then choose Function URL.

Throttling function URLs 397

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Choose Delete.

5. Enter the word delete into the field to confirm the deletion.

6. Choose Delete.

Note

When you delete a function that has a function URL, Lambda asynchronously deletes the
function URL. If you immediately create a new function with the same name in the same
account, it is possible that the original function URL will be mapped to the new function
instead of deleted.

Control access to Lambda function URLs

You can control access to your Lambda function URLs using the AuthType parameter combined
with resource-based policies attached to your specific function. The configuration of these two
components determines who can invoke or perform other administrative actions on your function
URL.

The AuthType parameter determines how Lambda authenticates or authorizes requests to your
function URL. When you configure your function URL, you must specify one of the following
AuthType options:

• AWS_IAM – Lambda uses AWS Identity and Access Management (IAM) to authenticate and
authorize requests based on the IAM principal's identity policy and the function's resource-based
policy. Choose this option if you want only authenticated users and roles to invoke your function
via the function URL.

• NONE – Lambda doesn't perform any authentication before invoking your function. However,
your function's resource-based policy is always in effect and must grant public access before your
function URL can receive requests. Choose this option to allow public, unauthenticated access to
your function URL.

In addition to AuthType, you can also use resource-based policies to grant permissions to other
AWS accounts to invoke your function. For more information, see Viewing resource-based IAM
policies in Lambda.

Access control 398

AWS Lambda Developer Guide

For additional insights into security, you can use AWS Identity and Access Management Access
Analyzer to get a comprehensive analysis of external access to your function URL. IAM Access
Analyzer also monitors for new or updated permissions on your Lambda functions to help you
identify permissions that grant public and cross-account access. IAM Access Analyzer is free to
use for any AWS customer. To get started with IAM Access Analyzer, see Using AWS IAM Access
Analyzer.

This page contains examples of resource-based policies for both auth types, and also how to create
these policies using the AddPermission API operation or the Lambda console. For information on
how to invoke your function URL after you've set up permissions, see Invoking Lambda function
URLs.

Topics

• Using the AWS_IAM auth type

• Using the NONE auth type

• Governance and access control

Using the AWS_IAM auth type

If you choose the AWS_IAM auth type, users who need to invoke your Lambda function URL must
have the lambda:InvokeFunctionUrl permission. Depending on who makes the invocation
request, you may have to grant this permission using a resource-based policy.

If the principal making the request is in the same AWS account as the function URL, then the
principal must either have lambda:InvokeFunctionUrl permissions in their identity-based
policy, or have permissions granted to them in the function's resource-based policy. In other
words, a resource-based policy is optional if the user already has lambda:InvokeFunctionUrl
permissions in their identity-based policy. Policy evaluation follows the rules outlined in
Determining whether a request is allowed or denied within an account.

If the principal making the request is in a different account, then the principal must have both an
identity-based policy that gives them lambda:InvokeFunctionUrl permissions and permissions
granted to them in a resource-based policy on the function that they are trying to invoke. In these
cross-account cases, policy evaluation follows the rules outlined in Determining whether a cross-
account request is allowed.

Access control 399

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/lambda/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account

AWS Lambda Developer Guide

For an example cross-account interaction, the following resource-based policy allows the example
role in AWS account 444455556666 to invoke the function URL associated with function my-
function:

Example function URL cross-account invoke policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/example"
 },
 "Action": "lambda:InvokeFunctionUrl",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-
function",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "AWS_IAM"
 }
 }
 }
]
}

You can create this policy statement through the console by following these steps:

To grant URL invocation permissions to another account (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to grant URL invocation permissions for.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Resource-based policy, choose Add permissions.

5. Choose Function URL.

6. For Auth type, choose AWS_IAM.

7. (Optional) For Statement ID, enter a statement ID for your policy statement.

Access control 400

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

8. For Principal, enter account ID or the Amazon Resource Name (ARN) of the user or role that
you want to grant permissions to. For example: 444455556666.

9. Choose Save.

Alternatively, you can create this policy statement using the following add-permission AWS
Command Line Interface (AWS CLI) command:

aws lambda add-permission --function-name my-function \
 --statement-id example0-cross-account-statement \
 --action lambda:InvokeFunctionUrl \
 --principal 444455556666 \
 --function-url-auth-type AWS_IAM

In the previous example, the lambda:FunctionUrlAuthType condition key value is AWS_IAM.
This policy only allows access when your function URL's auth type is also AWS_IAM.

Using the NONE auth type

Important

When your function URL auth type is NONE and you have a resource-based policy that
grants public access, any unauthenticated user with your function URL can invoke your
function.

In some cases, you may want your function URL to be public. For example, you might want to serve
requests made directly from a web browser. To allow public access to your function URL, choose
the NONE auth type.

If you choose the NONE auth type, Lambda doesn't use IAM to authenticate requests to your
function URL. However, users must still have lambda:InvokeFunctionUrl permissions in
order to successfully invoke your function URL. You can grant lambda:InvokeFunctionUrl
permissions using the following resource-based policy:

Example function URL invoke policy for all unauthenticated principals

JSON

{

Access control 401

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-permission.html

AWS Lambda Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "lambda:InvokeFunctionUrl",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-
function",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "NONE"
 }
 }
 }
]
}

Note

When you create a function URL with auth type NONE via the console or AWS Serverless
Application Model (AWS SAM), Lambda automatically creates the preceding resource-
based policy statement for you. If the policy already exists, or the user or role creating the
application doesn't have the appropriate permissions, then Lambda won't create it for you.
If you're using the AWS CLI, AWS CloudFormation, or the Lambda API directly, you must
add lambda:InvokeFunctionUrl permissions yourself. This makes your function public.
In addition, if you delete your function URL with auth type NONE, Lambda doesn't
automatically delete the associated resource-based policy. If you want to delete this policy,
you must manually do so.

In this statement, the lambda:FunctionUrlAuthType condition key value is NONE. This policy
statement allows access only when your function URL's auth type is also NONE.

If a function's resource-based policy doesn't grant lambda:invokeFunctionUrl permissions,
then users will get a 403 Forbidden error code when they try to invoke your function URL, even if
the function URL uses the NONE auth type.

Access control 402

AWS Lambda Developer Guide

Governance and access control

In addition to function URL invocation permissions, you can also control access on actions used to
configure function URLs. Lambda supports the following IAM policy actions for function URLs:

• lambda:InvokeFunctionUrl – Invoke a Lambda function using the function URL.

• lambda:CreateFunctionUrlConfig – Create a function URL and set its AuthType.

• lambda:UpdateFunctionUrlConfig – Update a function URL configuration and its
AuthType.

• lambda:GetFunctionUrlConfig – View the details of a function URL.

• lambda:ListFunctionUrlConfigs – List function URL configurations.

• lambda:DeleteFunctionUrlConfig – Delete a function URL.

Note

The Lambda console supports adding permissions only for lambda:InvokeFunctionUrl.
For all other actions, you must add permissions using the Lambda API or AWS CLI.

To allow or deny function URL access to other AWS entities, include these actions in IAM policies.
For example, the following policy grants the example role in AWS account 444455556666
permissions to update the function URL for function my-function in account 123456789012.

Example cross-account function URL policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/example"
 },
 "Action": "lambda:UpdateFunctionUrlConfig",
 "Resource": "arn:aws:lambda:us-east-2:123456789012:function:my-
function"

Access control 403

AWS Lambda Developer Guide

 }
]
}

Condition keys

For fine-grained access control over your function URLs, use a condition key. Lambda supports one
additional condition key for function URLs: FunctionUrlAuthType. The FunctionUrlAuthType
key defines an enum value describing the auth type that your function URL uses. The value can be
either AWS_IAM or NONE.

You can use this condition key in policies associated with your function. For example, you
might want to restrict who can make configuration changes to your function URLs. To deny all
UpdateFunctionUrlConfig requests to any function with URL auth type NONE, you can define
the following policy:

Example function URL policy with explicit deny

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action":[
 "lambda:UpdateFunctionUrlConfig"
],
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:*",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "NONE"
 }
 }
 }
]
}

Access control 404

AWS Lambda Developer Guide

To grant the example role in AWS account 444455556666 permissions to make
CreateFunctionUrlConfig and UpdateFunctionUrlConfig requests on functions with URL
auth type AWS_IAM, you can define the following policy:

Example function URL policy with explicit allow

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/example"
 },
 "Action":[
 "lambda:CreateFunctionUrlConfig",
 "lambda:UpdateFunctionUrlConfig"
],
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:*",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "AWS_IAM"
 }
 }
 }
]
}

You can also use this condition key in a service control policy (SCP). Use SCPs to manage
permissions across an entire organization in AWS Organizations. For example, to deny users from
creating or updating function URLs that use anything other than the AWS_IAM auth type, use the
following service control policy:

Example function URL SCP with explicit deny

JSON

{

Access control 405

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action":[
 "lambda:CreateFunctionUrlConfig",
 "lambda:UpdateFunctionUrlConfig"
],
 "Resource": "arn:aws:lambda:*:123456789012:function:*",
 "Condition": {
 "StringNotEquals": {
 "lambda:FunctionUrlAuthType": "AWS_IAM"
 }
 }
 }
]
}

Access control 406

AWS Lambda Developer Guide

Invoking Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API.

Tip

Lambda offers two ways to invoke your function through an HTTP endpoint: function URLs
and Amazon API Gateway. If you're not sure which is the best method for your use case, see
the section called “Function URLs vs Amazon API Gateway”.

When you create a function URL, Lambda automatically generates a unique URL endpoint for you.
Once you create a function URL, its URL endpoint never changes. Function URL endpoints have the
following format:

https://<url-id>.lambda-url.<region>.on.aws

Note

Function URLs are not supported in the following AWS Regions: Asia Pacific (Hyderabad)
(ap-south-2), Asia Pacific (Melbourne) (ap-southeast-4), Asia Pacific (Malaysia) (ap-
southeast-5), Asia Pacific (Thailand) (ap-southeast-7), Asia Pacific (Taipei) (ap-
east-2), Canada West (Calgary) (ca-west-1), Europe (Spain) (eu-south-2), Europe
(Zurich) (eu-central-2), Israel (Tel Aviv) (il-central-1), and Middle East (UAE) (me-
central-1).

Function URLs are dual stack-enabled, supporting IPv4 and IPv6. After configuring your function
URL, you can invoke your function through its HTTP(S) endpoint via a web browser, curl, Postman,
or any HTTP client. To invoke a function URL, you must have lambda:InvokeFunctionUrl
permissions. For more information, see Access control.

Topics

• Function URL invocation basics

• Request and response payloads

Invoking function URLs 407

AWS Lambda Developer Guide

Function URL invocation basics

If your function URL uses the AWS_IAM auth type, you must sign each HTTP request using AWS
Signature Version 4 (SigV4). Tools such as Postman offer built-in ways to sign your requests with
SigV4.

If you don't use a tool to sign HTTP requests to your function URL, you must manually sign each
request using SigV4. When your function URL receives a request, Lambda also calculates the SigV4
signature. Lambda processes the request only if the signatures match. For instructions on how to
manually sign your requests with SigV4, see Signing AWS requests with Signature Version 4 in the
Amazon Web Services General Reference Guide.

If your function URL uses the NONE auth type, you don't have to sign your requests using SigV4.
You can invoke your function using a web browser, curl, Postman, or any HTTP client.

To test simple GET requests to your function, use a web browser. For example, if your function
URL is https://abcdefg.lambda-url.us-east-1.on.aws, and it takes in a string parameter
message, your request URL could look like this:

https://abcdefg.lambda-url.us-east-1.on.aws/?message=HelloWorld

To test other HTTP requests, such as a POST request, you can use a tool such as curl. For example,
if you want to include some JSON data in a POST request to your function URL, you could use the
following curl command:

curl -v 'https://abcdefg.lambda-url.us-east-1.on.aws/?message=HelloWorld' \
-H 'content-type: application/json' \
-d '{ "example": "test" }'

Request and response payloads

When a client calls your function URL, Lambda maps the request to an event object before passing
it to your function. Your function's response is then mapped to an HTTP response that Lambda
sends back to the client through the function URL.

The request and response event formats follow the same schema as the Amazon API Gateway
payload format version 2.0.

Request payload format

A request payload has the following structure:

Invoking function URLs 408

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://quickstarts.postman.com/guide/aws/index.html?index=..%2F..index#2
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format

AWS Lambda Developer Guide

{
 "version": "2.0",
 "routeKey": "$default",
 "rawPath": "/my/path",
 "rawQueryString": "parameter1=value1¶meter1=value2¶meter2=value",
 "cookies": [
 "cookie1",
 "cookie2"
],
 "headers": {
 "header1": "value1",
 "header2": "value1,value2"
 },
 "queryStringParameters": {
 "parameter1": "value1,value2",
 "parameter2": "value"
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "<urlid>",
 "authentication": null,
 "authorizer": {
 "iam": {
 "accessKey": "AKIA...",
 "accountId": "111122223333",
 "callerId": "AIDA...",
 "cognitoIdentity": null,
 "principalOrgId": null,
 "userArn": "arn:aws:iam::111122223333:user/example-user",
 "userId": "AIDA..."
 }
 },
 "domainName": "<url-id>.lambda-url.us-west-2.on.aws",
 "domainPrefix": "<url-id>",
 "http": {
 "method": "POST",
 "path": "/my/path",
 "protocol": "HTTP/1.1",
 "sourceIp": "123.123.123.123",
 "userAgent": "agent"
 },
 "requestId": "id",
 "routeKey": "$default",

Invoking function URLs 409

AWS Lambda Developer Guide

 "stage": "$default",
 "time": "12/Mar/2020:19:03:58 +0000",
 "timeEpoch": 1583348638390
 },
 "body": "Hello from client!",
 "pathParameters": null,
 "isBase64Encoded": false,
 "stageVariables": null
}

Parameter Description Example

version The payload format version
for this event. Lambda
function URLs currently
support payload format
version 2.0.

2.0

routeKey Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

$default

rawPath The request path. For
example, if the request URL
is https://{url-id}.l
ambda-url.{region}
.on.aws/example/te
st/demo , then the raw path
value is /example/test/
demo .

/example/test/demo

rawQueryString The raw string containing
the request's query string
parameters. Supported
characters include a-z, A-Z,
0-9, ., _, -, %, &, =, and +.

"?parameter1=value
1¶meter2=value
2"

Invoking function URLs 410

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format

AWS Lambda Developer Guide

Parameter Description Example

cookies An array containing all
cookies sent as part of the
request.

["Cookie_1=Value_1",
"Cookie_2=Value_2"]

headers The list of request headers,
presented as key-value pairs.

{"header1": "value1",
"header2": "value2"}

queryStringParamet
ers

The query parameters for the
request. For example, if the
request URL is https://{
url-id}.lambda-url
.{region}.on.aws/e
xample?name=Jane , then
the queryStringParamet
ers value is a JSON object
with a key of name and a
value of Jane.

{"name": "Jane"}

requestContext An object that contains
additional information about
the request, such as the
requestId , the time of
the request, and the identity
of the caller if authorized
via AWS Identity and Access
Management (IAM).

requestContext.acc
ountId

The AWS account ID of the
function owner.

"123456789012"

requestContext.apiId The ID of the function URL. "33anwqw8fj"

requestContext.aut
hentication

Function URLs don't use this
parameter. Lambda sets this
to null.

null

Invoking function URLs 411

AWS Lambda Developer Guide

Parameter Description Example

requestContext.aut
horizer

An object that contains
information about the caller
identity, if the function URL
uses the AWS_IAM auth type.
Otherwise, Lambda sets this
to null.

requestContext.aut
horizer.iam.access
Key

The access key of the caller
identity.

"AKIAIOSFODNN7EXAM
PLE"

requestContext.aut
horizer.iam.accoun
tId

The AWS account ID of the
caller identity.

"111122223333"

requestContext.aut
horizer.iam.caller
Id

The ID (user ID) of the caller. "AIDACKCEVSQ6C2EXA
MPLE"

requestContext.aut
horizer.iam.cognit
oIdentity

Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

null

requestContext.aut
horizer.iam.princi
palOrgId

The principal org ID associate
d with the caller identity.

"AIDACKCEVSQORGEXA
MPLE"

requestContext.aut
horizer.iam.userArn

The user Amazon Resource
Name (ARN) of the caller
identity.

"arn:aws:iam::1111
22223333:user/exam
ple-user"

requestContext.aut
horizer.iam.userId

The user ID of the caller
identity.

"AIDACOSFODNN7EXAM
PLE2"

Invoking function URLs 412

AWS Lambda Developer Guide

Parameter Description Example

requestContext.dom
ainName

The domain name of the
function URL.

"<url-id>.lambda-u
rl.us-west-2.on.aw
s"

requestContext.dom
ainPrefix

The domain prefix of the
function URL.

"<url-id>"

requestContext.http An object that contains
details about the HTTP
request.

requestContext.htt
p.method

The HTTP method used in
this request. Valid values
include GET, POST, PUT,
HEAD, OPTIONS, PATCH, and
DELETE.

GET

requestContext.htt
p.path

The request path. For
example, if the request URL
is https://{url-id}.l
ambda-url.{region}
.on.aws/example/te
st/demo , then the path
value is /example/test/
demo .

/example/test/demo

requestContext.htt
p.protocol

The protocol of the request. HTTP/1.1

requestContext.htt
p.sourceIp

The source IP address of the
immediate TCP connection
making the request.

123.123.123.123

Invoking function URLs 413

AWS Lambda Developer Guide

Parameter Description Example

requestContext.htt
p.userAgent

The User-Agent request
header value.

Mozilla/5.0 (Macintos
h; Intel Mac OS X
10_15_7) Gecko/201
00101 Firefox/42.0

requestContext.req
uestId

The ID of the invocation
request. You can use this ID to
trace invocation logs related
to your function.

e1506fd5-9e7b-434f-
bd42-4f8fa224b599

requestContext.rou
teKey

Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

$default

requestContext.stage Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

$default

requestContext.time The timestamp of the
request.

"07/Sep/2021:22:50
:22 +0000"

requestContext.tim
eEpoch

The timestamp of the
request, in Unix epoch time.

"1631055022677"

body The body of the request.
If the content type of the
request is binary, the body is
base64-encoded.

{"key1": "value1",
"key2": "value2"}

pathParameters Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

null

Invoking function URLs 414

AWS Lambda Developer Guide

Parameter Description Example

isBase64Encoded TRUE if the body is a binary
payload and base64-encoded.
FALSE otherwise.

FALSE

stageVariables Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

null

Response payload format

When your function returns a response, Lambda parses the response and converts it into an HTTP
response. Function response payloads have the following format:

{
 "statusCode": 201,
 "headers": {
 "Content-Type": "application/json",
 "My-Custom-Header": "Custom Value"
 },
 "body": "{ \"message\": \"Hello, world!\" }",
 "cookies": [
 "Cookie_1=Value1; Expires=21 Oct 2021 07:48 GMT",
 "Cookie_2=Value2; Max-Age=78000"
],
 "isBase64Encoded": false
}

Lambda infers the response format for you. If your function returns valid JSON and doesn't return
a statusCode, Lambda assumes the following:

• statusCode is 200.

Note

The valid statusCode are within the range of 100 to 599.

• content-type is application/json.

Invoking function URLs 415

AWS Lambda Developer Guide

• body is the function response.

• isBase64Encoded is false.

The following examples show how the output of your Lambda function maps to the response
payload, and how the response payload maps to the final HTTP response. When the client invokes
your function URL, they see the HTTP response.

Example output for a string response

Lambda function output Interpreted response output HTTP response (what the
client sees)

"Hello, world!" {
 "statusCode": 200,
 "body": "Hello,
 world!",
 "headers": {
 "content-type":
 "application/json"
 },
 "isBase64Encoded":
 false
}

HTTP/2 200
date: Wed, 08 Sep 2021
 18:02:24 GMT
content-type: applicati
on/json
content-length: 15

"Hello, world!"

Example output for a JSON response

Lambda function output Interpreted response output HTTP response (what the
client sees)

{
 "message": "Hello,
 world!"
}

{
 "statusCode": 200,
 "body": {
 "message": "Hello,
 world!"
 },
 "headers": {
 "content-type":
 "application/json"

HTTP/2 200
date: Wed, 08 Sep 2021
 18:02:24 GMT
content-type: applicati
on/json
content-length: 34

{

Invoking function URLs 416

AWS Lambda Developer Guide

Lambda function output Interpreted response output HTTP response (what the
client sees)

 },
 "isBase64Encoded":
 false
}

 "message": "Hello,
 world!"
}

Example output for a custom response

Lambda function output Interpreted response output HTTP response (what the
client sees)

{
 "statusCode": 201,
 "headers": {
 "Content-Type":
 "application/json",
 "My-Custom-
Header": "Custom Value"
 },
 "body": JSON.stri
ngify({
 "message":
 "Hello, world!"
 }),
 "isBase64Encoded":
 false
}

{
 "statusCode": 201,
 "headers": {
 "Content-Type":
 "application/json",
 "My-Custom-
Header": "Custom Value"
 },
 "body": JSON.stri
ngify({
 "message":
 "Hello, world!"
 }),
 "isBase64Encoded":
 false
}

HTTP/2 201
date: Wed, 08 Sep 2021
 18:02:24 GMT
content-type: applicati
on/json
content-length: 27
my-custom-header:
 Custom Value

{
 "message": "Hello,
 world!"
}

Cookies

To return cookies from your function, don't manually add set-cookie headers. Instead, include
the cookies in your response payload object. Lambda automatically interprets this and adds them
as set-cookie headers in your HTTP response, as in the following example.

Invoking function URLs 417

AWS Lambda Developer Guide

Lambda function output HTTP response (what the client sees)

{
 "statusCode": 201,
 "headers": {
 "Content-Type": "application/
json",
 "My-Custom-Header": "Custom
 Value"
 },
 "body": JSON.stringify({
 "message": "Hello, world!"
 }),
 "cookies": [
 "Cookie_1=Value1; Expires=21
 Oct 2021 07:48 GMT",
 "Cookie_2=Value2; Max-Age=7
8000"
],
 "isBase64Encoded": false
}

HTTP/2 201
date: Wed, 08 Sep 2021 18:02:24 GMT
content-type: application/json
content-length: 27
my-custom-header: Custom Value
set-cookie: Cookie_1=Value2;
 Expires=21 Oct 2021 07:48 GMT
set-cookie: Cookie_2=Value2; Max-
Age=78000

{
 "message": "Hello, world!"
}

Invoking function URLs 418

AWS Lambda Developer Guide

Monitoring Lambda function URLs

You can use AWS CloudTrail and Amazon CloudWatch to monitor your function URLs.

Topics

• Monitoring function URLs with CloudTrail

• CloudWatch metrics for function URLs

Monitoring function URLs with CloudTrail

For function URLs, Lambda automatically supports logging the following API operations as events
in CloudTrail log files:

• CreateFunctionUrlConfig

• UpdateFunctionUrlConfig

• DeleteFunctionUrlConfig

• GetFunctionUrlConfig

• ListFunctionUrlConfigs

Each log entry contains information about the caller identity, when the request was made, and
other details. You can see all events within the last 90 days by viewing your CloudTrail Event
history. To retain records past 90 days, you can create a trail.

By default, CloudTrail doesn't log InvokeFunctionUrl requests, which are considered data
events. However, you can turn on data event logging in CloudTrail. For more information, see
Logging data events for trails in the AWS CloudTrail User Guide.

CloudWatch metrics for function URLs

Lambda sends aggregated metrics about function URL requests to CloudWatch. With these metrics,
you can monitor your function URLs, build dashboards, and configure alarms in the CloudWatch
console.

Function URLs support the following invocation metrics. We recommend viewing these metrics
with the Sum statistic.

• UrlRequestCount – The number of requests made to this function URL.

Monitoring function URLs 419

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctionUrlConfigs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

AWS Lambda Developer Guide

• Url4xxCount – The number of requests that returned a 4XX HTTP status code. 4XX series codes
indicate client-side errors, such as bad requests.

• Url5xxCount – The number of requests that returned a 5XX HTTP status code. 5XX series codes
indicate server-side errors, such as function errors and timeouts.

Function URLs also support the following performance metric. We recommend viewing this metric
with the Average or Max statistics.

• UrlRequestLatency – The time between when the function URL receives a request and when
the function URL returns a response.

Each of these invocation and performance metrics supports the following dimensions:

• FunctionName – View aggregate metrics for function URLs assigned to a function's $LATEST
unpublished version, or to any of the function's aliases. For example, hello-world-function.

• Resource – View metrics for a specific function URL. This is defined by a function name, along
with either the function's $LATEST unpublished version or one of the function's aliases. For
example, hello-world-function:$LATEST.

• ExecutedVersion – View metrics for a specific function URL based on the executed version.
You can use this dimension primarily to track the function URL assigned to the $LATEST
unpublished version.

Select a method to invoke your Lambda function using an HTTP
request

Many common use cases for Lambda involve invoking your function using an HTTP request. For
example, you might want a web application to invoke your function through a browser request.
Lambda functions can also be used to create full REST APIs, handle user interactions from mobile
apps, process data from external services via HTTP calls, or create custom webhooks.

The following sections explain what your choices are for invoking Lambda through HTTP and
provide information to help you make the right decision for your particular use case.

Function URLs vs Amazon API Gateway 420

AWS Lambda Developer Guide

What are your choices when selecting an HTTP invoke method?

Lambda offers two main methods to invoke a function using an HTTP request - function URLs and
API Gateway. The key differences between these two options are as follows:

• Lambda function URLs provide a simple, direct HTTP endpoint for a Lambda function. They are
optimized for simplicity and cost-effectiveness and provide the fastest path to expose a Lambda
function via HTTP.

• API Gateway is a more advanced service for building fully-featured APIs. API Gateway is
optimized for building and managing productions APIs at scale and provides comprehensive
tools for security, monitoring, and traffic management.

Recommendations if you already know your requirements

If you're already clear on your requirements, here are our basic recommendations:

We recommend function URLs for simple applications or prototyping where you only need basic
authentication methods and request/response handling and where you want to keep costs and
complexity to a minimum.

API Gateway is a better choice for production applications at scale or for cases where you need
more advanced features like OpenAPI Description support, a choice of authentication options,
custom domain names, or rich request/response handling including throttling, caching, and
request/response transformation.

What to consider when selecting a method to invoke your Lambda function

When selecting between function URLs and API Gateway, you need to consider the following
factors:

• Your authentication needs, such as whether you require OAuth or Amazon Cognito to
authenticate users

• Your scaling requirements and the complexity of the API you want to implement

• Whether you need advanced features such as request validation and request/response
formatting

• Your monitoring requirements

• Your cost goals

Function URLs vs Amazon API Gateway 421

https://www.openapis.org/

AWS Lambda Developer Guide

By understanding these factors, you can select the option that best balances your security,
complexity, and cost requirements.

The following information summarizes the main differences between the two options.

Authentication

• Function URLs provide basic authentication options through AWS Identity and Access
Management (IAM). You can configure your endpoints to be either public (no authentication) or
to require IAM authentication. With IAM authentication, you can use standard AWS credentials
or IAM roles to control access. While straightforward to set up, this approach provides limited
options compared with other authenticaton methods.

• API Gateway provides access to a more comprehensive range of authentication options. As
well as IAM authentication, you can use Lambda authorizers (custom authentication logic),
Amazon Cognito user pools, and OAuth2.0 flows. This flexibility allows you to implement
complex authentication schemes, including third-party authentication providers, token-based
authentication, and multi-factor authentication.

Request/response handling

• Function URLs provide basic HTTP request and response handling. They support standard HTTP
methods and include built-in cross-origin resource sharing (CORS) support. While they can
handle JSON payloads and query parameters naturally, they don't offer request transformation
or validation capabilities. Response handling is similarly straightforward – the client receives the
response from your Lambda function exactly as Lambda returns it.

• API Gateway provides sophisticated request and response handling capabilities. You can define
request validators, transform requests and responses using mapping templates, set up request/
response headers, and implement response caching. API Gateway also supports binary payloads
and custom domain names and can modify responses before they reach the client. You can set
up models for request/response validation and transformation using JSON Schema.

Scaling

• Function URLs scale directly with your Lambda function's concurrency limits and handle traffic
spikes by scaling your function up to its maximum configured concurrency limit. Once that limit
is reached, Lambda responds to additional requests with HTTP 429 responses. There's no built-
in queuing mechanism, so handling scaling is entirely dependent on your Lambda function's

Function URLs vs Amazon API Gateway 422

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html

AWS Lambda Developer Guide

configuration. By default, Lambda functions have a limit of 1,000 concurrent executions per AWS
Region.

• API Gateway provides additional scaling capabilities on top of Lambda's own scaling. It includes
built-in request queuing and throttling controls, allowing you to manage traffic spikes more
gracefully. API Gateway can handle up to 10,000 requests per second per region by default,
with a burst capacity of 5,000 requests per second. It also provides tools to throttle requests at
different levels (API, stage, or method) to protect your backend.

Monitoring

• Function URLs offer basic monitoring through Amazon CloudWatch metrics, including request
count, latency, and error rates. You get access to standard Lambda metrics and logs, which show
the raw requests coming into your function. While this provides essential operational visibility,
the metrics are focused mainly on function execution.

• API Gateway provides comprehensive monitoring capabilities including detailed metrics, logging,
and tracing options. You can monitor API calls, latency, error rates, and cache hit/miss rates
through CloudWatch. API Gateway also integrates with AWS X-Ray for distributed tracing and
provides customizable logging formats.

Cost

• Function URLs follow the standard Lambda pricing model – you only pay for function
invocations and compute time. There are no additional charges for the URL endpoint itself. This
makes it a cost-effective choice for simple APIs or low-traffic applications if you don't need the
additional features of API Gateway.

• API Gateway offers a free tier that includes one million API calls received for REST APIs and
one million API calls received for HTTP APIs. After this, API Gateway charges for API calls, data
transfer, and caching (if enabled). Refer to the API Gateway pricing page to understand the costs
for your own use case.

Other features

• Function URLs are designed for simplicity and direct Lambda integration. They support both
HTTP and HTTPS endpoints, offer built-in CORS support, and provide dual-stack (IPv4 and IPv6)
endpoints. While they lack advanced features, they excel in scenarios where you need a quick,
straightforward way to expose Lambda functions via HTTP.

Function URLs vs Amazon API Gateway 423

https://aws.amazon.com/api-gateway/pricing/#Free_Tier
https://aws.amazon.com/api-gateway/pricing/

AWS Lambda Developer Guide

• API Gateway includes numerous additional features such as API versioning, stage management,
API keys for usage plans, API documentation through Swagger/OpenAPI, WebSocket APIs,
private APIs within a VPC, and WAF integration for additional security. It also supports canary
deployments, mock integrations for testing, and integration with other AWS services beyond
Lambda.

Select a method to invoke your Lambda function

Now that you've read about the criteria for selecting between Lambda function URLs and API
Gateway and the key differences between them, you can select the option that best meets your
needs and use the following resources to help you get started using it.

Function URLs

Get started with function URLs with the following resources

• Follow the tutorial Creating a Lambda function with a function URL

• Learn more about function URLs in the the section called “Function URLs” chapter of this
guide

• Try the in-console guided tutorial Create a simple web app by doing the following:

1. Open the functions page of the Lambda console.

2. Open the help panel by choosing the icon in the top right corner of the screen.

3. Select Tutorials.

4. In Create a simple web app, choose Start tutorial.

Function URLs vs Amazon API Gateway 424

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

API Gateway

Get started with Lambda and API Gateway with the following resources

• Follow the tutorial Using Lambda with API Gateway to create a REST API integrated with a
backend Lambda function.

• Learn more about the different kinds of API offered by API Gateway in the following sections
of the Amazon API Gateway Developer Guide:

• API Gateway REST APIs

• API Gateway HTTP APIs

• API Gateway WebSocket APIs

• Try one or more of the examples in the Tutorials and workshops section of the Amazon API
Gateway Developer Guide.

Function URLs vs Amazon API Gateway 425

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-tutorials.html

AWS Lambda Developer Guide

Tutorial: Creating a webhook endpoint using a Lambda function URL

In this tutorial, you create a Lambda function URL to implement a webhook endpoint. A webhook
is a lightweight, event-driven communication that automatically sends data between applications
using HTTP. You can use a webhook to receive immediate updates about events happening in
another system, such as when a new customer signs up on a website, a payment is processed, or a
file is uploaded.

With Lambda, webhooks can be implemented using either Lambda function URLs or API Gateway.
Function URLs are a good choice for simple webhooks that don't require features like advanced
authorization or request validation.

Tip

If you're not sure which solution is best for your particular use case, see the section called
“Function URLs vs Amazon API Gateway”.

Prerequisites

To complete this tutorial, you must have either Python (version 3.8 or later) or Node.js (version 18
or later) installed on your local machine.

To test the endpoint using an HTTP request, the tutorial uses curl, a command line tool you can use
to transfer data using various network protocols. Refer to the curl documentation to learn how to
install the tool if you don't already have it.

Create the Lambda function

First create the Lambda function that runs when an HTTP request is sent to your webhook
endpoint. In this example, the sending application sends an update whenever a payment is
submitted and indicates in the body of the HTTP request whether the payment was successful. The
Lambda function parses the request and takes action according to the status of the payment. In
this example, the code just prints the order ID for the payment, but in a real application, you might
add the order to a database or send a notification.

The function also implements the most common authentication method used for webhooks,
hash-based message authentication (HMAC). With this method, both the sending and receiving
applications share a secret key. The sending application uses a hashing algorithm to generate a
unique signature using this key together with the message content, and includes the signature

Tutorial: Creating a webhook endpoint 426

https://curl.se/
https://curl.se/docs/install.html

AWS Lambda Developer Guide

in the webhook request as an HTTP header. The receiving application then repeats this step,
generating the signature using the secret key, and compares the resulting value with the signature
sent in the request header. If the result matches, the request is considered legitimate.

Create the function using the Lambda console with either the Python or Node.js runtime.

Python

Create the Lambda function

1. Open the Functions page of the Lambda console.

2. Create a basic 'Hello world' function by doing the following:

a. Choose Create function.

b. Select Author from scratch.

c. For Function name, enter myLambdaWebhook.

d. For Runtime, select python3.13.

e. Choose Create function.

3. In the Code source pane, replace the existing code by copying and pasting the following:

import json
import hmac
import hashlib
import os

def lambda_handler(event, context):

 # Get the webhook secret from environment variables
 webhook_secret = os.environ['WEBHOOK_SECRET']

 # Verify the webhook signature
 if not verify_signature(event, webhook_secret):
 return {
 'statusCode': 401,
 'body': json.dumps({'error': 'Invalid signature'})
 }

 try:
 # Parse the webhook payload
 payload = json.loads(event['body'])

Tutorial: Creating a webhook endpoint 427

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

 # Handle different event types
 event_type = payload.get('type')

 if event_type == 'payment.success':
 # Handle successful payment
 order_id = payload.get('orderId')
 print(f"Processing successful payment for order {order_id}")

 # Add your business logic here
 # For example, update database, send notifications, etc.

 elif event_type == 'payment.failed':
 # Handle failed payment
 order_id = payload.get('orderId')
 print(f"Processing failed payment for order {order_id}")

 # Add your business logic here

 else:
 print(f"Received unhandled event type: {event_type}")

 # Return success response
 return {
 'statusCode': 200,
 'body': json.dumps({'received': True})
 }

 except json.JSONDecodeError:
 return {
 'statusCode': 400,
 'body': json.dumps({'error': 'Invalid JSON payload'})
 }
 except Exception as e:
 print(f"Error processing webhook: {e}")
 return {
 'statusCode': 500,
 'body': json.dumps({'error': 'Internal server error'})
 }

def verify_signature(event, webhook_secret):
 """
 Verify the webhook signature using HMAC
 """
 try:

Tutorial: Creating a webhook endpoint 428

AWS Lambda Developer Guide

 # Get the signature from headers
 signature = event['headers'].get('x-webhook-signature')

 if not signature:
 print("Error: Missing webhook signature in headers")
 return False

 # Get the raw body (return an empty string if the body key doesn't
 exist)
 body = event.get('body', '')

 # Create HMAC using the secret key
 expected_signature = hmac.new(
 webhook_secret.encode('utf-8'),
 body.encode('utf-8'),
 hashlib.sha256
).hexdigest()

 # Compare the expected signature with the received signature to
 authenticate the message
 is_valid = hmac.compare_digest(signature, expected_signature)
 if not is_valid:
 print(f"Error: Invalid signature. Received: {signature}, Expected:
 {expected_signature}")
 return False

 return True
 except Exception as e:
 print(f"Error verifying signature: {e}")
 return False

4. In the DEPLOY section, choose Deploy to update your function's code.

Node.js

Create the Lambda function

1. Open the Functions page of the Lambda console.

2. Create a basic 'Hello world' function by doing the following:

a. Choose Create function.

b. Select Author from scratch.

Tutorial: Creating a webhook endpoint 429

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

c. For Function name, enter myLambdaWebhook.

d. For Runtime, select nodejs22.x.

e. Choose Create function.

3. In the Code source pane, replace the existing code by copying and pasting the following:

import crypto from 'crypto';

export const handler = async (event, context) => {
 // Get the webhook secret from environment variables
 const webhookSecret = process.env.WEBHOOK_SECRET;

 // Verify the webhook signature
 if (!verifySignature(event, webhookSecret)) {
 return {
 statusCode: 401,
 body: JSON.stringify({ error: 'Invalid signature' })
 };
 }

 try {
 // Parse the webhook payload
 const payload = JSON.parse(event.body);

 // Handle different event types
 const eventType = payload.type;

 switch (eventType) {
 case 'payment.success': {
 // Handle successful payment
 const orderId = payload.orderId;
 console.log(`Processing successful payment for order
 ${orderId}`);

 // Add your business logic here
 // For example, update database, send notifications, etc.
 break;
 }

 case 'payment.failed': {
 // Handle failed payment
 const orderId = payload.orderId;
 console.log(`Processing failed payment for order ${orderId}`);

Tutorial: Creating a webhook endpoint 430

AWS Lambda Developer Guide

 // Add your business logic here
 break;
 }

 default:
 console.log(`Received unhandled event type: ${eventType}`);
 }

 // Return success response
 return {
 statusCode: 200,
 body: JSON.stringify({ received: true })
 };

 } catch (error) {
 if (error instanceof SyntaxError) {
 // Handle JSON parsing errors
 return {
 statusCode: 400,
 body: JSON.stringify({ error: 'Invalid JSON payload' })
 };
 }

 // Handle all other errors
 console.error('Error processing webhook:', error);
 return {
 statusCode: 500,
 body: JSON.stringify({ error: 'Internal server error' })
 };
 }
};

// Verify the webhook signature using HMAC

const verifySignature = (event, webhookSecret) => {
 try {
 // Get the signature from headers
 const signature = event.headers['x-webhook-signature'];

 if (!signature) {
 console.log('No signature found in headers:', event.headers);
 return false;
 }

Tutorial: Creating a webhook endpoint 431

AWS Lambda Developer Guide

 // Get the raw body (return an empty string if the body key doesn't
 exist)
 const body = event.body || '';

 // Create HMAC using the secret key
 const hmac = crypto.createHmac('sha256', webhookSecret);
 const expectedSignature = hmac.update(body).digest('hex');

 // Compare expected and received signatures
 const isValid = signature === expectedSignature;
 if (!isValid) {
 console.log(`Invalid signature. Received: ${signature}, Expected:
 ${expectedSignature}`);
 return false;
 }

 return true;
 } catch (error) {
 console.error('Error during signature verification:', error);
 return false;
 }
 };

4. In the DEPLOY section, choose Deploy to update your function's code.

Create the secret key

For the Lambda function to authenticate the webhook request, it uses a secret key which it shares
with the calling application. In this example, the key is stored in an environment variable. In a
production application, don't include sensitive information like passwords in your function code.
Instead, create an AWS Secrets Manager secret and then use the AWS Parameters and Secrets
Lambda extension to retrieve your credentials in your Lambda function.

Create and store the webhook secret key

1. Generate a long, random string using a cryptographically secure random number generator.
You can use the following code snippets in Python or Node.js to generate and print a 32-
character secret, or use your own preferred method.

Tutorial: Creating a webhook endpoint 432

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Lambda Developer Guide

Python

Example code to generate a secret

import secrets
webhook_secret = secrets.token_urlsafe(32)
print(webhook_secret)

Node.js

Example code to generate a secret (ES module format)

import crypto from 'crypto';
let webhookSecret = crypto.randomBytes(32).toString('base64');
console.log(webhookSecret)

2. Store your generated string as an environment variable for your function by doing the
following:

a. In the Configuration tab for your function, select Environment variables.

b. Choose Edit.

c. Choose Add environment variable.

d. For Key, enter WEBHOOK_SECRET, then for Value, enter the secret you generated in the
previous step.

e. Choose Save.

You'll need to use this secret again later in the tutorial to test your function, so make a note of it
now.

Create the function URL endpoint

Create an endpoint for your webhook using a Lambda function URL. Beacuse you use the auth type
of NONE to create an endpoint with public access, anyone with the URL can invoke your function. To
learn more about controlling access to function URLs, see the section called “Access control”. If you
need more advanced authentication options for your webhook, consider using API Gateway.

Tutorial: Creating a webhook endpoint 433

AWS Lambda Developer Guide

Create the function URL endpoint

1. In the Configuration tab for your function, select Function URL.

2. Choose Create function URL.

3. For Auth type, select NONE.

4. Choose Save.

The endpoint for the function URL you just created is displayed in the Function URL pane. Copy
the endpoint to use later in the tutorial.

Test the function in the console

Before using an HTTP request to invoke your function using the URL endpoint, test it in the console
to confirm your code is working as expected.

To verify the function in the console, you first calculate a webhook signature using the secret you
generated earlier in the tutorial with the following test JSON payload:

{
 "type": "payment.success",
 "orderId": "1234",
 "amount": "99.99"
}

Use either of the following Python or Node.js code examples to calculate the webhook signature
using your own secret.

Python

Calculate the webhook signature

1. Save the following code as a file named calculate_signature.py. Replace the
webhook secret in the code with your own value.

import secrets
import hmac
import json
import hashlib

Tutorial: Creating a webhook endpoint 434

AWS Lambda Developer Guide

webhook_secret = "arlbSDCP86n_1H90s0fL_Qb2NAHBIBQOyGI0X4Zay4M"

body = json.dumps({"type": "payment.success", "orderId": "1234", "amount":
 "99.99"})

signature = hmac.new(
 webhook_secret.encode('utf-8'),
 body.encode('utf-8'),
 hashlib.sha256
).hexdigest()

print(signature)

2. Calculate the signature by running the following command from the same directory you
saved the code in. Copy the signature the code outputs.

python calculate_signature.py

Node.js

Calculate the webhook signature

1. Save the following code as a file named calculate_signature.mjs. Replace the
webhook secret in the code with your own value.

import crypto from 'crypto';

const webhookSecret = "arlbSDCP86n_1H90s0fL_Qb2NAHBIBQOyGI0X4Zay4M"
const body = "{\"type\": \"payment.success\", \"orderId\": \"1234\", \"amount\":
 \"99.99\"}";

let hmac = crypto.createHmac('sha256', webhookSecret);
let signature = hmac.update(body).digest('hex');

console.log(signature);

2. Calculate the signature by running the following command from the same directory you
saved the code in. Copy the signature the code outputs.

node calculate_signature.mjs

Tutorial: Creating a webhook endpoint 435

AWS Lambda Developer Guide

You can now test your function code using a test HTTP request in the console.

Test the function in the console

1. Select the Code tab for your function.

2. In the TEST EVENTS section, choose Create new test event

3. For Event Name, enter myEvent.

4. Replace the existing JSON by copying and pasting the following into the Event JSON pane.
Replace the webhook signature with the value you calculated in the previous step.

{
 "headers": {
 "Content-Type": "application/json",
 "x-webhook-signature":
 "2d672e7a0423fab740fbc040e801d1241f2df32d2ffd8989617a599486553e2a"
 },
 "body": "{\"type\": \"payment.success\", \"orderId\": \"1234\", \"amount\":
 \"99.99\"}"
}

5. Choose Save.

6. Choose Invoke.

You should see output similar to the following:

Python

Status: Succeeded
Test Event Name: myEvent

Response:
{
 "statusCode": 200,
 "body": "{\"received\": true}"
}

Function Logs:
START RequestId: 50cc0788-d70e-453a-9a22-ceaa210e8ac6 Version: $LATEST
Processing successful payment for order 1234
END RequestId: 50cc0788-d70e-453a-9a22-ceaa210e8ac6

Tutorial: Creating a webhook endpoint 436

AWS Lambda Developer Guide

REPORT RequestId: 50cc0788-d70e-453a-9a22-ceaa210e8ac6 Duration: 1.55 ms Billed
 Duration: 2 ms Memory Size: 128 MB Max Memory Used: 36 MB Init Duration: 136.32
 ms

Node.js

Status: Succeeded
Test Event Name: myEvent

Response:
{
 "statusCode": 200,
 "body": "{\"received\":true}"
}

Function Logs:
START RequestId: e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4 Version: $LATEST
2025-01-10T18:05:42.062Z e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4 INFO Processing
 successful payment for order 1234
END RequestId: e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4
REPORT RequestId: e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4 Duration: 60.10 ms Billed
 Duration: 61 ms Memory Size: 128 MB Max Memory Used: 72 MB Init Duration:
 174.46 ms

Request ID: e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4

Test the function using an HTTP request

Use the curl command line tool to test your webhook endpoint.

Test the function using HTTP requests

1. In a terminal or shell program, run the following curl command. Replace the URL with the
value for your own function URL endpoint and replace the webhook signature with the
signature you calculated using your own secret key.

curl -X POST https://ryqgmbx5xjzxahif6frvzikpre0bpvpf.lambda-url.us-west-2.on.aws/
 \
-H "Content-Type: application/json" \
-H "x-webhook-
signature: d5f52b76ffba65ff60ea73da67bdf1fc5825d4db56b5d3ffa0b64b7cb85ef48b" \

Tutorial: Creating a webhook endpoint 437

AWS Lambda Developer Guide

-d '{"type": "payment.success", "orderId": "1234", "amount": "99.99"}'

You should see the following output:

{"received": true}

2. Inspect the CloudWatch logs for your function to confirm it parsed the payload correctly by
doing the following:

a. Open the Logs group page in the Amazon CloudWatch console.

b. Select your function's log group (/aws/lambda/myLambdaWebhook).

c. Select the most recent log stream.

You should see output similar to the following in your function's logs:

Python

Processing successful payment for order 1234

Node.js

2025-01-10T18:05:42.062Z e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4 INFO
 Processing successful payment for order 1234

3. Confirm that your code detects an invalid signature by running the following curl command.
Replace the URL with your own function URL endpoint.

curl -X POST https://ryqgmbx5xjzxahif6frvzikpre0bpvpf.lambda-url.us-west-2.on.aws/
 \
-H "Content-Type: application/json" \
-H "x-webhook-signature: abcdefg" \
-d '{"type": "payment.success", "orderId": "1234", "amount": "99.99"}'

You should see the following output:

{"error": "Invalid signature"}

Tutorial: Creating a webhook endpoint 438

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Lambda Developer Guide

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

When you created the Lambda function in the console, Lambda also created an execution role for
your function.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that Lambda created. The role has the name format
myLambdaWebhook-role-<random string>.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

Tutorial: Creating a webhook endpoint 439

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

Understanding Lambda function scaling

Concurrency is the number of in-flight requests that your AWS Lambda function is handling at the
same time. For each concurrent request, Lambda provisions a separate instance of your execution
environment. As your functions receive more requests, Lambda automatically handles scaling the
number of execution environments until you reach your account's concurrency limit. By default,
Lambda provides your account with a total concurrency limit of 1,000 concurrent executions across
all functions in an AWS Region. To support your specific account needs, you can request a quota
increase and configure function-level concurrency controls so that your critical functions don't
experience throttling.

This topic explains concurrency concepts and function scaling in Lambda. By the end of this topic,
you'll be able to understand how to calculate concurrency, visualize the two main concurrency
control options (reserved and provisioned), estimate appropriate concurrency control settings, and
view metrics for further optimization.

Sections

• Understanding and visualizing concurrency

• Calculating concurrency for a function

• Understanding reserved concurrency and provisioned concurrency

• Understanding concurrency and requests per second

• Concurrency quotas

• Configuring reserved concurrency for a function

• Configuring provisioned concurrency for a function

• Lambda scaling behavior

• Monitoring concurrency

Understanding and visualizing concurrency

Lambda invokes your function in a secure and isolated execution environment. To handle a request,
Lambda must first initialize an execution environment (the Init phase), before using it to invoke
your function (the Invoke phase):

Understanding and visualizing concurrency 440

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/

AWS Lambda Developer Guide

Note

Actual Init and Invoke durations can vary depending on many factors, such as the runtime
you choose and the Lambda function code. The previous diagram isn't meant to represent
the exact proportions of Init and Invoke phase durations.

The previous diagram uses a rectangle to represent a single execution environment. When your
function receives its very first request (represented by the yellow circle with label 1), Lambda
creates a new execution environment and runs the code outside your main handler during the Init
phase. Then, Lambda runs your function's main handler code during the Invoke phase. During this
entire process, this execution environment is busy and cannot process other requests.

When Lambda finishes processing the first request, this execution environment can then process
additional requests for the same function. For subsequent requests, Lambda doesn't need to re-
initialize the environment.

In the previous diagram, Lambda reuses the execution environment to handle the second request
(represented by the yellow circle with label 2).

Understanding and visualizing concurrency 441

AWS Lambda Developer Guide

So far, we've focused on just a single instance of your execution environment (that is, a concurrency
of 1). In practice, Lambda may need to provision multiple execution environment instances in
parallel to handle all incoming requests. When your function receives a new request, one of two
things can happen:

• If a pre-initialized execution environment instance is available, Lambda uses it to process the
request.

• Otherwise, Lambda creates a new execution environment instance to process the request.

For example, let's explore what happens when your function receives 10 requests:

In the previous diagram, each horizontal plane represents a single execution environment instance
(labeled from A through F). Here's how Lambda handles each request:

Request Lambda behavior Reasoning

1 Provisions new environment
A

This is the first request;
no execution environment
instances are available.

2 Provisions new environment B Existing execution environme
nt instance A is busy.

Understanding and visualizing concurrency 442

AWS Lambda Developer Guide

Request Lambda behavior Reasoning

3 Provisions new environment C Existing execution environme
nt instances A and B are both
busy.

4 Provisions new environment
D

Existing execution environme
nt instances A, B, and C are all
busy.

5 Provisions new environment E Existing execution environme
nt instances A, B, C, and D are
all busy.

6 Reuses environment A Execution environment
instance A has finished
processing request 1 and is
now available.

7 Reuses environment B Execution environment
instance B has finished
processing request 2 and is
now available.

8 Reuses environment C Execution environment
instance C has finished
processing request 3 and is
now available.

9 Provisions new environment F Existing execution environme
nt instances A, B, C, D, and E
are all busy.

10 Reuses environment D Execution environment
instance D has finished
processing request 4 and is
now available.

Understanding and visualizing concurrency 443

AWS Lambda Developer Guide

As your function receives more concurrent requests, Lambda scales up the number of execution
environment instances in response. The following animation tracks the number of concurrent
requests over time:

By freezing the previous animation at six distinct points in time, we get the following diagram:

Understanding and visualizing concurrency 444

AWS Lambda Developer Guide

In the previous diagram, we can draw a vertical line at any point in time and count the number of
environments that intersect this line. This gives us the number of concurrent requests at that point
in time. For example, at time t1, there are three active environments serving three concurrent
requests. The maximum number of concurrent requests in this simulation occurs at time t4, when
there are six active environments serving six concurrent requests.

To summarize, your function's concurrency is the number of concurrent requests that it's handling
at the same time. In response to an increase in your function's concurrency, Lambda provisions
more execution environment instances to meet request demand.

Calculating concurrency for a function

In general, concurrency of a system is the ability to process more than one task simultaneously.
In Lambda, concurrency is the number of in-flight requests that your function is handling at the
same time. A quick and practical way of measuring concurrency of a Lambda function is to use the
following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

Concurrency differs from requests per second. For example, suppose your function receives 100
requests per second on average. If the average request duration is one second, then it's true that
the concurrency is also 100:

Concurrency = (100 requests/second) * (1 second/request) = 100

However, if the average request duration is 500 ms, then the concurrency is 50:

Concurrency = (100 requests/second) * (0.5 second/request) = 50

What does a concurrency of 50 mean in practice? If the average request duration is 500 ms,
then you can think of an instance of your function as being able to handle two requests per
second. Then, it takes 50 instances of your function to handle a load of 100 requests per second.
A concurrency of 50 means that Lambda must provision 50 execution environment instances to
efficiently handle this workload without any throttling. Here's how to express this in equation form:

Concurrency = (100 requests/second) / (2 requests/second) = 50

Calculating concurrency for a function 445

AWS Lambda Developer Guide

If your function receives double the number of requests (200 requests per second), but only
requires half the time to process each request (250 ms), then the concurrency is still 50:

Concurrency = (200 requests/second) * (0.25 second/request) = 50

Test your understanding of concurrency

Suppose you have a function that takes, on average, 200 ms to run. During peak load, you observe
5,000 requests per second. What is the concurrency of your function during peak load?

Answer

The average function duration is 200 ms, or 0.2 seconds. Using the concurrency formula, you can
plug in the numbers to get a concurrency of 1,000:

Concurrency = (5,000 requests/second) * (0.2 seconds/request) = 1,000

Alternatively, an average function duration of 200 ms means that your function can process 5
requests per second. To handle the 5,000 request per second workload, you need 1,000 execution
environment instances. Thus, the concurrency is 1,000:

Concurrency = (5,000 requests/second) / (5 requests/second) = 1,000

Understanding reserved concurrency and provisioned
concurrency

By default, your account has a concurrency limit of 1,000 concurrent executions across all functions
in a Region. Your functions share this pool of 1,000 concurrency on an on-demand basis. Your
functions experiences throttling (that is, they start to drop requests) if you run out of available
concurrency.

Some of your functions might be more critical than others. As a result, you might want to configure
concurrency settings to ensure that critical functions get the concurrency that they need. There are
two types of concurrency controls available: reserved concurrency and provisioned concurrency.

• Use reserved concurrency to set both the maximum and minimum number of concurrent
instances to reserve a portion of your account's concurrency for a function. This is useful if you

Understanding reserved concurrency and provisioned concurrency 446

AWS Lambda Developer Guide

don't want other functions taking up all the available unreserved concurrency. When a function
has reserved concurrency, no other function can use that concurrency.

• Use provisioned concurrency to pre-initialize a number of environment instances for a function.
This is useful for reducing cold start latencies.

Reserved concurrency

If you want to guarantee that a certain amount of concurrency is available for your function at any
time, use reserved concurrency.

Reserved concurrency sets the maximum and minimum number of concurrent instances that
you want to allocate to your function. When you dedicate reserved concurrency to a function,
no other function can use that concurrency. In other words, setting reserved concurrency can
impact the concurrency pool that's available to other functions. Functions that don't have reserved
concurrency share the remaining pool of unreserved concurrency.

Configuring reserved concurrency counts towards your overall account concurrency limit. There is
no charge for configuring reserved concurrency for a function.

To better understand reserved concurrency, consider the following diagram:

Reserved concurrency 447

AWS Lambda Developer Guide

In this diagram, your account concurrency limit for all the functions in this Region is at the default
limit of 1,000. Suppose you have two critical functions, function-blue and function-orange,
that routinely expect to get high invocation volumes. You decide to give 400 units of reserved
concurrency to function-blue, and 400 units of reserved concurrency to function-orange. In
this example, all other functions in your account must share the remaining 200 units of unreserved
concurrency.

The diagram has five points of interest:

• At t1, both function-orange and function-blue begin receiving requests. Each function
begins to use up its allocated portion of reserved concurrency units.

• At t2, function-orange and function-blue steadily receive more requests. At the same
time, you deploy some other Lambda functions, which begin receiving requests. You don't
allocate reserved concurrency to these other functions. They begin using the remaining 200 units
of unreserved concurrency.

• At t3, function-orange hits the max concurrency of 400. Although there is unused
concurrency elsewhere in your account, function-orange cannot access it. The red line
indicates that function-orange is experiencing throttling, and Lambda may drop requests.

• At t4, function-orange starts to receive fewer requests and is no longer throttling. However,
your other functions experience a spike in traffic and begin throttling. Although there is unused
concurrency elsewhere in your account, these other functions cannot access it. The red line
indicates that your other functions are experiencing throttling.

• At t5, other functions start to receive fewer requests and are no longer throttling.

From this example, notice that reserving concurrency has the following effects:

• Your function can scale independently of other functions in your account. All of your account's
functions in the same Region that don't have reserved concurrency share the pool of unreserved
concurrency. Without reserved concurrency, other functions can potentially use up all of your
available concurrency. This prevents critical functions from scaling up if needed.

• Your function can't scale out of control. Reserved concurrency caps your function's maximum
and minimum concurrency. This means that your function can't use concurrency reserved for
other functions, or concurrency from the unreserved pool. Additionally, reserved concurrency
acts as both a lower and upper bound - it reserves the specified capacity exclusively for your
function while also preventing it from scaling beyond that limit. You can reserve concurrency

Reserved concurrency 448

AWS Lambda Developer Guide

to prevent your function from using all the available concurrency in your account, or from
overloading downstream resources.

• You may not be able to use all of your account's available concurrency. Reserving concurrency
counts towards your account concurrency limit, but this also means that other functions cannot
use that chunk of reserved concurrency. If your function doesn't use up all of the concurrency
that you reserve for it, you're effectively wasting that concurrency. This isn't an issue unless other
functions in your account could benefit from the wasted concurrency.

To learn how to manage reserved concurrency settings for your functions, see Configuring reserved
concurrency for a function.

Provisioned concurrency

You use reserved concurrency to define the maximum number of execution environments
reserved for a Lambda function. However, none of these environments come pre-initialized. As
a result, your function invocations may take longer because Lambda must first initialize the new
environment before being able to use it to invoke your function. When Lambda has to initialize a
new environment in order to carry out an invocation, this is known as a cold start. To mitigate cold
starts, you can use provisioned concurrency.

Provisioned concurrency is the number of pre-initialized execution environments that you want to
allocate to your function. If you set provisioned concurrency on a function, Lambda initializes that
number of execution environments so that they are prepared to respond immediately to function
requests.

Note

Using provisioned concurrency incurs additional charges to your account. If you're working
with the Java 11 or Java 17 runtimes, you can also use Lambda SnapStart to mitigate
cold start issues at no additional cost. SnapStart uses cached snapshots of your execution
environment to significantly improve startup performance. You cannot use both SnapStart
and provisioned concurrency on the same function version. For more information about
SnapStart features, limitations, and supported Regions, see Improving startup performance
with Lambda SnapStart.

When using provisioned concurrency, Lambda still recycles execution environments in the
background. For example, this can occur after an invocation failure. However, at any given time,

Provisioned concurrency 449

AWS Lambda Developer Guide

Lambda always ensures that the number of pre-initialized environments is equal to the value of
your function's provisioned concurrency setting. Importantly, even if you're using provisioned
concurrency, you can still experience a cold start delay if Lambda has to reset the execution
environment.

In contrast, when using reserved concurrency, Lambda may completely terminate an environment
after a period of inactivity. The following diagram illustrates this by comparing the lifecycle of
a single execution environment when you configure your function using reserved concurrency
compared to provisioned concurrency.

The diagram has four points of interest:

Time Reserved concurrency Provisioned concurrency

t1 Nothing happens. Lambda pre-initializes an
execution environment
instance.

t2 Request 1 comes in. Lambda
must initialize a new
execution environment
instance.

Request 1 comes in. Lambda
uses the pre-initialized
environment instance.

t3 After some inactivity,
Lambda terminates the active
environment instance.

Nothing happens.

Provisioned concurrency 450

AWS Lambda Developer Guide

Time Reserved concurrency Provisioned concurrency

t4 Request 2 comes in. Lambda
must initialize a new
execution environment
instance.

Request 2 comes in. Lambda
uses the pre-initialized
environment instance.

To better understand provisioned concurrency, consider the following diagram:

In this diagram, you have an account concurrency limit of 1,000. You decide to give 400 units
of provisioned concurrency to function-orange. All functions in your account, including
function-orange, can use the remaining 600 units of unreserved concurrency.

The diagram has five points of interest:

• At t1, function-orange begins receiving requests. Since Lambda has pre-initialized 400
execution environment instances, function-orange is ready for immediate invocation.

• At t2, function-orange reaches 400 concurrent requests. As a result, function-orange runs
out of provisioned concurrency. However, since there's still unreserved concurrency available,

Provisioned concurrency 451

AWS Lambda Developer Guide

Lambda can use this to handle additional requests to function-orange (there's no throttling).
Lambda must create new instances to serve these requests, and your function may experience
cold start latencies.

• At t3, function-orange returns to 400 concurrent requests after a brief spike in traffic.
Lambda is again able to handle all requests without cold start latencies.

• At t4, functions in your account experience a burst in traffic. This burst can come from
function-orange or any other function in your account. Lambda uses unreserved concurrency
to handle these requests.

• At t5, functions in your account reach the maximum concurrency limit of 1,000, and experience
throttling.

The previous example considered only provisioned concurrency. In practice, you can set both
provisioned concurrency and reserved concurrency on a function. You might do this if you had a
function that handles a consistent load of invocations on weekdays, but routinely sees spikes of
traffic on weekends. In this case, you could use provisioned concurrency to set a baseline amount
of environments to handle request during weekdays, and use reserved concurrency to handle the
weekend spikes. Consider the following diagram:

In this diagram, suppose that you configure 200 units of provisioned concurrency and 400 units
of reserved concurrency for function-orange. Because you configured reserved concurrency,
function-orange cannot use any of the 600 units of unreserved concurrency.

Provisioned concurrency 452

AWS Lambda Developer Guide

This diagram has five points of interest:

• At t1, function-orange begins receiving requests. Since Lambda has pre-initialized 200
execution environment instances, function-orange is ready for immediate invocation.

• At t2, function-orange uses up all its provisioned concurrency. function-orange can
continue serving requests using reserved concurrency, but these requests may experience cold
start latencies.

• At t3, function-orange reaches 400 concurrent requests. As a result, function-orange uses
up all its reserved concurrency. Since function-orange cannot use unreserved concurrency,
requests begin to throttle.

• At t4, function-orange starts to receive fewer requests, and no longer throttles.

• At t5, function-orange drops down to 200 concurrent requests, so all requests are again able
to use provisioned concurrency (that is, no cold start latencies).

Both reserved concurrency and provisioned concurrency count towards your account concurrency
limit and Regional quotas. In other words, allocating reserved and provisioned concurrency
can impact the concurrency pool that's available to other functions. Configuring provisioned
concurrency incurs charges to your AWS account.

Note

If the amount of provisioned concurrency on a function's versions and aliases adds up to
the function's reserved concurrency, then all invocations run on provisioned concurrency.
This configuration also has the effect of throttling the unpublished version of the function
($LATEST), which prevents it from executing. You can't allocate more provisioned
concurrency than reserved concurrency for a function.

To manage provisioned concurrency settings for your functions, see Configuring provisioned
concurrency for a function. To automate provisioned concurrency scaling based on a schedule or
application utilization, see Using Application Auto Scaling to automate provisioned concurrency
management.

How Lambda allocates provisioned concurrency

Provisioned concurrency doesn't come online immediately after you configure it. Lambda starts
allocating provisioned concurrency after a minute or two of preparation. For each function,

How Lambda allocates provisioned concurrency 453

AWS Lambda Developer Guide

Lambda can provision up to 6,000 execution environments every minute, regardless of AWS
Region. This is exactly the same as the concurrency scaling rate for functions.

When you submit a request to allocate provisioned concurrency, you can't access any of those
environments until Lambda completely finishes allocating them. For example, if you request 5,000
provisioned concurrency, none of your requests can use provisioned concurrency until Lambda
completely finishes allocating the 5,000 execution environments.

Comparing reserved concurrency and provisioned concurrency

The following table summarizes and compares reserved and provisioned concurrency.

Topic Reserved concurrency Provisioned concurrency

Definition Maximum number of
execution environment
instances for your function.

Set number of pre-provi
sioned execution environment
instances for your function.

Provisioning behavior Lambda provisions new
instances on an on-demand
basis.

Lambda pre-provisions
instances (that is, before
your function starts receiving
requests).

Cold start behavior Cold start latency possible,
since Lambda must create
new instances on-demand.

Cold start latency not
possible, since Lambda
doesn't have to create
instances on-demand.

Throttling behavior Function throttled when
reserved concurrency limit
reached.

If reserved concurrency not
set: function uses unreserved
concurrency when provision
ed concurrency limit reached.

If reserved concurrency set:
function throttled when
reserved concurrency limit
reached.

Comparing reserved concurrency and provisioned concurrency 454

AWS Lambda Developer Guide

Topic Reserved concurrency Provisioned concurrency

Default behavior if not set Function uses unreserved
concurrency available in your
account.

Lambda doesn't pre-provi
sion any instances. Instead,
if reserved concurrency not
set: function uses unreserved
concurrency available in your
account.

If reserved concurrency
set: function uses reserved
concurrency.

Pricing No additional charge. Incurs additional charges.

Understanding concurrency and requests per second

As mentioned in the previous section, concurrency differs from requests per second. This is an
especially important distinction to make when working with functions that have an average
request duration of less than 100 ms.

Across all functions in your account, Lambda enforces a requests per second limit that's equal to 10
times your account concurrency. For example, since the default account concurrency limit is 1,000,
functions in your account can handle a maximum of 10,000 requests per second.

For example, consider a function with an average request duration of 50 ms. At 20,000 requests
per second, here's the concurrency of this function:

Concurrency = (20,000 requests/second) * (0.05 second/request) = 1,000

Based on this result, you might expect that the account concurrency limit of 1,000 is sufficient to
handle this load. However, because of the 10,000 requests per second limit, your function can only
handle 10,000 requests per second out of the 20,000 total requests. This function experiences
throttling.

The lesson is that you must consider both concurrency and requests per second when configuring
concurrency settings for your functions. In this case, you need to request an account concurrency
limit increase to 2,000, since this would increase your total requests per second limit to 20,000.

Understanding concurrency and requests per second 455

AWS Lambda Developer Guide

Note

Based on this request per second limit, it's incorrect to say that each Lambda execution
environment can handle only a maximum of 10 requests per second. Instead of observing
the load on any individual execution environment, Lambda only considers overall
concurrency and overall requests per second when calculating your quotas.

Test your understanding of concurrency (sub-100 ms functions)

Suppose that you have a function that takes, on average, 20 ms to run. During peak load, you
observe 30,000 requests per second. What is the concurrency of your function during peak load?

Answer

The average function duration is 20 ms, or 0.02 seconds. Using the concurrency formula, you can
plug in the numbers to get a concurrency of 600:

Concurrency = (30,000 requests/second) * (0.02 seconds/request) = 600

By default, the account concurrency limit of 1,000 seems sufficient to handle this load. However,
the requests per second limit of 10,000 isn't enough to handle the incoming 30,000 requests per
second. To fully accommodate the 30,000 requests, you need to request an account concurrency
limit increase to 3,000 or higher.

The requests per second limit applies to all quotas in Lambda that involve concurrency. In other
words, it applies to synchronous on-demand functions, functions that use provisioned concurrency,
and concurrency scaling behavior. For example, here are a few scenarios where you must carefully
consider both your concurrency and request per second limits:

• A function using on-demand concurrency can experience a burst increase of 500 concurrency
every 10 seconds, or by 5,000 requests per second every 10 seconds, whichever happens first.

• Suppose you have a function that has a provisioned concurrency allocation of 10. This function
spills over into on-demand concurrency after 10 concurrency or 100 requests per second,
whichever happens first.

Understanding concurrency and requests per second 456

AWS Lambda Developer Guide

Concurrency quotas

Lambda sets quotas for the total amount of concurrency that you can use across all functions in a
Region. These quotas exist on two levels:

• At the account level, your functions can have up to 1,000 units of concurrency by default. To
increase this limit, see Requesting a quota increase in the Service Quotas User Guide.

• At the function level, you can reserve up to 900 units of concurrency across all your functions
by default. Regardless of your total account concurrency limit, Lambda always reserves 100 units
of concurrency for your functions that don't explicitly reserve concurrency. For example, if you
increased your account concurrency limit to 2,000, then you can reserve up to 1,900 units of
concurrency at the function level.

• At both the account level and the function level, Lambda also enforces a requests per second
limit of equal to 10 times the corresponding concurrency quota. For instance, this applies to
account-level concurrency, functions using on-demand concurrency, functions using provisoned
concurrency, and concurrency scaling behavior. For more information, see the section called
“Understanding concurrency and requests per second”.

To check your current account level concurrency quota, use the AWS Command Line Interface (AWS
CLI) to run the following command:

aws lambda get-account-settings

You should see output that looks like the following:

{
 "AccountLimit": {
 "TotalCodeSize": 80530636800,
 "CodeSizeUnzipped": 262144000,
 "CodeSizeZipped": 52428800,
 "ConcurrentExecutions": 1000,
 "UnreservedConcurrentExecutions": 900
 },
 "AccountUsage": {
 "TotalCodeSize": 410759889,
 "FunctionCount": 8
 }
}

Concurrency quotas 457

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS Lambda Developer Guide

ConcurrentExecutions is your total account-level concurrency quota.
UnreservedConcurrentExecutions is the amount of reserved concurrency that you can still
allocate to your functions.

As your function receives more requests, Lambda automatically scales up the number of execution
environments to handle these requests until your account reaches its concurrency quota. However,
to protect against over-scaling in response to sudden bursts of traffic, Lambda limits how fast your
functions can scale. This concurrency scaling rate is the maximum rate at which functions in your
account can scale in response to increased requests. (That is, how quickly Lambda can create new
execution environments.) The concurrency scaling rate differs from the account-level concurrency
limit, which is the total amount of concurrency available to your functions.

In each AWS Region, and for each function, your concurrency scaling rate is 1,000 execution
environment instances every 10 seconds (or 10,000 requests per second every 10 seconds).
In other words, every 10 seconds, Lambda can allocate at most 1,000 additional execution
environment instances, or accommodate 10,000 additional requests per second, to each of your
functions.

Usually, you don't need to worry about this limitation. Lambda's scaling rate is sufficient for most
use cases.

Importantly, the concurrency scaling rate is a function-level limit. This means that each function in
your account can scale independently of other functions.

For more information about scaling behavior, see Lambda scaling behavior.

Concurrency quotas 458

AWS Lambda Developer Guide

Configuring reserved concurrency for a function

In Lambda, concurrency is the number of in-flight requests that your function is currently handling.
There are two types of concurrency controls available:

• Reserved concurrency – This sets both the maximum and minimum number of concurrent
instances allocated to your function. When a function has reserved concurrency, no other
function can use that concurrency. Reserved concurrency is useful for ensuring that your most
critical functions always have enough concurrency to handle incoming requests. Additionally,
reserved concurrency can be used for limiting concurrency to prevent overwhelming downstream
resources, like database connections. Reserved concurrency acts as both a lower and upper
bound - it reserves the specified capacity exclusively for your function while also preventing
it from scaling beyond that limit. Configuring reserved concurrency for a function incurs no
additional charges.

• Provisioned concurrency – This is the number of pre-initialized execution environments
allocated to your function. These execution environments are ready to respond immediately
to incoming function requests. Provisioned concurrency is useful for reducing cold start
latencies for functions and designed to make functions available with double-digit millisecond
response times. Generally, interactive workloads benefit the most from the feature. Those
are applications with users initiating requests, such as web and mobile applications, and are
the most sensitive to latency. Asynchronous workloads, such as data processing pipelines, are
often less latency sensitive and so do not usually need provisioned concurrency. Configuring
provisioned concurrency incurs additional charges to your AWS account.

This topic details how to manage and configure reserved concurrency. For a conceptual overview of
these two types of concurrency controls, see Reserved concurrency and provisioned concurrency.
For information on configuring provisioned concurrency, see the section called “Configuring
provisioned concurrency”.

Note

Lambda functions linked to an Amazon MQ event source mapping have a default maximum
concurrency. For Apache Active MQ, the maximum number of concurrent instances is
5. For Rabbit MQ, the maximum number of concurrent instances is 1. Setting reserved
or provisioned concurrency for your function doesn't change these limits. To request an
increase in the default maximum concurrency when using Amazon MQ, contact Support.

Configuring reserved concurrency 459

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned

AWS Lambda Developer Guide

Sections

• Configuring reserved concurrency

• Accurately estimating required reserved concurrency for a function

Configuring reserved concurrency

You can configure reserved concurrency settings for a function using the Lambda console or the
Lambda API.

To reserve concurrency for a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function you want to reserve concurrency for.

3. Choose Configuration and then choose Concurrency.

4. Under Concurrency, choose Edit.

5. Choose Reserve concurrency. Enter the amount of concurrency to reserve for the function.

6. Choose Save.

You can reserve up to the Unreserved account concurrency value minus 100. The remaining 100
units of concurrency are for functions that aren't using reserved concurrency. For example, if your
account has a concurrency limit of 1,000, you cannot reserve all 1,000 units of concurrency to a
single function.

Configuring reserved concurrency 460

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Reserving concurrency for a function impacts the concurrency pool that's available to other
functions. For example, if you reserve 100 units of concurrency for function-a, other functions in
your account must share the remaining 900 units of concurrency, even if function-a doesn't use
all 100 reserved concurrency units.

To intentionally throttle a function, set its reserved concurrency to 0. This stops your function from
processing any events until you remove the limit.

To configure reserved concurrency with the Lambda API, use the following API operations.

• PutFunctionConcurrency

• GetFunctionConcurrency

• DeleteFunctionConcurrency

For example, to configure reserved concurrency with the AWS Command Line Interface (CLI), use
the put-function-concurrency command. The following command reserves 100 concurrency
units for a function named my-function:

aws lambda put-function-concurrency --function-name my-function \
 --reserved-concurrent-executions 100

You should see output that looks like the following:

Configuring reserved concurrency 461

https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionConcurrency.html

AWS Lambda Developer Guide

{
 "ReservedConcurrentExecutions": 100
}

Accurately estimating required reserved concurrency for a function

If your function is currently serving traffic, you can easily view its concurrency metrics using
CloudWatch metrics. Specifically, the ConcurrentExecutions metric shows you the number of
concurrent invocations for each function in your account.

The previous graph suggests that this function serves an average of 5 to 10 concurrent requests
at any given time, and peaks at 20 requests on a typical day. Suppose that there are many other
functions in your account. If this function is critical to your application and you don't want to
drop any requests, use a number greater than or equal to 20 as your reserved concurrency setting.

Alternatively, recall that you can also calculate concurrency using the following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

Multiplying average requests per second with the average request duration in seconds gives you a
rough estimate of how much concurrency you need to reserve. You can estimate average requests
per second using the Invocation metric, and the average request duration in seconds using the
Duration metric. See Using CloudWatch metrics with Lambda for more details.

You should also be familiar with your upstream and downstream throughput constraints. While
Lambda functions scale seamlessly with load, upstream and downstream dependencies may not
have the same throughput capabilities. If you need to limit how high your function can scale,
configure reserved concurrency on your function.

Accurately estimating required reserved concurrency for a function 462

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#calculating-concurrency

AWS Lambda Developer Guide

Configuring provisioned concurrency for a function

In Lambda, concurrency is the number of in-flight requests that your function is currently handling.
There are two types of concurrency controls available:

• Reserved concurrency – This sets both the maximum and minimum number of concurrent
instances allocated to your function. When a function has reserved concurrency, no other
function can use that concurrency. Reserved concurrency is useful for ensuring that your most
critical functions always have enough concurrency to handle incoming requests. Additionally,
reserved concurrency can be used for limiting concurrency to prevent overwhelming downstream
resources, like database connections. Reserved concurrency acts as both a lower and upper
bound - it reserves the specified capacity exclusively for your function while also preventing
it from scaling beyond that limit. Configuring reserved concurrency for a function incurs no
additional charges.

• Provisioned concurrency – This is the number of pre-initialized execution environments
allocated to your function. These execution environments are ready to respond immediately
to incoming function requests. Provisioned concurrency is useful for reducing cold start
latencies for functions and designed to make functions available with double-digit millisecond
response times. Generally, interactive workloads benefit the most from the feature. Those
are applications with users initiating requests, such as web and mobile applications, and are
the most sensitive to latency. Asynchronous workloads, such as data processing pipelines, are
often less latency sensitive and so do not usually need provisioned concurrency. Configuring
provisioned concurrency incurs additional charges to your AWS account.

This topic details how to manage and configure provisioned concurrency. For a conceptual
overview of these two types of concurrency controls, see Reserved concurrency and provisioned
concurrency. For more information on configuring reserved concurrency, see the section called
“Configuring reserved concurrency”.

Note

Lambda functions linked to an Amazon MQ event source mapping have a default maximum
concurrency. For Apache Active MQ, the maximum number of concurrent instances is
5. For Rabbit MQ, the maximum number of concurrent instances is 1. Setting reserved
or provisioned concurrency for your function doesn't change these limits. To request an
increase in the default maximum concurrency when using Amazon MQ, contact Support.

Configuring provisioned concurrency 463

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned

AWS Lambda Developer Guide

Sections

• Configuring provisioned concurrency

• Accurately estimating required provisioned concurrency for a function

• Optimizing function code when using provisioned concurrency

• Using environment variables to view and control provisioned concurrency behavior

• Understanding logging and billing behavior with provisioned concurrency

• Using Application Auto Scaling to automate provisioned concurrency management

Configuring provisioned concurrency

You can configure provisioned concurrency settings for a function using the Lambda console or the
Lambda API.

To allocate provisioned concurrency for a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function you want to allocate provisioned concurrency for.

3. Choose Configuration and then choose Concurrency.

4. Under Provisioned concurrency configurations, choose Add configuration.

5. Choose the qualifier type, and alias or version.

Note

You cannot use provisioned concurrency with the $LATEST version of any function.
If your function has an event source, make sure that event source points to the correct
function alias or version. Otherwise, your function won't use provisioned concurrency
environments.

6. Enter a number under Provisioned concurrency.

7. Choose Save.

You can configure up to the Unreserved account concurrency in your account, minus 100. The
remaining 100 units of concurrency are for functions that aren't using reserved concurrency. For
example, if your account has a concurrency limit of 1,000, and you haven't assigned any reserved

Configuring provisioned concurrency 464

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

or provisioned concurrency to any of your other functions, you can configure a maximum of 900
provisioned concurrency units for a single function.

Configuring provisioned concurrency for a function has an impact on the concurrency pool
available to other functions. For instance, if you configure 100 units of provisioned concurrency for
function-a, other functions in your account must share the remaining 900 units of concurrency.
This is true even if function-a doesn't use all 100 units.

It's possible to allocate both reserved concurrency and provisioned concurrency for the same
function. In such cases, the provisioned concurrency cannot exceed the reserved concurrency.

This limitation extends to function versions. The maximum provisioned concurrency you can
assign to a specific function version is the function's reserved concurrency minus the provisioned
concurrency on other function versions.

To configure provisioned concurrency with the Lambda API, use the following API operations.

• PutProvisionedConcurrencyConfig

• GetProvisionedConcurrencyConfig

• ListProvisionedConcurrencyConfigs

• DeleteProvisionedConcurrencyConfig

For example, to configure provisioned concurrency with the AWS Command Line Interface (CLI), use
the put-provisioned-concurrency-config command. The following command allocates 100
units of provisioned concurrency for the BLUE alias of a function named my-function:

Configuring provisioned concurrency 465

https://docs.aws.amazon.com/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListProvisionedConcurrencyConfigs.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html

AWS Lambda Developer Guide

aws lambda put-provisioned-concurrency-config --function-name my-function \
 --qualifier BLUE \
 --provisioned-concurrent-executions 100

You should see output that looks like the following:

{
 "Requested ProvisionedConcurrentExecutions": 100,
 "Allocated ProvisionedConcurrentExecutions": 0,
 "Status": "IN_PROGRESS",
 "LastModified": "2023-01-21T11:30:00+0000"
}

Accurately estimating required provisioned concurrency for a function

You can view any active function's concurrency metrics using CloudWatch metrics. Specifically, the
ConcurrentExecutions metric shows you the number of concurrent invocations for functions in
your account.

The previous graph suggests that this function serves an average of 5 to 10 concurrent requests
at any given time, and peaks at 20 requests. Suppose that there are many other functions in your
account. If this function is critical to your application and you need a low-latency response on
every invocation, configure at least 20 units of provisioned concurrency.

Recall that you can also calculate concurrency using the following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

Accurately estimating required provisioned concurrency for a function 466

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#calculating-concurrency

AWS Lambda Developer Guide

To estimate how much concurrency you need, multiply average requests per second with the
average request duration in seconds. You can estimate average requests per second using the
Invocation metric, and the average request duration in seconds using the Duration metric.

When configuring provisioned concurrency, Lambda suggests adding a 10% buffer on top of the
amount of concurrency your function typically needs. For example, if your function usually peaks at
200 concurrent requests, set the provisioned concurrency to 220 (200 concurrent requests + 10% =
220 provisioned concurrency).

Optimizing function code when using provisioned concurrency

If you're using provisioned concurrency, consider restructuring your function code to optimize for
low latency. For functions using provisioned concurrency, Lambda runs any initialization code, such
as loading libraries and instantiating clients, during allocation time. Therefore, it's advisable to
move as much initialization outside of the main function handler to avoid impacting latency during
actual function invocations. In contrast, initializing libraries or instantiating clients within your
main handler code means your function must run this each time it's invoked (this occurs regardless
of whether you're using provisioned concurrency).

For on-demand invocations, Lambda may need to rerun your initialization code every time your
function experiences a cold start. For such functions, you may choose to defer initialization of a
specific capability until your function needs it. For example, consider the following control flow for
a Lambda handler:

def handler(event, context):
 ...
 if (some_condition):
 // Initialize CLIENT_A to perform a task
 else:
 // Do nothing

In the previous example, instead of initializing CLIENT_A outside of the main handler, the
developer initialized it within the if statement. By doing this, Lambda runs this code only if
some_condition is met. If you initialize CLIENT_A outside the main handler, Lambda runs that
code on every cold start. This can increase overall latency.

You can measure cold starts as Lambda scales up by adding X-Ray monitoring to your function. A
function using provisioned concurrency does not exhibit cold start behavior since the execution
environment is prepared ahead of invocation. However, provisioned concurrency must be applied

Optimizing function code when using provisioned concurrency 467

AWS Lambda Developer Guide

to a specific version or alias of a function, not the $LATEST version. In cases where you continue
to see cold start behavior, ensure that you are invoking the version of alias with provisioned
concurrency configured.

Using environment variables to view and control provisioned
concurrency behavior

It's possible for your function to use up all of its provisioned concurrency. Lambda uses on-demand
instances to handle any excess traffic. To determine the type of initialization Lambda used for a
specific environment, check the value of the AWS_LAMBDA_INITIALIZATION_TYPE environment
variable. This variable has two possible values: provisioned-concurrency or on-demand. The
value of AWS_LAMBDA_INITIALIZATION_TYPE is immutable and remains constant throughout
the lifetime of the environment. To check the value of an environment variable in your function
code, see Retrieving Lambda environment variables.

If you're using the .NET 8 runtime, you can configure the AWS_LAMBDA_DOTNET_PREJIT
environment variable to improve the latency for functions, even if they don't use provisioned
concurrency. The .NET runtime employs lazy compilation and initialization for each library that
your code calls for the first time. As a result, the first invocation of a Lambda function may
take longer than subsequent ones. To mitigate this, you can choose one of three values for
AWS_LAMBDA_DOTNET_PREJIT:

• ProvisionedConcurrency: Lambda performs ahead-of-time JIT compilation for all
environments using provisioned concurrency. This is the default value.

• Always: Lambda performs ahead-of-time JIT compilation for every environment, even if the
function doesn't use provisioned concurrency.

• Never: Lambda disables ahead-of-time JIT compilation for all environments.

Understanding logging and billing behavior with provisioned
concurrency

For provisioned concurrency environments, your function's initialization code runs during
allocation, and periodically as Lambda recycles instances of your environment. Lambda bills you for
initialization even if the environment instance never processes a request. Provisioned concurrency
runs continually and incurs separate billing from initialization and invocation costs. For more
details, see AWS Lambda Pricing.

Using environment variables to view and control provisioned concurrency behavior 468

https://docs.aws.amazon.com/lambda/latest/dg/configuration-versions.html
https://aws.amazon.com/lambda/pricing/

AWS Lambda Developer Guide

When you configure a Lambda function with provisioned concurrency, Lambda pre-initializes that
execution environment so that it's available ahead of invocation requests. Lambda logs the Init
Duration field of the function in a platform-initReport log event in JSON logging format every
time the environment is initialized. To see this log event, configure your JSON log level to at least
INFO. You can also use the Telemetry API to consume platform events where the Init Duration field
is reported.

Using Application Auto Scaling to automate provisioned concurrency
management

You can use Application Auto Scaling to manage provisioned concurrency on a schedule or based
on utilization. If your function receives predictable traffic patterns, use scheduled scaling. If you
want your function to maintain a specific utilization percentage, use a target tracking scaling
policy.

Note

If you use Application Auto Scaling to manage your function's provisioned concurrency,
ensure that you configure an initial provisioned concurrency value first. If your function
doesn't have an initial provisioned concurrency value, Application Auto Scaling may not
handle function scaling properly.

Scheduled scaling

With Application Auto Scaling, you can set your own scaling schedule according to predictable load
changes. For more information and examples, see Scheduled scaling for Application Auto Scaling
in the Application Auto Scaling User Guide, and Scheduling AWS Lambda Provisioned Concurrency
for recurring peak usage on the AWS Compute Blog.

Target tracking

With target tracking, Application Auto Scaling creates and manages a set of CloudWatch alarms
based on how you define your scaling policy. When these alarms activate, Application Auto Scaling
automatically adjusts the amount of environments allocated using provisioned concurrency. Use
target tracking for applications that don't have predictable traffic patterns.

Using Application Auto Scaling to automate provisioned concurrency management 469

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://aws.amazon.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/
https://aws.amazon.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/

AWS Lambda Developer Guide

To scale provisioned concurrency using target tracking, use the RegisterScalableTarget and
PutScalingPolicy Application Auto Scaling API operations. For example, if you're using the AWS
Command Line Interface (CLI), follow these steps:

1. Register a function's alias as a scaling target. The following example registers the BLUE alias of
a function named my-function:

aws application-autoscaling register-scalable-target --service-namespace lambda \
 --resource-id function:my-function:BLUE --min-capacity 1 --max-capacity 100 \
 --scalable-dimension lambda:function:ProvisionedConcurrency

2. Apply a scaling policy to the target. The following example configures Application Auto Scaling
to adjust the provisioned concurrency configuration for an alias to keep utilization near 70
percent, but you can apply any value between 10% and 90%.

aws application-autoscaling put-scaling-policy \
 --service-namespace lambda \
 --scalable-dimension lambda:function:ProvisionedConcurrency \
 --resource-id function:my-function:BLUE \
 --policy-name my-policy \
 --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration '{ "TargetValue":
 0.7, "PredefinedMetricSpecification": { "PredefinedMetricType":
 "LambdaProvisionedConcurrencyUtilization" }}'

You should see output that looks like this:

{
 "PolicyARN": "arn:aws:autoscaling:us-
east-2:123456789012:scalingPolicy:12266dbb-1524-xmpl-a64e-9a0a34b996fa:resource/lambda/
function:my-function:BLUE:policyName/my-policy",
 "Alarms": [
 {
 "AlarmName": "TargetTracking-function:my-function:BLUE-AlarmHigh-aed0e274-
xmpl-40fe-8cba-2e78f000c0a7",
 "AlarmARN": "arn:aws:cloudwatch:us-
east-2:123456789012:alarm:TargetTracking-function:my-function:BLUE-AlarmHigh-aed0e274-
xmpl-40fe-8cba-2e78f000c0a7"
 },
 {

Using Application Auto Scaling to automate provisioned concurrency management 470

AWS Lambda Developer Guide

 "AlarmName": "TargetTracking-function:my-function:BLUE-AlarmLow-7e1a928e-
xmpl-4d2b-8c01-782321bc6f66",
 "AlarmARN": "arn:aws:cloudwatch:us-
east-2:123456789012:alarm:TargetTracking-function:my-function:BLUE-AlarmLow-7e1a928e-
xmpl-4d2b-8c01-782321bc6f66"
 }
]
}

Application Auto Scaling creates two alarms in CloudWatch. The first alarm triggers when the
utilization of provisioned concurrency consistently exceeds 70%. When this happens, Application
Auto Scaling allocates more provisioned concurrency to reduce utilization. The second alarm
triggers when utilization is consistently less than 63% (90 percent of the 70% target). When this
happens, Application Auto Scaling reduces the alias's provisioned concurrency.

Note

Lambda emits the ProvisionedConcurrencyUtilization metric only when your
function is active and receiving requests. During periods of inactivity, no metrics are
emitted, and your auto-scaling alarms will enter the INSUFFICIENT_DATA state. As
a result, Application Auto Scaling won't be able to adjust your function's provisioned
concurrency. This may lead to unexpected billing.

In the following example, a function scales between a minimum and maximum amount of
provisioned concurrency based on utilization.

Using Application Auto Scaling to automate provisioned concurrency management 471

AWS Lambda Developer Guide

Legend

•

Function instances

•

Open requests

•

Provisioned concurrency

•

Standard concurrency

When the number of open requests increase, Application Auto Scaling increases provisioned
concurrency in large steps until it reaches the configured maximum. After this, the function
can continue to scale on standard, unreserved concurrency if you haven't reached your account
concurrency limit. When utilization drops and stays low, Application Auto Scaling decreases
provisioned concurrency in smaller periodic steps.

Using Application Auto Scaling to automate provisioned concurrency management 472

AWS Lambda Developer Guide

Both of the Application Auto Scaling alarms use the average statistic by default. Functions that
experience quick bursts of traffic may not trigger these alarms. For example, suppose your Lambda
function executes quickly (i.e. 20-100 ms) and your traffic comes in quick bursts. In this case, the
number of requests exceeds the allocated provisioned concurrency during the burst. However,
Application Auto Scaling requires the burst load to sustain for at least 3 minutes in order to
provision additional environments. Additionally, both CloudWatch alarms require 3 data points that
hit the target average to activate the auto scaling policy. If your function experiences quick bursts
of traffic, using the Maximum statistic instead of the Average statistic can be more effective at
scaling provisioned concurrency to minimize cold starts.

For more information on target tracking scaling policies, see Target tracking scaling policies for
Application Auto Scaling.

Using Application Auto Scaling to automate provisioned concurrency management 473

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html

AWS Lambda Developer Guide

Lambda scaling behavior

As your function receives more requests, Lambda automatically scales up the number of execution
environments to handle these requests until your account reaches its concurrency quota. However,
to protect against over-scaling in response to sudden bursts of traffic, Lambda limits how fast your
functions can scale. This concurrency scaling rate is the maximum rate at which functions in your
account can scale in response to increased requests. (That is, how quickly Lambda can create new
execution environments.) The concurrency scaling rate differs from the account-level concurrency
limit, which is the total amount of concurrency available to your functions.

Concurrency scaling rate

In each AWS Region, and for each function, your concurrency scaling rate is 1,000 execution
environment instances every 10 seconds (or 10,000 requests per second every 10 seconds).
In other words, every 10 seconds, Lambda can allocate at most 1,000 additional execution
environment instances, or accommodate 10,000 additional requests per second, to each of your
functions.

Usually, you don't need to worry about this limitation. Lambda's scaling rate is sufficient for most
use cases.

Importantly, the concurrency scaling rate is a function-level limit. This means that each function in
your account can scale independently of other functions.

Note

In practice, Lambda makes a best attempt to refill your concurrency scaling rate
continuously over time, rather than in one single refill of 1,000 units every 10 seconds.

Lambda doesn't accrue unused portions of your concurrency scaling rate. This means that at any
instant in time, your scaling rate is always 1,000 concurrency units at maximum. For example, if you
don't use any of your available 1,000 concurrency units in a 10-second interval, you won't accrue
1,000 additional units in the next 10-second interval. Your concurrency scaling rate is still 1,000 in
the next 10-second interval.

As long as your function continues to receive increasing numbers of requests, then Lambda scales
at the fastest rate available to you, up to your account's concurrency limit. You can limit the

Scaling behavior 474

AWS Lambda Developer Guide

amount of concurrency that individual functions can use by configuring reserved concurrency.
If requests come in faster than your function can scale, or if your function is at maximum
concurrency, then additional requests fail with a throttling error (429 status code).

Concurrency scaling rate 475

AWS Lambda Developer Guide

Monitoring concurrency

Lambda emits Amazon CloudWatch metrics to help you monitor concurrency for your functions.
This topic explains these metrics and how to interpret them.

Sections

• General concurrency metrics

• Provisioned concurrency metrics

• Working with the ClaimedAccountConcurrency metric

General concurrency metrics

Use the following metrics to monitor concurrency for your Lambda functions. The granularity for
each metric is 1 minute.

• ConcurrentExecutions – The number of active concurrent invocations at a given point in
time. Lambda emits this metric for all functions, versions, and aliases. For any function in the
Lambda console, Lambda displays the graph for ConcurrentExecutions natively in the
Monitoring tab, under Metrics. View this metric using MAX.

• UnreservedConcurrentExecutions – The number of active concurrent invocations that are
using unreserved concurrency. Lambda emits this metric across all functions in a region. View
this metric using MAX.

• ClaimedAccountConcurrency – The amount of concurrency that is unavailable
for on-demand invocations. ClaimedAccountConcurrency is equal to
UnreservedConcurrentExecutions plus the amount of allocated concurrency (i.e. the total
reserved concurrency plus total provisioned concurrency). If ClaimedAccountConcurrency
exceeds your account concurrency limit, you can request a higher account concurrency
limit. View this metric using MAX. For more information, see Working with the
ClaimedAccountConcurrency metric.

Provisioned concurrency metrics

Use the following metrics to monitor Lambda functions using provisioned concurrency. The
granularity for each metric is 1 minute.

Monitoring concurrency 476

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/

AWS Lambda Developer Guide

• ProvisionedConcurrentExecutions – The number of execution environment instances that
are actively processing an invocation on provisioned concurrency. Lambda emits this metric for
each function version and alias with provisioned concurrency configured. View this metric using
MAX.

ProvisionedConcurrentExecutions is not the same as the total number of provisioned
concurrency that you allocate. For example, suppose you allocate 100 units of provisioned
concurrency to a function version. During any given minute, if at most 50 out of those
100 execution environments were handling invocations simultaneously, then the value of
MAX(ProvisionedConcurrentExecutions) is 50.

• ProvisionedConcurrencyInvocations – The number of times Lambda invokes your
function code using provisioned concurrency. Lambda emits this metric for each function version
and alias with provisioned concurrency configured. View this metric using SUM.

ProvisionedConcurrencyInvocations differs from ProvisionedConcurrentExecutions
in that ProvisionedConcurrencyInvocations counts total number of invocations, while
ProvisionedConcurrentExecutions counts number of active environments. To understand
this distinction, consider the following scenario:

In this example, suppose that you receive 1 invocation per minute, and each invocation takes 2
minutes to complete. Each orange horizontal bar represents a single request. Suppose that you
allocate 10 units of provisioned concurrency to this function, such that each request runs on
provisioned concurrency.

Provisioned concurrency metrics 477

AWS Lambda Developer Guide

In between minutes 0 and 1, Request 1 comes in. At minute 1, the value for
MAX(ProvisionedConcurrentExecutions) is 1, since at most 1 execution environment was
active during the past minute. The value for SUM(ProvisionedConcurrencyInvocations) is
also 1, since 1 new request came in during the past minute.

In between minutes 1 and 2, Request 2 comes in, and Request 1 continues to run. At
minute 2, the value for MAX(ProvisionedConcurrentExecutions) is 2, since at most
2 execution environments were active during the past minute. However, the value for
SUM(ProvisionedConcurrencyInvocations) is 1, since only 1 new request came in during the
past minute. This metric behavior continues until the end of the example.

• ProvisionedConcurrencySpilloverInvocations – The number of times
Lambda invokes your function on standard (reserved or unreserved) concurrency
when all provisioned concurrency is in use. Lambda emits this metric for each
function version and alias with provisioned concurrency configured. View this
metric using SUM. The value of ProvisionedConcurrencyInvocations +
ProvisionedConcurrencySpilloverInvocations should be equal to the total number of
function invocations (i.e. the Invocations metric).

ProvisionedConcurrencyUtilization – The percentage of provisioned concurrency in
use (i.e. the value of ProvisionedConcurrentExecutions divided by the total amount of
provisioned concurrency allocated). Lambda emits this metric for each function version and alias
with provisioned concurrency configured. View this metric using MAX.

For example, suppose you provision 100 units of provisioned concurrency to a function version.
During any given minute, if at most 60 out of those 100 execution environments were handling
invocations simultaneously, then the value of MAX(ProvisionedConcurrentExecutions) is 60,
and the value of MAX(ProvisionedConcurrencyUtilization) is 0.6.

A high value for ProvisionedConcurrencySpilloverInvocations may indicate that you
need to allocate additional provisioned concurrency for your function. Alternatively, you can
configure Application Auto Scaling to handle automatic scaling of provisioned concurrency based
on pre-defined thresholds.

Conversely, consistently low values for ProvisionedConcurrencyUtilization may indicate
that you over-allocated provisioned concurrency for your function.

Provisioned concurrency metrics 478

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html#managing-provisioned-concurency
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html#managing-provisioned-concurency

AWS Lambda Developer Guide

Working with the ClaimedAccountConcurrency metric

Lambda uses the ClaimedAccountConcurrency metric to determine how much
concurrency your account is available for on-demand invocations. Lambda calculates
ClaimedAccountConcurrency using the following formula:

ClaimedAccountConcurrency = UnreservedConcurrentExecutions + (allocated concurrency)

UnreservedConcurrentExecutions is the number of active concurrent invocations that
are using unreserved concurrency. Allocated concurrency is the sum of the following two parts
(substituting RC as "reserved concurrency" and PC as "provisioned concurrency"):

• The total RC across all functions in a Region.

• The total PC across all functions in a Region that use PC, excluding functions that use RC.

Note

You can’t allocate more PC than RC for a function. Thus, a function’s RC is always greater
than or equal to its PC. To calculate the contribution to allocated concurrency for such
functions with both PC and RC, Lambda considers only RC, which is the maximum of the
two.

Lambda uses the ClaimedAccountConcurrency metric, rather than ConcurrentExecutions,
to determine how much concurrency is available for on-demand invocations. While the
ConcurrentExecutions metric is useful for tracking the number of active concurrent
invocations, it doesn't always reflect your true concurrency availability. This is because Lambda also
considers reserved concurrency and provisioned concurrency to determine availability.

To illustrate ClaimedAccountConcurrency, consider a scenario where you configure a lot of
reserved concurrency and provisioned concurrency across your functions that go largely unused.
In the following example, assume that your account concurrency limit is 1,000, and you have two
main functions in your account: function-orange and function-blue. You allocate 600 units
of reserved concurrency for function-orange. You allocate 200 units of provisioned concurrency
for function-blue. Suppose that over time, you deploy additional functions and observe the
following traffic pattern:

Working with the ClaimedAccountConcurrency metric 479

AWS Lambda Developer Guide

In the previous diagram, the black lines indicate the actual concurrency use over time, and the red
line indicates the value of ClaimedAccountConcurrency over time. Throughout this scenario,
ClaimedAccountConcurrency is 800 at minimum, despite low actual concurrency utilization
across your functions. This is because you allocated 800 total units of concurrency for function-
orange and function-blue. From Lambda's perspective, you have "claimed" this concurrency for
use, so you effectively have only 200 units of concurrency remaining for other functions.

For this scenario, allocated concurrency is 800 in the ClaimedAccountConcurrency formula. We
can then derive the value of ClaimedAccountConcurrency at various points in the diagram:

• At t1, ClaimedAccountConcurrency is 800 (800 + 0 UnreservedConcurrentExecutions).

• At t2, ClaimedAccountConcurrency is 900 (800 + 100
UnreservedConcurrentExecutions).

• At t3, ClaimedAccountConcurrency is again 900 (800 + 100
UnreservedConcurrentExecutions).

Working with the ClaimedAccountConcurrency metric 480

AWS Lambda Developer Guide

Setting up the ClaimedAccountConcurrency metric in CloudWatch

Lambda emits the ClaimedAccountConcurrency metric in CloudWatch. Use this metric along
with the value of SERVICE_QUOTA(ConcurrentExecutions) to get the percent utilization of
concurrency in your account, as shown in the following formula:

Utilization = (ClaimedAccountConcurrency/SERVICE_QUOTA(ConcurrentExecutions)) * 100%

The following screenshot illustrates how you can graph this formula in CloudWatch. The green
claim_utilization line represents the concurrency utilization in this account, which is at
around 40%:

The previous screenshot also includes a CloudWatch alarm that goes into ALARM state when the
concurrency utilization exceeds 70%. You can use the ClaimedAccountConcurrency metric
along with similar alarms to proactively determine when you might need to request a higher
account concurrency limit.

Working with the ClaimedAccountConcurrency metric 481

AWS Lambda Developer Guide

Building Lambda functions with Node.js

You can run JavaScript code with Node.js in AWS Lambda. Lambda provides runtimes for Node.js
that run your code to process events. Your code runs in an environment that includes the AWS SDK
for JavaScript, with credentials from an AWS Identity and Access Management (IAM) role that you
manage. To learn more about the SDK versions included with the Node.js runtimes, see the section
called “Runtime-included SDK versions”.

Lambda supports the following Node.js runtimes.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 22 nodejs22.
x

Amazon
Linux 2023

Apr 30, 2027 Jun 1, 2027 Jul 1, 2027

Node.js 20 nodejs20.
x

Amazon
Linux 2023

Apr 30, 2026 Jun 1, 2026 Jul 1, 2026

Node.js 18 nodejs18.
x

Amazon
Linux 2

Sep 1, 2025 Feb 3, 2026 Mar 9, 2026

To create a Node.js function

1. Open the Lambda console.

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Node.js 22.x.

4. Choose Create function.

The console creates a Lambda function with a single source file named index.mjs. You can edit
this file and add more files in the built-in code editor. In the DEPLOY section, choose Deploy to

482

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

update your function's code. Then, to run your code, choose Create test event in the TEST EVENTS
section.

The index.mjs file exports a function named handler that takes an event object and a context
object. This is the handler function that Lambda calls when the function is invoked. The Node.js
function runtime gets invocation events from Lambda and passes them to the handler. In the
function configuration, the handler value is index.handler.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

The function runtime passes a context object to the handler, in addition to the invocation event.
The context object contains additional information about the invocation, the function, and the
execution environment. More information is available from environment variables.

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Node.js initialization

• Runtime-included SDK versions

• Using keep-alive for TCP connections

• CA certificate loading

• Define Lambda function handler in Node.js

• Deploy Node.js Lambda functions with .zip file archives

• Deploy Node.js Lambda functions with container images

• Working with layers for Node.js Lambda functions

• Using the Lambda context object to retrieve Node.js function information

• Log and monitor Node.js Lambda functions

• Instrumenting Node.js code in AWS Lambda

483

AWS Lambda Developer Guide

Node.js initialization

Node.js has a unique event loop model that causes its initialization behavior to be different from
other runtimes. Specifically, Node.js uses a non-blocking I/O model that supports asynchronous
operations. This model allows Node.js to perform efficiently for most workloads. For example,
if a Node.js function makes a network call, that request may be designated as an asynchronous
operation and placed into a callback queue. The function may continue to process other operations
within the main call stack without getting blocked by waiting for the network call to return. Once
the network call is completed, its callback is executed and then removed from the callback queue.

Some initialization tasks may run asynchronously. These asynchronous tasks are not guaranteed
to complete execution prior to an invocation. For example, code that makes a network call to
fetch a parameter from AWS Parameter Store may not be complete by the time Lambda executes
the handler function. As a result, the variable may be null during an invocation. There can also
be a delay between INIT and INVOKE which can trigger errors in time-sensitive operations. In
particular, AWS service calls can rely on time-sensitive request signatures, resulting in service call
failures if the call is not completed during the INIT phase.

To avoid this, we recommend deploying your code as an ECMAScript module (ES module), and
using top-level await to ensure all initialization is completed during the function INIT phase.
This ensures initialization tasks are completed before handler invocations, avoids delays between
INIT and INVOKE disrupting time-sensitive operations, and also maximizes the effectiveness of
provisioned concurrency in reducing cold start latency. For more information and an example, see
Using Node.js ES modules and top-level await in AWS Lambda.

Designating a function handler as an ES module

By default, Lambda treats files with the .js suffix as CommonJS modules. Optionally, you
can designate your code as an ES module. You can do this in two ways: specifying the type as
module in the function's package.json file, or by using the .mjs file name extension. In the first
approach, your function code treats all .js files as ES modules, while in the second scenario, only
the file you specify with .mjs is an ES module. You can mix ES modules and CommonJS modules
by naming them .mjs and .cjs respectively, as .mjs files are always ES modules and .cjs files
are always CommonJS modules.

Lambda searches folders in the NODE_PATH environment variable when loading ES modules. You
can load the AWS SDK that's included in the runtime using ES module import statements. You can
also load ES modules from layers.

Node.js initialization 484

https://aws.amazon.com/blogs/compute/using-node-js-es-modules-and-top-level-await-in-aws-lambda

AWS Lambda Developer Guide

ES module example

Example – ES module handler

const url = "https://aws.amazon.com/";

export const handler = async(event) => {
 try {
 const res = await fetch(url);
 console.info("status", res.status);
 return res.status;
 }
 catch (e) {
 console.error(e);
 return 500;
 }
};

CommonJS module example

Example – CommonJS module handler

const https = require("https");
let url = "https://aws.amazon.com/";

exports.handler = async function (event) {
 let statusCode;
 await new Promise(function (resolve, reject) {
 https.get(url, (res) => {
 statusCode = res.statusCode;
 resolve(statusCode);
 }).on("error", (e) => {
 reject(Error(e));
 });
 });
 console.log(statusCode);
 return statusCode;
};

Designating a function handler as an ES module 485

AWS Lambda Developer Guide

Runtime-included SDK versions

All supported Lambda Node.js runtimes include a specific minor version of the AWS SDK for
JavaScript v3, not the latest version. The specific minor version that's included in the runtime
depends on the runtime version and your AWS Region. To find the specific version of the SDK
included in the runtime that you're using, create a Lambda function with the following code.

Example index.mjs

import packageJson from '@aws-sdk/client-s3/package.json' with { type: 'json' };

export const handler = async () => ({ version: packageJson.version });

This returns a response in the following format:

{
 "version": "3.632.0"
}

For more information, see Using the SDK for JavaScript v3 in your handler.

Using keep-alive for TCP connections

The default Node.js HTTP/HTTPS agent creates a new TCP connection for every new request. To
avoid the cost of establishing new connections, keep-alive is enabled by default in nodejs18.x
and later Lambda runtimes. Keep-alive can reduce request times for Lambda functions that make
multiple API calls using the SDK.

To disable keep-alive, see Reusing connections with keep-alive in Node.js in the AWS SDK for
JavaScript 3.x Developer Guide. For more information about using keep-alive, see HTTP keep-alive is
on by default in modular AWS SDK for JavaScript on the AWS Developer Tools Blog.

CA certificate loading

For Node.js runtime versions up to Node.js 18, Lambda automatically loads Amazon-specific CA
(certificate authority) certificates to make it easier for you to create functions that interact with
other AWS services. For example, Lambda includes the Amazon RDS certificates necessary for

Runtime-included SDK versions 486

https://github.com/aws/aws-sdk-js-v3/releases
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://aws.amazon.com/blogs/developer/http-keep-alive-is-on-by-default-in-modular-aws-sdk-for-javascript/
https://aws.amazon.com/blogs/developer/http-keep-alive-is-on-by-default-in-modular-aws-sdk-for-javascript/

AWS Lambda Developer Guide

validating the server identity certificate installed on your Amazon RDS database. This behavior can
have a performance impact during cold starts.

Starting with Node.js 20, Lambda no longer loads additional CA certificates by default. The
Node.js 20 runtime contains a certificate file with all Amazon CA certificates located at /var/
runtime/ca-cert.pem. To restore the same behavior from Node.js 18 and earlier runtimes, set
the NODE_EXTRA_CA_CERTS environment variable to /var/runtime/ca-cert.pem.

For optimal performance, we recommend bundling only the certificates that you need with your
deployment package and loading them via the NODE_EXTRA_CA_CERTS environment variable.
The certificates file should consist of one or more trusted root or intermediate CA certificates
in PEM format. For example, for RDS, include the required certificates alongside your code as
certificates/rds.pem. Then, load the certificates by setting NODE_EXTRA_CA_CERTS to /
var/task/certificates/rds.pem.

CA certificate loading 487

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html

AWS Lambda Developer Guide

Define Lambda function handler in Node.js

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in Node.js, including options for
project setup, naming conventions, and best practices. This page also includes an example of a
Node.js Lambda function that takes in information about an order, produces a text file receipt, and
puts this file in an Amazon Simple Storage Service (Amazon S3) bucket. For information about
how to deploy your function after writing it, see the section called “Deploy .zip file archives” or the
section called “Deploy container images”.

Topics

• Setting up your Node.js handler project

• Example Node.js Lambda function code

• Handler naming conventions

• Defining and accessing the input event object

• Valid handler patterns for Node.js functions

• Using the SDK for JavaScript v3 in your handler

• Accessing environment variables

• Using global state

• Code best practices for Node.js Lambda functions

Setting up your Node.js handler project

There are multiple ways to initialize a Node.js Lambda project. For example, you can create
a standard Node.js project using npm, create an AWS SAM application, or create an AWS CDK
application.

To create the project using npm:

npm init

This command initializes your project and generates a package.json file that manages your
project's metadata and dependencies.

Handler 488

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-init.html#using-sam-cli-init-new

AWS Lambda Developer Guide

Your function code lives in a .js or .mjs JavaScript file. In the following example, we name this
file index.mjs because it uses an ES module handler. Lambda supports both ES module and
CommonJS handlers. For more information, see Designating a function handler as an ES module.

A typical Node.js Lambda function project follows this general structure:

/project-root
 ### index.mjs — Contains main handler
 ### package.json — Project metadata and dependencies
 ### package-lock.json — Dependency lock file
 ### node_modules/ — Installed dependencies

Example Node.js Lambda function code

The following example Lambda function code takes in information about an order, produces a text
file receipt, and puts this file in an Amazon S3 bucket.

Note

This example uses an ES module handler. Lambda supports both ES module and
CommonJS handlers. For more information, see Designating a function handler as an ES
module.

Example index.mjs Lambda function

import { S3Client, PutObjectCommand } from '@aws-sdk/client-s3';

// Initialize the S3 client outside the handler for reuse
const s3Client = new S3Client();

/**
 * Lambda handler for processing orders and storing receipts in S3.
 * @param {Object} event - Input event containing order details
 * @param {string} event.order_id - The unique identifier for the order
 * @param {number} event.amount - The order amount
 * @param {string} event.item - The item purchased
 * @returns {Promise<string>} Success message
 */
export const handler = async(event) => {
 try {

Example function 489

AWS Lambda Developer Guide

 // Access environment variables
 const bucketName = process.env.RECEIPT_BUCKET;
 if (!bucketName) {
 throw new Error('RECEIPT_BUCKET environment variable is not set');
 }

 // Create the receipt content and key destination
 const receiptContent = `OrderID: ${event.order_id}\nAmount: $
${event.amount.toFixed(2)}\nItem: ${event.item}`;
 const key = `receipts/${event.order_id}.txt`;

 // Upload the receipt to S3
 await uploadReceiptToS3(bucketName, key, receiptContent);

 console.log(`Successfully processed order ${event.order_id} and stored receipt
 in S3 bucket ${bucketName}`);
 return 'Success';
 } catch (error) {
 console.error(`Failed to process order: ${error.message}`);
 throw error;
 }
};

/**
 * Helper function to upload receipt to S3
 * @param {string} bucketName - The S3 bucket name
 * @param {string} key - The S3 object key
 * @param {string} receiptContent - The content to upload
 * @returns {Promise<void>}
 */
async function uploadReceiptToS3(bucketName, key, receiptContent) {
 try {
 const command = new PutObjectCommand({
 Bucket: bucketName,
 Key: key,
 Body: receiptContent
 });

 await s3Client.send(command);
 } catch (error) {
 throw new Error(`Failed to upload receipt to S3: ${error.message}`);
 }
}

Example function 490

AWS Lambda Developer Guide

This index.mjs file contains the following sections of code:

• import block: Use this block to include libraries that your Lambda function requires, such as
AWS SDK clients.

• const s3Client declaration: This initializes an Amazon S3 client outside of the handler
function. This causes Lambda to run this code during the initialization phase, and the client is
preserved for reuse across multiple invocations.

• JSDoc comment block: Define the input and output types for your handler using JSDoc
annotations.

• export const handler: This is the main handler function that Lambda invokes. When
deploying your function, specify index.handler for the Handler property. The value of the
Handler property is the file name and the name of the exported handler method, separated by
a dot.

• uploadReceiptToS3 function: This is a helper function that's referenced by the main handler
function.

For this function to work properly, its execution role must allow the s3:PutObject action. Also,
ensure that you define the RECEIPT_BUCKET environment variable. After a successful invocation,
the Amazon S3 bucket should contain a receipt file.

Handler naming conventions

When you configure a function, the value of the Handler setting is the file name and the name of
the exported handler method, separated by a dot. The default for functions created in the console
and for examples in this guide is index.handler. This indicates the handler method that's
exported from the index.js or index.mjs file.

If you create a function in the console using a different file name or function handler name, you
must edit the default handler name.

To change the function handler name (console)

1. Open the Functions page of the Lambda console and choose your function.

2. Choose the Code tab.

3. Scroll down to the Runtime settings pane and choose Edit.

4. In Handler, enter the new name for your function handler.

Handler naming conventions 491

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/the-request-object.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/
https://jsdoc.app/about-getting-started
https://jsdoc.app/about-getting-started
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-Handler
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-Handler
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. Choose Save.

Defining and accessing the input event object

JSON is the most common and standard input format for Lambda functions. In this example, the
function expects an input similar to the following:

{
 "order_id": "12345",
 "amount": 199.99,
 "item": "Wireless Headphones"
}

When working with Lambda functions in Node.js, you can define the expected shape of the input
event using JSDoc annotations. In this example, we define the input structure in the handler's
JSDoc comment:

/**
 * Lambda handler for processing orders and storing receipts in S3.
 * @param {Object} event - Input event containing order details
 * @param {string} event.order_id - The unique identifier for the order
 * @param {number} event.amount - The order amount
 * @param {string} event.item - The item purchased
 * @returns {Promise<string>} Success message
 */

After you define these types in your JSDoc comment, you can access the fields of the event object
directly in your code. For example, event.order_id retrieves the value of order_id from the
original input.

Valid handler patterns for Node.js functions

We recommend that you use async/await to declare the function handler instead of using
callbacks. Async/await is a concise and readable way to write asynchronous code, without the need
for nested callbacks or chaining promises. With async/await, you can write code that reads like
synchronous code, while still being asynchronous and non-blocking.

Input event object 492

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/using-async-await.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/using-a-callback-function.html

AWS Lambda Developer Guide

Using async/await (recommended)

The async keyword marks a function as asynchronous, and the await keyword pauses the
execution of the function until a Promise is resolved. The handler accepts the following
arguments:

• event: Contains the input data passed to your function.

• context: Contains information about the invocation, function, and execution environment. For
more information, see Using the Lambda context object to retrieve Node.js function information.

Here are the valid signatures for the async/await pattern:

• export const handler = async (event) => { };

• export const handler = async (event, context) => { };

Note

Use a local integrated development environment (IDE) or text editor to write your
TypeScript function code. You can’t create TypeScript code on the Lambda console.

Using callbacks

Callback handlers must use the event, context, and callback arguments. Example:

export const handler = (event, context, callback) => { };

The callback function expects an Error and a response, which must be JSON-serializable. The
function continues to execute until the event loop is empty or the function times out. The response
isn't sent to the invoker until all event loop tasks are finished. If the function times out, an error
is returned instead. You can configure the runtime to send the response immediately by setting
context.callbackWaitsForEmptyEventLoop to false.

Example – HTTP request with callback

The following example function checks a URL and returns the status code to the invoker.

Valid handler patterns 493

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

AWS Lambda Developer Guide

import https from "https";
let url = "https://aws.amazon.com/";

export const handler = (event, context, callback) => {
 https.get(url, (res) => {
 callback(null, res.statusCode);
 }).on("error", (e) => {
 callback(Error(e));
 });
};

Using the SDK for JavaScript v3 in your handler

Often, you’ll use Lambda functions to interact with or make updates to other AWS resources.
The simplest way to interface with these resources is to use the AWS SDK for JavaScript. All
supported Lambda Node.js runtimes include the SDK for JavaScript version 3. However, we strongly
recommend that you include the AWS SDK clients that you need in your deployment package.
This maximizes backward compatibility during future Lambda runtime updates. Only rely on the
runtime-provided SDK when you can't include additional packages (for example, when using the
Lambda console code editor or inline code in an AWS CloudFormation template).

To add SDK dependencies to your function, use the npm install command for the specific SDK
clients that you need. In the example code, we used the Amazon S3 client. Add this dependency by
running the following command in the directory that contains your package.json file:

npm install @aws-sdk/client-s3

In the function code, import the client and commands that you need, as the example function
demonstrates:

import { S3Client, PutObjectCommand } from '@aws-sdk/client-s3';

Then, initialize an Amazon S3 client:

const s3Client = new S3Client();

In this example, we initialized our Amazon S3 client outside of the main handler function to avoid
having to initialize it every time we invoke our function. After you initialize your SDK client, you

Using the SDK for JavaScript 494

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/introduction/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/

AWS Lambda Developer Guide

can then use it to make API calls for that AWS service. The example code calls the Amazon S3
PutObject API action as follows:

const command = new PutObjectCommand({
 Bucket: bucketName,
 Key: key,
 Body: receiptContent
});

Accessing environment variables

In your handler code, you can reference any environment variables by using process.env. In this
example, we reference the defined RECEIPT_BUCKET environment variable using the following
lines of code:

// Access environment variables
const bucketName = process.env.RECEIPT_BUCKET;
if (!bucketName) {
 throw new Error('RECEIPT_BUCKET environment variable is not set');
}

Using global state

Lambda runs your static code during the initialization phase before invoking your function for the
first time. Resources created during initialization stay in memory between invocations, so you can
avoid having to create them every time you invoke your function.

In the example code, the S3 client initialization code is outside the handler. The runtime initializes
the client before the function handles its first event, and the client remains available for reuse
across all invocations.

Code best practices for Node.js Lambda functions

Follow these guidelines when building Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function.

• Control the dependencies in your function's deployment package. The AWS Lambda
execution environment contains a number of libraries. For the Node.js and Python runtimes,

Accessing environment variables 495

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectCommand/

AWS Lambda Developer Guide

these include the AWS SDKs. To enable the latest set of features and security updates, Lambda
will periodically update these libraries. These updates may introduce subtle changes to the
behavior of your Lambda function. To have full control of the dependencies your function uses,
package all of your dependencies with your deployment package.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation.

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended

Best practices 496

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Best practices 497

https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Deploy Node.js Lambda functions with .zip file archives

Your AWS Lambda function’s code comprises a .js or .mjs file containing your function’s handler
code, together with any additional packages and modules your code depends on. To deploy this
function code to Lambda, you use a deployment package. This package may either be a .zip file
archive or a container image. For more information about using container images with Node.js, see
Deploy Node.js Lambda functions with container images.

To create your deployment package as .zip file archive, you can use your command-line tool’s
built-in .zip file archive utility, or any other .zip file utility such as 7zip. The examples shown in the
following sections assume you’re using a command-line zip tool in a Linux or MacOS environment.
To use the same commands in Windows, you can install the Windows Subsystem for Linux to get a
Windows-integrated version of Ubuntu and Bash.

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

Topics

• Runtime dependencies in Node.js

• Creating a .zip deployment package with no dependencies

• Creating a .zip deployment package with dependencies

• Creating a Node.js layer for your dependencies

• Dependency search path and runtime-included libraries

• Creating and updating Node.js Lambda functions using .zip files

Runtime dependencies in Node.js

For Lambda functions that use the Node.js runtime, a dependency can be any Node.js module. The
Node.js runtime includes a number of common libraries, as well as a version of the AWS SDK for
JavaScript. The nodejs16.x Lambda runtime includes version 2.x of the SDK. Runtime versions
nodejs18.x and later include version 3 of the SDK. To use version 2 of the SDK with runtime
versions nodejs18.x and later, add the SDK to your .zip file deployment package. If your chosen
runtime includes the version of the SDK you are using, you don't need to include the SDK library in
your .zip file. To find out which version of the SDK is included in the runtime you're using, see the
section called “Runtime-included SDK versions”.

Deploy .zip file archives 498

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-image.html
https://www.7-zip.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/

AWS Lambda Developer Guide

Lambda periodically updates the SDK libraries in the Node.js runtime to include the latest features
and security upgrades. Lambda also applies security patches and updates to the other libraries
included in the runtime. To have full control of the dependencies in your package, you can add your
preferred version of any runtime-included dependency to your deployment package. For example,
if you want to use a particular version of the SDK for JavaScript, you can include it in your .zip file
as a dependency. For more information on adding runtime-included dependencies to your .zip file,
see Dependency search path and runtime-included libraries.

Under the AWS shared responsibility model, you are responsible for the management of any
dependencies in your functions' deployment packages. This includes applying updates and security
patches. To update dependencies in your function's deployment package, first create a new .zip
file and then upload it to Lambda. See Creating a .zip deployment package with dependencies and
Creating and updating Node.js Lambda functions using .zip files for more information.

Creating a .zip deployment package with no dependencies

If your function code has no dependencies except for libraries included in the Lambda runtime,
your .zip file contains only the index.js or index.mjs file with your function’s handler code. Use
your preferred zip utility to create a .zip file with your index.js or index.mjs file at the root. If
the file containing your handler code isn't at the root of your .zip file, Lambda won’t be able to run
your code.

To learn how to deploy your .zip file to create a new Lambda function or update an existing one,
see Creating and updating Node.js Lambda functions using .zip files.

Creating a .zip deployment package with dependencies

If your function code depends on packages or modules that aren't included in the Lambda Node.js
runtime, you can either add these dependencies to your .zip file with your function code or use
a Lambda layer. The instructions in this section show you how to include your dependencies in
your .zip deployment package. For instructions on how to include your dependencies in a layer, see
the section called “Creating a Node.js layer for your dependencies”.

The following example CLI commands create a .zip file named my_deployment_package.zip
containing the index.js or index.mjs file with your function's handler code and its
dependencies. In the example, you install dependencies using the npm package manager.

Creating a .zip deployment package with no dependencies 499

AWS Lambda Developer Guide

To create the deployment package

1. Navigate to the project directory containing your index.js or index.mjs source code file. In
this example, the directory is named my_function.

cd my_function

2. Install your function's required libraries in the node_modules directory using the npm
install command. In this example you install the AWS X-Ray SDK for Node.js.

npm install aws-xray-sdk

This creates a folder structure similar to the following:

~/my_function
index.mjs
node_modules
 ### async
 ### async-listener
 ### atomic-batcher
 ### aws-sdk
 ### aws-xray-sdk
 ### aws-xray-sdk-core

You can also add custom modules that you create yourself to your deployment package.
Create a directory under node_modules with the name of your module and save your custom
written packages there.

3. Create a .zip file that contains the contents of your project folder at the root. Use the r
(recursive) option to ensure that zip compresses the subfolders.

zip -r my_deployment_package.zip .

Creating a Node.js layer for your dependencies

The instructions in this section show you how to include your dependencies in a layer. For
instructions on how to include your dependencies in your deployment package, see the section
called “Creating a .zip deployment package with dependencies”.

Creating a Node.js layer for your dependencies 500

AWS Lambda Developer Guide

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that Lambda picks up your layer content, your
layer .zip file should have its dependencies in one of the following folder paths:

• nodejs/node_modules

• nodejs/node18/node_modules (NODE_PATH)

• nodejs/node20/node_modules (NODE_PATH)

• nodejs/node22/node_modules (NODE_PATH)

For example, your layer .zip file structure might look like the following:

xray-sdk.zip
nodejs/node_modules/aws-xray-sdk

In addition, Lambda automatically detects any libraries in the /opt/lib directory, and any binaries
in the /opt/bin directory. To ensure that Lambda properly finds your layer content, you can also
create a layer with the following structure:

custom-layer.zip
lib
 | lib_1
 | lib_2
bin
 | bin_1
 | bin_2

After you package your layer, see the section called “Creating and deleting layers” and the section
called “Adding layers” to complete your layer setup.

Dependency search path and runtime-included libraries

The Node.js runtime includes a number of common libraries, as well as a version of the AWS SDK
for JavaScript. If you want to use a different version of a runtime-included library, you can do this
by bundling it with your function or by adding it as a dependency in your deployment package. For
example, you can use a different version of the SDK by adding it to your .zip deployment package.
You can also include it in a Lambda layer for your function.

Dependency search path and runtime-included libraries 501

AWS Lambda Developer Guide

When you use an import or require statement in your code, the Node.js runtime searches the
directories in the NODE_PATH path until it finds the module. By default, the first location the
runtime searches is the directory into which your .zip deployment package is decompressed and
mounted (/var/task). If you include a version of a runtime-included library in your deployment
package, this version will take precedence over the version included in the runtime. Dependencies
in your deployment package also have precedence over dependencies in layers.

When you add a dependency to a layer, Lambda extracts this to /opt/nodejs/nodexx/
node_modules where nodexx represents the version of the runtime you are using. In the search
path, this directory has precedence over the directory containing the runtime-included libraries
(/var/lang/lib/node_modules). Libraries in function layers therefore have precedence over
versions included in the runtime.

You can see the full search path for your Lambda function by adding the following line of code.

console.log(process.env.NODE_PATH)

You can also add dependencies in a separate folder inside your .zip package. For example, you
might add a custom module to a folder in your .zip package called common. When your .zip
package is decompressed and mounted, this folder is placed inside the /var/task directory. To
use a dependency from a folder in your .zip deployment package in your code, use an import { }
from or const { } = require() statement, depending on whether you are using CJS or ESM
module resolution. For example:

import { myModule } from './common'

If you bundle your code with esbuild, rollup, or similar, the dependencies used by your function
are bundled together in one or more files. We recommend using this method to vend dependencies
whenever possible. Compared to adding dependencies to your deployment package, bundling your
code results in improved performance due to the reduction in I/O operations.

Creating and updating Node.js Lambda functions using .zip files

After you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the AWS Command Line Interface, and the Lambda API. You can also create and update Lambda
functions using AWS Serverless Application Model (AWS SAM) and AWS CloudFormation.

Creating and updating Node.js Lambda functions using .zip files 502

AWS Lambda Developer Guide

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give a non-executable file the correct permissions, run
the following command.

chmod 644 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Note

If you don't grant Lambda the permissions it needs to access directories in your deployment
package, Lambda sets the permissions for those directories to 755 (rwxr-xr-x).

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
AWS Management Console, see Getting started with Amazon S3. To upload files using the AWS CLI,
see Move objects in the AWS CLI User Guide.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Creating and updating Node.js Lambda functions using .zip files 503

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType

AWS Lambda Developer Guide

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

Creating and updating Node.js Lambda functions using .zip files 504

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Updating .zip file functions using the console code editor

For some functions with .zip deployment packages, you can use the Lambda console’s built-in
code editor to update your function code directly. To use this feature, your function must meet the
following criteria:

• Your function must use one of the interpreted language runtimes (Python, Node.js, or Ruby)
• Your function’s deployment package must be smaller than 50 MB (unzipped).

Function code for functions with container image deployment packages cannot be edited directly
in the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. In the DEPLOY section, choose Deploy to update your function's code:

Creating and updating functions with .zip files using the AWS CLI

You can can use the AWS CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move
objects in the AWS CLI User Guide.

Creating and updating Node.js Lambda functions using .zip files 505

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

AWS Lambda Developer Guide

Note

If you upload your .zip file from an Amazon S3 bucket using the AWS CLI, the bucket must
be located in the same AWS Region as your function.

To create a new function using a .zip file with the AWS CLI, you must specify the following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime nodejs22.x --handler index.handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime nodejs22.x --handler index.handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \

Creating and updating Node.js Lambda functions using .zip files 506

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Lambda Developer Guide

--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket amzn-s3-demo-bucket --s3-key myFileName.zip --s3-object-version myObject
 Version

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction
• UpdateFunctionCode

Creating and updating functions with .zip files using AWS SAM

The AWS Serverless Application Model (AWS SAM) is a toolkit that helps streamline the process of
building and running serverless applications on AWS. You define the resources for your application
in a YAML or JSON template and use the AWS SAM command line interface (AWS SAM CLI) to build,
package, and deploy your applications. When you build a Lambda function from an AWS SAM
template, AWS SAM automatically creates a .zip deployment package or container image with your
function code and any dependencies you specify. To learn more about using AWS SAM to build
and deploy Lambda functions, see Getting started with AWS SAM in the AWS Serverless Application
Model Developer Guide.

You can also use AWS SAM to create a Lambda function using an existing .zip file archive. To create
a Lambda function using AWS SAM, you can save your .zip file in an Amazon S3 bucket or in a local
folder on your build machine. For instructions on how to upload a file to an Amazon S3 bucket
using the AWS CLI, see Move objects in the AWS CLI User Guide.

In your AWS SAM template, the AWS::Serverless::Function resource specifies your Lambda
function. In this resource, set the following properties to create a function using a .zip file archive:

• PackageType - set to Zip
• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object
• Runtime - Set to your chosen runtime

Creating and updating Node.js Lambda functions using .zip files 507

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html

AWS Lambda Developer Guide

With AWS SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. AWS SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

Creating and updating functions with .zip files using AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function using a .zip file archive. To create
a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket. For
instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move objects
in the AWS CLI User Guide.

In your AWS CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip
• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key

fields
• Runtime - Set to your chosen runtime

The .zip file that AWS CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in AWS CloudFormation, see AWS::Lambda::Function in the AWS
CloudFormation User Guide.

Creating and updating Node.js Lambda functions using .zip files 508

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

Deploy Node.js Lambda functions with container images

There are three ways to build a container image for a Node.js Lambda function:

• Using an AWS base image for Node.js

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Node.js in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Node.js in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• AWS base images for Node.js

• Using an AWS base image for Node.js

• Using an alternative base image with the runtime interface client

Deploy container images 509

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

AWS base images for Node.js

AWS provides the following base images for Node.js:

Tags Runtime Operating
system

Dockerfile Deprecation

22 Node.js 22 Amazon
Linux 2023

Dockerfile for Node.js 22
on GitHub

Apr 30, 2027

20 Node.js 20 Amazon
Linux 2023

Dockerfile for Node.js 20
on GitHub

Apr 30, 2026

18 Node.js 18 Amazon
Linux 2

Dockerfile for Node.js 18
on GitHub

Sep 1, 2025

Amazon ECR repository: gallery.ecr.aws/lambda/nodejs

The Node.js 20 and later base images are based on the Amazon Linux 2023 minimal container
image. Earlier base images use Amazon Linux 2. AL2023 provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

AWS base images for Node.js 510

https://github.com/aws/aws-lambda-base-images/blob/nodejs22.x/Dockerfile.nodejs22.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs22.x/Dockerfile.nodejs22.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs20.x/Dockerfile.nodejs20.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs20.x/Dockerfile.nodejs20.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs18.x/Dockerfile.nodejs18.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs18.x/Dockerfile.nodejs18.x
https://gallery.ecr.aws/lambda/nodejs
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

Using an AWS base image for Node.js

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

• Node.js

Creating an image from a base image

To create a container image from an AWS base image for Node.js

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new Node.js project with npm. To accept the default options provided in the
interactive experience, press Enter.

npm init

3. Create a new file called index.js. You can add the following sample function code to the file
for testing, or use your own.

Example CommonJS handler

exports.handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('Hello from Lambda!'),
 };
 return response;
};

4. If your function depends on libraries other than the AWS SDK for JavaScript, use npm to add
them to your package.

Using an AWS base image 511

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md
https://www.npmjs.com/

AWS Lambda Developer Guide

5. Create a new Dockerfile with the following configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/lambda/nodejs:22

Copy function code
COPY index.js ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["index.handler"]

6. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

Using an AWS base image 512

https://gallery.ecr.aws/lambda/nodejs
https://docs.docker.com/reference/dockerfile/#user
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

Using an AWS base image 513

AWS Lambda Developer Guide

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using an AWS base image 514

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using an AWS base image 515

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using an AWS base image 516

https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Runtime API, which
manages the interaction between Lambda and your function code.

Install the Node.js runtime interface client using the npm package manager:

npm install aws-lambda-ric

You can also download the Node.js runtime interface client from GitHub.

The following example demonstrates how to build a container image for Node.js using a non-AWS
base image. The example Dockerfile uses a bookworm base image. The Dockerfile includes the
runtime interface client.

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

Using a non-AWS base image 517

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
http://npmjs.com/package/aws-lambda-ric
https://github.com/aws/aws-lambda-nodejs-runtime-interface-client
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md

AWS Lambda Developer Guide

• Node.js

Creating an image from an alternative base image

To create a container image from a non-AWS base image

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new Node.js project with npm. To accept the default options provided in the
interactive experience, press Enter.

npm init

3. Create a new file called index.js. You can add the following sample function code to the file
for testing, or use your own.

Example CommonJS handler

exports.handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('Hello from Lambda!'),
 };
 return response;
};

4. Create a new Dockerfile. The following Dockerfile uses a bookworm base image instead of an
AWS base image. The Dockerfile includes the runtime interface client, which makes the image
compatible with Lambda. The Dockerfile uses a multi-stage build. The first stage creates a
build image, which is a standard Node.js environment where the function's dependencies are
installed. The second stage creates a slimmer image which includes the function code and its
dependencies. This reduces the final image size.

• Set the FROM property to the base image identifier.

• Use the COPY command to copy the function code and runtime dependencies.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

Using a non-AWS base image 518

http://npmjs.com/package/aws-lambda-ric
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds

AWS Lambda Developer Guide

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

Define custom function directory
ARG FUNCTION_DIR="/function"

FROM node:20-bookworm as build-image

Include global arg in this stage of the build
ARG FUNCTION_DIR

Install build dependencies
RUN apt-get update && \
 apt-get install -y \
 g++ \
 make \
 cmake \
 unzip \
 libcurl4-openssl-dev

Copy function code
RUN mkdir -p ${FUNCTION_DIR}
COPY . ${FUNCTION_DIR}

WORKDIR ${FUNCTION_DIR}

Install Node.js dependencies
RUN npm install

Install the runtime interface client
RUN npm install aws-lambda-ric

Grab a fresh slim copy of the image to reduce the final size
FROM node:20-bookworm-slim

Required for Node runtimes which use npm@8.6.0+ because

Using a non-AWS base image 519

https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

by default npm writes logs under /home/.npm and Lambda fs is read-only
ENV NPM_CONFIG_CACHE=/tmp/.npm

Include global arg in this stage of the build
ARG FUNCTION_DIR

Set working directory to function root directory
WORKDIR ${FUNCTION_DIR}

Copy in the built dependencies
COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR}

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["/usr/local/bin/npx", "aws-lambda-ric"]
Pass the name of the function handler as an argument to the runtime
CMD ["index.handler"]

5. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or use the following procedure to install it on your local machine.

Using a non-AWS base image 520

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image

AWS Lambda Developer Guide

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• /usr/local/bin/npx aws-lambda-ric index.handler is the ENTRYPOINT followed
by the CMD from your Dockerfile.

Using a non-AWS base image 521

AWS Lambda Developer Guide

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /usr/local/bin/npx aws-lambda-ric index.handler

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /usr/local/bin/npx aws-lambda-ric index.handler

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Using a non-AWS base image 522

AWS Lambda Developer Guide

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

Using a non-AWS base image 523

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html

AWS Lambda Developer Guide

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

Using a non-AWS base image 524

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html
https://docs.docker.com/engine/reference/commandline/tag/

AWS Lambda Developer Guide

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

Using a non-AWS base image 525

https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using a non-AWS base image 526

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Working with layers for Node.js Lambda functions

Use Lambda layers to package code and dependencies that you want to reuse across multiple
functions. Layers usually contain library dependencies, a custom runtime, or configuration files.
Creating a layer involves three general steps:

1. Package your layer content. This means creating a .zip file archive that contains the
dependencies you want to use in your functions.

2. Create the layer in Lambda.

3. Add the layer to your functions.

Topics

• Package your layer content

• Create the layer in Lambda

• Add the layer to your function

• Sample app

Package your layer content

To create a layer, bundle your packages into a .zip file archive that meets the following
requirements:

• Build the layer using the same Node.js version that you plan to use for the Lambda function. For
example, if you build your layer using Node.js 22, use the Node.js 22 runtime for your function.

• Your layer's .zip file must use one of these directory structures:

• nodejs/node_modules

• nodejs/nodeX/node_modules (where X is your Node.js version, for example node22)

For more information, see Layer paths for each Lambda runtime.

• The packages in your layer must be compatible with Linux. Lambda functions run on Amazon
Linux.

You can create layers that contain either third-party Node.js libraries installed with npm (such as
axios or lodash) or your own JavaScript modules.

Layers 527

AWS Lambda Developer Guide

Third-party dependencies

To create a layer using npm packages

1. Create the required directory structure and install packages directly into it:

mkdir -p nodejs
npm install --prefix nodejs lodash axios

This command installs the packages directly into the nodejs/node_modules directory, which
is the structure that Lambda requires.

Note

For packages with native dependencies or binary components (such as sharp or
bcrypt), ensure that they're compatible with the Lambda Linux environment and your
function's architecture. You might need to use the --platform flag:

npm install --prefix nodejs --platform=linux --arch=x64 sharp

For more complex native dependencies, you might need to compile them in a Linux
environment that matches the Lambda runtime. You can use Docker for this purpose.

2. Zip the layer content:

Linux/macOS

zip -r layer.zip nodejs/

PowerShell

Compress-Archive -Path .\nodejs -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

nodejs/
package.json
package-lock.json

Package your layer content 528

https://www.npmjs.com/package/sharp
https://www.npmjs.com/package/bcrypt

AWS Lambda Developer Guide

node_modules/
 ### lodash/
 ### axios/
 ### (dependencies of the other packages)

Note

• Make sure your .zip file includes the nodejs directory at the root level with
node_modules inside it. This structure ensures that Lambda can locate and import
your packages.

• The package.json and package-lock.json files in the nodejs/ directory are
used by npm for dependency management but are not required by Lambda for layer
functionality. Each installed package already contains its own package.json file
that defines how Lambda imports the package.

Custom JavaScript modules

To create a layer using your own code

1. Create the required directory structure for your layer:

mkdir -p nodejs/node_modules/validator
cd nodejs/node_modules/validator

2. Create a package.json file for your custom module to define how it should be imported:

Example nodejs/node_modules/validator/package.json

{
 "name": "validator",
 "version": "1.0.0",
 "type": "module",
 "main": "index.mjs"
}

3. Create your JavaScript module file:

Package your layer content 529

AWS Lambda Developer Guide

Example nodejs/node_modules/validator/index.mjs

export function validateOrder(orderData) {
 // Validates an order and returns formatted data
 const requiredFields = ['productId', 'quantity'];

 // Check required fields
 const missingFields = requiredFields.filter(field => !(field in orderData));
 if (missingFields.length > 0) {
 throw new Error(`Missing required fields: ${missingFields.join(', ')}`);
 }

 // Validate quantity
 const quantity = orderData.quantity;
 if (!Number.isInteger(quantity) || quantity < 1) {
 throw new Error('Quantity must be a positive integer');
 }

 // Format and return the validated data
 return {
 productId: String(orderData.productId),
 quantity: quantity,
 shippingPriority: orderData.priority || 'standard'
 };
}

export function formatResponse(statusCode, body) {
 // Formats the API response
 return {
 statusCode: statusCode,
 body: JSON.stringify(body)
 };
}

4. Zip the layer content:

Linux/macOS

zip -r layer.zip nodejs/

Package your layer content 530

AWS Lambda Developer Guide

PowerShell

Compress-Archive -Path .\nodejs -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

nodejs/
node_modules/
 ### validator/
 ### package.json
 ### index.mjs

5. In your function, import and use the modules. Example:

import { validateOrder, formatResponse } from 'validator';

export const handler = async (event) => {
 try {
 // Parse the order data from the event body
 const orderData = JSON.parse(event.body || '{}');

 // Validate and format the order
 const validatedOrder = validateOrder(orderData);

 return formatResponse(200, {
 message: 'Order validated successfully',
 order: validatedOrder
 });
 } catch (error) {
 if (error instanceof Error && error.message.includes('Missing required
 fields')) {
 return formatResponse(400, {
 error: error.message
 });
 }

 return formatResponse(500, {
 error: 'Internal server error'
 });
 }

Package your layer content 531

AWS Lambda Developer Guide

};

You can use the following test event to invoke the function:

{
 "body": "{\"productId\": \"ABC123\", \"quantity\": 2, \"priority\": \"express
\"}"
}

Expected response:

{
 "statusCode": 200,
 "body": "{\"message\":\"Order validated successfully\",\"order\":{\"productId\":
\"ABC123\",\"quantity\":2,\"shippingPriority\":\"express\"}}"
}

Create the layer in Lambda

You can publish your layer using either the AWS CLI or the Lambda console.

AWS CLI

Run the publish-layer-version AWS CLI command to create the Lambda layer:

aws lambda publish-layer-version --layer-name my-layer --zip-file fileb://layer.zip
 --compatible-runtimes nodejs22.x

The compatible runtimes parameter is optional. When specified, Lambda uses this parameter to
filter layers in the Lambda console.

Console

To create a layer (console)

1. Open the Layers page of the Lambda console.

2. Choose Create layer.

3. Choose Upload a .zip file, and then upload the .zip archive that you created earlier.

Create the layer in Lambda 532

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes
https://console.aws.amazon.com/lambda/home#/layers

AWS Lambda Developer Guide

4. (Optional) For Compatible runtimes, choose the Node.js runtime that corresponds to the
Node.js version you used to build your layer.

5. Choose Create.

Add the layer to your function

AWS CLI

To attach the layer to your function, run the update-function-configuration AWS CLI command.
For the --layers parameter, use the layer ARN. The ARN must specify the version (for
example, arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1). For more
information, see Layers and layer versions.

aws lambda update-function-configuration --function-name my-function --cli-binary-
format raw-in-base64-out --layers "arn:aws:lambda:us-east-1:123456789012:layer:my-
layer:1"

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

Console

To add a layer to a function

1. Open the Functions page of the Lambda console.

2. Choose the function.

3. Scroll down to the Layers section, and then choose Add a layer.

4. Under Choose a layer, select Custom layers, and then choose your layer.

Note

If you didn't add a compatible runtime when you created the layer, your layer won't
be listed here. You can specify the layer ARN instead.

5. Choose Add.

Add the layer to your function 533

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes

AWS Lambda Developer Guide

Sample app

For more examples of how to use Lambda layers, see the layer-nodejs sample application in the
AWS Lambda Developer Guide GitHub repository. This application includes a layer that contains the
lodash library. After creating the layer, you can deploy and invoke the corresponding function to
confirm that the layer works as expected.

Sample app 534

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-nodejs
https://www.npmjs.com/package/lodash

AWS Lambda Developer Guide

Using the Lambda context object to retrieve Node.js function
information

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• getRemainingTimeInMillis() – Returns the number of milliseconds left before the
execution times out.

Context properties

• functionName – The name of the Lambda function.

• functionVersion – The version of the function.

• invokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• memoryLimitInMB – The amount of memory that's allocated for the function.

• awsRequestId – The identifier of the invocation request.

• logGroupName – The log group for the function.

• logStreamName – The log stream for the function instance.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• cognitoIdentityId – The authenticated Amazon Cognito identity.

• cognitoIdentityPoolId – The Amazon Cognito identity pool that authorized the
invocation.

• clientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• client.installation_id

• client.app_title

• client.app_version_name

• client.app_version_code

Context 535

AWS Lambda Developer Guide

• client.app_package_name

• env.platform_version

• env.platform

• env.make

• env.model

• env.locale

• custom – Custom values that are set by the client application.

• callbackWaitsForEmptyEventLoop – Set to false to send the response right away when
the callback runs, instead of waiting for the Node.js event loop to be empty. If this is false, any
outstanding events continue to run during the next invocation.

The following example function logs context information and returns the location of the logs.

Example index.js file

exports.handler = async function(event, context) {
 console.log('Remaining time: ', context.getRemainingTimeInMillis())
 console.log('Function name: ', context.functionName)
 return context.logStreamName
}

Context 536

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/using-a-callback-function.html

AWS Lambda Developer Guide

Log and monitor Node.js Lambda functions

AWS Lambda automatically monitors Lambda functions on your behalf and sends logs to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation to the log stream, and relays logs and other output from your function's code. For more
information, see Sending Lambda function logs to CloudWatch Logs.

This page describes how to produce log output from your Lambda function's code, and access logs
using the AWS Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Using Lambda advanced logging controls with Node.js

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

• Viewing logs using the AWS Command Line Interface (AWS CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use methods on the console object, or any logging
library that writes to stdout or stderr. The following example logs the values of environment
variables and the event object.

Note

We recommend that you use techniques such as input validation and output encoding
when logging inputs. If you log input data directly, an attacker might be able to use your
code to make tampering hard to detect, forge log entries, or bypass log monitors. For
more information, see Improper Output Neutralization for Logs in the Common Weakness
Enumeration.

Example index.js file – Logging

exports.handler = async function(event, context) {

Logging 537

https://developer.mozilla.org/en-US/docs/Web/API/Console
https://cwe.mitre.org/data/definitions/117.html

AWS Lambda Developer Guide

 console.log("ENVIRONMENT VARIABLES\n" + JSON.stringify(process.env, null, 2))
 console.info("EVENT\n" + JSON.stringify(event, null, 2))
 console.warn("Event not processed.")
 return context.logStreamName
}

Example log format

START RequestId: c793869b-ee49-115b-a5b6-4fd21e8dedac Version: $LATEST
2019-06-07T19:11:20.562Z c793869b-ee49-115b-a5b6-4fd21e8dedac INFO ENVIRONMENT
 VARIABLES
{
 "AWS_LAMBDA_FUNCTION_VERSION": "$LATEST",
 "AWS_LAMBDA_LOG_GROUP_NAME": "/aws/lambda/my-function",
 "AWS_LAMBDA_LOG_STREAM_NAME": "2019/06/07/[$LATEST]e6f4a0c4241adcd70c262d34c0bbc85c",
 "AWS_EXECUTION_ENV": "AWS_Lambda_nodejs12.x",
 "AWS_LAMBDA_FUNCTION_NAME": "my-function",
 "PATH": "/var/lang/bin:/usr/local/bin:/usr/bin/:/bin:/opt/bin",
 "NODE_PATH": "/opt/nodejs/node10/node_modules:/opt/nodejs/node_modules:/var/runtime/
node_modules",
 ...
}
2019-06-07T19:11:20.563Z c793869b-ee49-115b-a5b6-4fd21e8dedac INFO EVENT
{
 "key": "value"
}
2019-06-07T19:11:20.564Z c793869b-ee49-115b-a5b6-4fd21e8dedac WARN Event not processed.
END RequestId: c793869b-ee49-115b-a5b6-4fd21e8dedac
REPORT RequestId: c793869b-ee49-115b-a5b6-4fd21e8dedac Duration: 128.83 ms Billed
 Duration: 200 ms Memory Size: 128 MB Max Memory Used: 74 MB Init Duration: 166.62 ms
 XRAY TraceId: 1-5d9d007f-0a8c7fd02xmpl480aed55ef0 SegmentId: 3d752xmpl1bbe37e Sampled:
 true

The Node.js runtime logs the START, END, and REPORT lines for each invocation. It adds a
timestamp, request ID, and log level to each entry logged by the function. The report line provides
the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

Creating a function that returns logs 538

AWS Lambda Developer Guide

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

You can view logs in the Lambda console, in the CloudWatch Logs console, or from the command
line.

Using Lambda advanced logging controls with Node.js

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported Node.js runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to Amazon
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for Lambda
functions”.

To use the log format and log level options with your Node.js Lambda functions, see the guidance
in the following sections.

Using structured JSON logs with Node.js

If you select JSON for your function’s log format, Lambda will send logs output using the console
methods of console.trace, console.debug, console.log, console.info, console.error,
and console.warn to CloudWatch as structured JSON. Each JSON log object contains at least
four key value pairs with the following keys:

Using Lambda advanced logging controls with Node.js 539

AWS Lambda Developer Guide

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "requestId" - the unique request ID for the function invocation

Depending on the logging method that your function uses, this JSON object may also contain
additional key pairs. For example, if your function uses console methods to log error objects
using multiple arguments, the JSON object will contain extra key value pairs with the keys
errorMessage, errorType, and stackTrace.

If your code already uses another logging library, such as Powertools for AWS Lambda, to produce
JSON structured logs, you don’t need to make any changes. Lambda doesn’t double-encode
any logs that are already JSON encoded, so your function’s application logs will continue to be
captured as before.

For more information about using the Powertools for AWS Lambda logging package to create
JSON structured logs in the Node.js runtime, see the section called “Logging”.

Example JSON formatted log outputs

The following examples shows how various log outputs generated using the console methods
with single and multiple arguments are captured in CloudWatch Logs when you set your function's
log format to JSON.

The first example uses the console.error method to output a simple string.

Example Node.js logging code

export const handler = async (event) => {
 console.error("This is a warning message");
 ...
}

Example JSON log record

{
 "timestamp":"2023-11-01T00:21:51.358Z",
 "level":"ERROR",
 "message":"This is a warning message",
 "requestId":"93f25699-2cbf-4976-8f94-336a0aa98c6f"

Using Lambda advanced logging controls with Node.js 540

AWS Lambda Developer Guide

}

You can also output more complex structured log messages using either single or multiple
arguments with the console methods. In the next example, you use console.log to output two
key value pairs using a single argument. Note that the "message" field in the JSON object Lambda
sends to CloudWatch Logs is not stringified.

Example Node.js logging code

export const handler = async (event) => {
 console.log({data: 12.3, flag: false});
 ...
}

Example JSON log record

{
 "timestamp": "2023-12-08T23:21:04.664Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": {
 "data": 12.3,
 "flag": false
 }
}

In the next example, you again use the console.log method to create a log output. This time, the
method takes two arguments, a map containing two key value pairs and an identifying string. Note
that in this case, because you have supplied two arguments, Lambda stringifies the "message"
field.

Example Node.js logging code

export const handler = async (event) => {
 console.log('Some object - ', {data: 12.3, flag: false});
 ...
}

Example JSON log record

{

Using Lambda advanced logging controls with Node.js 541

AWS Lambda Developer Guide

 "timestamp": "2023-12-08T23:21:04.664Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": "Some object - { data: 12.3, flag: false }"
}

Lambda assigns outputs generated using console.log the log level INFO.

The final example shows how error objects can be output to CloudWatch Logs using the console
methods. Note that when you log error objects using multiple arguments, Lambda adds the fields
errorMessage, errorType, and stackTrace to the log output.

Example Node.js logging code

export const handler = async (event) => {
 let e1 = new ReferenceError("some reference error");
 let e2 = new SyntaxError("some syntax error");
 console.log(e1);
 console.log("errors logged - ", e1, e2);
};

Example JSON log record

{
 "timestamp": "2023-12-08T23:21:04.632Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": {
 "errorType": "ReferenceError",
 "errorMessage": "some reference error",
 "stackTrace": [
 "ReferenceError: some reference error",
 " at Runtime.handler (file:///var/task/index.mjs:3:12)",
 " at Runtime.handleOnceNonStreaming (file:///var/runtime/
index.mjs:1173:29)"
]
 }
}

{
 "timestamp": "2023-12-08T23:21:04.646Z",
 "level": "INFO",

Using Lambda advanced logging controls with Node.js 542

AWS Lambda Developer Guide

 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": "errors logged - ReferenceError: some reference error
\n at Runtime.handler (file:///var/task/index.mjs:3:12)\n at
 Runtime.handleOnceNonStreaming
 (file:///var/runtime/index.mjs:1173:29) SyntaxError: some syntax
 error\n at Runtime.handler (file:///var/task/index.mjs:4:12)\n at
 Runtime.handleOnceNonStreaming
 (file:///var/runtime/index.mjs:1173:29)",
 "errorType": "ReferenceError",
 "errorMessage": "some reference error",
 "stackTrace": [
 "ReferenceError: some reference error",
 " at Runtime.handler (file:///var/task/index.mjs:3:12)",
 " at Runtime.handleOnceNonStreaming (file:///var/runtime/index.mjs:1173:29)"
]
}

When logging multiple error types, the extra fields errorMessage, errorType, and stackTrace
are extracted from the first error type supplied to the console method.

Using embedded metric format (EMF) client libraries with structured JSON logs

AWS provides open-sourced client libraries for Node.js which you can use to create embedded
metric format (EMF) logs. If you have existing functions that use these libraries and you change
your function's log format to JSON, CloudWatch may no longer recognize the metrics emitted by
your code.

If your code currently emits EMF logs directly using console.log or by using Powertools for AWS
Lambda (TypeScript), CloudWatch will also be unable to parse these if you change your function's
log format to JSON.

Important

To ensure that your functions' EMF logs continue to be properly parsed by CloudWatch,
update your EMF and Powertools for AWS Lambda libraries to the latest versions. If
switching to the JSON log format, we also recommend that you carry out testing to ensure
compatibility with your function's embedded metrics. If your code emits EMF logs directly
using console.log, change your code to output those metrics directly to stdout as
shown in the following code example.

Using Lambda advanced logging controls with Node.js 543

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Libraries.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Libraries.html
https://www.npmjs.com/package/aws-embedded-metrics
https://github.com/aws-powertools/powertools-lambda-typescript

AWS Lambda Developer Guide

Example code emitting embedded metrics to stdout

process.stdout.write(JSON.stringify(
 {
 "_aws": {
 "Timestamp": Date.now(),
 "CloudWatchMetrics": [{
 "Namespace": "lambda-function-metrics",
 "Dimensions": [["functionVersion"]],
 "Metrics": [{
 "Name": "time",
 "Unit": "Milliseconds",
 "StorageResolution": 60
 }]
 }]
 },
 "functionVersion": "$LATEST",
 "time": 100,
 "requestId": context.awsRequestId
 }
) + "\n")

Using log-level filtering with Node.js

For AWS Lambda to filter your application logs according to their log level, your function must use
JSON formatted logs. You can achieve this in two ways:

• Create log outputs using the standard console methods and configure your function to use JSON
log formatting. AWS Lambda then filters your log outputs using the “level” key value pair in
the JSON object described in the section called “Using structured JSON logs with Node.js”. To
learn how to configure your function’s log format, see the section called “Configuring advanced
logging controls for Lambda functions”.

• Use another logging library or method to create JSON structured logs in your code that include
a “level” key value pair defining the level of the log output. For example, you can use Powertools
for AWS Lambda to generate JSON structured log outputs from your code. See the section called
“Logging” to learn more about using Powertools with the Node.js runtime.

For Lambda to filter your function's logs, you must also include a "timestamp" key value pair
in your JSON log output. The time must be specified in valid RFC 3339 timestamp format. If you

Using Lambda advanced logging controls with Node.js 544

https://www.ietf.org/rfc/rfc3339.txt

AWS Lambda Developer Guide

don't supply a valid timestamp, Lambda will assign the log the level INFO and add a timestamp
for you.

When you configure your function to use log-level filtering, you select the level of logs you want
AWS Lambda to send to CloudWatch Logs from the following options:

Log level Standard usage

TRACE (most detail) The most fine-grained information used to
trace the path of your code's execution

DEBUG Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN Messages about potential errors that may lead
to unexpected behavior if unaddressed

ERROR Messages about problems that prevent the
code from performing as expected

FATAL (least detail) Messages about serious errors that cause the
application to stop functioning

Lambda sends logs of the selected level and lower to CloudWatch. For example, if you configure a
log level of WARN, Lambda will send logs corresponding to the WARN, ERROR, and FATAL levels.

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

Viewing logs in the Lambda console 545

AWS Lambda Developer Guide

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs using the AWS Command Line Interface (AWS CLI)

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Viewing logs using the AWS Command Line Interface (AWS CLI) 546

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

Viewing logs using the AWS Command Line Interface (AWS CLI) 547

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353

Viewing logs using the AWS Command Line Interface (AWS CLI) 548

AWS Lambda Developer Guide

 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 549

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

AWS Lambda Developer Guide

Instrumenting Node.js code in AWS Lambda

Lambda integrates with AWS X-Ray to help you trace, debug, and optimize Lambda applications.
You can use X-Ray to trace a request as it traverses resources in your application, which may include
Lambda functions and other AWS services.

To send tracing data to X-Ray, you can use one of two SDK libraries:

• AWS Distro for OpenTelemetry (ADOT) – A secure, production-ready, AWS-supported distribution
of the OpenTelemetry (OTel) SDK.

• AWS X-Ray SDK for Node.js – An SDK for generating and sending trace data to X-Ray.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for AWS Lambda SDKs are part of a tightly integrated
instrumentation solution offered by AWS. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
AWS Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using ADOT to instrument your Node.js functions

• Using the X-Ray SDK to instrument your Node.js functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with AWS CloudFormation

• Interpreting an X-Ray trace

• Storing runtime dependencies in a layer (X-Ray SDK)

Tracing 550

https://aws.amazon.com/otel
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

AWS Lambda Developer Guide

Using ADOT to instrument your Node.js functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Node.js runtimes, you can add the AWS managed Lambda layer for ADOT Javascript to
automatically instrument your functions. For detailed instructions on how to add this layer, see
AWS Distro for OpenTelemetry Lambda Support for JavaScript in the ADOT documentation.

Using the X-Ray SDK to instrument your Node.js functions

To record details about calls that your Lambda function makes to other resources in your
application, you can also use the AWS X-Ray SDK for Node.js. To get the SDK, add the aws-xray-
sdk-core package to your application's dependencies.

Example blank-nodejs/package.json

{
 "name": "blank-nodejs",
 "version": "1.0.0",
 "private": true,
 "devDependencies": {
 "jest": "29.7.0"
 },
 "dependencies": {
 "@aws-sdk/client-lambda": "3.345.0",
 "aws-xray-sdk-core": "3.5.3"
 },
 "scripts": {
 "test": "jest"
 }
}

To instrument AWS SDK clients in the AWS SDK for JavaScript v3, wrap the client instance with the
captureAWSv3Client method.

Using ADOT to instrument your Node.js functions 551

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/package.json
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/welcome.html

AWS Lambda Developer Guide

Example blank-nodejs/function/index.js – Tracing an AWS SDK client

const AWSXRay = require('aws-xray-sdk-core');
const { LambdaClient, GetAccountSettingsCommand } = require('@aws-sdk/client-lambda');

// Create client outside of handler to reuse
const lambda = AWSXRay.captureAWSv3Client(new LambdaClient());

// Handler
exports.handler = async function(event, context) {
 event.Records.forEach(record => {
 ...

The Lambda runtime sets some environment variables to configure the X-Ray SDK. For example,
Lambda sets AWS_XRAY_CONTEXT_MISSING to LOG_ERROR to avoid throwing runtime errors from
the X-Ray SDK. To set a custom context missing strategy, override the environment variable in
your function configuration to have no value, and then you can set the context missing strategy
programmatically.

Example Example initialization code

const AWSXRay = require('aws-xray-sdk-core');

// Configure the context missing strategy to do nothing
AWSXRay.setContextMissingStrategy(() => {});

For more information, see the section called “Environment variables”.

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

Activating tracing with the Lambda console 552

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/function/index.js
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the AWS CLI or AWS SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

Activating tracing with the Lambda API 553

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example shows an application with two functions. The primary function processes events
and sometimes returns errors. The second function at the top processes errors that appear in the
first's log group and uses the AWS SDK to call X-Ray, Amazon Simple Storage Service (Amazon S3),
and Amazon CloudWatch Logs.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling

Interpreting an X-Ray trace 554

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html#xray-concepts-servicegraph

AWS Lambda Developer Guide

rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Interpreting an X-Ray trace 555

AWS Lambda Developer Guide

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the AWS X-Ray SDK for Node.js in the AWS
X-Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the AWS
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see AWS X-Ray pricing.

Interpreting an X-Ray trace 556

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs.html
https://aws.amazon.com/xray/pricing/

AWS Lambda Developer Guide

Storing runtime dependencies in a layer (X-Ray SDK)

If you use the X-Ray SDK to instrument AWS SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores the
AWS X-Ray SDK for Node.js.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: function/.
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-nodejs-lib
 Description: Dependencies for the blank sample app.
 ContentUri: lib/.
 CompatibleRuntimes:
 - nodejs22.x

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build changes to generate the layer archive prior to
deployment. For a working example, see the blank-nodejs sample application.

Storing runtime dependencies in a layer (X-Ray SDK) 557

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs

AWS Lambda Developer Guide

Building Lambda functions with TypeScript

You can use the Node.js runtime to run TypeScript code in AWS Lambda. Because Node.js doesn't
run TypeScript code natively, you must first transpile your TypeScript code into JavaScript. Then,
use the JavaScript files to deploy your function code to Lambda. Your code runs in an environment
that includes the AWS SDK for JavaScript, with credentials from an AWS Identity and Access
Management (IAM) role that you manage. To learn more about the SDK versions included with the
Node.js runtimes, see the section called “Runtime-included SDK versions”.

Lambda supports the following Node.js runtimes.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 22 nodejs22.
x

Amazon
Linux 2023

Apr 30, 2027 Jun 1, 2027 Jul 1, 2027

Node.js 20 nodejs20.
x

Amazon
Linux 2023

Apr 30, 2026 Jun 1, 2026 Jul 1, 2026

Node.js 18 nodejs18.
x

Amazon
Linux 2

Sep 1, 2025 Feb 3, 2026 Mar 9, 2026

Topics

• Setting up a TypeScript development environment

• Type definitions for Lambda

• Define Lambda function handler in TypeScript

• Deploy transpiled TypeScript code in Lambda with .zip file archives

• Deploy transpiled TypeScript code in Lambda with container images

• Using the Lambda context object to retrieve TypeScript function information

• Log and monitor TypeScript Lambda functions

• Tracing TypeScript code in AWS Lambda

558

AWS Lambda Developer Guide

Setting up a TypeScript development environment

Use a local integrated development environment (IDE) or text editor to write your TypeScript
function code. You can’t create TypeScript code on the Lambda console.

You can use either esbuild or Microsoft's TypeScript compiler (tsc) to transpile your TypeScript
code into JavaScript. The AWS Serverless Application Model (AWS SAM) and the AWS Cloud
Development Kit (AWS CDK) both use esbuild.

When using esbuild, consider the following:

• There are several TypeScript caveats.

• You must configure your TypeScript transpilation settings to match the Node.js runtime that
you plan to use. For more information, see Target in the esbuild documentation. For an example
of a tsconfig.json file that demonstrates how to target a specific Node.js version supported by
Lambda, refer to the TypeScript GitHub repository.

• esbuild doesn’t perform type checks. To check types, use the tsc compiler. Run tsc -noEmit
or add a "noEmit" parameter to your tsconfig.json file, as shown in the following example.
This configures tsc to not emit JavaScript files. After checking types, use esbuild to convert the
TypeScript files into JavaScript.

Example tsconfig.json

 {
 "compilerOptions": {
 "target": "es2020",
 "strict": true,
 "preserveConstEnums": true,
 "noEmit": true,
 "sourceMap": false,
 "module":"commonjs",
 "moduleResolution":"node",
 "esModuleInterop": true,
 "skipLibCheck": true,
 "forceConsistentCasingInFileNames": true,
 "isolatedModules": true,
 },
 "exclude": ["node_modules", "**/*.test.ts"]
}

Development environment 559

https://esbuild.github.io/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html
https://esbuild.github.io/content-types/#typescript-caveats
https://esbuild.github.io/api/#target
https://github.com/tsconfig/bases/blob/main/bases/node14.json

AWS Lambda Developer Guide

Type definitions for Lambda

The @types/aws-lambda package provides type definitions for Lambda functions. Install this
package when your function uses any of the following:

• Common AWS event sources, such as:

• APIGatewayProxyEvent: For Amazon API Gateway proxy integrations

• SNSEvent: For Amazon Simple Notification Service notifications

• SQSEvent: For Amazon Simple Queue Service messages

• S3Event: For S3 trigger events

• DynamoDBStreamEvent: For Amazon DynamoDB Streams

• The Lambda Context object

• The callback handler pattern

To add the Lambda type definitions to your function, install @types/aws-lambda as a
development dependency:

npm install -D @types/aws-lambda

Then, import the types from aws-lambda:

import { Context, S3Event, APIGatewayProxyEvent } from 'aws-lambda';

export const handler = async (event: S3Event, context: Context) => {
 // Function code
};

The import ... from 'aws-lambda' statement imports the type definitions. It does
not import the aws-lambda npm package, which is an unrelated third-party tool. For more
information, see aws-lambda in the DefinitelyTyped GitHub repository.

Note

You don't need @types/aws-lambda when using your own custom type definitions. For an
example function that defines its own type for an event object, see Example TypeScript
Lambda function code.

Type definitions for Lambda 560

https://www.npmjs.com/package/@types/aws-lambda
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda
https://www.npmjs.com/package/@types/aws-lambda

AWS Lambda Developer Guide

Type definitions for Lambda 561

AWS Lambda Developer Guide

Define Lambda function handler in TypeScript

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in TypeScript, including options
for project setup, naming conventions, and best practices. This page also includes an example of a
TypeScript Lambda function that takes in information about an order, produces a text file receipt,
and puts this file in an Amazon Simple Storage Service (Amazon S3) bucket. For information about
how to deploy your function after writing it, see the section called “Deploy .zip file archives” or the
section called “Deploy container images”.

Topics

• Setting up your TypeScript project

• Example TypeScript Lambda function code

• Handler naming conventions

• Defining and accessing the input event object

• Valid handler patterns for TypeScript functions

• Using the SDK for JavaScript v3 in your handler

• Accessing environment variables

• Using global state

• Code best practices for TypeScript Lambda functions

Setting up your TypeScript project

Use a local integrated development environment (IDE) or text editor to write your TypeScript
function code. You can’t create TypeScript code on the Lambda console.

There are multiple ways to initialize a TypeScript Lambda project. For example, you can create a
project using npm, create an AWS SAM application, or create an AWS CDK application. To create the
project using npm:

npm init

Handler 562

AWS Lambda Developer Guide

Your function code lives in a .ts file, which you transpile into a JavaScript file at build time. You
can use either esbuild or Microsoft's TypeScript compiler (tsc) to transpile your TypeScript code
into JavaScript. To use esbuild, add it as a development dependency:

npm install -D esbuild

A typical TypeScript Lambda function project follows this general structure:

/project-root
 ### index.ts - Contains main handler
 ### dist/ - Contains compiled JavaScript
 ### package.json - Project metadata and dependencies
 ### package-lock.json - Dependency lock file
 ### tsconfig.json - TypeScript configuration
 ### node_modules/ - Installed dependencies

Example TypeScript Lambda function code

The following example Lambda function code takes in information about an order, produces a text
file receipt, and puts this file in an Amazon S3 bucket. This example defines a custom event type
(OrderEvent). To learn how to import type definitions for AWS event sources, see Type definitions
for Lambda.

Note

This example uses an ES module handler. Lambda supports both ES module and
CommonJS handlers. For more information, see Designating a function handler as an ES
module.

Example index.ts Lambda function

import { S3Client, PutObjectCommand } from '@aws-sdk/client-s3';

// Initialize the S3 client outside the handler for reuse
const s3Client = new S3Client();

// Define the shape of the input event
type OrderEvent = {
 order_id: string;

Example function 563

https://esbuild.github.io/

AWS Lambda Developer Guide

 amount: number;
 item: string;
}

/**
 * Lambda handler for processing orders and storing receipts in S3.
 */
export const handler = async (event: OrderEvent): Promise<string> => {
 try {
 // Access environment variables
 const bucketName = process.env.RECEIPT_BUCKET;
 if (!bucketName) {
 throw new Error('RECEIPT_BUCKET environment variable is not set');
 }

 // Create the receipt content and key destination
 const receiptContent = `OrderID: ${event.order_id}\nAmount: $
${event.amount.toFixed(2)}\nItem: ${event.item}`;
 const key = `receipts/${event.order_id}.txt`;

 // Upload the receipt to S3
 await uploadReceiptToS3(bucketName, key, receiptContent);

 console.log(`Successfully processed order ${event.order_id} and stored receipt
 in S3 bucket ${bucketName}`);
 return 'Success';
 } catch (error) {
 console.error(`Failed to process order: ${error instanceof Error ?
 error.message : 'Unknown error'}`);
 throw error;
 }
};

/**
 * Helper function to upload receipt to S3
 */
async function uploadReceiptToS3(bucketName: string, key: string, receiptContent:
 string): Promise<void> {
 try {
 const command = new PutObjectCommand({
 Bucket: bucketName,
 Key: key,
 Body: receiptContent
 });

Example function 564

AWS Lambda Developer Guide

 await s3Client.send(command);
 } catch (error) {
 throw new Error(`Failed to upload receipt to S3: ${error instanceof Error ?
 error.message : 'Unknown error'}`);
 }
}

This index.ts file contains the following sections of code:

• import block: Use this block to include libraries that your Lambda function requires, such as
AWS SDK clients.

• const s3Client declaration: This initializes an Amazon S3 client outside of the handler
function. This causes Lambda to run this code during the initialization phase, and the client is
preserved for reuse across multiple invocations.

• type OrderEvent: Defines the structure of the expected input event.

• export const handler: This is the main handler function that Lambda invokes. When
deploying your function, specify index.handler for the Handler property. The value of the
Handler property is the file name and the name of the exported handler method, separated by
a dot.

• uploadReceiptToS3 function: This is a helper function that's referenced by the main handler
function.

For this function to work properly, its execution role must allow the s3:PutObject action. Also,
ensure that you define the RECEIPT_BUCKET environment variable. After a successful invocation,
the Amazon S3 bucket should contain a receipt file.

Handler naming conventions

When you configure a function, the value of the Handler setting is the file name and the name of
the exported handler method, separated by a dot. The default for functions created in the console
and for examples in this guide is index.handler. This indicates the handler method that's
exported from the index.js or index.mjs file.

If you create a function in the console using a different file name or function handler name, you
must edit the default handler name.

Handler naming conventions 565

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/the-request-object.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-Handler
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-Handler

AWS Lambda Developer Guide

To change the function handler name (console)

1. Open the Functions page of the Lambda console and choose your function.

2. Choose the Code tab.

3. Scroll down to the Runtime settings pane and choose Edit.

4. In Handler, enter the new name for your function handler.

5. Choose Save.

Defining and accessing the input event object

JSON is the most common and standard input format for Lambda functions. In this example, the
function expects an input similar to the following:

{
 "order_id": "12345",
 "amount": 199.99,
 "item": "Wireless Headphones"
}

When working with Lambda functions in TypeScript, you can define the shape of the input event
using a type or interface. In this example, we define the event structure using a type:

type OrderEvent = {
 order_id: string;
 amount: number;
 item: string;
}

After you define the type or interface, use it in your handler's signature to ensure type safety:

export const handler = async (event: OrderEvent): Promise<string> => {

During compilation, TypeScript validates that the event object contains the required fields
with the correct types. For example, the TypeScript compiler reports an error if you try to use
event.order_id as a number or event.amount as a string.

Input event object 566

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Valid handler patterns for TypeScript functions

We recommend that you use async/await to declare the function handler instead of using
callbacks. Async/await is a concise and readable way to write asynchronous code, without the need
for nested callbacks or chaining promises. With async/await, you can write code that reads like
synchronous code, while still being asynchronous and non-blocking.

The examples in this section use the S3Event type. However, you can use any other AWS event
types in the @types/aws-lambda package, or define your own event type. To use types from
@types/aws-lambda:

1. Add the @types/aws-lambda package as a development dependency:

npm install -D @types/aws-lambda

2. Import the types you need, such as Context, S3Event, or Callback.

Using async/await (recommended)

The async keyword marks a function as asynchronous, and the await keyword pauses the
execution of the function until a Promise is resolved. The handler accepts the following
arguments:

• event: Contains the input data passed to your function.

• context: Contains information about the invocation, function, and execution environment.
For more information, see Using the Lambda context object to retrieve TypeScript function
information.

Here are the valid signatures for the async/await pattern:

• Event only:

export const handler = async (event: S3Event): Promise<void> => { };

• Event and context object:

export const handler = async (event: S3Event, context: Context): Promise<void> =>
 { };

Valid handler patterns 567

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/using-async-await.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/using-a-callback-function.html
https://www.npmjs.com/package/@types/aws-lambda

AWS Lambda Developer Guide

Note

When processing arrays of items asynchronously, make sure to use await with
Promise.all to ensure all operations complete. Methods like forEach don't wait for
async callbacks to complete. For more information, see Array.prototype.forEach() in the
Mozilla documentation.

Using callbacks

Callback handlers can use the event, context, and callback arguments. The callback argument
expects an Error and a response, which must be JSON-serializable.

Here are the valid signatures for the callback handler pattern:

• Event and callback object:

export const handler = (event: S3Event, callback: Callback<void>): void => { };

• Event, context, and callback objects:

export const handler = (event: S3Event, context: Context, callback: Callback<void>):
 void => { };

The function continues to execute until the event loop is empty or the function times out. The
response isn't sent to the invoker until all event loop tasks are finished. If the function times out,
an error is returned instead. You can configure the runtime to send the response immediately by
setting context.callbackWaitsForEmptyEventLoop to false.

Example TypeScript function with callback

The following example uses APIGatewayProxyCallback, which is a specialized callback type
specific to API Gateway integrations. Most AWS event sources use the generic Callback type
shown in the signatures above.

import { Context, APIGatewayProxyCallback, APIGatewayEvent } from 'aws-lambda';

export const lambdaHandler = (event: APIGatewayEvent, context: Context, callback:
 APIGatewayProxyCallback): void => {

Valid handler patterns 568

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

AWS Lambda Developer Guide

 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 callback(null, {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 });
};

Using the SDK for JavaScript v3 in your handler

Often, you’ll use Lambda functions to interact with or make updates to other AWS resources.
The simplest way to interface with these resources is to use the AWS SDK for JavaScript. All
supported Lambda Node.js runtimes include the SDK for JavaScript version 3. However, we strongly
recommend that you include the AWS SDK clients that you need in your deployment package. This
maximizes backward compatibility during future Lambda runtime updates.

To add SDK dependencies to your function, use the npm install command for the specific SDK
clients that you need. In the example code, we used the Amazon S3 client. Add this dependency by
running the following command in the directory that contains your package.json file:

npm install @aws-sdk/client-s3

In the function code, import the client and commands that you need, as the example function
demonstrates:

import { S3Client, PutObjectCommand } from '@aws-sdk/client-s3';

Then, initialize an Amazon S3 client:

const s3Client = new S3Client();

In this example, we initialized our Amazon S3 client outside of the main handler function to avoid
having to initialize it every time we invoke our function. After you initialize your SDK client, you
can then use it to make API calls for that AWS service. The example code calls the Amazon S3
PutObject API action as follows:

const command = new PutObjectCommand({

Using the SDK for JavaScript 569

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/introduction/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/s3/command/PutObjectCommand/

AWS Lambda Developer Guide

 Bucket: bucketName,
 Key: key,
 Body: receiptContent
});

Accessing environment variables

In your handler code, you can reference any environment variables by using process.env. In this
example, we reference the defined RECEIPT_BUCKET environment variable using the following
lines of code:

// Access environment variables
const bucketName = process.env.RECEIPT_BUCKET;
if (!bucketName) {
 throw new Error('RECEIPT_BUCKET environment variable is not set');
}

Using global state

Lambda runs your static code during the initialization phase before invoking your function for the
first time. Resources created during initialization stay in memory between invocations, so you can
avoid having to create them every time you invoke your function.

In the example code, the S3 client initialization code is outside the handler. The runtime initializes
the client before the function handles its first event, and the client remains available for reuse
across all invocations.

Code best practices for TypeScript Lambda functions

Follow these guidelines when building Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function.

• Control the dependencies in your function's deployment package. The AWS Lambda
execution environment contains a number of libraries. For the Node.js and Python runtimes,
these include the AWS SDKs. To enable the latest set of features and security updates, Lambda
will periodically update these libraries. These updates may introduce subtle changes to the
behavior of your Lambda function. To have full control of the dependencies your function uses,
package all of your dependencies with your deployment package.

Accessing environment variables 570

AWS Lambda Developer Guide

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation.

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully

Best practices 571

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://docs.aws.amazon.com/lambda/latest/api/welcome.html

AWS Lambda Developer Guide

handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Best practices 572

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Deploy transpiled TypeScript code in Lambda with .zip file
archives

Before you can deploy TypeScript code to AWS Lambda, you need to transpile it into JavaScript.
This page explains three ways to build and deploy TypeScript code to Lambda with .zip file
archives:

• Using AWS Serverless Application Model (AWS SAM)

• Using the AWS Cloud Development Kit (AWS CDK)

• Using the AWS Command Line Interface (AWS CLI) and esbuild

AWS SAM and AWS CDK simplify building and deploying TypeScript functions. The AWS SAM
template specification provides a simple and clean syntax to describe the Lambda functions, APIs,
permissions, configurations, and events that make up your serverless application. The AWS CDK
lets you build reliable, scalable, cost-effective applications in the cloud with the considerable
expressive power of a programming language. The AWS CDK is intended for moderately to highly
experienced AWS users. Both the AWS CDK and the AWS SAM use esbuild to transpile TypeScript
code into JavaScript.

Using AWS SAM to deploy TypeScript code to Lambda

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application using the AWS SAM. This application implements a basic API backend. It consists of an
Amazon API Gateway endpoint and a Lambda function. When you send a GET request to the API
Gateway endpoint, the Lambda function is invoked. The function returns a hello world message.

Note

AWS SAM uses esbuild to create Node.js Lambda functions from TypeScript code. esbuild
support is currently in public preview. During public preview, esbuild support may be
subject to backwards incompatible changes.

Prerequisites

To complete the steps in this section, you must have the following:

Deploy .zip file archives 573

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html

AWS Lambda Developer Guide

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later

• Node.js

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-typescript --name sam-app --package-type Zip --
runtime nodejs22.x

2. (Optional) The sample application includes configurations for commonly used tools, such as
ESLlint for code linting and Jest for unit testing. To run lint and test commands:

cd sam-app/hello-world
npm install
npm run lint
npm run test

3. Build the app.

cd sam-app
sam build

4. Deploy the app.

sam deploy --guided

5. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, respond with Enter.

6. The output shows the endpoint for the REST API. Open the endpoint in a browser to test the
function. You should see this response:

{"message":"hello world"}

7. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using AWS SAM 574

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://eslint.org/
https://jestjs.io/

AWS Lambda Developer Guide

Using the AWS CDK to deploy TypeScript code to Lambda

Follow the steps below to build and deploy a sample TypeScript application using the AWS CDK.
This application implements a basic API backend. It consists of an API Gateway endpoint and
a Lambda function. When you send a GET request to the API Gateway endpoint, the Lambda
function is invoked. The function returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• AWS CDK version 2

• Node.js

• Either Docker or esbuild

Deploy a sample AWS CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language typescript

3. Add the @types/aws-lambda package as a development dependency. This package contains
the type definitions for Lambda.

npm install -D @types/aws-lambda

4. Open the lib directory. You should see a file called hello-world-stack.ts. Create two new files
in this directory: hello-world.function.ts and hello-world.ts.

5. Open hello-world.function.ts and add the following code to the file. This is the code for the
Lambda function.

Using the AWS CDK 575

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://www.docker.com/get-started/
https://esbuild.github.io/
https://www.npmjs.com/package/@types/aws-lambda

AWS Lambda Developer Guide

Note

The import statement imports the type definitions from @types/aws-lambda. It does
not import the aws-lambda NPM package, which is an unrelated third-party tool. For
more information, see aws-lambda in the DefinitelyTyped GitHub repository.

import { Context, APIGatewayProxyResult, APIGatewayEvent } from 'aws-lambda';

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

6. Open hello-world.ts and add the following code to the file. This contains the NodejsFunction
construct, which creates the Lambda function, and the LambdaRestApi construct, which
creates the REST API.

import { Construct } from 'constructs';
import { NodejsFunction } from 'aws-cdk-lib/aws-lambda-nodejs';
import { LambdaRestApi } from 'aws-cdk-lib/aws-apigateway';

export class HelloWorld extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);
 const helloFunction = new NodejsFunction(this, 'function');
 new LambdaRestApi(this, 'apigw', {
 handler: helloFunction,
 });
 }
}

The NodejsFunction construct assumes the following by default:

Using the AWS CDK 576

https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway.LambdaRestApi.html

AWS Lambda Developer Guide

• Your function handler is called handler.

• The .ts file that contains the function code (hello-world.function.ts) is in the same directory
as the .ts file that contains the construct (hello-world.ts). The construct uses the construct's
ID ("hello-world") and the name of the Lambda handler file ("function") to find the function
code. For example, if your function code is in a file called hello-world.my-function.ts, the
hello-world.ts file must reference the function code like this:

const helloFunction = new NodejsFunction(this, 'my-function');

You can change this behavior and configure other esbuild parameters. For more information,
see Configuring esbuild in the AWS CDK API reference.

7. Open hello-world-stack.ts. This is the code that defines your AWS CDK stack. Replace the code
with the following:

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { HelloWorld } from './hello-world';

export class HelloWorldStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);
 new HelloWorld(this, 'hello-world');
 }
}

8. from the hello-world directory containing your cdk.json file, deploy your application.

cdk deploy

9. The AWS CDK builds and packages the Lambda function using esbuild, and then deploys the
function to the Lambda runtime. The output shows the endpoint for the REST API. Open the
endpoint in a browser to test the function. You should see this response:

{"message":"hello world"}

This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

Using the AWS CDK 577

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html#configuring-esbuild
https://docs.aws.amazon.com/cdk/v2/guide/stacks.html

AWS Lambda Developer Guide

Using the AWS CLI and esbuild to deploy TypeScript code to Lambda

The following example demonstrates how to transpile and deploy TypeScript code to Lambda
using esbuild and the AWS CLI. esbuild produces one JavaScript file with all dependencies. This is
the only file that you need to add to the .zip archive.

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Node.js

• An execution role for the Lambda function

• For Windows users, a zip file utility such as 7zip.

Deploy a sample function

1. On your local machine, create a project directory for your new function.

2. Create a new Node.js project with npm or a package manager of your choice.

npm init

3. Add the @types/aws-lambda and esbuild packages as development dependencies. The
@types/aws-lambda package contains the type definitions for Lambda.

npm install -D @types/aws-lambda esbuild

4. Create a new file called index.ts. Add the following code to the new file. This is the code for
the Lambda function. The function returns a hello world message. The function doesn’t
create any API Gateway resources.

Note

The import statement imports the type definitions from @types/aws-lambda. It does
not import the aws-lambda NPM package, which is an unrelated third-party tool. For
more information, see aws-lambda in the DefinitelyTyped GitHub repository.

Using the AWS CLI and esbuild 578

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.7-zip.org/download.html
https://www.npmjs.com/package/@types/aws-lambda
https://esbuild.github.io/
https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda

AWS Lambda Developer Guide

import { Context, APIGatewayProxyResult, APIGatewayEvent } from 'aws-lambda';

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

5. Add a build script to the package.json file. This configures esbuild to automatically
create the .zip deployment package. For more information, see Build scripts in the esbuild
documentation.

Linux and MacOS

"scripts": {
 "prebuild": "rm -rf dist",
 "build": "esbuild index.ts --bundle --minify --sourcemap --platform=node --
target=es2020 --outfile=dist/index.js",
 "postbuild": "cd dist && zip -r index.zip index.js*"
},

Windows

In this example, the "postbuild" command uses the 7zip utility to create your .zip file.
Use your own preferred Windows zip utility and modify the command as necessary.

"scripts": {
 "prebuild": "del /q dist",
 "build": "esbuild index.ts --bundle --minify --sourcemap --platform=node --
target=es2020 --outfile=dist/index.js",
 "postbuild": "cd dist && 7z a -tzip index.zip index.js*"
},

6. Build the package.

Using the AWS CLI and esbuild 579

https://esbuild.github.io/getting-started/#build-scripts
https://www.7-zip.org/download.html

AWS Lambda Developer Guide

npm run build

7. Create a Lambda function using the .zip deployment package. Replace the highlighted text
with the Amazon Resource Name (ARN) of your execution role.

aws lambda create-function --function-name hello-world --runtime "nodejs22.x" --
role arn:aws:iam::123456789012:role/lambda-ex --zip-file "fileb://dist/index.zip"
 --handler index.handler

8. Run a test event to confirm that the function returns the following response. If you want to
invoke this function using API Gateway, create and configure a REST API.

{
 "statusCode": 200,
 "body": "{\"message\":\"hello world\"}"
}

Using the AWS CLI and esbuild 580

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-create-api.html

AWS Lambda Developer Guide

Deploy transpiled TypeScript code in Lambda with container
images

You can deploy your TypeScript code to an AWS Lambda function as a Node.js container image.
AWS provides base images for Node.js to help you build the container image. These base images
are preloaded with a language runtime and other components that are required to run the image
on Lambda. AWS provides a Dockerfile for each of the base images to help with building your
container image.

If you use a community or private enterprise base image, you must add the Node.js runtime
interface client (RIC) to the base image to make it compatible with Lambda.

Lambda provides a runtime interface emulator for local testing. The AWS base images for Node.js
include the runtime interface emulator. If you use an alternative base image, such as an Alpine
Linux or Debian image, you can build the emulator into your image or install it on your local
machine.

Using a Node.js base image to build and package TypeScript function
code

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

• Node.js 22.x

Creating an image from a base image

To create an image from an AWS base image for Lambda

1. On your local machine, create a project directory for your new function.

2. Create a new Node.js project with npm or a package manager of your choice.

npm init

Deploy container images 581

https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#test-an-image-without-adding-rie-to-the-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#test-an-image-without-adding-rie-to-the-image
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md

AWS Lambda Developer Guide

3. Add the @types/aws-lambda and esbuild packages as development dependencies. The
@types/aws-lambda package contains the type definitions for Lambda.

npm install -D @types/aws-lambda esbuild

4. Add a build script to the package.json file.

 "scripts": {
 "build": "esbuild index.ts --bundle --minify --sourcemap --platform=node --
target=es2020 --outfile=dist/index.js"
}

5. Create a new file called index.ts. Add the following sample code to the new file. This is the
code for the Lambda function. The function returns a hello world message.

Note

The import statement imports the type definitions from @types/aws-lambda. It does
not import the aws-lambda NPM package, which is an unrelated third-party tool. For
more information, see aws-lambda in the DefinitelyTyped GitHub repository.

import { Context, APIGatewayProxyResult, APIGatewayEvent } from 'aws-lambda';

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

6. Create a new Dockerfile with the following configuration:

• Set the FROM property to the URI of the base image.

• Set the CMD argument to specify the Lambda function handler.

Using a Node.js base image to build and package TypeScript function code 582

https://www.npmjs.com/package/@types/aws-lambda
https://esbuild.github.io/
https://esbuild.github.io/getting-started/#build-scripts
https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda

AWS Lambda Developer Guide

The following example Dockerfile uses a multi-stage build. The first step transpiles the
TypeScript code into JavaScript. The second step produces a container image that contains
only JavaScript files and production dependencies.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/lambda/nodejs:22 as builder
WORKDIR /usr/app
COPY package.json index.ts ./
RUN npm install
RUN npm run build

FROM public.ecr.aws/lambda/nodejs:22
WORKDIR ${LAMBDA_TASK_ROOT}
COPY --from=builder /usr/app/dist/* ./
CMD ["index.handler"]

7. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

Using a Node.js base image to build and package TypeScript function code 583

https://docs.docker.com/reference/dockerfile/#user
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

Using a Node.js base image to build and package TypeScript function code 584

AWS Lambda Developer Guide

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using a Node.js base image to build and package TypeScript function code 585

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using a Node.js base image to build and package TypeScript function code 586

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using a Node.js base image to build and package TypeScript function code 587

https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using a Node.js base image to build and package TypeScript function code 588

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Using the Lambda context object to retrieve TypeScript
function information

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

To enable type checking for the context object, you must add the @types/aws-lambda package
as a development dependency and import the Context type. For more information, see Type
definitions for Lambda.

Context methods

• getRemainingTimeInMillis() – Returns the number of milliseconds left before the
execution times out.

Context properties

• functionName – The name of the Lambda function.

• functionVersion – The version of the function.

• invokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• memoryLimitInMB – The amount of memory that's allocated for the function.

• awsRequestId – The identifier of the invocation request.

• logGroupName – The log group for the function.

• logStreamName – The log stream for the function instance.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• cognitoIdentityId – The authenticated Amazon Cognito identity.

• cognitoIdentityPoolId – The Amazon Cognito identity pool that authorized the
invocation.

• clientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• client.installation_id

Context 589

https://www.npmjs.com/package/@types/aws-lambda

AWS Lambda Developer Guide

• client.app_title

• client.app_version_name

• client.app_version_code

• client.app_package_name

• env.platform_version

• env.platform

• env.make

• env.model

• env.locale

• Custom – Custom values that are set by the client application.

• callbackWaitsForEmptyEventLoop – Set to false to send the response right away when the
callback runs, instead of waiting for the event loop to be empty. If this is false, any outstanding
events continue to run during the next invocation.

Example index.ts file

The following example function logs context information and returns the location of the logs.

Note

Before using this code in a Lambda function, you must add the @types/aws-lambda
package as a development dependency. This package contains the type definitions for
Lambda. For more information, see Type definitions for Lambda.

import { Context } from 'aws-lambda';
export const lambdaHandler = async (event: string, context: Context): Promise<string>
 => {
 console.log('Remaining time: ', context.getRemainingTimeInMillis());
 console.log('Function name: ', context.functionName);
 return context.logStreamName;
};

Context 590

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/using-a-callback-function.html
https://www.npmjs.com/package/@types/aws-lambda

AWS Lambda Developer Guide

Log and monitor TypeScript Lambda functions

AWS Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Sending Lambda function logs to CloudWatch Logs.

To output logs from your function code, you can use methods on the console object. For more
detailed logging, you can use any logging library that writes to stdout or stderr.

Sections

• Using logging tools and libraries

• Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging

• Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured logging

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

Using logging tools and libraries

Powertools for AWS Lambda (TypeScript) is a developer toolkit to implement Serverless best
practices and increase developer velocity. The Logger utility provides a Lambda optimized logger
which includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Logging 591

https://nodejs.org/docs/latest-v18.x/api/console.html
https://docs.powertools.aws.dev/lambda/typescript/latest/
https://docs.powertools.aws.dev/lambda/typescript/latest/core/logger/

AWS Lambda Developer Guide

Using Powertools for AWS Lambda (TypeScript) and AWS SAM for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for AWS Lambda (TypeScript) modules using the AWS SAM.
This application implements a basic API backend and uses Powertools for emitting logs, metrics,
and traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send
a GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js 20 or later

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-typescript --name sam-app --package-
type Zip --runtime nodejs22.x

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging 592

https://docs.powertools.aws.dev/lambda-typescript
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the AWS Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2025/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2025-08-31T09:33:10.552000
 START RequestId: 70693159-7e94-4102-a2af-98a6343fb8fb Version: $LATEST
2025/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2025-08-31T09:33:10.594000
 2025-08-31T09:33:10.557Z 70693159-7e94-4102-a2af-98a6343fb8fb
 INFO {"_aws":{"Timestamp":1661938390556,"CloudWatchMetrics":
[{"Namespace":"sam-app","Dimensions":[["service"]],"Metrics":
[{"Name":"ColdStart","Unit":"Count"}]}]},"service":"helloWorld","ColdStart":1}
2025/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2025-08-31T09:33:10.595000
 2025-08-31T09:33:10.595Z 70693159-7e94-4102-a2af-98a6343fb8fb INFO
 {"level":"INFO","message":"This is an INFO log - sending HTTP 200 - hello world
 response","service":"helloWorld","timestamp":"2025-08-31T09:33:10.594Z"}
2025/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2025-08-31T09:33:10.655000
 2025-08-31T09:33:10.655Z 70693159-7e94-4102-a2af-98a6343fb8fb INFO
 {"_aws":{"Timestamp":1661938390655,"CloudWatchMetrics":[{"Namespace":"sam-
app","Dimensions":[["service"]],"Metrics":[]}]},"service":"helloWorld"}

Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging 593

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

AWS Lambda Developer Guide

2025/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2025-08-31T09:33:10.754000 END
 RequestId: 70693159-7e94-4102-a2af-98a6343fb8fb
2025/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2025-08-31T09:33:10.754000
 REPORT RequestId: 70693159-7e94-4102-a2af-98a6343fb8fb Duration: 201.55 ms Billed
 Duration: 202 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration: 252.42
 ms
XRAY TraceId: 1-630f2ad5-1de22b6d29a658a466e7ecf5 SegmentId: 567c116658fbf11a
 Sampled: true

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your AWS SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for AWS Lambda (TypeScript) modules using the AWS CDK.
This application implements a basic API backend and uses Powertools for emitting logs, metrics,
and traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured logging 594

https://docs.powertools.aws.dev/lambda-typescript

AWS Lambda Developer Guide

a GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js 20 or later

• AWS CLI version 2

• AWS CDK version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language typescript

3. Add the @types/aws-lambda package as a development dependency.

npm install -D @types/aws-lambda

4. Install the Powertools Logger utility.

npm install @aws-lambda-powertools/logger

5. Open the lib directory. You should see a file called hello-world-stack.ts. Create new two new
files in this directory: hello-world.function.ts and hello-world.ts.

6. Open hello-world.function.ts and add the following code to the file. This is the code for the
Lambda function.

import { APIGatewayEvent, APIGatewayProxyResult, Context } from 'aws-lambda';

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured logging 595

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade
https://www.npmjs.com/package/@types/aws-lambda
https://docs.powertools.aws.dev/lambda-typescript/latest/core/logger/

AWS Lambda Developer Guide

import { Logger } from '@aws-lambda-powertools/logger';
const logger = new Logger();

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 logger.info('This is an INFO log - sending HTTP 200 - hello world response');
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

7. Open hello-world.ts and add the following code to the file. This contains the NodejsFunction
construct, which creates the Lambda function, configures environment variables for
Powertools, and sets log retention to one week. It also includes the LambdaRestApi construct,
which creates the REST API.

import { Construct } from 'constructs';
import { NodejsFunction } from 'aws-cdk-lib/aws-lambda-nodejs';
import { LambdaRestApi } from 'aws-cdk-lib/aws-apigateway';
import { RetentionDays } from 'aws-cdk-lib/aws-logs';
import { CfnOutput } from 'aws-cdk-lib';

export class HelloWorld extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);
 const helloFunction = new NodejsFunction(this, 'function', {
 environment: {
 Powertools_SERVICE_NAME: 'helloWorld',
 LOG_LEVEL: 'INFO',
 },
 logRetention: RetentionDays.ONE_WEEK,
 });
 const api = new LambdaRestApi(this, 'apigw', {
 handler: helloFunction,
 });
 new CfnOutput(this, 'apiUrl', {
 exportName: 'apiUrl',
 value: api.url,
 });
 }

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured logging 596

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway.LambdaRestApi.html

AWS Lambda Developer Guide

}

8. Open hello-world-stack.ts. This is the code that defines your AWS CDK stack. Replace the code
with the following:

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { HelloWorld } from './hello-world';

export class HelloWorldStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);
 new HelloWorld(this, 'hello-world');
 }
}

9. Go back to the project directory.

cd hello-world

10. Deploy your application.

cdk deploy

11. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?ExportName==`apiUrl`].OutputValue' --output text

12. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

13. To get the logs for the function, run sam logs. For more information, see Working with logs in
the AWS Serverless Application Model Developer Guide.

sam logs --stack-name HelloWorldStack

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured logging 597

https://docs.aws.amazon.com/cdk/v2/guide/stacks.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

AWS Lambda Developer Guide

The log output looks like this:

2025/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2025-08-31T14:48:37.047000
 START RequestId: 19ad1007-ff67-40ce-9afe-0af0a9eb512c Version: $LATEST
2025/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2025-08-31T14:48:37.050000 {
"level": "INFO",
"message": "This is an INFO log - sending HTTP 200 - hello world response",
"service": "helloWorld",
"timestamp": "2025-08-31T14:48:37.048Z",
"xray_trace_id": "1-630f74c4-2b080cf77680a04f2362bcf2"
}
2025/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2025-08-31T14:48:37.082000 END
 RequestId: 19ad1007-ff67-40ce-9afe-0af0a9eb512c
2025/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2025-08-31T14:48:37.082000
 REPORT RequestId: 19ad1007-ff67-40ce-9afe-0af0a9eb512c Duration: 34.60 ms Billed
 Duration: 35 ms Memory Size: 128 MB Max Memory Used: 57 MB Init Duration: 173.48
 ms

14. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

Viewing logs in the Lambda console 598

https://console.aws.amazon.com/cloudwatch/home?#logs:

AWS Lambda Developer Guide

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs in the CloudWatch console 599

AWS Lambda Developer Guide

Tracing TypeScript code in AWS Lambda

Lambda integrates with AWS X-Ray to help you trace, debug, and optimize Lambda applications.
You can use X-Ray to trace a request as it traverses resources in your application, which may include
Lambda functions and other AWS services.

To send tracing data to X-Ray, you can use one of three SDK libraries:

• AWS Distro for OpenTelemetry (ADOT) – A secure, production-ready, AWS-supported distribution
of the OpenTelemetry (OTel) SDK.

• AWS X-Ray SDK for Node.js – An SDK for generating and sending trace data to X-Ray.

• Powertools for AWS Lambda (TypeScript) – A developer toolkit to implement Serverless best
practices and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for AWS Lambda SDKs are part of a tightly integrated
instrumentation solution offered by AWS. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
AWS Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracing

• Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing

• Interpreting an X-Ray trace

Tracing 600

https://aws.amazon.com/otel
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs.html
https://docs.powertools.aws.dev/lambda-typescript/
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

AWS Lambda Developer Guide

Using Powertools for AWS Lambda (TypeScript) and AWS SAM for
tracing

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for AWS Lambda (TypeScript) modules using the AWS SAM.
This application implements a basic API backend and uses Powertools for emitting logs, metrics,
and traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send
a GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-typescript --name sam-app --package-
type Zip --runtime nodejs22.x --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracing 601

https://docs.powertools.aws.dev/lambda-typescript
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

XRay Event [revision 1] at (2023-01-31T11:29:40.527000) with id
 (1-11a2222-111a222222cb33de3b95daf9) and duration (0.483s)
 - 0.425s - sam-app/Prod [HTTP: 200]
 - 0.422s - Lambda [HTTP: 200]
 - 0.406s - sam-app-HelloWorldFunction-Xyzv11a1bcde [HTTP: 200]
 - 0.172s - sam-app-HelloWorldFunction-Xyzv11a1bcde
 - 0.179s - Initialization
 - 0.112s - Invocation
 - 0.052s - ## app.lambdaHandler
 - 0.001s - ### MySubSegment
 - 0.059s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracing 602

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

sam delete

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for
tracing

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for AWS Lambda (TypeScript) modules using the AWS CDK.
This application implements a basic API backend and uses Powertools for emitting logs, metrics,
and traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send
a GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js

• AWS CLI version 2

• AWS CDK version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS Cloud Development Kit (AWS CDK) application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 603

https://docs.powertools.aws.dev/lambda-typescript
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

cdk init app --language typescript

3. Add the @types/aws-lambda package as a development dependency.

npm install -D @types/aws-lambda

4. Install the Powertools Tracer utility.

npm install @aws-lambda-powertools/tracer

5. Open the lib directory. You should see a file called hello-world-stack.ts. Create new two new
files in this directory: hello-world.function.ts and hello-world.ts.

6. Open hello-world.function.ts and add the following code to the file. This is the code for the
Lambda function.

import { APIGatewayEvent, APIGatewayProxyResult, Context } from 'aws-lambda';
import { Tracer } from '@aws-lambda-powertools/tracer';
const tracer = new Tracer();

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 // Get facade segment created by Lambda
 const segment = tracer.getSegment();

 // Create subsegment for the function and set it as active
 const handlerSegment = segment.addNewSubsegment(`## ${process.env._HANDLER}`);
 tracer.setSegment(handlerSegment);

 // Annotate the subsegment with the cold start and serviceName
 tracer.annotateColdStart();
 tracer.addServiceNameAnnotation();

 // Add annotation for the awsRequestId
 tracer.putAnnotation('awsRequestId', context.awsRequestId);
 // Create another subsegment and set it as active
 const subsegment = handlerSegment.addNewSubsegment('### MySubSegment');
 tracer.setSegment(subsegment);
 let response: APIGatewayProxyResult = {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 604

https://www.npmjs.com/package/@types/aws-lambda
https://docs.powertools.aws.dev/lambda-typescript/latest/core/tracer/

AWS Lambda Developer Guide

 }),
 };
 // Close subsegments (the Lambda one is closed automatically)
 subsegment.close(); // (### MySubSegment)
 handlerSegment.close(); // (## index.handler)

 // Set the facade segment as active again (the one created by Lambda)
 tracer.setSegment(segment);
 return response;
};

7. Open hello-world.ts and add the following code to the file. This contains the NodejsFunction
construct, which creates the Lambda function, configures environment variables for
Powertools, and sets log retention to one week. It also includes the LambdaRestApi construct,
which creates the REST API.

import { Construct } from 'constructs';
import { NodejsFunction } from 'aws-cdk-lib/aws-lambda-nodejs';
import { LambdaRestApi } from 'aws-cdk-lib/aws-apigateway';
import { CfnOutput } from 'aws-cdk-lib';
import { Tracing } from 'aws-cdk-lib/aws-lambda';

export class HelloWorld extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);
 const helloFunction = new NodejsFunction(this, 'function', {
 environment: {
 POWERTOOLS_SERVICE_NAME: 'helloWorld',
 },
 tracing: Tracing.ACTIVE,
 });
 const api = new LambdaRestApi(this, 'apigw', {
 handler: helloFunction,
 });
 new CfnOutput(this, 'apiUrl', {
 exportName: 'apiUrl',
 value: api.url,
 });
 }
}

8. Open hello-world-stack.ts. This is the code that defines your AWS CDK stack. Replace the code
with the following:

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 605

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway.LambdaRestApi.html
https://docs.aws.amazon.com/cdk/v2/guide/stacks.html

AWS Lambda Developer Guide

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { HelloWorld } from './hello-world';

export class HelloWorldStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);
 new HelloWorld(this, 'hello-world');
 }
}

9. Deploy your application.

cd ..
cdk deploy

10. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?ExportName==`apiUrl`].OutputValue' --output text

11. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

12. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

XRay Event [revision 1] at (2023-01-31T11:50:06.997000) with id
 (1-11a2222-111a222222cb33de3b95daf9) and duration (0.449s)
 - 0.350s - HelloWorldStack-helloworldfunction111A2BCD-Xyzv11a1bcde [HTTP: 200]
 - 0.157s - HelloWorldStack-helloworldfunction111A2BCD-Xyzv11a1bcde
 - 0.169s - Initialization

Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 606

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

 - 0.058s - Invocation
 - 0.055s - ## index.handler
 - 0.000s - ### MySubSegment
 - 0.099s - Overhead

13. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Interpreting an X-Ray trace

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray trace map provides information about your application and all its components. The
following example shows a trace from the sample application:

Interpreting an X-Ray trace 607

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-servicemap.html

AWS Lambda Developer Guide

Building Lambda functions with Python

You can run Python code in AWS Lambda. Lambda provides runtimes for Python that run your code
to process events. Your code runs in an environment that includes the SDK for Python (Boto3), with
credentials from an AWS Identity and Access Management (IAM) role that you manage. To learn
more about the SDK versions included with the Python runtimes, see the section called “Runtime-
included SDK versions”.

Lambda supports the following Python runtimes.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Python 3.13 python3.1
3

Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

Python 3.12 python3.1
2

Amazon
Linux 2023

Oct 31, 2028 Nov 30, 2028 Jan 10, 2029

Python 3.11 python3.1
1

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Python 3.10 python3.1
0

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Python 3.9 python3.9 Amazon
Linux 2

Dec 15, 2025 Feb 3, 2026 Mar 9, 2026

To create a Python function

1. Open the Lambda console.

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Python 3.13.

608

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

4. Choose Create function.

The console creates a Lambda function with a single source file named lambda_function. You
can edit this file and add more files in the built-in code editor. In the DEPLOY section, choose
Deploy to update your function's code. Then, to run your code, choose Create test event in the
TEST EVENTS section.

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Runtime-included SDK versions

• Experimental features in Python 3.13

• Response format

• Graceful shutdown for extensions

• Define Lambda function handler in Python

• Working with .zip file archives for Python Lambda functions

• Deploy Python Lambda functions with container images

• Working with layers for Python Lambda functions

• Using the Lambda context object to retrieve Python function information

• Log and monitor Python Lambda functions

• AWS Lambda function testing in Python

• Instrumenting Python code in AWS Lambda

Runtime-included SDK versions

The version of the AWS SDK included in the Python runtime depends on the runtime version and
your AWS Region. To find the version of the SDK included in the runtime you're using, create a
Lambda function with the following code.

import boto3
import botocore

Runtime-included SDK versions 609

AWS Lambda Developer Guide

def lambda_handler(event, context):
 print(f'boto3 version: {boto3.__version__}')
 print(f'botocore version: {botocore.__version__}')

Experimental features in Python 3.13

The Python 3.13 managed runtime and base images do not support the following experimental
features. You cannot enable these features using runtime flags. To use these features in a Lambda
function, you must deploy a custom runtime or container image containing your own build of
Python 3.13.

• Free-threaded CPython: You cannot disable the global interpreter lock.

• Just-in-time (JIT) compiler: You cannot enable the JIT compiler.

Response format

In Python 3.12 and later Python runtimes, functions return Unicode characters as part of their
JSON response. Earlier Python runtimes return escaped sequences for Unicode characters in
responses. For example, in Python 3.11, if you return a Unicode string such as "こんにちは", it
escapes the Unicode characters and returns "\u3053\u3093\u306b\u3061\u306f". The Python
3.12 runtime returns the original "こんにちは".

Using Unicode responses reduces the size of Lambda responses, making it easier to fit larger
responses into the 6 MB maximum payload size for synchronous functions. In the previous
example, the escaped version is 32 bytes—compared to 17 bytes with the Unicode string.

When you upgrade to Python 3.12 or later Python runtimes, you might need to adjust your code
to account for the new response format. If the caller expects escaped Unicode, you must either add
code to the returning function to escape the Unicode manually, or adjust the caller to handle the
Unicode return.

Graceful shutdown for extensions

Python 3.12 and later Python runtimes offer improved graceful shutdown capabilities for functions
with external extensions. When Lambda shuts down an execution environment, it sends a SIGTERM
signal to the runtime and then a SHUTDOWN event to each registered external extension. You

Experimental features in Python 3.13 610

https://docs.python.org/3/howto/free-threading-python.html
https://docs.python.org/3.13/whatsnew/3.13.html#an-experimental-just-in-time-jit-compiler

AWS Lambda Developer Guide

can catch the SIGTERM signal in your Lambda function and clean up resources such as database
connections that were created by the function.

To learn more about the execution environment lifecycle, see Understanding the Lambda execution
environment lifecycle. For examples of how to use graceful shutdown with extensions, see the AWS
Samples GitHub repository.

Graceful shutdown for extensions 611

https://github.com/aws-samples/graceful-shutdown-with-aws-lambda
https://github.com/aws-samples/graceful-shutdown-with-aws-lambda

AWS Lambda Developer Guide

Define Lambda function handler in Python

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in Python, including naming
conventions, valid handler signatures, and code best practices. This page also includes an example
of a Python Lambda function that takes in information about an order, produces a text file receipt,
and puts this file in an Amazon Simple Storage Service (Amazon S3) bucket.

Topics

• Example Python Lambda function code

• Handler naming conventions

• Using the Lambda event object

• Accessing and using the Lambda context object

• Valid handler signatures for Python handlers

• Returning a value

• Using the AWS SDK for Python (Boto3) in your handler

• Accessing environment variables

• Code best practices for Python Lambda functions

Example Python Lambda function code

The following example Python Lambda function code takes in information about an order,
produces a text file receipt, and puts this file in an Amazon S3 bucket:

Example Python Lambda function

import json
import os
import logging
import boto3

Initialize the S3 client outside of the handler
s3_client = boto3.client('s3')

Handler 612

AWS Lambda Developer Guide

Initialize the logger
logger = logging.getLogger()
logger.setLevel("INFO")

def upload_receipt_to_s3(bucket_name, key, receipt_content):
 """Helper function to upload receipt to S3"""

 try:
 s3_client.put_object(
 Bucket=bucket_name,
 Key=key,
 Body=receipt_content
)
 except Exception as e:
 logger.error(f"Failed to upload receipt to S3: {str(e)}")
 raise

def lambda_handler(event, context):
 """
 Main Lambda handler function
 Parameters:
 event: Dict containing the Lambda function event data
 context: Lambda runtime context
 Returns:
 Dict containing status message
 """
 try:
 # Parse the input event
 order_id = event['Order_id']
 amount = event['Amount']
 item = event['Item']

 # Access environment variables
 bucket_name = os.environ.get('RECEIPT_BUCKET')
 if not bucket_name:
 raise ValueError("Missing required environment variable RECEIPT_BUCKET")

 # Create the receipt content and key destination
 receipt_content = (
 f"OrderID: {order_id}\n"
 f"Amount: ${amount}\n"
 f"Item: {item}"
)
 key = f"receipts/{order_id}.txt"

Example Python Lambda function code 613

AWS Lambda Developer Guide

 # Upload the receipt to S3
 upload_receipt_to_s3(bucket_name, key, receipt_content)

 logger.info(f"Successfully processed order {order_id} and stored receipt in S3
 bucket {bucket_name}")

 return {
 "statusCode": 200,
 "message": "Receipt processed successfully"
 }

 except Exception as e:
 logger.error(f"Error processing order: {str(e)}")
 raise

This file contains the following sections of code:

• import block: Use this block to include libraries that your Lambda function requires.

• Global initialization of SDK client and logger: Including initialization code outside of the handler
takes advantage of execution environment re-use to improve the performance of your function.
See the section called “Code best practices for Python Lambda functions” to learn more.

• def upload_receipt_to_s3(bucket_name, key, receipt_content): This is a helper
function that's called by the main lambda_handler function.

• def lambda_handler(event, context): This is the main handler function for your code,
which contains your main application logic. When Lambda invokes your function handler, the
Lambda runtime passes two arguments to the function, the event object that contains data for
your function to process and the context object that contains information about the function
invocation.

Handler naming conventions

The function handler name defined at the time that you create a Lambda function is derived from:

• The name of the file in which the Lambda handler function is located.

• The name of the Python handler function.

Handler naming conventions 614

AWS Lambda Developer Guide

In the example above, if the file is named lambda_function.py, the handler would be specified
as lambda_function.lambda_handler. This is the default handler name given to functions you
create using the Lambda console.

If you create a function in the console using a different file name or function handler name, you
must edit the default handler name.

To change the function handler name (console)

1. Open the Functions page of the Lambda console and choose your function.

2. Choose the Code tab.

3. Scroll down to the Runtime settings pane and choose Edit.

4. In Handler, enter the new name for your function handler.

5. Choose Save.

Using the Lambda event object

When Lambda invokes your function, it passes an event object argument to the function handler.
JSON objects are the most common event format for Lambda functions. In the code example in the
previous section, the function expects an input in the following format:

{
 "Order_id": "12345",
 "Amount": 199.99,
 "Item": "Wireless Headphones"
}

If your function is invoked by another AWS service, the input event is also a JSON object. The
exact format of the event object depends on the service that's invoking your function. To see the
event format for a particular service, refer to the appropriate page in the Integrating other services
chapter.

If the input event is in the form of a JSON object, the Lambda runtime converts the object to a
Python dictionary. To assign values in the input JSON to variables in your code, use the standard
Python dictionary methods as illustrated in the example code.

You can also pass data into your function as a JSON array, or as any of the other valid JSON data
types. The following table defines how the Python runtime converts these JSON types.

Using the Lambda event object 615

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

JSON data type Python data type

object dictionary (dict)

array list (list)

number integer (int) or floating point number
(float)

string string (str)

Boolean Boolean (bool)

null NoneType (NoneType)

Accessing and using the Lambda context object

The Lambda context object contains information about the function invocation and execution
environment. Lambda passes the context object to your function automatically when it's invoked.
You can use the context object to output information about your function's invocation for
monitoring purposes.

The context object is a Python class that's defined in the Lambda runtime interface client. To
return the value of any of the context object properties, use the corresponding method on the
context object. For example, the following code snippet assigns the value of the aws_request_id
property (the identifier for the invocation request) to a variable named request.

request = context.aws_request_id

To learn more about using the Lambda context object, and to see a complete list of the available
methods and properties, see the section called “Context”.

Valid handler signatures for Python handlers

When defining your handler function in Python, the function must take two arguments. The first
of these arguments is the Lambda event object and the second one is the Lambda context object.
By convention, these input arguments are usually named event and context, but you can give
them any names you wish. If you declare your handler function with a single input argument,

Accessing and using the Lambda context object 616

https://github.com/aws/aws-lambda-python-runtime-interface-client/blob/main/awslambdaric/lambda_context.py

AWS Lambda Developer Guide

Lambda will raise an error when it attempts to run your function. The most common way to declare
a handler function in Python is as follows:

def lambda_handler(event, context):

You can also use Python type hints in your function declaration, as shown in the following
example:

from typing import Dict, Any

def lambda_handler(event: Dict[str, Any], context: Any) -> Dict[str, Any]:

To use specific AWS typing for events generated by other AWS services and for the context object,
add the aws-lambda-typing package to your function's deployment package. You can install this
library in your development environment by running pip install aws-lambda-typing. The
following code snippet shows how to use AWS-specific type hints. In this example, the expected
event is an Amazon S3 event.

from aws_lambda_typing.events import S3Event
from aws_lambda_typing.context import Context
from typing import Dict, Any

def lambda_handler(event: S3Event, context: Context) -> Dict[str, Any]:

You can't use the Python async function type for your handler function.

Returning a value

Optionally, a handler can return a value, which must be JSON serializable. Common return types
include dict, list, str, int, float, and bool.

What happens to the returned value depends on the invocation type and the service that invoked
the function. For example:

• If you use the RequestResponse invocation type to invoke a Lambda function synchronously,
Lambda returns the result of the Python function call to the client invoking the Lambda function
(in the HTTP response to the invocation request, serialized into JSON). For example, AWS
Lambda console uses the RequestResponse invocation type, so when you invoke the function
on the console, the console will display the returned value.

Returning a value 617

AWS Lambda Developer Guide

• If the handler returns objects that can't be serialized by json.dumps, the runtime returns an
error.

• If the handler returns None, as Python functions without a return statement implicitly do, the
runtime returns null.

• If you use the Event invocation type (an asynchronous invocation), the value is discarded.

In the example code, the handler returns the following Python dictionary:

{
 "statusCode": 200,
 "message": "Receipt processed successfully"
}

The Lambda runtime serializes this dictionary and returns it to the client that invoked the function
as a JSON string.

Note

In Python 3.9 and later releases, Lambda includes the requestId of the invocation in the
error response.

Using the AWS SDK for Python (Boto3) in your handler

Often, you'll use Lambda functions to interact with other AWS services and resources. The
simplest way to interface with these resources is to use the AWS SDK for Python (Boto3). All
supported Lambda Python runtimes include a version of the SDK for Python. However, we strongly
recommend that you include the SDK in your function's deployment package if your code needs to
use it. Including the SDK in your deployment package gives you full control over your dependencies
and reduces the risk of version misalignment issues with other libraries. See the section called
“Runtime dependencies in Python” and the section called “Backward compatibility” to learn more.

To use the SDK for Python in your Lambda function, add the following statement to the import
block at the beginning of your function code:

import boto3

Using the AWS SDK for Python (Boto3) in your handler 618

AWS Lambda Developer Guide

Use the pip install command to add the boto3 library to your function's deployment
package. For detailed instructions on how to add dependencies to a .zip deployment package,
see the section called “Creating a .zip deployment package with dependencies”. To learn more
about adding dependencies to Lambda functions deployed as container images, see the section
called “Creating an image from a base image” or the section called “Creating an image from an
alternative base image”.

When using boto3 in your code, you don't need to provide any credentials to initialize a client. For
example, in the example code, we use the following line of code to initialize an Amazon S3 client:

Initialize the S3 client outside of the handler
s3_client = boto3.client('s3')

With Python, Lambda automatically creates environment variables with credentials. The boto3
SDK checks your function's environment variables for these credentials during initialization.

Accessing environment variables

In your handler code, you can reference environment variables by using the os.environ.get
method. In the example code, we reference the defined RECEIPT_BUCKET environment variable
using the following line of code:

Access environment variables
bucket_name = os.environ.get('RECEIPT_BUCKET')

Don't forget to include an import os statement in the import block at the beginning of your
code.

Code best practices for Python Lambda functions

Adhere to the guidelines in the following list to use best coding practices when building your
Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function. For example, in Python, this may look like:

def lambda_handler(event, context):
 foo = event['foo']

Accessing environment variables 619

AWS Lambda Developer Guide

 bar = event['bar']
 result = my_lambda_function(foo, bar)

def my_lambda_function(foo, bar):
 // MyLambdaFunction logic here

• Control the dependencies in your function's deployment package. The AWS Lambda execution
environment contains a number of libraries. For the Node.js and Python runtimes, these include
the AWS SDKs. To enable the latest set of features and security updates, Lambda will periodically
update these libraries. These updates may introduce subtle changes to the behavior of your
Lambda function. To have full control of the dependencies your function uses, package all of
your dependencies with your deployment package.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation.

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of

Code best practices for Python Lambda functions 620

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Code best practices for Python Lambda functions 621

https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Working with .zip file archives for Python Lambda functions

Your AWS Lambda function’s code comprises a .py file containing your function’s handler code,
together with any additional packages and modules your code depends on. To deploy this function
code to Lambda, you use a deployment package. This package may either be a .zip file archive or
a container image. For more information about using container images with Python, see Deploy
Python Lambda functions with container images.

To create your deployment package as .zip file archive, you can use your command-line tool’s
built-in .zip file archive utility, or any other .zip file utility such as 7zip. The examples shown in the
following sections assume you’re using a command-line zip tool in a Linux or MacOS environment.
To use the same commands in Windows, you can install the Windows Subsystem for Linux to get a
Windows-integrated version of Ubuntu and Bash.

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

Topics

• Runtime dependencies in Python

• Creating a .zip deployment package with no dependencies

• Creating a .zip deployment package with dependencies

• Dependency search path and runtime-included libraries

• Using __pycache__ folders

• Creating .zip deployment packages with native libraries

• Creating and updating Python Lambda functions using .zip files

Runtime dependencies in Python

For Lambda functions that use the Python runtime, a dependency can be any Python package
or module. When you deploy your function using a .zip archive, you can either add these
dependencies to your .zip file with your function code or use a Lambda layer. A layer is a
separate .zip file that can contain additional code and other content. To learn more about using
Lambda layers in Python, see the section called “Layers”.

The Lambda Python runtimes include the AWS SDK for Python (Boto3) and its dependencies.
Lambda provides the SDK in the runtime for deployment scenarios where you are unable to add
your own dependencies. These scenarios include creating functions in the console using the built-

Deploy .zip file archives 622

https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://www.7-zip.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/

AWS Lambda Developer Guide

in code editor or using inline functions in AWS Serverless Application Model (AWS SAM) or AWS
CloudFormation templates.

Lambda periodically updates the libraries in the Python runtime to include the latest updates and
security patches. If your function uses the version of the Boto3 SDK included in the runtime but
your deployment package includes SDK dependencies, this can cause version misalignment issues.
For example, your deployment package could include the SDK dependency urllib3. When Lambda
updates the SDK in the runtime, compatibility issues between the new version of the runtime and
the version of urllib3 in your deployment package can cause your function to fail.

Important

To maintain full control over your dependencies and to avoid possible version misalignment
issues, we recommend you add all of your function’s dependencies to your deployment
package, even if versions of them are included in the Lambda runtime. This includes the
Boto3 SDK.

To find out which version of the SDK for Python (Boto3) is included in the runtime you're using, see
the section called “Runtime-included SDK versions”.

Under the AWS shared responsibility model, you are responsible for the management of any
dependencies in your functions' deployment packages. This includes applying updates and security
patches. To update dependencies in your function's deployment package, first create a new .zip
file and then upload it to Lambda. See Creating a .zip deployment package with dependencies and
Creating and updating Python Lambda functions using .zip files for more information.

Creating a .zip deployment package with no dependencies

If your function code has no dependencies, your .zip file contains only the .py file with your
function’s handler code. Use your preferred zip utility to create a .zip file with your .py file at the
root. If the .py file is not at the root of your .zip file, Lambda won’t be able to run your code.

To learn how to deploy your .zip file to create a new Lambda function or update an existing one,
see Creating and updating Python Lambda functions using .zip files.

Creating a .zip deployment package with dependencies

If your function code depends on additional packages or modules, you can either add these
dependencies to your .zip file with your function code or use a Lambda layer. The instructions

Creating a .zip deployment package with no dependencies 623

https://docs.aws.amazon.com/whitepapers/latest/aws-risk-and-compliance/shared-responsibility-model.html

AWS Lambda Developer Guide

in this section show you how to include your dependencies in your .zip deployment package.
For Lambda to run your code, the .py file containing your handler code and all of your function's
dependencies must be installed at the root of the .zip file.

Suppose your function code is saved in a file named lambda_function.py. The following
example CLI commands create a .zip file named my_deployment_package.zip containing your
function code and its dependencies. You can either install your dependencies directly to a folder in
your project directory or use a Python virtual environment.

To create the deployment package (project directory)

1. Navigate to the project directory containing your lambda_function.py source code file. In
this example, the directory is named my_function.

cd my_function

2. Create a new directory named package into which you will install your dependencies.

mkdir package

Note that for a .zip deployment package, Lambda expects your source code and its
dependencies all to be at the root of the .zip file. However, installing dependencies directly
in your project directory can introduce a large number of new files and folders and make
navigating around your IDE difficult. You create a separate package directory here to keep
your dependencies separate from your source code.

3. Install your dependencies in the package directory. The example below installs the Boto3
SDK from the Python Package Index using pip. If your function code uses Python packages you
have created yourself, save them in the package directory.

pip install --target ./package boto3

4. Create a .zip file with the installed libraries at the root.

cd package
zip -r ../my_deployment_package.zip .

This generates a my_deployment_package.zip file in your project directory.

5. Add the lambda_function.py file to the root of the .zip file

Creating a .zip deployment package with dependencies 624

AWS Lambda Developer Guide

cd ..
zip my_deployment_package.zip lambda_function.py

Your .zip file should have a flat directory structure, with your function's handler code and all
your dependency folders installed at the root as follows.

my_deployment_package.zip
|- bin
| |-jp.py
|- boto3
| |-compat.py
| |-data
| |-docs
...
|- lambda_function.py

If the .py file containing your function’s handler code is not at the root of your .zip file, Lambda
will not be able to run your code.

To create the deployment package (virtual environment)

1. Create and activate a virtual environment in your project directory. In this example the project
directory is named my_function.

~$ cd my_function
~/my_function$ python3.13 -m venv my_virtual_env
~/my_function$ source ./my_virtual_env/bin/activate

2. Install your required libraries using pip. The following example installs the Boto3 SDK

(my_virtual_env) ~/my_function$ pip install boto3

3. Use pip show to find the location in your virtual environment where pip has installed your
dependencies.

(my_virtual_env) ~/my_function$ pip show <package_name>

Creating a .zip deployment package with dependencies 625

AWS Lambda Developer Guide

The folder in which pip installs your libraries may be named site-packages or dist-
packages. This folder may be located in either the lib/python3.x or lib64/python3.x
directory (where python3.x represents the version of Python you are using).

4. Deactivate the virtual environment

(my_virtual_env) ~/my_function$ deactivate

5. Navigate into the directory containing the dependencies you installed with pip and create
a .zip file in your project directory with the installed dependencies at the root. In this example,
pip has installed your dependencies in the my_virtual_env/lib/python3.13/site-
packages directory.

~/my_function$ cd my_virtual_env/lib/python3.13/site-packages
~/my_function/my_virtual_env/lib/python3.13/site-packages$ zip -r ../../../../
my_deployment_package.zip .

6. Navigate to the root of your project directory where the .py file containing your handler code
is located and add that file to the root of your .zip package. In this example, your function code
file is named lambda_function.py.

~/my_function/my_virtual_env/lib/python3.13/site-packages$ cd ../../../../
~/my_function$ zip my_deployment_package.zip lambda_function.py

Dependency search path and runtime-included libraries

When you use an import statement in your code, the Python runtime searches the directories
in its search path until it finds the module or package. By default, the first location the runtime
searches is the directory into which your .zip deployment package is decompressed and mounted
(/var/task). If you include a version of a runtime-included library in your deployment package,
your version will take precedence over the version that's included in the runtime. Dependencies in
your deployment package also have precedence over dependencies in layers.

When you add a dependency to a layer, Lambda extracts this to /opt/python/lib/python3.x/
site-packages (where python3.x represents the version of the runtime you're using) or /opt/
python. In the search path, these directories have precedence over the directories containing
the runtime-included libraries and pip-installed libraries (/var/runtime and /var/lang/

Dependency search path and runtime-included libraries 626

AWS Lambda Developer Guide

lib/python3.x/site-packages). Libraries in function layers therefore have precedence over
versions included in the runtime.

Note

In the Python 3.11 managed runtime and base image, the AWS SDK and its dependencies
are installed in the /var/lang/lib/python3.11/site-packages directory.

You can see the full search path for your Lambda function by adding the following code snippet.

import sys

search_path = sys.path
print(search_path)

Note

Because dependencies in your deployment package or layers take precedence over
runtime-included libraries, this can cause version misalignment problems if you include
an SDK dependency such as urllib3 in your package without including the SDK as well.
If you deploy your own version of a Boto3 dependency, you must also deploy Boto3 as a
dependency in your deployment package. We recommend that you package all of your
function’s dependencies, even if versions of them are included in the runtime.

You can also add dependencies in a separate folder inside your .zip package. For example, you
might add a version of the Boto3 SDK to a folder in your .zip package called common. When
your .zip package is decompressed and mounted, this folder is placed inside the /var/task
directory. To use a dependency from a folder in your .zip deployment package in your code, use an
import from statement. For example, to use a version of Boto3 from a folder named common in
your .zip package, use the following statement.

from common import boto3

Dependency search path and runtime-included libraries 627

AWS Lambda Developer Guide

Using __pycache__ folders

We recommend that you don't include __pycache__ folders in your function's deployment
package. Python bytecode that's compiled on a build machine with a different architecture or
operating system might not be compatible with the Lambda execution environment.

Creating .zip deployment packages with native libraries

If your function uses only pure Python packages and modules, you can use the pip install
command to install your dependencies on any local build machine and create your .zip file. Many
popular Python libraries, including NumPy and Pandas, are not pure Python and contain code
written in C or C++. When you add libraries containing C/C++ code to your deployment package,
you must build your package correctly to ensure that it’s compatible with the Lambda execution
environment.

Most packages available on the Python Package Index (PyPI) are available as “wheels” (.whl files).
A .whl file is a type of ZIP file which contains a built distribution with pre-compiled binaries for a
particular operating system and instruction set architecture. To make your deployment package
compatible with Lambda, you install the wheel for Linux operating systems and your function’s
instruction set architecture.

Some packages may only be available as source distributions. For these packages, you need to
compile and build the C/C++ components yourself.

To see what distributions are available for your required package, do the following:

1. Search for the name of the package on the Python Package Index main page.

2. Choose the version of the package you want to use.

3. Choose Download files.

Working with built distributions (wheels)

To download a wheel that’s compatible with Lambda, you use the pip --platform option.

If your Lambda function uses the x86_64 instruction set architecture, run the following pip
install command to install a compatible wheel in your package directory. Replace --python
3.x with the version of the Python runtime you are using.

pip install \

Using __pycache__ folders 628

https://pypi.org/
https://pypi.org/

AWS Lambda Developer Guide

--platform manylinux2014_x86_64 \
--target=package \
--implementation cp \
--python-version 3.x \
--only-binary=:all: --upgrade \
<package_name>

If your function uses the arm64 instruction set architecture, run the following command. Replace
--python 3.x with the version of the Python runtime you are using.

pip install \
--platform manylinux2014_aarch64 \
--target=package \
--implementation cp \
--python-version 3.x \
--only-binary=:all: --upgrade \
<package_name>

Working with source distributions

If your package is only available as a source distribution, you need to build the C/C++ libraries
yourself. To make your package compatible with the Lambda execution environment, you need to
build it in an environment that uses the same Amazon Linux operating system. You can do this by
building your package in an Amazon Elastic Compute Cloud (Amazon EC2) Linux instance.

To learn how to launch and connect to an Amazon EC2 Linux instance, see Get started with
Amazon EC2 in the Amazon EC2 User Guide.

Creating and updating Python Lambda functions using .zip files

After you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the AWS Command Line Interface, and the Lambda API. You can also create and update Lambda
functions using AWS Serverless Application Model (AWS SAM) and AWS CloudFormation.

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

Creating and updating Python Lambda functions using .zip files 629

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS Lambda Developer Guide

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give a non-executable file the correct permissions, run
the following command.

chmod 644 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Note

If you don't grant Lambda the permissions it needs to access directories in your deployment
package, Lambda sets the permissions for those directories to 755 (rwxr-xr-x).

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
AWS Management Console, see Getting started with Amazon S3. To upload files using the AWS CLI,
see Move objects in the AWS CLI User Guide.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

Creating and updating Python Lambda functions using .zip files 630

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Creating and updating Python Lambda functions using .zip files 631

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Updating .zip file functions using the console code editor

For some functions with .zip deployment packages, you can use the Lambda console’s built-in
code editor to update your function code directly. To use this feature, your function must meet the
following criteria:

• Your function must use one of the interpreted language runtimes (Python, Node.js, or Ruby)

• Your function’s deployment package must be smaller than 50 MB (unzipped).

Function code for functions with container image deployment packages cannot be edited directly
in the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. In the DEPLOY section, choose Deploy to update your function's code:

Creating and updating functions with .zip files using the AWS CLI

You can can use the AWS CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move
objects in the AWS CLI User Guide.

Creating and updating Python Lambda functions using .zip files 632

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

AWS Lambda Developer Guide

Note

If you upload your .zip file from an Amazon S3 bucket using the AWS CLI, the bucket must
be located in the same AWS Region as your function.

To create a new function using a .zip file with the AWS CLI, you must specify the following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime python3.13 --handler lambda_function.lambda_handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime python3.13 --handler lambda_function.lambda_handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \

Creating and updating Python Lambda functions using .zip files 633

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Lambda Developer Guide

--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket amzn-s3-demo-bucket --s3-key myFileName.zip --s3-object-version myObject
 Version

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction
• UpdateFunctionCode

Creating and updating functions with .zip files using AWS SAM

The AWS Serverless Application Model (AWS SAM) is a toolkit that helps streamline the process of
building and running serverless applications on AWS. You define the resources for your application
in a YAML or JSON template and use the AWS SAM command line interface (AWS SAM CLI) to build,
package, and deploy your applications. When you build a Lambda function from an AWS SAM
template, AWS SAM automatically creates a .zip deployment package or container image with your
function code and any dependencies you specify. To learn more about using AWS SAM to build
and deploy Lambda functions, see Getting started with AWS SAM in the AWS Serverless Application
Model Developer Guide.

You can also use AWS SAM to create a Lambda function using an existing .zip file archive. To create
a Lambda function using AWS SAM, you can save your .zip file in an Amazon S3 bucket or in a local
folder on your build machine. For instructions on how to upload a file to an Amazon S3 bucket
using the AWS CLI, see Move objects in the AWS CLI User Guide.

In your AWS SAM template, the AWS::Serverless::Function resource specifies your Lambda
function. In this resource, set the following properties to create a function using a .zip file archive:

• PackageType - set to Zip
• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object
• Runtime - Set to your chosen runtime

Creating and updating Python Lambda functions using .zip files 634

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html

AWS Lambda Developer Guide

With AWS SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. AWS SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

Creating and updating functions with .zip files using AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function using a .zip file archive. To create
a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket. For
instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move objects
in the AWS CLI User Guide.

For Node.js and Python runtimes, you can also provide inline source code in your AWS
CloudFormation template. AWS CloudFormation then creates a .zip file containing your code when
you build your function.

Using an existing .zip file

In your AWS CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip
• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key

fields
• Runtime - Set to your chosen runtime

Creating a .zip file from inline code

You can declare simple functions written in Python or Node.js inline in an AWS CloudFormation
template. Because the code is embedded in YAML or JSON, you can't add any external
dependenices to your deployment package. This means your function has to use the version of
the AWS SDK that's included in the runtime. The requirements of the template, such as having
to escape certain characters, also make it harder to use your IDE's syntax checking and code
completion features. This means that your template might require additional testing. Because
of these limitations, declaring functions inline is best suited for very simple code that does not
change frequently.

Creating and updating Python Lambda functions using .zip files 635

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

AWS Lambda Developer Guide

To create a .zip file from inline code for Node.js and Python runtimes, set the following properties
in your template’s AWS::Lambda::Function resource:

• PackageType - Set to Zip
• Code - Enter your function code in the ZipFile field
• Runtime - Set to your chosen runtime

The .zip file that AWS CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in AWS CloudFormation, see AWS::Lambda::Function in the AWS
CloudFormation User Guide.

Creating and updating Python Lambda functions using .zip files 636

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

Deploy Python Lambda functions with container images

There are three ways to build a container image for a Python Lambda function:

• Using an AWS base image for Python

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Python in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Python in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• AWS base images for Python

• Using an AWS base image for Python

• Using an alternative base image with the runtime interface client

Deploy container images 637

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

AWS base images for Python

AWS provides the following base images for Python:

Tags Runtime Operating
system

Dockerfile Deprecation

3.13 Python
3.13

Amazon
Linux 2023

Dockerfile for Python 3.13
on GitHub

Jun 30, 2029

3.12 Python
3.12

Amazon
Linux 2023

Dockerfile for Python 3.12
on GitHub

Oct 31, 2028

3.11 Python
3.11

Amazon
Linux 2

Dockerfile for Python 3.11
on GitHub

Jun 30, 2026

3.10 Python
3.10

Amazon
Linux 2

Dockerfile for Python 3.10
on GitHub

Jun 30, 2026

3.9 Python 3.9 Amazon
Linux 2

Dockerfile for Python 3.9
on GitHub

Dec 15, 2025

Amazon ECR repository: gallery.ecr.aws/lambda/python

Python 3.12 and later base images are based on the Amazon Linux 2023 minimal container image.
The Python 3.8-3.11 base images are based on the Amazon Linux 2 image. AL2023-based images
provide several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

AWS base images for Python 638

https://github.com/aws/aws-lambda-base-images/blob/python3.13/Dockerfile.python3.13
https://github.com/aws/aws-lambda-base-images/blob/python3.13/Dockerfile.python3.13
https://github.com/aws/aws-lambda-base-images/blob/python3.12/Dockerfile.python3.12
https://github.com/aws/aws-lambda-base-images/blob/python3.12/Dockerfile.python3.12
https://github.com/aws/aws-lambda-base-images/blob/python3.11/Dockerfile.python3.11
https://github.com/aws/aws-lambda-base-images/blob/python3.11/Dockerfile.python3.11
https://github.com/aws/aws-lambda-base-images/blob/python3.10/Dockerfile.python3.10
https://github.com/aws/aws-lambda-base-images/blob/python3.10/Dockerfile.python3.10
https://github.com/aws/aws-lambda-base-images/blob/python3.9/Dockerfile.python3.9
https://github.com/aws/aws-lambda-base-images/blob/python3.9/Dockerfile.python3.9
https://gallery.ecr.aws/lambda/python
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

Dependency search path in the base images

When you use an import statement in your code, the Python runtime searches the directories
in its search path until it finds the module or package. By default, the runtime searches the
{LAMBDA_TASK_ROOT} directory first. If you include a version of a runtime-included library in your
image, your version will take precedence over the version that's included in the runtime.

Other steps in the search path depend on which version of the Lambda base image for Python
you're using:

• Python 3.11 and later: Runtime-included libraries and pip-installed libraries are installed in
the /var/lang/lib/python3.11/site-packages directory. This directory has precedence
over /var/runtime in the search path. You can override the SDK by using pip to install a
newer version. You can use pip to verify that the runtime-included SDK and its dependencies are
compatible with any packages that you install.

• Python 3.8-3.10: Runtime-included libraries are installed in the /var/runtime directory. Pip-
installed libraries are installed in the /var/lang/lib/python3.x/site-packages directory.
The /var/runtime directory has precedence over /var/lang/lib/python3.x/site-
packages in the search path.

You can see the full search path for your Lambda function by adding the following code snippet.

import sys

search_path = sys.path
print(search_path)

Using an AWS base image for Python

Prerequisites

To complete the steps in this section, you must have the following:

Using an AWS base image 639

AWS Lambda Developer Guide

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

• Python

Creating an image from a base image

To create a container image from an AWS base image for Python

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called lambda_function.py. You can add the following sample function
code to the file for testing, or use your own.

Example Python function

import sys
def handler(event, context):
 return 'Hello from AWS Lambda using Python' + sys.version + '!'

3. Create a new file called requirements.txt. If you're using the sample function code from
the previous step, you can leave the file empty because there are no dependencies. Otherwise,
list each required library. For example, here's what your requirements.txt should look like
if your function uses the AWS SDK for Python (Boto3):

Example requirements.txt

boto3

4. Create a new Dockerfile with the following configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Using an AWS base image 640

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md
https://gallery.ecr.aws/lambda/python/

AWS Lambda Developer Guide

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/lambda/python:3.12

Copy requirements.txt
COPY requirements.txt ${LAMBDA_TASK_ROOT}

Install the specified packages
RUN pip install -r requirements.txt

Copy function code
COPY lambda_function.py ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["lambda_function.handler"]

5. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

Using an AWS base image 641

https://docs.docker.com/reference/dockerfile/#user
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

Using an AWS base image 642

AWS Lambda Developer Guide

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using an AWS base image 643

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using an AWS base image 644

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using an AWS base image 645

https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Runtime API, which
manages the interaction between Lambda and your function code.

Install the the runtime interface client for Python using the pip package manager:

pip install awslambdaric

You can also download the Python runtime interface client from GitHub.

The following example demonstrates how to build a container image for Python using a non-AWS
base image. The example Dockerfile uses an official Python base image. The Dockerfile includes the
runtime interface client for Python.

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

Using a non-AWS base image 646

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://pypi.org/project/awslambdaric
https://github.com/aws/aws-lambda-python-runtime-interface-client/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

• The Docker buildx plugin.

• Python

Creating an image from an alternative base image

To create a container image from a non-AWS base image

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called lambda_function.py. You can add the following sample function
code to the file for testing, or use your own.

Example Python function

import sys
def handler(event, context):
 return 'Hello from AWS Lambda using Python' + sys.version + '!'

3. Create a new file called requirements.txt. If you're using the sample function code from
the previous step, you can leave the file empty because there are no dependencies. Otherwise,
list each required library. For example, here's what your requirements.txt should look like
if your function uses the AWS SDK for Python (Boto3):

Example requirements.txt

boto3

4. Create a new Dockerfile. The following Dockerfile uses an official Python base image instead
of an AWS base image. The Dockerfile includes the runtime interface client, which makes the
image compatible with Lambda. The following example Dockerfile uses a multi-stage build.

• Set the FROM property to the base image.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD to the Lambda function handler.

Using a non-AWS base image 647

https://github.com/docker/buildx/blob/master/README.md
https://pypi.org/project/awslambdaric
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds

AWS Lambda Developer Guide

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

Define custom function directory
ARG FUNCTION_DIR="/function"

FROM python:3.12 AS build-image

Include global arg in this stage of the build
ARG FUNCTION_DIR

Copy function code
RUN mkdir -p ${FUNCTION_DIR}
COPY . ${FUNCTION_DIR}

Install the function's dependencies
RUN pip install \
 --target ${FUNCTION_DIR} \
 awslambdaric

Use a slim version of the base Python image to reduce the final image size
FROM python:3.12-slim

Include global arg in this stage of the build
ARG FUNCTION_DIR
Set working directory to function root directory
WORKDIR ${FUNCTION_DIR}

Copy in the built dependencies
COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR}

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["/usr/local/bin/python", "-m", "awslambdaric"]
Pass the name of the function handler as an argument to the runtime
CMD ["lambda_function.handler"]

Using a non-AWS base image 648

https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

5. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or use the following procedure to install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

Using a non-AWS base image 649

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image

AWS Lambda Developer Guide

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• /usr/local/bin/python -m awslambdaric lambda_function.handler is the
ENTRYPOINT followed by the CMD from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /usr/local/bin/python -m awslambdaric lambda_function.handler

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /usr/local/bin/python -m awslambdaric lambda_function.handler

Using a non-AWS base image 650

AWS Lambda Developer Guide

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

Using a non-AWS base image 651

AWS Lambda Developer Guide

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {

Using a non-AWS base image 652

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

Using a non-AWS base image 653

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

Using a non-AWS base image 654

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

For an example of how to create a Python image from an Alpine base image, see Container image
support for Lambda on the AWS Blog.

Using a non-AWS base image 655

https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/

AWS Lambda Developer Guide

Working with layers for Python Lambda functions

Use Lambda layers to package code and dependencies that you want to reuse across multiple
functions. Layers usually contain library dependencies, a custom runtime, or configuration files.
Creating a layer involves three general steps:

1. Package your layer content. This means creating a .zip file archive that contains the
dependencies you want to use in your functions.

2. Create the layer in Lambda.

3. Add the layer to your functions.

Topics

• Package your layer content

• Create the layer in Lambda

• Add the layer to your function

• Sample app

Package your layer content

To create a layer, bundle your packages into a .zip file archive that meets the following
requirements:

• Build the layer using the same Python version that you plan to use for the Lambda function.
For example, if you build your layer using Python 3.13, use the Python 3.13 runtime for your
function.

• Your .zip file must include a python directory at the root level.

• The packages in your layer must be compatible with Linux. Lambda functions run on Amazon
Linux.

You can create layers that contain either third-party Python libraries installed with pip (such as
requests or pandas) or your own Python modules and packages.

Layers 656

AWS Lambda Developer Guide

Third-party dependencies

To create a layer using pip packages

1. Choose one of the following methods to install pip packages into the required top-level
directory (python/):

pip install

For pure Python packages (like requests or boto3):

pip install requests -t python/

Some Python packages, such as NumPy and Pandas, include compiled C components. If
you're building a layer with these packages on macOS or Windows, you might need to use
this command to install a Linux-compatible wheel:

pip install numpy --platform manylinux2014_x86_64 --only-binary=:all: -t python/

For more information about working with Python packages that contain compiled
components, see Creating .zip deployment packages with native libraries.

requirements.txt

Using a requirements.txt file helps you manage package versions and ensure consistent
installations.

Example requirements.txt

requests==2.31.0
boto3==1.37.34
numpy==1.26.4

If your requirements.txt file includes only pure Python packages (like requests or
boto3):

pip install -r requirements.txt -t python/

Package your layer content 657

AWS Lambda Developer Guide

Some Python packages, such as NumPy and Pandas, include compiled C components. If
you're building a layer with these packages on macOS or Windows, you might need to use
this command to install a Linux-compatible wheel:

pip install -r requirements.txt --platform manylinux2014_x86_64 --only-
binary=:all: -t python/

For more information about working with Python packages that contain compiled
components, see Creating .zip deployment packages with native libraries.

2. Zip the contents of the python directory.

Linux/macOS

zip -r layer.zip python/

PowerShell

Compress-Archive -Path .\python -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

python/ # Required top-level directory
requests/
boto3/
numpy/
(dependencies of the other packages)

Note

If you use a Python virtual environment (venv) to install packages, your directory
structure will be different (for example, python/lib/python3.x/site-packages).
As long as your .zip file includes the python directory at the root level, Lambda can
locate and import your packages.

Package your layer content 658

AWS Lambda Developer Guide

Custom Python modules

To create a layer using your own code

1. Create the required top-level directory for your layer:

mkdir python

2. Create your Python modules in the python directory. The following example module validates
orders by confirming that they contain the required information.

Example custom module: validator.py

import json

def validate_order(order_data):
 """Validates an order and returns formatted data."""
 required_fields = ['product_id', 'quantity']

 # Check required fields
 missing_fields = [field for field in required_fields if field not in
 order_data]
 if missing_fields:
 raise ValueError(f"Missing required fields: {', '.join(missing_fields)}")

 # Validate quantity
 quantity = order_data['quantity']
 if not isinstance(quantity, int) or quantity < 1:
 raise ValueError("Quantity must be a positive integer")

 # Format and return the validated data
 return {
 'product_id': str(order_data['product_id']),
 'quantity': quantity,
 'shipping_priority': order_data.get('priority', 'standard')
 }

def format_response(status_code, body):
 """Formats the API response."""
 return {
 'statusCode': status_code,
 'body': json.dumps(body)

Package your layer content 659

AWS Lambda Developer Guide

 }

3. Zip the contents of the python directory.

Linux/macOS

zip -r layer.zip python/

PowerShell

Compress-Archive -Path .\python -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

python/ # Required top-level directory
validator.py

4. In your function, import and use the modules as you would with any Python package. Example:

from validator import validate_order, format_response
import json

def lambda_handler(event, context):
 try:
 # Parse the order data from the event body
 order_data = json.loads(event.get('body', '{}'))

 # Validate and format the order
 validated_order = validate_order(order_data)

 return format_response(200, {
 'message': 'Order validated successfully',
 'order': validated_order
 })
 except ValueError as e:
 return format_response(400, {
 'error': str(e)
 })
 except Exception as e:
 return format_response(500, {
 'error': 'Internal server error'

Package your layer content 660

AWS Lambda Developer Guide

 })

You can use the following test event to invoke the function:

{
 "body": "{\"product_id\": \"ABC123\", \"quantity\": 2, \"priority\": \"express
\"}"
}

Expected response:

{
 "statusCode": 200,
 "body": "{\"message\": \"Order validated successfully\", \"order\": {\"product_id
\": \"ABC123\", \"quantity\": 2, \"shipping_priority\": \"express\"}}"
}

Create the layer in Lambda

You can publish your layer using either the AWS CLI or the Lambda console.

AWS CLI

Run the publish-layer-version AWS CLI command to create the Lambda layer:

aws lambda publish-layer-version --layer-name my-layer --zip-file fileb://layer.zip
 --compatible-runtimes python3.13

The compatible runtimes parameter is optional. When specified, Lambda uses this parameter to
filter layers in the Lambda console.

Console

To create a layer (console)

1. Open the Layers page of the Lambda console.

2. Choose Create layer.

3. Choose Upload a .zip file, and then upload the .zip archive that you created earlier.

Create the layer in Lambda 661

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes
https://console.aws.amazon.com/lambda/home#/layers

AWS Lambda Developer Guide

4. (Optional) For Compatible runtimes, choose the Python runtime that corresponds to the
Python version you used to build your layer.

5. Choose Create.

Add the layer to your function

AWS CLI

To attach the layer to your function, run the update-function-configuration AWS CLI command.
For the --layers parameter, use the layer ARN. The ARN must specify the version (for
example, arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1). For more
information, see Layers and layer versions.

aws lambda update-function-configuration --function-name my-function --cli-binary-
format raw-in-base64-out --layers "arn:aws:lambda:us-east-1:123456789012:layer:my-
layer:1"

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

Console

To add a layer to a function

1. Open the Functions page of the Lambda console.

2. Choose the function.

3. Scroll down to the Layers section, and then choose Add a layer.

4. Under Choose a layer, select Custom layers, and then choose your layer.

Note

If you didn't add a compatible runtime when you created the layer, your layer won't
be listed here. You can specify the layer ARN instead.

5. Choose Add.

Add the layer to your function 662

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes

AWS Lambda Developer Guide

Sample app

For more examples of how to use Lambda layers, see the layer-python sample application in the
AWS Lambda Developer Guide GitHub repository. This application includes two layers that contain
Python libraries. After creating the layers, you can deploy and invoke the corresponding functions
to confirm that the layers work as expected.

Sample app 663

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-python

AWS Lambda Developer Guide

Using the Lambda context object to retrieve Python function
information

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment. For more information on how the context object is passed to the function handler,
see Define Lambda function handler in Python.

Context methods

• get_remaining_time_in_millis – Returns the number of milliseconds left before the
execution times out.

Context properties

• function_name – The name of the Lambda function.

• function_version – The version of the function.

• invoked_function_arn – The Amazon Resource Name (ARN) that's used to invoke the
function. Indicates if the invoker specified a version number or alias.

• memory_limit_in_mb – The amount of memory that's allocated for the function.

• aws_request_id – The identifier of the invocation request.

• log_group_name – The log group for the function.

• log_stream_name – The log stream for the function instance.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• cognito_identity_id – The authenticated Amazon Cognito identity.

• cognito_identity_pool_id – The Amazon Cognito identity pool that authorized the
invocation.

• client_context – (mobile apps) Client context that's provided to Lambda by the client
application.

• client.installation_id

• client.app_title

• client.app_version_name

• client.app_version_code

Context 664

AWS Lambda Developer Guide

• client.app_package_name

• custom – A dict of custom values set by the mobile client application.

• env – A dict of environment information provided by the AWS SDK.

Powertools for Lambda (Python) provides an interface definition for the Lambda context object.
You can use the interface definition for type hints, or to further inspect the structure of the
Lambda context object. For the interface definition, see lambda_context.py in the powertools-
lambda-python repository on GitHub.

The following example shows a handler function that logs context information.

Example handler.py

import time

def lambda_handler(event, context):
 print("Lambda function ARN:", context.invoked_function_arn)
 print("CloudWatch log stream name:", context.log_stream_name)
 print("CloudWatch log group name:", context.log_group_name)
 print("Lambda Request ID:", context.aws_request_id)
 print("Lambda function memory limits in MB:", context.memory_limit_in_mb)
 # We have added a 1 second delay so you can see the time remaining in
 get_remaining_time_in_millis.
 time.sleep(1)
 print("Lambda time remaining in MS:", context.get_remaining_time_in_millis())

In addition to the options listed above, you can also use the AWS X-Ray SDK for Instrumenting
Python code in AWS Lambda to identify critical code paths, trace their performance and capture
the data for analysis.

Context 665

https://github.com/aws-powertools/powertools-lambda-python/blob/develop/aws_lambda_powertools/utilities/typing/lambda_context.py

AWS Lambda Developer Guide

Log and monitor Python Lambda functions

AWS Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Sending Lambda function logs to CloudWatch Logs.

To output logs from your function code, you can use the built-in logging module. For more
detailed entries, you can use any logging library that writes to stdout or stderr.

Printing to the log

To send basic output to the logs, you can use a print method in your function. The following
example logs the values of the CloudWatch Logs log group and stream, and the event object.

Note that if your function outputs logs using Python print statements, Lambda can only send log
outputs to CloudWatch Logs in plain text format. To capture logs in structured JSON, you need to
use a supported logging library. See the section called “Using Lambda advanced logging controls
with Python” for more information.

Example lambda_function.py

import os
def lambda_handler(event, context):
 print('## ENVIRONMENT VARIABLES')
 print(os.environ['AWS_LAMBDA_LOG_GROUP_NAME'])
 print(os.environ['AWS_LAMBDA_LOG_STREAM_NAME'])
 print('## EVENT')
 print(event)

Example log output

START RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Version: $LATEST
ENVIRONMENT VARIABLES
/aws/lambda/my-function
2023/08/31/[$LATEST]3893xmpl7fac4485b47bb75b671a283c
EVENT
{'key': 'value'}

Logging 666

https://docs.python.org/3/library/logging.html

AWS Lambda Developer Guide

END RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95
REPORT RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Duration: 15.74 ms Billed
 Duration: 16 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 130.49 ms
XRAY TraceId: 1-5e34a614-10bdxmplf1fb44f07bc535a1 SegmentId: 07f5xmpl2d1f6f85
 Sampled: true

The Python runtime logs the START, END, and REPORT lines for each invocation. The REPORT line
includes the following data:

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using a logging library

For more detailed logs, use the logging module in the standard library, or any third party logging
library that writes to stdout or stderr.

For supported Python runtimes, you can choose whether logs created using the standard logging
module are captured in plain text or JSON. To learn more, see the section called “Using Lambda
advanced logging controls with Python”.

Currently, the default log format for all Python runtimes is plain text. The following example
shows how log outputs created using the standard logging module are captured in plain text in
CloudWatch Logs.

Using a logging library 667

https://docs.python.org/3/library/logging.html

AWS Lambda Developer Guide

import os
import logging
logger = logging.getLogger()
logger.setLevel("INFO")

def lambda_handler(event, context):
 logger.info('## ENVIRONMENT VARIABLES')
 logger.info(os.environ['AWS_LAMBDA_LOG_GROUP_NAME'])
 logger.info(os.environ['AWS_LAMBDA_LOG_STREAM_NAME'])
 logger.info('## EVENT')
 logger.info(event)

The output from logger includes the log level, timestamp, and request ID.

START RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Version: $LATEST
[INFO] 2023-08-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ##
 ENVIRONMENT VARIABLES
[INFO] 2023-08-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 /aws/
lambda/my-function
[INFO] 2023-08-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 2023/01/31/
[$LATEST]1bbe51xmplb34a2788dbaa7433b0aa4d
[INFO] 2023-08-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ## EVENT
[INFO] 2023-08-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 {'key':
 'value'}
END RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125
REPORT RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Duration: 2.75 ms Billed
 Duration: 3 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 113.51 ms
XRAY TraceId: 1-5e34a66a-474xmpl7c2534a87870b4370 SegmentId: 073cxmpl3e442861
 Sampled: true

Note

When your function's log format is set to plain text, the default log-level setting for Python
runtimes is WARN. This means that Lambda only sends log outputs of level WARN and
lower to CloudWatch Logs. To change the default log level, use the Python logging
setLevel() method as shown in this example code. If you set your function's log format
to JSON, we recommend that you configure your function's log level using Lambda
Advanced Logging Controls and not by setting the log level in code. To learn more, see the
section called “Using log-level filtering with Python”

Using a logging library 668

AWS Lambda Developer Guide

Using Lambda advanced logging controls with Python

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported Lambda Python runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to Amazon
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for Lambda
functions”.

To learn more about using the log format and log level options with your Python Lambda
functions, see the guidance in the following sections.

Using structured JSON logs with Python

If you select JSON for your function’s log format, Lambda will send logs output by the Python
standard logging library to CloudWatch as structured JSON. Each JSON log object contains at least
four key value pairs with the following keys:

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "requestId" - the unique request ID for the function invocation

The Python logging library can also add extra key value pairs such as "logger" to this JSON
object.

The examples in the following sections show how log outputs generated using the Python
logging library are captured in CloudWatch Logs when you configure your function's log format
as JSON.

Note that if you use the print method to produce basic log outputs as described in the section
called “Printing to the log”, Lambda will capture these outputs as plain text, even if you configure
your function’s logging format as JSON.

Using Lambda advanced logging controls with Python 669

AWS Lambda Developer Guide

Standard JSON log outputs using Python logging library

The following example code snippet and log output show how standard log outputs generated
using the Python logging library are captured in CloudWatch Logs when your function's log
format is set to JSON.

Example Python logging code

import logging
logger = logging.getLogger()

def lambda_handler(event, context):
 logger.info("Inside the handler function")

Example JSON log record

{
 "timestamp":"2023-10-27T19:17:45.586Z",
 "level":"INFO",
 "message":"Inside the handler function",
 "logger": "root",
 "requestId":"79b4f56e-95b1-4643-9700-2807f4e68189"
}

Logging extra parameters in JSON

When your function's log format is set to JSON, you can also log additional parameters with the
standard Python logging library by using the extra keyword to pass a Python dictionary to the
log output.

Example Python logging code

import logging

def lambda_handler(event, context):
 logging.info(
 "extra parameters example",
 extra={"a":"b", "b": [3]},
)

Using Lambda advanced logging controls with Python 670

AWS Lambda Developer Guide

Example JSON log record

{
 "timestamp": "2023-11-02T15:26:28Z",
 "level": "INFO",
 "message": "extra parameters example",
 "logger": "root",
 "requestId": "3dbd5759-65f6-45f8-8d7d-5bdc79a3bd01",
 "a": "b",
 "b": [
 3
]
}

Logging exceptions in JSON

The following code snippet shows how Python exceptions are captured in your function's log
output when you configure the log format as JSON. Note that log outputs generated using
logging.exception are assigned the log level ERROR.

Example Python logging code

import logging

def lambda_handler(event, context):
 try:
 raise Exception("exception")
 except:
 logging.exception("msg")

Example JSON log record

{
 "timestamp": "2023-11-02T16:18:57Z",
 "level": "ERROR",
 "message": "msg",
 "logger": "root",
 "stackTrace": [
 " File \"/var/task/lambda_function.py\", line 15, in lambda_handler\n raise
 Exception(\"exception\")\n"
],

Using Lambda advanced logging controls with Python 671

AWS Lambda Developer Guide

 "errorType": "Exception",
 "errorMessage": "exception",
 "requestId": "3f9d155c-0f09-46b7-bdf1-e91dab220855",
 "location": "/var/task/lambda_function.py:lambda_handler:17"
}

JSON structured logs with other logging tools

If your code already uses another logging library, such as Powertools for AWS Lambda, to produce
JSON structured logs, you don’t need to make any changes. AWS Lambda doesn’t double-encode
any logs that are already JSON encoded. Even if you configure your function to use the JSON log
format, your logging outputs appear in CloudWatch in the JSON structure you define.

The following example shows how log outputs generated using the Powertools for AWS Lambda
package are captured in CloudWatch Logs. The format of this log output is the same whether
your function’s logging configuration is set to JSON or TEXT. For more information about using
Powertools for AWS Lambda, see the section called “Using Powertools for AWS Lambda (Python)
and AWS SAM for structured logging” and the section called “Using Powertools for AWS Lambda
(Python) and AWS CDK for structured logging”

Example Python logging code snippet (using Powertools for AWS Lambda)

from aws_lambda_powertools import Logger

logger = Logger()

def lambda_handler(event, context):
 logger.info("Inside the handler function")

Example JSON log record (using Powertools for AWS Lambda)

{
 "level": "INFO",
 "location": "lambda_handler:7",
 "message": "Inside the handler function",
 "timestamp": "2023-10-31 22:38:21,010+0000",
 "service": "service_undefined",
 "xray_trace_id": "1-654181dc-65c15d6b0fecbdd1531ecb30"
}

Using Lambda advanced logging controls with Python 672

AWS Lambda Developer Guide

Using log-level filtering with Python

By configuring log-level filtering, you can choose to send only logs of a certain logging level or
lower to CloudWatch Logs. To learn how to configure log-level filtering for your function, see the
section called “Log-level filtering”.

For AWS Lambda to filter your application logs according to their log level, your function must use
JSON formatted logs. You can achieve this in two ways:

• Create log outputs using the standard Python logging library and configure your function to
use JSON log formatting. AWS Lambda then filters your log outputs using the “level” key value
pair in the JSON object described in the section called “Using structured JSON logs with Python”.
To learn how to configure your function’s log format, see the section called “Configuring
advanced logging controls for Lambda functions”.

• Use another logging library or method to create JSON structured logs in your code that include
a “level” key value pair defining the level of the log output. For example, you can use Powertools
for AWS Lambda to generate JSON structured log outputs from your code.

You can also use a print statement to output a JSON object containing a log level identifier. The
following print statement produces a JSON formatted output where the log level is set to INFO.
AWS Lambda will send the JSON object to CloudWatch Logs if your function’s logging level is set
to INFO, DEBUG, or TRACE.

print('{"msg":"My log message", "level":"info"}')

For Lambda to filter your function's logs, you must also include a "timestamp" key value pair in
your JSON log output. The time must be specified in valid RFC 3339 timestamp format. If you don't
supply a valid timestamp, Lambda will assign the log the level INFO and add a timestamp for you.

Viewing logs in Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in Lambda console 673

https://www.ietf.org/rfc/rfc3339.txt

AWS Lambda Developer Guide

Viewing logs in CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs with AWS CLI

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"

Viewing logs in CloudWatch console 674

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more

Viewing logs with AWS CLI 675

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,

Viewing logs with AWS CLI 676

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Using other logging tools and libraries

Powertools for AWS Lambda (Python) is a developer toolkit to implement Serverless best practices
and increase developer velocity. The Logger utility provides a Lambda optimized logger which
includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

Deleting logs 677

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.powertools.aws.dev/lambda/python/latest/
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/

AWS Lambda Developer Guide

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Using Powertools for AWS Lambda (Python) and AWS SAM for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for Python modules using the AWS SAM. This application implements
a basic API backend and uses Powertools for emitting logs, metrics, and traces. It consists of an
Amazon API Gateway endpoint and a Lambda function. When you send a GET request to the API
Gateway endpoint, the Lambda function invokes, sends logs and metrics using Embedded Metric
Format to CloudWatch, and sends traces to AWS X-Ray. The function returns a hello world
message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.9

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World Python template.

sam init --app-template hello-world-powertools-python --name sam-app --package-type
 Zip --runtime python3.9 --no-tracing

2. Build the app.

cd sam-app && sam build

Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 678

https://docs.powertools.aws.dev/lambda-python
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the AWS Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04
 2023-02-03T14:59:50.371000 INIT_START Runtime Version:
 python:3.9.v16 Runtime Version ARN: arn:aws:lambda:us-
east-1::runtime:07a48df201798d627f2b950f03bb227aab4a655a1d019c3296406f95937e2525
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.112000
 START RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Version: $LATEST
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.114000 {
 "level": "INFO",

Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 679

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

AWS Lambda Developer Guide

 "location": "hello:23",
 "message": "Hello world API - HTTP 200",
 "timestamp": "2023-02-03 14:59:51,113+0000",
 "service": "PowertoolsHelloWorld",
 "cold_start": true,
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "function_memory_size": "128",
 "function_arn": "arn:aws:lambda:us-east-1:111122223333:function:sam-app-
HelloWorldFunction-YBg8yfYtOc9j",
 "function_request_id": "d455cfc4-7704-46df-901b-2a5cce9405be",
 "correlation_id": "e73f8aef-5e07-436e-a30b-63e4b23f0047",
 "xray_trace_id": "1-63dd2166-434a12c22e1307ff2114f299"
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "function_name",
 "service"
]
],
 "Metrics": [
 {
 "Name": "ColdStart",
 "Unit": "Count"
 }
]
 }
]
 },
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "service": "PowertoolsHelloWorld",
 "ColdStart": [
 1.0
]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [

Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 680

AWS Lambda Developer Guide

 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "service"
]
],
 "Metrics": [
 {
 "Name": "HelloWorldInvocations",
 "Unit": "Count"
 }
]
 }
]
 },
 "service": "PowertoolsHelloWorld",
 "HelloWorldInvocations": [
 1.0
]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000 END
 RequestId: d455cfc4-7704-46df-901b-2a5cce9405be
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000
 REPORT RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Duration: 16.33 ms
 Billed Duration: 17 ms Memory Size: 128 MB Max Memory Used: 64 MB Init
 Duration: 739.46 ms
XRAY TraceId: 1-63dd2166-434a12c22e1307ff2114f299 SegmentId: 3c5d18d735a1ced0
 Sampled: true

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your AWS SAM
template:

Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 681

AWS Lambda Developer Guide

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Using Powertools for AWS Lambda (Python) and AWS CDK for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for AWS Lambda (Python) modules using the AWS CDK. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.9

• AWS CLI version 2

• AWS CDK version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS CDK application

1. Create a project directory for your new application.

mkdir hello-world

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 682

https://docs.powertools.aws.dev/lambda-python
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

cd hello-world

2. Initialize the app.

cdk init app --language python

3. Install the Python dependencies.

pip install -r requirements.txt

4. Create a directory lambda_function under the root folder.

mkdir lambda_function
cd lambda_function

5. Create a file app.py and add the following code to the file. This is the code for the Lambda
function.

from aws_lambda_powertools.event_handler import APIGatewayRestResolver
from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools.logging import correlation_paths
from aws_lambda_powertools import Logger
from aws_lambda_powertools import Tracer
from aws_lambda_powertools import Metrics
from aws_lambda_powertools.metrics import MetricUnit

app = APIGatewayRestResolver()
tracer = Tracer()
logger = Logger()
metrics = Metrics(namespace="PowertoolsSample")

@app.get("/hello")
@tracer.capture_method
def hello():
 # adding custom metrics
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/metrics/
 metrics.add_metric(name="HelloWorldInvocations", unit=MetricUnit.Count,
 value=1)

 # structured log
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/logger/
 logger.info("Hello world API - HTTP 200")
 return {"message": "hello world"}

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 683

AWS Lambda Developer Guide

Enrich logging with contextual information from Lambda
@logger.inject_lambda_context(correlation_id_path=correlation_paths.API_GATEWAY_REST)
Adding tracer
See: https://docs.powertools.aws.dev/lambda-python/latest/core/tracer/
@tracer.capture_lambda_handler
ensures metrics are flushed upon request completion/failure and capturing
 ColdStart metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event: dict, context: LambdaContext) -> dict:
 return app.resolve(event, context)

6. Open the hello_world directory. You should see a file called hello_world_stack.py.

cd ..
cd hello_world

7. Open hello_world_stack.py and add the following code to the file. This contains the Lambda
Constructor, which creates the Lambda function, configures environment variables for
Powertools and sets log retention to one week, and the ApiGatewayv1 Constructor, which
creates the REST API.

from aws_cdk import (
 Stack,
 aws_apigateway as apigwv1,
 aws_lambda as lambda_,
 CfnOutput,
 Duration
)
from constructs import Construct

class HelloWorldStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 # Powertools Lambda Layer
 powertools_layer = lambda_.LayerVersion.from_layer_version_arn(
 self,
 id="lambda-powertools",
 # At the moment we wrote this example, the aws_lambda_python_alpha CDK
 constructor is in Alpha, o we use layer to make the example simpler

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 684

https://docs.aws.amazon.com/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.aws.amazon.com/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.aws.amazon.com/cdk/api/v1/python/aws_cdk.aws_apigateway.html

AWS Lambda Developer Guide

 # See https://docs.aws.amazon.com/cdk/api/v2/python/
aws_cdk.aws_lambda_python_alpha/README.html
 # Check all Powertools layers versions here: https://
docs.powertools.aws.dev/lambda-python/latest/#lambda-layer
 layer_version_arn=f"arn:aws:lambda:
{self.region}:017000801446:layer:AWSLambdaPowertoolsPythonV2:21"
)

 function = lambda_.Function(self,
 'sample-app-lambda',
 runtime=lambda_.Runtime.PYTHON_3_9,
 layers=[powertools_layer],
 code = lambda_.Code.from_asset("./lambda_function/"),
 handler="app.lambda_handler",
 memory_size=128,
 timeout=Duration.seconds(3),
 architecture=lambda_.Architecture.X86_64,
 environment={
 "POWERTOOLS_SERVICE_NAME": "PowertoolsHelloWorld",
 "POWERTOOLS_METRICS_NAMESPACE": "PowertoolsSample",
 "LOG_LEVEL": "INFO"
 }
)

 apigw = apigwv1.RestApi(self, "PowertoolsAPI",
 deploy_options=apigwv1.StageOptions(stage_name="dev"))

 hello_api = apigw.root.add_resource("hello")
 hello_api.add_method("GET", apigwv1.LambdaIntegration(function,
 proxy=True))

 CfnOutput(self, "apiUrl", value=f"{apigw.url}hello")

8. Deploy your application.

cd ..
cdk deploy

9. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?OutputKey==`apiUrl`].OutputValue' --output text

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 685

AWS Lambda Developer Guide

10. Invoke the API endpoint:

curl GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

11. To get the logs for the function, run sam logs. For more information, see Working with logs in
the AWS Serverless Application Model Developer Guide.

sam logs --stack-name HelloWorldStack

The log output looks like this:

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04
 2023-02-03T14:59:50.371000 INIT_START Runtime Version:
 python:3.9.v16 Runtime Version ARN: arn:aws:lambda:us-
east-1::runtime:07a48df201798d627f2b950f03bb227aab4a655a1d019c3296406f95937e2525
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.112000
 START RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Version: $LATEST
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.114000 {
 "level": "INFO",
 "location": "hello:23",
 "message": "Hello world API - HTTP 200",
 "timestamp": "2023-02-03 14:59:51,113+0000",
 "service": "PowertoolsHelloWorld",
 "cold_start": true,
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "function_memory_size": "128",
 "function_arn": "arn:aws:lambda:us-east-1:111122223333:function:sam-app-
HelloWorldFunction-YBg8yfYtOc9j",
 "function_request_id": "d455cfc4-7704-46df-901b-2a5cce9405be",
 "correlation_id": "e73f8aef-5e07-436e-a30b-63e4b23f0047",
 "xray_trace_id": "1-63dd2166-434a12c22e1307ff2114f299"
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 686

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

AWS Lambda Developer Guide

 "Dimensions": [
 [
 "function_name",
 "service"
]
],
 "Metrics": [
 {
 "Name": "ColdStart",
 "Unit": "Count"
 }
]
 }
]
 },
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "service": "PowertoolsHelloWorld",
 "ColdStart": [
 1.0
]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "service"
]
],
 "Metrics": [
 {
 "Name": "HelloWorldInvocations",
 "Unit": "Count"
 }
]
 }
]
 },
 "service": "PowertoolsHelloWorld",
 "HelloWorldInvocations": [
 1.0

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 687

AWS Lambda Developer Guide

]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000 END
 RequestId: d455cfc4-7704-46df-901b-2a5cce9405be
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000
 REPORT RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Duration: 16.33 ms
 Billed Duration: 17 ms Memory Size: 128 MB Max Memory Used: 64 MB Init
 Duration: 739.46 ms
XRAY TraceId: 1-63dd2166-434a12c22e1307ff2114f299 SegmentId: 3c5d18d735a1ced0
 Sampled: true

12. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 688

AWS Lambda Developer Guide

AWS Lambda function testing in Python

Note

See the Testing functions chapter for a complete introduction to techniques and best
practices for testing serverless solutions.

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

Testing 689

https://github.com/aws-samples/serverless-test-samples

AWS Lambda Developer Guide

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Testing your serverless applications

You will generally use a mix of approaches to test your serverless application code, including
testing in the cloud, testing with mocks, and occasionally testing with emulators.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. You run tests against code deployed in the cloud and interacting with cloud-
based services. This approach provides the most accurate measure of quality of your code.

A convenient way to debug your Lambda function in the cloud is through the console with a test
event. A test event is a JSON input to your function. If your function does not require input, the
event can be an empty JSON document ({}). The console provides sample events for a variety
of service integrations. After creating an event in the console, you can share it with your team to
make testing easier and consistent.

Note

Testing a function in the console is a quick way to get started, but automating your test
cycles ensures application quality and development speed.

Testing tools

Tools and techniques exist to accelerate development feedback loops. For example, AWS
SAM Accelerate and AWS CDK watch mode both decrease the time required to update cloud
environments.

Testing your serverless applications 690

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch

AWS Lambda Developer Guide

Moto is a Python library for mocking AWS services and resources, so that you can test your
functions with little or no modification using decorators to intercept and simulate responses.

The validation feature of the Powertools for AWS Lambda (Python) provides decorators so you can
validate input events and output responses from your Python functions.

For more information, read the blog post Unit Testing Lambda with Python and Mock AWS
Services.

To reduce the latency involved with cloud deployment iterations, see AWS Serverless Application
Model (AWS SAM) Accelerate, AWS Cloud Development Kit (AWS CDK) watch mode. These tools
monitor your infrastructure and code for changes. They react to these changes by creating and
deploying incremental updates automatically into your cloud environment.

Examples that use these tools are available in the Python Test Samples code repository.

Testing your serverless applications 691

https://pypi.org/project/moto/
https://docs.powertools.aws.dev/lambda-python/latest/utilities/validation/
https://aws.amazon.com/blogs/devops/unit-testing-aws-lambda-with-python-and-mock-aws-services/
https://aws.amazon.com/blogs/devops/unit-testing-aws-lambda-with-python-and-mock-aws-services/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://github.com/aws-samples/serverless-test-samples/tree/main/python-test-samples

AWS Lambda Developer Guide

Instrumenting Python code in AWS Lambda

Lambda integrates with AWS X-Ray to help you trace, debug, and optimize Lambda applications.
You can use X-Ray to trace a request as it traverses resources in your application, which may include
Lambda functions and other AWS services.

To send tracing data to X-Ray, you can use one of three SDK libraries:

• AWS Distro for OpenTelemetry (ADOT) – A secure, production-ready, AWS-supported distribution
of the OpenTelemetry (OTel) SDK.

• AWS X-Ray SDK for Python – An SDK for generating and sending trace data to X-Ray.

• Powertools for AWS Lambda (Python) – A developer toolkit to implement Serverless best
practices and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for AWS Lambda SDKs are part of a tightly integrated
instrumentation solution offered by AWS. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
AWS Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for AWS Lambda (Python) and AWS SAM for tracing

• Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing

• Using ADOT to instrument your Python functions

• Using the X-Ray SDK to instrument your Python functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with AWS CloudFormation

Tracing 692

https://aws.amazon.com/otel
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html
https://docs.powertools.aws.dev/lambda-python/
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

AWS Lambda Developer Guide

• Interpreting an X-Ray trace

• Storing runtime dependencies in a layer (X-Ray SDK)

Using Powertools for AWS Lambda (Python) and AWS SAM for tracing

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for AWS Lambda (Python) modules using the AWS SAM. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.11

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World Python template.

sam init --app-template hello-world-powertools-python --name sam-app --package-type
 Zip --runtime python3.11 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for AWS Lambda (Python) and AWS SAM for tracing 693

https://docs.powertools.aws.dev/lambda-python
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2023-02-03 14:59:50+00:00
 End time: 2023-02-03 14:59:50+00:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-YBg8yfYtOc9j -
 Edges: [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.924
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1

Using Powertools for AWS Lambda (Python) and AWS SAM for tracing 694

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.016
 Reference Id: 2 - client - sam-app-HelloWorldFunction-YBg8yfYtOc9j - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 1] at (2023-02-03T14:59:50.204000) with id
 (1-63dd2166-434a12c22e1307ff2114f299) and duration (0.924s)
 - 0.924s - sam-app-HelloWorldFunction-YBg8yfYtOc9j [HTTP: 200]
 - 0.016s - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - 0.739s - Initialization
 - 0.016s - Invocation
 - 0.013s - ## lambda_handler
 - 0.000s - ## app.hello
 - 0.000s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

Using Powertools for AWS Lambda (Python) and the AWS CDK for
tracing

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for AWS Lambda (Python) modules using the AWS CDK. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics

Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing 695

https://docs.powertools.aws.dev/lambda-python

AWS Lambda Developer Guide

using Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.11

• AWS CLI version 2

• AWS CDK version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language python

3. Install the Python dependencies.

pip install -r requirements.txt

4. Create a directory lambda_function under the root folder.

mkdir lambda_function
cd lambda_function

5. Create a file app.py and add the following code to the file. This is the code for the Lambda
function.

from aws_lambda_powertools.event_handler import APIGatewayRestResolver
from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools.logging import correlation_paths
from aws_lambda_powertools import Logger

Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing 696

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

from aws_lambda_powertools import Tracer
from aws_lambda_powertools import Metrics
from aws_lambda_powertools.metrics import MetricUnit

app = APIGatewayRestResolver()
tracer = Tracer()
logger = Logger()
metrics = Metrics(namespace="PowertoolsSample")

@app.get("/hello")
@tracer.capture_method
def hello():
 # adding custom metrics
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/metrics/
 metrics.add_metric(name="HelloWorldInvocations", unit=MetricUnit.Count,
 value=1)

 # structured log
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/logger/
 logger.info("Hello world API - HTTP 200")
 return {"message": "hello world"}

Enrich logging with contextual information from Lambda
@logger.inject_lambda_context(correlation_id_path=correlation_paths.API_GATEWAY_REST)
Adding tracer
See: https://docs.powertools.aws.dev/lambda-python/latest/core/tracer/
@tracer.capture_lambda_handler
ensures metrics are flushed upon request completion/failure and capturing
 ColdStart metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event: dict, context: LambdaContext) -> dict:
 return app.resolve(event, context)

6. Open the hello_world directory. You should see a file called hello_world_stack.py.

cd ..
cd hello_world

7. Open hello_world_stack.py and add the following code to the file. This contains the Lambda
Constructor, which creates the Lambda function, configures environment variables for
Powertools and sets log retention to one week, and the ApiGatewayv1 Constructor, which
creates the REST API.

Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing 697

https://docs.aws.amazon.com/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.aws.amazon.com/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.aws.amazon.com/cdk/api/v1/python/aws_cdk.aws_apigateway.html

AWS Lambda Developer Guide

from aws_cdk import (
 Stack,
 aws_apigateway as apigwv1,
 aws_lambda as lambda_,
 CfnOutput,
 Duration
)
from constructs import Construct

class HelloWorldStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 # Powertools Lambda Layer
 powertools_layer = lambda_.LayerVersion.from_layer_version_arn(
 self,
 id="lambda-powertools",
 # At the moment we wrote this example, the aws_lambda_python_alpha CDK
 constructor is in Alpha, o we use layer to make the example simpler
 # See https://docs.aws.amazon.com/cdk/api/v2/python/
aws_cdk.aws_lambda_python_alpha/README.html
 # Check all Powertools layers versions here: https://
docs.powertools.aws.dev/lambda-python/latest/#lambda-layer
 layer_version_arn=f"arn:aws:lambda:
{self.region}:017000801446:layer:AWSLambdaPowertoolsPythonV2:21"
)

 function = lambda_.Function(self,
 'sample-app-lambda',
 runtime=lambda_.Runtime.PYTHON_3_11,
 layers=[powertools_layer],
 code = lambda_.Code.from_asset("./lambda_function/"),
 handler="app.lambda_handler",
 memory_size=128,
 timeout=Duration.seconds(3),
 architecture=lambda_.Architecture.X86_64,
 environment={
 "POWERTOOLS_SERVICE_NAME": "PowertoolsHelloWorld",
 "POWERTOOLS_METRICS_NAMESPACE": "PowertoolsSample",
 "LOG_LEVEL": "INFO"
 }
)

Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing 698

AWS Lambda Developer Guide

 apigw = apigwv1.RestApi(self, "PowertoolsAPI",
 deploy_options=apigwv1.StageOptions(stage_name="dev"))

 hello_api = apigw.root.add_resource("hello")
 hello_api.add_method("GET", apigwv1.LambdaIntegration(function,
 proxy=True))

 CfnOutput(self, "apiUrl", value=f"{apigw.url}hello")

8. Deploy your application.

cd ..
cdk deploy

9. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?OutputKey==`apiUrl`].OutputValue' --output text

10. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

11. To get the traces for the function, run sam traces.

sam traces

The traces output looks like this:

New XRay Service Graph
 Start time: 2023-02-03 14:59:50+00:00
 End time: 2023-02-03 14:59:50+00:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-YBg8yfYtOc9j -
 Edges: [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1

Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing 699

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.924
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.016
 Reference Id: 2 - client - sam-app-HelloWorldFunction-YBg8yfYtOc9j - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 1] at (2023-02-03T14:59:50.204000) with id
 (1-63dd2166-434a12c22e1307ff2114f299) and duration (0.924s)
 - 0.924s - sam-app-HelloWorldFunction-YBg8yfYtOc9j [HTTP: 200]
 - 0.016s - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - 0.739s - Initialization
 - 0.016s - Invocation
 - 0.013s - ## lambda_handler
 - 0.000s - ## app.hello
 - 0.000s - Overhead

12. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using ADOT to instrument your Python functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

Using ADOT to instrument your Python functions 700

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda

AWS Lambda Developer Guide

For Python runtimes, you can add the AWS managed Lambda layer for ADOT Python
to automatically instrument your functions. This layer works for both arm64 and x86_64
architectures. For detailed instructions on how to add this layer, see AWS Distro for OpenTelemetry
Lambda Support for Python in the ADOT documentation.

Using the X-Ray SDK to instrument your Python functions

To record details about calls that your Lambda function makes to other resources in your
application, you can also use the AWS X-Ray SDK for Python. To get the SDK, add the aws-xray-
sdk package to your application's dependencies.

Example requirements.txt

jsonpickle==1.3
aws-xray-sdk==2.4.3

In your function code, you can instrument AWS SDK clients by patching the boto3 library with the
aws_xray_sdk.core module.

Example function – Tracing an AWS SDK client

import boto3
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

logger = logging.getLogger()
logger.setLevel(logging.INFO)
patch_all()

client = boto3.client('lambda')
client.get_account_settings()

def lambda_handler(event, context):
 logger.info('## ENVIRONMENT VARIABLES\r' + jsonpickle.encode(dict(**os.environ)))
 ...

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Using the X-Ray SDK to instrument your Python functions 701

https://aws-otel.github.io/docs/getting-started/lambda/lambda-python
https://aws-otel.github.io/docs/getting-started/lambda/lambda-python
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python/function/requirements.txt
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python/function/lambda_function.py

AWS Lambda Developer Guide

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the AWS CLI or AWS SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Activating tracing with the Lambda console 702

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example shows an application with two functions. The primary function processes events
and sometimes returns errors. The second function at the top processes errors that appear in the
first's log group and uses the AWS SDK to call X-Ray, Amazon Simple Storage Service (Amazon S3),
and Amazon CloudWatch Logs.

Interpreting an X-Ray trace 703

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html#xray-concepts-servicegraph

AWS Lambda Developer Guide

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

Interpreting an X-Ray trace 704

AWS Lambda Developer Guide

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

Interpreting an X-Ray trace 705

AWS Lambda Developer Guide

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the AWS X-Ray SDK for Python in the AWS X-
Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the AWS
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see AWS X-Ray pricing.

Storing runtime dependencies in a layer (X-Ray SDK)

If you use the X-Ray SDK to instrument AWS SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores the
AWS X-Ray SDK for Python.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: function/.
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-python-lib
 Description: Dependencies for the blank-python sample app.
 ContentUri: package/.
 CompatibleRuntimes:
 - python3.11

Storing runtime dependencies in a layer (X-Ray SDK) 706

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html
https://aws.amazon.com/xray/pricing/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-layerversion.html

AWS Lambda Developer Guide

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build changes to generate the layer archive prior to
deployment. For a working example, see the blank-python sample application.

Storing runtime dependencies in a layer (X-Ray SDK) 707

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python

AWS Lambda Developer Guide

Building Lambda functions with Ruby

You can run Ruby code in AWS Lambda. Lambda provides runtimes for Ruby that run your code
to process events. Your code runs in an environment that includes the AWS SDK for Ruby, with
credentials from an AWS Identity and Access Management (IAM) role that you manage. To learn
more about the SDK versions included with the Ruby runtimes, see the section called “Runtime-
included SDK versions”.

Lambda supports the following Ruby runtimes.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Ruby 3.4 ruby3.4 Amazon
Linux 2023

Not
scheduled

Not
scheduled

Not
scheduled

Ruby 3.3 ruby3.3 Amazon
Linux 2023

Mar 31, 2027 Apr 30, 2027 May 31, 2027

Ruby 3.2 ruby3.2 Amazon
Linux 2

Mar 31, 2026 Apr 30, 2026 May 31, 2026

To create a Ruby function

1. Open the Lambda console.

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Ruby 3.4.

4. Choose Create function.

The console creates a Lambda function with a single source file named lambda_function.rb.
You can edit this file and add more files in the built-in code editor. In the DEPLOY section, choose

708

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

Deploy to update your function's code. Then, to run your code, choose Create test event in the
TEST EVENTS section.

The lambda_function.rb file exports a function named lambda_handler that takes an event
object and a context object. This is the handler function that Lambda calls when the function is
invoked. The Ruby function runtime gets invocation events from Lambda and passes them to the
handler. In the function configuration, the handler value is lambda_function.lambda_handler.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

The function runtime passes a context object to the handler, in addition to the invocation event.
The context object contains additional information about the invocation, the function, and the
execution environment. More information is available from environment variables.

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Runtime-included SDK versions

• Enabling Yet Another Ruby JIT (YJIT)

• Define Lambda function handler in Ruby

• Deploy Ruby Lambda functions with .zip file archives

• Deploy Ruby Lambda functions with container images

• Working with layers for Ruby Lambda functions

• Using the Lambda context object to retrieve Ruby function information

• Log and monitor Ruby Lambda functions

• Instrumenting Ruby code in AWS Lambda

Runtime-included SDK versions

The version of the AWS SDK included in the Ruby runtime depends on the runtime version and
your AWS Region. The AWS SDK for Ruby is designed to be modular and is separated by AWS

Runtime-included SDK versions 709

AWS Lambda Developer Guide

service. To find the version number of a particular service gem included in the runtime you're
using, create a Lambda function with code in the following format. Replace aws-sdk-s3 and
Aws::S3with the name of the service gems your code uses.

require 'aws-sdk-s3'

def lambda_handler(event:, context:)
 puts "Service gem version: #{Aws::S3::GEM_VERSION}"
 puts "Core version: #{Aws::CORE_GEM_VERSION}"
end

Enabling Yet Another Ruby JIT (YJIT)

The Ruby 3.2 runtime supports YJIT, a lightweight, minimalistic Ruby JIT compiler. YJIT provides
significantly higher performance, but also uses more memory than the Ruby interpreter. YJIT is
recommended for Ruby on Rails workloads.

YJIT is not enabled by default. To enable YJIT for a Ruby 3.2 function, set the RUBY_YJIT_ENABLE
environment variable to 1. To confirm that YJIT is enabled, print the result of the
RubyVM::YJIT.enabled? method.

Example — Confirm that YJIT is enabled

puts(RubyVM::YJIT.enabled?())
=> true

Enabling Yet Another Ruby JIT (YJIT) 710

https://github.com/ruby/ruby/blob/master/doc/yjit/yjit.md

AWS Lambda Developer Guide

Define Lambda function handler in Ruby

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

Topics

• Ruby handler basics

• Code best practices for Ruby Lambda functions

Ruby handler basics

In the following example, the file function.rb defines a handler method named handler. The
handler function takes two objects as input and returns a JSON document.

Example function.rb

require 'json'

def handler(event:, context:)
 { event: JSON.generate(event), context: JSON.generate(context.inspect) }
end

In your function configuration, the handler setting tells Lambda where to find the handler. For
the preceding example, the correct value for this setting is function.handler. It includes two
names separated by a dot: the name of the file and the name of the handler method.

You can also define your handler method in a class. The following example defines a handler
method named process on a class named Handler in a module named LambdaFunctions.

Example source.rb

module LambdaFunctions
 class Handler
 def self.process(event:,context:)
 "Hello!"
 end
 end
end

Handler 711

AWS Lambda Developer Guide

In this case, the handler setting is source.LambdaFunctions::Handler.process.

The two objects that the handler accepts are the invocation event and context. The event is a
Ruby object that contains the payload that's provided by the invoker. If the payload is a JSON
document, the event object is a Ruby hash. Otherwise, it's a string. The context object has methods
and properties that provide information about the invocation, the function, and the execution
environment.

The function handler is executed every time your Lambda function is invoked. Static code outside
of the handler is executed once per instance of the function. If your handler uses resources like SDK
clients and database connections, you can create them outside of the handler method to reuse
them for multiple invocations.

Each instance of your function can process multiple invocation events, but it only processes one
event at a time. The number of instances processing an event at any given time is your function's
concurrency. For more information about the Lambda execution environment, see Understanding
the Lambda execution environment lifecycle.

Code best practices for Ruby Lambda functions

Adhere to the guidelines in the following list to use best coding practices when building your
Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function. For example, in Ruby, this may look like:

def lambda_handler(event:, context:)
 foo = event['foo']
 bar = event['bar']

 result = my_lambda_function(foo:, bar:)

end

def my_lambda_function(foo:, bar:)
 // MyLambdaFunction logic here

end

• Control the dependencies in your function's deployment package. The AWS Lambda
execution environment contains a number of libraries. For the Ruby runtime, these include the

Code best practices for Ruby Lambda functions 712

AWS Lambda Developer Guide

AWS SDK. To enable the latest set of features and security updates, Lambda will periodically
update these libraries. These updates may introduce subtle changes to the behavior of your
Lambda function. To have full control of the dependencies your function uses, package all of
your dependencies with your deployment package.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation. For functions authored in Ruby, avoid uploading the entire AWS SDK library
as part of your deployment package. Instead, selectively depend on the gems which pick up
components of the SDK you need (e.g. the DynamoDB or Amazon S3 SDK gems).

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

Code best practices for Ruby Lambda functions 713

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Code best practices for Ruby Lambda functions 714

https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Deploy Ruby Lambda functions with .zip file archives

Your AWS Lambda function’s code comprises a .rb file containing your function’s handler code,
together with any additional dependencies (gems) your code depends on. To deploy this function
code to Lambda, you use a deployment package. This package may either be a .zip file archive or a
container image. For more information about using container images with Ruby, see Deploy Ruby
Lambda functions with container images.

To create your deployment package as .zip file archive, you can use your command-line tool’s
built-in .zip file archive utility, or any other .zip file utility such as 7zip. The examples shown in the
following sections assume you’re using a command-line zip tool in a Linux or MacOS environment.
To use the same commands in Windows, you can install the Windows Subsystem for Linux to get a
Windows-integrated version of Ubuntu and Bash.

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

The example commands in the following sections use the Bundler utility to add dependencies to
your deployment package. To install bundler, run the following command.

gem install bundler

Sections

• Dependencies in Ruby

• Creating a .zip deployment package with no dependencies

• Creating a .zip deployment package with dependencies

• Creating a Ruby layer for your dependencies

• Creating .zip deployment packages with native libraries

• Creating and updating Ruby Lambda functions using .zip files

Dependencies in Ruby

For Lambda functions that use the Ruby runtime, a dependency can be any Ruby gem. When
you deploy your function using a .zip archive, you can either add these dependencies to your .zip
file with your function code or use a Lambda layer. A layer is a separate .zip file that can contain
additional code and other content. To learn more about using Lambda layers, see Lambda layers.

Deploy .zip file archives 715

https://docs.aws.amazon.com/lambda/latest/dg/ruby-image.html
https://docs.aws.amazon.com/lambda/latest/dg/ruby-image.html
https://www.7-zip.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
https://bundler.io/

AWS Lambda Developer Guide

The Ruby runtime includes the AWS SDK for Ruby. If your function uses the SDK, you don't need
to bundle it with your code. However, to maintain full control of your dependencies, or to use a
specific version of the SDK, you can add it to your function's deployment package. You can either
include the SDK in your .zip file, or add it using a Lambda layer. Dependencies in your .zip file or in
Lambda layers take precedence over versions included in the runtime. To find out which version of
the SDK for Ruby is included in your runtime version, see the section called “Runtime-included SDK
versions”.

Under the AWS shared responsibility model, you are responsible for the management of any
dependencies in your functions' deployment packages. This includes applying updates and security
patches. To update dependencies in your function's deployment package, first create a new .zip
file and then upload it to Lambda. See Creating a .zip deployment package with dependencies and
Creating and updating Ruby Lambda functions using .zip files for more information.

Creating a .zip deployment package with no dependencies

If your function code has no dependencies, your .zip file contains only the .rb file with your
function’s handler code. Use your preferred zip utility to create a .zip file with your .rb file at the
root. If the .rb file is not at the root of your .zip file, Lambda won’t be able to run your code.

To learn how to deploy your .zip file to create a new Lambda function or update an existing one,
see Creating and updating Ruby Lambda functions using .zip files.

Creating a .zip deployment package with dependencies

If your function code depends on additional Ruby gems, you can either add these dependencies
to your .zip file with your function code or use a Lambda layer. The instructions in this section
show you how to include dependencies in your .zip deployment package. For instructions on how
to include your dependencies in a layer, see the section called “Creating a Ruby layer for your
dependencies”.

Suppose your function code is saved in a file named lambda_function.rb in your
project directory. The following example CLI commands create a .zip file named
my_deployment_package.zip containing your function code and its dependencies.

To create the deployment package

1. In your project directory, create a Gemfile to specify your dependencies in.

Creating a .zip deployment package with no dependencies 716

AWS Lambda Developer Guide

bundle init

2. Using your preferred text editor, edit the Gemfile to specify your function's dependencies. For
example, to use the TZInfo gem, edit your Gemfile to look like the following.

source "https://rubygems.org"
gem "tzinfo"

3. Run the following command to install the gems specified in your Gemfile in your project
directory. This command sets vendor/bundle as the default path for gem installations.

bundle config set --local path 'vendor/bundle' && bundle install

You should see output similar to the following.

Fetching gem metadata from https://rubygems.org/...........
Resolving dependencies...
Using bundler 2.4.13
Fetching tzinfo 2.0.6
Installing tzinfo 2.0.6
...

Note

To install gems globally again later, run the following command.

bundle config set --local system 'true'

4. Create a .zip file archive containing the lambda_function.rb file with your function's
handler code and the dependencies you installed in the previous step.

zip -r my_deployment_package.zip lambda_function.rb vendor

You should see output similar to the following.

adding: lambda_function.rb (deflated 37%)
 adding: vendor/ (stored 0%)
 adding: vendor/bundle/ (stored 0%)

Creating a .zip deployment package with dependencies 717

AWS Lambda Developer Guide

 adding: vendor/bundle/ruby/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/build_info/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/cache/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/cache/aws-eventstream-1.0.1.gem (deflated 36%)
...

Creating a Ruby layer for your dependencies

To learn how to package your Ruby dependencies into a Lambda layer, see the section called
“Layers”.

Creating .zip deployment packages with native libraries

Many common Ruby gems such as nokogiri, nio4r, and mysql contain native extensions written
in C. When you add libraries containing C code to your deployment package, you must build your
package correctly to ensure that it’s compatible with the Lambda execution environment.

For production applications, we recommend building and deploying your code using the AWS
Serverless Application Model (AWS SAM). In AWS SAM use the sam build --use-container
option to build your function inside a Lambda-like Docker container. To learn more about using
AWS SAM to deploy your function code, see Building applications in the AWS SAM Developer Guide.

To create a .zip deployment package containing gems with native extensions without using AWS
SAM, you can alternatively use a container to bundle your dependencies in an environment that
is the same as the Lambda Ruby runtime environment. To complete these steps, you must have
Docker installed on your build machine. To learn more about installing Docker, see Install Docker
Engine.

To create a .zip deployment package in a Docker container

1. Create a folder on your local build machine to save your container in. Inside that folder, create
a file named dockerfile and paste the following code into it.

FROM public.ecr.aws/sam/build-ruby3.2:latest-x86_64
RUN gem update bundler
CMD "/bin/bash"

2. Inside the folder you created your dockerfile in, run the following command to create the
Docker container.

Creating a Ruby layer for your dependencies 718

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-build.html
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

AWS Lambda Developer Guide

docker build -t awsruby32 .

3. Navigate to the project directory containing the .rb file with your function's handler code
and the Gemfile specifying your function's dependencies. From inside that directory, run the
following command to start the Lambda Ruby container.

Linux/MacOS

docker run --rm -it -v $PWD:/var/task -w /var/task awsruby32

Note

In MacOS, you might see a warning informing you that the requested image's
platform does not match the detected host platform. Ignore this warning.

Windows PowerShell

docker run --rm -it -v ${pwd}:var/task -w /var/task awsruby32

When your container starts, you should see a bash prompt.

bash-4.2#

4. Configure the bundle utility to install the gems specified in your Gemfile in a local vendor/
bundle directory and install your dependencies.

bash-4.2# bundle config set --local path 'vendor/bundle' && bundle install

5. Create the .zip deployment package with your function code and its dependencies. In this
example, the file containing your function's handler code is named lambda_function.rb.

bash-4.2# zip -r my_deployment_package.zip lambda_function.rb vendor

6. Exit the container and return to your local project directory.

bash-4.2# exit

Creating .zip deployment packages with native libraries 719

AWS Lambda Developer Guide

You can now use the .zip file deployment package to create or update your Lambda function.
See Creating and updating Ruby Lambda functions using .zip files

Creating and updating Ruby Lambda functions using .zip files

After you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the AWS Command Line Interface, and the Lambda API. You can also create and update Lambda
functions using AWS Serverless Application Model (AWS SAM) and AWS CloudFormation.

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give a non-executable file the correct permissions, run
the following command.

chmod 644 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Note

If you don't grant Lambda the permissions it needs to access directories in your deployment
package, Lambda sets the permissions for those directories to 755 (rwxr-xr-x).

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

Creating and updating Ruby Lambda functions using .zip files 720

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)

AWS Lambda Developer Guide

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
AWS Management Console, see Getting started with Amazon S3. To upload files using the AWS CLI,
see Move objects in the AWS CLI User Guide.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

Creating and updating Ruby Lambda functions using .zip files 721

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Updating .zip file functions using the console code editor

For some functions with .zip deployment packages, you can use the Lambda console’s built-in
code editor to update your function code directly. To use this feature, your function must meet the
following criteria:

• Your function must use one of the interpreted language runtimes (Python, Node.js, or Ruby)

• Your function’s deployment package must be smaller than 50 MB (unzipped).

Function code for functions with container image deployment packages cannot be edited directly
in the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. In the DEPLOY section, choose Deploy to update your function's code:

Creating and updating Ruby Lambda functions using .zip files 722

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Creating and updating functions with .zip files using the AWS CLI

You can can use the AWS CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move
objects in the AWS CLI User Guide.

Note

If you upload your .zip file from an Amazon S3 bucket using the AWS CLI, the bucket must
be located in the same AWS Region as your function.

To create a new function using a .zip file with the AWS CLI, you must specify the following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime ruby3.2 --handler lambda_function.lambda_handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

Creating and updating Ruby Lambda functions using .zip files 723

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Lambda Developer Guide

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime ruby3.2 --handler lambda_function.lambda_handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket amzn-s3-demo-bucket --s3-key myFileName.zip --s3-object-version myObject
 Version

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction

• UpdateFunctionCode

Creating and updating functions with .zip files using AWS SAM

The AWS Serverless Application Model (AWS SAM) is a toolkit that helps streamline the process of
building and running serverless applications on AWS. You define the resources for your application
in a YAML or JSON template and use the AWS SAM command line interface (AWS SAM CLI) to build,

Creating and updating Ruby Lambda functions using .zip files 724

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html

AWS Lambda Developer Guide

package, and deploy your applications. When you build a Lambda function from an AWS SAM
template, AWS SAM automatically creates a .zip deployment package or container image with your
function code and any dependencies you specify. To learn more about using AWS SAM to build
and deploy Lambda functions, see Getting started with AWS SAM in the AWS Serverless Application
Model Developer Guide.

You can also use AWS SAM to create a Lambda function using an existing .zip file archive. To create
a Lambda function using AWS SAM, you can save your .zip file in an Amazon S3 bucket or in a local
folder on your build machine. For instructions on how to upload a file to an Amazon S3 bucket
using the AWS CLI, see Move objects in the AWS CLI User Guide.

In your AWS SAM template, the AWS::Serverless::Function resource specifies your Lambda
function. In this resource, set the following properties to create a function using a .zip file archive:

• PackageType - set to Zip
• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object
• Runtime - Set to your chosen runtime

With AWS SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. AWS SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

Creating and updating functions with .zip files using AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function using a .zip file archive. To create
a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket. For
instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move objects
in the AWS CLI User Guide.

In your AWS CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip
• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key

fields

Creating and updating Ruby Lambda functions using .zip files 725

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

AWS Lambda Developer Guide

• Runtime - Set to your chosen runtime

The .zip file that AWS CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in AWS CloudFormation, see AWS::Lambda::Function in the AWS
CloudFormation User Guide.

Creating and updating Ruby Lambda functions using .zip files 726

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

Deploy Ruby Lambda functions with container images

There are three ways to build a container image for a Ruby Lambda function:

• Using an AWS base image for Ruby

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Ruby in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Ruby in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• AWS base images for Ruby

• Using an AWS base image for Ruby

• Using an alternative base image with the runtime interface client

Deploy container images 727

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

AWS base images for Ruby

AWS provides the following base images for Ruby:

Tags Runtime Operating
system

Dockerfile Deprecation

3.4 Ruby 3.4 Amazon
Linux 2023

Dockerfile for Ruby 3.4 on
GitHub

Not scheduled

3.3 Ruby 3.3 Amazon
Linux 2023

Dockerfile for Ruby 3.3 on
GitHub

Mar 31, 2027

3.2 Ruby 3.2 Amazon
Linux 2

Dockerfile for Ruby 3.2 on
GitHub

Mar 31, 2026

Amazon ECR repository: gallery.ecr.aws/lambda/ruby

Using an AWS base image for Ruby

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

• Ruby

Creating an image from a base image

To create a container image for Ruby

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

AWS base images for Ruby 728

https://github.com/aws/aws-lambda-base-images/blob/ruby3.4/Dockerfile.ruby3.4
https://github.com/aws/aws-lambda-base-images/blob/ruby3.4/Dockerfile.ruby3.4
https://github.com/aws/aws-lambda-base-images/blob/ruby3.3/Dockerfile.ruby3.3
https://github.com/aws/aws-lambda-base-images/blob/ruby3.3/Dockerfile.ruby3.3
https://github.com/aws/aws-lambda-base-images/blob/ruby3.2/Dockerfile.ruby3.2
https://github.com/aws/aws-lambda-base-images/blob/ruby3.2/Dockerfile.ruby3.2
https://gallery.ecr.aws/lambda/ruby
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md

AWS Lambda Developer Guide

2. Create a new file called Gemfile. This is where you list your application's required RubyGems
packages. The AWS SDK for Ruby is available from RubyGems. You should choose specific AWS
service gems to install. For example, to use the Ruby gem for Lambda, your Gemfile should
look like this:

source 'https://rubygems.org'

gem 'aws-sdk-lambda'

Alternatively, the aws-sdk gem contains every available AWS service gem. This gem is very
large. We recommend that you use it only if you depend on many AWS services.

3. Install the dependencies specified in the Gemfile using bundle install.

bundle install

4. Create a new file called lambda_function.rb. You can add the following sample function
code to the file for testing, or use your own.

Example Ruby function

module LambdaFunction
 class Handler
 def self.process(event:,context:)
 "Hello from Lambda!"
 end
 end
end

5. Create a new Dockerfile. The following is an example Dockerfile that uses an AWS base image.
This Dockerfiles uses the following configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-

Using an AWS base image 729

https://rubygems.org/gems/aws-sdk-lambda/
https://rubygems.org/gems/aws-sdk/
https://bundler.io/v2.4/man/bundle-install.1.html
https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/lambda/ruby:3.4

Copy Gemfile and Gemfile.lock
COPY Gemfile Gemfile.lock ${LAMBDA_TASK_ROOT}/

Install Bundler and the specified gems
RUN gem install bundler:2.4.20 && \
 bundle config set --local path 'vendor/bundle' && \
 bundle install

Copy function code
COPY lambda_function.rb ${LAMBDA_TASK_ROOT}/

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["lambda_function.LambdaFunction::Handler.process"]

6. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

Using an AWS base image 730

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

Using an AWS base image 731

AWS Lambda Developer Guide

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using an AWS base image 732

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using an AWS base image 733

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using an AWS base image 734

https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Runtime API, which
manages the interaction between Lambda and your function code.

Install the Lambda runtime interface client for Ruby using the RubyGems.org package manager:

gem install aws_lambda_ric

You can also download the Ruby runtime interface client from GitHub.

The following example demonstrates how to build a container image for Ruby using a non-AWS
base image. The example Dockerfile uses an official Ruby base image. The Dockerfile includes the
runtime interface client.

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

Using a non-AWS base image 735

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://rubygems.org/gems/aws_lambda_ric
https://github.com/aws/aws-lambda-ruby-runtime-interface-client
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

• The Docker buildx plugin.

• Ruby

Creating an image from an alternative base image

To create a container image for Ruby using an alternative base image

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called Gemfile. This is where you list your application's required RubyGems
packages. The AWS SDK for Ruby is available from RubyGems. You should choose specific AWS
service gems to install. For example, to use the Ruby gem for Lambda, your Gemfile should
look like this:

source 'https://rubygems.org'

gem 'aws-sdk-lambda'

Alternatively, the aws-sdk gem contains every available AWS service gem. This gem is very
large. We recommend that you use it only if you depend on many AWS services.

3. Install the dependencies specified in the Gemfile using bundle install.

bundle install

4. Create a new file called lambda_function.rb. You can add the following sample function
code to the file for testing, or use your own.

Example Ruby function

module LambdaFunction
 class Handler
 def self.process(event:,context:)
 "Hello from Lambda!"
 end
 end
end

Using a non-AWS base image 736

https://github.com/docker/buildx/blob/master/README.md
https://rubygems.org/gems/aws-sdk-lambda/
https://rubygems.org/gems/aws-sdk/
https://bundler.io/v2.4/man/bundle-install.1.html

AWS Lambda Developer Guide

5. Create a new Dockerfile. The following Dockerfile uses a Ruby base image instead of an AWS
base image. The Dockerfile includes the runtime interface client for Ruby, which makes the
image compatible with Lambda. Alternatively, you can add the runtime interface client to your
application's Gemfile.

• Set the FROM property to the Ruby base image.

• Create a directory for the function code and an environment variable that points to that
directory. In this example, the directory is /var/task, which mirrors the Lambda execution
environment. However, you can choose any directory for the function code because the
Dockerfile doesn't use an AWS base image.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

FROM ruby:2.7

Install the runtime interface client for Ruby
RUN gem install aws_lambda_ric

Add the runtime interface client to the PATH
ENV PATH="/usr/local/bundle/bin:${PATH}"

Create a directory for the Lambda function
ENV LAMBDA_TASK_ROOT=/var/task
RUN mkdir -p ${LAMBDA_TASK_ROOT}
WORKDIR ${LAMBDA_TASK_ROOT}

Copy Gemfile and Gemfile.lock
COPY Gemfile Gemfile.lock ${LAMBDA_TASK_ROOT}/

Install Bundler and the specified gems
RUN gem install bundler:2.4.20 && \

Using a non-AWS base image 737

https://github.com/aws/aws-lambda-ruby-runtime-interface-client
https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

 bundle config set --local path 'vendor/bundle' && \
 bundle install

Copy function code
COPY lambda_function.rb ${LAMBDA_TASK_ROOT}/

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["aws_lambda_ric"]

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["lambda_function.LambdaFunction::Handler.process"]

6. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or use the following procedure to install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Using a non-AWS base image 738

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image

AWS Lambda Developer Guide

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• aws_lambda_ric lambda_function.LambdaFunction::Handler.process is the
ENTRYPOINT followed by the CMD from your Dockerfile.

Using a non-AWS base image 739

AWS Lambda Developer Guide

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 aws_lambda_ric lambda_function.LambdaFunction::Handler.process

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 aws_lambda_ric lambda_function.LambdaFunction::Handler.process

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Using a non-AWS base image 740

AWS Lambda Developer Guide

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

Using a non-AWS base image 741

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html

AWS Lambda Developer Guide

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

Using a non-AWS base image 742

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html
https://docs.docker.com/engine/reference/commandline/tag/

AWS Lambda Developer Guide

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

Using a non-AWS base image 743

https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using a non-AWS base image 744

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Working with layers for Ruby Lambda functions

Use Lambda layers to package code and dependencies that you want to reuse across multiple
functions. Layers usually contain library dependencies, a custom runtime, or configuration files.
Creating a layer involves three general steps:

1. Package your layer content. This means creating a .zip file archive that contains the
dependencies you want to use in your functions.

2. Create the layer in Lambda.

3. Add the layer to your functions.

Topics

• Package your layer content

• Create the layer in Lambda

• Using gems from layers in a function

• Add the layer to your function

• Sample app

Package your layer content

To create a layer, bundle your packages into a .zip file archive that meets the following
requirements:

• Create the layer using the same Ruby version that you plan to use for the Lambda function. For
example, if you create your layer for Ruby 3.4, use the Ruby 3.4 runtime for your function.

• Your layer's .zip file must use one of these directory structures:

• ruby/gems/x.x.x (where x.x.x is your Ruby version, for example 3.4.0)

• ruby/lib

For more information, see Layer paths for each Lambda runtime.

• The packages in your layer must be compatible with Linux. Lambda functions run on Amazon
Linux.

Layers 745

AWS Lambda Developer Guide

You can create layers that contain either third-party Ruby gems or your own Ruby modules and
classes. Many popular Ruby gems contain native extensions (C code) that must be compiled for the
Lambda Linux environment.

Pure Ruby gems

Pure Ruby gems contain only Ruby code and don't require compilation. These gems are simpler to
package and work across different platforms.

To create a layer using pure Ruby gems

1. Create a Gemfile to specify the pure Ruby gems you want to include in your layer:

Example Gemfile

source 'https://rubygems.org'

gem 'tzinfo'

2. Install the gems to vendor/bundle directory using Bundler:

bundle config set --local path vendor/bundle
bundle install

3. Copy the installed gems to the directory structure that Lambda requires ruby/gems/3.4.0):

mkdir -p ruby/gems/3.4.0
cp -r vendor/bundle/ruby/3.4.0*/* ruby/gems/3.4.0/

4. Zip the layer content:

Linux/macOS

zip -r layer.zip ruby/

PowerShell

Compress-Archive -Path .\ruby -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

Package your layer content 746

AWS Lambda Developer Guide

ruby/
gems/
 ### 3.4.0/
 ### gems/
 # ### concurrent-ruby-1.3.5/
 # ### tzinfo-2.0.6/
 ### specifications/
 ### cache/
 ### build_info/
 ### (other bundler directories)

Note

You must require each gem individually in your function code. You can't use bundler/
setup or Bundler.require. For more information, see Using gems from layers in a
function.

Gems with native extensions

Many popular Ruby gems contain native extensions (C code) that must be compiled for the target
platform. Popular gems with native extensions include nokogiri, pg, mysql2, sqlite3, and ffi. These
gems must be built in a Linux environment that is compatible with the Lambda runtime.

To create a layer using gems with native extensions

1. Create a Gemfile.

Example Gemfile

source 'https://rubygems.org'

gem 'nokogiri'
gem 'httparty'

2. Use Docker to build the gems in a Linux environment that is compatible with Lambda. Specify
an AWS base image in your Dockerfile:

Package your layer content 747

https://rubygems.org/gems/nokogiri/
https://rubygems.org/gems/pg/
https://rubygems.org/gems/mysql2/
https://rubygems.org/gems/sqlite3/
https://rubygems.org/gems/ffi/

AWS Lambda Developer Guide

Example Dockerfile for Ruby 3.4

FROM public.ecr.aws/lambda/ruby:3.4

Copy Gemfile
COPY Gemfile ./

Install system dependencies for native extensions
RUN dnf update -y && \
 dnf install -y gcc gcc-c++ make

Configure bundler and install gems
RUN bundle config set --local path vendor/bundle && \
 bundle install

Create the layer structure
RUN mkdir -p ruby/gems/3.4.0 && \
 cp -r vendor/bundle/ruby/3.4.0*/* ruby/gems/3.4.0/

Create the layer zip file
RUN zip -r layer.zip ruby/

3. Build the image and extract the layer:

docker build -t ruby-layer-builder .
docker run --rm -v $(pwd):/output --entrypoint cp ruby-layer-builder layer.zip /
output/

This builds the gems in the correct Linux environment and copies the layer.zip file to your
local directory. The directory structure of your .zip file should look like this:

ruby/
gems/
 ### 3.4.0/
 ### gems/
 # ### bigdecimal-3.2.2/
 # ### csv-3.3.5/
 # ### httparty-0.23.1/
 # ### mini_mime-1.1.5/
 # ### multi_xml-0.7.2/
 # ### nokogiri-1.18.8-x86_64-linux-gnu/

Package your layer content 748

AWS Lambda Developer Guide

 # ### racc-1.8.1/
 ### build_info/
 ### cache/
 ### specifications/
 ### (other bundler directories)

Note

You must require each gem individually in your function code. You can't use bundler/
setup or Bundler.require. For more information, see Using gems from layers in a
function.

Custom Ruby modules

To create a layer using your own code

1. Create the required directory structure for your layer:

mkdir -p ruby/lib

2. Create your Ruby modules in the ruby/lib directory. The following example module
validates orders by confirming that they contain the required information.

Example ruby/lib/order_validator.rb

require 'json'

module OrderValidator
 class ValidationError < StandardError; end

 def self.validate_order(order_data)
 # Validates an order and returns formatted data
 required_fields = %w[product_id quantity]

 # Check required fields
 missing_fields = required_fields.reject { |field| order_data.key?(field) }
 unless missing_fields.empty?
 raise ValidationError, "Missing required fields: #{missing_fields.join(',
 ')}"
 end

Package your layer content 749

AWS Lambda Developer Guide

 # Validate quantity
 quantity = order_data['quantity']
 unless quantity.is_a?(Integer) && quantity > 0
 raise ValidationError, 'Quantity must be a positive integer'
 end

 # Format and return the validated data
 {
 'product_id' => order_data['product_id'].to_s,
 'quantity' => quantity,
 'shipping_priority' => order_data.fetch('priority', 'standard')
 }
 end

 def self.format_response(status_code, body)
 # Formats the API response
 {
 statusCode: status_code,
 body: JSON.generate(body)
 }
 end
end

3. Zip the layer content:

Linux/macOS

zip -r layer.zip ruby/

PowerShell

Compress-Archive -Path .\ruby -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

ruby/
lib/
 ### order_validator.rb

Package your layer content 750

AWS Lambda Developer Guide

4. In your function, require and use the modules. You must require each gem individually in your
function code. You can't use bundler/setup or Bundler.require. For more information,
see Using gems from layers in a function. Example:

require 'json'
require 'order_validator'

def lambda_handler(event:, context:)
 begin
 # Parse the order data from the event body
 order_data = JSON.parse(event['body'] || '{}')

 # Validate and format the order
 validated_order = OrderValidator.validate_order(order_data)

 OrderValidator.format_response(200, {
 message: 'Order validated successfully',
 order: validated_order
 })
 rescue OrderValidator::ValidationError => e
 OrderValidator.format_response(400, {
 error: e.message
 })
 rescue => e
 OrderValidator.format_response(500, {
 error: 'Internal server error'
 })
 end
end

You can use the following test event to invoke the function:

{
 "body": "{\"product_id\": \"ABC123\", \"quantity\": 2, \"priority\": \"express
\"}"
}

Expected response:

{
 "statusCode": 200,

Package your layer content 751

AWS Lambda Developer Guide

 "body": "{\"message\":\"Order validated successfully\",\"order\":{\"product_id\":
\"ABC123\",\"quantity\":2,\"shipping_priority\":\"express\"}}"
}

Create the layer in Lambda

You can publish your layer using either the AWS CLI or the Lambda console.

AWS CLI

Run the publish-layer-version AWS CLI command to create the Lambda layer:

aws lambda publish-layer-version --layer-name my-layer --zip-file fileb://layer.zip
 --compatible-runtimes ruby3.4

The compatible runtimes parameter is optional. When specified, Lambda uses this parameter to
filter layers in the Lambda console.

Console

To create a layer (console)

1. Open the Layers page of the Lambda console.

2. Choose Create layer.

3. Choose Upload a .zip file, and then upload the .zip archive that you created earlier.

4. (Optional) For Compatible runtimes, choose the Ruby runtime that corresponds to the
Ruby version you used to build your layer.

5. Choose Create.

Using gems from layers in a function

In your function code, you must explicitly require each gem that you want to use. Bundler
commands such as bundler/setup and Bundler.require are not supported. Here's how to
properly use gems from a layer in a Lambda function:

Correct: Use explicit requires for each gem

Create the layer in Lambda 752

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes
https://console.aws.amazon.com/lambda/home#/layers

AWS Lambda Developer Guide

require 'nokogiri'
require 'httparty'

def lambda_handler(event:, context:)
 # Use the gems directly
 doc = Nokogiri::HTML(event['html'])
 response = HTTParty.get(event['url'])
 # ... rest of your function
end

Incorrect: These Bundler commands will not work
require 'bundler/setup'
Bundler.require

Add the layer to your function

AWS CLI

To attach the layer to your function, run the update-function-configuration AWS CLI command.
For the --layers parameter, use the layer ARN. The ARN must specify the version (for
example, arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1). For more
information, see Layers and layer versions.

aws lambda update-function-configuration --function-name my-function --cli-binary-
format raw-in-base64-out --layers "arn:aws:lambda:us-east-1:123456789012:layer:my-
layer:1"

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

Console

To add a layer to a function

1. Open the Functions page of the Lambda console.

2. Choose the function.

3. Scroll down to the Layers section, and then choose Add a layer.

4. Under Choose a layer, select Custom layers, and then choose your layer.

Add the layer to your function 753

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Note

If you didn't add a compatible runtime when you created the layer, your layer won't
be listed here. You can specify the layer ARN instead.

5. Choose Add.

Sample app

For more examples of how to use Lambda layers, see the layer-ruby sample application in the AWS
Lambda Developer Guide GitHub repository. This application includes a layer that contains the
tzinfo library. After creating the layer, you can deploy and invoke the corresponding function to
confirm that the layer works as expected.

Sample app 754

https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-ruby
https://rubygems.org/gems/tzinfo

AWS Lambda Developer Guide

Using the Lambda context object to retrieve Ruby function
information

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• get_remaining_time_in_millis – Returns the number of milliseconds left before the
execution times out.

Context properties

• function_name – The name of the Lambda function.

• function_version – The version of the function.

• invoked_function_arn – The Amazon Resource Name (ARN) that's used to invoke the
function. Indicates if the invoker specified a version number or alias.

• memory_limit_in_mb – The amount of memory that's allocated for the function.

• aws_request_id – The identifier of the invocation request.

• log_group_name – The log group for the function.

• log_stream_name – The log stream for the function instance.

• deadline_ms– The date that the execution times out, in Unix time milliseconds.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• client_context– (mobile apps) Client context that's provided to Lambda by the client
application.

Context 755

AWS Lambda Developer Guide

Log and monitor Ruby Lambda functions

AWS Lambda automatically monitors Lambda functions on your behalf and sends logs to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation to the log stream, and relays logs and other output from your function's code. For more
information, see Sending Lambda function logs to CloudWatch Logs.

This page describes how to produce log output from your Lambda function's code, and access logs
using the AWS Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

• Viewing logs using the AWS Command Line Interface (AWS CLI)

• Deleting logs

• Working with the Ruby logger library

Creating a function that returns logs

To output logs from your function code, you can use puts statements, or any logging library that
writes to stdout or stderr. The following example logs the values of environment variables and
the event object.

Example lambda_function.rb

lambda_function.rb

def handler(event:, context:)
 puts "## ENVIRONMENT VARIABLES"
 puts ENV.to_a
 puts "## EVENT"
 puts event.to_a
end

Logging 756

AWS Lambda Developer Guide

Example log format

START RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Version: $LATEST
ENVIRONMENT VARIABLES
environ({'AWS_LAMBDA_LOG_GROUP_NAME': '/aws/lambda/my-function',
 'AWS_LAMBDA_LOG_STREAM_NAME': '2020/01/31/[$LATEST]3893xmpl7fac4485b47bb75b671a283c',
 'AWS_LAMBDA_FUNCTION_NAME': 'my-function', ...})
EVENT
{'key': 'value'}
END RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95
REPORT RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Duration: 15.74 ms Billed
 Duration: 16 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 130.49 ms
XRAY TraceId: 1-5e34a614-10bdxmplf1fb44f07bc535a1 SegmentId: 07f5xmpl2d1f6f85
 Sampled: true

The Ruby runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

For more detailed logs, use the the section called “Working with the Ruby logger library”.

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

Viewing logs in the Lambda console 757

AWS Lambda Developer Guide

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs using the AWS Command Line Interface (AWS CLI)

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{

Viewing logs in the CloudWatch console 758

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

Viewing logs using the AWS Command Line Interface (AWS CLI) 759

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {

Viewing logs using the AWS Command Line Interface (AWS CLI) 760

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Working with the Ruby logger library

The Ruby logger library returns streamlined logs that are easily read. Use the logger utility to
output detailed information, messages, and errors codes related to your function.

lambda_function.rb

Deleting logs 761

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://ruby-doc.org/stdlib-2.7.0/libdoc/logger/rdoc/index.html

AWS Lambda Developer Guide

require 'logger'

def handler(event:, context:)
 logger = Logger.new($stdout)
 logger.info('## ENVIRONMENT VARIABLES')
 logger.info(ENV.to_a)
 logger.info('## EVENT')
 logger.info(event)
 event.to_a
end

The output from logger includes the log level, timestamp, and request ID.

START RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Version: $LATEST
[INFO] 2020-01-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ##
 ENVIRONMENT VARIABLES

[INFO] 2020-01-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125
 environ({'AWS_LAMBDA_LOG_GROUP_NAME': '/aws/lambda/my-function',
 'AWS_LAMBDA_LOG_STREAM_NAME': '2020/01/31/[$LATEST]1bbe51xmplb34a2788dbaa7433b0aa4d',
 'AWS_LAMBDA_FUNCTION_NAME': 'my-function', ...})

[INFO] 2020-01-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ## EVENT

[INFO] 2020-01-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 {'key':
 'value'}

END RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125
REPORT RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Duration: 2.75 ms Billed
 Duration: 3 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 113.51 ms
XRAY TraceId: 1-5e34a66a-474xmpl7c2534a87870b4370 SegmentId: 073cxmpl3e442861
 Sampled: true

Working with the Ruby logger library 762

AWS Lambda Developer Guide

Instrumenting Ruby code in AWS Lambda

Lambda integrates with AWS X-Ray to enable you to trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application, from
the frontend API to storage and database on the backend. By simply adding the X-Ray SDK library
to your build configuration, you can record errors and latency for any call that your function makes
to an AWS service.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example shows an application with two functions. The primary function processes events
and sometimes returns errors. The second function at the top processes errors that appear in the
first's log group and uses the AWS SDK to call X-Ray, Amazon Simple Storage Service (Amazon S3),
and Amazon CloudWatch Logs.

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

Tracing 763

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html#xray-concepts-servicegraph
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

6. Choose Save.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the AWS
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see AWS X-Ray pricing.

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

Tracing 764

https://aws.amazon.com/xray/pricing/
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess

AWS Lambda Developer Guide

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

Tracing 765

AWS Lambda Developer Guide

You can instrument your handler code to record metadata and trace downstream calls. To record
detail about calls that your handler makes to other resources and services, use the X-Ray SDK for
Ruby. To get the SDK, add the aws-xray-sdk package to your application's dependencies.

Example blank-ruby/function/Gemfile

Gemfile
source 'https://rubygems.org'

gem 'aws-xray-sdk', '0.11.4'
gem 'aws-sdk-lambda', '1.39.0'
gem 'test-unit', '3.3.5'

To instrument AWS SDK clients, require the aws-xray-sdk/lambda module after creating a client
in initialization code.

Example blank-ruby/function/lambda_function.rb – Tracing an AWS SDK client

lambda_function.rb
require 'logger'
require 'json'
require 'aws-sdk-lambda'
$client = Aws::Lambda::Client.new()
$client.get_account_settings()

require 'aws-xray-sdk/lambda'

def lambda_handler(event:, context:)
 logger = Logger.new($stdout)
 ...

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

Tracing 766

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby/function/Gemfile
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby/function/lambda_function.rb

AWS Lambda Developer Guide

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.

Tracing 767

AWS Lambda Developer Guide

These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see The X-Ray SDK for Ruby in the AWS X-Ray
Developer Guide.

Sections

• Enabling active tracing with the Lambda API

• Enabling active tracing with AWS CloudFormation

• Storing runtime dependencies in a layer

Enabling active tracing with the Lambda API

To manage tracing configuration with the AWS CLI or AWS SDK, use the following API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

Enabling active tracing with the Lambda API 768

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-ruby.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Enabling active tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Storing runtime dependencies in a layer

If you use the X-Ray SDK to instrument AWS SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores X-Ray
SDK for Ruby.

Enabling active tracing with AWS CloudFormation 769

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: function/.
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-ruby-lib
 Description: Dependencies for the blank-ruby sample app.
 ContentUri: lib/.
 CompatibleRuntimes:
 - ruby2.5

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build changes to generate the layer archive prior to
deployment. For a working example, see the blank-ruby sample application.

Storing runtime dependencies in a layer 770

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby

AWS Lambda Developer Guide

Building Lambda functions with Java

You can run Java code in AWS Lambda. Lambda provides runtimes for Java that run your code to
process events. Your code runs in an Amazon Linux environment that includes AWS credentials
from an AWS Identity and Access Management (IAM) role that you manage.

Lambda supports the following Java runtimes.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Java 21 java21 Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

Java 17 java17 Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Java 11 java11 Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Java 8 java8.al2 Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

AWS provides the following libraries for Java functions. These libraries are available through Maven
Central Repository.

• com.amazonaws:aws-lambda-java-core (required) – Defines handler method interfaces and the
context object that the runtime passes to the handler. If you define your own input types, this is
the only library that you need.

• com.amazonaws:aws-lambda-java-events – Input types for events from services that invoke
Lambda functions.

• com.amazonaws:aws-lambda-java-log4j2 – An appender library for Apache Log4j 2 that you can
use to add the request ID for the current invocation to your function logs.

• AWS SDK for Java 2.0 – The official AWS SDK for the Java programming language.

771

https://search.maven.org/search?q=g:com.amazonaws
https://search.maven.org/search?q=g:com.amazonaws
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-log4j2
https://github.com/aws/aws-sdk-java-v2

AWS Lambda Developer Guide

Add these libraries to your build definition as follows:

Gradle

dependencies {
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.2'
 implementation 'com.amazonaws:aws-lambda-java-events:3.11.1'
 runtimeOnly 'com.amazonaws:aws-lambda-java-log4j2:1.5.1'
}

Maven

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.2</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>3.11.1</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.5.1</version>
 </dependency>
 </dependencies>

Important

Don't use private components of the JDK API, such as private fields, methods, or classes.
Non-public API components can change or be removed in any update, causing your
application to break.

To create a Java function

1. Open the Lambda console.

772

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Java 21.

4. Choose Create function.

The console creates a Lambda function with a handler class named Hello. Since Java is a compiled
language, you can't view or edit the source code in the Lambda console, but you can modify its
configuration, invoke it, and configure triggers.

Note

To get started with application development in your local environment, deploy one of the
sample applications available in this guide's GitHub repository.

The Hello class has a function named handleRequest that takes an event object and a context
object. This is the handler function that Lambda calls when the function is invoked. The Java
function runtime gets invocation events from Lambda and passes them to the handler. In the
function configuration, the handler value is example.Hello::handleRequest.

To update the function's code, you create a deployment package, which is a .zip file archive that
contains your function code. As your function development progresses, you will want to store
your function code in source control, add libraries, and automate deployments. Start by creating a
deployment package and updating your code at the command line.

The function runtime passes a context object to the handler, in addition to the invocation event.
The context object contains additional information about the invocation, the function, and the
execution environment. More information is available from environment variables.

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Define Lambda function handler in Java

773

AWS Lambda Developer Guide

• Deploy Java Lambda functions with .zip or JAR file archives

• Deploy Java Lambda functions with container images

• Working with layers for Java Lambda functions

• Customize serialization for Lambda Java functions

• Customize Java runtime startup behavior for Lambda functions

• Using the Lambda context object to retrieve Java function information

• Log and monitor Java Lambda functions

• Instrumenting Java code in AWS Lambda

• Java sample applications for AWS Lambda

774

AWS Lambda Developer Guide

Define Lambda function handler in Java

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in Java, including options for
project setup, naming conventions, and best practices. This page also includes an example of a Java
Lambda function that takes in information about an order, produces a text file receipt, and puts
this file in an Amazon Simple Storage Service (Amazon S3) bucket. For information about how to
deploy your function after writing it, see the section called “Deploy .zip file archives” or the section
called “Deploy container images”.

Sections

• Setting up your Java handler project

• Example Java Lambda function code

• Valid class definitions for Java handlers

• Handler naming conventions

• Defining and accessing the input event object

• Accessing and using the Lambda context object

• Using the AWS SDK for Java v2 in your handler

• Accessing environment variables

• Using global state

• Code best practices for Java Lambda functions

Setting up your Java handler project

When working with Lambda functions in Java, the process involves writing your code, compiling it,
and deploying the compiled artifacts to Lambda. You can initialize a Java Lambda project in various
ways. For instance, you can use tools like the Maven Archetype for Lambda functions, the AWS SAM
CLI sam init command, or even a standard Java project setup in your preferred IDE, such as IntelliJ
IDEA or Visual Studio Code. Alternatively, you can create the required file structure manually.

A typical Java Lambda function project follows this general structure:

/project-root

Handler 775

https://github.com/aws/aws-sdk-java-v2/tree/master/archetypes/archetype-lambda
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-init.html

AWS Lambda Developer Guide

 # src
 # main
 # java
 # example
 # OrderHandler.java (contains main handler)
 # <other_supporting_classes>
 # build.gradle OR pom.xml

You can use either Maven or Gradle to build your project and manage dependencies.

The main handler logic for your function resides in a Java file under the src/main/java/
example directory. In the example on this page, we name this file OrderHandler.java. Apart
from this file, you can include additional Java classes as needed. When deploying your function to
Lambda, make sure you specify the Java class that contains the main handler method that Lambda
should invoke during an invocation.

Example Java Lambda function code

The following example Java 21 Lambda function code takes in information about an order,
produces a text file receipt, and puts this file in an Amazon S3 bucket.

Example OrderHandler.java Lambda function

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import software.amazon.awssdk.core.sync.RequestBody;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.PutObjectRequest;
import software.amazon.awssdk.services.s3.model.S3Exception;

import java.nio.charset.StandardCharsets;

/**
 * Lambda handler for processing orders and storing receipts in S3.
 */
public class OrderHandler implements RequestHandler<OrderHandler.Order, String> {

 private static final S3Client S3_CLIENT = S3Client.builder().build();

 /**
 * Record to model the input event.

Example Java Lambda function code 776

AWS Lambda Developer Guide

 */
 public record Order(String orderId, double amount, String item) {}

 @Override
 public String handleRequest(Order event, Context context) {
 try {
 // Access environment variables
 String bucketName = System.getenv("RECEIPT_BUCKET");
 if (bucketName == null || bucketName.isEmpty()) {
 throw new IllegalArgumentException("RECEIPT_BUCKET environment variable
 is not set");
 }

 // Create the receipt content and key destination
 String receiptContent = String.format("OrderID: %s\nAmount: $%.2f\nItem:
 %s",
 event.orderId(), event.amount(), event.item());
 String key = "receipts/" + event.orderId() + ".txt";

 // Upload the receipt to S3
 uploadReceiptToS3(bucketName, key, receiptContent);

 context.getLogger().log("Successfully processed order " + event.orderId() +
 " and stored receipt in S3 bucket " + bucketName);
 return "Success";

 } catch (Exception e) {
 context.getLogger().log("Failed to process order: " + e.getMessage());
 throw new RuntimeException(e);
 }
 }

 private void uploadReceiptToS3(String bucketName, String key, String
 receiptContent) {
 try {
 PutObjectRequest putObjectRequest = PutObjectRequest.builder()
 .bucket(bucketName)
 .key(key)
 .build();

 // Convert the receipt content to bytes and upload to S3
 S3_CLIENT.putObject(putObjectRequest,
 RequestBody.fromBytes(receiptContent.getBytes(StandardCharsets.UTF_8)));
 } catch (S3Exception e) {

Example Java Lambda function code 777

AWS Lambda Developer Guide

 throw new RuntimeException("Failed to upload receipt to S3: " +
 e.awsErrorDetails().errorMessage(), e);
 }
 }
}

This OrderHandler.java file contains the following sections of code:

• package example: In Java, this can be anything, but it must match the directory structure of
your project. Here, we use package example because the directory structure is src/main/
java/example.

• import statements: Use these to import Java classes that your Lambda function requires.

• public class OrderHandler ...: This defines your Java class, and must be a valid class
definition.

• private static final S3Client S3_CLIENT ...: This initializes an S3 client outside of
any of the class’s methods. This causes Lambda to run this code during the initialization phase.

• public record Order ...: Define the shape of the expected input event in this custom Java
record.

• public String handleRequest(Order event, Context context): This is the main
handler method, which contains your main application logic.

• private void uploadReceiptToS3(...) {}: This is a helper method that's referenced by
the main handleRequest handler method.

Sample build.gradle and pom.xml file

The following build.gradle or pom.xml file accompanies this function.

build.gradle

plugins {
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {

Example Java Lambda function code 778

https://openjdk.org/jeps/395

AWS Lambda Developer Guide

 implementation 'com.amazonaws:aws-lambda-java-core:1.2.3'
 implementation 'software.amazon.awssdk:s3:2.28.29'
 implementation 'org.slf4j:slf4j-nop:2.0.16'
}

task buildZip(type: Zip) {
 from compileJava
 from processResources
 into('lib') {
 from configurations.runtimeClasspath
 }
}

java {
 sourceCompatibility = JavaVersion.VERSION_21
 targetCompatibility = JavaVersion.VERSION_21
}

build.dependsOn buildZip

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.example</groupId>
 <artifactId>example-java</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>example-java-function</name>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>21</maven.compiler.source>
 <maven.compiler.target>21</maven.compiler.target>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.3</version>
 </dependency>

Example Java Lambda function code 779

AWS Lambda Developer Guide

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 <version>2.28.29</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-nop</artifactId>
 <version>2.0.16</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>3.5.2</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.4.1</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*</exclude>
 <exclude>META-INF/versions/**</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>

Example Java Lambda function code 780

AWS Lambda Developer Guide

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.13.0</version>
 <configuration>
 <release>21</release>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

For this function to work properly, its execution role must allow the s3:PutObject action. Also,
ensure that you define the RECEIPT_BUCKET environment variable. After a successful invocation,
the Amazon S3 bucket should contain a receipt file.

Note

This function may require additional configuration settings to run successfully without
timing out. We recommend configuring 256 MB of memory, and a 10 second timeout. The
first invocation may take extra time due to a cold start. Subsequent invocations should run
much faster due to reuse of the execution environment.

Valid class definitions for Java handlers

To define your class, the aws-lambda-java-core library defines two interfaces for handler methods.
Use the provided interfaces to simplify handler configuration and validate the method signature at
compile time.

• com.amazonaws.services.lambda.runtime.RequestHandler

• com.amazonaws.services.lambda.runtime.RequestStreamHandler

The RequestHandler interface is a generic type that takes two parameters: the input type and
the output type. Both types must be objects. In this example, our OrderHandler class implements
RequestHandler<OrderHandler.Order, String>. The input type is the Order record we
define within the class, and the output type is String.

public class OrderHandler implements RequestHandler<OrderHandler.Order, String> {

Valid class definitions for Java handlers 781

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestHandler.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestStreamHandler.java

AWS Lambda Developer Guide

 ...
}

When you use this interface, the Java runtime deserializes the event into the object with the input
type, and serializes the output into text. Use this interface when the built-in serialization works
with your input and output types.

To use your own serialization, you can implement the RequestStreamHandler interface. With
this interface, Lambda passes your handler an input stream and output stream. The handler reads
bytes from the input stream, writes to the output stream, and returns void. For an example of this
using the Java 21 runtime, see HandlerStream.java.

If you’re working only with basic and generic types (i.e. String, Integer, =List, or Map) in your
Java function , you don’t need to implement an interface. For example, if your function takes in a
Map<String, String> input and returns a String, your class definition and handler signature
may look like the following:

public class ExampleHandler {
 public String handleRequest(Map<String, String> input, Context context) {
 ...
 }
}

In addition, when you don’t implement an interface, the context object is optional. For example,
your class definition and handler signature may look like the following:

public class NoContextHandler {
 public String handleRequest(Map<String, String> input) {
 ...
 }
}

Handler naming conventions

For Lambda functions in Java, if you are implementing either the RequestHandler or
RequestStreamHandler interface, your main handler method must be named handleRequest.
Also, include the @Override tag above your handleRequest method. When you deploy your
function to Lambda, specify the main handler in your function’s configuration in the following
format:

Handler naming conventions 782

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerStream.java

AWS Lambda Developer Guide

• <package>.<Class> – For example, example.OrderHandler.

For Lambda functions in Java that don’t implement the RequestHandler or
RequestStreamHandler interface, you can use any name for the handler. When you deploy your
function to Lambda, specify the main handler in your function’s configuration in the following
format:

• <package>.<Class>::<handler_method_name> – For example,
example.Handler::mainHandler.

Defining and accessing the input event object

JSON is the most common and standard input format for Lambda functions. In this example, the
function expects an input similar to the following:

{
 "orderId": "12345",
 "amount": 199.99,
 "item": "Wireless Headphones"
}

When working with Lambda functions in Java 17 or newer, you can define the shape of
the expected input event as a Java record. In this example, we define a record within the
OrderHandler class to represent an Order object:

public record Order(String orderId, double amount, String item) {}

This record matches the expected input shape. After you define your record, you can write a
handler signature that takes in a JSON input that conforms to the record definition. The Java
runtime automatically deserializes this JSON into a Java object. You can then access the fields of
the object. For example, event.orderId retrieves the value of orderId from the original input.

Note

Java records are a feature of Java 17 runtimes and newer only. In all Java runtimes, you
can use a class to represent event data. In such cases, you can use a library like jackson to
deserialize JSON inputs.

Defining and accessing the input event object 783

https://github.com/FasterXML/jackson

AWS Lambda Developer Guide

Other input event types

There are many possible input events for Lambda functions in Java:

• Integer, Long, Double, etc. – The event is a number with no additional formatting—for
example, 3.5. The Java runtime converts the value into an object of the specified type.

• String – The event is a JSON string, including quotes—for example, “My string”. The
runtime converts the value into a String object without quotes.

• List<Integer>, List<String>, List<Object>, etc. – The event is a JSON array. The runtime
deserializes it into an object of the specified type or interface.

• InputStream – The event is any JSON type. The runtime passes a byte stream of the document
to the handler without modification. You deserialize the input and write output to an output
stream.

• Library type – For events sent by other AWS services, use the types in the aws-lambda-java-
events library. For example, if your Lambda function is invoked by Amazon Simple Queue Service
(SQS), use the SQSEvent object as the input.

Accessing and using the Lambda context object

The Lambda context object contains information about the invocation, function,
and execution environment. In this example, the context object is of type
com.amazonaws.services.lambda.runtime.Context, and is the second argument of the
main handler function.

public String handleRequest(Order event, Context context) {
 ...
}

If your class implements either the RequestHandler or RequestStreamHandler interface, the
context object is a required argument. Otherwise, the context object is optional. For more
information about valid accepted handler signatures, see the section called “Valid class definitions
for Java handlers”.

If you make calls to other services using the AWS SDK, the context object is required in a few
key areas. For example, to produce function logs for Amazon CloudWatch, you can use the
context.getLogger() method to get a LambdaLogger object for logging. In this example, we
can use the logger to log an error message if processing fails for any reason:

Accessing and using the Lambda context object 784

https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-events
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-events
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestHandler.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestStreamHandler.java

AWS Lambda Developer Guide

context.getLogger().log("Failed to process order: " + e.getMessage());

Outside of logging, you can also use the context object for function monitoring. For more
information about the context object, see the section called “Context”.

Using the AWS SDK for Java v2 in your handler

Often, you’ll use Lambda functions to interact with or make updates to other AWS resources. The
simplest way to interface with these resources is to use the AWS SDK for Java v2.

Note

The AWS SDK for Java (v1) is in maintenance mode, and will reach end-of-support on
December 31, 2025. We recommend that you use only the AWS SDK for Java v2 going
forward.

To add SDK dependencies to your function, add them in your build.gradle for Gradle or
pom.xml file for Maven. We recommend only adding the libraries that you need for your function.
In the example code earlier, we used the software.amazon.awssdk.services.s3 library. In
Gradle, you can add this dependency by adding the following line in the dependencies section of
your build.gradle:

implementation 'software.amazon.awssdk:s3:2.28.29'

In Maven, add the following lines in the <dependencies> section of your pom.xml:

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 <version>2.28.29</version>
 </dependency>

Note

This may not be the most recent version of the SDK. Choose the appropriate version of the
SDK for your application.

Using the AWS SDK for Java v2 in your handler 785

AWS Lambda Developer Guide

Then, import the dependencies directly in your Java class:

import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.PutObjectRequest;
import software.amazon.awssdk.services.s3.model.S3Exception;

The example code then initializes an Amazon S3 client as follows:

private static final S3Client S3_CLIENT = S3Client.builder().build();

In this example, we initialized our Amazon S3 client outside of the main handler function to avoid
having to initialize it every time we invoke our function. After you initialize your SDK client, you can
then use it to interact with other AWS services. The example code calls the Amazon S3 PutObject
API as follows:

PutObjectRequest putObjectRequest = PutObjectRequest.builder()
 .bucket(bucketName)
 .key(key)
 .build();

// Convert the receipt content to bytes and upload to S3
S3_CLIENT.putObject(putObjectRequest,
 RequestBody.fromBytes(receiptContent.getBytes(StandardCharsets.UTF_8)));

Accessing environment variables

In your handler code, you can reference any environment variables by using the
System.getenv() method. In this example, we reference the defined RECEIPT_BUCKET
environment variable using the following line of code:

String bucketName = System.getenv("RECEIPT_BUCKET");
if (bucketName == null || bucketName.isEmpty()) {
 throw new IllegalArgumentException("RECEIPT_BUCKET environment variable is not
 set");
}

Accessing environment variables 786

AWS Lambda Developer Guide

Using global state

Lambda runs your static code and the class constructor during the initialization phase before
invoking your function for the first time. Resources created during initialization stay in memory
between invocations, so you can avoid having to create them every time you invoke your function.

In the example code, the S3 client initialization code is outside the main handler method. The
runtime initializes the client before the function handles its first event, and the client remains
available for reuse across all invocations.

Code best practices for Java Lambda functions

Adhere to the guidelines in the following list to use best coding practices when building your
Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function.

• Control the dependencies in your function's deployment package. The AWS Lambda
execution environment contains a number of libraries. To enable the latest set of features
and security updates, Lambda will periodically update these libraries. These updates may
introduce subtle changes to the behavior of your Lambda function. To have full control of the
dependencies your function uses, package all of your dependencies with your deployment
package.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly
on execution environment startup. For example, prefer simpler Java dependency injection (IoC)
frameworks like Dagger or Guice, over more complex ones like Spring Framework.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation. For functions authored in Java, avoid uploading the entire AWS SDK library
as part of your deployment package. Instead, selectively depend on the modules which pick up
components of the SDK you need (e.g. DynamoDB, Amazon S3 SDK modules and Lambda core
libraries).

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same

Using global state 787

https://google.github.io/dagger/
https://github.com/google/guice
https://github.com/spring-projects/spring-framework
https://github.com/aws/aws-lambda-java-libs
https://github.com/aws/aws-lambda-java-libs

AWS Lambda Developer Guide

instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

• Avoid using the Java DNS cache. Lambda functions already cache DNS responses. If you use
another DNS cache, then you might experience connection timeouts.

The java.util.logging.Logger class can indirectly enable the JVM DNS cache. To override
the default settings, set networkaddress.cache.ttl to 0 before initializing logger. Example:

public class MyHandler {

Code best practices for Java Lambda functions 788

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/InetAddress.html#inetaddress-caching-heading

AWS Lambda Developer Guide

 // first set TTL property
 static{
 java.security.Security.setProperty("networkaddress.cache.ttl" , "0");
 }
 // then instantiate logger
 var logger = org.apache.logging.log4j.LogManager.getLogger(MyHandler.class);
}

• Reduce the time it takes Lambda to unpack deployment packages authored in Java by putting
your dependency .jar files in a separate /lib directory. This is faster than putting all your
function’s code in a single jar with a large number of .class files. See Deploy Java Lambda
functions with .zip or JAR file archives for instructions.

Code best practices for Java Lambda functions 789

AWS Lambda Developer Guide

Deploy Java Lambda functions with .zip or JAR file archives

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

This page describes how to create your deployment package as a .zip file or Jar file, and then use
the deployment package to deploy your function code to AWS Lambda using the AWS Command
Line Interface (AWS CLI).

Sections

• Prerequisites

• Tools and libraries

• Building a deployment package with Gradle

• Using layers for dependencies

• Building a deployment package with Maven

• Uploading a deployment package with the Lambda console

• Uploading a deployment package with the AWS CLI

• Uploading a deployment package with AWS SAM

Prerequisites

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

Tools and libraries

AWS provides the following libraries for Java functions. These libraries are available through Maven
Central Repository.

• com.amazonaws:aws-lambda-java-core (required) – Defines handler method interfaces and the
context object that the runtime passes to the handler. If you define your own input types, this is
the only library that you need.

• com.amazonaws:aws-lambda-java-events – Input types for events from services that invoke
Lambda functions.

Deploy .zip file archives 790

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://search.maven.org/search?q=g:com.amazonaws
https://search.maven.org/search?q=g:com.amazonaws
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events

AWS Lambda Developer Guide

• com.amazonaws:aws-lambda-java-log4j2 – An appender library for Apache Log4j 2 that you can
use to add the request ID for the current invocation to your function logs.

• AWS SDK for Java 2.0 – The official AWS SDK for the Java programming language.

Add these libraries to your build definition as follows:

Gradle

dependencies {
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.2'
 implementation 'com.amazonaws:aws-lambda-java-events:3.11.1'
 runtimeOnly 'com.amazonaws:aws-lambda-java-log4j2:1.5.1'
}

Maven

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.2</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>3.11.1</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.5.1</version>
 </dependency>
 </dependencies>

To create a deployment package, compile your function code and dependencies into a single .zip
file or Java Archive (JAR) file. For Gradle, use the Zip build type. For Apache Maven, use the Maven
Shade plugin. To upload your deployment package, use the Lambda console, the Lambda API, or
AWS Serverless Application Model (AWS SAM).

Tools and libraries 791

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-log4j2
https://github.com/aws/aws-sdk-java-v2

AWS Lambda Developer Guide

Note

To keep your deployment package size small, package your function's dependencies in
layers. Layers enable you to manage your dependencies independently, can be used by
multiple functions, and can be shared with other accounts. For more information, see
Lambda layers.

Building a deployment package with Gradle

To create a deployment package with your function's code and dependencies in Gradle, use the Zip
build type. Here's an example from a complete sample build.gradle file:

Example build.gradle – Build task

task buildZip(type: Zip) {
 into('lib') {
 from(jar)
 from(configurations.runtimeClasspath)
 }
}

This build configuration produces a deployment package in the build/distributions directory.
Within the into('lib') statement, the jar task assembles a jar archive containing your main
classes into a folder named lib. Additionally, the configurations.runtimeClassPath task
copies dependency libraries from the build's classpath into the same lib folder.

Example build.gradle – Dependencies

dependencies {
 ...
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.2'
 implementation 'com.amazonaws:aws-lambda-java-events:3.11.1'
 implementation 'org.apache.logging.log4j:log4j-api:2.17.1'
 implementation 'org.apache.logging.log4j:log4j-core:2.17.1'
 runtimeOnly 'org.apache.logging.log4j:log4j-slf4j18-impl:2.17.1'
 runtimeOnly 'com.amazonaws:aws-lambda-java-log4j2:1.5.1'
 ...
}

Building a deployment package with Gradle 792

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/s3-java/build.gradle

AWS Lambda Developer Guide

Lambda loads JAR files in Unicode alphabetical order. If multiple JAR files in the lib directory
contain the same class, the first one is used. You can use the following shell script to identify
duplicate classes:

Example test-zip.sh

mkdir -p expanded
unzip path/to/my/function.zip -d expanded
find ./expanded/lib -name '*.jar' | xargs -n1 zipinfo -1 | grep '.*.class' | sort |
 uniq -c | sort

Using layers for dependencies

You can package your function's dependencies in layers to keep your deployment package small
and manage dependencies independently. For more information, see the section called “Layers”.

Building a deployment package with Maven

To build a deployment package with Maven, use the Maven Shade plugin. The plugin creates a JAR
file that contains the compiled function code and all of its dependencies.

Example pom.xml – Plugin configuration

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

To build the deployment package, use the mvn package command.

Using layers for dependencies 793

https://maven.apache.org/plugins/maven-shade-plugin/

AWS Lambda Developer Guide

[INFO] Scanning for projects...
[INFO] -----------------------< com.example:java-maven >-----------------------
[INFO] Building java-maven-function 1.0-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
...
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ java-maven ---
[INFO] Building jar: target/java-maven-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- maven-shade-plugin:3.2.2:shade (default) @ java-maven ---
[INFO] Including com.amazonaws:aws-lambda-java-core:jar:1.2.2 in the shaded jar.
[INFO] Including com.amazonaws:aws-lambda-java-events:jar:3.11.1 in the shaded jar.
[INFO] Including joda-time:joda-time:jar:2.6 in the shaded jar.
[INFO] Including com.google.code.gson:gson:jar:2.8.6 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing target/java-maven-1.0-SNAPSHOT.jar with target/java-maven-1.0-
SNAPSHOT-shaded.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.321 s
[INFO] Finished at: 2020-03-03T09:07:19Z
[INFO] --

This command generates a JAR file in the target directory.

Note

If you're working with a multi-release JAR (MRJAR), you must include the MRJAR (i.e. the
shaded JAR produced by the Maven Shade plugin) in the lib directory and zip it before
uploading your deployment package to Lambda. Otherwise, Lambda may not properly
unpack your JAR file, causing your MANIFEST.MF file to be ignored.

If you use the appender library (aws-lambda-java-log4j2), you must also configure a
transformer for the Maven Shade plugin. The transformer library combines versions of a cache file
that appear in both the appender library and in Log4j.

Example pom.xml – Plugin configuration with Log4j 2 appender

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Building a deployment package with Maven 794

https://openjdk.org/jeps/238

AWS Lambda Developer Guide

 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="com.github.edwgiz.maven_shade_plugin.log4j2_cache_transformer.PluginsCacheFileTransformer">
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>com.github.edwgiz</groupId>
 <artifactId>maven-shade-plugin.log4j2-cachefile-transformer</artifactId>
 <version>2.13.0</version>
 </dependency>
 </dependencies>
 </plugin>

Uploading a deployment package with the Lambda console

To create a new function, you must first create the function in the console, then upload your .zip
or JAR file. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip or JAR file.

If your deployment package file is less than 50MB, you can create or update a function by
uploading the file directly from your local machine. For .zip or JAR files greater than 50MB, you
must upload your package to an Amazon S3 bucket first. For instructions on how to upload a file to
an Amazon S3 bucket using the AWS Management Console, see Getting started with Amazon S3.
To upload files using the AWS CLI, see Move objects in the AWS CLI User Guide.

Uploading a deployment package with the Lambda console 795

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

AWS Lambda Developer Guide

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip or JAR archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
or JAR file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip or .jar file.

5. To upload the .zip or JAR file, do the following:

a. Select Upload, then select your .zip or JAR file in the file chooser.

b. Choose Open.

c. Choose Save.

Uploading a deployment package with the Lambda console 796

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To upload a .zip or JAR archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip or JAR file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Uploading a deployment package with the AWS CLI

You can can use the AWS CLI to create a new function or to update an existing one using a .zip or
JAR file. Use the create-function and update-function-code commands to deploy your .zip or JAR
package. If your file is smaller than 50MB, you can upload the package from a file location on your
local build machine. For larger files, you must upload your .zip or JAR package from an Amazon S3
bucket. For instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see
Move objects in the AWS CLI User Guide.

Note

If you upload your .zip or JAR file from an Amazon S3 bucket using the AWS CLI, the bucket
must be located in the same AWS Region as your function.

To create a new function using a .zip or JAR file with the AWS CLI, you must specify the following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip or JAR file. If your .zip or JAR file is located in a
folder on your local build machine, use the --zip-file option to specify the file path, as shown
in the following example command.

aws lambda create-function --function-name myFunction \
--runtime java21 --handler example.handler \

Uploading a deployment package with the AWS CLI 797

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Lambda Developer Guide

--role arn:aws:iam::123456789012:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime java21 --handler example.handler \
--role arn:aws:iam::123456789012:role/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket amzn-s3-demo-bucket --s3-key myFileName.zip --s3-object-version myObject
 Version

Uploading a deployment package with AWS SAM

You can use AWS SAM to automate deployments of your function code, configuration, and
dependencies. AWS SAM is an extension of AWS CloudFormation that provides a simplified syntax
for defining serverless applications. The following example template defines a function with a
deployment package in the build/distributions directory that Gradle uses:

Example template.yml

AWSTemplateFormatVersion: '2010-09-09'

Uploading a deployment package with AWS SAM 798

AWS Lambda Developer Guide

Transform: 'AWS::Serverless-2016-10-31'
Description: An AWS Lambda application that calls the Lambda API.
Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: build/distributions/java-basic.zip
 Handler: example.Handler
 Runtime: java21
 Description: Java function
 MemorySize: 512
 Timeout: 10
 # Function's execution role
 Policies:
 - AWSLambdaBasicExecutionRole
 - AWSLambda_ReadOnlyAccess
 - AWSXrayWriteOnlyAccess
 - AWSLambdaVPCAccessExecutionRole
 Tracing: Active

To create the function, use the package and deploy commands. These commands are
customizations to the AWS CLI. They wrap other commands to upload the deployment package to
Amazon S3, rewrite the template with the object URI, and update the function's code.

The following example script runs a Gradle build and uploads the deployment package that it
creates. It creates an AWS CloudFormation stack the first time you run it. If the stack already exists,
the script updates it.

Example deploy.sh

#!/bin/bash
set -eo pipefail
aws cloudformation package --template-file template.yml --s3-bucket MY_BUCKET --output-
template-file out.yml
aws cloudformation deploy --template-file out.yml --stack-name java-basic --
capabilities CAPABILITY_NAMED_IAM

For a complete working example, see the following sample applications:

Uploading a deployment package with AWS SAM 799

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

Sample Lambda applications in Java

• example-java – A Java function that demonstrates how you can use Lambda to process orders.
This function illustrates how to define and deserialize a custom input event object, use the AWS
SDK, and output logging.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the AWS SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• layer-java – A Java function that illustrates how to use a Lambda layer to package dependencies
separate from your core function code.

Uploading a deployment package with AWS SAM 800

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/example-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-java

AWS Lambda Developer Guide

Deploy Java Lambda functions with container images

There are three ways to build a container image for a Java Lambda function:

• Using an AWS base image for Java

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Java in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Java in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• AWS base images for Java

• Using an AWS base image for Java

• Using an alternative base image with the runtime interface client

Deploy container images 801

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

AWS base images for Java

AWS provides the following base images for Java:

Tags Runtime Operating
system

Dockerfile Deprecation

21 Java 21 Amazon
Linux 2023

Dockerfile for Java 21 on
GitHub

Jun 30, 2029

17 Java 17 Amazon
Linux 2

Dockerfile for Java 17 on
GitHub

Jun 30, 2026

11 Java 11 Amazon
Linux 2

Dockerfile for Java 11 on
GitHub

Jun 30, 2026

8.al2 Java 8 Amazon
Linux 2

Dockerfile for Java 8 on
GitHub

Jun 30, 2026

Amazon ECR repository: gallery.ecr.aws/lambda/java

The Java 21 and later base images are based on the Amazon Linux 2023 minimal container image.
Earlier base images use Amazon Linux 2. AL2023 provides several advantages over Amazon Linux 2,
including a smaller deployment footprint and updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

AWS base images for Java 802

https://github.com/aws/aws-lambda-base-images/blob/java21/Dockerfile.java21
https://github.com/aws/aws-lambda-base-images/blob/java21/Dockerfile.java21
https://github.com/aws/aws-lambda-base-images/blob/java17/Dockerfile.java17
https://github.com/aws/aws-lambda-base-images/blob/java17/Dockerfile.java17
https://github.com/aws/aws-lambda-base-images/blob/java11/Dockerfile.java11
https://github.com/aws/aws-lambda-base-images/blob/java11/Dockerfile.java11
https://github.com/aws/aws-lambda-base-images/blob/java8.al2/Dockerfile.java8.al2
https://github.com/aws/aws-lambda-base-images/blob/java8.al2/Dockerfile.java8.al2
https://gallery.ecr.aws/lambda/java
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

Using an AWS base image for Java

Prerequisites

To complete the steps in this section, you must have the following:

• Java (for example, Amazon Corretto)

• Apache Maven or Gradle

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

Creating an image from a base image

Maven

1. Run the following command to create a Maven project using the archetype for Lambda.
The following parameters are required:

• service – The AWS service client to use in the Lambda function. For a list of available
sources, see aws-sdk-java-v2/services on GitHub.

• region – The AWS Region where you want to create the Lambda function.

• groupId – The full package namespace of your application.

• artifactId – Your project name. This becomes the name of the directory for your project.

In Linux and macOS, run this command:

mvn -B archetype:generate \
 -DarchetypeGroupId=software.amazon.awssdk \
 -DarchetypeArtifactId=archetype-lambda -Dservice=s3 -Dregion=US_WEST_2 \
 -DgroupId=com.example.myapp \
 -DartifactId=myapp

In PowerShell, run this command:

mvn -B archetype:generate `
 "-DarchetypeGroupId=software.amazon.awssdk" `

Using an AWS base image 803

https://aws.amazon.com/corretto
https://maven.apache.org/
https://gradle.org/install/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md
https://github.com/aws/aws-sdk-java-v2/tree/master/archetypes/archetype-lambda
https://github.com/aws/aws-sdk-java-v2/tree/master/services

AWS Lambda Developer Guide

 "-DarchetypeArtifactId=archetype-lambda" "-Dservice=s3" "-Dregion=US_WEST_2"
 `
 "-DgroupId=com.example.myapp" `
 "-DartifactId=myapp"

The Maven archetype for Lambda is preconfigured to compile with Java SE 8 and includes a
dependency to the AWS SDK for Java. If you create your project with a different archetype
or by using another method, you must configure the Java compiler for Maven and declare
the SDK as a dependency.

2. Open the myapp/src/main/java/com/example/myapp directory, and find the
App.java file. This is the code for the Lambda function. You can use the provided sample
code for testing, or replace it with your own.

3. Navigate back to the project's root directory, and then create a new Dockerfile with the
following configuration:

• Set the FROM property to the URI of the base image.

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to
the root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/lambda/java:21

Copy function code and runtime dependencies from Maven layout
COPY target/classes ${LAMBDA_TASK_ROOT}
COPY target/dependency/* ${LAMBDA_TASK_ROOT}/lib/

Set the CMD to your handler (could also be done as a parameter override
 outside of the Dockerfile)
CMD ["com.example.myapp.App::handleRequest"]

4. Compile the project and collect the runtime dependencies.

mvn compile dependency:copy-dependencies -DincludeScope=runtime

Using an AWS base image 804

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#configure-maven-compiler
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#configure-maven-compiler
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#configure-maven-compiler
https://gallery.ecr.aws/lambda/java
https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

5. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-
image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the
--platform linux/arm64 option instead.

Gradle

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Run the following command to have Gradle generate a new Java application project in the
example directory in your environment. For Select build script DSL, choose 2: Groovy.

gradle init --type java-application

3. Open the /example/app/src/main/java/example directory, and find the App.java
file. This is the code for the Lambda function. You can use the following sample code for
testing, or replace it with your own.

Example App.java

package com.example;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
public class App implements RequestHandler<Object, String> {
 public String handleRequest(Object input, Context context) {

Using an AWS base image 805

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

 return "Hello world!";
 }
}

4. Open the build.gradle file. If you're using the sample function code from the previous
step, replace the contents of build.gradle with the following. If you're using your own
function code, modify your build.gradle file as needed.

Example build.gradle (Groovy DSL)

plugins {
 id 'java'
}
group 'com.example'
version '1.0-SNAPSHOT'
sourceCompatibility = 1.8
repositories {
 mavenCentral()
}
dependencies {
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.1'
}
jar {
 manifest {
 attributes 'Main-Class': 'com.example.App'
 }
}

5. The gradle init command from step 2 also generated a dummy test case in the app/
test directory. For the purposes of this tutorial, skip running tests by deleting the /test
directory.

6. Build the project.

gradle build

7. In the project's root directory (/example), create a Dockerfile with the following
configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

Using an AWS base image 806

https://gallery.ecr.aws/lambda/java

AWS Lambda Developer Guide

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to
the root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/lambda/java:21

Copy function code and runtime dependencies from Gradle layout
COPY app/build/classes/java/main ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override
 outside of the Dockerfile)
CMD ["com.example.App::handleRequest"]

8. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-
image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the
--platform linux/arm64 option instead.

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

Using an AWS base image 807

https://docs.docker.com/reference/dockerfile/#user
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Using an AWS base image 808

AWS Lambda Developer Guide

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

Using an AWS base image 809

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

Using an AWS base image 810

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using an AWS base image 811

https://docs.docker.com/engine/reference/commandline/push/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Runtime API, which
manages the interaction between Lambda and your function code.

Install the runtime interface client for Java in your Dockerfile, or as a dependency in your project.
For example, to install the runtime interface client using the Maven package manager, add the
following to your pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-runtime-interface-client</artifactId>
 <version>2.3.2</version>
</dependency>

For package details, see AWS Lambda Java Runtime Interface Client in the Maven Central
Repository. You can also review the runtime interface client source code in the AWS Lambda Java
Support Libraries GitHub repository.

The following example demonstrates how to build a container image for Java using an Amazon
Corretto image. Amazon Corretto is a no-cost, multiplatform, production-ready distribution of the
Open Java Development Kit (OpenJDK). The Maven project includes the runtime interface client as
a dependency.

Prerequisites

To complete the steps in this section, you must have the following:

Using a non-AWS base image 812

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-runtime-interface-client
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client
https://gallery.ecr.aws/amazoncorretto/amazoncorretto
https://gallery.ecr.aws/amazoncorretto/amazoncorretto

AWS Lambda Developer Guide

• Java (for example, Amazon Corretto)

• Apache Maven

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

Creating an image from an alternative base image

1. Create a Maven project. The following parameters are required:

• groupId – The full package namespace of your application.

• artifactId – Your project name. This becomes the name of the directory for your project.

Linux/macOS

mvn -B archetype:generate \
 -DarchetypeArtifactId=maven-archetype-quickstart \
 -DgroupId=example \
 -DartifactId=myapp \
 -DinteractiveMode=false

PowerShell

mvn -B archetype:generate `
 -DarchetypeArtifactId=maven-archetype-quickstart `
 -DgroupId=example `
 -DartifactId=myapp `
 -DinteractiveMode=false

2. Open the project directory.

cd myapp

3. Open the pom.xml file and replace the contents with the following. This file includes the
aws-lambda-java-runtime-interface-client as a dependency. Alternatively, you can install the
runtime interface client in the Dockerfile. However, the simplest approach is to include the
library as a dependency.

Using a non-AWS base image 813

https://aws.amazon.com/corretto
https://maven.apache.org/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client

AWS Lambda Developer Guide

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>example</groupId>
 <artifactId>hello-lambda</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>hello-lambda</name>
 <url>http://maven.apache.org</url>
 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-runtime-interface-client</artifactId>
 <version>2.3.2</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.1.2</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Using a non-AWS base image 814

AWS Lambda Developer Guide

4. Open the myapp/src/main/java/com/example/myapp directory, and find the App.java
file. This is the code for the Lambda function. Replace the code with the following.

Example function handler

package example;

public class App {
 public static String sayHello() {
 return "Hello world!";
 }
}

5. The mvn -B archetype:generate command from step 1 also generated a dummy test case
in the src/test directory. For the purposes of this tutorial, skip over running tests by deleting
this entire generated /test directory.

6. Navigate back to the project's root directory, and then create a new Dockerfile. The
following example Dockerfile uses an Amazon Corretto image. Amazon Corretto is a no-cost,
multiplatform, production-ready distribution of the OpenJDK.

• Set the FROM property to the URI of the base image.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD argument to the Lambda function handler.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

FROM public.ecr.aws/amazoncorretto/amazoncorretto:21 as base

Configure the build environment
FROM base as build
RUN yum install -y maven
WORKDIR /src

Using a non-AWS base image 815

https://gallery.ecr.aws/amazoncorretto/amazoncorretto
https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

Cache and copy dependencies
ADD pom.xml .
RUN mvn dependency:go-offline dependency:copy-dependencies

Compile the function
ADD . .
RUN mvn package

Copy the function artifact and dependencies onto a clean base
FROM base
WORKDIR /function

COPY --from=build /src/target/dependency/*.jar ./
COPY --from=build /src/target/*.jar ./

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["/usr/bin/java", "-cp", "./*",
 "com.amazonaws.services.lambda.runtime.api.client.AWSLambda"]
Pass the name of the function handler as an argument to the runtime
CMD ["example.App::sayHello"]

7. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or use the following procedure to install it on your local machine.

Using a non-AWS base image 816

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image

AWS Lambda Developer Guide

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

Using a non-AWS base image 817

AWS Lambda Developer Guide

• /usr/bin/java -cp './*'
com.amazonaws.services.lambda.runtime.api.client.AWSLambda
example.App::sayHello is the ENTRYPOINT followed by the CMD from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /usr/bin/java -cp './*'
 com.amazonaws.services.lambda.runtime.api.client.AWSLambda
 example.App::sayHello

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /usr/bin/java -cp './*'
 com.amazonaws.services.lambda.runtime.api.client.AWSLambda
 example.App::sayHello

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

Using a non-AWS base image 818

AWS Lambda Developer Guide

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Using a non-AWS base image 819

https://docs.docker.com/engine/reference/commandline/kill/

AWS Lambda Developer Guide

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {

Using a non-AWS base image 820

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Using a non-AWS base image 821

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using a non-AWS base image 822

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Working with layers for Java Lambda functions

Use Lambda layers to package code and dependencies that you want to reuse across multiple
functions. Layers usually contain library dependencies, a custom runtime, or configuration files.
Creating a layer involves three general steps:

1. Package your layer content. This means creating a .zip file archive that contains the
dependencies you want to use in your functions.

2. Create the layer in Lambda.

3. Add the layer to your functions.

Topics

• Package your layer content

• Create the layer in Lambda

• Add the layer to your function

Package your layer content

To create a layer, bundle your packages into a .zip file archive that meets the following
requirements:

• Ensure that the Java version that Maven or Gradle refers to is the same as the Java version of the
function that you intend to deploy. For example, for a Java 21 function, the mvn -v command
should list Java 21 in the output.

• Your dependencies must be stored in the java/lib directory, at the root of the .zip file. For
more information, see Layer paths for each Lambda runtime.

• The packages in your layer must be compatible with Linux. Lambda functions run on Amazon
Linux.

You can create layers that contain either third-party Java libraries or your own Java modules and
packages. The following procedure uses Maven. You can also use Gradle to package your layer
content.

Layers 823

AWS Lambda Developer Guide

To create a layer using Maven dependencies

1. Create an Apache Maven project with a pom.xml file that defines your dependencies.

The following example includes Jackson Databind for JSON processing. The <build> section
uses the maven-dependency-plugin to create separate JAR files for each dependency instead
of bundling them into a single uber-jar. If you want to create an uber-jar, use the maven-
shade-plugin.

Example pom.xml

<dependencies>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.17.0</version>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.13.0</version>
 <configuration>
 <source>21</source>
 <target>21</target>
 <release>21</release>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.6.1</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>

Package your layer content 824

https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-dependency-plugin
https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/

AWS Lambda Developer Guide

 <configuration>
 <outputDirectory>${project.build.directory}/lib</
outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

2. Build the project. This command creates all dependency JAR files in the target/lib/
directory.

mvn clean package

3. Create the required directory structure for your layer:

mkdir -p java/lib

4. Copy the dependency JAR files to the java/lib directory:

cp target/lib/*.jar java/lib/

5. Zip the layer content:

Linux/macOS

zip -r layer.zip java/

PowerShell

Compress-Archive -Path .\java -DestinationPath .\layer.zip

The directory structure of your .zip file should look like this:

java/
lib/
 ### jackson-databind-2.17.0.jar
 ### jackson-core-2.17.0.jar
 ### jackson-annotations-2.17.0.jar

Package your layer content 825

AWS Lambda Developer Guide

Note

Make sure your .zip file includes the java directory at the root level with lib inside
it. This structure ensures that Lambda can locate and import your libraries. Each
dependency is kept as a separate JAR file rather than bundled into an uber-jar.

Create the layer in Lambda

You can publish your layer using either the AWS CLI or the Lambda console.

AWS CLI

Run the publish-layer-version AWS CLI command to create the Lambda layer:

aws lambda publish-layer-version --layer-name my-layer --zip-file fileb://layer.zip
 --compatible-runtimes java21

The compatible runtimes parameter is optional. When specified, Lambda uses this parameter to
filter layers in the Lambda console.

Console

To create a layer (console)

1. Open the Layers page of the Lambda console.

2. Choose Create layer.

3. Choose Upload a .zip file, and then upload the .zip archive that you created earlier.

4. (Optional) For Compatible runtimes, choose the Java runtime that corresponds to the Java
version you used to build your layer.

5. Choose Create.

Add the layer to your function

AWS CLI

To attach the layer to your function, run the update-function-configuration AWS CLI command.
For the --layers parameter, use the layer ARN. The ARN must specify the version (for

Create the layer in Lambda 826

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes
https://console.aws.amazon.com/lambda/home#/layers
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

example, arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1). For more
information, see Layers and layer versions.

aws lambda update-function-configuration --function-name my-function --cli-binary-
format raw-in-base64-out --layers "arn:aws:lambda:us-east-1:123456789012:layer:my-
layer:1"

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

Console

To add a layer to a function

1. Open the Functions page of the Lambda console.

2. Choose the function.

3. Scroll down to the Layers section, and then choose Add a layer.

4. Under Choose a layer, select Custom layers, and then choose your layer.

Note

If you didn't add a compatible runtime when you created the layer, your layer won't
be listed here. You can specify the layer ARN instead.

5. Choose Add.

Add the layer to your function 827

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html#lambda-PublishLayerVersion-request-CompatibleRuntimes

AWS Lambda Developer Guide

Customize serialization for Lambda Java functions

The Lambda Java managed runtimes support custom serialization for JSON events. Custom
serialization can simplify your code and potentially improve performance.

Topics

• When to use custom serialization

• Implementing custom serialization

• Testing custom serialization

When to use custom serialization

When your Lambda function is invoked, the input event data needs to be deserialized into a
Java object, and the output from your function needs to be serialized back into a format that
can be returned as the function's response. The Lambda Java managed runtimes provide default
serialization and deserialization capabilities that work well for handling event payloads from
various AWS services, such as Amazon API Gateway and Amazon Simple Queue Service (Amazon
SQS). To work with these service integration events in your function, add the aws-java-lambda-
events dependency to your project. This AWS library contains Java objects representing these
service integration events.

You can also use your own objects to represent the event JSON that you pass to your Lambda
function. The managed runtime attempts to serialize the JSON to a new instance of your object
with its default behavior. If the default serializer doesn’t have the desired behavior for your use
case, use custom serialization.

For example, assume that your function handler expects a Vehicle class as input, with the
following structure:

public class Vehicle {
 private String vehicleType;
 private long vehicleId;
}

However, the JSON event payload looks like this:

{

Custom serialization 828

https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-events
https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-events

AWS Lambda Developer Guide

 "vehicle-type": "car",
 "vehicleID": 123
}

In this scenario, the default serialization in the managed runtime expects the JSON property names
to match the camel case Java class property names (vehicleType, vehicleId). Because the
property names in the JSON event aren't in camel case (vehicle-type, vehicleID), you must
use custom serialization.

Implementing custom serialization

Use a Service Provider Interface to load a serializer of your choice instead of the managed
runtime’s default serialization logic. You can serialize your JSON event payloads directly into Java
objects, using the standard RequestHandler interface.

To use custom serialization in your Lambda Java function

1. Add the aws-lambda-java-core library as a dependency. This library includes the
CustomPojoSerializer interface, along with other interface definitions for working with Java in
Lambda.

2. Create a file named
com.amazonaws.services.lambda.runtime.CustomPojoSerializer in the src/
main/resources/META-INF/services/ directory of your project.

3. In this file, specify the fully qualified name of your custom serializer implementation, which
must implement the CustomPojoSerializer interface. Example:

com.mycompany.vehicles.CustomLambdaSerialzer

4. Implement the CustomPojoSerializer interface to provide your custom serialization logic.

5. Use the standard RequestHandler interface in your Lambda function. The managed runtime
will use your custom serializer.

For more examples of how to implement custom serialization using popular libraries such as
fastJson, Gson, Moshi, and jackson-jr, see the custom-serialization sample in the AWS GitHub
repository.

Implementing custom serialization 829

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-core
https://github.com/aws/aws-lambda-java-libs/blob/main/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/CustomPojoSerializer.java
https://github.com/aws/aws-lambda-java-libs/tree/main/samples/custom-serialization

AWS Lambda Developer Guide

Testing custom serialization

Test your function to make sure that your serialization and deserialization logic is working as
expected. You can use the AWS Serverless Application Model Command Line Interface (AWS
SAM CLI) to emulate the invocation of your Lambda payload. This can help you quickly test and
iterate on your function as you introduce a custom serializer.

1. Create a file with the JSON event payload that you would like to invoke your function with
then call the AWS SAM CLI.

2. Run the sam local invoke command to invoke your function locally. Example:

sam local invoke -e src/test/resources/event.json

For more information, see Locally invoke Lambda functions with AWS SAM.

Testing custom serialization 830

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-local-invoke.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-invoke.html

AWS Lambda Developer Guide

Customize Java runtime startup behavior for Lambda functions

This page describes settings specific to Java functions in AWS Lambda. You can use these settings
to customize Java runtime startup behavior. This can reduce overall function latency and improve
overall function performance, without having to modify any code.

Sections

• Understanding the JAVA_TOOL_OPTIONS environment variable

Understanding the JAVA_TOOL_OPTIONS environment variable

In Java, Lambda supports the JAVA_TOOL_OPTIONS environment variable to set additional
command-line variables in Lambda. You can use this environment variable in various ways, such
as to customize tiered-compilation settings. The next example demonstrates how to use the
JAVA_TOOL_OPTIONS environment variable for this use case.

Example: Customizing tiered compilation settings

Tiered compilation is a feature of the Java virtual machine (JVM). You can use specific tiered
compilation settings to make best use of the JVM's just-in-time (JIT) compilers. Typically, the
C1 compiler is optimized for fast start-up time. The C2 compiler is optimized for best overall
performance, but it also uses more memory and takes a longer time to achieve it.

There are 5 different levels of tiered compilation. At Level 0, the JVM interprets Java byte code.
At Level 4, the JVM uses the C2 compiler to analyze profiling data collected during application
startup. Over time, it monitors code usage to identify the best optimizations.

Customizing the tiered compilation level can help you reduce Java function cold start latency. For
example, set the tiered compilation level to 1 to have the JVM use the C1 compiler. This compiler
quickly produces optimized native code but it doesn't generate any profiling data and never uses
the C2 compiler.

In the Java 17 runtime, the JVM flag for tiered compilation is set to stop at level 1 by default. For
the Java 11 runtime and below, you can set the tiered compilation level to 1 by doing the following
steps:

To customize tiered compilation settings (console)

1. Open the Functions page in the Lambda console.

Custom startup behavior 831

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose a Java function that you want to customize tiered compilation for.

3. Choose the Configuration tab, then choose Environment variables in the left menu.

4. Choose Edit.

5. Choose Add environment variable.

6. For the key, enter JAVA_TOOL_OPTIONS. For the value, enter -XX:+TieredCompilation -
XX:TieredStopAtLevel=1.

7. Choose Save.

Note

You can also use Lambda SnapStart to mitigate cold start issues. SnapStart uses cached
snapshots of your execution environment to significantly improve start-up performance.
For more information about SnapStart features, limitations, and supported regions, see
Improving startup performance with Lambda SnapStart.

Understanding the JAVA_TOOL_OPTIONS environment variable 832

AWS Lambda Developer Guide

Example: Customizing GC behavior using JAVA_TOOL_OPTIONS

Java 11 runtimes use the Serial garbage collector (GC) for garbage collection. By default, Java 17
runtimes also use the Serial GC. However, with Java 17 you can also use the JAVA_TOOL_OPTIONS
environment variable to change the default GC. You can choose between the Parallel GC and
Shenandoah GC.

For example, if your workload uses more memory and multiple CPUs, consider using the Parallel
GC for better performance. You can do this by appending the following to the value of your
JAVA_TOOL_OPTIONS environment variable:

-XX:+UseParallelGC

Understanding the JAVA_TOOL_OPTIONS environment variable 833

https://docs.oracle.com/en/java/javase/18/gctuning/available-collectors.html#GUID-45794DA6-AB96-4856-A96D-FDE5F7DEE498
https://wiki.openjdk.org/display/shenandoah/Main
https://wiki.openjdk.org/display/shenandoah/Main

AWS Lambda Developer Guide

Using the Lambda context object to retrieve Java function
information

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• getRemainingTimeInMillis() – Returns the number of milliseconds left before the
execution times out.

• getFunctionName() – Returns the name of the Lambda function.

• getFunctionVersion() – Returns the version of the function.

• getInvokedFunctionArn() – Returns the Amazon Resource Name (ARN) that's used to invoke
the function. Indicates if the invoker specified a version number or alias.

• getMemoryLimitInMB() – Returns the amount of memory that's allocated for the function.

• getAwsRequestId() – Returns the identifier of the invocation request.

• getLogGroupName() – Returns the log group for the function.

• getLogStreamName() – Returns the log stream for the function instance.

• getIdentity() – (mobile apps) Returns information about the Amazon Cognito identity that
authorized the request.

• getClientContext() – (mobile apps) Returns the client context that's provided to Lambda by
the client application.

• getLogger() – Returns the logger object for the function.

The following example shows a function that uses the context object to access the Lambda logger.

Example Handler.java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;

Context 834

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/Handler.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/Context.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/LambdaLogger.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestHandler.java

AWS Lambda Developer Guide

import java.util.Map;

// Handler value: example.Handler
public class Handler implements RequestHandler<Map<String,String>, Void>{

 @Override
 public Void handleRequest(Map<String,String> event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 logger.log("EVENT TYPE: " + event.getClass());
 return null;
 }
}

The function logs the class type of the incoming event before returning null.

Example log output

EVENT TYPE: class java.util.LinkedHashMap

The interface for the context object is available in the aws-lambda-java-core library. You can
implement this interface to create a context class for testing. The following example shows a
context class that returns dummy values for most properties and a working test logger.

Example src/test/java/example/TestContext.java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.CognitoIdentity;
import com.amazonaws.services.lambda.runtime.ClientContext;
import com.amazonaws.services.lambda.runtime.LambdaLogger;

public class TestContext implements Context{

 public TestContext() {}
 public String getAwsRequestId(){
 return new String("495b12a8-xmpl-4eca-8168-160484189f99");
 }
 public String getLogGroupName(){
 return new String("/aws/lambda/my-function");
 }

Context 835

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/test/java/example/TestContext.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/Context.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/CognitoIdentity.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/ClientContext.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/LambdaLogger.java

AWS Lambda Developer Guide

 public String getLogStreamName(){
 return new String("2020/02/26/[$LATEST]704f8dxmpla04097b9134246b8438f1a");
 }
 public String getFunctionName(){
 return new String("my-function");
 }
 public String getFunctionVersion(){
 return new String("$LATEST");
 }
 public String getInvokedFunctionArn(){
 return new String("arn:aws:lambda:us-east-2:123456789012:function:my-function");
 }
 public CognitoIdentity getIdentity(){
 return null;
 }
 public ClientContext getClientContext(){
 return null;
 }
 public int getRemainingTimeInMillis(){
 return 300000;
 }
 public int getMemoryLimitInMB(){
 return 512;
 }
 public LambdaLogger getLogger(){
 return new TestLogger();
 }

}

For more information on logging, see Log and monitor Java Lambda functions.

Context in sample applications

The GitHub repository for this guide includes sample applications that demonstrate the use of the
context object. Each sample application includes scripts for easy deployment and cleanup, an AWS
Serverless Application Model (AWS SAM) template, and supporting resources.

Sample Lambda applications in Java

• example-java – A Java function that demonstrates how you can use Lambda to process orders.
This function illustrates how to define and deserialize a custom input event object, use the AWS
SDK, and output logging.

Context in sample applications 836

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/example-java

AWS Lambda Developer Guide

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the AWS SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• layer-java – A Java function that illustrates how to use a Lambda layer to package dependencies
separate from your core function code.

Context in sample applications 837

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-java

AWS Lambda Developer Guide

Log and monitor Java Lambda functions

AWS Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Sending Lambda function logs to CloudWatch Logs.

To output logs from your function code, you can use methods on java.lang.System, or any logging
module that writes to stdout or stderr.

Sections

• Creating a function that returns logs

• Using Lambda advanced logging controls with Java

• Implementing advanced logging with Log4j2 and SLF4J

• Using other logging tools and libraries

• Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

• Viewing logs using the AWS Command Line Interface (AWS CLI)

• Deleting logs

• Sample logging code

Creating a function that returns logs

To output logs from your function code, you can use methods on java.lang.System, or any logging
module that writes to stdout or stderr. The aws-lambda-java-core library provides a logger class
named LambdaLogger that you can access from the context object. The logger class supports
multiline logs.

The following example uses the LambdaLogger logger provided by the context object.

Example Handler.java

// Handler value: example.Handler
public class Handler implements RequestHandler<Object, String>{

Logging 838

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

AWS Lambda Developer Guide

 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 @Override
 public String handleRequest(Object event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 String response = new String("SUCCESS");
 // log execution details
 logger.log("ENVIRONMENT VARIABLES: " + gson.toJson(System.getenv()));
 logger.log("CONTEXT: " + gson.toJson(context));
 // process event
 logger.log("EVENT: " + gson.toJson(event));
 return response;
 }
}

Example log format

START RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0 Version: $LATEST
ENVIRONMENT VARIABLES:
{
 "_HANDLER": "example.Handler",
 "AWS_EXECUTION_ENV": "AWS_Lambda_java8",
 "AWS_LAMBDA_FUNCTION_MEMORY_SIZE": "512",
 ...
}
CONTEXT:
{
 "memoryLimit": 512,
 "awsRequestId": "6bc28136-xmpl-4365-b021-0ce6b2e64ab0",
 "functionName": "java-console",
 ...
}
EVENT:
{
 "records": [
 {
 "messageId": "19dd0b57-xmpl-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 ...
 }
]
}

Creating a function that returns logs 839

AWS Lambda Developer Guide

END RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0
REPORT RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0 Duration: 198.50 ms Billed
 Duration: 200 ms Memory Size: 512 MB Max Memory Used: 90 MB Init Duration: 524.75 ms

The Java runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details:

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using Lambda advanced logging controls with Java

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported Java runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for Lambda
functions”.

Using Lambda advanced logging controls with Java 840

AWS Lambda Developer Guide

To use the log format and log level options with your Java Lambda functions, see the guidance in
the following sections.

Using structured JSON log format with Java

If you select JSON for your function's log format, Lambda will send logs output using the
LambdaLogger class as structured JSON. Each JSON log object contains at least four key value
pairs with the following keys:

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "AWSrequestId" - the unique request ID for the function invocation

Depending on the logging method you use, log outputs from your function captured in JSON
format can also contain additional key value pairs.

To assign a level to logs you create using the LambdaLogger logger, you need to provide a
LogLevel argument in your logging command as shown in the following example.

Example Java logging code

LambdaLogger logger = context.getLogger();
logger.log("This is a debug log", LogLevel.DEBUG);

This log output by this example code would be captured in CloudWatch Logs as follows:

Example JSON log record

{
 "timestamp":"2023-11-01T00:21:51.358Z",
 "level":"DEBUG",
 "message":"This is a debug log",
 "AWSrequestId":"93f25699-2cbf-4976-8f94-336a0aa98c6f"
}

If you don't assign a level to your log output, Lambda will automatically assign it the level INFO.

If your code already uses another logging library to produce JSON structured logs, you don’t need
to make any changes. Lambda doesn’t double-encode any logs that are already JSON encoded.

Using Lambda advanced logging controls with Java 841

AWS Lambda Developer Guide

Even if you configure your function to use the JSON log format, your logging outputs appear in
CloudWatch in the JSON structure you define.

Using log-level filtering with Java

For AWS Lambda to filter your application logs according to their log level, your function must use
JSON formatted logs. You can achieve this in two ways:

• Create log outputs using the standard LambdaLogger and configure your function to use JSON
log formatting. Lambda then filters your log outputs using the “level” key value pair in the
JSON object described in the section called “Using structured JSON log format with Java”. To
learn how to configure your function’s log format, see the section called “Configuring advanced
logging controls for Lambda functions”.

• Use another logging library or method to create JSON structured logs in your code that include
a “level” key value pair defining the level of the log output. You can use any logging library
that can write JSON logs to stdout or stderr. For example, you can use Powertools for AWS
Lambda or the Log4j2 package to generate JSON structured log outputs from your code. See the
section called “Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging”
and the section called “Implementing advanced logging with Log4j2 and SLF4J” to learn more.

When you configure your function to use log-level filtering, you must select from the following
options for the level of logs you want Lambda to send to CloudWatch Logs:

Log level Standard usage

TRACE (most detail) The most fine-grained information used to
trace the path of your code's execution

DEBUG Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN Messages about potential errors that may lead
to unexpected behavior if unaddressed

ERROR Messages about problems that prevent the
code from performing as expected

Using Lambda advanced logging controls with Java 842

AWS Lambda Developer Guide

Log level Standard usage

FATAL (least detail) Messages about serious errors that cause the
application to stop functioning

For Lambda to filter your function's logs, you must also include a "timestamp" key value pair in
your JSON log output. The time must be specified in valid RFC 3339 timestamp format. If you don't
supply a valid timestamp, Lambda will assign the log the level INFO and add a timestamp for you.

Lambda sends logs of the selected level and lower to CloudWatch. For example, if you configure a
log level of WARN, Lambda will send logs corresponding to the WARN, ERROR, and FATAL levels.

Implementing advanced logging with Log4j2 and SLF4J

Note

AWS Lambda does not include Log4j2 in its managed runtimes or base container
images. These are therefore not affected by the issues described in CVE-2021-44228,
CVE-2021-45046, and CVE-2021-45105.
For cases where a customer function includes an impacted Log4j2 version, we have applied
a change to the Lambda Java managed runtimes and base container images that helps
to mitigate the issues in CVE-2021-44228, CVE-2021-45046, and CVE-2021-45105. As
a result of this change, customers using Log4J2 may see an additional log entry, similar
to "Transforming org/apache/logging/log4j/core/lookup/JndiLookup
(java.net.URLClassLoader@...)". Any log strings that reference the jndi mapper in
the Log4J2 output will be replaced with "Patched JndiLookup::lookup()".
Independent of this change, we strongly encourage all customers whose functions include
Log4j2 to update to the latest version. Specifically, customers using the aws-lambda-java-
log4j2 library in their functions should update to version 1.5.0 (or later), and redeploy
their functions. This version updates the underlying Log4j2 utility dependencies to version
2.17.0 (or later). The updated aws-lambda-java-log4j2 binary is available at the Maven
repository and its source code is available in Github.
Lastly, take note that any libraries related to aws-lambda-java-log4j (v1.0.0 or 1.0.1)
should not be used under any circumstance. These libraries are related to version 1.x of
log4j which went end of life in 2015. The libraries are not supported, not maintained, not
patched, and have known security vulnerabilities.

Implementing advanced logging with Log4j2 and SLF4J 843

https://www.ietf.org/rfc/rfc3339.txt
https://repo1.maven.org/maven2/com/amazonaws/aws-lambda-java-log4j2/
https://repo1.maven.org/maven2/com/amazonaws/aws-lambda-java-log4j2/
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-log4j2

AWS Lambda Developer Guide

To customize log output, support logging during unit tests, and log AWS SDK calls, use Apache
Log4j2 with SLF4J. Log4j is a logging library for Java programs that enables you to configure log
levels and use appender libraries. SLF4J is a facade library that lets you change which library you
use without changing your function code.

To add the request ID to your function's logs, use the appender in the aws-lambda-java-log4j2
library.

Example src/main/resources/log4j2.xml – Appender configuration

<Configuration>
 <Appenders>
 <Lambda name="Lambda" format="${env:AWS_LAMBDA_LOG_FORMAT:-TEXT}">
 <LambdaTextFormat>
 <PatternLayout>
 <pattern>%d{yyyy-MM-dd HH:mm:ss} %X{AWSRequestId} %-5p %c{1} - %m%n </
pattern>
 </PatternLayout>
 </LambdaTextFormat>
 <LambdaJSONFormat>
 <JsonTemplateLayout eventTemplateUri="classpath:LambdaLayout.json" />
 </LambdaJSONFormat>
 </Lambda>
 </Appenders>
 <Loggers>
 <Root level="${env:AWS_LAMBDA_LOG_LEVEL:-INFO}">
 <AppenderRef ref="Lambda"/>
 </Root>
 <Logger name="software.amazon.awssdk" level="WARN" />
 <Logger name="software.amazon.awssdk.request" level="DEBUG" />
 </Loggers>
 </Configuration>

You can decide how your Log4j2 logs are configured for either plain text or JSON outputs by
specifying a layout under the <LambdaTextFormat> and <LambdaJSONFormat> tags.

In this example, in text mode, each line is prepended with the date, time, request ID, log level, and
class name. In JSON mode, the <JsonTemplateLayout> is used with a configuration that ships
together with the aws-lambda-java-log4j2 library.

SLF4J is a facade library for logging in Java code. In your function code, you use the SLF4J logger
factory to retrieve a logger with methods for log levels like info() and warn(). In your build

Implementing advanced logging with Log4j2 and SLF4J 844

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java/src/main/resources/log4j2.xml

AWS Lambda Developer Guide

configuration, you include the logging library and SLF4J adapter in the classpath. By changing the
libraries in the build configuration, you can change the logger type without changing your function
code. SLF4J is required to capture logs from the SDK for Java.

In the following example code, the handler class uses SLF4J to retrieve a logger.

Example src/main/java/example/HandlerS3.java – Logging with SLF4J

package example;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;

import static org.apache.logging.log4j.CloseableThreadContext.put;

public class HandlerS3 implements RequestHandler<S3Event, String>{
 private static final Logger logger = LoggerFactory.getLogger(HandlerS3.class);

 @Override
 public String handleRequest(S3Event event, Context context) {
 for(var record : event.getRecords()) {
 try (var loggingCtx = put("awsRegion", record.getAwsRegion())) {
 loggingCtx.put("eventName", record.getEventName());
 loggingCtx.put("bucket", record.getS3().getBucket().getName());
 loggingCtx.put("key", record.getS3().getObject().getKey());

 logger.info("Handling s3 event");
 }
 }

 return "Ok";
 }
}

This code produces log outputs like the following:

Implementing advanced logging with Log4j2 and SLF4J 845

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events/src/main/java/example/HandlerS3.java

AWS Lambda Developer Guide

Example log format

{
 "timestamp": "2023-11-15T16:56:00.815Z",
 "level": "INFO",
 "message": "Handling s3 event",
 "logger": "example.HandlerS3",
 "AWSRequestId": "0bced576-3936-4e5a-9dcd-db9477b77f97",
 "awsRegion": "eu-south-1",
 "bucket": "java-logging-test-input-bucket",
 "eventName": "ObjectCreated:Put",
 "key": "test-folder/"
}

The build configuration takes runtime dependencies on the Lambda appender and SLF4J adapter,
and implementation dependencies on Log4j2.

Example build.gradle – Logging dependencies

dependencies {
 ...
 'com.amazonaws:aws-lambda-java-log4j2:[1.6.0,)',
 'com.amazonaws:aws-lambda-java-events:[3.11.3,)',
 'org.apache.logging.log4j:log4j-layout-template-json:[2.17.1,)',
 'org.apache.logging.log4j:log4j-slf4j2-impl:[2.19.0,)',
 ...
}

When you run your code locally for tests, the context object with the Lambda logger is
not available, and there's no request ID for the Lambda appender to use. For example test
configurations, see the sample applications in the next section.

Using other logging tools and libraries

Powertools for AWS Lambda (Java) is a developer toolkit to implement Serverless best practices
and increase developer velocity. The Logging utility provides a Lambda optimized logger which
includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

Tools and libraries 846

https://docs.powertools.aws.dev/lambda/java/
https://docs.powertools.aws.dev/lambda/java/core/logging/

AWS Lambda Developer Guide

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Using Powertools for AWS Lambda (Java) and AWS SAM for structured
logging

Follow the steps below to download, build, and deploy a sample Hello World Java application with
integrated Powertools for AWS Lambda (Java)~ modules using the AWS SAM. This application
implements a basic API backend and uses Powertools for emitting logs, metrics, and traces. It
consists of an Amazon API Gateway endpoint and a Lambda function. When you send a GET
request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics using
Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function returns a
hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Java 11

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World Java template.

sam init --app-template hello-world-powertools-java --name sam-app --package-type
 Zip --runtime java11 --no-tracing

2. Build the app.

cd sam-app && sam build

Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 847

https://docs.powertools.aws.dev/lambda-java
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the AWS Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:34.095000
 INIT_START Runtime Version: java:11.v15 Runtime Version ARN: arn:aws:lambda:eu-
central-1::runtime:0a25e3e7a1cc9ce404bc435eeb2ad358d8fa64338e618d0c224fe509403583ca
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:34.114000
 Picked up JAVA_TOOL_OPTIONS: -XX:+TieredCompilation -XX:TieredStopAtLevel=1
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:34.793000
 Transforming org/apache/logging/log4j/core/lookup/JndiLookup
 (lambdainternal.CustomerClassLoader@1a6c5a9e)

Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 848

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

AWS Lambda Developer Guide

2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:35.252000
 START RequestId: 7fcf1548-d2d4-41cd-a9a8-6ae47c51f765 Version: $LATEST
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.531000 {
 "_aws": {
 "Timestamp": 1675416276051,
 "CloudWatchMetrics": [
 {
 "Namespace": "sam-app-powerools-java",
 "Metrics": [
 {
 "Name": "ColdStart",
 "Unit": "Count"
 }
],
 "Dimensions": [
 [
 "Service",
 "FunctionName"
]
]
 }
]
 },
 "function_request_id": "7fcf1548-d2d4-41cd-a9a8-6ae47c51f765",
 "traceId":
 "Root=1-63dcd2d1-25f90b9d1c753a783547f4dd;Parent=e29684c1be352ce4;Sampled=1",
 "FunctionName": "sam-app-HelloWorldFunction-y9Iu1FLJJBGD",
 "functionVersion": "$LATEST",
 "ColdStart": 1.0,
 "Service": "service_undefined",
 "logStreamId": "2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81",
 "executionEnvironment": "AWS_Lambda_java11"
}
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.974000 Feb
 03, 2023 9:24:36 AM com.amazonaws.xray.AWSXRayRecorder <init>
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.993000 Feb
 03, 2023 9:24:36 AM com.amazonaws.xray.config.DaemonConfiguration <init>
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.993000
 INFO: Environment variable AWS_XRAY_DAEMON_ADDRESS is set. Emitting to daemon on
 address XXXX.XXXX.XXXX.XXXX:2000.
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:37.331000
 09:24:37.294 [main] INFO helloworld.App - {"version":null,"resource":"/
hello","path":"/hello/","httpMethod":"GET","headers":{"Accept":"*/
*","CloudFront-Forwarded-Proto":"https","CloudFront-Is-Desktop-

Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 849

AWS Lambda Developer Guide

Viewer":"true","CloudFront-Is-Mobile-Viewer":"false","CloudFront-Is-
SmartTV-Viewer":"false","CloudFront-Is-Tablet-Viewer":"false","CloudFront-
Viewer-ASN":"16509","CloudFront-Viewer-Country":"IE","Host":"XXXX.execute-
api.eu-central-1.amazonaws.com","User-Agent":"curl/7.86.0","Via":"2.0
 f0300a9921a99446a44423d996042050.cloudfront.net (CloudFront)","X-Amz-
Cf-Id":"t9W5ByT11HaY33NM8YioKECn_4eMpNsOMPfEVRczD7T1RdhbtiwV1Q==","X-
Amzn-Trace-Id":"Root=1-63dcd2d1-25f90b9d1c753a783547f4dd","X-Forwarded-
For":"XX.XXX.XXX.XX, XX.XXX.XXX.XX","X-Forwarded-Port":"443","X-
Forwarded-Proto":"https"},"multiValueHeaders":{"Accept":["*/
*"],"CloudFront-Forwarded-Proto":["https"],"CloudFront-Is-Desktop-Viewer":
["true"],"CloudFront-Is-Mobile-Viewer":["false"],"CloudFront-Is-SmartTV-
Viewer":["false"],"CloudFront-Is-Tablet-Viewer":["false"],"CloudFront-Viewer-
ASN":["16509"],"CloudFront-Viewer-Country":["IE"],"Host":["XXXX.execute-
api.eu-central-1.amazonaws.com"],"User-Agent":["curl/7.86.0"],"Via":["2.0
 f0300a9921a99446a44423d996042050.cloudfront.net (CloudFront)"],"X-Amz-
Cf-Id":["t9W5ByT11HaY33NM8YioKECn_4eMpNsOMPfEVRczD7T1RdhbtiwV1Q=="],"X-
Amzn-Trace-Id":["Root=1-63dcd2d1-25f90b9d1c753a783547f4dd"],"X-Forwarded-
For":["XXX, XXX"],"X-Forwarded-Port":["443"],"X-Forwarded-Proto":
["https"]},"queryStringParameters":null,"multiValueQueryStringParameters":null,"pathParameters":null,"stageVariables":null,"requestContext":
{"accountId":"XXX","stage":"Prod","resourceId":"at73a1","requestId":"ba09ecd2-
acf3-40f6-89af-fad32df67597","operationName":null,"identity":
{"cognitoIdentityPoolId":null,"accountId":null,"cognitoIdentityId":null,"caller":null,"apiKey":null,"principalOrgId":null,"sourceIp":"54.240.197.236","cognitoAuthenticationType":null,"cognitoAuthenticationProvider":null,"userArn":null,"userAgent":"curl/7.86.0","user":null,"accessKey":null},"resourcePath":"/
hello","httpMethod":"GET","apiId":"XXX","path":"/Prod/
hello/","authorizer":null},"body":null,"isBase64Encoded":false}
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:37.351000
 09:24:37.351 [main] INFO helloworld.App - Retrieving https://
checkip.amazonaws.com
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:39.313000 {
 "function_request_id": "7fcf1548-d2d4-41cd-a9a8-6ae47c51f765",
 "traceId":
 "Root=1-63dcd2d1-25f90b9d1c753a783547f4dd;Parent=e29684c1be352ce4;Sampled=1",
 "xray_trace_id": "1-63dcd2d1-25f90b9d1c753a783547f4dd",
 "functionVersion": "$LATEST",
 "Service": "service_undefined",
 "logStreamId": "2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81",
 "executionEnvironment": "AWS_Lambda_java11"
}
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:39.371000 END
 RequestId: 7fcf1548-d2d4-41cd-a9a8-6ae47c51f765
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:39.371000
 REPORT RequestId: 7fcf1548-d2d4-41cd-a9a8-6ae47c51f765 Duration: 4118.98 ms
 Billed Duration: 4119 ms Memory Size: 512 MB Max Memory Used: 152 MB Init
 Duration: 1155.47 ms

Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 850

AWS Lambda Developer Guide

XRAY TraceId: 1-63dcd2d1-25f90b9d1c753a783547f4dd SegmentId: 3a028fee19b895cb
 Sampled: true

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your AWS SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

Viewing logs in the Lambda console 851

AWS Lambda Developer Guide

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs using the AWS Command Line Interface (AWS CLI)

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Viewing logs using the AWS Command Line Interface (AWS CLI) 852

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

Viewing logs using the AWS Command Line Interface (AWS CLI) 853

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353

Viewing logs using the AWS Command Line Interface (AWS CLI) 854

AWS Lambda Developer Guide

 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Sample logging code

The GitHub repository for this guide includes sample applications that demonstrate the use of
various logging configurations. Each sample application includes scripts for easy deployment and
cleanup, an AWS SAM template, and supporting resources.

Sample Lambda applications in Java

• example-java – A Java function that demonstrates how you can use Lambda to process orders.
This function illustrates how to define and deserialize a custom input event object, use the AWS
SDK, and output logging.

Deleting logs 855

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/example-java

AWS Lambda Developer Guide

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the AWS SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• layer-java – A Java function that illustrates how to use a Lambda layer to package dependencies
separate from your core function code.

The java-basic sample application shows a minimal logging configuration that supports logging
tests. The handler code uses the LambdaLogger logger provided by the context object. For tests,
the application uses a custom TestLogger class that implements the LambdaLogger interface
with a Log4j2 logger. It uses SLF4J as a facade for compatibility with the AWS SDK. Logging
libraries are excluded from build output to keep the deployment package small.

Sample logging code 856

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-java

AWS Lambda Developer Guide

Instrumenting Java code in AWS Lambda

Lambda integrates with AWS X-Ray to help you trace, debug, and optimize Lambda applications.
You can use X-Ray to trace a request as it traverses resources in your application, which may include
Lambda functions and other AWS services.

To send tracing data to X-Ray, you can use one of two SDK libraries:

• AWS Distro for OpenTelemetry (ADOT) – A secure, production-ready, AWS-supported distribution
of the OpenTelemetry (OTel) SDK.

• AWS X-Ray SDK for Java – An SDK for generating and sending trace data to X-Ray.

• Powertools for AWS Lambda (Java) – A developer toolkit to implement Serverless best practices
and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for AWS Lambda SDKs are part of a tightly integrated
instrumentation solution offered by AWS. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
AWS Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for AWS Lambda (Java) and AWS SAM for tracing

• Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing

• Using ADOT to instrument your Java functions

• Using the X-Ray SDK to instrument your Java functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with AWS CloudFormation

Tracing 857

https://aws.amazon.com/otel
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java.html
https://docs.powertools.aws.dev/lambda-java/
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

AWS Lambda Developer Guide

• Interpreting an X-Ray trace

• Storing runtime dependencies in a layer (X-Ray SDK)

• X-Ray tracing in sample applications (X-Ray SDK)

Using Powertools for AWS Lambda (Java) and AWS SAM for tracing

Follow the steps below to download, build, and deploy a sample Hello World Java application
with integrated Powertools for AWS Lambda (Java) modules using the AWS SAM. This application
implements a basic API backend and uses Powertools for emitting logs, metrics, and traces. It
consists of an Amazon API Gateway endpoint and a Lambda function. When you send a GET
request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics using
Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function returns a
hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Java 11 or later

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World Java template.

sam init --app-template hello-world-powertools-java --name sam-app --package-type
 Zip --runtime java11 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

Using Powertools for AWS Lambda (Java) and AWS SAM for tracing 858

https://docs.powertools.aws.dev/lambda-java
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2025-02-03 14:31:48+01:00
 End time: 2025-02-03 14:31:48+01:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-y9Iu1FLJJBGD -
 Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 5.587
 Reference Id: 1 - client - sam-app-HelloWorldFunction-y9Iu1FLJJBGD - Edges: [0]
 Summary_statistics:

Using Powertools for AWS Lambda (Java) and AWS SAM for tracing 859

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 3] at (2025-02-03T14:31:48.500000) with id
 (1-63dd0cc4-3c869dec72a586875da39777) and duration (5.603s)
 - 5.587s - sam-app-HelloWorldFunction-y9Iu1FLJJBGD [HTTP: 200]
 - 4.053s - sam-app-HelloWorldFunction-y9Iu1FLJJBGD
 - 1.181s - Initialization
 - 4.037s - Invocation
 - 1.981s - ## handleRequest
 - 1.840s - ## getPageContents
 - 0.000s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing

Follow the steps below to download, build, and deploy a sample Hello World Java application
with integrated Powertools for AWS Lambda (Java) modules using the AWS CDK. This application
implements a basic API backend and uses Powertools for emitting logs, metrics, and traces. It
consists of an Amazon API Gateway endpoint and a Lambda function. When you send a GET
request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics using
Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function returns a
hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Java 11 or later

• AWS CLI version 2

• AWS CDK version 2

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 860

https://docs.powertools.aws.dev/lambda-java
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_prerequisites

AWS Lambda Developer Guide

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language java

3. Create a maven project with the following command:

mkdir app
cd app
mvn archetype:generate -DgroupId=helloworld -DartifactId=Function -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

4. Open pom.xml in the hello-world\app\Function directory and replace the existing code
with the following code that includes dependencies and maven plugins for Powertools.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>helloworld</groupId>
 <artifactId>Function</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Function</name>
 <url>http://maven.apache.org</url>
<properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 <log4j.version>2.17.2</log4j.version>
</properties>
 <dependencies>
 <dependency>

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 861

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-tracing</artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-metrics</artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-logging</artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.2</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>3.11.1</version>
 </dependency>
 </dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 <version>1.14.0</version>
 <configuration>
 <source>${maven.compiler.source}</source>
 <target>${maven.compiler.target}</target>
 <complianceLevel>${maven.compiler.target}</complianceLevel>
 <aspectLibraries>
 <aspectLibrary>
 <groupId>software.amazon.lambda</groupId>

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 862

AWS Lambda Developer Guide

 <artifactId>powertools-tracing</artifactId>
 </aspectLibrary>
 <aspectLibrary>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-metrics</artifactId>
 </aspectLibrary>
 <aspectLibrary>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-logging</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.4.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer

 implementation="com.github.edwgiz.maven_shade_plugin.log4j2_cache_transformer.PluginsCacheFileTransformer">
 </transformer>
 </transformers>
 <createDependencyReducedPom>false</
createDependencyReducedPom>
 <finalName>function</finalName>

 </configuration>
 </execution>
 </executions>

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 863

AWS Lambda Developer Guide

 <dependencies>
 <dependency>
 <groupId>com.github.edwgiz</groupId>
 <artifactId>maven-shade-plugin.log4j2-cachefile-
transformer</artifactId>
 <version>2.15</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
</build>
</project>

5. Create the hello-world\app\src\main\resource directory and create log4j.xml for
the log configuration.

mkdir -p src/main/resource
cd src/main/resource
touch log4j.xml

6. Open log4j.xml and add the following code.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
 <Appenders>
 <Console name="JsonAppender" target="SYSTEM_OUT">
 <JsonTemplateLayout
 eventTemplateUri="classpath:LambdaJsonLayout.json" />
 </Console>
 </Appenders>
 <Loggers>
 <Logger name="JsonLogger" level="INFO" additivity="false">
 <AppenderRef ref="JsonAppender"/>
 </Logger>
 <Root level="info">
 <AppenderRef ref="JsonAppender"/>
 </Root>
 </Loggers>
</Configuration>

7. Open App.java from the hello-world\app\Function\src\main\java\helloworld
directory and replace the existing code with the following code. This is the code for the
Lambda function.

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 864

AWS Lambda Developer Guide

package helloworld;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.HashMap;
import java.util.Map;
import java.util.stream.Collectors;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyRequestEvent;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyResponseEvent;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import software.amazon.lambda.powertools.logging.Logging;
import software.amazon.lambda.powertools.metrics.Metrics;
import software.amazon.lambda.powertools.tracing.CaptureMode;
import software.amazon.lambda.powertools.tracing.Tracing;

import static software.amazon.lambda.powertools.tracing.CaptureMode.*;

/**
 * Handler for requests to Lambda function.
 */
public class App implements RequestHandler<APIGatewayProxyRequestEvent,
 APIGatewayProxyResponseEvent> {
 Logger log = LogManager.getLogger(App.class);

 @Logging(logEvent = true)
 @Tracing(captureMode = DISABLED)
 @Metrics(captureColdStart = true)
 public APIGatewayProxyResponseEvent handleRequest(final
 APIGatewayProxyRequestEvent input, final Context context) {
 Map<String, String> headers = new HashMap<>();
 headers.put("Content-Type", "application/json");
 headers.put("X-Custom-Header", "application/json");

 APIGatewayProxyResponseEvent response = new APIGatewayProxyResponseEvent()
 .withHeaders(headers);
 try {

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 865

AWS Lambda Developer Guide

 final String pageContents = this.getPageContents("https://
checkip.amazonaws.com");
 String output = String.format("{ \"message\": \"hello world\",
 \"location\": \"%s\" }", pageContents);

 return response
 .withStatusCode(200)
 .withBody(output);
 } catch (IOException e) {
 return response
 .withBody("{}")
 .withStatusCode(500);
 }
 }
 @Tracing(namespace = "getPageContents")
 private String getPageContents(String address) throws IOException {
 log.info("Retrieving {}", address);
 URL url = new URL(address);
 try (BufferedReader br = new BufferedReader(new
 InputStreamReader(url.openStream()))) {
 return br.lines().collect(Collectors.joining(System.lineSeparator()));
 }
 }
}

8. Open HelloWorldStack.java from the hello-world\src\main\java\com\myorg
directory and replace the existing code with the following code. This code uses Lambda
Constructorand the ApiGatewayv2 Constructor to create a REST API and a Lambda function.

package com.myorg;

import software.amazon.awscdk.*;
import software.amazon.awscdk.services.apigatewayv2.alpha.*;
import
 software.amazon.awscdk.services.apigatewayv2.integrations.alpha.HttpLambdaIntegration;
import
 software.amazon.awscdk.services.apigatewayv2.integrations.alpha.HttpLambdaIntegrationProps;
import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.FunctionProps;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.lambda.Tracing;
import software.amazon.awscdk.services.logs.RetentionDays;

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 866

https://docs.aws.amazon.com/cdk/api/v1/java/aws_cdk.aws_lambda.html
https://docs.aws.amazon.com/cdk/api/v1/java/aws_cdk.aws_lambda.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_apigatewayv2-readme.html

AWS Lambda Developer Guide

import software.amazon.awscdk.services.s3.assets.AssetOptions;
import software.constructs.Construct;

import java.util.Arrays;
import java.util.List;

import static java.util.Collections.singletonList;
import static software.amazon.awscdk.BundlingOutput.ARCHIVED;

public class HelloWorldStack extends Stack {
 public HelloWorldStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloWorldStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 List<String> functionPackagingInstructions = Arrays.asList(
 "/bin/sh",
 "-c",
 "cd Function " +
 "&& mvn clean install " +
 "&& cp /asset-input/Function/target/function.jar /asset-
output/"
);
 BundlingOptions.Builder builderOptions = BundlingOptions.builder()
 .command(functionPackagingInstructions)
 .image(Runtime.JAVA_11.getBundlingImage())
 .volumes(singletonList(
 // Mount local .m2 repo to avoid download all the
 dependencies again inside the container
 DockerVolume.builder()
 .hostPath(System.getProperty("user.home") +
 "/.m2/")
 .containerPath("/root/.m2/")
 .build()
))
 .user("root")
 .outputType(ARCHIVED);

 Function function = new Function(this, "Function", FunctionProps.builder()
 .runtime(Runtime.JAVA_11)
 .code(Code.fromAsset("app", AssetOptions.builder()

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 867

AWS Lambda Developer Guide

 .bundling(builderOptions
 .command(functionPackagingInstructions)
 .build())
 .build()))
 .handler("helloworld.App::handleRequest")
 .memorySize(1024)
 .tracing(Tracing.ACTIVE)
 .timeout(Duration.seconds(10))
 .logRetention(RetentionDays.ONE_WEEK)
 .build());

 HttpApi httpApi = new HttpApi(this, "sample-api", HttpApiProps.builder()
 .apiName("sample-api")
 .build());

 httpApi.addRoutes(AddRoutesOptions.builder()
 .path("/")
 .methods(singletonList(HttpMethod.GET))
 .integration(new HttpLambdaIntegration("function", function,
 HttpLambdaIntegrationProps.builder()
 .payloadFormatVersion(PayloadFormatVersion.VERSION_2_0)
 .build()))
 .build());

 new CfnOutput(this, "HttpApi", CfnOutputProps.builder()
 .description("Url for Http Api")
 .value(httpApi.getApiEndpoint())
 .build());
 }
}

9. Open pom.xml from the hello-world directory and replace the existing code with the
following code.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.myorg</groupId>
 <artifactId>hello-world</artifactId>

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 868

AWS Lambda Developer Guide

 <version>0.1</version>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <cdk.version>2.70.0</cdk.version>
 <constructs.version>[10.0.0,11.0.0)</constructs.version>
 <junit.version>5.7.1</junit.version>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>3.0.0</version>
 <configuration>
 <mainClass>com.myorg.HelloWorldApp</mainClass>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <!-- AWS Cloud Development Kit -->
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>aws-cdk-lib</artifactId>
 <version>${cdk.version}</version>
 </dependency>
 <dependency>
 <groupId>software.constructs</groupId>
 <artifactId>constructs</artifactId>
 <version>${constructs.version}</version>
 </dependency>

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 869

AWS Lambda Developer Guide

 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>apigatewayv2-alpha</artifactId>
 <version>${cdk.version}-alpha.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>apigatewayv2-integrations-alpha</artifactId>
 <version>${cdk.version}-alpha.0</version>
 </dependency>
 </dependencies>
</project>

10. Make sure you’re in the hello-world directory and deploy your application.

cdk deploy

11. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?OutputKey==`HttpApi`].OutputValue' --output text

12. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

13. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 870

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

New XRay Service Graph
 Start time: 2025-02-03 14:59:50+00:00
 End time: 2025-02-03 14:59:50+00:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-YBg8yfYtOc9j -
 Edges: [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.924
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.016
 Reference Id: 2 - client - sam-app-HelloWorldFunction-YBg8yfYtOc9j - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 1] at (2025-02-03T14:59:50.204000) with id
 (1-63dd2166-434a12c22e1307ff2114f299) and duration (0.924s)
 - 0.924s - sam-app-HelloWorldFunction-YBg8yfYtOc9j [HTTP: 200]
 - 0.016s - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - 0.739s - Initialization
 - 0.016s - Invocation
 - 0.013s - ## lambda_handler
 - 0.000s - ## app.hello
 - 0.000s - Overhead

14. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing 871

AWS Lambda Developer Guide

Using ADOT to instrument your Java functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Java runtimes, you can choose between two layers to consume:

• AWS managed Lambda layer for ADOT Java (Auto-instrumentation Agent) – This layer
automatically transforms your function code at startup to collect tracing data. For detailed
instructions on how to consume this layer together with the ADOT Java agent, see AWS Distro
for OpenTelemetry Lambda Support for Java (Auto-instrumentation Agent) in the ADOT
documentation.

• AWS managed Lambda layer for ADOT Java – This layer also provides built-in instrumentation
for Lambda functions, but it requires a few manual code changes to initialize the OTel SDK. For
detailed instructions on how to consume this layer, see AWS Distro for OpenTelemetry Lambda
Support for Java in the ADOT documentation.

Using the X-Ray SDK to instrument your Java functions

To record data about calls that your function makes to other resources and services in your
application, you can add the X-Ray SDK for Java to your build configuration. The following
example shows a Gradle build configuration that includes the libraries that activate automatic
instrumentation of AWS SDK for Java 2.x clients.

Example build.gradle – Tracing dependencies

dependencies {
 implementation platform('software.amazon.awssdk:bom:2.16.1')
 implementation platform('com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0')
 ...
 implementation 'com.amazonaws:aws-xray-recorder-sdk-core'
 implementation 'com.amazonaws:aws-xray-recorder-sdk-aws-sdk'
 implementation 'com.amazonaws:aws-xray-recorder-sdk-aws-sdk-v2-instrumentor'
 ...
}

Using ADOT to instrument your Java functions 872

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java-auto-instr
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java-auto-instr
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java/build.gradle

AWS Lambda Developer Guide

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the AWS CLI or AWS SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with the Lambda console 873

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

Activating tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example shows an application with two functions. The primary function processes events
and sometimes returns errors. The second function at the top processes errors that appear in the
first's log group and uses the AWS SDK to call X-Ray, Amazon Simple Storage Service (Amazon S3),
and Amazon CloudWatch Logs.

Activating tracing with AWS CloudFormation 874

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html#xray-concepts-servicegraph

AWS Lambda Developer Guide

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

Interpreting an X-Ray trace 875

AWS Lambda Developer Guide

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

Interpreting an X-Ray trace 876

AWS Lambda Developer Guide

Note

Lambda SnapStart functions also include a Restore subsegment. The Restore
subsegment shows the time it takes for Lambda to restore a snapshot, load the runtime,
and run any after-restore runtime hooks. The process of restoring snapshots can include
time spent on activities outside the MicroVM. This time is reported in the Restore
subsegment. You aren't charged for the time spent outside the microVM to restore a
snapshot.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see AWS X-Ray SDK for Java in the AWS X-Ray
Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the AWS
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see AWS X-Ray pricing.

Storing runtime dependencies in a layer (X-Ray SDK)

If you use the X-Ray SDK to instrument AWS SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores the
AWS SDK for Java and X-Ray SDK for Java.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: build/distributions/blank-java.zip
 Tracing: Active
 Layers:

Storing runtime dependencies in a layer (X-Ray SDK) 877

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java.html
https://aws.amazon.com/xray/pricing/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-java/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-java-lib
 Description: Dependencies for the blank-java sample app.
 ContentUri: build/blank-java-lib.zip
 CompatibleRuntimes:
 - java21

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build configuration changes to generate the layer
archive prior to deployment. For a working example, see the java-basic sample application on
GitHub.

X-Ray tracing in sample applications (X-Ray SDK)

The GitHub repository for this guide includes sample applications that demonstrate the use of X-
Ray tracing. Each sample application includes scripts for easy deployment and cleanup, an AWS
SAM template, and supporting resources.

Sample Lambda applications in Java

• example-java – A Java function that demonstrates how you can use Lambda to process orders.
This function illustrates how to define and deserialize a custom input event object, use the AWS
SDK, and output logging.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the AWS SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• layer-java – A Java function that illustrates how to use a Lambda layer to package dependencies
separate from your core function code.

X-Ray tracing in sample applications (X-Ray SDK) 878

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/example-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-java

AWS Lambda Developer Guide

All of the sample applications have active tracing enabled for Lambda functions. For example, the
s3-java application shows automatic instrumentation of AWS SDK for Java 2.x clients, segment
management for tests, custom subsegments, and the use of Lambda layers to store runtime
dependencies.

X-Ray tracing in sample applications (X-Ray SDK) 879

AWS Lambda Developer Guide

Java sample applications for AWS Lambda

The GitHub repository for this guide provides sample applications that demonstrate the use of Java
in AWS Lambda. Each sample application includes scripts for easy deployment and cleanup, an
AWS CloudFormation template, and supporting resources.

Sample Lambda applications in Java

• example-java – A Java function that demonstrates how you can use Lambda to process orders.
This function illustrates how to define and deserialize a custom input event object, use the AWS
SDK, and output logging.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the AWS SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• layer-java – A Java function that illustrates how to use a Lambda layer to package dependencies
separate from your core function code.

Running popular Java frameworks on Lambda

• spring-cloud-function-samples – An example from Spring that shows how to use the Spring
Cloud Function framework to create AWS Lambda functions.

• Serverless Spring Boot Application Demo – An example that shows how to set up a typical Spring
Boot application in a managed Java runtime with and without SnapStart, or as a GraalVM native
image with a custom runtime.

• Serverless Micronaut Application Demo – An example that shows how to use Micronaut in a
managed Java runtime with and without SnapStart, or as a GraalVM native image with a custom
runtime. Learn more in the Micronaut/Lambda guides.

• Serverless Quarkus Application Demo – An example that shows how to use Quarkus in a
managed Java runtime with and without SnapStart, or as a GraalVM native image with a custom
runtime. Learn more in the Quarkus/Lambda guide and Quarkus/SnapStart guide.

Sample apps 880

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/example-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-java
https://github.com/spring-cloud/spring-cloud-function/tree/3.2.x/spring-cloud-function-samples/function-sample-aws
https://spring.io/projects/spring-cloud-function
https://spring.io/projects/spring-cloud-function
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/springboot
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/micronaut
https://guides.micronaut.io/latest/tag-lambda.html
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/quarkus
https://quarkus.io/guides/aws-lambda
https://quarkus.io/guides/aws-lambda-snapstart

AWS Lambda Developer Guide

If you're new to Lambda functions in Java, start with the java-basic examples. To get started
with Lambda event sources, see the java-events examples. Both of these example sets show
the use of Lambda's Java libraries, environment variables, the AWS SDK, and the AWS X-Ray SDK.
These examples require minimal setup and you can deploy them from the command line in less
than a minute.

Sample apps 881

AWS Lambda Developer Guide

Building Lambda functions with Go

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only runtime (the
provided runtime family) to deploy Go functions to Lambda.

Topics

• Go runtime support

• Tools and libraries

• Define Lambda function handlers in Go

• Using the Lambda context object to retrieve Go function information

• Deploy Go Lambda functions with .zip file archives

• Deploy Go Lambda functions with container images

• Working with layers for Go Lambda functions

• Log and monitor Go Lambda functions

• Instrumenting Go code in AWS Lambda

Go runtime support

The Go 1.x managed runtime for Lambda is deprecated. If you have functions that use the Go
1.x runtime, you must migrate your functions to provided.al2023 or provided.al2. The
provided.al2023 and provided.al2 runtimes offer several advantages over go1.x, including
support for the arm64 architecture (AWS Graviton2 processors), smaller binaries, and slightly faster
invoke times.

No code changes are required for this migration. The only required changes relate to how you
build your deployment package and which runtime you use to create your function. For more
information, see Migrating AWS Lambda functions from the Go1.x runtime to the custom runtime
on Amazon Linux 2 on the AWS Compute Blog.

Go runtime support 882

https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/

AWS Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Tools and libraries

Lambda provides the following tools and libraries for the Go runtime:

• AWS SDK for Go v2: The official AWS SDK for the Go programming language.

• github.com/aws/aws-lambda-go/lambda: The implementation of the Lambda programming
model for Go. This package is used by AWS Lambda to invoke your handler.

• github.com/aws/aws-lambda-go/lambdacontext: Helpers for accessing context information from
the context object.

• github.com/aws/aws-lambda-go/events: This library provides type definitions for common event
source integrations.

• github.com/aws/aws-lambda-go/cmd/build-lambda-zip: This tool can be used to create a .zip
file archive on Windows.

For more information, see aws-lambda-go on GitHub.

Lambda provides the following sample applications for the Go runtime:

Sample Lambda applications in Go

• go-al2 – A hello world function that returns the public IP address. This app uses the
provided.al2 custom runtime.

• blank-go – A Go function that shows the use of Lambda's Go libraries, logging, environment
variables, and the AWS SDK. This app uses the go1.x runtime.

Tools and libraries 883

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2
https://github.com/aws/aws-lambda-go/tree/master/lambda
https://github.com/aws/aws-lambda-go/tree/master/lambdacontext
https://github.com/aws/aws-lambda-go/tree/master/events
https://github.com/aws/aws-lambda-go/tree/master/cmd/build-lambda-zip
https://github.com/aws/aws-lambda-go
https://github.com/aws-samples/sessions-with-aws-sam/tree/master/go-al2
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go

AWS Lambda Developer Guide

Define Lambda function handlers in Go

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in Go, including project setup,
naming conventions, and best practices. This page also includes an example of a Go Lambda
function that takes in information about an order, produces a text file receipt, and puts this file
in an Amazon Simple Storage Service (Amazon S3) bucket. For information about how to deploy
your function after writing it, see the section called “Deploy .zip file archives” or the section called
“Deploy container images”.

Topics

• Setting up your Go handler project

• Example Go Lambda function code

• Handler naming conventions

• Defining and accessing the input event object

• Accessing and using the Lambda context object

• Valid handler signatures for Go handlers

• Using the AWS SDK for Go v2 in your handler

• Accessing environment variables

• Using global state

• Code best practices for Go Lambda functions

Setting up your Go handler project

A Lambda function written in Go is authored as a Go executable. You can initialize a Go Lambda
function project the same way you initialize any other Go project using the following go mod
init command:

go mod init example-go

Here, example-go is the module name. You can replace this with anything. This command
initializes your project and generates the go.mod file that lists your project's dependencies.

Handler 884

https://golang.org/

AWS Lambda Developer Guide

Use the go get command to add any external dependencies to your project. For example, for
all Lambda functions in Go, you must include the github.com/aws/aws-lambda-go/lambda
package, which implements the Lambda programming model for Go. Include this package with the
following go get command:

go get github.com/aws/aws-lambda-go

Your function code should live in a Go file. In the following example, we name this file main.go. In
this file, you implement your core function logic in a handler method, as well as a main() function
that calls this handler.

Example Go Lambda function code

The following example Go Lambda function code takes in information about an order, produces a
text file receipt, and puts this file in an Amazon S3 bucket.

Example main.go Lambda function

package main

import (
 "context"
 "encoding/json"
 "fmt"
 "log"
 "os"
 "strings"

 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

type Order struct {
 OrderID string `json:"order_id"`
 Amount float64 `json:"amount"`
 Item string `json:"item"`
}

var (
 s3Client *s3.Client
)

Example Go Lambda function code 885

https://github.com/aws/aws-lambda-go/tree/master/lambda

AWS Lambda Developer Guide

func init() {
 // Initialize the S3 client outside of the handler, during the init phase
 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 log.Fatalf("unable to load SDK config, %v", err)
 }

 s3Client = s3.NewFromConfig(cfg)
}

func uploadReceiptToS3(ctx context.Context, bucketName, key, receiptContent string)
 error {
 _, err := s3Client.PutObject(ctx, &s3.PutObjectInput{
 Bucket: &bucketName,
 Key: &key,
 Body: strings.NewReader(receiptContent),
 })
 if err != nil {
 log.Printf("Failed to upload receipt to S3: %v", err)
 return err
 }
 return nil
}

func handleRequest(ctx context.Context, event json.RawMessage) error {
 // Parse the input event
 var order Order
 if err := json.Unmarshal(event, &order); err != nil {
 log.Printf("Failed to unmarshal event: %v", err)
 return err
 }

 // Access environment variables
 bucketName := os.Getenv("RECEIPT_BUCKET")
 if bucketName == "" {
 log.Printf("RECEIPT_BUCKET environment variable is not set")
 return fmt.Errorf("missing required environment variable RECEIPT_BUCKET")
 }

 // Create the receipt content and key destination
 receiptContent := fmt.Sprintf("OrderID: %s\nAmount: $%.2f\nItem: %s",
 order.OrderID, order.Amount, order.Item)
 key := "receipts/" + order.OrderID + ".txt"

Example Go Lambda function code 886

AWS Lambda Developer Guide

 // Upload the receipt to S3 using the helper method
 if err := uploadReceiptToS3(ctx, bucketName, key, receiptContent); err != nil {
 return err
 }

 log.Printf("Successfully processed order %s and stored receipt in S3 bucket %s",
 order.OrderID, bucketName)
 return nil
}

func main() {
 lambda.Start(handleRequest)
}

This main.go file contains the following sections of code:

• package main: In Go, the package containing your func main() function must always be
named main.

• import block: Use this block to include libraries that your Lambda function requires.

• type Order struct {} block: Define the shape of the expected input event in this Go struct.

• var () block: Use this block to define any global variables that you'll use in your Lambda
function.

• func init() {}: Include any code you want Lambda to run during the during the initialization
phase in this init() method.

• func uploadReceiptToS3(...) {}: This is a helper method that's referenced by the main
handleRequest handler method.

• func handleRequest(ctx context.Context, event json.RawMessage) error {}:
This is the main handler method, which contains your main application logic.

• func main() {}: This is a required entry point for your Lambda handler. The argument to the
lambda.Start() method is your main handler method.

For this function to work properly, its execution role must allow the s3:PutObject action. Also,
ensure that you define the RECEIPT_BUCKET environment variable. After a successful invocation,
the Amazon S3 bucket should contain a receipt file.

Example Go Lambda function code 887

AWS Lambda Developer Guide

Handler naming conventions

For Lambda functions in Go, you can use any name for the handler. In this example, the handler
method name is handleRequest. To reference the handler value in your code, you can use the
_HANDLER environment variable.

For Go functions deployed using a .zip deployment package, the executable file that contains your
function code must be named bootstrap. In addition, the bootstrap file must be at the root
of the .zip file. For Go functions deployed using a container image, you can use any name for the
executable file.

Defining and accessing the input event object

JSON is the most common and standard input format for Lambda functions. In this example, the
function expects an input similar to the following:

{
 "order_id": "12345",
 "amount": 199.99,
 "item": "Wireless Headphones"
}

When working with Lambda functions in Go, you can define the shape of the expected input event
as a Go struct. In this example, we define a struct to represent an Order:

type Order struct {
 OrderID string `json:"order_id"`
 Amount float64 `json:"amount"`
 Item string `json:"item"`
}

This struct matches the expected input shape. After you define your struct, you can write a handler
signature that takes in a generic JSON type compatible with the encoding/json standard library.
You can then deserialize it into your struct using the func Unmarshal function. This is illustrated in
the first few lines of the handler:

func handleRequest(ctx context.Context, event json.RawMessage) error {
 // Parse the input event
 var order Order
 if err := json.Unmarshal(event, &order); err != nil {

Handler naming conventions 888

https://pkg.go.dev/encoding/json
https://golang.org/pkg/encoding/json/#Unmarshal

AWS Lambda Developer Guide

 log.Printf("Failed to unmarshal event: %v", err)
 return err
 ...
}

After this deserialization, you can access the fields of the order variable. For example,
order.OrderID retrieves the value of "order_id" from the original input.

Note

The encoding/json package can access only exported fields. To be exported, field names
in the event struct must be capitalized.

Accessing and using the Lambda context object

The Lambda context object contains information about the invocation, function, and execution
environment. In this example, we declared this variable as ctx in the handler signature:

func handleRequest(ctx context.Context, event json.RawMessage) error {
 ...
}

The ctx context.Context input is an optional argument in your function handler. For more
information about accepted handler signatures, see the section called “Valid handler signatures for
Go handlers”.

If you make calls to other services using the AWS SDK, the context object is required in a few
key areas. For example, to properly initialize your SDK clients, you can load the correct AWS SDK
configuration using the context object as follows:

// Load AWS SDK configuration using the default credential provider chain
 cfg, err := config.LoadDefaultConfig(ctx)

SDK calls themselves may require the context object as an input. For example, the
s3Client.PutObject call accepts the context object as its first argument:

// Upload the receipt to S3
 _, err = s3Client.PutObject(ctx, &s3.PutObjectInput{
 ...

Accessing and using the Lambda context object 889

AWS Lambda Developer Guide

 })

Outside of AWS SDK requests, you can also use the context object for function monitoring. For
more information about the context object, see the section called “Context”.

Valid handler signatures for Go handlers

You have several options when building a Lambda function handler in Go, but you must adhere to
the following rules:

• The handler must be a function.

• The handler may take between 0 and 2 arguments. If there are two arguments, the first
argument must implement context.Context.

• The handler may return between 0 and 2 arguments. If there is a single return value, it must
implement error. If there are two return values, the second value must implement error.

The following lists valid handler signatures. TIn and TOut represent types compatible with the
encoding/json standard library. For more information, see func Unmarshal to learn how these types
are deserialized.

• func ()

• func () error

• func () (TOut, error)

• func (TIn) error

• func (TIn) (TOut, error)

• func (context.Context) error

• func (context.Context) (TOut, error)

• func (context.Context, TIn) error

• func (context.Context, TIn) (TOut, error)

Valid handler signatures for Go handlers 890

https://golang.org/pkg/encoding/json/#Unmarshal

AWS Lambda Developer Guide

Using the AWS SDK for Go v2 in your handler

Often, you'll use Lambda functions to interact with or make updates to other AWS resources. The
simplest way to interface with these resources is to use the AWS SDK for Go v2.

Note

The AWS SDK for Go (v1) is in maintenance mode, and will reach end-of-support on July
31, 2025. We recommend that you use only the AWS SDK for Go v2 going forward.

To add SDK dependencies to your function, use the go get command for the specific SDK clients
that you need. In the example code earlier, we used the config library and the s3 library. Add
these dependencies by running the following commands in the directory that contains your
go.mod and main.go files:

go get github.com/aws/aws-sdk-go-v2/config
go get github.com/aws/aws-sdk-go-v2/service/s3

Then, import the dependencies accordingly in your function's import block:

import (
 ...
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

When using the SDK in your handler, configure your clients with the right settings. The simplest
way to do this is to use the default credential provider chain. This example illustrates one way to
load this configuration:

// Load AWS SDK configuration using the default credential provider chain
 cfg, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Printf("Failed to load AWS SDK config: %v", err)
 return err
 }

After loading this configuration into the cfg variable, you can pass this variable into client
instantiations. The example code instantiates an Amazon S3 client as follows:

Using the AWS SDK for Go v2 in your handler 891

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html#credentialProviderChain

AWS Lambda Developer Guide

// Create an S3 client
 s3Client := s3.NewFromConfig(cfg)

In this example, we initialized our Amazon S3 client in the init() function to avoid having to
initialize it every time we invoke our function. The problem is that in the init() function, Lambda
doesn't have access to the context object. As a workaround, you can pass in a placeholder like
context.TODO() during the initialization phase. Later, when you make a call using the client, pass
in the full context object. This workaround is also described in the section called “Using the context
in AWS SDK client initializations and calls”.

After you configure and initialize your SDK client, you can then use it to interact with other AWS
services. The example code calls the Amazon S3 PutObject API as follows:

_, err = s3Client.PutObject(ctx, &s3.PutObjectInput{
 Bucket: &bucketName,
 Key: &key,
 Body: strings.NewReader(receiptContent),
})

Accessing environment variables

In your handler code, you can reference any environment variables by using the os.Getenv()
method. In this example, we reference the defined RECEIPT_BUCKET environment variable using
the following line of code:

// Access environment variables
 bucketName := os.Getenv("RECEIPT_BUCKET")
 if bucketName == "" {
 log.Printf("RECEIPT_BUCKET environment variable is not set")
 return fmt.Errorf("missing required environment variable RECEIPT_BUCKET")
 }

Using global state

To avoid creating new resources every time you invoke your function, you can declare and modify
global variables outside of your Lambda function's handler code. You define these global variables
in a var block or statement. In addition, your handler may declare an init() function that is
executed during the initialization phase. The init method behaves the same in AWS Lambda as it
does in standard Go programs.

Accessing environment variables 892

AWS Lambda Developer Guide

Code best practices for Go Lambda functions

Adhere to the guidelines in the following list to use best coding practices when building your
Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the amount
of time that it takes for your deployment package to be downloaded and unpacked ahead of
invocation.

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

Code best practices for Go Lambda functions 893

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Code best practices for Go Lambda functions 894

https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Using the Lambda context object to retrieve Go function
information

In Lambda, the context object provides methods and properties with information about the
invocation, function, and execution environment. When Lambda runs your function, it passes a
context object to the handler. To use the context object in your handler, you can optionally declare
it as an input parameter to your handler. The context object is necessary if you want to do the
following in your handler:

• You need access to any of the global variables, methods, or properties offered by the context
object. These methods and properties are useful for tasks like determining the entity that
invoked your function or measuring the invocation time of your function, as illustrated in the
section called “Accessing invoke context information”.

• You need to use the AWS SDK for Go to make calls to other services. The context object is an
important input parameter to most of these calls. For more information, see the section called
“Using the context in AWS SDK client initializations and calls”.

Topics

• Supported variables, methods, and properties in the context object

• Accessing invoke context information

• Using the context in AWS SDK client initializations and calls

Supported variables, methods, and properties in the context object

The Lambda context library provides the following global variables, methods, and properties.

Global variables

• FunctionName – The name of the Lambda function.

• FunctionVersion – The version of the function.

• MemoryLimitInMB – The amount of memory that's allocated for the function.

• LogGroupName – The log group for the function.

• LogStreamName – The log stream for the function instance.

Context 895

AWS Lambda Developer Guide

Context methods

• Deadline – Returns the date that the execution times out, in Unix time milliseconds.

Context properties

• InvokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• AwsRequestID – The identifier of the invocation request.

• Identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• ClientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

Accessing invoke context information

Lambda functions have access to metadata about their environment and the invocation request.
This can be accessed at Package context. Should your handler include context.Context
as a parameter, Lambda will insert information about your function into the context's Value
property. Note that you need to import the lambdacontext library to access the contents of the
context.Context object.

package main

import (
 "context"
 "log"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/lambdacontext"
)

func CognitoHandler(ctx context.Context) {
 lc, _ := lambdacontext.FromContext(ctx)
 log.Print(lc.Identity.CognitoIdentityPoolID)
}

func main() {
 lambda.Start(CognitoHandler)

Accessing invoke context information 896

https://golang.org/pkg/context/

AWS Lambda Developer Guide

}

In the example above, lc is the variable used to consume the information that the context object
captured and log.Print(lc.Identity.CognitoIdentityPoolID) prints that information, in
this case, the CognitoIdentityPoolID.

The following example introduces how to use the context object to monitor how long your Lambda
function takes to complete. This allows you to analyze performance expectations and adjust your
function code accordingly, if needed.

package main

import (
 "context"
 "log"
 "time"
 "github.com/aws/aws-lambda-go/lambda"
)

func LongRunningHandler(ctx context.Context) (string, error) {

 deadline, _ := ctx.Deadline()
 deadline = deadline.Add(-100 * time.Millisecond)
 timeoutChannel := time.After(time.Until(deadline))

 for {

 select {

 case <- timeoutChannel:
 return "Finished before timing out.", nil

 default:
 log.Print("hello!")
 time.Sleep(50 * time.Millisecond)
 }
 }
}

func main() {
 lambda.Start(LongRunningHandler)
}

Accessing invoke context information 897

AWS Lambda Developer Guide

Using the context in AWS SDK client initializations and calls

If your handler needs to use the AWS SDK for Go to make calls to other services, include the
context object as an input to your handler. In AWS, it's a best practice to pass in the context object
in most AWS SDK calls. For example, the Amazon S3 PutObject call accepts the context object
(ctx) as its first argument:

// Upload an object to S3
 _, err = s3Client.PutObject(ctx, &s3.PutObjectInput{
 ...
 })

To initialize your SDK clients properly, you can also use the context object to load the correct
configuration before passing that configuration object to the client:

// Load AWS SDK configuration using the default credential provider chain
 cfg, err := config.LoadDefaultConfig(ctx)
 ...
 s3Client = s3.NewFromConfig(cfg)

If you want to initialize your SDK clients outside of your main handler (i.e. during the initialization
phase), you can pass in a placeholder context object:

func init() {
 // Initialize the S3 client outside of the handler, during the init phase
 cfg, err := config.LoadDefaultConfig(context.TODO())
 ...
 s3Client = s3.NewFromConfig(cfg)
}

If you initialize your clients this way, ensure that you pass in the correct context object in SDK calls
from your main handler.

Using the context in AWS SDK client initializations and calls 898

AWS Lambda Developer Guide

Deploy Go Lambda functions with .zip file archives

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

This page describes how to create a .zip file as your deployment package for the Go runtime, and
then use the .zip file to deploy your function code to AWS Lambda using the AWS Management
Console, AWS Command Line Interface (AWS CLI), and AWS Serverless Application Model (AWS
SAM).

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

Sections

• Creating a .zip file on macOS and Linux

• Creating a .zip file on Windows

• Creating and updating Go Lambda functions using .zip files

Creating a .zip file on macOS and Linux

The following steps show how to compile your executable using the go build command and
create a .zip file deployment package for Lambda. Before compiling your code, make sure you
have installed the lambda package from GitHub. This module provides an implementation of the
runtime interface, which manages the interaction between Lambda and your function code. To
download this library, run the following command.

go get github.com/aws/aws-lambda-go/lambda

If your function uses the AWS SDK for Go, download the standard set of SDK modules, along with
any AWS service API clients required by your application. To learn how to install the SDK for Go, see
Getting Started with the AWS SDK for Go V2.

Using the provided runtime family

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only runtime (the
provided runtime family) to deploy Go functions to Lambda.

Deploy .zip file archives 899

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
https://github.com/aws/aws-lambda-go/tree/master/lambda
https://aws.github.io/aws-sdk-go-v2/docs/getting-started/

AWS Lambda Developer Guide

To create a .zip deployment package (macOS/Linux)

1. In the project directory that contains your application's main.go file, compile your executable.
Note the following:

• The executable must be named bootstrap. For more information, see Handler naming
conventions.

• Set your target instruction set architecture. OS-only runtimes support both arm64 and
x86_64.

• You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

For the arm64 architecture:

GOOS=linux GOARCH=arm64 go build -tags lambda.norpc -o bootstrap main.go

For the x86_64 architecture:

GOOS=linux GOARCH=amd64 go build -tags lambda.norpc -o bootstrap main.go

2. (Optional) You may need to compile packages with CGO_ENABLED=0 set on Linux:

GOOS=linux GOARCH=arm64 CGO_ENABLED=0 go build -o bootstrap -tags lambda.norpc
 main.go

This command creates a stable binary package for standard C library (libc) versions, which
may be different on Lambda and other devices.

3. Create a deployment package by packaging the executable in a .zip file.

zip myFunction.zip bootstrap

Note

The bootstrap file must be at the root of the .zip file.

4. Create the function. Note the following:
Creating a .zip file on macOS and Linux 900

https://github.com/aws/aws-lambda-go/tree/master/lambda

AWS Lambda Developer Guide

• The binary must be named bootstrap, but the handler name can be anything. For more
information, see Handler naming conventions.

• The --architectures option is only required if you're using arm64. The default value is
x86_64.

• For --role, specify the Amazon Resource Name (ARN) of the execution role.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--architectures arm64 \
--role arn:aws:iam::111122223333:role/lambda-ex \
--zip-file fileb://myFunction.zip

Creating a .zip file on Windows

The following steps show how to download the build-lambda-zip tool for Windows from GitHub,
compile your executable, and create a .zip deployment package.

Note

If you have not already done so, you must install git and then add the git executable to
your Windows %PATH% environment variable.

Before compiling your code, make sure you have installed the lambda library from GitHub. To
download this library, run the following command.

go get github.com/aws/aws-lambda-go/lambda

If your function uses the AWS SDK for Go, download the standard set of SDK modules, along with
any AWS service API clients required by your application. To learn how to install the SDK for Go, see
Getting Started with the AWS SDK for Go V2.

Creating a .zip file on Windows 901

https://github.com/aws/aws-lambda-go/tree/main/cmd/build-lambda-zip
https://git-scm.com/
https://github.com/aws/aws-lambda-go/tree/master/lambda
https://aws.github.io/aws-sdk-go-v2/docs/getting-started/

AWS Lambda Developer Guide

Using the provided runtime family

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only runtime (the
provided runtime family) to deploy Go functions to Lambda.

To create a .zip deployment package (Windows)

1. Download the build-lambda-zip tool from GitHub.

go install github.com/aws/aws-lambda-go/cmd/build-lambda-zip@latest

2. Use the tool from your GOPATH to create a .zip file. If you have a default installation of Go, the
tool is typically in %USERPROFILE%\Go\bin. Otherwise, navigate to where you installed the
Go runtime and do one of the following:

cmd.exe

In cmd.exe, run one of the following, depending on your target instruction set architecture.
OS-only runtimes support both arm64 and x86_64.

You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

Example — For the x86_64 architecture

set GOOS=linux
set GOARCH=amd64
set CGO_ENABLED=0
go build -tags lambda.norpc -o bootstrap main.go
%USERPROFILE%\Go\bin\build-lambda-zip.exe -o myFunction.zip bootstrap

Example — For the arm64 architecture

set GOOS=linux
set GOARCH=arm64
set CGO_ENABLED=0
go build -tags lambda.norpc -o bootstrap main.go
%USERPROFILE%\Go\bin\build-lambda-zip.exe -o myFunction.zip bootstrap

Creating a .zip file on Windows 902

https://github.com/aws/aws-lambda-go/tree/master/lambda

AWS Lambda Developer Guide

PowerShell

In PowerShell, run one of the following, depending on your target instruction set
architecture. OS-only runtimes support both arm64 and x86_64.

You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

For the x86_64 architecture:

$env:GOOS = "linux"
$env:GOARCH = "amd64"
$env:CGO_ENABLED = "0"
go build -tags lambda.norpc -o bootstrap main.go
~\Go\Bin\build-lambda-zip.exe -o myFunction.zip bootstrap

For the arm64 architecture:

$env:GOOS = "linux"
$env:GOARCH = "arm64"
$env:CGO_ENABLED = "0"
go build -tags lambda.norpc -o bootstrap main.go
~\Go\Bin\build-lambda-zip.exe -o myFunction.zip bootstrap

3. Create the function. Note the following:

• The binary must be named bootstrap, but the handler name can be anything. For more
information, see Handler naming conventions.

• The --architectures option is only required if you're using arm64. The default value is
x86_64.

• For --role, specify the Amazon Resource Name (ARN) of the execution role.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--architectures arm64 \
--role arn:aws:iam::111122223333:role/lambda-ex \
--zip-file fileb://myFunction.zip

Creating a .zip file on Windows 903

https://github.com/aws/aws-lambda-go/tree/master/lambda

AWS Lambda Developer Guide

Creating and updating Go Lambda functions using .zip files

After you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the AWS Command Line Interface, and the Lambda API. You can also create and update Lambda
functions using AWS Serverless Application Model (AWS SAM) and AWS CloudFormation.

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give a non-executable file the correct permissions, run
the following command.

chmod 644 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Note

If you don't grant Lambda the permissions it needs to access directories in your deployment
package, Lambda sets the permissions for those directories to 755 (rwxr-xr-x).

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the

Creating and updating Go Lambda functions using .zip files 904

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)

AWS Lambda Developer Guide

AWS Management Console, see Getting started with Amazon S3. To upload files using the AWS CLI,
see Move objects in the AWS CLI User Guide.

Note

You cannot convert an existing container image function to use a .zip archive. You must
create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, choose provided.al2023.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

Creating and updating Go Lambda functions using .zip files 905

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Creating and updating functions with .zip files using the AWS CLI

You can can use the AWS CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move
objects in the AWS CLI User Guide.

Note

If you upload your .zip file from an Amazon S3 bucket using the AWS CLI, the bucket must
be located in the same AWS Region as your function.

To create a new function using a .zip file with the AWS CLI, you must specify the following:

• The name of your function (--function-name)

• Your function’s runtime (--runtime)

• The Amazon Resource Name (ARN) of your function’s execution role (--role)

• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \

Creating and updating Go Lambda functions using .zip files 906

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Lambda Developer Guide

--runtime provided.al2023 --handler bootstrap \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket amzn-s3-demo-bucket --s3-key myFileName.zip --s3-object-version myObject
 Version

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction

• UpdateFunctionCode

Creating and updating Go Lambda functions using .zip files 907

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html

AWS Lambda Developer Guide

Creating and updating functions with .zip files using AWS SAM

The AWS Serverless Application Model (AWS SAM) is a toolkit that helps streamline the process of
building and running serverless applications on AWS. You define the resources for your application
in a YAML or JSON template and use the AWS SAM command line interface (AWS SAM CLI) to build,
package, and deploy your applications. When you build a Lambda function from an AWS SAM
template, AWS SAM automatically creates a .zip deployment package or container image with your
function code and any dependencies you specify. To learn more about using AWS SAM to build
and deploy Lambda functions, see Getting started with AWS SAM in the AWS Serverless Application
Model Developer Guide.

You can also use AWS SAM to create a Lambda function using an existing .zip file archive. To create
a Lambda function using AWS SAM, you can save your .zip file in an Amazon S3 bucket or in a local
folder on your build machine. For instructions on how to upload a file to an Amazon S3 bucket
using the AWS CLI, see Move objects in the AWS CLI User Guide.

In your AWS SAM template, the AWS::Serverless::Function resource specifies your Lambda
function. In this resource, set the following properties to create a function using a .zip file archive:

• PackageType - set to Zip

• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object

• Runtime - Set to your chosen runtime

With AWS SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. AWS SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

Example: Using AWS SAM to build a Go function with provided.al2023

1. Create an AWS SAM template with the following properties:

• BuildMethod: Specifies the compiler for your application. Use go1.x.

• Runtime: Use provided.al2023.

• CodeUri: Enter the path to your code.

Creating and updating Go Lambda functions using .zip files 908

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

• Architectures: Use [arm64] for the arm64 architecture. For the x86_64 instruction set
architecture, use [amd64] or remove the Architectures property.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Metadata:
 BuildMethod: go1.x
 Properties:
 CodeUri: hello-world/ # folder where your main program resides
 Handler: bootstrap
 Runtime: provided.al2023
 Architectures: [arm64]

2. Use the sam build command to compile the executable.

sam build

3. Use the sam deploy command to deploy the function to Lambda.

sam deploy --guided

Creating and updating functions with .zip files using AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function using a .zip file archive. To create
a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket. For
instructions on how to upload a file to an Amazon S3 bucket using the AWS CLI, see Move objects
in the AWS CLI User Guide.

In your AWS CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip

Creating and updating Go Lambda functions using .zip files 909

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-build.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

AWS Lambda Developer Guide

• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key
fields

• Runtime - Set to your chosen runtime

The .zip file that AWS CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in AWS CloudFormation, see AWS::Lambda::Function in the AWS
CloudFormation User Guide.

Creating and updating Go Lambda functions using .zip files 910

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

Deploy Go Lambda functions with container images

There are two ways to build a container image for a Go Lambda function:

• Using an AWS OS-only base image

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only base image
to build Go images for Lambda. To make the image compatible with Lambda, you must include
the aws-lambda-go/lambda package in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the aws-lambda-go/lambda package in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

AWS base images for deploying Go functions

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only base image to
deploy Go functions to Lambda.

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

Jun 30, 2029 Jul 31, 2029 Aug 31, 2029

Deploy container images 911

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Jun 30, 2026 Jul 31, 2026 Aug 31, 2026

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Go runtime interface client

The aws-lambda-go/lambda package includes an implementation of the runtime interface. For
examples of how to use aws-lambda-go/lambda in your image, see Using an AWS OS-only base
image or Using a non-AWS base image.

Using an AWS OS-only base image

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only base image to
build container images for Go functions.

Tags Runtime Operating
system

Dockerfile Deprecation

al2023 OS-only
Runtime

Amazon
Linux 2023

Dockerfile for OS-only
Runtime on GitHub

Jun 30, 2029

al2 OS-only
Runtime

Amazon
Linux 2

Dockerfile for OS-only
Runtime on GitHub

Jun 30, 2026

For more information about these base images, see provided in the Amazon ECR public gallery.

You must include the aws-lambda-go/lambda package with your Go handler. This package
implements the programming model for Go, including the runtime interface.

Prerequisites

To complete the steps in this section, you must have the following:

Go runtime interface client 912

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-go

AWS Lambda Developer Guide

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

• Go

Creating an image from the provided.al2023 base image

To build and deploy a Go function with the provided.al2023 base image

1. Create a directory for the project, and then switch to that directory.

mkdir hello
cd hello

2. Initialize a new Go module.

go mod init example.com/hello-world

3. Add the lambda library as a dependency of your new module.

go get github.com/aws/aws-lambda-go/lambda

4. Create a file named main.go and then open it in a text editor. This is the code for the Lambda
function. You can use the following sample code for testing, or replace it with your own.

package main

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, event events.APIGatewayProxyRequest)
 (events.APIGatewayProxyResponse, error) {
 response := events.APIGatewayProxyResponse{
 StatusCode: 200,
 Body: "\"Hello from Lambda!\"",
 }
 return response, nil

Using an AWS OS-only base image 913

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md

AWS Lambda Developer Guide

}

func main() {
 lambda.Start(handler)
}

5. Use a text editor to create a Dockerfile in your project directory.

• The following example Dockerfile uses a multi-stage build. This allows you to use a different
base image in each step. You can use one image, such as a Go base image, to compile
your code and build the executable binary. You can then use a different image, such as
provided.al2023, in the final FROM statement to define the image that you deploy to
Lambda. The build process is separated from the final deployment image, so the final image
only contains the files needed to run the application.

• You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

• Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-
privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example — Multi-stage build Dockerfile

Note

Make sure that the version of Go that you specify in your Dockerfile (for example,
golang:1.20) is the same version of Go that you used to create your application.

FROM golang:1.20 as build
WORKDIR /helloworld
Copy dependencies list
COPY go.mod go.sum ./
Build with optional lambda.norpc tag
COPY main.go .
RUN go build -tags lambda.norpc -o main main.go
Copy artifacts to a clean image
FROM public.ecr.aws/lambda/provided:al2023

Using an AWS OS-only base image 914

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://hub.docker.com/_/golang
https://github.com/aws/aws-lambda-go/tree/master/lambda
https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

COPY --from=build /helloworld/main ./main
ENTRYPOINT ["./main"]

6. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test your image. The runtime interface emulator is
included in the provided.al2023 base image.

To run the runtime interface emulator on your local machine

1. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• ./main is the ENTRYPOINT from your Dockerfile.

docker run -d -p 9000:8080 \
--entrypoint /usr/local/bin/aws-lambda-rie \
docker-image:test ./main

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

2. From a new terminal window, post an event to the following endpoint using a curl command:

Using an AWS OS-only base image 915

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://github.com/aws/aws-lambda-runtime-interface-emulator/

AWS Lambda Developer Guide

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. Some
functions might require a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using an AWS OS-only base image 916

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using an AWS OS-only base image 917

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using an AWS OS-only base image 918

https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using a non-AWS base image

You can build a container image for Go from a non-AWS base image. The example Dockerfile in the
following steps uses an Alpine base image.

You must include the aws-lambda-go/lambda package with your Go handler. This package
implements the programming model for Go, including the runtime interface.

Prerequisites

To complete the steps in this section, you must have the following:

• AWS CLI version 2

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

• Go

Creating an image from an alternative base image

To build and deploy a Go function with an Alpine base image

1. Create a directory for the project, and then switch to that directory.

Using a non-AWS base image 919

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://hub.docker.com/_/golang/
https://github.com/aws/aws-lambda-go
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md

AWS Lambda Developer Guide

mkdir hello
cd hello

2. Initialize a new Go module.

go mod init example.com/hello-world

3. Add the lambda library as a dependency of your new module.

go get github.com/aws/aws-lambda-go/lambda

4. Create a file named main.go and then open it in a text editor. This is the code for the Lambda
function. You can use the following sample code for testing, or replace it with your own.

package main

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, event events.APIGatewayProxyRequest)
 (events.APIGatewayProxyResponse, error) {
 response := events.APIGatewayProxyResponse{
 StatusCode: 200,
 Body: "\"Hello from Lambda!\"",
 }
 return response, nil
}

func main() {
 lambda.Start(handler)
}

5. Use a text editor to create a Dockerfile in your project directory. The following example
Dockerfile uses an Alpine base image. Note that the example Dockerfile does not include a
USER instruction. When you deploy a container image to Lambda, Lambda automatically
defines a default Linux user with least-privileged permissions. This is different from standard
Docker behavior which defaults to the root user when no USER instruction is provided.

Using a non-AWS base image 920

https://hub.docker.com/_/golang/
https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

Example Dockerfile

Note

Make sure that the version of Go that you specify in your Dockerfile (for example,
golang:1.20) is the same version of Go that you used to create your application.

FROM golang:1.20.2-alpine3.16 as build
WORKDIR /helloworld
Copy dependencies list
COPY go.mod go.sum ./
Build
COPY main.go .
RUN go build -o main main.go
Copy artifacts to a clean image
FROM alpine:3.16
COPY --from=build /helloworld/main /main
ENTRYPOINT ["/main"]

6. Build the Docker image with the docker build command. The following example names
the image docker-image and gives it the test tag. To make your image compatible with
Lambda, you must use the --provenance=false option.

docker buildx build --platform linux/amd64 --provenance=false -t docker-image:test
 .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

Using a non-AWS base image 921

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

AWS Lambda Developer Guide

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or use the following procedure to install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

Using a non-AWS base image 922

https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image
https://github.com/aws/aws-lambda-runtime-interface-emulator/?tab=readme-ov-file#build-rie-into-your-base-image

AWS Lambda Developer Guide

• docker-image is the image name and test is the tag.

• /main is the ENTRYPOINT from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /main

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /main

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

Using a non-AWS base image 923

AWS Lambda Developer Guide

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

Using a non-AWS base image 924

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html

AWS Lambda Developer Guide

• Set the --region value to the AWS Region where you want to create the Amazon ECR
repository.

• Replace 111122223333 with your AWS account ID.

aws ecr get-login-password --region us-east-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.us-east-1.amazonaws.com

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region us-east-1 --image-
scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same AWS Region as the Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

Using a non-AWS base image 925

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

AWS Lambda Developer Guide

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• docker-image:test is the name and tag of your Docker image. This is the image name
and tag that you specified in the docker build command.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-
world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different AWS account, as long as the
image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

Using a non-AWS base image 926

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

AWS Lambda Developer Guide

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Lambda resolves the image tag to a specific image digest. This means that if you point the
image tag that was used to deploy the function to a new image in Amazon ECR, Lambda doesn't
automatically update the function to use the new image.

To deploy the new image to the same Lambda function, you must use the update-function-code
command, even if the image tag in Amazon ECR remains the same. In the following example, the
--publish option creates a new version of the function using the updated container image.

aws lambda update-function-code \
 --function-name hello-world \
 --image-uri 111122223333.dkr.ecr.us-east-1.amazonaws.com/hello-world:latest \
 --publish

Using a non-AWS base image 927

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Working with layers for Go Lambda functions

We don't recommend using layers to manage dependencies for Lambda functions written in Go.
This is because Lambda functions in Go compile into a single executable, which you provide to
Lambda when you deploy your function. This executable contains your compiled function code,
along with all of its dependencies. Using layers not only complicates this process, but also leads
to increased cold start times because your functions need to manually load extra assemblies into
memory during the init phase.

To use external dependencies with your Go handlers, include them directly in your deployment
package. By doing so, you simplify the deployment process and also take advantage of built-in Go
compiler optimizations. For an example of how to import and use a dependency like the AWS SDK
for Go in your function, see the section called “Handler”.

Layers 928

AWS Lambda Developer Guide

Log and monitor Go Lambda functions

AWS Lambda automatically monitors Lambda functions on your behalf and sends logs to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation to the log stream, and relays logs and other output from your function's code. For more
information, see Sending Lambda function logs to CloudWatch Logs.

This page describes how to produce log output from your Lambda function's code, and access logs
using the AWS Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

• Viewing logs using the AWS Command Line Interface (AWS CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use methods on the fmt package, or any logging
library that writes to stdout or stderr. The following example uses the log package.

Example main.go – Logging

func handleRequest(ctx context.Context, event events.SQSEvent) (string, error) {
 // event
 eventJson, _ := json.MarshalIndent(event, "", " ")
 log.Printf("EVENT: %s", eventJson)
 // environment variables
 log.Printf("REGION: %s", os.Getenv("AWS_REGION"))
 log.Println("ALL ENV VARS:")
 for _, element := range os.Environ() {
 log.Println(element)
 }

Example log format

START RequestId: dbda340c-xmpl-4031-8810-11bb609b4c71 Version: $LATEST

Logging 929

https://golang.org/pkg/fmt/
https://golang.org/pkg/log/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go/function/main.go

AWS Lambda Developer Guide

2020/03/27 03:40:05 EVENT: {
 "Records": [
 {
 "messageId": "19dd0b57-b21e-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 "md5OfBody": "7b27xmplb47ff90a553787216d55d91d",
 "md5OfMessageAttributes": "",
 "attributes": {
 "ApproximateFirstReceiveTimestamp": "1523232000001",
 "ApproximateReceiveCount": "1",
 "SenderId": "123456789012",
 "SentTimestamp": "1523232000000"
 },
 ...
2020/03/27 03:40:05 AWS_LAMBDA_LOG_STREAM_NAME=2020/03/27/
[$LATEST]569cxmplc3c34c7489e6a97ad08b4419
2020/03/27 03:40:05 AWS_LAMBDA_FUNCTION_NAME=blank-go-function-9DV3XMPL6XBC
2020/03/27 03:40:05 AWS_LAMBDA_FUNCTION_MEMORY_SIZE=128
2020/03/27 03:40:05 AWS_LAMBDA_FUNCTION_VERSION=$LATEST
2020/03/27 03:40:05 AWS_EXECUTION_ENV=AWS_Lambda_go1.x
END RequestId: dbda340c-xmpl-4031-8810-11bb609b4c71
REPORT RequestId: dbda340c-xmpl-4031-8810-11bb609b4c71 Duration: 38.66 ms Billed
 Duration: 39 ms Memory Size: 128 MB Max Memory Used: 54 MB Init Duration: 203.69 ms
XRAY TraceId: 1-5e7d7595-212fxmpl9ee07c4884191322 SegmentId: 42ffxmpl0645f474 Sampled:
 true

The Go runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

Creating a function that returns logs 930

AWS Lambda Developer Guide

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs using the AWS Command Line Interface (AWS CLI)

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Viewing logs in the Lambda console 931

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Viewing logs using the AWS Command Line Interface (AWS CLI) 932

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"

Viewing logs using the AWS Command Line Interface (AWS CLI) 933

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Viewing logs using the AWS Command Line Interface (AWS CLI) 934

AWS Lambda Developer Guide

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 935

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

AWS Lambda Developer Guide

Instrumenting Go code in AWS Lambda

Lambda integrates with AWS X-Ray to help you trace, debug, and optimize Lambda applications.
You can use X-Ray to trace a request as it traverses resources in your application, which may include
Lambda functions and other AWS services.

To send tracing data to X-Ray, you can use one of two SDK libraries:

• AWS Distro for OpenTelemetry (ADOT) – A secure, production-ready, AWS-supported distribution
of the OpenTelemetry (OTel) SDK.

• AWS X-Ray SDK for Go – An SDK for generating and sending trace data to X-Ray.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for AWS Lambda SDKs are part of a tightly integrated
instrumentation solution offered by AWS. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
AWS Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using ADOT to instrument your Go functions

• Using the X-Ray SDK to instrument your Go functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with AWS CloudFormation

• Interpreting an X-Ray trace

Tracing 936

https://aws.amazon.com/otel
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-go.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

AWS Lambda Developer Guide

Using ADOT to instrument your Go functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Go runtimes, you can add the AWS managed Lambda layer for ADOT Go to automatically
instrument your functions. For detailed instructions on how to add this layer, see AWS Distro for
OpenTelemetry Lambda Support for Go in the ADOT documentation.

Using the X-Ray SDK to instrument your Go functions

To record details about calls that your Lambda function makes to other resources in your
application, you can also use the AWS X-Ray SDK for Go. To get the SDK, download the SDK from
its GitHub repository with go get:

go get github.com/aws/aws-xray-sdk-go

To instrument AWS SDK clients, pass the client to the xray.AWS() method. You can then trace
calls by using the WithContext version of the method.

svc := s3.New(session.New())
xray.AWS(svc.Client)
...
svc.ListBucketsWithContext(ctx aws.Context, input *ListBucketsInput)

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

Using ADOT to instrument your Go functions 937

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-go
https://aws-otel.github.io/docs/getting-started/lambda/lambda-go
https://github.com/aws/aws-xray-sdk-go
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. Choose Configuration and then choose Monitoring and operations tools.

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the AWS CLI or AWS SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active

Activating tracing with the Lambda API 938

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

 ...

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example shows an application with two functions. The primary function processes events
and sometimes returns errors. The second function at the top processes errors that appear in the
first's log group and uses the AWS SDK to call X-Ray, Amazon Simple Storage Service (Amazon S3),
and Amazon CloudWatch Logs.

Interpreting an X-Ray trace 939

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html#xray-concepts-servicegraph

AWS Lambda Developer Guide

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Interpreting an X-Ray trace 940

AWS Lambda Developer Guide

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the AWS X-Ray SDK for Go in the AWS X-Ray
Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the AWS
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see AWS X-Ray pricing.

Interpreting an X-Ray trace 941

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html
https://aws.amazon.com/xray/pricing/

AWS Lambda Developer Guide

Building Lambda functions with C#

You can run your .NET application in Lambda using the managed .NET 8 runtime, a custom
runtime, or a container image. After your application code is compiled, you can deploy it to
Lambda either as a .zip file or a container image. Lambda provides the following runtimes for .NET
languages:

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

.NET 9
(container
only)

dotnet9 Amazon
Linux 2023

Not
scheduled

Not
scheduled

Not
scheduled

.NET 8 dotnet8 Amazon
Linux 2023

Nov 10, 2026 Dec 10, 2026 Jan 11, 2027

Setting up your .NET development environment

To develop and build your Lambda functions, you can use any of the commonly available .NET
integrated development environments (IDEs), including Microsoft Visual Studio, Visual Studio
Code, and JetBrains Rider. To simplify your development experience, AWS provides a set of .NET
project templates, as well as the Amazon.Lambda.Tools command line interface (CLI).

Run the following .NET CLI commands to install these project templates and command line tools.

Installing the .NET project templates

To install the project templates, run the following command:

dotnet new install Amazon.Lambda.Templates

Installing and updating the CLI tools

Run the following commands to install, update, and uninstall the Amazon.Lambda.Tools CLI.

Development environment 942

AWS Lambda Developer Guide

To install the command line tools:

dotnet tool install -g Amazon.Lambda.Tools

To update the command line tools:

dotnet tool update -g Amazon.Lambda.Tools

To uninstall the command line tools:

dotnet tool uninstall -g Amazon.Lambda.Tools

Installing and updating the CLI tools 943

AWS Lambda Developer Guide

Define Lambda function handler in C#

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in C# to work with the .NET
managed runtime, including options for project setup, naming conventions, and best practices. This
page also includes an example of a C# Lambda function that takes in information about an order,
produces a text file receipt, and puts this file in an Amazon Simple Storage Service (S3) bucket. For
information about how to deploy your function after writing it, see the section called “Deployment
package” or the section called “Deploy container images”.

Topics

• Setting up your C# handler project

• Example C# Lambda function code

• Class library handlers

• Executable assembly handlers

• Valid handler signatures for C# functions

• Handler naming conventions

• Serialization in C# Lambda functions

• Accessing and using the Lambda context object

• Using the SDK for .NET v3 in your handler

• Accessing environment variables

• Using global state

• Simplify function code with the Lambda Annotations framework

• Code best practices for C# Lambda functions

Setting up your C# handler project

When working with Lambda functions in C#, the process involves writing your code, then deploying
your code to Lambda. There are two different execution models for deploying Lambda functions
in .NET: the class library approach and the executable assembly approach.

Handler 944

AWS Lambda Developer Guide

In the class library approach, you package your function code as a .NET assembly (.dll) and
deploy it to Lambda with the .NET managed runtime (dotnet8). For the handler name, Lambda
expects a string in the format AssemblyName::Namespace.Classname::Methodname.
During the function's initialization phase, your function's class is initialized, and any code in the
constructor is run.

In the executable assembly approach, you use the top-level statements feature that was first
introduced in C# 9. This approach generates an executable assembly which Lambda runs whenever
it receives an invoke command for your function. In this approach, you also use the .NET managed
runtime (dotnet8). For the handler name, you provide Lambda with the name of the executable
assembly to run.

The main example on this page illustrates the class library approach. You can initialize
your C# Lambda project in various ways, but the easiest way is to use the .NET CLI with the
Amazon.Lambda.Tools CLI. Set up the Amazon.Lambda.Tools CLI by following the steps in
the section called “Development environment”. Then, initialize your project with the following
command:

dotnet new lambda.EmptyFunction --name ExampleCS

This command generates the following file structure:

/project-root
 # src
 # ExampleCS
 # Function.cs (contains main handler)
 # Readme.md
 # aws-lambda-tools-defaults.json
 # ExampleCS.csproj
 # test
 # ExampleCS.Tests
 # FunctionTest.cs (contains main handler)
 # ExampleCS.Tests.csproj

In this file structure, the main handler logic for your function resides in the Function.cs file.

Example C# Lambda function code

The following example C# Lambda function code takes in information about an order, produces a
text file receipt, and puts this file in an Amazon S3 bucket.

Example C# Lambda function code 945

https://learn.microsoft.com/en-us/dotnet/csharp/tutorials/top-level-statements

AWS Lambda Developer Guide

Example Function.cs Lambda function

using System;
using System.Text;
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using Amazon.S3.Model;

// Assembly attribute to enable Lambda function logging
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace ExampleLambda;

public class Order
{
 public string OrderId { get; set; } = string.Empty;
 public double Amount { get; set; }
 public string Item { get; set; } = string.Empty;
}

public class OrderHandler
{
 private static readonly AmazonS3Client s3Client = new();

 public async Task<string> HandleRequest(Order order, ILambdaContext context)
 {
 try
 {
 string? bucketName = Environment.GetEnvironmentVariable("RECEIPT_BUCKET");
 if (string.IsNullOrWhiteSpace(bucketName))
 {
 throw new ArgumentException("RECEIPT_BUCKET environment variable is not
 set");
 }

 string receiptContent = $"OrderID: {order.OrderId}\nAmount:
 ${order.Amount:F2}\nItem: {order.Item}";
 string key = $"receipts/{order.OrderId}.txt";

 await UploadReceiptToS3(bucketName, key, receiptContent);

Example C# Lambda function code 946

AWS Lambda Developer Guide

 context.Logger.LogInformation($"Successfully processed order
 {order.OrderId} and stored receipt in S3 bucket {bucketName}");
 return "Success";
 }
 catch (Exception ex)
 {
 context.Logger.LogError($"Failed to process order: {ex.Message}");
 throw;
 }
 }

 private async Task UploadReceiptToS3(string bucketName, string key, string
 receiptContent)
 {
 try
 {
 var putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = receiptContent,
 ContentType = "text/plain"
 };

 await s3Client.PutObjectAsync(putRequest);
 }
 catch (AmazonS3Exception ex)
 {
 throw new Exception($"Failed to upload receipt to S3: {ex.Message}", ex);
 }
 }
}

This Function.cs file contains the following sections of code:

• using statements: Use these to import C# classes that your Lambda function requires.

• [assembly: LambdaSerializer(...)]: LambdaSerializer is an assembly attribute that
tells Lambda to automatically convert JSON event payloads into C# objects before passing them
to your function.

• namespace ExampleLambda: This defines the namespace. In C#, the namespace name doesn't
have to match the filename.

Example C# Lambda function code 947

AWS Lambda Developer Guide

• public class Order {...}: This defines the shape of the expected input event.

• public class OrderHandler {...}: This defines your C# class. Within it, you'll define the
main handler method and any other helper methods.

• private static readonly AmazonS3Client s3Client = new();: This initializes
an Amazon S3 client with the default credential provider chain, outside of the main handler
method. This causes Lambda to run this code during the initialization phase.

• public async ... HandleRequest (Order order, ILambdaContext context): This
is the main handler method, which contains your main application logic.

• private async Task UploadReceiptToS3(...) {}: This is a helper method that's
referenced by the main handleRequest handler method.

Because this function requires an Amazon S3 SDK client, you must add it to your project's
dependencies. You can do so by navigating to src/ExampleCS and running the following
command:

dotnet add package AWSSDK.S3

Add metadata information to aws-lambda-tools-defaults.json

By default, the generated aws-lambda-tools-defaults.json file doesn't contain profile
or region information for your function. In addition, update the function-handler string to
the correct value (ExampleCS::ExampleLambda.OrderHandler::HandleRequest). You can
manually make this update and add the necessary metadata to use a specific credentials profile
and region for your function. For example, your aws-lambda-tools-defaults.json file should
look similar to this:

{
 "Information": [
 "This file provides default values for the deployment wizard inside Visual Studio
 and the AWS Lambda commands added to the .NET Core CLI.",
 "To learn more about the Lambda commands with the .NET Core CLI execute the
 following command at the command line in the project root directory.",
 "dotnet lambda help",
 "All the command line options for the Lambda command can be specified in this
 file."
],
 "profile": "default",
 "region": "us-east-1",

Example C# Lambda function code 948

AWS Lambda Developer Guide

 "configuration": "Release",
 "function-architecture": "x86_64",
 "function-runtime": "dotnet8",
 "function-memory-size": 512,
 "function-timeout": 30,
 "function-handler": "ExampleCS::ExampleLambda.OrderHandler::HandleRequest"
}

For this function to work properly, its execution role must allow the s3:PutObject action. Also,
ensure that you define the RECEIPT_BUCKET environment variable. After a successful invocation,
the Amazon S3 bucket should contain a receipt file.

Class library handlers

The main example code on this page illustrates a class library handler. Class library handlers have
the following structure:

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace NAMESPACE;

...

public class CLASSNAME {
 public async Task<string> METHODNAME (...) {
 ...
 }
}

When you create a Lambda function, you need to provide Lambda with information about your
function's handler in the form of a string in the Handler field. This tells Lambda which method in
your code to run when your function is invoked. In C#, for class library handlers, the format of the
handler string is ASSEMBLY::TYPE::METHOD, where:

• ASSEMBLY is the name of the .NET assembly file for your application. If you're using the
Amazon.Lambda.Tools CLI to build your application and you don't set the assembly name
using the AssemblyName property in the .csproj file, then ASSEMBLY is simply the name of
your .csproj file.

• TYPE is the full name of the handler type, which is NAMESPACE.CLASSNAME.

Class library handlers 949

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-Handler

AWS Lambda Developer Guide

• METHOD is the name of the main handler method in your code, which is METHODNAME.

For the main example code on this page, if the assembly is named ExampleCS, then the full
handler string is ExampleCS::ExampleLambda.OrderHandler::HandleRequest.

Executable assembly handlers

You can also define Lambda functions in C# as an executable assembly. Executable assembly
handlers utilize C#'s top-level statements feature, in which the compiler generates the Main()
method and puts your function code within it. When using executable assemblies, the Lambda
runtime must be bootstrapped. To do this, use the LambdaBootstrapBuilder.Create method
in your code. The inputs to this method are the main handler function as well as the Lambda
serializer to use. The following shows an example of an executable assembly handler in C#:

namespace GetProductHandler;

IDatabaseRepository repo = new DatabaseRepository();

await LambdaBootstrapBuilder.Create<APIGatewayProxyRequest>(Handler, new
 DefaultLambdaJsonSerializer())
 .Build()
 .RunAsync();

async Task<APIGatewayProxyResponse> Handler(APIGatewayProxyRequest apigProxyEvent,
 ILambdaContext context)
{
 var id = apigProxyEvent.PathParameters["id"];
 var databaseRecord = await this.repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
};

In the Handler field for executable assembly handlers, the handler string that tells Lambda how to
run your code is the name of the assembly. In this example, that's GetProductHandler.

Executable assembly handlers 950

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-Handler

AWS Lambda Developer Guide

Valid handler signatures for C# functions

In C#, valid Lambda handler signatures take between 0 and 2 arguments. Typically, your handler
signature has two arguments, as shown in the main example:

public async Task<string> HandleRequest(Order order, ILambdaContext context)

When providing two argumenhts, the first argument must be the event input, and the second
argument must be the Lambda context object. Both arguments are optional. For example, the
following are also valid Lambda handler signatures in C#:

• public async Task<string> HandleRequest()

• public async Task<string> HandleRequest(Order order)

• public async Task<string> HandleRequest(ILambdaContext context)

Apart from the base syntax of the handler signature, there are some additional restrictions:

• You cannot use the unsafe keyword in the handler signature. However, you can use the unsafe
context inside the handler method and its dependencies. For more information, see unsafe (C#
reference) on the Microsoft documentation website.

• The handler may not use the params keyword, or use ArgIterator as an input or return
parameter. These keywords support a variable number of parameters. The maximum number of
arguments your handler can accept is two.

• The handler may not be a generic method. In other words, it can't use generic type parameters
such as <T>.

• Lambda doesn't support async handlers with async void in the signature.

Handler naming conventions

Lambda handlers in C# don't have strict naming restrictions. However, you must ensure that you
provide the correct handler string to Lambda when you deploy your function. The right handler
string depends on if you're deploying a class library handler or an executable assembly handler.

Although you can use any name for your handler, function names in C# are generally in PascalCase.
Also, although the file name doesn't need to match the class name or handler name, it's generally

Valid handler signatures for C# functions 951

https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx

AWS Lambda Developer Guide

a best practice to use a filename like OrderHandler.cs if your class name is OrderHandler. For
example, you can modify the file name in this example from Function.cs to OrderHandler.cs.

Serialization in C# Lambda functions

JSON is the most common and standard input format for Lambda functions. In this example, the
function expects an input similar to the following:

{
 "orderId": "12345",
 "amount": 199.99,
 "item": "Wireless Headphones"
}

In C#, you can define the shape of the expected input event in a class. In this example, we define
the Order class to model this input:

public class Order
{
 public string OrderId { get; set; } = string.Empty;
 public double Amount { get; set; }
 public string Item { get; set; } = string.Empty;
}

If your Lambda function uses input or output types other than a Stream object, you must add a
serialization library to your application. This lets you convert the JSON input into an instance of
the class that you defined. There are two methods of serialization for C# functions in Lambda:
reflection-based serialization and source-generated serialization.

Reflection-based serialization

AWS provides pre-built libraries that you can quickly add to your application. These libraries
implement serialization using reflection. Use one of the following packages to implement
reflection-based serialization:

• Amazon.Lambda.Serialization.SystemTextJson – In the backend, this package uses
System.Text.Json to perform serialization tasks.

• Amazon.Lambda.Serialization.Json – In the backend, this package uses
Newtonsoft.Json to perform serialization tasks.

Serialization in C# Lambda functions 952

https://learn.microsoft.com/en-us/dotnet/csharp/advanced-topics/reflection-and-attributes/

AWS Lambda Developer Guide

You can also create your own serialization library by implementing the ILambdaSerializer
interface, which is available as part of the Amazon.Lambda.Core library. This interface defines
two methods:

• T Deserialize<T>(Stream requestStream);

You implement this method to deserialize the request payload from the Invoke API into the
object that is passed to your Lambda function handler.

• T Serialize<T>(T response, Stream responseStream);

You implement this method to serialize the result returned from your Lambda function handler
into the response payload that the Invoke API operation returns.

The main example on this page uses reflection-based serialization. Reflection-based serialization
works out of the box with AWS Lambda and requires no additional setup, making it a good choice
for simplicity. However, it does require more function memory usage. You may also see higher
function latencies due to runtime reflection.

Source-generated serialization

With source-generated serialization, serialization code is generated at compile time. This removes
the need for reflection and can improve the performance of your function. To use source-
generated serialization in your function, you must do the following:

• Create a new partial class that inherits from JsonSerializerContext, adding
JsonSerializable attributes for all types that require serialization or deserialization.

• Configure the LambdaSerializer to use a SourceGeneratorLambdaJsonSerializer<T>.

• Update any manual serialization and deserialization in your application code to use the newly
created class.

The following example shows how you can modify the main example on this page, which uses
reflection-based serialization, to use source-generated serialization instead.

using System.Text.Json;
using System.Text.Json.Serialization;

...

Serialization in C# Lambda functions 953

AWS Lambda Developer Guide

public class Order
{
 public string OrderId { get; set; } = string.Empty;
 public double Amount { get; set; }
 public string Item { get; set; } = string.Empty;
}

[JsonSerializable(typeof(Order))]
public partial class OrderJsonContext : JsonSerializerContext {}

public class OrderHandler
{

 ...

 public async Task<string> HandleRequest(string input, ILambdaContext context)
 {

 var order = JsonSerializer.Deserialize(input, OrderJsonContext.Default.Order);

 ...

 }

}

Source-generated serialization requires more setup than reflection-based serialization. However,
functions using source-generated tend to use less memory and have better performance due
to compile-time code generation. To help eliminate function cold starts, consider switching to
source-generated serialization.

Note

If you want to use native ahead-of-time compilation (AOT) with Lambda, you must use
source-generated serialization.

Accessing and using the Lambda context object

The Lambda context object contains information about the invocation, function,
and execution environment. In this example, the context object is of type

Accessing and using the Lambda context object 954

AWS Lambda Developer Guide

Amazon.Lambda.Core.ILambdaContext, and is the second argument of the main handler
function.

public async Task<string> HandleRequest(Order order, ILambdaContext context) {
 ...
}

The context object is an optional input. For more information about valid accepted handler
signatures, see the section called “Valid handler signatures for C# functions”.

The context object is useful for producing function logs to Amazon CloudWatch. You can use the
context.getLogger() method to get a LambdaLogger object for logging. In this example, we
can use the logger to log an error message if processing fails for any reason:

context.Logger.LogError($"Failed to process order: {ex.Message}");

Outside of logging, you can also use the context object for function monitoring. For more
information about the context object, see the section called “Context”.

Using the SDK for .NET v3 in your handler

Often, you'll use Lambda functions to interact with or make updates to other AWS resources. The
simplest way to interface with these resources is to use the SDK for .NET v3.

Note

The SDK for .NET (v2) is deprecated. We recommend that you use only the SDK for .NET v3.

You can add SDK dependencies to your project using the following Amazon.Lambda.Tools
command:

dotnet add package <package_name>

For example, in the main example on this page, we need to use the Amazon S3 API to upload a
receipt to S3. We can import the Amazon S3 SDK client with the following command:

dotnet add package AWSSDK.S3

Using the SDK for .NET v3 in your handler 955

AWS Lambda Developer Guide

This command adds the dependency to your project. You should also see a line similar to the
following in your project's .csproj file:

<PackageReference Include="AWSSDK.S3" Version="3.7.2.18" />

Then, import the dependencies directly in your C# code:

using Amazon.S3;
using Amazon.S3.Model;

The example code then initializes an Amazon S3 client (using the default credential provider chain)
as follows:

private static readonly AmazonS3Client s3Client = new();

In this example, we initialized our Amazon S3 client outside of the main handler function to avoid
having to initialize it every time we invoke our function. After you initialize your SDK client, you can
then use it to interact with other AWS services. The example code calls the Amazon S3 PutObject
API as follows:

var putRequest = new PutObjectRequest
{
 BucketName = bucketName,
 Key = key,
 ContentBody = receiptContent,
 ContentType = "text/plain"
};

await s3Client.PutObjectAsync(putRequest);

Accessing environment variables

In your handler code, you can reference any environment variables by using the
System.Environment.GetEnvironmentVariable method. In this example, we reference the
defined RECEIPT_BUCKET environment variable using the following lines of code:

string? bucketName = Environment.GetEnvironmentVariable("RECEIPT_BUCKET");
if (string.IsNullOrWhiteSpace(bucketName))
{
 throw new ArgumentException("RECEIPT_BUCKET environment variable is not set");

Accessing environment variables 956

https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html

AWS Lambda Developer Guide

}

Using global state

Lambda runs your static code and the class constructor during the initialization phase before
invoking your function for the first time. Resources created during initialization stay in memory
between invocations, so you can avoid having to create them every time you invoke your function.

In the example code, the S3 client initialization code is outside the main handler method. The
runtime initializes the client before the function handles its first event, which can lead to longer
processing times. Subsequent events are much faster because Lambda doesn’t need to initialize the
client again.

Simplify function code with the Lambda Annotations framework

Lambda Annotations is a framework for .NET 8 which simplifies writing Lambda functions using
C#. The Annotations framework uses source generators to generate code that translates from the
Lambda programming model to the simplified code. With the Annotations framework, you can
replace much of the code in a Lambda function written using the regular programming model.
Code written using the framework uses simpler expressions that allow you to focus on your
business logic. See Amazon.Lambda.Annotations in the nuget documentation for examples.

For an example of a full application utilizing Lambda Annotations, see the PhotoAssetManager
example in the awsdocs/aws-doc-sdk-examples GitHub repository. The main Function.cs
file in the PamApiAnnotations directory uses Lambda Annotations. For comparison, the PamApi
directory has equivalent files written using the regular Lambda programming model.

Dependency injection with Lambda Annotations framework

You can also use the Lambda Annotations framework to add dependency injection to your Lambda
functions using syntax you are familiar with. When you add a [LambdaStartup] attribute to a
Startup.cs file, the Lambda Annotations framework will generate the required code at compile
time.

[LambdaStartup]
public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSingleton<IDatabaseRepository, DatabaseRepository>();

Using global state 957

https://www.nuget.org/packages/Amazon.Lambda.Annotations
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/source-generators-overview
https://www.nuget.org/packages/Amazon.Lambda.Annotations
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager

AWS Lambda Developer Guide

 }
}

Your Lambda function can inject services using either constructor injection or by injecting into
individual methods using the [FromServices] attribute.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function(IDatabaseRepository repo)
 {
 this._repo = repo;
 }

 [LambdaFunction]
 [HttpApi(LambdaHttpMethod.Get, "/product/{id}")]
 public async Task<Product> FunctionHandler([FromServices] IDatabaseRepository
 repository, string id)
 {
 return await this._repo.GetById(id);
 }
}

Code best practices for C# Lambda functions

Adhere to the guidelines in the following list to use best coding practices when building your
Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function.

• Control the dependencies in your function's deployment package. The AWS Lambda
execution environment contains a number of libraries. To enable the latest set of features
and security updates, Lambda will periodically update these libraries. These updates may
introduce subtle changes to the behavior of your Lambda function. To have full control of the

Code best practices for C# Lambda functions 958

AWS Lambda Developer Guide

dependencies your function uses, package all of your dependencies with your deployment
package.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation. For functions authored in .NET, avoid uploading the entire AWS SDK library
as part of your deployment package. Instead, selectively depend on the modules which pick up
components of the SDK you need (e.g. DynamoDB, Amazon S3 SDK modules and Lambda core
libraries).

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's

Code best practices for C# Lambda functions 959

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Code best practices for C# Lambda functions 960

https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Build and deploy C# Lambda functions with .zip file archives

A .NET deployment package (.zip file archive) contains your function's compiled
assembly along with all of its assembly dependencies. The package also contains a
proj.deps.json file. This signals to the .NET runtime all of your function's dependencies and a
proj.runtimeconfig.json file, which is used to configure the runtime.

To deploy individual Lambda functions, you can use the Amazon.Lambda.Tools .NET Lambda
Global CLI. Using the dotnet lambda deploy-function command automatically creates a .zip
deployment package and deploys it to Lambda. However, we recommend that you use frameworks
like the AWS Serverless Application Model (AWS SAM) or the AWS Cloud Development Kit (AWS
CDK) to deploy your .NET applications to AWS.

Serverless applications usually comprise a combination of Lambda functions and other managed
AWS services working together to perform a particular business task. AWS SAM and AWS CDK
simplify building and deploying Lambda functions with other AWS services at scale. The AWS SAM
template specification provides a simple and clean syntax to describe Lambda functions, APIs,
permissions, configurations, and other AWS resources that make up your serverless application.
With the AWS CDK you define cloud infrastructure as code to help you build reliable, scalable,
cost-effective applications in the cloud using modern programming languages and frameworks
like .NET. Both the AWS CDK and the AWS SAM use the .NET Lambda Global CLI to package your
functions.

While it's possible to use Lambda layers with functions in C# by using the .NET Core CLI, we
recommend against it. Functions in C# that use layers manually load the shared assemblies into
memory during the Init phase, which can increase cold start times. Instead, include all shared code
at compile time to avoid the performance impact of loading assemblies at runtime.

You can find instructions for building and deploying .NET Lambda functions using the AWS SAM,
the AWS CDK, and the .NET Lambda Global CLI in the following sections.

Topics

• Using the .NET Lambda Global CLI

• Deploy C# Lambda functions using AWS SAM

• Deploy C# Lambda functions using AWS CDK

• Deploy ASP.NET applications

Deployment package 961

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html

AWS Lambda Developer Guide

Using the .NET Lambda Global CLI

The .NET CLI and the .NET Lambda Global Tools extension (Amazon.Lambda.Tools) offer a
cross-platform way to create .NET-based Lambda applications, package them, and deploy them to
Lambda. In this section, you learn how to create new Lambda .NET projects using the .NET CLI and
Amazon Lambda templates, and to package and deploy them using Amazon.Lambda.Tools

Topics

• Prerequisites

• Creating .NET projects using the .NET CLI

• Deploying .NET projects using the .NET CLI

• Using Lambda layers with the .NET CLI

Prerequisites

.NET 8 SDK

If you haven't already done so, install the .NET 8 SDK and Runtime.

AWS Amazon.Lambda.Templates .NET project templates

To generate your Lambda function code, use the Amazon.Lambda.Templates NuGet package. To
install this template package, run the following command:

dotnet new install Amazon.Lambda.Templates

AWS Amazon.Lambda.Tools .NET Global CLI tools

To create your Lambda functions, you use the Amazon.Lambda.Tools .NET Global Tools
extension. To install Amazon.Lambda.Tools, run the following command:

dotnet tool install -g Amazon.Lambda.Tools

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the AWS
Extensions for .NET CLI repository on GitHub.

NET Lambda Global CLI 962

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.nuget.org/packages/Amazon.Lambda.Templates
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli

AWS Lambda Developer Guide

Creating .NET projects using the .NET CLI

In the .NET CLI, you use the dotnet new command to create .NET projects from the command
line. Lambda offers additional templates using the Amazon.Lambda.Templates NuGet package.

After installing this package, run the following command to see a list of the available templates.

dotnet new list

To examine details about a template, use the help option. For example, to see details about the
lambda.EmptyFunction template, run the following command.

dotnet new lambda.EmptyFunction --help

To create a basic template for a .NET Lambda function, use the lambda.EmptyFunction
template. This creates a simple function that takes a string as input and converts it to upper case
using the ToUpper method. This template supports the following options:

• --name – The name of the function.

• --region – The AWS Region to create the function in.

• --profile – The name of a profile in your AWS SDK for .NET credentials file. To learn more
about credential profiles in .NET, see Configure AWS credentials in the AWS SDK for .NET
Developer Guide.

In this example, we create a new empty function named myDotnetFunction using the default
profile and AWS Region settings:

dotnet new lambda.EmptyFunction --name myDotnetFunction

This command creates the following files and directories in your project directory.

myDotnetFunction
 ### src
 # ### myDotnetFunction
 # ### Function.cs
 # ### Readme.md
 # ### aws-lambda-tools-defaults.json
 # ### myDotnetFunction.csproj

NET Lambda Global CLI 963

https://www.nuget.org/packages/Amazon.Lambda.Templates
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-creds.html

AWS Lambda Developer Guide

 ### test
 ### myDotnetFunction.Tests
 ### FunctionTest.cs
 ### myDotnetFunction.Tests.csproj

Under the src/myDotnetFunction directory, examine the following files:

• aws-lambda-tools-defaults.json: This is where you specify the command line options when
deploying your Lambda function. For example:

 "profile" : "default",
 "region" : "us-east-2",
 "configuration" : "Release",
 "function-architecture": "x86_64",
 "function-runtime":"dotnet8",
 "function-memory-size" : 256,
 "function-timeout" : 30,
 "function-handler" : "myDotnetFunction::myDotnetFunction.Function::FunctionHandler"

• Function.cs: Your Lambda handler function code. It's a C# template that includes the default
Amazon.Lambda.Core library and a default LambdaSerializer attribute. For more
information on serialization requirements and options, see Serialization in C# Lambda functions.
It also includes a sample function that you can edit to apply your Lambda function code.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted into
 a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace myDotnetFunction;

public class Function
{

 /// <summary>
 /// A simple function that takes a string and does a ToUpper
 /// </summary#
 /// <param name="input"></param>
 /// <param name="context"></param>
 /// <returns></returns>

NET Lambda Global CLI 964

AWS Lambda Developer Guide

 public string FunctionHandler(string input, ILambdaContext context)
 {
 return input.ToUpper();
 }
}

• myDotnetFunction.csproj: An MSBuild file that lists the files and assemblies that comprise your
application.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <GenerateRuntimeConfigurationFiles>true</GenerateRuntimeConfigurationFiles>
 <AWSProjectType>Lambda</AWSProjectType>
 <!-- This property makes the build directory similar to a publish directory and
 helps the AWS .NET Lambda Mock Test Tool find project dependencies. -->
 <CopyLocalLockFileAssemblies>true</CopyLocalLockFileAssemblies>
 <!-- Generate ready to run images during publishing to improve cold start time.
 -->
 <PublishReadyToRun>true</PublishReadyToRun>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Amazon.Lambda.Core" Version="2.2.0" />
 <PackageReference Include="Amazon.Lambda.Serialization.SystemTextJson"
 Version="2.4.0" />
 </ItemGroup>
</Project>

• Readme: Use this file to document your Lambda function.

Under the myfunction/test directory, examine the following files:

• myDotnetFunction.Tests.csproj: As noted previously, this is an MSBuild file that lists
the files and assemblies that comprise your test project. Note also that it includes the
Amazon.Lambda.Core library, so you can seamlessly integrate any Lambda templates required
to test your function.

<Project Sdk="Microsoft.NET.Sdk">
 ...

NET Lambda Global CLI 965

https://msdn.microsoft.com/en-us/library/dd393574.aspx
https://msdn.microsoft.com/en-us/library/dd393574.aspx

AWS Lambda Developer Guide

 <PackageReference Include="Amazon.Lambda.Core" Version="2.2.0 " />
 ...

• FunctionTest.cs: The same C# code template file that it is included in the src directory. Edit this
file to mirror your function's production code and test it before uploading your Lambda function
to a production environment.

using Xunit;
using Amazon.Lambda.Core;
using Amazon.Lambda.TestUtilities;

using MyFunction;

namespace MyFunction.Tests
{
 public class FunctionTest
 {
 [Fact]
 public void TestToUpperFunction()
 {

 // Invoke the lambda function and confirm the string was upper cased.
 var function = new Function();
 var context = new TestLambdaContext();
 var upperCase = function.FunctionHandler("hello world", context);

 Assert.Equal("HELLO WORLD", upperCase);
 }
 }
}

Deploying .NET projects using the .NET CLI

To build your deployment package and deploy it to Lambda, you use the Amazon.Lambda.Tools
CLI tools. To deploy your function from the files you created in the previous steps, first navigate
into the folder containing your function's .csproj file.

cd myDotnetFunction/src/myDotnetFunction

To deploy your code to Lambda as a .zip deployment package, run the following command. Choose
your own function name.

NET Lambda Global CLI 966

AWS Lambda Developer Guide

dotnet lambda deploy-function myDotnetFunction

During the deployment, the wizard asks you to select a the section called “Execution
role (permissions for functions to access other resources)”. For this example, select the
lambda_basic_role.

After you have deployed your function, you can test it in the cloud using the dotnet lambda
invoke-function command. For the example code in the lambda.EmptyFunction template,
you can test your function by passing in a string using the --payload option.

dotnet lambda invoke-function myDotnetFunction --payload "Just checking if everything
 is OK"

If your function has been successfully deployed, you should see output similar to the following.

dotnet lambda invoke-function myDotnetFunction --payload "Just checking if everything
 is OK"
Amazon Lambda Tools for .NET Core applications (5.8.0)
Project Home: https://github.com/aws/aws-extensions-for-dotnet-cli, https://github.com/
aws/aws-lambda-dotnet

Payload:
"JUST CHECKING IF EVERYTHING IS OK"

Log Tail:
START RequestId: id Version: $LATEST
END RequestId: id
REPORT RequestId: id Duration: 0.99 ms Billed Duration: 1 ms Memory
 Size: 256 MB Max Memory Used: 12 MB

Using Lambda layers with the .NET CLI

Note

While it's possible to use layers with functions in .NET, we recommend against it. Functions
in .NET that use layers manually load the shared assemblies into memory during the Init
phase, which can increase cold start times. Instead, include all shared code at compile time
to take advantage of the built-in optimizations of the .NET compiler.

NET Lambda Global CLI 967

AWS Lambda Developer Guide

The .NET CLI supports commands to help you publish layers and deploy C# functions that consume
layers. To publish a layer to a specified Amazon S3 bucket, run the following command in the same
directory as your .csproj file:

dotnet lambda publish-layer <layer_name> --layer-type runtime-package-store --s3-
bucket <s3_bucket_name>

Then, when you deploy your function using the .NET CLI, specify the layer ARN the consume in the
following command:

dotnet lambda deploy-function <function_name> --function-layers arn:aws:lambda:us-
east-1:123456789012:layer:layer-name:1

For a complete example of a Hello World function, see the blank-csharp-with-layer sample.

Deploy C# Lambda functions using AWS SAM

The AWS Serverless Application Model (AWS SAM) is a toolkit that helps streamline the process of
building and running serverless applications on AWS. You define the resources for your application
in a YAML or JSON template and use the AWS SAM command line interface (AWS SAM CLI) to
build, package, and deploy your applications. When you build a Lambda function from an AWS
SAM template, AWS SAM automatically creates a .zip deployment package or container image with
your function code and any dependencies you specify. AWS SAM then deploys your function using
an AWS CloudFormation stack. To learn more about using AWS SAM to build and deploy Lambda
functions, see Getting started with AWS SAM in the AWS Serverless Application Model Developer
Guide.

The following steps show you how to download, build, and deploy a sample .NET Hello World
application using AWS SAM. This sample application uses a Lambda function and an Amazon API
Gateway endpoint to implement a basic API backend. When you send an HTTP GET request to your
API Gateway endpoint, API Gateway invokes your Lambda function. The function returns a "hello
world" message, along with the IP address of the Lambda function instance that processes your
request.

When you build and deploy your application using AWS SAM, behind the scenes the AWS SAM CLI
uses the dotnet lambda package command to package the individual Lambda function code
bundles.

AWS SAM 968

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp-with-layer
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html

AWS Lambda Developer Guide

Prerequisites

.NET 8 SDK

Install the .NET 8 SDK and Runtime.

AWS SAM CLI version 1.39 or later

To learn how to install the latest version of the AWS SAM CLI, see Installing the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello world .NET template using the following command.

sam init --app-template hello-world --name sam-app \
--package-type Zip --runtime dotnet8

This command creates the following files and directories in your project directory.

sam-app
 ### README.md
 ### events
 # ### event.json
 ### omnisharp.json
 ### samconfig.toml
 ### src
 # ### HelloWorld
 # ### Function.cs
 # ### HelloWorld.csproj
 # ### aws-lambda-tools-defaults.json
 ### template.yaml
 ### test
 ### HelloWorld.Test
 ### FunctionTest.cs
 ### HelloWorld.Tests.csproj

2. Navigate into the directory containing the template.yaml file. This file is a tempate that
defines the AWS resources for your application, including your Lambda function and an API
Gateway API.

cd sam-app

AWS SAM 969

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Lambda Developer Guide

3. To build the source of your application, run the following command.

sam build

4. To deploy your application to AWS, run the following command.

sam deploy --guided

This command packages and deploys your application with the following series of prompts. To
accept the default options, press Enter.

Note

For HelloWorldFunction may not have authorization defined, is this okay?, be sure
to enter y.

• Stack Name: The name of the stack to deploy to AWS CloudFormation. This name must be
unique to your AWS account and AWS Region.

• AWS Region: The AWS Region you want to deploy your app to.

• Confirm changes before deploy: Select yes to manually review any change sets before AWS
SAM deploys application changes. If you select no, the AWS SAM CLI automatically deploys
application changes.

• Allow SAM CLI IAM role creation: Many AWS SAM templates, including the Hello world
one in this example, create AWS Identity and Access Management (IAM) roles to give your
Lambda functions permission to access other AWS services. Select Yes to provide permission
to deploy a AWS CloudFormation stack that creates or modifies IAM roles.

• Disable rollback: By default, if AWS SAM encounters an error during creation or deployment
of your stack, it rolls the stack back to the previous version. Select No to accept this default.

• HelloWorldFunction may not have authorization defined, is this okay: Enter y.

• Save arguments to samconfig.toml: Select yes to save your configuration choices. In
the future, you can re-run sam deploy without parameters to deploy changes to your
application.

5. When the deployment of your application is complete, the CLI returns the Amazon Resource
Name (ARN) of the Hello World Lambda function and the IAM role created for it. It also

AWS SAM 970

AWS Lambda Developer Guide

displays the endpoint of your API Gateway API. To test your application, open the endpoint in
a browser. You should see a response similar to the following.

{"message":"hello world","location":"34.244.135.203"}

6. To delete your resources, run the following command. Note that the API endpoint you created
is a public endpoint accessible over the internet. We recommend that you delete this endpoint
after testing.

sam delete

Next steps

To learn more about using AWS SAM to build and deploy Lambda functions using .NET, see the
following resources:

• The AWS Serverless Application Model (AWS SAM) Developer Guide

• Building Serverless .NET Applications with AWS Lambda and the SAM CLI

Deploy C# Lambda functions using AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework
for defining cloud infrastructure as code with modern programming languages and frameworks
like .NET. AWS CDK projects are executed to generate AWS CloudFormation templates which are
then used to deploy your code.

To build and deploy an example Hello world .NET application using the AWS CDK, follow the
instructions in the following sections. The sample application implements a basic API backend
consisting of an API Gateway endpoint and a Lambda function. API Gateway invokes the Lambda
function when you send an HTTP GET request to the endpoint. The function returns a Hello world
message, along with the IP address of the Lambda instance that processes your request.

Prerequisites

.NET 8 SDK

Install the .NET 8 SDK and Runtime.

AWS CDK 971

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://aws.amazon.com/blogs/dotnet/building-serverless-net-applications-with-aws-lambda-and-the-sam-cli/
https://dotnet.microsoft.com/en-us/download/dotnet/8.0

AWS Lambda Developer Guide

AWS CDK version 2

To learn how to install the latest version of the AWS CDK see Getting started with the AWS CDK
in the AWS Cloud Development Kit (AWS CDK) v2 Developer Guide.

Deploy a sample AWS CDK application

1. Create a project directory for the sample application and navigate into it.

mkdir hello-world
cd hello-world

2. Initialize a new AWS CDK application by running the following command.

cdk init app --language csharp

The command creates the following files and directories in your project directory

README.md
cdk.json
src
 ### HelloWorld
 # ### GlobalSuppressions.cs
 # ### HelloWorld.csproj
 # ### HelloWorldStack.cs
 # ### Program.cs
 ### HelloWorld.sln

3. Open the src directory and create a new Lambda function using the .NET CLI. This is the
function you will deploy using the AWS CDK. In this example, you create a Hello world function
named HelloWorldLambdausing the lambda.EmptyFunction template.

cd src
dotnet new lambda.EmptyFunction -n HelloWorldLambda

After this step, your directory structure inside your project directory should look like the
following.

README.md
cdk.json

AWS CDK 972

https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html

AWS Lambda Developer Guide

src
 ### HelloWorld
 # ### GlobalSuppressions.cs
 # ### HelloWorld.csproj
 # ### HelloWorldStack.cs
 # ### Program.cs
 ### HelloWorld.sln
 ### HelloWorldLambda
 ### src
 # ### HelloWorldLambda
 # ### Function.cs
 # ### HelloWorldLambda.csproj
 # ### Readme.md
 # ### aws-lambda-tools-defaults.json
 ### test
 ### HelloWorldLambda.Tests
 ### FunctionTest.cs
 ### HelloWorldLambda.Tests.csproj

4. Open the HelloWorldStack.cs file from the src/HelloWorld directory. Replace the
contents of the file with the following code.

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.Logs;
using Constructs;

namespace CdkTest
{
 public class HelloWorldStack : Stack
 {
 internal HelloWorldStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 var buildOption = new BundlingOptions()
 {
 Image = Runtime.DOTNET_8.BundlingImage,
 User = "root",
 OutputType = BundlingOutput.ARCHIVED,
 Command = new string[]{
 "/bin/sh",
 "-c",
 " dotnet tool install -g Amazon.Lambda.Tools"+

AWS CDK 973

AWS Lambda Developer Guide

 " && dotnet build"+
 " && dotnet lambda package --output-package /asset-output/
function.zip"
 }
 };

 var helloWorldLambdaFunction = new Function(this,
 "HelloWorldFunction", new FunctionProps
 {
 Runtime = Runtime.DOTNET_8,
 MemorySize = 1024,
 LogRetention = RetentionDays.ONE_DAY,
 Handler =
 "HelloWorldLambda::HelloWorldLambda.Function::FunctionHandler",
 Code = Code.FromAsset("./src/HelloWorldLambda/src/
HelloWorldLambda", new Amazon.CDK.AWS.S3.Assets.AssetOptions
 {
 Bundling = buildOption
 }),
 });
 }
 }
}

This is the code to compile and bundle the application code, as well as the definition of the
Lambda function itself. the BundlingOptions object allows a zip file to be created, along
with a set of commands that are used to generate the contents of the zip file. In this instance,
the dotnet lambda package command is used to compile and generate the zip file.

5. To deploy your application, run the following command.

cdk deploy

6. Invoke your deployed Lambda function using the .NET Lambda CLI.

dotnet lambda invoke-function HelloWorldFunction -p "hello world"

7. After you've finished testing, you can delete the resources you created, unless you want to
retain them. Run the following command to delete your resources.

cdk destroy

AWS CDK 974

AWS Lambda Developer Guide

Next steps

To learn more about using AWS CDK to build and deploy Lambda functions using .NET, see the
following resources:

• Working with the AWS CDK in C#

• Build, package, and publish .NET C# Lambda functions with the AWS CDK

Deploy ASP.NET applications

As well as hosting event-driven functions, you can also use .NET with Lambda to host
lightweight ASP.NET applications. You can build and deploy ASP.NET applications using the
Amazon.Lambda.AspNetCoreServer NuGet package. In this section, you learn how to deploy an
ASP.NET web API to Lambda using the .NET Lambda CLI tooling.

Topics

• Prerequisites

• Deploying an ASP.NET Web API to Lambda

• Deploying ASP.NET minimal APIs to Lambda

Prerequisites

.NET 8 SDK

Install the .NET 8 SDK and ASP.NET Core Runtime.

Amazon.Lambda.Tools

To create your Lambda functions, you use the Amazon.Lambda.Tools .NET Global Tools
extension. To install Amazon.Lambda.Tools, run the following command:

dotnet tool install -g Amazon.Lambda.Tools

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the AWS
Extensions for .NET CLI repository on GitHub.

Amazon.Lambda.Templates

To generate your Lambda function code, use the Amazon.Lambda.Templates NuGet package. To
install this template package, run the following command:

ASP.NET 975

https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html
https://aws.amazon.com/blogs/modernizing-with-aws/build-package-publish-dotnet-csharp-lambda-functions-aws-cdk/
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli
https://www.nuget.org/packages/Amazon.Lambda.Templates

AWS Lambda Developer Guide

dotnet new --install Amazon.Lambda.Templates

Deploying an ASP.NET Web API to Lambda

To deploy a web API using ASP.NET, you can use the .NET Lambda templates to create a new
web API project. Use the following command to initialize a new ASP.NET web API project. In the
example command, we name the project AspNetOnLambda.

dotnet new serverless.AspNetCoreWebAPI -n AspNetOnLambda

This command creates the following files and directories in your project directory.

.
AspNetOnLambda
 ### src
 # ### AspNetOnLambda
 # ### AspNetOnLambda.csproj
 # ### Controllers
 # # ### ValuesController.cs
 # ### LambdaEntryPoint.cs
 # ### LocalEntryPoint.cs
 # ### Readme.md
 # ### Startup.cs
 # ### appsettings.Development.json
 # ### appsettings.json
 # ### aws-lambda-tools-defaults.json
 # ### serverless.template
 ### test
 ### AspNetOnLambda.Tests
 ### AspNetOnLambda.Tests.csproj
 ### SampleRequests
 # ### ValuesController-Get.json
 ### ValuesControllerTests.cs
 ### appsettings.json

When Lambda invokes your function, the entry point it uses is the LambdaEntryPoint.cs file.
The file created by the .NET Lambda template contains the following code.

namespace AspNetOnLambda;

ASP.NET 976

AWS Lambda Developer Guide

public class LambdaEntryPoint : Amazon.Lambda.AspNetCoreServer.APIGatewayProxyFunction
{
 protected override void Init(IWebHostBuilder builder)
 {
 builder
 .UseStartup#Startup#();
 }

 protected override void Init(IHostBuilder builder)
 {
 }
}

The entry point used by Lambda must inherit from one of the three base classes in the
Amazon.Lambda.AspNetCoreServer package. These three base classes are:

• APIGatewayProxyFunction

• APIGatewayHttpApiV2ProxyFunction

• ApplicationLoadBalancerFunction

The default class used when you create your LambdaEntryPoint.cs file using the provided .NET
Lambda template is APIGatewayProxyFunction. The base class you use in your function
depends on which API layer sits in front of your Lambda function.

Each of the three base classes contains a public method named FunctionHandlerAsync. The
name of this method will form part of the handler string Lambda uses to invoke your function.
The FunctionHandlerAsync method transforms the inbound event payload into the correct
ASP.NET format and the ASP.NET response back to a Lambda response payload. For the example
AspNetOnLambda project shown, the handler string would be as follows.

AspNetOnLambda::AspNetOnLambda.LambdaEntryPoint::FunctionHandlerAsync

To deploy the API to Lambda, run the following commands to navigate into the directory
containing your source code file and deploy your function using AWS CloudFormation.

cd AspNetOnLambda/src/AspNetOnLambda
dotnet lambda deploy-serverless

ASP.NET 977

AWS Lambda Developer Guide

Tip

When you deploy an API using the dotnet lambda deploy-serverless command,
AWS CloudFormation gives your Lambda function a name based on the stack name
you specify during the deployment. To give your Lambda function a custom name,
edit the serverless.template file to add a FunctionName property to the
AWS::Serverless::Function resource. See Name type in the AWS CloudFormation User
Guide to learn more.

Deploying ASP.NET minimal APIs to Lambda

To deploy an ASP.NET minimal API to Lambda, you can use the .NET Lambda templates to create
a new minimal API project. Use the following command to initialize a new minimal API project. In
this example, we name the project MinimalApiOnLambda.

dotnet new serverless.AspNetCoreMinimalAPI -n MinimalApiOnLambda

The command creates the following files and directories in your project directory.

MinimalApiOnLambda
 ### src
 ### MinimalApiOnLambda
 ### Controllers
 # ### CalculatorController.cs
 ### MinimalApiOnLambda.csproj
 ### Program.cs
 ### Readme.md
 ### appsettings.Development.json
 ### appsettings.json
 ### aws-lambda-tools-defaults.json
 ### serverless.template

The Program.cs file contains the following code.

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllers();

ASP.NET 978

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-name.html

AWS Lambda Developer Guide

// Add AWS Lambda support. When application is run in Lambda Kestrel is swapped out as
 the web server with Amazon.Lambda.AspNetCoreServer. This
// package will act as the webserver translating request and responses between the
 Lambda event source and ASP.NET Core.
builder.Services.AddAWSLambdaHosting(LambdaEventSource.RestApi);

var app = builder.Build();

app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();

app.MapGet("/", () => "Welcome to running ASP.NET Core Minimal API on AWS Lambda");

app.Run();

To configure your minimal API to run on Lambda, you may need to edit this code so that requests
and responses between Lambda and ASP.NET Core are properly translated. By default, the function
is configured for a REST API event source. For an HTTP API or application load balancer, replace
(LambdaEventSource.RestApi) with one of the following options:

• (LambdaEventSource.HttpAPi)

• (LambdaEventSource.ApplicationLoadBalancer)

To deploy your minimal API to Lambda, run the following commands to navigate into the directory
containing your source code file and deploy your function using AWS CloudFormation.

cd MinimalApiOnLambda/src/MinimalApiOnLambda
dotnet lambda deploy-serverless

ASP.NET 979

AWS Lambda Developer Guide

Working with layers for .NET Lambda functions

We don't recommend using layers to manage dependencies for Lambda functions written in .NET.
This is because .NET is a compiled language, and your functions still have to manually load any
shared assemblies into memory during the Init phase, which can increase cold start times. Using
layers not only complicates the deployment process, but also prevents you from taking advantage
of built-in compiler optimizations.

To use external dependencies with your .NET handlers, include them directly in your deployment
package at compile time. By doing so, you simplify the deployment process and also take
advantage of built-in .NET compiler optimizations. For an example of how to import and use
dependencies like NuGet packages in your function, see the section called “Handler”.

Layers 980

AWS Lambda Developer Guide

Deploy .NET Lambda functions with container images

There are three ways to build a container image for a .NET Lambda function:

• Using an AWS base image for .NET

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide
a base image for, such as Node.js 19. You can also use OS-only base images to implement a
custom runtime. To make the image compatible with Lambda, you must include the the runtime
interface client for .NET in the image.

• Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the the runtime interface client for .NET in the
image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• AWS base images for .NET

• Using an AWS base image for .NET

• Using an alternative base image with the runtime interface client

Deploy container images 981

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

AWS base images for .NET

AWS provides the following base images for .NET:

Tags Runtime Operating
system

Dockerfile Deprecation

9 .NET 9 Amazon
Linux 2023

Dockerfile for .NET 9 on
GitHub

Not scheduled

8 .NET 8 Amazon
Linux 2023

Dockerfile for .NET 8 on
GitHub

Nov 10, 2026

Amazon ECR repository: gallery.ecr.aws/lambda/dotnet

Using an AWS base image for .NET

Prerequisites

To complete the steps in this section, you must have the following:

• .NET SDK – The following steps use the .NET 8 base image. Make sure that your .NET version
matches the version of the base image that you specify in your Dockerfile.

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

Creating and deploying an image using a base image

In the following steps, you use Amazon.Lambda.Templates and Amazon.Lambda.Tools to create
a .NET project. Then, you build a Docker image, upload the image to Amazon ECR, and deploy it to
a Lambda function.

1. Install the Amazon.Lambda.Templates NuGet package.

dotnet new install Amazon.Lambda.Templates

2. Create a .NET project using the lambda.image.EmptyFunction template.

AWS base images for .NET 982

https://github.com/aws/aws-lambda-base-images/blob/dotnet9/Dockerfile.dotnet9
https://github.com/aws/aws-lambda-base-images/blob/dotnet9/Dockerfile.dotnet9
https://github.com/aws/aws-lambda-base-images/blob/dotnet8/Dockerfile.dotnet8
https://github.com/aws/aws-lambda-base-images/blob/dotnet8/Dockerfile.dotnet8
https://gallery.ecr.aws/lambda/dotnet
https://dotnet.microsoft.com/download
https://gallery.ecr.aws/lambda/dotnet
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md
https://github.com/aws/aws-lambda-dotnet#dotnet-cli-templates
https://github.com/aws/aws-extensions-for-dotnet-cli#aws-lambda-amazonlambdatools
https://github.com/aws/aws-lambda-dotnet#dotnet-cli-templates

AWS Lambda Developer Guide

dotnet new lambda.image.EmptyFunction --name MyFunction --region us-east-1

The project files are stored in the MyFunction/src/MyFunction directory:

• aws-lambda-tools-defaults.json: Specifies the command line options for deploying your
Lambda function.

• Function.cs: Your Lambda handler function code. This is a C# template that includes the
default Amazon.Lambda.Core library and a default LambdaSerializer attribute. For
more information about serialization requirements and options, see Serialization in C#
Lambda functions. You can use the provided code for testing, or replace it with your own.

• MyFunction.csproj: A .NET project file, which lists the files and assemblies that comprise
your application.

• Dockerfile: You can use the provided Dockerfile for testing, or replace it with your own. If
you use your own, make sure to:

• Set the FROM property to the URI of the base image. The base image and the
TargetFramework in the MyFunction.csproj file must both use the same .NET
version. For example, to use .NET 9:

• Dockerfile: FROM public.ecr.aws/lambda/dotnet:9

• MyFunction.csproj: <TargetFramework>net9.0</TargetFramework>

• Set the CMD argument to the Lambda function handler. This should match the image-
command in aws-lambda-tools-defaults.json.

3. Install the Amazon.Lambda.Tools .NET Global Tool.

dotnet tool install -g Amazon.Lambda.Tools

If Amazon.Lambda.Tools is already installed, make sure that you have the latest version.

dotnet tool update -g Amazon.Lambda.Tools

4. Change the directory to MyFunction/src/MyFunction, if you're not there already.

cd src/MyFunction

5. Use Amazon.Lambda.Tools to build the Docker image, push it to a new Amazon ECR repository,
and deploy the Lambda function.

Using an AWS base image 983

https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#project-files
https://gallery.ecr.aws/lambda/dotnet
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/

AWS Lambda Developer Guide

For --function-role, specify the role name—not the Amazon Resource Name (ARN)—of
the execution role for the function. For example, lambda-role.

dotnet lambda deploy-function MyFunction --function-role lambda-role

For more information about the Amazon.Lambda.Tools .NET Global Tool, see the AWS
Extensions for .NET CLI repository on GitHub.

6. Invoke the function.

dotnet lambda invoke-function MyFunction --payload "Testing the function"

If everything is successful, you see a response similar to the following:

Payload:
{"Lower":"testing the function","Upper":"TESTING THE FUNCTION"}

Log Tail:
INIT_REPORT Init Duration: 9999.81 ms Phase: init Status: timeout
START RequestId: 12378346-f302-419b-b1f2-deaa1e8423ed Version: $LATEST
END RequestId: 12378346-f302-419b-b1f2-deaa1e8423ed
REPORT RequestId: 12378346-f302-419b-b1f2-deaa1e8423ed Duration: 3173.06 ms
 Billed Duration: 3174 ms Memory Size: 512 MB Max Memory Used: 24 MB

7. Delete the Lambda function.

dotnet lambda delete-function MyFunction

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Runtime API, which
manages the interaction between Lambda and your function code.

The following example demonstrates how to build a container image for .NET using a non-AWS
base image, and how to add the Amazon.Lambda.RuntimeSupport package, which is the Lambda
runtime interface client for .NET. The example Dockerfile uses the Microsoft .NET 8 base image.

Using a non-AWS base image 984

https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library

AWS Lambda Developer Guide

Prerequisites

To complete the steps in this section, you must have the following:

• .NET SDK – The following steps use a .NET 9 base image. Make sure that your .NET version
matches the version of the base image that you specify in your Dockerfile.

• Docker (minimum version 25.0.0)

• The Docker buildx plugin.

Creating and deploying an image using an alternative base image

1. Install the Amazon.Lambda.Templates NuGet package.

dotnet new install Amazon.Lambda.Templates

2. Create a .NET project using the lambda.CustomRuntimeFunction template. This template
includes the Amazon.Lambda.RuntimeSupport package.

dotnet new lambda.CustomRuntimeFunction --name MyFunction --region us-east-1

3. Navigate to the MyFunction/src/MyFunction directory. This is where the project files are
stored. Examine the following files:

• aws-lambda-tools-defaults.json – This file is where you specify the command line options
when deploying your Lambda function.

• Function.cs – The code contains a class with a Main method that initializes the
Amazon.Lambda.RuntimeSupport library as the bootstrap. The Main method
is the entry point for the function's process. The Main method wraps the function
handler in a wrapper that the bootstrap can work with. For more information, see Using
Amazon.Lambda.RuntimeSupport as a class library in the GitHub repository.

• MyFunction.csproj – A .NET project file, which lists the files and assemblies that comprise
your application.

• Readme.md – This file contains more information about the sample Lambda function.

4. Open the aws-lambda-tools-defaults.json file and Add the following lines:

 "package-type": "image",
 "docker-host-build-output-dir": "./bin/Release/lambda-publish"

Using a non-AWS base image 985

https://dotnet.microsoft.com/download
https://docs.docker.com/get-docker
https://github.com/docker/buildx/blob/master/README.md
https://github.com/aws/aws-lambda-dotnet#dotnet-cli-templates
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library
https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#project-files

AWS Lambda Developer Guide

• package-type: Defines the deployment package as a container image.

• docker-host-build-output-dir: Sets the output directory for the build process.

Example aws-lambda-tools-defaults.json

{
 "Information": [
 "This file provides default values for the deployment wizard inside Visual
 Studio and the AWS Lambda commands added to the .NET Core CLI.",
 "To learn more about the Lambda commands with the .NET Core CLI execute the
 following command at the command line in the project root directory.",
 "dotnet lambda help",
 "All the command line options for the Lambda command can be specified in this
 file."
],
 "profile": "",
 "region": "us-east-1",
 "configuration": "Release",
 "function-runtime": "provided.al2023",
 "function-memory-size": 256,
 "function-timeout": 30,
 "function-handler": "bootstrap",
 "msbuild-parameters": "--self-contained true",
 "package-type": "image",
 "docker-host-build-output-dir": "./bin/Release/lambda-publish"
}

5. Create a Dockerfile in the MyFunction/src/MyFunction directory. The following example
Dockerfile uses a Microsoft .NET base image instead of an AWS base image.

• Set the FROM property to the base image identifier. The base image and the
TargetFramework in the MyFunction.csproj file must both use the same .NET version.

• Use the COPY command to copy the function into the /var/task directory.

• Set the ENTRYPOINT to the module that you want the Docker container to run
when it starts. In this case, the module is the bootstrap, which initializes the
Amazon.Lambda.RuntimeSupport library.

Note that the example Dockerfile does not include a USER instruction. When you deploy a
container image to Lambda, Lambda automatically defines a default Linux user with least-

Using a non-AWS base image 986

https://docs.docker.com/reference/dockerfile/#user

AWS Lambda Developer Guide

privileged permissions. This is different from standard Docker behavior which defaults to the
root user when no USER instruction is provided.

Example Dockerfile

You can also pull these images from DockerHub amazon/aws-lambda-dotnet:8
FROM mcr.microsoft.com/dotnet/runtime:9.0

Set the image's internal work directory
WORKDIR /var/task

Copy function code to Lambda-defined environment variable
COPY "bin/Release/net9.0/linux-x64" .

Set the entrypoint to the bootstrap
ENTRYPOINT ["/usr/bin/dotnet", "exec", "/var/task/bootstrap.dll"]

6. Install the Amazon.Lambda.Tools .NET Global Tools extension.

dotnet tool install -g Amazon.Lambda.Tools

If Amazon.Lambda.Tools is already installed, make sure that you have the latest version.

dotnet tool update -g Amazon.Lambda.Tools

7. Use Amazon.Lambda.Tools to build the Docker image, push it to a new Amazon ECR repository,
and deploy the Lambda function.

For --function-role, specify the role name—not the Amazon Resource Name (ARN)—of
the execution role for the function. For example, lambda-role.

dotnet lambda deploy-function MyFunction --function-role lambda-role

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the AWS
Extensions for .NET CLI repository on GitHub.

8. Invoke the function.

dotnet lambda invoke-function MyFunction --payload "Testing the function"

If everything is successful, you see the following:

Using a non-AWS base image 987

https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli

AWS Lambda Developer Guide

Payload:
"TESTING THE FUNCTION"

Log Tail:
START RequestId: id Version: $LATEST
END RequestId: id
REPORT RequestId: id Duration: 0.99 ms Billed Duration: 1 ms Memory
 Size: 256 MB Max Memory Used: 12 MB

9. Delete the Lambda function.

dotnet lambda delete-function MyFunction

Using a non-AWS base image 988

AWS Lambda Developer Guide

Compile .NET Lambda function code to a native runtime format

.NET 8 supports native ahead-of-time (AOT) compilation. With native AOT, you can compile your
Lambda function code to a native runtime format, which removes the need to compile .NET code
at runtime. Native AOT compilation can reduce the cold start time for Lambda functions that you
write in .NET. For more information, see Introducing the .NET 8 runtime for AWS Lambda on the
AWS Compute Blog.

Sections

• Lambda runtime

• Prerequisites

• Getting started

• Serialization

• Trimming

• Troubleshooting

Lambda runtime

To deploy a Lambda function build with native AOT compilation, use the managed .NET 8 Lambda
runtime. This runtime supports the use of both x86_64 and arm64 architectures.

When you deploy a .NET Lambda function without using AOT, your application is first compiled
into Intermediate Language (IL) code. At runtime, the just-in-time (JIT) compiler in the Lambda
runtime takes the IL code and compiles it into machine code as needed. With a Lambda function
that is compiled ahead of time with native AOT, you compile your code into machine code when
you deploy your function, so you're not dependent on the .NET runtime or SDK in the Lambda
runtime to compile your code before it runs.

One limitation of AOT is that your application code must be compiled in an environment with
the same Amazon Linux 2023 (AL2023) operating system that the .NET 8 runtime uses. The .NET
Lambda CLI provides functionality to compile your application in a Docker container using an
AL2023 image.

To avoid potential issues with cross-architecture compatibility, we strongly recommend that you
compile your code in an environment with the same processor architecture that you configure for
your function. To learn more about the limitations of cross-architecture compilation, see Cross-
compilation in the Microsoft .NET documentation.

Native AOT compilation 989

https://aws.amazon.com/blogs/compute/introducing-the-net-8-runtime-for-aws-lambda/
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/cross-compile
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/cross-compile

AWS Lambda Developer Guide

Prerequisites

Docker

To use native AOT, your function code must be compiled in an environment with the same
AL2023 operating system as the .NET 8 runtime. The .NET CLI commands in the following
sections use Docker to develop and build Lambda functions in an AL2023 environment.

.NET 8 SDK

Native AOT compilation is a feature of .NET 8. You must install the .NET 8 SDK on your build
machine, not only the runtime.

Amazon.Lambda.Tools

To create your Lambda functions, you use the Amazon.Lambda.Tools .NET Global Tools
extension. To install Amazon.Lambda.Tools, run the following command:

dotnet tool install -g Amazon.Lambda.Tools

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the AWS
Extensions for .NET CLI repository on GitHub.

Amazon.Lambda.Templates

To generate your Lambda function code, use the Amazon.Lambda.Templates NuGet package. To
install this template package, run the following command:

dotnet new install Amazon.Lambda.Templates

Getting started

Both the .NET Global CLI and the AWS Serverless Application Model (AWS SAM) provide getting
started templates for building applications using native AOT. To build your first native AOT Lambda
function, carry out the steps in the following instructions.

To initialize and deploy a native AOT compiled Lambda function

1. Initialize a new project using the native AOT template and then navigate into the directory
containing the created .cs and .csproj files. In this example, we name our function
NativeAotSample.

Prerequisites 990

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli
https://www.nuget.org/packages/Amazon.Lambda.Templates

AWS Lambda Developer Guide

dotnet new lambda.NativeAOT -n NativeAotSample
cd ./NativeAotSample/src/NativeAotSample

The Function.cs file created by the native AOT template contains the following function
code.

using Amazon.Lambda.Core;
using Amazon.Lambda.RuntimeSupport;
using Amazon.Lambda.Serialization.SystemTextJson;
using System.Text.Json.Serialization;

namespace NativeAotSample;

public class Function
{
 /// <summary>
 /// The main entry point for the Lambda function. The main function is called
 once during the Lambda init phase. It
 /// initializes the .NET Lambda runtime client passing in the function handler
 to invoke for each Lambda event and
 /// the JSON serializer to use for converting Lambda JSON format to the .NET
 types.
 /// </summary>
 private static async Task Main()
 {
 Func<string, ILambdaContext, string> handler = FunctionHandler;
 await LambdaBootstrapBuilder.Create(handler, new
 SourceGeneratorLambdaJsonSerializer<LambdaFunctionJsonSerializerContext>())
 .Build()
 .RunAsync();
 }

 /// <summary>
 /// A simple function that takes a string and does a ToUpper.
 ///
 /// To use this handler to respond to an AWS event, reference the appropriate
 package from
 /// https://github.com/aws/aws-lambda-dotnet#events
 /// and change the string input parameter to the desired event type. When the
 event type
 /// is changed, the handler type registered in the main method needs to be
 updated and the LambdaFunctionJsonSerializerContext

Getting started 991

AWS Lambda Developer Guide

 /// defined below will need the JsonSerializable updated. If the return type
 and event type are different then the
 /// LambdaFunctionJsonSerializerContext must have two JsonSerializable
 attributes, one for each type.
 ///
 // When using Native AOT extra testing with the deployed Lambda functions is
 required to ensure
 // the libraries used in the Lambda function work correctly with Native AOT. If
 a runtime
 // error occurs about missing types or methods the most likely solution will be
 to remove references to trim-unsafe
 // code or configure trimming options. This sample defaults to partial TrimMode
 because currently the AWS
 // SDK for .NET does not support trimming. This will result in a larger
 executable size, and still does not
 // guarantee runtime trimming errors won't be hit.
 /// </summary>
 /// <param name="input"></param>
 /// <param name="context"></param>
 /// <returns></returns>
 public static string FunctionHandler(string input, ILambdaContext context)
 {
 return input.ToUpper();
 }
}

/// <summary>
/// This class is used to register the input event and return type for the
 FunctionHandler method with the System.Text.Json source generator.
/// There must be a JsonSerializable attribute for each type used as the input and
 return type or a runtime error will occur
/// from the JSON serializer unable to find the serialization information for
 unknown types.
/// </summary>
[JsonSerializable(typeof(string))]
public partial class LambdaFunctionJsonSerializerContext : JsonSerializerContext
{
 // By using this partial class derived from JsonSerializerContext, we can
 generate reflection free JSON Serializer code at compile time
 // which can deserialize our class and properties. However, we must attribute
 this class to tell it what types to generate serialization code for.
 // See https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-
text-json-source-generation

Getting started 992

AWS Lambda Developer Guide

Native AOT compiles your application into a single, native binary. The entrypoint
of that binary is the static Main method. Within static Main, the Lambda
runtime is bootstrapped and the FunctionHandler method set up. As part
of the runtime bootstrap, a source generated serializer is configured using new
SourceGeneratorLambdaJsonSerializer<LambdaFunctionJsonSerializerContext>()

2. To deploy your application to Lambda, ensure that Docker is running in your local environment
and run the following command.

dotnet lambda deploy-function

Behind the scenes, the .NET global CLI downloads an AL2023 Docker image and compiles your
application code inside a running container. The compiled binary is output back to your local
filesystem before being deployed to Lambda.

3. Test your function by running the following command. Replace <FUNCTION_NAME> with the
name you chose for your function in the deployment wizard.

dotnet lambda invoke-function <FUNCTION_NAME> --payload "hello world"

The response from the CLI includes performance details for the cold start (initialization
duration) and total run time for your function invocation.

4. To delete the AWS resources you created by following the preceding steps, run the following
command. Replace <FUNCTION_NAME> with the name you chose for your function in the
deployment wizard. By deleting AWS resources that you're no longer using, you prevent
unnecessary charges being billed to your AWS account.

dotnet lambda delete-function <FUNCTION_NAME>

Serialization

To deploy functions to Lambda using native AOT, your function code must use source generated
serialization. Instead of using run-time reflection to gather the metadata needed to access object
properties for serialization, source generators generate C# source files that are compiled when
you build your application. To configure your source generated serializer correctly, ensure that
you include any input and output objects your function uses, as well as any custom types. For

Serialization 993

https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/source-generation-modes?pivots=dotnet-8-0
https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/source-generation-modes?pivots=dotnet-8-0

AWS Lambda Developer Guide

example, a Lambda function that receives events from an API Gateway REST API and returns a
custom Product type would include a serializer defined as follows.

[JsonSerializable(typeof(APIGatewayProxyRequest))]
[JsonSerializable(typeof(APIGatewayProxyResponse))]
[JsonSerializable(typeof(Product))]
public partial class CustomSerializer : JsonSerializerContext
{
}

Trimming

Native AOT trims your application code as part of the compilation to ensure that the binary is as
small as possible. .NET 8 for Lambda provides improved trimming support compared to previous
versions of .NET. Support has been added to the Lambda runtime libraries, AWS .NET SDK, .NET
Lambda Annotations, and .NET 8 itself.

These improvements offer the potential to eliminate build-time trimming warnings, but .NET
will never be completely trim safe. This means that parts of libraries that your function relies
on may be trimmed out as part of the compilation step. You can manage this by defining
TrimmerRootAssemblies as part of your .csproj file as shown in the following example.

<ItemGroup>
 <TrimmerRootAssembly Include="AWSSDK.Core" />
 <TrimmerRootAssembly Include="AWSXRayRecorder.Core" />
 <TrimmerRootAssembly Include="AWSXRayRecorder.Handlers.AwsSdk" />
 <TrimmerRootAssembly Include="Amazon.Lambda.APIGatewayEvents" />
 <TrimmerRootAssembly Include="bootstrap" />
 <TrimmerRootAssembly Include="Shared" />
</ItemGroup>

Note that when you receive a trim warning, adding the class that generates the warning to
TrimmerRootAssembly might not resolve the issue. A trim warning indicates that the class is
trying to access some other class that can't be determined until runtime. To avoid runtime errors,
add this second class to TrimmerRootAssembly.

To learn more about managing trim warnings, see Introduction to trim warnings in the
Microsoft .NET documentation.

Trimming 994

https://github.com/aws/aws-lambda-dotnet/pull/1596
https://github.com/aws/aws-sdk-net/pulls?q=is%3Apr+trimming
https://github.com/aws/aws-lambda-dotnet/pull/1610
https://github.com/aws/aws-lambda-dotnet/pull/1610
https://learn.microsoft.com/en-us/dotnet/core/deploying/trimming/fixing-warnings

AWS Lambda Developer Guide

Troubleshooting

Error: Cross-OS native compilation is not supported.

Your version of the Amazon.Lambda.Tools .NET Core global tool is out of date. Update to the
latest version and try again.

Docker: image operating system "linux" cannot be used on this platform.

Docker on your system is configured to use Windows containers. Swap to Linux containers to
run the native AOT build environment.

For more information about common errors, see the AWS NativeAOT for .NET repository on
GitHub.

Troubleshooting 995

https://github.com/awslabs/dotnet-nativeaot-labs#common-errors

AWS Lambda Developer Guide

Using the Lambda context object to retrieve C# function
information

When Lambda runs your function, it passes a context object to the handler. This object provides
properties with information about the invocation, function, and execution environment.

Context properties

• FunctionName – The name of the Lambda function.

• FunctionVersion – The version of the function.

• InvokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• MemoryLimitInMB – The amount of memory that's allocated for the function.

• AwsRequestId – The identifier of the invocation request.

• LogGroupName – The log group for the function.

• LogStreamName – The log stream for the function instance.

• RemainingTime (TimeSpan) – The number of milliseconds left before the execution times out.

• Identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• ClientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• Logger The logger object for the function.

You can use information in the ILambdaContext object to output information about your
function's invocation for monitoring purposes. The following code provides an example of how
to add context information to a structured logging framework. In this example, the function adds
AwsRequestId to the log outputs. The function also uses the RemainingTime property to cancel
an inflight task if the Lambda function timeout is about to be reached.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function

Context 996

AWS Lambda Developer Guide

{
 private readonly IDatabaseRepository _repo;

 public Function()
 {
 this._repo = new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request, ILambdaContext context)
 {
 Logger.AppendKey("AwsRequestId", context.AwsRequestId);

 var id = request.PathParameters["id"];

 using var cts = new CancellationTokenSource();

 try
 {
 cts.CancelAfter(context.RemainingTime.Add(TimeSpan.FromSeconds(-1)));

 var databaseRecord = await this._repo.GetById(id, cts.Token);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
 catch (Exception ex)
 {
 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.InternalServerError,
 Body = JsonSerializer.Serialize(new { error = ex.Message })
 };
 }
 finally
 {
 cts.Cancel();
 }
 }
}

Context 997

AWS Lambda Developer Guide

Log and monitor C# Lambda functions

AWS Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Sending Lambda function logs to CloudWatch Logs.

Sections

• Creating a function that returns logs

• Using Lambda advanced logging controls with .NET

• Additional logging tools and libraries

• Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

• Viewing logs using the AWS Command Line Interface (AWS CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use the ILambdaLogger on the context object, the
methods on the Console class, or any logging library that writes to stdout or stderr.

The .NET runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

Logging 998

https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.Core/ILambdaLogger.cs
https://docs.microsoft.com/en-us/dotnet/api/system.console

AWS Lambda Developer Guide

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using Lambda advanced logging controls with .NET

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported .NET runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for Lambda
functions”.

To use the log format and log level options with your .NET Lambda functions, see the guidance in
the following sections.

Using structured JSON log format with .NET

If you select JSON for your function's log format, Lambda will send logs output using
ILambdaLogger as structured JSON. Each JSON log object contains at least five key value pairs with
the following keys:

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "requestId" - the unique request ID for the function invocation

• "traceId" - the _X_AMZN_TRACE_ID environment variable

• "message" - the contents of the log message

Using Lambda advanced logging controls with .NET 999

https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.Core/ILambdaLogger.cs

AWS Lambda Developer Guide

The ILambdaLogger instance can add additional key value pairs, for example when logging
exceptions. You can also supply your own additional parameters as described in the section the
section called “Customer-provided log parameters”.

Note

If your code already uses another logging library to produce JSON-formatted logs, ensure
that your function's log format is set to plain text. Setting the log format to JSON will
result in your log outputs being double-encoded.

The following example logging command shows how to write a log message with the level INFO.

Example .NET logging code

context.Logger.LogInformation("Fetching cart from database");

You can also use a generic log method that takes the log level as an argument as shown in the
following example.

context.Logger.Log(LogLevel.Information, "Fetching cart from database");

The log output by these example code snippets would be captured in CloudWatch Logs as follows:

Example JSON log record

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Information",
 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "Fetching cart from database"
}

Note

If you configure your function's log format to to use plain text rather than JSON, then
the log level captured in the message follows the Microsoft convention of using a four-
character label. For example, a log level of Debug is represented in the message as dbug.

Using Lambda advanced logging controls with .NET 1000

AWS Lambda Developer Guide

When you configure your function to use JSON formatted logs, the log level captured in
the log uses the full label as shown in the example JSON log record.

If you don't assign a level to your log output, Lambda will automatically assign it the level INFO.

Logging exceptions in JSON

When using structured JSON logging with ILambdaLogger, you can log exceptions in your code as
shown in the following example.

Example usage of exception logging

try
{
 connection.ExecuteQuery(query);
}
catch(Exception e)
{
 context.Logger.LogWarning(e, "Error executing query");
}

The log format output by this code is shown in the following example JSON. Note that the
message property in the JSON is populated using the message argument provided in the
LogWarning call, while the errorMessage property comes from the Message property of the
exception itself.

Example JSON log record

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Warning",
 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "Error executing query",
 "errorType": "System.Data.SqlClient.SqlException",
 "errorMessage": "Connection closed",
 "stackTrace": ["<call exception.StackTrace>"]
}

Using Lambda advanced logging controls with .NET 1001

AWS Lambda Developer Guide

If your function's logging format is set to JSON, Lambda also outputs JSON-formatted log
messages when your code throws an uncaught exception. The following example code snippet and
log message show how uncaught exceptions are logged.

Example exception code

throw new ApplicationException("Invalid data");

Example JSON log record

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Error",
 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "Invalid data",
 "errorType": "System.ApplicationException",
 "errorMessage": "Invalid data",
 "stackTrace": ["<call exception.StackTrace>"]
}

Customer-provided log parameters

With JSON-formatted log messages, you can supply additional log parameters and include these in
the log message. The following code snippet example shows a command to add two user-supplied
parameters labeled retryAttempt and uri. In the example, the value of these parameters come
from the retryAttempt and uriDestination arguments passed into the logging command.

Example JSON logging command with additional parameters

context.Logger.LogInformation("Starting retry {retryAttempt} to make GET request to
 {uri}", retryAttempt, uriDestination);

The log message output by this command is shown in the following example JSON.

Example JSON log record

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Information",

Using Lambda advanced logging controls with .NET 1002

AWS Lambda Developer Guide

 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "Starting retry 1 to make GET request to http://example.com/",
 "retryAttempt": 1,
 "uri": "http://example.com/"
}

Tip

You can also use positional properties instead of names when specifying additional
parameters. For example, the logging command in the previous example could also be
written as follows:

context.Logger.LogInformation("Starting retry {0} to make GET request to {1}",
 retryAttempt, uriDestination);

Note that when you supply additional logging parameters, Lambda captures them as top-level
properties in the JSON log record. This approach differs from some popular .NET logging libraries
such as Serilog, which captures additional parameters in a separate child object.

If the argument you supply for an additional parameter is a complex object, by default Lambda
uses the ToString() method to supply the value. To indicate that an argument should be JSON
serialized, use the @ prefix as shown in the following code snippet. In this example, User is an
object with FirstName and LastName properties.

Example JSON logging command with JSON serialized object

context.Logger.LogInformation("User {@user} logged in", User);

The log message output by this command is shown in the following example JSON.

Example JSON log record

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Information",
 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "User {@user} logged in",

Using Lambda advanced logging controls with .NET 1003

AWS Lambda Developer Guide

 "user":
 {
 "FirstName": "John",
 "LastName": "Doe"
 }
}

If the argument for an additional parameter is an array or implements IList or IDictionary,
then Lambda adds the argument to the JSON log message as an array as shown in the following
example JSON log record. In this example, {users} takes an IList argument containing instances
of the User property with the same format as the previous example. Lambda converts this IList
into an array, with each value being created using the ToString method.

Example JSON log record with an IList argument

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Information",
 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "{users} have joined the group",
 "users":
 [
 "Rosalez, Alejandro",
 "Stiles, John"
]
}

You can also JSON serialize the list by using the @ prefix in your logging command. In the following
example JSON log record, the users property is JSON serialized.

Example JSON log record with a JSON serialized IList argument

{
 "timestamp": "2023-09-07T01:30:06.977Z",
 "level": "Information",
 "requestId": "8f711428-7e55-46f9-ae88-2a65d4f85fc5",
 "traceId": "1-6408af34-50f56f5b5677a7d763973804",
 "message": "{@users} have joined the group",
 "users":
 [
 {

Using Lambda advanced logging controls with .NET 1004

AWS Lambda Developer Guide

 "FirstName": "Alejandro",
 "LastName": "Rosalez"
 },
 {
 "FirstName": "John",
 "LastName": "Stiles"
 }
]
}

Using log-level filtering with .NET

By configuring log-level filtering, you can choose to send only logs of a certain detail level or lower
to CloudWatch Logs. To learn how to configure log-level filtering for your function, see the section
called “Log-level filtering”.

For AWS Lambda to filter your log messages by log level, you can either use JSON formatted
logs or use the .NET Console methods to output log messages. To create JSON formatted logs,
configure your function's log type to JSON and use the ILambdaLogger instance.

With JSON-formatted logs, Lambda filters your log outputs using the “level” key value pair in the
JSON object described in the section called “Using structured JSON log format with .NET”.

If you use the .NET Console methods to write messages to CloudWatch Logs, Lambda applies log
levels to your messages as follows:

• Console.WriteLine method - Lambda applies a log-level of INFO

• Console.Error method - Lambda applies a log-level of ERROR

When you configure your function to use log-level filtering, you must select from the
following options for the level of logs you want Lambda to send to CloudWatch Logs. Note the
mapping of the log levels used by Lambda with the standard Microsoft levels used by the .NET
ILambdaLogger.

Lambda log level Equivalent Microsoft level Standard usage

TRACE (most detail) Trace The most fine-grained
information used to trace the
path of your code's execution

Using Lambda advanced logging controls with .NET 1005

AWS Lambda Developer Guide

Lambda log level Equivalent Microsoft level Standard usage

DEBUG Debug Detailed information for
system debugging

INFO Information Messages that record the
normal operation of your
function

WARN Warning Messages about potential
errors that may lead to
unexpected behavior if
unaddressed

ERROR Error Messages about problems
that prevent the code from
performing as expected

FATAL (least detail) Critical Messages about serious errors
that cause the application to
stop functioning

Lambda sends logs of the selected detail level and lower to CloudWatch. For example, if you
configure a log level of WARN, Lambda will send logs corresponding to the WARN, ERROR, and
FATAL levels.

Additional logging tools and libraries

Powertools for AWS Lambda (.NET) is a developer toolkit to implement Serverless best practices
and increase developer velocity. The Logging utility provides a Lambda optimized logger which
includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

Tools and libraries 1006

https://docs.powertools.aws.dev/lambda/dotnet/
https://docs.powertools.aws.dev/lambda/dotnet/core/logging/

AWS Lambda Developer Guide

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Using Powertools for AWS Lambda (.NET) and AWS SAM for structured
logging

Follow the steps below to download, build, and deploy a sample Hello World C# application with
integrated Powertools for AWS Lambda (.NET) modules using the AWS SAM. This application
implements a basic API backend and uses Powertools for emitting logs, metrics, and traces. It
consists of an Amazon API Gateway endpoint and a Lambda function. When you send a GET
request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics using
Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function returns a
hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• .NET 8

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-dotnet --name sam-app --package-type
 Zip --runtime dotnet6 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging 1007

https://docs.powertools.aws.dev/lambda-dotnet
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the AWS Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8
 2023-02-20T14:15:27.988000 INIT_START Runtime Version:
 dotnet:6.v13 Runtime Version ARN: arn:aws:lambda:ap-
southeast-2::runtime:699f346a05dae24c58c45790bc4089f252bf17dae3997e79b17d939a288aa1ec
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:28.229000
 START RequestId: bed25b38-d012-42e7-ba28-f272535fb80e Version: $LATEST
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:29.259000
 2023-02-20T14:15:29.201Z bed25b38-d012-42e7-ba28-f272535fb80e info
 {"_aws":{"Timestamp":1676902528962,"CloudWatchMetrics":[{"Namespace":"sam-
app-logging","Metrics":[{"Name":"ColdStart","Unit":"Count"}],"Dimensions":
[["FunctionName"],["Service"]]}]},"FunctionName":"sam-app-HelloWorldFunction-
haKIoVeose2p","Service":"PowertoolsHelloWorld","ColdStart":1}

Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging 1008

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

AWS Lambda Developer Guide

2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.479000
 2023-02-20T14:15:30.479Z bed25b38-d012-42e7-ba28-f272535fb80e info
 {"ColdStart":true,"XrayTraceId":"1-63f3807f-5dbcb9910c96f50742707542","CorrelationId":"d3d4de7f-4ccc-411a-
a549-4d67b2fdc015","FunctionName":"sam-app-HelloWorldFunction-
haKIoVeose2p","FunctionVersion":"$LATEST","FunctionMemorySize":256,"FunctionArn":"arn:aws:lambda:ap-
southeast-2:123456789012:function:sam-app-HelloWorldFunction-
haKIoVeose2p","FunctionRequestId":"bed25b38-d012-42e7-ba28-
f272535fb80e","Timestamp":"2023-02-20T14:15:30.4602970Z","Level":"Information","Service":"PowertoolsHelloWorld","Name":"AWS.Lambda.Powertools.Logging.Logger","Message":"Hello
 world API - HTTP 200"}
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.599000
 2023-02-20T14:15:30.599Z bed25b38-d012-42e7-ba28-f272535fb80e info
 {"_aws":{"Timestamp":1676902528922,"CloudWatchMetrics":[{"Namespace":"sam-
app-logging","Metrics":[{"Name":"ApiRequestCount","Unit":"Count"}],"Dimensions":
[["Service"]]}]},"Service":"PowertoolsHelloWorld","ApiRequestCount":1}
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.680000 END
 RequestId: bed25b38-d012-42e7-ba28-f272535fb80e
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.680000
 REPORT RequestId: bed25b38-d012-42e7-ba28-f272535fb80e Duration: 2450.99 ms
 Billed Duration: 2451 ms Memory Size: 256 MB Max Memory Used: 74 MB Init
 Duration: 240.05 ms
XRAY TraceId: 1-63f3807f-5dbcb9910c96f50742707542 SegmentId: 16b362cd5f52cba0

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your AWS SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:

Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging 1009

AWS Lambda Developer Guide

 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs using the AWS Command Line Interface (AWS CLI)

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Viewing logs in the Lambda console 1010

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Viewing logs using the AWS Command Line Interface (AWS CLI) 1011

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"

Viewing logs using the AWS Command Line Interface (AWS CLI) 1012

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Viewing logs using the AWS Command Line Interface (AWS CLI) 1013

AWS Lambda Developer Guide

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 1014

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

AWS Lambda Developer Guide

Instrumenting C# code in AWS Lambda

Lambda integrates with AWS X-Ray to help you trace, debug, and optimize Lambda applications.
You can use X-Ray to trace a request as it traverses resources in your application, which may include
Lambda functions and other AWS services.

To send tracing data to X-Ray, you can use one of three SDK libraries:

• AWS Distro for OpenTelemetry (ADOT) – A secure, production-ready, AWS-supported distribution
of the OpenTelemetry (OTel) SDK.

• AWS X-Ray SDK for .NET – An SDK for generating and sending trace data to X-Ray.

• Powertools for AWS Lambda (.NET) – A developer toolkit to implement Serverless best practices
and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for AWS Lambda SDKs are part of a tightly integrated
instrumentation solution offered by AWS. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
AWS Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing

• Using the X-Ray SDK to instrument your .NET functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with AWS CloudFormation

• Interpreting an X-Ray trace

Tracing 1015

https://aws.amazon.com/otel
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet.html
https://docs.powertools.aws.dev/lambda-dotnet/
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

AWS Lambda Developer Guide

Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing

Follow the steps below to download, build, and deploy a sample Hello World C# application with
integrated Powertools for AWS Lambda (.NET) modules using the AWS SAM. This application
implements a basic API backend and uses Powertools for emitting logs, metrics, and traces. It
consists of an Amazon API Gateway endpoint and a Lambda function. When you send a GET
request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics using
Embedded Metric Format to CloudWatch, and sends traces to AWS X-Ray. The function returns a
hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• .NET 8

• AWS CLI version 2

• AWS SAM CLI version 1.75 or later. If you have an older version of the AWS SAM CLI, see
Upgrading the AWS SAM CLI.

Deploy a sample AWS SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-dotnet --name sam-app --package-type
 Zip --runtime dotnet6 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing 1016

https://docs.powertools.aws.dev/lambda-dotnet
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

AWS Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2023-02-20 23:05:16+08:00
 End time: 2023-02-20 23:05:16+08:00
 Reference Id: 0 - AWS::Lambda - sam-app-HelloWorldFunction-pNjujb7mEoew - Edges:
 [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 2.814
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-pNjujb7mEoew
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1

Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing 1017

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

AWS Lambda Developer Guide

 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 2.429
 Reference Id: 2 - (Root) AWS::ApiGateway::Stage - sam-app/Prod - Edges: [0]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 2.839
 Reference Id: 3 - client - sam-app/Prod - Edges: [2]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 3] at (2023-02-20T23:05:16.521000) with id
 (1-63f38c2c-270200bf1d292a442c8e8a00) and duration (2.877s)
 - 2.839s - sam-app/Prod [HTTP: 200]
 - 2.836s - Lambda [HTTP: 200]
 - 2.814s - sam-app-HelloWorldFunction-pNjujb7mEoew [HTTP: 200]
 - 2.429s - sam-app-HelloWorldFunction-pNjujb7mEoew
 - 0.230s - Initialization
 - 2.389s - Invocation
 - 0.600s - ## FunctionHandler
 - 0.517s - Get Calling IP
 - 0.039s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing 1018

AWS Lambda Developer Guide

Using the X-Ray SDK to instrument your .NET functions

You can instrument your function code to record metadata and trace downstream calls. To record
detail about calls that your function makes to other resources and services, use the AWS X-Ray SDK
for .NET. To get the SDK, add the AWSXRayRecorder packages to your project file.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <GenerateRuntimeConfigurationFiles>true</GenerateRuntimeConfigurationFiles>
 <AWSProjectType>Lambda</AWSProjectType>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Amazon.Lambda.Core" Version="2.1.0" />
 <PackageReference Include="Amazon.Lambda.SQSEvents" Version="2.1.0" />
 <PackageReference Include="Amazon.Lambda.Serialization.Json" Version="2.1.0" />
 <PackageReference Include="AWSSDK.Core" Version="3.7.103.24" />
 <PackageReference Include="AWSSDK.Lambda" Version="3.7.104.3" />
 <PackageReference Include="AWSXRayRecorder.Core" Version="2.13.0" />
 <PackageReference Include="AWSXRayRecorder.Handlers.AwsSdk" Version="2.11.0" />
 </ItemGroup>
</Project>

There are a range of Nuget packages that provide auto-instrumentation for AWS SDKs, Entity
Framework and HTTP requests. To see the complete set of configuration options refer to AWS X-
Ray SDK for .NET in the AWS X-Ray Developer Guide.

Once you have added the desired Nuget packages, configure auto-instrumentation. Best practice is
to perform this configuration outside of your function's handler function. This allows you to take
advantage of execution environment re-use to improve the performance of your function. In the
following code example, the RegisterXRayForAllServices method is called in the function
constructor to add instrumentation for all AWS SDK calls.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

Using the X-Ray SDK to instrument your .NET functions 1019

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet.html

AWS Lambda Developer Guide

 public Function()
 {
 // Add auto instrumentation for all AWS SDK calls
 // It is important to call this method before initializing any SDK clients
 AWSSDKHandler.RegisterXRayForAllServices();
 this._repo = new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request)
 {
 var id = request.PathParameters["id"];

 var databaseRecord = await this._repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
}

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

6. Choose Save.

Activating tracing with the Lambda console 1020

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the AWS CLI or AWS SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:

Activating tracing with the Lambda API 1021

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml

AWS Lambda Developer Guide

 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example shows an application with two functions. The primary function processes events
and sometimes returns errors. The second function at the top processes errors that appear in the
first's log group and uses the AWS SDK to call X-Ray, Amazon Simple Storage Service (Amazon S3),
and Amazon CloudWatch Logs.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

Interpreting an X-Ray trace 1022

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html#xray-concepts-servicegraph

AWS Lambda Developer Guide

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda segment shows an
error, the Lambda service had an issue. If the AWS::Lambda::Function segment shows an error,
your function had an issue.

This example expands the AWS::Lambda::Function segment to show its three subsegments.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
The example trace shown here illustrates the old-style function segment. The differences
between the old- and new-style segments are described in the following paragraphs.

Interpreting an X-Ray trace 1023

AWS Lambda Developer Guide

These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

The old-style function segment contains the following subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

The new-style function segment doesn't contain an Invocation subsegment. Instead, customer
subsegments are attached directly to the function segment. For more information about the
structure of the old- and new-style function segments, see the section called “Understanding X-
Ray traces”.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the AWS X-Ray SDK for .NET in the AWS X-
Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the AWS
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see AWS X-Ray pricing.

Interpreting an X-Ray trace 1024

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet.html
https://aws.amazon.com/xray/pricing/

AWS Lambda Developer Guide

AWS Lambda function testing in C#

Note

See the Testing functions chapter for a complete introduction to techniques and best
practices for testing serverless solutions.

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

Testing 1025

https://github.com/aws-samples/serverless-test-samples

AWS Lambda Developer Guide

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Testing your serverless applications

You will generally use a mix of approaches to test your serverless application code, including
testing in the cloud, testing with mocks, and occasionally testing with emulators.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. You run tests against code deployed in the cloud and interacting with cloud-
based services. This approach provides the most accurate measure of quality of your code.

A convenient way to debug your Lambda function in the cloud is through the console with a test
event. A test event is a JSON input to your function. If your function does not require input, the
event can be an empty JSON document ({}). The console provides sample events for a variety
of service integrations. After creating an event in the console, you can share it with your team to
make testing easier and consistent.

Note

Testing a function in the console is a quick way to get started, but automating your test
cycles ensures application quality and development speed.

Testing tools

To accelerate your development cycle, there are a number of tools and techniques you can use
when testing your functions. For example, AWS SAM Accelerate and AWS CDK watch mode both
decrease the time required to update cloud environments.

Testing your serverless applications 1026

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch

AWS Lambda Developer Guide

The way you define your Lambda function code makes it simple to add unit tests. Lambda
requires a public, parameterless constructor to initialize your class. Introducing a second, internal
constructor gives you control of the dependencies your application uses.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function(): this(null)
 {
 }

 internal Function(IDatabaseRepository repo)
 {
 this._repo = repo ?? new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request)
 {
 var id = request.PathParameters["id"];

 var databaseRecord = await this._repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
}

To write a test for this function, you can initialize a new instance of your Function class and pass
in a mocked implementation of the IDatabaseRepository. The below examples uses XUnit,
Moq, and FluentAssertions to write a simple test ensuring the FunctionHandler returns a
200 status code.

Testing your serverless applications 1027

AWS Lambda Developer Guide

using Xunit;
using Moq;
using FluentAssertions;

public class FunctionTests
{
 [Fact]
 public async Task TestLambdaHandler_WhenInputIsValid_ShouldReturn200StatusCode()
 {
 // Arrange
 var mockDatabaseRepository = new Mock<IDatabaseRepository>();

 var functionUnderTest = new Function(mockDatabaseRepository.Object);

 // Act
 var response = await functionUnderTest.FunctionHandler(new
 APIGatewayProxyRequest());

 // Assert
 response.StatusCode.Should().Be(200);
 }
}

For more detailed examples, including examples of asynchronous tests, see the .NET testing
samples repository on GitHub.

Testing your serverless applications 1028

https://github.com/aws-samples/serverless-test-samples/tree/main/dotnet-test-samples
https://github.com/aws-samples/serverless-test-samples/tree/main/dotnet-test-samples

AWS Lambda Developer Guide

Building Lambda functions with PowerShell

The following sections explain how common programming patterns and core concepts apply when
you author Lambda function code in PowerShell.

Lambda provides the following sample applications for PowerShell:

• blank-powershell – A PowerShell function that shows the use of logging, environment variables,
and the AWS SDK.

Before you get started, you must first set up a PowerShell development environment. For
instructions on how to do this, see Setting Up a PowerShell Development Environment.

To learn about how to use the AWSLambdaPSCore module to download sample PowerShell
projects from templates, create PowerShell deployment packages, and deploy PowerShell
functions to the AWS Cloud, see Deploy PowerShell Lambda functions with .zip file archives.

Lambda provides the following runtimes for .NET languages:

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

.NET 9
(container
only)

dotnet9 Amazon
Linux 2023

Not
scheduled

Not
scheduled

Not
scheduled

.NET 8 dotnet8 Amazon
Linux 2023

Nov 10, 2026 Dec 10, 2026 Jan 11, 2027

Topics

• Setting Up a PowerShell Development Environment

• Deploy PowerShell Lambda functions with .zip file archives

• Define Lambda function handler in PowerShell

• Using the Lambda context object to retrieve PowerShell function information

• Log and monitor Powershell Lambda functions

1029

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell

AWS Lambda Developer Guide

1030

AWS Lambda Developer Guide

Setting Up a PowerShell Development Environment

Lambda provides a set of tools and libraries for the PowerShell runtime. For installation
instructions, see Lambda tools for PowerShell on GitHub.

The AWSLambdaPSCore module includes the following cmdlets to help author and publish
PowerShell Lambda functions:

• Get-AWSPowerShellLambdaTemplate – Returns a list of getting started templates.

• New-AWSPowerShellLambda – Creates an initial PowerShell script based on a template.

• Publish-AWSPowerShellLambda – Publishes a given PowerShell script to Lambda.

• New-AWSPowerShellLambdaPackage – Creates a Lambda deployment package that you can
use in a CI/CD system for deployment.

Development Environment 1031

https://github.com/aws/aws-lambda-dotnet/tree/master/PowerShell

AWS Lambda Developer Guide

Deploy PowerShell Lambda functions with .zip file archives

A deployment package for the PowerShell runtime contains your PowerShell script, PowerShell
modules that are required for your PowerShell script, and the assemblies needed to host
PowerShell Core.

Creating the Lambda function

To get started writing and invoking a PowerShell script with Lambda, you can use the New-
AWSPowerShellLambda cmdlet to create a starter script based on a template. You can use the
Publish-AWSPowerShellLambda cmdlet to deploy your script to Lambda. Then you can test
your script either through the command line or the Lambda console.

To create a new PowerShell script, upload it, and test it, do the following:

1. To view the list of available templates, run the following command:

PS C:\> Get-AWSPowerShellLambdaTemplate

Template Description
-------- -----------
Basic Bare bones script
CodeCommitTrigger Script to process AWS CodeCommit Triggers
...

2. To create a sample script based on the Basic template, run the following command:

New-AWSPowerShellLambda -ScriptName MyFirstPSScript -Template Basic

A new file named MyFirstPSScript.ps1 is created in a new subdirectory of the current
directory. The name of the directory is based on the -ScriptName parameter. You can use the
-Directory parameter to choose an alternative directory.

You can see that the new file has the following contents:

PowerShell script file to run as a Lambda function

When executing in Lambda the following variables are predefined.
$LambdaInput - A PSObject that contains the Lambda function input data.
$LambdaContext - An Amazon.Lambda.Core.ILambdaContext object that contains
 information about the currently running Lambda environment.

Deployment package 1032

AWS Lambda Developer Guide

#
The last item in the PowerShell pipeline is returned as the result of the Lambda
 function.
#
To include PowerShell modules with your Lambda function, like the
 AWSPowerShell.NetCore module, add a "#Requires" statement
indicating the module and version.

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}

Uncomment to send the input to CloudWatch Logs
Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)

3. To see how log messages from your PowerShell script are sent to Amazon CloudWatch Logs,
uncomment the Write-Host line of the sample script.

To demonstrate how you can return data back from your Lambda functions, add a new line
at the end of the script with $PSVersionTable. This adds the $PSVersionTable to the
PowerShell pipeline. After the PowerShell script is complete, the last object in the PowerShell
pipeline is the return data for the Lambda function. $PSVersionTable is a PowerShell global
variable that also provides information about the running environment.

After making these changes, the last two lines of the sample script look like this:

Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)
$PSVersionTable

4. After editing the MyFirstPSScript.ps1 file, change the directory to the script's location.
Then run the following command to publish the script to Lambda:

Publish-AWSPowerShellLambda -ScriptPath .\MyFirstPSScript.ps1 -Name
 MyFirstPSScript -Region us-east-2

Note that the -Name parameter specifies the Lambda function name, which appears in the
Lambda console. You can use this function to invoke your script manually.

5. Invoke your function using the AWS Command Line Interface (AWS CLI) invoke command.

> aws lambda invoke --function-name MyFirstPSScript out

Creating a Lambda function 1033

AWS Lambda Developer Guide

Define Lambda function handler in PowerShell

When a Lambda function is invoked, the Lambda handler invokes the PowerShell script.

When the PowerShell script is invoked, the following variables are predefined:

• $LambdaInput – A PSObject that contains the input to the handler. This input can be event data
(published by an event source) or custom input that you provide, such as a string or any custom
data object.

• $LambdaContext – An Amazon.Lambda.Core.ILambdaContext object that you can use to
access information about the current invocation—such as the name of the current function, the
memory limit, execution time remaining, and logging.

For example, consider the following PowerShell example code.

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}
Write-Host 'Function Name:' $LambdaContext.FunctionName

This script returns the FunctionName property that's obtained from the $LambdaContext variable.

Note

You're required to use the #Requires statement within your PowerShell scripts to indicate
the modules that your scripts depend on. This statement performs two important tasks. 1)
It communicates to other developers which modules the script uses, and 2) it identifies the
dependent modules that AWS PowerShell tools need to package with the script, as part of
the deployment. For more information about the #Requires statement in PowerShell, see
About requires. For more information about PowerShell deployment packages, see Deploy
PowerShell Lambda functions with .zip file archives.
When your PowerShell Lambda function uses the AWS PowerShell cmdlets, be sure to
set a #Requires statement that references the AWSPowerShell.NetCore module,
which supports PowerShell Core—and not the AWSPowerShell module, which only
supports Windows PowerShell. Also, be sure to use version 3.3.270.0 or newer of
AWSPowerShell.NetCore which optimizes the cmdlet import process. If you use an
older version, you'll experience longer cold starts. For more information, see AWS Tools for
PowerShell.

Handler 1034

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires?view=powershell-6
https://aws.amazon.com/powershell/?track=sdk
https://aws.amazon.com/powershell/?track=sdk

AWS Lambda Developer Guide

Returning data

Some Lambda invocations are meant to return data back to their caller. For example, if an
invocation was in response to a web request coming from API Gateway, then our Lambda function
needs to return back the response. For PowerShell Lambda, the last object that's added to the
PowerShell pipeline is the return data from the Lambda invocation. If the object is a string, the
data is returned as is. Otherwise the object is converted to JSON by using the ConvertTo-Json
cmdlet.

For example, consider the following PowerShell statement, which adds $PSVersionTable to the
PowerShell pipeline:

$PSVersionTable

After the PowerShell script is finished, the last object in the PowerShell pipeline is the return data
for the Lambda function. $PSVersionTable is a PowerShell global variable that also provides
information about the running environment.

Returning data 1035

AWS Lambda Developer Guide

Using the Lambda context object to retrieve PowerShell
function information

When Lambda runs your function, it passes context information by making a $LambdaContext
variable available to the handler. This variable provides methods and properties with information
about the invocation, function, and execution environment.

Context properties

• FunctionName – The name of the Lambda function.

• FunctionVersion – The version of the function.

• InvokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• MemoryLimitInMB – The amount of memory that's allocated for the function.

• AwsRequestId – The identifier of the invocation request.

• LogGroupName – The log group for the function.

• LogStreamName – The log stream for the function instance.

• RemainingTime – The number of milliseconds left before the execution times out.

• Identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• ClientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• Logger – The logger object for the function.

The following PowerShell code snippet shows a simple handler function that prints some of the
context information.

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}
Write-Host 'Function name:' $LambdaContext.FunctionName
Write-Host 'Remaining milliseconds:' $LambdaContext.RemainingTime.TotalMilliseconds
Write-Host 'Log group name:' $LambdaContext.LogGroupName
Write-Host 'Log stream name:' $LambdaContext.LogStreamName

Context 1036

AWS Lambda Developer Guide

Log and monitor Powershell Lambda functions

AWS Lambda automatically monitors Lambda functions on your behalf and sends logs to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation to the log stream, and relays logs and other output from your function's code. For more
information, see Sending Lambda function logs to CloudWatch Logs.

This page describes how to produce log output from your Lambda function's code, and access logs
using the AWS Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Viewing logs in the Lambda console

• Viewing logs in the CloudWatch console

• Viewing logs using the AWS Command Line Interface (AWS CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use cmdlets on Microsoft.PowerShell.Utility , or
any logging module that writes to stdout or stderr. The following example uses Write-Host.

Example function/Handler.ps1 – Logging

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}
Write-Host `## Environment variables
Write-Host AWS_LAMBDA_FUNCTION_VERSION=$Env:AWS_LAMBDA_FUNCTION_VERSION
Write-Host AWS_LAMBDA_LOG_GROUP_NAME=$Env:AWS_LAMBDA_LOG_GROUP_NAME
Write-Host AWS_LAMBDA_LOG_STREAM_NAME=$Env:AWS_LAMBDA_LOG_STREAM_NAME
Write-Host AWS_EXECUTION_ENV=$Env:AWS_EXECUTION_ENV
Write-Host AWS_LAMBDA_FUNCTION_NAME=$Env:AWS_LAMBDA_FUNCTION_NAME
Write-Host PATH=$Env:PATH
Write-Host `## Event
Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 3)

Example log format

START RequestId: 56639408-xmpl-435f-9041-ac47ae25ceed Version: $LATEST

Logging 1037

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell/function/Handler.ps1

AWS Lambda Developer Guide

Importing module ./Modules/AWSPowerShell.NetCore/3.3.618.0/AWSPowerShell.NetCore.psd1
[Information] - ## Environment variables
[Information] - AWS_LAMBDA_FUNCTION_VERSION=$LATEST
[Information] - AWS_LAMBDA_LOG_GROUP_NAME=/aws/lambda/blank-powershell-
function-18CIXMPLHFAJJ
[Information] - AWS_LAMBDA_LOG_STREAM_NAME=2020/04/01/
[$LATEST]53c5xmpl52d64ed3a744724d9c201089
[Information] - AWS_EXECUTION_ENV=AWS_Lambda_dotnet6_powershell_1.0.0
[Information] - AWS_LAMBDA_FUNCTION_NAME=blank-powershell-function-18CIXMPLHFAJJ
[Information] - PATH=/var/lang/bin:/usr/local/bin:/usr/bin/:/bin:/opt/bin
[Information] - ## Event
[Information] -
{
 "Records": [
 {
 "messageId": "19dd0b57-b21e-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1523232000000",
 "SenderId": "123456789012",
 "ApproximateFirstReceiveTimestamp": "1523232000001"
 },
 ...
END RequestId: 56639408-xmpl-435f-9041-ac47ae25ceed
REPORT RequestId: 56639408-xmpl-435f-9041-ac47ae25ceed Duration: 3906.38 ms Billed
 Duration: 4000 ms Memory Size: 512 MB Max Memory Used: 367 MB Init Duration: 5960.19
 ms
XRAY TraceId: 1-5e843da6-733cxmple7d0c3c020510040 SegmentId: 3913xmpl20999446 Sampled:
 true

The .NET runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

Creating a function that returns logs 1038

AWS Lambda Developer Guide

• Max Memory Used – The amount of memory used by the function. When invocations share an
execution environment, Lambda reports the maximum memory used across all invocations. This
behavior might result in a higher than expected reported value.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the AWS X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Viewing logs in the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with AWS X-Ray. X-Ray records details about the request and the log stream in the trace.

Viewing logs using the AWS Command Line Interface (AWS CLI)

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

Viewing logs in the Lambda console 1039

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",

Viewing logs using the AWS Command Line Interface (AWS CLI) 1040

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

Viewing logs using the AWS Command Line Interface (AWS CLI) 1041

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",

Viewing logs using the AWS Command Line Interface (AWS CLI) 1042

AWS Lambda Developer Guide

 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 1043

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

AWS Lambda Developer Guide

Building Lambda functions with Rust

Because Rust compiles to native code, you don't need a dedicated runtime to run Rust code
on Lambda. Instead, use the Rust runtime client to build your project locally, and then deploy
it to Lambda using the provided.al2023 or provided.al2 runtime. When you use
provided.al2023 or provided.al2, Lambda automatically keeps the operating system up to
date with the latest patches.

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

Tools and libraries for Rust

• AWS SDK for Rust: The AWS SDK for Rust provides Rust APIs to interact with Amazon Web
Services infrastructure services.

• Rust runtime client for Lambda: The Rust runtime client is an experimental package. It is subject
to breaking changes and not recommended for production.

• Cargo Lambda: This library provides a command line application to work with Lambda functions
built with Rust.

• Lambda HTTP: This library provides a wrapper to work with HTTP events.

• Lambda Extension: This library provides support to write Lambda Extensions with Rust.

• AWS Lambda Events: This library provides type definitions for common event source
integrations.

Sample Lambda applications for Rust

• Basic Lambda function: A Rust function that shows how to process basic events.

• Lambda function with error handling: A Rust function that shows how to handle custom Rust
errors in Lambda.

• Lambda function with shared resources: A Rust project that initializes shared resources before
creating the Lambda function.

• Lambda HTTP events: A Rust function that handles HTTP events.

1044

https://github.com/awslabs/aws-lambda-rust-runtime
https://github.com/awslabs/aws-lambda-rust-runtime
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/getting-started.html
https://github.com/awslabs/aws-lambda-rust-runtime
https://www.cargo-lambda.info/guide/what-is-cargo-lambda.html
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/lambda-http
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/lambda-extension
https://crates.io/crates/aws_lambda_events
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/basic-lambda
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/basic-error-handling
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/basic-shared-resource
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/http-basic-lambda

AWS Lambda Developer Guide

• Lambda HTTP events with CORS headers: A Rust function that uses Tower to inject CORS
headers.

• Lambda REST API: A REST API that uses Axum and Diesel to connect to a PostgreSQL database.

• Serverless Rust demo: A Rust project that shows the use of Lambda's Rust libraries, logging,
environment variables, and the AWS SDK.

• Basic Lambda Extension: A Rust extension that shows how to process basic extension events.

• Lambda Logs Amazon Data Firehose Extension: A Rust extension that shows how to send
Lambda logs to Firehose.

Topics

• Define Lambda function handlers in Rust

• Using the Lambda context object to retrieve Rust function information

• Processing HTTP events with Rust

• Deploy Rust Lambda functions with .zip file archives

• Working with layers for Rust Lambda functions

• Log and monitor Rust Lambda functions

1045

https://github.com/awslabs/aws-lambda-rust-runtime/blob/main//examples/http-cors
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/http-axum-diesel
https://github.com/aws-samples/serverless-rust-demo/
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/extension-basic
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/extension-logs-kinesis-firehose

AWS Lambda Developer Guide

Define Lambda function handlers in Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

This page describes how to work with Lambda function handlers in Rust, including project
initialization, naming conventions, and best practices. This page also includes an example of a Rust
Lambda function that takes in information about an order, produces a text file receipt, and puts
this file in an Amazon Simple Storage Service (S3) bucket. For more information about how to
deploy your function after writing it, see the section called “Deploy .zip file archives”.

Topics

• Setting up your Rust handler project

• Example Rust Lambda function code

• Valid class definitions for Rust handlers

• Handler naming conventions

• Defining and accessing the input event object

• Accessing and using the Lambda context object

• Using the AWS SDK for Rust in your handler

• Accessing environment variables

• Using shared state

• Code best practices for Rust Lambda functions

Setting up your Rust handler project

When working with Lambda functions in Rust, the process involves writing your code, compiling
it, and deploying the compiled artifacts to Lambda. The simplest way to set up a Lambda handler

Handler 1046

https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

project in Rust is to use the AWS Lambda Runtime for Rust. Despite its name, the AWS Lambda
Runtime for Rust is not a managed runtime in the same sense as it is in Lambda for Python, Java,
or Node.js. Instead, the AWS Lambda Runtime for Rust is a crate (lambda_runtime) that supports
writing Lambda functions in Rust and interfacing with AWS Lambda's execution environment.

Use the following command to install the AWS Lambda Runtime for Rust:

cargo install cargo-lambda

After you successfully install cargo-lambda, use the following command to initialize a new Rust
Lambda function handler project:

cargo lambda new example-rust

When you run this command, the command line interface (CLI) asks you a couple of questions
about your Lambda function:

• HTTP function – If you intend to invoke your function via API Gateway or a function URL, answer
Yes. Otherwise, answer No. In the example code on this page, we invoke our function with a
custom JSON event, so we answer No.

• Event type – If you intend to use a predefined event shape to invoke your function, select the
correct expected event type. Otherwise, leave this option blank. In the example code on this
page, we invoke our function with a custom JSON event, so we leave this option blank.

After the command runs successfully, enter the main directory of your project:

cd example-rust

This command generates a generic_handler.rs file and a main.rs file in the src directory.
The generic_handler.rs can be used to customize a generic event handler. The main.rs file
contains your main application logic. The Cargo.toml file contains metadata about your package
and lists its external dependencies.

Example Rust Lambda function code

The following example Rust Lambda function code takes in information about an order, produces a
text file receipt, and puts this file in an Amazon S3 bucket.

Example Rust Lambda function code 1047

https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

Example main.rs Lambda function

use aws_sdk_s3::{Client, primitives::ByteStream};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use serde::{Deserialize, Serialize};
use serde_json::Value;
use std::env;

#[derive(Deserialize, Serialize)]
struct Order {
 order_id: String,
 amount: f64,
 item: String,
}

async fn function_handler(event: LambdaEvent<Value>) -> Result<String, Error> {
 let payload = event.payload;

 // Deserialize the incoming event into Order struct
 let order: Order = serde_json::from_value(payload)?;

 let bucket_name = env::var("RECEIPT_BUCKET")
 .map_err(|_| "RECEIPT_BUCKET environment variable is not set")?;

 let receipt_content = format!(
 "OrderID: {}\nAmount: ${:.2}\nItem: {}",
 order.order_id, order.amount, order.item
);
 let key = format!("receipts/{}.txt", order.order_id);

 let config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
 let s3_client = Client::new(&config);

 upload_receipt_to_s3(&s3_client, &bucket_name, &key, &receipt_content).await?;

 Ok("Success".to_string())
}

async fn upload_receipt_to_s3(
 client: &Client,
 bucket_name: &str,
 key: &str,
 content: &str,

Example Rust Lambda function code 1048

AWS Lambda Developer Guide

) -> Result<(), Error> {
 client
 .put_object()
 .bucket(bucket_name)
 .key(key)
 .body(ByteStream::from(content.as_bytes().to_vec())) // Fixed conversion
 .content_type("text/plain")
 .send()
 .await?;

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(function_handler)).await
}

This main.rs file contains the following sections of code:

• use statements: Use these to import Rust crates and methods that your Lambda function
requires.

• #[derive(Deserialize, Serialize)]: Define the shape of the expected input event in this
Rust struct.

• async fn function_handler(event: LambdaEvent<Value>) -> Result<String,
Error>: This is the main handler method, which contains your main application logic.

• async fn upload_receipt_to_s3 (...): This is a helper method that's referenced by the
main function_handler method.

• #[tokio::main]: This is a macro that marks the entry point of a Rust program. It also sets up a
Tokio runtime, which allows your main() method to use async/await and run asynchronously.

• async fn main() -> Result<(), Error>: The main() function is the entry point of your
code. Within it, we specify function_handler as the main handler method.

Sample Cargo.toml file

The following Cargo.toml file accompanies this function.

[package]

Example Rust Lambda function code 1049

https://docs.rs/tokio/latest/tokio/runtime/index.html

AWS Lambda Developer Guide

name = "example-rust"
version = "0.1.0"
edition = "2024"

[dependencies]
aws-config = "1.5.18"
aws-sdk-s3 = "1.78.0"
lambda_runtime = "0.13.0"
serde = { version = "1", features = ["derive"] }
serde_json = "1"
tokio = { version = "1", features = ["full"] }

For this function to work properly, its execution role must allow the s3:PutObject action. Also,
ensure that you define the RECEIPT_BUCKET environment variable. After a successful invocation,
the Amazon S3 bucket should contain a receipt file.

Valid class definitions for Rust handlers

In most cases, Lambda handler signatures that you define in Rust will have the following format:

async fn function_handler(event: LambdaEvent<T>) -> Result<U, Error>

For this handler:

• The name of this handler is function_handler.

• The singular input to the handler is event, and is of type LambdaEvent<T>.

• LambdaEvent is a wrapper that comes from the lambda_runtime crate. Using this wrapper
gives you access to the context object, which includes Lambda-specific metadata such as the
request ID of the invocation.

• T is the deserialized event type. For example, this can be serde_json::Value, which
allows the handler to take in any generic JSON input. Alternatively, this can be a type like
ApiGatewayProxyRequest if your function expects a specific, pre-defined input type.

• The return type of the handler is Result<U, Error>.

• U is the deserialized output type. U must implement the serde::Serialize trait so Lambda
can convert the return value to JSON. For example, U can be a simple type like String,
serde_json::Value, or a custom struct as long as it implements Serialize. When your
code reaches an Ok(U) statement, this indicates successful execution, and your function returns
a value of type U.

Valid class definitions for Rust handlers 1050

AWS Lambda Developer Guide

• When your code encounters an error (i.e. Err(Error)), your function logs the error in Amazon
CloudWatch and returns an error response of type Error.

In our example, the handler signature looks like the following:

async fn function_handler(event: LambdaEvent<Value>) -> Result<String, Error>

Other valid handler signatures can feature the following:

• Omitting the LambdaEvent wrapper – If you omit LambdaEvent, you lose access to the Lambda
context object within your function. The following is an example of this type of signature:

async fn handler(event: serde_json::Value) -> Result<String, Error>

• Using the unit type as an input – For Rust, you can use the unit type to represent an empty input.
This is commonly used for functions with periodic, scheduled invocations. The following is an
example of this type of signature:

async fn handler(_: ()) -> Result<Value, Error>

Handler naming conventions

Lambda handlers in Rust don’t have strict naming restrictions. Although you can use any name for
your handler, function names in Rust are generally in snake_case.

For smaller applications, such as in this example, you can use a single main.rs file to contain all
of your code. For larger projects, main.rs should contain the entry point to your function, but you
can have additional files for that separate your code into logical modules. For example, you might
have the following file structure:

/example-rust
src/
main.rs # Entry point
handler.rs # Contains main handler
services.rs # [Optional] Back-end service calls
models.rs # [Optional] Data models
Cargo.toml

Handler naming conventions 1051

AWS Lambda Developer Guide

Defining and accessing the input event object

JSON is the most common and standard input format for Lambda functions. In this example, the
function expects an input similar to the following:

{
 "order_id": "12345",
 "amount": 199.99,
 "item": "Wireless Headphones"
}

In Rust, you can define the shape of the expected input event in a struct. In this example, we define
the following struct to represent an Order:

#[derive(Deserialize, Serialize)]
struct Order {
 order_id: String,
 amount: f64,
 item: String,
}

This struct matches the expected input shape. In this example, the #[derive(Deserialize,
Serialize)] macro automatically generates code for serialization and deserialization.
This means that we can deserialize the generic input JSON type into our struct using the
serde_json::from_value() method. This is illustrated in the first few lines of the handler:

async fn function_handler(event: LambdaEvent<Value>) -> Result<String, Error> {
 let payload = event.payload;

 // Deserialize the incoming event into Order struct
 let order: Order = serde_json::from_value(payload)?;
 ...
}

You can then access the fields of the object. For example, order.order_id retrieves the value of
order_id from the original input.

Pre-defined input event types

There are many pre-defined input event types available in the aws_lambda_events crate. For
example, if you intend to invoke your function with API Gateway, including the following import:

Defining and accessing the input event object 1052

AWS Lambda Developer Guide

use aws_lambda_events::event::apigw::ApiGatewayProxyRequest;

Then, make sure your main handler uses the following signature:

async fn handler(event: LambdaEvent<ApiGatewayProxyRequest>) -> Result<String, Error> {
 let body = event.payload.body.unwrap_or_default();
 ...
}

Refer to the aws_lambda_events crate for more information about other pre-defined input event
types.

Accessing and using the Lambda context object

The Lambda context object contains information about the invocation, function, and execution
environment. In Rust, the LambdaEvent wrapper includes the context object. For example, you can
use the context object to retrieve the request ID of the current invocation with the following code:

async fn function_handler(event: LambdaEvent<Value>) -> Result<String, Error> {
 let request_id = event.context.request_id;
 ...
}

For more information about the context object, see the section called “Context”.

Using the AWS SDK for Rust in your handler

Often, you’ll use Lambda functions to interact with or make updates to other AWS resources. The
simplest way to interface with these resources is to use the AWS SDK for Rust.

To add SDK dependencies to your function, add them in your Cargo.toml file. We recommend
only adding the libraries that you need for your function. In the example code earlier, we used
the aws_sdk_s3::Client. In the Cargo.toml file, you can add this dependency by adding the
following line under the [dependencies] section:

aws-sdk-s3 = "1.78.0"

Accessing and using the Lambda context object 1053

https://crates.io/crates/aws_lambda_events
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html

AWS Lambda Developer Guide

Note

This may not be the most recent version. Choose the appropriate version for your
application.

The, import the dependencies directly in your code:

use aws_sdk_s3::{Client, primitives::ByteStream};

The example code then initializes an Amazon S3 client as follows:

let config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let s3_client = Client::new(&config);

After you initialize your SDK client, you can then use it to interact with other AWS services. The
example code calls the Amazon S3 PutObject API in the upload_receipt_to_s3 helper
function.

Accessing environment variables

In your handler code, you can reference any environment variables by using the env::var method.
In this example, we reference the defined RECEIPT_BUCKET environment variable using the
following line of code:

let bucket_name = env::var("RECEIPT_BUCKET")
 .map_err(|_| "RECEIPT_BUCKET environment variable is not set")?;

Using shared state

You can declare shared variables that are independent of your Lambda function's handler code.
These variables can help you load state information during the Init phase, before your function
receives any events. For example, you can modify the code on this page to use shared state when
initializing the Amazon S3 client by updating the main function and handler signature:

async fn function_handler(client: &Client, event: LambdaEvent<Value>) -> Result<String,
 Error> {
 ...

Accessing environment variables 1054

AWS Lambda Developer Guide

 upload_receipt_to_s3(client, &bucket_name, &key, &receipt_content).await?;
 ...
}

...

#[tokio::main]
async fn main() -> Result<(), Error> {
 let shared_config = aws_config::from_env().load().await;
 let client = Client::new(&shared_config);
 let shared_client = &client;
 lambda_runtime::run(service_fn(move |event: LambdaEvent<Request>| async move {
 handler(&shared_client, event).await
 }))
 .await

Code best practices for Rust Lambda functions

Adhere to the guidelines in the following list to use best coding practices when building your
Lambda functions:

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly on
execution environment startup.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation.

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

Code best practices for Rust Lambda functions 1055

AWS Lambda Developer Guide

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of
function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

Code best practices for Rust Lambda functions 1056

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

AWS Lambda Developer Guide

Using the Lambda context object to retrieve Rust function
information

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

When Lambda runs your function, it adds a context object to the LambdaEvent that the handler
receives. This object provides properties with information about the invocation, function, and
execution environment.

Context properties

• request_id: The AWS request ID generated by the Lambda service.

• deadline: The execution deadline for the current invocation in milliseconds.

• invoked_function_arn: The Amazon Resource Name (ARN) of the Lambda function being
invoked.

• xray_trace_id: The AWS X-Ray trace ID for the current invocation.

• client_content: The client context object sent by the AWS mobile SDK. This field is empty
unless the function is invoked using an AWS mobile SDK.

• identity: The Amazon Cognito identity that invoked the function. This field is empty unless
the invocation request to the Lambda APIs was made using AWS credentials issued by Amazon
Cognito identity pools.

• env_config: The Lambda function configuration from the local environment variables. This
property includes information such as the function name, memory allocation, version, and log
streams.

Accessing invoke context information

Lambda functions have access to metadata about their environment and the invocation request.
The LambaEvent object that your function handler receives includes the context metadata:

use lambda_runtime::{service_fn, LambdaEvent, Error};

Context 1057

https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

use serde_json::{json, Value};

async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 let invoked_function_arn = event.context.invoked_function_arn;
 Ok(json!({ "message": format!("Hello, this is function
 {invoked_function_arn}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

Accessing invoke context information 1058

AWS Lambda Developer Guide

Processing HTTP events with Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

Amazon API Gateway APIs, Application Load Balancers, and Lambda function URLs can send HTTP
events to Lambda. You can use the aws_lambda_events crate from crates.io to process events from
these sources.

Example — Handle API Gateway proxy request

Note the following:

• use aws_lambda_events::apigw::{ApiGatewayProxyRequest,
ApiGatewayProxyResponse}: The aws_lambda_events crate includes many Lambda events.
To reduce compilation time, use feature flags to activate the events you need. Example:
aws_lambda_events = { version = "0.8.3", default-features = false,
features = ["apigw"] }.

• use http::HeaderMap: This import requires you to add the http crate to your dependencies.

use aws_lambda_events::apigw::{ApiGatewayProxyRequest, ApiGatewayProxyResponse};
use http::HeaderMap;
use lambda_runtime::{service_fn, Error, LambdaEvent};

async fn handler(
 _event: LambdaEvent<ApiGatewayProxyRequest>,
) -> Result<ApiGatewayProxyResponse, Error> {
 let mut headers = HeaderMap::new();
 headers.insert("content-type", "text/html".parse().unwrap());
 let resp = ApiGatewayProxyResponse {
 status_code: 200,
 multi_value_headers: headers.clone(),
 is_base64_encoded: false,
 body: Some("Hello AWS Lambda HTTP request".into()),
 headers,
 };

HTTP events 1059

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/aws_lambda_events
https://crates.io/crates/aws-lambda-events
https://crates.io/crates/http

AWS Lambda Developer Guide

 Ok(resp)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

The Rust runtime client for Lambda also provides an abstraction over these event types that allows
you to work with native HTTP types, regardless of which service sends the events. The following
code is equivalent to the previous example, and it works out of the box with Lambda function
URLs, Application Load Balancers, and API Gateway.

Note

The lambda_http crate uses the lambda_runtime crate underneath. You don't have to
import lambda_runtime separately.

Example — Handle HTTP requests

use lambda_http::{service_fn, Error, IntoResponse, Request, RequestExt, Response};

async fn handler(event: Request) -> Result<impl IntoResponse, Error> {
 let resp = Response::builder()
 .status(200)
 .header("content-type", "text/html")
 .body("Hello AWS Lambda HTTP request")
 .map_err(Box::new)?;
 Ok(resp)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_http::run(service_fn(handler)).await
}

For another example of how to use lambda_http, see the http-axum code sample on the AWS
Labs GitHub repository.

HTTP events 1060

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/lambda_http
https://crates.io/crates/lambda_runtime
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/http-axum/src/main.rs

AWS Lambda Developer Guide

Sample HTTP Lambda events for Rust

• Lambda HTTP events: A Rust function that handles HTTP events.

• Lambda HTTP events with CORS headers: A Rust function that uses Tower to inject CORS
headers.

• Lambda HTTP events with shared resources: A Rust function that uses shared resources
initialized before the function handler is created.

HTTP events 1061

https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/http-basic-lambda
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/http-cors
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/basic-shared-resource

AWS Lambda Developer Guide

Deploy Rust Lambda functions with .zip file archives

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

This page describes how to compile your Rust function, and then deploy the compiled binary to
AWS Lambda using Cargo Lambda. It also shows how to deploy the compiled binary with the AWS
Command Line Interface and the AWS Serverless Application Model CLI.

Sections

• Prerequisites

• Building Rust functions on macOS, Windows, or Linux

• Deploying the Rust function binary with Cargo Lambda

• Invoking your Rust function with Cargo Lambda

Prerequisites

• Rust

• AWS CLI version 2

Building Rust functions on macOS, Windows, or Linux

The following steps demonstrate how to create the project for your first Lambda function with
Rust and compile it with Cargo Lambda.

1. Install Cargo Lambda, a Cargo subcommand, that compiles Rust functions for Lambda on
macOS, Windows, and Linux.

To install Cargo Lambda on any system that has Python 3 installed, use pip:

pip3 install cargo-lambda

To install Cargo Lambda on macOS or Linux, use Homebrew:

Deploy .zip file archives 1062

https://github.com/awslabs/aws-lambda-rust-runtime
https://www.cargo-lambda.info/guide/what-is-cargo-lambda.html
https://www.rust-lang.org/tools/install
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.cargo-lambda.info/

AWS Lambda Developer Guide

brew tap cargo-lambda/cargo-lambda
brew install cargo-lambda

To install Cargo Lambda on Windows, use Scoop:

scoop bucket add cargo-lambda
scoop install cargo-lambda/cargo-lambda

For other options, see Installation in the Cargo Lambda documentation.

2. Create the package structure. This command creates some basic function code in src/
main.rs. You can use this code for testing or replace it with your own.

cargo lambda new my-function

3. Inside the package's root directory, run the build subcommand to compile the code in your
function.

cargo lambda build --release

(Optional) If you want to use AWS Graviton2 on Lambda, add the --arm64 flag to compile
your code for ARM CPUs.

cargo lambda build --release --arm64

4. Before deploying your Rust function, configure AWS credentials on your machine.

aws configure

Deploying the Rust function binary with Cargo Lambda

Use the deploy subcommand to deploy the compiled binary to Lambda. This command creates an
execution role and then creates the Lambda function. To specify an existing execution role, use the
--iam-role flag.

cargo lambda deploy my-function

Deploying the function 1063

https://scoop.sh/
https://www.cargo-lambda.info/guide/installation.html
https://www.cargo-lambda.info/commands/build.html
https://www.cargo-lambda.info/commands/deploy.html
https://www.cargo-lambda.info/commands/deploy.html#iam-roles

AWS Lambda Developer Guide

Deploying your Rust function binary with the AWS CLI

You can also deploy your binary with the AWS CLI.

1. Use the build subcommand to build the .zip deployment package.

cargo lambda build --release --output-format zip

2. To deploy the .zip package to Lambda, run the create-function command.

• For --runtime, specify provided.al2023. This is an OS-only runtime. OS-only runtimes
are used to deploy compiled binaries and custom runtimes to Lambda.

• For --role, specify the ARN of the execution role.

aws lambda create-function \
 --function-name my-function \
 --runtime provided.al2023 \
 --role arn:aws:iam::111122223333:role/lambda-role \
 --handler rust.handler \
 --zip-file fileb://target/lambda/my-function/bootstrap.zip

Deploying your Rust function binary with the AWS SAM CLI

You can also deploy your binary with the AWS SAM CLI.

1. Create an AWS SAM template with the resource and property definition. For Runtime,
specify provided.al2023. This is an OS-only runtime. OS-only runtimes are used to deploy
compiled binaries and custom runtimes to Lambda.

For more information about deploying Lambda functions using AWS SAM, see
AWS::Serverless::Function in the AWS Serverless Application Model Developer Guide.

Example SAM resource and property definition for a Rust binary

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: SAM template for Rust binaries
Resources:
 RustFunction:

Deploying the function 1064

https://www.cargo-lambda.info/commands/build.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

 Type: AWS::Serverless::Function
 Properties:
 CodeUri: target/lambda/my-function/
 Handler: rust.handler
 Runtime: provided.al2023
Outputs:
 RustFunction:
 Description: "Lambda Function ARN"
 Value: !GetAtt RustFunction.Arn

2. Use the build subcommand to compile the function.

cargo lambda build --release

3. Use the sam deploy command to deploy the function to Lambda.

sam deploy --guided

For more information about building Rust functions with the AWS SAM CLI, see Building Rust
Lambda functions with Cargo Lambda in the AWS Serverless Application Model Developer Guide.

Invoking your Rust function with Cargo Lambda

Use the invoke subcommand to test your function with a payload.

cargo lambda invoke --remote --data-ascii '{"command": "Hello world"}' my-function

Invoking your Rust function with the AWS CLI

You can also use the AWS CLI to invoke the function.

aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"command": "Hello world"}' /tmp/out.txt

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

Invoking the function 1065

https://www.cargo-lambda.info/commands/build.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/building-rust.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/building-rust.html
https://www.cargo-lambda.info/commands/invoke.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Working with layers for Rust Lambda functions

We don't recommend using layers to manage dependencies for Lambda functions written in Rust.
This is because Lambda functions in Rust compile into a single executable, which you provide to
Lambda when you deploy your function. This executable contains your compiled function code,
along with all of its dependencies. Using layers not only complicates this process, but also leads
to increased cold start times because your functions need to manually load extra assemblies into
memory during the init phase.

To use external dependencies with your Rust handlers, include them directly in your deployment
package. By doing so, you simplify the deployment process and also take advantage of built-in
Rust compiler optimizations. For an example of how to import and use a dependency like the AWS
SDK for Rust in your function, see the section called “Handler”.

Layers 1066

AWS Lambda Developer Guide

Log and monitor Rust Lambda functions

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

AWS Lambda automatically monitors Lambda functions on your behalf and sends logs to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation to the log stream, and relays logs and other output from your function's code. For more
information, see Sending Lambda function logs to CloudWatch Logs. This page describes how to
produce log output from your Lambda function's code.

Creating a function that writes logs

To output logs from your function code, you can use any logging function that writes to stdout or
stderr, such as the println! macro. The following example uses println! to print a message
when the function handler starts and before it finishes.

use lambda_runtime::{service_fn, LambdaEvent, Error};
use serde_json::{json, Value};
async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 println!("Rust function invoked");
 let payload = event.payload;
 let first_name = payload["firstName"].as_str().unwrap_or("world");
 println!("Rust function responds to {}", &first_name);
 Ok(json!({ "message": format!("Hello, {first_name}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

Implementing advanced logging with the Tracing crate

Tracing is a framework for instrumenting Rust programs to collect structured, event-based
diagnostic information. This framework provides utilities to customize logging output levels and

Logging 1067

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/tracing

AWS Lambda Developer Guide

formats, like creating structured JSON log messages. To use this framework, you must initialize
a subscriber before implementing the function handler. Then, you can use tracing macros like
debug, info, and error, to specify the level of logging that you want for each scenario.

Example — Using the Tracing crate

Note the following:

• tracing_subscriber::fmt().json(): When this option is included, logs are formatted
in JSON. To use this option, you must include the json feature in the tracing-subscriber
dependency (for example,tracing-subscriber = { version = "0.3.11", features =
["json"] }).

• #[tracing::instrument(skip(event), fields(req_id =
%event.context.request_id))]: This annotation generates a span every time the handler is
invoked. The span adds the request ID to each log line.

• { %first_name }: This construct adds the first_name field to the log line where it's used.
The value for this field corresponds to the variable with the same name.

use lambda_runtime::{service_fn, Error, LambdaEvent};
use serde_json::{json, Value};
#[tracing::instrument(skip(event), fields(req_id = %event.context.request_id))]
async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 tracing::info!("Rust function invoked");
 let payload = event.payload;
 let first_name = payload["firstName"].as_str().unwrap_or("world");
 tracing::info!({ %first_name }, "Rust function responds to event");
 Ok(json!({ "message": format!("Hello, {first_name}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt().json()
 .with_max_level(tracing::Level::INFO)
 // this needs to be set to remove duplicated information in the log.
 .with_current_span(false)
 // this needs to be set to false, otherwise ANSI color codes will
 // show up in a confusing manner in CloudWatch logs.
 .with_ansi(false)
 // disabling time is handy because CloudWatch will add the ingestion time.
 .without_time()

Implementing advanced logging with the Tracing crate 1068

AWS Lambda Developer Guide

 // remove the name of the function from every log entry
 .with_target(false)
 .init();
 lambda_runtime::run(service_fn(handler)).await
}

When this Rust function is invoked, it prints two log lines similar to the following:

{"level":"INFO","fields":{"message":"Rust function invoked"},"spans":
[{"req_id":"45daaaa7-1a72-470c-9a62-e79860044bb5","name":"handler"}]}
{"level":"INFO","fields":{"message":"Rust function responds to
 event","first_name":"David"},"spans":[{"req_id":"45daaaa7-1a72-470c-9a62-
e79860044bb5","name":"handler"}]}

Implementing advanced logging with the Tracing crate 1069

AWS Lambda Developer Guide

Best practices for working with AWS Lambda functions

The following are recommended best practices for using AWS Lambda:

Topics

• Function code

• Function configuration

• Function scalability

• Metrics and alarms

• Working with streams

• Security best practices

Function code

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and
cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Avoid using recursive invocations in your Lambda function, where the function invokes itself or
initiates a process that may invoke the function again. This could lead to unintended volume of

Function code 1070

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html

AWS Lambda Developer Guide

function invocations and escalated costs. If you see an unintended volume of invocations, set the
function reserved concurrency to 0 immediately to throttle all invocations to the function, while
you update the code.

• Do not use non-documented, non-public APIs in your Lambda function code. For AWS Lambda
managed runtimes, Lambda periodically applies security and functional updates to Lambda's
internal APIs. These internal API updates may be backwards-incompatible, leading to unintended
consequences such as invocation failures if your function has a dependency on these non-public
APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

For language-specific code best practices, refer to the following sections:

• the section called “Best practices”

• the section called “Best practices”

• the section called “Code best practices for Python Lambda functions”

• the section called “Code best practices for Ruby Lambda functions”

• the section called “Code best practices for Java Lambda functions”

• the section called “Code best practices for Go Lambda functions”

• the section called “Code best practices for C# Lambda functions”

• the section called “Code best practices for Rust Lambda functions”

Function configuration

• Performance testing your Lambda function is a crucial part in ensuring you pick the optimum
memory size configuration. Any increase in memory size triggers an equivalent increase in CPU
available to your function. The memory usage for your function is determined per-invoke and
can be viewed in Amazon CloudWatch. On each invoke a REPORT: entry will be made, as shown
below:

REPORT RequestId: 3604209a-e9a3-11e6-939a-754dd98c7be3 Duration: 12.34 ms Billed
 Duration: 100 ms Memory Size: 128 MB Max Memory Used: 18 MB

Function configuration 1071

https://docs.aws.amazon.com/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchLogs.html

AWS Lambda Developer Guide

By analyzing the Max Memory Used: field, you can determine if your function needs more
memory or if you over-provisioned your function's memory size.

To find the right memory configuration for your functions, we recommend using the open
source AWS Lambda Power Tuning project. For more information, see AWS Lambda Power
Tuning on GitHub.

To optimize function performance, we also recommend deploying libraries that can leverage
Advanced Vector Extensions 2 (AVX2). This allows you to process demanding workloads,
including machine learning inferencing, media processing, high performance computing (HPC),
scientific simulations, and financial modeling. For more information, see Creating faster AWS
Lambda functions with AVX2.

• Load test your Lambda function to determine an optimum timeout value. It is important to
analyze how long your function runs so that you can better determine any problems with a
dependency service that may increase the concurrency of the function beyond what you expect.
This is especially important when your Lambda function makes network calls to resources that
may not handle Lambda's scaling. For more information about load testing your application, see
Distributed Load Testing on AWS.

• Use most-restrictive permissions when setting IAM policies. Understand the resources and
operations your Lambda function needs, and limit the execution role to these permissions. For
more information, see Managing permissions in AWS Lambda.

• Be familiar with Lambda quotas. Payload size, file descriptors and /tmp space are often
overlooked when determining runtime resource limits.

• Delete Lambda functions that you are no longer using. By doing so, the unused functions won't
needlessly count against your deployment package size limit.

• If you are using Amazon Simple Queue Service as an event source, make sure the value of the
function's expected invocation time does not exceed the Visibility Timeout value on the queue.
This applies both to CreateFunction and UpdateFunctionConfiguration.

• In the case of CreateFunction, AWS Lambda will fail the function creation process.

• In the case of UpdateFunctionConfiguration, it could result in duplicate invocations of the
function.

Function configuration 1072

https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://aws.amazon.com/blogs/compute/creating-faster-aws-lambda-functions-with-avx2/
https://aws.amazon.com/blogs/compute/creating-faster-aws-lambda-functions-with-avx2/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

Function scalability

• Be familiar with your upstream and downstream throughput constraints. While Lambda
functions scale seamlessly with load, upstream and downstream dependencies may not have
the same throughput capabilities. If you need to limit how high your function can scale, you can
configure reserved concurrency on your function.

• Build in throttle tolerance. If your synchronous function experiences throttling due to traffic
exceeding Lambda's scaling rate, you can use the following strategies to improve throttle
tolerance:

• Use timeouts, retries, and backoff with jitter. Implementing these strategies smooth out
retried invocations, and helps ensure Lambda can scale up within seconds to minimize end-
user throttling.

• Use provisioned concurrency. Provisioned concurrency is the number of pre-initialized
execution environments that Lambda allocates to your function. Lambda handles incoming
requests using provisioned concurrency when available. Lambda can also scale your function
above and beyond your provisioned concurrency setting if required. Configuring provisioned
concurrency incurs additional charges to your AWS account.

Metrics and alarms

• Use Using CloudWatch metrics with Lambda and CloudWatch Alarms instead of creating or
updating a metric from within your Lambda function code. It's a much more efficient way to
track the health of your Lambda functions, allowing you to catch issues early in the development
process. For instance, you can configure an alarm based on the expected duration of your
Lambda function invocation in order to address any bottlenecks or latencies attributable to your
function code.

• Leverage your logging library and AWS Lambda Metrics and Dimensions to catch app errors
(e.g. ERR, ERROR, WARNING, etc.)

• Use AWS Cost Anomaly Detection to detect unusual activity on your account. Cost Anomaly
Detection uses machine learning to continuously monitor your cost and usage while minimizing
false positive alerts. Cost Anomaly Detection uses data from AWS Cost Explorer, which has a
delay of up to 24 hours. As a result, it can take up to 24 hours to detect an anomaly after usage
occurs. To get started with Cost Anomaly Detection, you must first sign up for Cost Explorer.
Then, access Cost Anomaly Detection.

Function scalability 1073

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/lam-metricscollected.html
https://docs.aws.amazon.com/cost-management/latest/userguide/manage-ad.html
https://docs.aws.amazon.com/cost-management/latest/userguide/ce-enable.html
https://docs.aws.amazon.com/cost-management/latest/userguide/settingup-ad.html#access-ad

AWS Lambda Developer Guide

Working with streams

• Test with different batch and record sizes so that the polling frequency of each event source is
tuned to how quickly your function is able to complete its task. The CreateEventSourceMapping
BatchSize parameter controls the maximum number of records that can be sent to your function
with each invoke. A larger batch size can often more efficiently absorb the invoke overhead
across a larger set of records, increasing your throughput.

By default, Lambda invokes your function as soon as records are available. If the batch that
Lambda reads from the event source has only one record in it, Lambda sends only one record
to the function. To avoid invoking the function with a small number of records, you can tell the
event source to buffer records for up to 5 minutes by configuring a batching window. Before
invoking the function, Lambda continues to read records from the event source until it has
gathered a full batch, the batching window expires, or the batch reaches the payload limit of 6
MB. For more information, see Batching behavior.

Warning

Lambda event source mappings process each event at least once, and duplicate
processing of records can occur. To avoid potential issues related to duplicate events, we
strongly recommend that you make your function code idempotent. To learn more, see
How do I make my Lambda function idempotent in the AWS Knowledge Center.

• Increase Kinesis stream processing throughput by adding shards. A Kinesis stream is composed
of one or more shards. The rate at which Lambda can read data from Kinesis scales linearly
with the number of shards. Increasing the number of shards will directly increase the number
of maximum concurrent Lambda function invocations and can increase your Kinesis stream
processing throughput. For more information about the relationship between shards and
function invocations, see the section called “ Polling and batching streams”. If you are increasing
the number of shards in a Kinesis stream, make sure you have picked a good partition key (see
Partition Keys) for your data, so that related records end up on the same shards and your data is
well distributed.

• Use Amazon CloudWatch on IteratorAge to determine if your Kinesis stream is being processed.
For example, configure a CloudWatch alarm with a maximum setting to 30000 (30 seconds).

Working with streams 1074

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html#partition-key
https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html

AWS Lambda Developer Guide

Security best practices

• Monitor your usage of AWS Lambda as it relates to security best practices by using
AWS Security Hub. Security Hub uses security controls to evaluate resource configurations
and security standards to help you comply with various compliance frameworks. For more
information about using Security Hub to evaluate Lambda resources, see AWS Lambda controls
in the AWS Security Hub User Guide.

• Monitor Lambda network activity logs using Amazon GuardDuty Lambda Protection.
GuardDuty Lambda protection helps you identify potential security threats when Lambda
functions are invoked in your AWS account. For example, if one of your functions queries an IP
address that is associated with cryptocurrency-related activity. GuardDuty monitors the network
activity logs that are generated when a Lambda function is invoked. To learn more, see Lambda
protection in the Amazon GuardDuty User Guide.

Security best practices 1075

https://docs.aws.amazon.com/securityhub/latest/userguide/lambda-controls.html
https://docs.aws.amazon.com/guardduty/latest/ug/lambda-protection.html
https://docs.aws.amazon.com/guardduty/latest/ug/lambda-protection.html

AWS Lambda Developer Guide

How to test serverless functions and applications

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

1076

https://github.com/aws-samples/serverless-test-samples

AWS Lambda Developer Guide

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Targeted business outcomes

Testing serverless solutions may require slightly more time to set up tests that verify event-driven
interactions between services. Keep the following practical business reasons in mind as you read
this guide:

• Increase the quality of your application

• Decrease time to build features and fix bugs

The quality of an application depends on testing a variety of scenarios to verify functionality.
Carefully considering the business scenarios and automating those tests to run against cloud
services will raise the quality of your application.

Software bugs and configuration problems have the least impact on cost and schedule when
caught during an iterative development cycle. If issues remain undetected during development,
finding and fixing in production requires more effort by more people.

A well planned serverless testing strategy will increase software quality and improve iteration time
by verifying your Lambda functions and applications perform as expected in a cloud environment.

What to test

We recommend adopting a testing strategy that tests managed service behaviors, cloud
configuration, security policies, and the integration with your code to improve software quality.
Behavior testing, also known as black box testing, verifies a system works as expected without
knowing all the internals.

• Run unit tests to check business logic inside Lambda functions.

• Verify integrated services are actually invoked, and input parameters are correct.

• Check that an event goes through all expected services end-to-end in a workflow.

Targeted business outcomes 1077

AWS Lambda Developer Guide

In traditional server-based architecture, teams often define a scope for testing to only include
code that runs on the application server. Other components, services, or dependencies are often
considered external and out of scope for testing.

Serverless applications often consist of small units of work, such as Lambda functions that retrieve
products from a database, or process items from a queue, or resize an image in storage. Each
component runs in their own environment. Teams will likely be responsible for many of these small
units within a single application.

Some application functionality can be delegated entirely to managed services such as Amazon S3,
or created without using any internally developed code. There is no need to test these managed
services, but you do need to test the integration with these services.

How to test serverless

You are probably familiar with how to test applications deployed locally: You write tests that run
against code running entirely on your desktop operating system, or inside containers. For example,
you might invoke a local web service component with a request and then make assertions about
the response.

Serverless solutions are built from your function code and cloud-based managed services, such
as queues, databases, event buses, and messaging systems. These components are all connected
through an event-driven architecture, where messages, called events, flow from one resource
to another. These interactions can be synchronous, such as when a web service returns results
immediately, or an asynchronous action which completes at a later time, such as placing items in a
queue or starting a workflow step. Your testing strategy must include both scenarios and test the
interactions between services. For asynchronous interactions, you may need to detect side effects
in downstream components that may not be immediately observable.

Replicating an entire cloud environment, including queues, database tables, event buses, security
policies, and more, is not practical. You will inevitably encounter issues due to differences between
your local environment and your deployed environments in the cloud. The variations between your
environments will increase the time to reproduce and fix bugs.

In serverless applications, architecture components commonly exist entirely in the cloud, so testing
against code and services in the cloud is necessary to develop features and fix bugs.

How to test serverless 1078

AWS Lambda Developer Guide

Testing techniques

In reality, your testing strategy will likely include a mix of techniques to increase quality of your
solutions. You will use quick interactive tests to debug functions in the console, automated unit
tests to check isolated business logic, verification of calls to external services with mocks, and
occasional testing against emulators that mimic a service.

• Testing in the cloud - you deploy infrastructure and code to test with actual services, security
policies, configurations and infrastructure specific parameters. Cloud-based tests provide the
most accurate measure of quality of your code.

Debugging a function in the console is a quick way to test in the cloud. You can choose from a
library of sample test events or create a custom event to test a function in isolation. You can also
share test events through the console with your team.

To automate testing in the development and build lifecycle, you will need to test outside of the
console. See the language specific testing sections in this guide for automation strategies and
resources.

• Testing with mocks (also called fakes) - Mocks are objects within your code that simulate and
stand-in for an external service. Mocks provide pre-defined behavior to verify service calls
and parameters. A fake is a mock implementation that takes shortcuts to simplify or improve
performance. For example, a fake data access object might return data from an in-memory
datastore. Mocks can mimic and simplify complex dependencies, but can also lead to more
mocks in order to replace nested dependencies.

• Testing with emulators - You can setup applications (sometimes from a third party) to mimic
a cloud service in your local environment. Speed is their strength, but setup and parity with
production services is their weakness. Use emulators sparingly.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. When you run tests against cloud-based code that also interacts with cloud-
based services, you get the most accurate measure of quality of your code.

A convenient way to run a Lambda function in the cloud is with a test event in the AWS
Management Console. A test event is a JSON input to your function. If your function does not
require input, the event can be an empty JSON document ({}). The console provides sample

Testing techniques 1079

AWS Lambda Developer Guide

events for a variety of service integrations. After creating an event in the console, you can also
share it with your team to make testing easier and consistent.

Learn how to debug a sample function in the console.

Note

Although running functions in the console is a quick way to debug, automating your test
cycles is essential to increase application quality and development speed.

Test automation samples are available in the Serverless Test Samples repository. The following
command line runs an automated Python integration test example:

python -m pytest -s tests/integration -v

Although the test runs locally, it interacts with cloud-based resources. These resources have been
deployed using the AWS Serverless Application Model and AWS SAM command line tool. The test
code first retrieves the deployed stack outputs, which includes the API endpoint, function ARN,
and security role. Next, the test sends a request to the API endpoint, which responds with a list of
Amazon S3 buckets. This test runs entirely against cloud-based resources to verify those resources
are deployed, secured, and work as expected.

========================= test session starts =========================
 platform darwin -- Python 3.10.10, pytest-7.3.1, pluggy-1.0.0
 -- /Users/t/code/aws/serverless-test-samples/python-test-samples/apigw-lambda/
venv/bin/python
 cachedir: .pytest_cache
 rootdir: /Users/t/code/aws/serverless-test-samples/python-test-samples/apigw-
lambda
 plugins: mock-3.10.0
 collected 1 item

 tests/integration/test_api_gateway.py::TestApiGateway::test_api_gateway

 --> Stack outputs:

 HelloWorldApi
 = https://p7teqs3162.execute-api.us-east-2.amazonaws.com/Prod/hello/
 > API Gateway endpoint URL for Prod stage for Hello World function

Testing in the cloud 1080

https://github.com/aws-samples/serverless-test-samples
https://github.com/aws-samples/serverless-test-samples/blob/main/python-test-samples/apigw-lambda/tests/integration/test_api_gateway.py

AWS Lambda Developer Guide

 PythonTestDemo
 = arn:aws:lambda:us-east-2:123456789012:function:testing-apigw-lambda-
PythonTestDemo-iSij8evaTdxl
 > Hello World Lambda Function ARN

 PythonTestDemoIamRole
 = arn:aws:iam::123456789012:role/testing-apigw-lambda-PythonTestDemoRole-
IZELQQ9MG4HQ
 > Implicit IAM Role created for Hello World function

 --> Found API endpoint for "testing-apigw-lambda" stack...
 --> https://p7teqs3162.execute-api.us-east-2.amazonaws.com/Prod/hello/
 API Gateway response:
 amplify-dev-123456789-deployment|myapp-prod-p-loggingbucket-123456|s3-java-
bucket-123456789
 PASSED

 ========================= 1 passed in 1.53s =========================

For cloud-native application development, testing in the cloud provides the following benefits:

• You can test every available service.

• You are always using the most recent service APIs and return values.

• A cloud test environment closely resembles your production environment.

• Tests can cover security policies, service quotas, configurations and infrastructure specific
parameters.

• Every developer can quickly create one or more testing environments in the cloud.

• Cloud tests increase confidence your code will run correctly in production.

Testing in the cloud does have some disadvantages. The most obvious negative of testing in the
cloud is that deployments to cloud environments typically take longer than deployments to a local
desktop environments.

Fortunately, tools such as AWS Serverless Application Model (AWS SAM) Accelerate, AWS Cloud
Development Kit (AWS CDK) watch mode, and SST (3rd party) reduce the latency involved
with cloud deployment iterations. These tools can monitor your infrastructure and code and
automatically deploy incremental updates into your cloud environment.

Testing in the cloud 1081

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://sst.dev/

AWS Lambda Developer Guide

Note

See how to create infrastructure as code in the Serverless Developer Guide to learn
more about AWS Serverless Application Model, AWS CloudFormation, and AWS Cloud
Development Kit (AWS CDK).

Unlike local testing, testing in the cloud requires additional resources which may incur service
costs. Creating isolated testing environments may increase the burden on your DevOps teams,
especially in organizations with strict controls around accounts and infrastructure. Even so, when
working with complex infrastructure scenarios, the cost in developer time to set up and maintain
an intricate local environment could be similar (or more costly) than using disposable testing
environments created with Infrastructure as Code automation tools.

Testing in the cloud, even with these considerations, is still the best way to guarantee the quality
of your serverless solutions.

Testing with mocks

Testing with mocks is a technique where you create replacement objects in your code to simulate
the behavior of a cloud service.

For example, you could write a test that uses a mock of the Amazon S3 service that returns a
specific response whenever the CreateObject method is called. When a test runs, the mock returns
that programmed response without calling Amazon S3, or any other service endpoints.

Mock objects are often generated by a mock framework to reduce development effort. Some mock
frameworks are generic and others are designed specifically for AWS SDKs, such as Moto, a Python
library for mocking AWS services and resources.

Note that mock objects differ from emulators in that mocks are typically created or configured by
a developer as part of the test code, whereas emulators are standalone applications that expose
functionality in the same manner as the systems they emulate.

The advantages of using mocks include the following:

• Mocks can simulate third-party services that are beyond the control of your application, such as
APIs and software as a service (SaaS) providers, without needing direct access to those services.

• Mocks are useful for testing failure conditions, especially when such conditions are hard to
simulate, like a service outage.

Testing with mocks 1082

https://docs.aws.amazon.com/serverless/latest/devguide/serverless-dev-workflow.html#dev_create-infrastructure-with-code
https://pypi.org/project/moto/

AWS Lambda Developer Guide

• Mock can provide fast local testing once configured.
• Mocks can provide substitute behavior for virtually any kind of object, so mocking strategies can

create coverage for a wider variety of services than emulators.
• When new features or behaviors become available, mock testing can react more quickly. By using

a generic mock framework, you can simulate new features as soon as the updated AWS SDK
become available.

Mock testing has these disadvantages:

• Mocks generally require a non-trivial amount of setup and configuration effort, specifically when
trying to determine return values from different services in order to properly mock responses.

• Mocks are written, configured, and must be maintained by developers, increasing their
responsibilities.

• You might need to have access to the cloud in order to understand the APIs and return values of
services.

• Mocks can be difficult to maintain. When mocked cloud API signatures change, or return value
schemas evolve, you need to update your mocks. Mocks also require updates if you extend your
application logic to make calls to new APIs.

• Tests that use mocks might pass in desktop environments but fail in the cloud. Results may not
match the current API. Service configuration and quotas cannot be tested.

• Mock frameworks are limited in testing or detecting AWS Identity and Access Management (IAM)
policy or quota limitations. Although mocks are better at simulating when authorization fails or
a quota is exceeded, testing cannot determine which outcome will actually occur in a production
environment.

Testing with emulation

Emulators are typically a locally running application which mimics a production AWS service.

Emulators have APIs that are similar to their cloud counterparts and provide similar return values.
They can also simulate state changes that are initiated by API calls. For example, you might use
AWS SAM to run a function with AWS SAM local to emulate the Lambda service so that you can
quickly invoke a function. See AWS SAM local in the AWS Serverless Application Model Developer
Guide for details.

The advantages of test with emulators include the following:

• Emulators can facilitate fast local development iterations and testing.

Testing with emulation 1083

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-local.html

AWS Lambda Developer Guide

• Emulators provide a familiar environment for developers used to developing code in a local
environment. For example, if you’re familiar with the development of an n-tier application, you
might have a database engine and web server, similar to those running in production, running on
your local machine to provide quick, local, isolated test capability.

• Emulators do not require any changes to cloud infrastructure (such as developer cloud accounts),
so it’s easy to implement with existing testing patterns.

Testing with emulators has these disadvantages:

• Emulators can be difficult to set up and replicate, especially when used in CI/CD pipelines. This
can increase the workload of IT staff or developers who manage their own software.

• Emulated features and APIs typically lag behind service updates. This can lead to errors because
tested code does not match the actual API, and impede the adoption of new features.

• Emulators require support, updates, bug fixes, and feature parity enhancements. These are the
responsibility of the emulator author, which could be a third-party company.

• Tests that rely on emulators may provide successful results locally, but fail in the cloud due to
production security policies, inter-service configurations, or exceeding Lambda quotas.

• Many AWS services do not have emulators available. If you rely on emulation, you may not have
a satisfactory testing option for portions of your application.

Best practices

The following sections provide recommendations for successful serverless application testing.

You can find practical examples of tests and test automation in the Serverless Test Samples
repository.

Prioritize testing in the cloud

Testing in the cloud provides the most reliable, accurate, and complete test coverage. Performing
tests in the context of the cloud will comprehensively test not only business logic but also security
policies, service configurations, quotas, and the most up to date API signatures and return values.

Structure your code for testability

Simplify your tests and Lambda functions by separating Lambda-specific code from your core
business logic.

Best practices 1084

https://github.com/aws-samples/serverless-test-samples
https://github.com/aws-samples/serverless-test-samples

AWS Lambda Developer Guide

Your Lambda function handler should be a slim adapter that takes in event data and passes
only the details that matter to your business logic method(s). With this strategy, you can wrap
comprehensive tests around your business logic without worrying about Lambda-specific details.
Your AWS Lambda functions should not require setting up a complex environment or large amount
of dependencies to create and initialize the component under test.

Generally speaking, you should write a handler that extracts and validates data from the incoming
event and context objects, then sends that input to methods that perform your business logic.

Accelerate development feedback loops

There are tools and techniques to accelerate development feedback loops. For example, AWS
SAM Accelerate and AWS CDK watch mode both decrease the time required to update cloud
environments.

The samples in the GitHub Serverless Test Samples repository explore some of these techniques.

We also recommend that you create and test cloud resources as early as possible during
development—not only after a check-in to source control. This practice enables quicker exploration
and experimentation when developing solutions. In addition, automating deployment from a
development machine helps you discover cloud configuration problems more quickly and reduces
wasted effort for updates and code review processes.

Focus on integration tests

When building applications with Lambda, testing components together is a best practice.

Tests that run against two or more architectural components are called integration tests. The goal
of integration tests is to understand not only how your code will execute across components,
but how the environment hosting your code will behave. End-to-end tests are special types of
integration tests that verify behaviors across an entire application.

To build integration tests, deploy your application to a cloud environment. This can be done from a
local environment or through a CI/CD pipeline. Then, write tests to exercise the system under test
(SUT) and validate expected behavior.

For example, the system under test could be an application that uses API Gateway, Lambda and
DynamoDB. A test could make a synthetic HTTP call to an API Gateway endpoint and validate
that the response included the expected payload. This test validates that the AWS Lambda code

Accelerate development feedback loops 1085

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://github.com/aws-samples/serverless-test-samples

AWS Lambda Developer Guide

is correct, and that each service is correctly configured to handle the request, including the IAM
permissions between them. Further, you could design the test to write records of various sizes to
verify your service quotas, such as max record size in DynamoDB, are set up correctly.

Create isolated test environments

Testing in the cloud typically requires isolated developer environments, so that tests, data, and
events do not overlap.

One approach is to provide each developer a dedicated AWS account. This will avoid conflicts with
resource naming that can occur when multiple developers working in a shared code base, attempt
to deploy resources or invoke an API.

Automated test processes should create uniquely named resources for each stack. For example,
you can set up scripts or TOML configuration files so that AWS SAM CLI sam deploy or sam sync
commands will automatically specify a stack with a unique prefix.

In some cases, developers share an AWS account. This may be due to having resources in your
stack that are expensive to operate, or to provision and configure. For example, a database may be
shared to make it easier to set up and seed the data properly

If developers share an account, you should set boundaries to identify ownership and eliminate
overlap. One way to do this is by prefixing stack names with developer user IDs. Another popular
approach is to set up stacks based on code branches. With branch boundaries, environments are
isolated, but developers can still share resources, such as a relational database. This approach is a
best practice when developers work on more than one branch at a time.

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. Maintaining proper isolation is essential; but you still want your QA environment
to resemble your production environment as closely as possible. For this reason, teams add change
control processes for QA environments.

Create isolated test environments 1086

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-sync.html

AWS Lambda Developer Guide

For pre-production and production environments, boundaries are typically drawn at the account
level to insulate workloads from noisy neighbor problems and implement least privilege security
controls to protect sensitive data. Workloads have quotas. You don't want your testing to consume
quotas allocated for production (noisy neighbor) or have access to customer data. Load testing is
another activity you should isolate from your production stack.

In all cases, environments should be configured with alerts and controls to avoid unnecessary
spending. For example, you can limit the type, tier, or size of resources that can be created, and set
up email alerts when estimated costs exceed a given threshold.

Use mocks for isolated business logic

Mock frameworks are a valuable tool for writing fast unit tests. They are especially beneficial
when tests cover complex internal business logic, such as mathematical or financial calculations or
simulations. Look for unit tests that have a large number of test cases or input variations, where
those inputs do not change the pattern or the content of calls to other cloud services.

Code that is covered by unit tests with mocks should also be covered by testing in the cloud. This
is recommended because a developer laptop or build machine environment could be configured
differently than a production environment in the cloud. For example, your Lambda functions could
use more memory or time than allocated when run with certain input parameters. Or your code
might include environment variables that are not configured in the same way (or at all), and the
differences could cause the code to behave differently or fail.

The benefit of mocks is less for integration tests, because the level of effort to implement the
necessary mocks increases with the number of connection points. End-to-end testing should not
use mocks, because these tests generally deal with states and complex logic that cannot be easily
simulated with mock frameworks.

Lastly, avoid using mocked cloud services to validate the proper implementation of service calls.
Instead, make cloud service calls in the cloud to validate behavior, configuration, and functional
implementation.

Use emulators sparingly

Emulators can be convenient for some use cases, for example, for a development team with
limited, unreliable, or slow internet access. But, in most circumstances, choose to use emulators
sparingly.

Use mocks for isolated business logic 1087

AWS Lambda Developer Guide

By avoiding emulators, you will be able to build and innovate with the latest service features and
up to date APIs. You will not be stuck waiting on vendor releases to achieve feature parity. You
will reduce your upfront and ongoing expenses for purchasing and configuration on multiple
development systems and build machines. Moreover, you will avoid the problem that many cloud
services simply do not have emulators available. A testing strategy that depends on emulation will
make it impossible to use those services (leading to potentially more expensive workarounds) or
produce code and configurations that aren’t well tested.

When you do use emulation for testing, you must still test in the cloud to verify configuration
and to test interactions with cloud services that can only be simulated or mocked in an emulated
environment.

Challenges testing locally

When you use emulators and mocked calls to test on your local desktop you might experience
testing inconsistencies as your code progresses from environment to environment in your CI/CD
pipeline. Unit tests to validate your application’s business logic on your desktop may not accurately
test critical aspects of the cloud services.

The following examples provide cases to watch out for when testing locally with mocks and
emulators:

Example: Lambda function creates an S3 bucket

If a Lambda function’s logic depends on creating an S3 bucket, a complete test should confirm that
Amazon S3 was called and the bucket was successfully created.

• In a mock testing setup, you might mock a success response and potentially add a test case to
handle a failure response.

• In an emulation testing scenario, the CreateBucket API might be called, but you need to be
aware that the identity making the local call will not originate from the Lambda service.
The calling identity will not assume a security role as it would in the cloud, so a placeholder
authentication will be used instead, possibly with a more permissive role or user identity that will
be different when run in the cloud.

The mock and emulation setups will test what the Lambda function will do if it calls Amazon
S3; however, those tests will not verify that the Lambda function, as configured, is capable of
successfully creating the Amazon S3 bucket. You must make sure the role assigned to the function

Challenges testing locally 1088

AWS Lambda Developer Guide

has an attached security policy that allows the function to perform the s3:CreateBucket action.
If not, the function will likely fail when deployed to a cloud environment.

Example: Lambda function processes messages from an Amazon SQS
queue

If an Amazon SQS queue is the source of a Lambda function, a complete test should verify that the
Lambda function is successfully invoked when a message is put in a queue.

Emulation testing and mock testing are generally set up to run the Lambda function code directly,
and to simulate the Amazon SQS integration by passing a JSON event payload (or a deserialized
object) as the function handler’s input.

Local testing that simulates the Amazon SQS integration will test what the Lambda function will
do when it’s called by Amazon SQS with a given payload, but the test will not verify that Amazon
SQS will successfully invoke the Lambda function when it is deployed to a cloud environment.

Some examples of configuration problems you might encounter with Amazon SQS and Lambda
include the following:

• Amazon SQS visibility timeout is too low, resulting in multiple invocations when only one was
intended.

• The Lambda function’s execution role doesn’t allow reading messages from the queue (through
sqs:ReceiveMessage, sqs:DeleteMessage, orsqs:GetQueueAttributes).

• The sample event that is passed to the Lambda function exceeds the Amazon SQS message size
quota. Therefore, the test is invalid because Amazon SQS would never be able to send a message
of that size.

As these examples show, tests that cover business logic but not the configurations between cloud
services are likely to provide unreliable results.

FAQ

I have a Lambda function that performs calculations and returns a result without calling any
other services. Do I really need to test it in the cloud?

Yes. Lambda functions have configuration parameters that could change the outcome of the test.
All Lambda function code has a dependency on timeout and memory settings, which could cause
the function to fail if those settings are not set properly. Lambda policies also enable standard

Example: Lambda function processes messages from an Amazon SQS queue 1089

AWS Lambda Developer Guide

output logging to Amazon CloudWatch. Even if your code does not call CloudWatch directly,
permission is needed to enable logging. This required permission cannot be accurately mocked or
emulated.

How can testing in the cloud help with unit testing? If it’s in the cloud and connects to other
resources, isn’t that an integration test?

We define unit tests as tests that operate on architectural components in isolation, but this does
not prevent tests from including components that may call other services or use some network
communication.

Many serverless applications have architectural components that can be tested in isolation, even
in the cloud. One example is a Lambda function that takes input, processes the data, and sends
a message to an Amazon SQS queue. A unit test of this function would likely test whether input
values result in certain values being present in the queued message.

Consider a test that is written by using the Arrange, Act, Assert pattern:

• Arrange: Allocate resources (a queue to receive messages, and the function under test).
• Act: Call the function under test.
• Assert: Retrieve the message sent by the function, and validate the output.

A mock testing approach would involve mocking the queue with an in-process mock object, and
creating an in-process instance of the class or module that contains the Lambda function code.
During the Assert phase, the queued message would be retrieved from the mocked object.

In a cloud-based approach, the test would create an Amazon SQS queue for the purposes of the
test, and would deploy the Lambda function with environment variables that are configured to use
the isolated Amazon SQS queue as the output destination. After running the Lambda function, the
test would retrieve the message from the Amazon SQS queue.

The cloud-based test would run the same code, assert the same behavior, and validate the
application’s functional correctness. However, it would have the added advantage of being able to
validate the settings of the Lambda function: the IAM role, IAM policies, and the function’s timeout
and memory settings.

Next steps and resources

Use the following resources to learn more and explore practical examples of testing.

Next steps and resources 1090

http://aws.amazon.com/cloudwatch/

AWS Lambda Developer Guide

Sample implementations

The Serverless Test Samples repository on GitHub contains concrete examples of tests that follow
the patterns and best practices described in this guide. The repository contains sample code and
guided walkthroughs of the mock, emulation, and cloud testing processes described in previous
sections. Use this repository to get up to speed on the latest serverless testing guidance from AWS.

Further reading

Visit Serverless Land to access the latest blogs, videos, and training for AWS serverless
technologies.

The following AWS blog posts are also recommended reading:

• Accelerating serverless development with AWS SAM Accelerate (AWS blog post)

• Increasing development speed with CDK Watch (AWS blog post)

• Mocking service integrations with AWS Step Functions Local (AWS blog post)

• Getting started with testing serverless applications (AWS blog post)

Tools

• AWS SAM – Testing and debugging serverless applications
• AWS SAM – Integrating with automated tests
• Lambda – Testing Lambda functions in the Lambda console

Next steps and resources 1091

https://github.com/aws-samples/serverless-test-samples
https://serverlessland.com/
https://aws.amazon.com/blogs/compute/accelerating-serverless-development-with-aws-sam-accelerate/
https://aws.amazon.com/blogs/developer/increasing-development-speed-with-cdk-watch/
https://aws.amazon.com/blogs/compute/mocking-service-integrations-with-aws-step-functions-local/
https://aws.amazon.com/blogs/compute/getting-started-with-testing-serverless-applications/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-using-automated-tests.html

AWS Lambda Developer Guide

Improving startup performance with Lambda SnapStart

Lambda SnapStart can provide as low as sub-second startup performance, typically with no
changes to your function code. SnapStart makes it easier to build highly responsive and scalable
applications without provisioning resources or implementing complex performance optimizations.

The largest contributor to startup latency (often referred to as cold start time) is the time that
Lambda spends initializing the function, which includes loading the function's code, starting the
runtime, and initializing the function code. With SnapStart, Lambda initializes your function when
you publish a function version. Lambda takes a Firecracker microVM snapshot of the memory and
disk state of the initialized execution environment, encrypts the snapshot, and intelligently caches
it to optimize retrieval latency.

To ensure resiliency, Lambda maintains several copies of each snapshot. Lambda automatically
patches snapshots and their copies with the latest runtime and security updates. When you invoke
the function version for the first time, and as the invocations scale up, Lambda resumes new
execution environments from the cached snapshot instead of initializing them from scratch,
improving startup latency.

Important

If your applications depend on uniqueness of state, you must evaluate your function code
and verify that it is resilient to snapshot operations. For more information, see Handling
uniqueness with Lambda SnapStart.

Topics

• When to use SnapStart

• Supported features and limitations

• Supported Regions

• Compatibility considerations

• SnapStart pricing

• Activating and managing Lambda SnapStart

• Handling uniqueness with Lambda SnapStart

• Implement code before or after Lambda function snapshots

• Monitoring for Lambda SnapStart

1092

https://aws.amazon.com/blogs/opensource/firecracker-open-source-secure-fast-microvm-serverless/

AWS Lambda Developer Guide

• Security model for Lambda SnapStart

• Maximize Lambda SnapStart performance

• Troubleshooting SnapStart errors for Lambda functions

When to use SnapStart

Lambda SnapStart is designed to address the latency variability introduced by one-time
initialization code, such as loading module dependencies or frameworks. These operations can
sometimes take several seconds to complete during the initial invocation. Use SnapStart to reduce
this latency from several seconds to as low as sub-second, in optimal scenarios. SnapStart works
best when used with function invocations at scale. Functions that are invoked infrequently might
not experience the same performance improvements.

SnapStart is particularly beneficial for two main types of applications:

• Latency-sensitive APIs and user flows: Functions that are part of critical API endpoints or user-
facing flows can benefit from SnapStart's reduced latency and improved response times.

• Latency-sensitive data processing workflows: Time-bound data processing workflows that
use Lambda functions can achieve better throughput by reducing outlier function initialization
latency.

Provisioned concurrency keeps functions initialized and ready to respond in double-digit
milliseconds. Use provisioned concurrency if your application has strict cold start latency
requirements that can't be adequately addressed by SnapStart.

Supported features and limitations

SnapStart is available for the following Lambda managed runtimes:

• Java 11 and later

• Python 3.12 and later

• .NET 8 and later. If you're using the Lambda Annotations framework for .NET, upgrade to
Amazon.Lambda.Annotations version 1.6.0 or later to ensure compatibility with SnapStart.

Other managed runtimes (such as nodejs22.x and ruby3.4), OS-only runtimes, and container
images are not supported.

Use cases 1093

https://www.nuget.org/packages/Amazon.Lambda.Annotations

AWS Lambda Developer Guide

SnapStart does not support provisioned concurrency, Amazon Elastic File System (Amazon EFS), or
ephemeral storage greater than 512 MB.

Note

You can use SnapStart only on published function versions and aliases that point to
versions. You can't use SnapStart on a function's unpublished version ($LATEST).

Supported Regions

Lambda SnapStart is available in all commercial Regions except Asia Pacific (Taipei).

Compatibility considerations

With SnapStart, Lambda uses a single snapshot as the initial state for multiple execution
environments. If your function uses any of the following during the initialization phase, then you
might need to make some changes before using SnapStart:

Uniqueness

If your initialization code generates unique content that is included in the snapshot, then the
content might not be unique when it is reused across execution environments. To maintain
uniqueness when using SnapStart, you must generate unique content after initialization. This
includes unique IDs, unique secrets, and entropy that's used to generate pseudorandomness. To
learn how to restore uniqueness, see Handling uniqueness with Lambda SnapStart.

Network connections

The state of connections that your function establishes during the initialization phase isn't
guaranteed when Lambda resumes your function from a snapshot. Validate the state of your
network connections and re-establish them as necessary. In most cases, network connections
that an AWS SDK establishes automatically resume. For other connections, review the best
practices.

Temporary data

Some functions download or initialize ephemeral data, such as temporary credentials or cached
timestamps, during the initialization phase. Refresh ephemeral data in the function handler
before using it, even when not using SnapStart.

Supported Regions 1094

https://docs.aws.amazon.com/efs/latest/ug/accessing-fs.html
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#region

AWS Lambda Developer Guide

SnapStart pricing

Note

For Java managed runtimes, there's no additional cost for SnapStart. You're charged based
on the number of requests for your functions, the time that it takes your code to run, and
the memory configured for your function.

The cost of using SnapStart includes the following:

• Caching: For every function version that you publish with SnapStart enabled, you pay for the
cost of caching and maintaining the snapshot. The price depends on the amount of memory
that you allocate to your function. You're charged for a minimum of 3 hours. You will continue
to be charged as long as your function remains active. Use the ListVersionsByFunction API
action to identify function versions, and then use DeleteFunction to delete unused versions.
To automatically delete unused function versions, see the Lambda Version Cleanup pattern on
Serverless Land.

• Restoration: Each time a function instance is restored from a snapshot, you pay a restoration
charge. The price depends on the amount of memory you allocate to your function.

As with all Lambda functions, duration charges apply to code that runs in the function handler. For
SnapStart functions, duration charges also apply to initialization code that's declared outside of
the handler, the time it takes for the runtime to load, and any code that runs in a runtime hook.
Duration is calculated from the time that your code begins running until it returns or otherwise
ends, rounded up to the nearest 1 ms. Lambda maintains cached copies of your snapshot for
resiliency and automatically applies software updates, such as runtime upgrades and security
patches to them. Charges apply each time that Lambda re-runs your initialization code to apply
software updates.

For more information about the cost of using SnapStart, see AWS Lambda Pricing.

Pricing 1095

https://docs.aws.amazon.com/lambda/latest/api/API_ListVersionsByFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunction.html
https://serverlessland.com/workflows/step-functions-lambda-version-cleanup
https://aws.amazon.com/lambda/pricing/#SnapStart_Pricing

AWS Lambda Developer Guide

Activating and managing Lambda SnapStart

To use SnapStart, activate SnapStart on a new or existing Lambda function. Then, publish and
invoke a function version.

Topics

• Activating SnapStart (console)

• Activating SnapStart (AWS CLI)

• Activating SnapStart (API)

• Lambda SnapStart and function states

• Updating a snapshot

• Using SnapStart with AWS SDKs

• Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDK

• Deleting snapshots

Activating SnapStart (console)

To activate SnapStart for a function

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose General configuration.

4. On the General configuration pane, choose Edit.

5. On the Edit basic settings page, for SnapStart, choose Published versions.

6. Choose Save.

7. Publish a function version. Lambda initializes your code, creates a snapshot of the initialized
execution environment, and then caches the snapshot for low-latency access.

8. Invoke the function version.

Activating SnapStart 1096

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Activating SnapStart (AWS CLI)

To activate SnapStart for an existing function

1. Update the function configuration by running the update-function-configuration command
with the --snap-start option.

aws lambda update-function-configuration \
 --function-name my-function \
 --snap-start ApplyOn=PublishedVersions

2. Publish a function version with the publish-version command.

aws lambda publish-version \
 --function-name my-function

3. Confirm that SnapStart is activated for the function version by running the get-function-
configuration command and specifying the version number. The following example specifies
version 1.

aws lambda get-function-configuration \
 --function-name my-function:1

If the response shows that OptimizationStatus is On and State is Active, then SnapStart is
activated and a snapshot is available for the specified function version.

"SnapStart": {
 "ApplyOn": "PublishedVersions",
 "OptimizationStatus": "On"
 },
 "State": "Active",

4. Invoke the function version by running the invoke command and specifying the version. The
following example invokes version 1.

aws lambda invoke \
 --cli-binary-format raw-in-base64-out \
 --function-name my-function:1 \
 --payload '{ "name": "Bob" }' \
 response.json

Activating SnapStart (AWS CLI) 1097

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://docs.aws.amazon.com/lambda/latest/api/API_SnapStartResponse.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html

AWS Lambda Developer Guide

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

To activate SnapStart when you create a new function

1. Create a function by running the create-function command with the --snap-start option. For --
role, specify the Amazon Resource Name (ARN) of your execution role.

aws lambda create-function \
 --function-name my-function \
 --runtime "java21" \
 --zip-file fileb://my-function.zip \
 --handler my-function.handler \
 --role arn:aws:iam::111122223333:role/lambda-ex \
 --snap-start ApplyOn=PublishedVersions

2. Create a version with the publish-version command.

aws lambda publish-version \
 --function-name my-function

3. Confirm that SnapStart is activated for the function version by running the get-function-
configuration command and specifying the version number. The following example specifies
version 1.

aws lambda get-function-configuration \
 --function-name my-function:1

If the response shows that OptimizationStatus is On and State is Active, then SnapStart is
activated and a snapshot is available for the specified function version.

"SnapStart": {
 "ApplyOn": "PublishedVersions",
 "OptimizationStatus": "On"
 },
 "State": "Active",

Activating SnapStart (AWS CLI) 1098

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://docs.aws.amazon.com/lambda/latest/api/API_SnapStartResponse.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State

AWS Lambda Developer Guide

4. Invoke the function version by running the invoke command and specifying the version. The
following example invokes version 1.

aws lambda invoke \
 --cli-binary-format raw-in-base64-out \
 --function-name my-function:1 \
 --payload '{ "name": "Bob" }' \
 response.json

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

Activating SnapStart (API)

To activate SnapStart

1. Do one of the following:

• Create a new function with SnapStart activated by using the CreateFunction API action
with the SnapStart parameter.

• Activate SnapStart for an existing function by using the UpdateFunctionConfiguration
action with the SnapStart parameter.

2. Publish a function version with the PublishVersion action. Lambda initializes your code, creates
a snapshot of the initialized execution environment, and then caches the snapshot for low-
latency access.

3. Confirm that SnapStart is activated for the function version by using the
GetFunctionConfiguration action. Specify a version number to confirm that SnapStart is
activated for that version. If the response shows that OptimizationStatus is On and State is
Active, then SnapStart is activated and a snapshot is available for the specified function
version.

"SnapStart": {
 "ApplyOn": "PublishedVersions",
 "OptimizationStatus": "On"
 },
 "State": "Active",

Activating SnapStart (API) 1099

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_SnapStart.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_SnapStart.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_SnapStartResponse.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State

AWS Lambda Developer Guide

4. Invoke the function version with the Invoke action.

Lambda SnapStart and function states

The following function states can occur when you use SnapStart.

Pending

Lambda is initializing your code and taking a snapshot of the initialized execution environment.
Any invocations or other API actions that operate on the function version will fail.

Active

Snapshot creation is complete and you can invoke the function. To use SnapStart, you must
invoke the published function version, not the unpublished version ($LATEST).

Inactive

The Inactive state can occur when Lambda periodically regenerates function snapshots to
apply software updates. In this instance, if your function fails to initialize, the function can enter
an Inactive state.

For functions using a Java runtime, Lambda deletes snapshots after 14 days without
an invocation. If you invoke the function version after 14 days, Lambda returns a
SnapStartNotReadyException response and begins initializing a new snapshot. Wait until
the function version reaches the Active state, and then invoke it again.

Failed

Lambda encountered an error when running the initialization code or creating the snapshot.

Updating a snapshot

Lambda creates a snapshot for each published function version. To update a snapshot, publish a
new function version.

Using SnapStart with AWS SDKs

To make AWS SDK calls from your function, Lambda generates an ephemeral set of credentials
by assuming your function's execution role. These credentials are available as environment
variables during your function's invocation. You don't need to provide credentials for the SDK

Function states 1100

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

directly in code. By default, the credential provider chain sequentially checks each place where
you can set credentials and chooses the first available—usually the environment variables
(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN).

Note

When SnapStart is activated, the Lambda runtime automatically uses the
container credentials (AWS_CONTAINER_CREDENTIALS_FULL_URI and
AWS_CONTAINER_AUTHORIZATION_TOKEN) instead of the access key environment
variables. This prevents credentials from expiring before the function is restored.

Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDK

• AWS CloudFormation: Declare the SnapStart entity in your template.

• AWS Serverless Application Model (AWS SAM): Declare the SnapStart property in your
template.

• AWS Cloud Development Kit (AWS CDK): Use the SnapStartProperty type.

Deleting snapshots

Lambda deletes snapshots when:

• You delete the function or function version.

• Java runtimes only — You don't invoke the function version for 14 days. After 14 days without
an invocation, the function version transitions to the Inactive state. If you invoke the function
version after 14 days, Lambda returns a SnapStartNotReadyException response and begins
initializing a new snapshot. Wait until the function version reaches the Active state, and then
invoke it again.

Lambda removes all resources associated with deleted snapshots in compliance with the General
Data Protection Regulation (GDPR).

Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDK 1101

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-snapstart.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-snapstart
https://docs.aws.amazon.com/cdk/api/v2/java/software/amazon/awscdk/services/lambda/CfnFunction.SnapStartProperty.html

AWS Lambda Developer Guide

Handling uniqueness with Lambda SnapStart

When invocations scale up on a SnapStart function, Lambda uses a single initialized snapshot
to resume multiple execution environments. If your initialization code generates unique content
that is included in the snapshot, then the content might not be unique when it is reused across
execution environments. To maintain uniqueness when using SnapStart, you must generate unique
content after initialization. This includes unique IDs, unique secrets, and entropy that's used to
generate pseudorandomness.

We recommend the following best practices to help you maintain uniqueness in your code. For
Java functions, Lambda also provides an open-source SnapStart scanning tool to help check for
code that assumes uniqueness. If you generate unique data during the initialization phase, then
you can use a runtime hook to restore uniqueness. With runtime hooks, you can run specific code
immediately before Lambda takes a snapshot or immediately after Lambda resumes a function
from a snapshot.

Avoid saving state that depends on uniqueness during initialization

During the initialization phase of your function, avoid caching data that's intended to be unique,
such as generating a unique ID for logging or setting seeds for random functions. Instead, we
recommend that you generate unique data or set seeds for random functions inside your function
handler—or use a runtime hook.

The following examples demonstrate how to generate a UUID in the function handler.

Java

Example – Generating a unique ID in function handler

import java.util.UUID;
 public class Handler implements RequestHandler<String, String> {
 private static UUID uniqueSandboxId = null;
 @Override
 public String handleRequest(String event, Context context) {
 if (uniqueSandboxId == null)
 uniqueSandboxId = UUID.randomUUID();
 System.out.println("Unique Sandbox Id: " + uniqueSandboxId);
 return "Hello, World!";
 }
 }

Handling uniqueness 1102

AWS Lambda Developer Guide

Python

Example – Generating a unique ID in function handler

import json
import random
import time

unique_number = None

def lambda_handler(event, context):
 seed = int(time.time() * 1000)
 random.seed(seed)
 global unique_number
 if not unique_number:
 unique_number = random.randint(1, 10000)

 print("Unique number: ", unique_number)

 return "Hello, World!"

.NET

Example – Generating a unique ID in function handler

namespace Example;
public class SnapstartExample
{
 private Guid _myExecutionEnvironmentGuid;
 public SnapstartExample()
 {
 // This GUID is set for non-restore use cases, such as testing or if
 SnapStart is turned off
 _myExecutionEnvironmentGuid = new Guid();
 // Register the method which will run after each restore. You may need to
 update Amazon.Lambda.Core to see this
 Amazon.Lambda.Core.SnapshotRestore.RegisterAfterRestore(MyAfterRestore);
 }

 private ValueTask MyAfterRestore()
 {
 // After restoring this snapshot to a new execution environment, update the
 GUID

Avoid saving state 1103

AWS Lambda Developer Guide

 _myExecutionEnvironmentGuid = new Guid();
 return ValueTask.CompletedTask;
 }

 public string Handler()
 {
 return $"Hello World! My Execution Environment GUID is
 {_myExecutionEnvironmentGuid}";
 }
}

Use cryptographically secure pseudorandom number generators
(CSPRNGs)

If your application depends on randomness, we recommend that you use cryptographically secure
random number generators (CSPRNGs). In addition to OpenSSL 1.0.2, the Lambda managed
runtimes also include the following built-in CSPRNGs:

• Java: java.security.SecureRandom

• Python: random.SystemRandom

• .NET: System.Security.Cryptography.RandomNumberGenerator

Software that always gets random numbers from /dev/random or /dev/urandom also maintains
randomness with SnapStart.

AWS cryptography libraries automatically maintain randomness with SnapStart beginning with
the minimum versions specified in the following table. If you use these libraries with your Lambda
functions, make sure that you use the following minimum versions or later versions:

Library Minimum supported version
(x86)

Minimum supported version
(ARM)

AWS libcrypto (AWS-LC) 1.16.0 1.30.0

AWS libcrypto FIPS 2.0.13 2.0.13

Use CSPRNGs 1104

AWS Lambda Developer Guide

If you package the preceding cryptographic libraries with your Lambda functions as transitive
dependencies through the following libraries, make sure that you use the following minimum
versions or later versions:

Library Minimum supported version
(x86)

Minimum supported version
(ARM)

AWS SDK for Java 2.x 2.23.20 2.26.12

AWS Common Runtime for
Java

0.29.8 0.29.25

Amazon Corretto Crypto
Provider

2.4.1 2.4.1

Amazon Corretto Crypto
Provider FIPS

2.4.1 2.4.1

The following examples demonstrate how to use CSPRNGs to guarantee unique number sequences
even when the function is restored from a snapshot.

Java

Example – java.security.SecureRandom

import java.security.SecureRandom;
 public class Handler implements RequestHandler<String, String> {
 private static SecureRandom rng = new SecureRandom();
 @Override
 public String handleRequest(String event, Context context) {
 for (int i = 0; i < 10; i++) {
 System.out.println(rng.next());
 }
 return "Hello, World!";
 }
 }

Use CSPRNGs 1105

AWS Lambda Developer Guide

Python

Example – random.SystemRandom

import json
import random

secure_rng = random.SystemRandom()

def lambda_handler(event, context):
 random_numbers = [secure_rng.random() for _ in range(10)]

 for number in random_numbers:
 print(number)

 return "Hello, World!"

.NET

Example – RandomNumberGenerator

using Amazon.Lambda.Core;
using System.Security.Cryptography;
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace DotnetSecureRandom;

public class Function
{
 public string FunctionHandler()
 {
 using (RandomNumberGenerator rng = RandomNumberGenerator.Create())
 {
 byte[] randomUnsignedInteger32Bytes = new byte[4];
 for (int i = 0; i < 10; i++)
 {
 rng.GetBytes(randomUnsignedInteger32Bytes);
 int randomInt32 = BitConverter.ToInt32(randomUnsignedInteger32Bytes,
 0);
 Console.WriteLine("{0:G}", randomInt32);
 }
 }

Use CSPRNGs 1106

AWS Lambda Developer Guide

 return "Hello World!";
 }
}

SnapStart scanning tool (Java only)

Lambda provides a scanning tool for Java to help you check for code that assumes uniqueness.
The SnapStart scanning tool is an open-source SpotBugs plugin that runs a static analysis against
a set of rules. The scanning tool helps identify potential code implementations that might break
assumptions regarding uniqueness. For installation instructions and a list of checks that the
scanning tool performs, see the aws-lambda-snapstart-java-rules repository on GitHub.

To learn more about handling uniqueness with SnapStart, see Starting up faster with AWS Lambda
SnapStart on the AWS Compute Blog.

Scanning tool (Java) 1107

https://spotbugs.github.io/
https://github.com/aws/aws-lambda-snapstart-java-rules
https://aws.amazon.com/blogs/compute/starting-up-faster-with-aws-lambda-snapstart/
https://aws.amazon.com/blogs/compute/starting-up-faster-with-aws-lambda-snapstart/

AWS Lambda Developer Guide

Implement code before or after Lambda function snapshots

You can use runtime hooks to implement code before Lambda creates a snapshot or after Lambda
resumes a function from a snapshot. Runtime hooks are useful for a variety of purposes, such as:

• Cleanup and initialization: Before a snapshot is created, you can use a runtime hook to perform
cleanup or resource release operations. After a snapshot is restored, you can use a runtime hook
to re-initialize any resources or state that were not captured in the snapshot.

• Dynamic configuration: You can use runtime hooks to dynamically update configuration or
other metadata before a snapshot is created or after it is restored. This can be useful if your
function needs to adapt to changes in the runtime environment.

• External integrations: You can use runtime hooks to integrate with external services or systems,
such as sending notifications or updating external state, as part of the checkpointing and
restoration process.

• Performance tuning: You can use runtime hooks to fine-tune your function's startup sequence,
such as by preloading dependencies. For more information, see Performance tuning.

The following pages explain how to implement runtime hooks for your preferred runtime.

Topics

• Lambda SnapStart runtime hooks for Java

• Lambda SnapStart runtime hooks for Python

• Lambda SnapStart runtime hooks for .NET

Lambda SnapStart runtime hooks for Java

You can use runtime hooks to implement code before Lambda creates a snapshot or after Lambda
resumes a function from a snapshot. Runtime hooks are available as part of the open-source
Coordinated Restore at Checkpoint (CRaC) project. CRaC is in development for the Open Java
Development Kit (OpenJDK). For an example of how to use CRaC with a reference application, see
the CRaC repository on GitHub. CRaC uses three main elements:

• Resource – An interface with two methods, beforeCheckpoint() and afterRestore().
Use these methods to implement the code that you want to run before a snapshot and after a
restore.

Runtime hooks 1108

https://wiki.openjdk.org/display/crac
https://wiki.openjdk.org/display/crac
https://github.com/CRaC/docs/blob/master/STEP-BY-STEP.md

AWS Lambda Developer Guide

• Context <R extends Resource> – To receive notifications for checkpoints and restores, a
Resource must be registered with a Context.

• Core – The coordination service, which provides the default global Context via the static
method Core.getGlobalContext().

For more information about Context and Resource, see Package org.crac in the CRaC
documentation.

Use the following steps to implement runtime hooks with the org.crac package. The Lambda
runtime contains a customized CRaC context implementation that calls your runtime hooks before
checkpointing and after restoring.

Runtime hook registration and execution

The order that Lambda executes your runtime hooks is determined by the order of registration.
Registration order follows the order of import, definition, or execution in your code.

• beforeCheckpoint(): Executed in the reverse order of registration

• afterRestore(): Executed in the order of registration

Make sure that all registered hooks are properly imported and included in your function's code.
If you register runtime hooks in a separate file or module, you must ensure that the module is
imported, either directly or as part of a larger package, in your function's handler file. If the file or
module is not imported in the function handler, Lambda ignores the runtime hooks.

Note

When Lambda creates a snapshot, your initialization code can run for up to 15 minutes.
The time limit is 130 seconds or the configured function timeout (maximum 900 seconds),
whichever is higher. Your beforeCheckpoint() runtime hooks count towards the
initialization code time limit. When Lambda restores a snapshot, the runtime must load and
afterRestore() runtime hooks must complete within the timeout limit (10 seconds).
Otherwise, you'll get a SnapStartTimeoutException.

Java 1109

https://javadoc.io/doc/io.github.crac/org-crac/latest/index.html
https://github.com/CRaC/org.crac

AWS Lambda Developer Guide

Step 1: Update the build configuration

Add the org.crac dependency to the build configuration. The following example uses Gradle. For
examples for other build systems, see the Apache Maven documentation.

dependencies {
 compile group: 'com.amazonaws', name: 'aws-lambda-java-core', version: '1.2.1'
 # All other project dependecies go here:
 # ...
 # Then, add the org.crac dependency:
 implementation group: 'org.crac', name: 'crac', version: '1.4.0'
}

Step 2: Update the Lambda handler

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

For more information, see Define Lambda function handler in Java.

The following example handler shows how to run code before checkpointing
(beforeCheckpoint()) and after restoring (afterRestore()). This handler also registers the
Resource to the runtime-managed global Context.

Note

When Lambda creates a snapshot, your initialization code can run for up to 15 minutes.
The time limit is 130 seconds or the configured function timeout (maximum 900 seconds),
whichever is higher. Your beforeCheckpoint() runtime hooks count towards the
initialization code time limit. When Lambda restores a snapshot, the runtime (JVM) must
load and afterRestore() runtime hooks must complete within the timeout limit (10
seconds). Otherwise, you'll get a SnapStartTimeoutException.

...
 import org.crac.Resource;
 import org.crac.Core;
 ...

Java 1110

https://search.maven.org/artifact/io.github.crac/org-crac/0.1.3/jar

AWS Lambda Developer Guide

public class CRaCDemo implements RequestStreamHandler, Resource {
 public CRaCDemo() {
 Core.getGlobalContext().register(this);
 }
 public String handleRequest(String name, Context context) throws IOException {
 System.out.println("Handler execution");
 return "Hello " + name;
 }
 @Override
 public void beforeCheckpoint(org.crac.Context<? extends Resource> context)
 throws Exception {
 System.out.println("Before checkpoint");
 }
 @Override
 public void afterRestore(org.crac.Context<? extends Resource> context)
 throws Exception {
 System.out.println("After restore");

Context maintains only a WeakReference to the registered object. If a Resource is garbage
collected, runtime hooks do not run. Your code must maintain a strong reference to the Resource
to guarantee that the runtime hook runs.

Here are two examples of patterns to avoid:

Example – Object without a strong reference

Core.getGlobalContext().register(new MyResource());

Example – Objects of anonymous classes

Core.getGlobalContext().register(new Resource() {

 @Override
 public void afterRestore(Context<? extends Resource> context) throws Exception {
 // ...
 }

 @Override
 public void beforeCheckpoint(Context<? extends Resource> context) throws Exception {
 // ...
 }

Java 1111

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ref/WeakReference.html
https://javadoc.io/static/io.github.crac/org-crac/0.1.3/org/crac/Resource.html

AWS Lambda Developer Guide

});

Instead, maintain a strong reference. In the following example, the registered resource isn't
garbage collected and runtime hooks run consistently.

Example – Object with a strong reference

Resource myResource = new MyResource(); // This reference must be maintained to prevent
 the registered resource from being garbage collected
Core.getGlobalContext().register(myResource);

Lambda SnapStart runtime hooks for Python

You can use runtime hooks to implement code before Lambda creates a snapshot or after Lambda
resumes a function from a snapshot. Python runtime hooks are available as part of the open-
source Snapshot Restore for Python library, which is included in Python managed runtimes. This
library provides two decorators that you can use to define your runtime hooks:

• @register_before_snapshot: For functions you want to run before Lambda creates a
snapshot.

• @register_after_restore: For functions you want to run when Lambda resumes a function
from a snapshot.

Alternatively, you can use the following methods to register callables for runtime hooks:

• register_before_snapshot(func, *args, **kwargs)

• register_after_restore(func, *args, **kwargs)

Runtime hook registration and execution

The order that Lambda executes your runtime hooks is determined by the order of registration:

• Before snapshot: Executed in the reverse order of registration

• After snapshot: Executed in the order of registration

The order of runtime hook registration depends on how you define the hooks. When using
decorators (@register_before_snapshot and @register_after_restore), the

Python 1112

https://pypi.org/project/snapshot-restore-py/

AWS Lambda Developer Guide

registration order follows the order of import, definition, or execution in your code. If you
need more control over the registration order, use the register_before_snapshot() and
register_after_restore() methods instead of decorators.

Make sure that all registered hooks are properly imported and included in your function's code.
If you register runtime hooks in a separate file or module, you must ensure that the module is
imported, either directly or as part of a larger package, in your function's handler file. If the file or
module is not imported in the function handler, Lambda ignores the runtime hooks.

Note

When Lambda creates a snapshot, your initialization code can run for up to 15 minutes.
The time limit is 130 seconds or the configured function timeout (maximum 900 seconds),
whichever is higher. Your @register_before_snapshot runtime hooks count towards
the initialization code time limit. When Lambda restores a snapshot, the runtime must load
and @register_after_restore runtime hooks must complete within the timeout limit
(10 seconds). Otherwise, you'll get a SnapStartTimeoutException.

Example

The following example handler shows how to run code before checkpointing
(@register_before_snapshot) and after restoring (@register_after_restore).

from snapshot_restore_py import register_before_snapshot, register_after_restore

def lambda_handler(event, context):
 # Handler code

@register_before_snapshot
def before_checkpoint():
 # Logic to be executed before taking snapshots

@register_after_restore
def after_restore():
 # Logic to be executed after restore

For more examples, see Snapshot Restore for Python in the AWS GitHub repository.

Python 1113

https://github.com/aws/snapshot-restore-py/tree/main/examples

AWS Lambda Developer Guide

Lambda SnapStart runtime hooks for .NET

You can use runtime hooks to implement code before Lambda creates a snapshot or after
Lambda resumes a function from a snapshot. .NET runtime hooks are available as part of the
Amazon.Lambda.Core package (version 2.5.0 or later). This library provides two methods that you
can use to define your runtime hooks:

• RegisterBeforeSnapshot(): Code to run before snapshot creation

• RegisterAfterSnapshot(): Code to run after resuming a function from a snapshot

Note

If you're using the Lambda Annotations framework for .NET, upgrade to
Amazon.Lambda.Annotations version 1.6.0 or later to ensure compatibility with SnapStart.

Runtime hook registration and execution

Register your hooks in your initialization code. Consider the following guidelines based on your
Lambda function's execution model:

• For the executable assembly approach, register your hooks before you start the Lambda
bootstrap with RunAsync.

• For the class library approach, register your hooks in the handler class constructor.

• For ASP.NET Core applications, register your hooks before calling the WebApplications.Run
method.

To register runtime hooks for SnapStart in .NET, use the following methods:

Amazon.Lambda.Core.SnapshotRestore.RegisterBeforeSnapshot(BeforeCheckpoint);
Amazon.Lambda.Core.SnapshotRestore.RegisterAfterRestore(AfterCheckpoint);

When multiple hook types are registered, the order that Lambda executes your runtime hooks is
determined by the order of registration:

• RegisterBeforeSnapshot(): Executed in the reverse order of registration

.NET 1114

https://www.nuget.org/packages/Amazon.Lambda.Core
https://www.nuget.org/packages/Amazon.Lambda.Annotations

AWS Lambda Developer Guide

• RegisterAfterSnapshot(): Executed in the order of registration

Note

When Lambda creates a snapshot, your initialization code can run for up to 15 minutes.
The time limit is 130 seconds or the configured function timeout (maximum 900 seconds),
whichever is higher. Your RegisterBeforeSnapshot() runtime hooks count towards the
initialization code time limit. When Lambda restores a snapshot, the runtime must load and
RegisterAfterSnapshot() runtime hooks must complete within the timeout limit (10
seconds). Otherwise, you'll get a SnapStartTimeoutException.

Example

The following example function shows how to run code before checkpointing
(RegisterBeforeSnapshot) and after restoring (RegisterAfterRestore).

public class SampleClass
{
 public SampleClass()
 {
 Amazon.Lambda.Core.SnapshotRestore.RegisterBeforeSnapshot(BeforeCheckpoint);
 Amazon.Lambda.Core.SnapshotRestore.RegisterAfterRestore(AfterCheckpoint);
 }

 private ValueTask BeforeCheckpoint()
 {
 // Add logic to be executed before taking the snapshot
 return ValueTask.CompletedTask;
 }

 private ValueTask AfterCheckpoint()
 {
 // Add logic to be executed after restoring the snapshot
 return ValueTask.CompletedTask;
 }

 public APIGatewayProxyResponse FunctionHandler(APIGatewayProxyRequest request,
 ILambdaContext context)
 {
 // Add business logic

.NET 1115

AWS Lambda Developer Guide

 return new APIGatewayProxyResponse
 {
 StatusCode = 200
 };
 }
}

.NET 1116

AWS Lambda Developer Guide

Monitoring for Lambda SnapStart

You can monitor your Lambda SnapStart functions using Amazon CloudWatch, AWS X-Ray, and the
Accessing real-time telemetry data for extensions using the Telemetry API.

Note

The AWS_LAMBDA_LOG_GROUP_NAME and AWS_LAMBDA_LOG_STREAM_NAME environment
variables are not available in Lambda SnapStart functions.

Understanding logging and billing behavior with SnapStart

There are a few differences with the CloudWatch log stream format for SnapStart functions:

• Initialization logs – When a new execution environment is created, the REPORT doesn't include
the Init Duration field. That's because Lambda initializes SnapStart functions when you
create a version instead of during function invocation. For SnapStart functions, the Init
Duration field is in the INIT_REPORT record. This record shows duration details for the Init
phase, including the duration of any beforeCheckpoint runtime hooks.

• Invocation logs – When a new execution environment is created, the REPORT includes the
Restore Duration and Billed Restore Duration fields:

• Restore Duration: The time it takes for Lambda to restore a snapshot, load the runtime,
and run any after-restore runtime hooks. The process of restoring snapshots can include time
spent on activities outside the MicroVM. This time is reported in Restore Duration.

• Billed Restore Duration: The time it takes for Lambda to load the runtime and run any
after-restore runtime hooks.

Note

As with all Lambda functions, duration charges apply to code that runs in the function
handler. For SnapStart functions, duration charges also apply to initialization code that's
declared outside of the handler, the time it takes for the runtime to load, and any code that
runs in a runtime hook.

The cold start duration is the sum of Restore Duration + Duration.

Monitoring 1117

AWS Lambda Developer Guide

The following example is a Lambda Insights query that returns the latency percentiles for
SnapStart functions. For more information about Lambda Insights queries, see Example workflow
using queries to troubleshoot a function.

filter @type = "REPORT"
 | parse @log /\d+:\/aws\/lambda\/(?<function>.*)/
 | parse @message /Restore Duration: (?<restoreDuration>.*?) ms/
 | stats
count(*) as invocations,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 50) as p50,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 90) as p90,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 99) as p99,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 99.9) as p99.9
group by function, (ispresent(@initDuration) or ispresent(restoreDuration)) as
 coldstart
 | sort by coldstart desc

X-Ray active tracing for SnapStart

You can use X-Ray to trace requests to Lambda SnapStart functions. There are a few differences
with the X-Ray subsegments for SnapStart functions:

• There is no Initialization subsegment for SnapStart functions.

• The Restore subsegment shows the time it takes for Lambda to restore a snapshot, load the
runtime, and run any after-restore runtime hooks. The process of restoring snapshots can
include time spent on activities outside the MicroVM. This time is reported in the Restore
subsegment. You aren't charged for the time spent outside the microVM to restore a snapshot.

Telemetry API events for SnapStart

Lambda sends the following SnapStart events to the Telemetry API:

• platform.restoreStart – Shows the time when the Restore phase started.

• platform.restoreRuntimeDone – Shows whether the Restore phase was successful.
Lambda sends this message when the runtime sends a restore/next runtime API request.
There are three possible statuses: success, failure, and timeout.

• platform.restoreReport – Shows how long the Restore phase lasted and how many
milliseconds you were billed for during this phase.

AWS X-Ray 1118

AWS Lambda Developer Guide

Amazon API Gateway and function URL metrics

If you create a web API using API Gateway, then you can use the IntegrationLatency metric to
measure end-to-end latency (the time between when API Gateway relays a request to the backend
and when it receives a response from the backend).

If you're using a Lambda function URL, then you can use the UrlRequestLatency metric to measure
end-to-end latency (the time between when the function URL receives a request and when the
function URL returns a response).

API Gateway and function URL metrics 1119

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-metrics-and-dimensions.html

AWS Lambda Developer Guide

Security model for Lambda SnapStart

Lambda SnapStart supports encryption at rest. Lambda encrypts snapshots with an AWS KMS key.
By default, Lambda uses an AWS managed key. If this default behavior suits your workflow, then
you don't need to set up anything else. Otherwise, you can use the --kms-key-arn option in the
create-function or update-function-configuration command to provide an AWS KMS customer
managed key. You might do this to control rotation of the KMS key or to meet the requirements
of your organization for managing KMS keys. Customer managed keys incur standard AWS KMS
charges. For more information, see AWS Key Management Service pricing.

When you delete a SnapStart function or function version, all Invoke requests to that function
or function version fail. Lambda removes all resources associated with deleted snapshots in
compliance with the General Data Protection Regulation (GDPR).

Security model 1120

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://aws.amazon.com/kms/pricing/

AWS Lambda Developer Guide

Maximize Lambda SnapStart performance

Topics

• Performance tuning

• Networking best practices

Performance tuning

To maximize the benefits of SnapStart, consider the following code optimization recommendations
for your runtime.

Note

SnapStart works best when used with function invocations at scale. Functions that are
invoked infrequently might not experience the same performance improvements.

Java

To maximize the benefits of SnapStart, we recommend that you preload dependencies and
initialize resources that contribute to startup latency in your initialization code instead of in the
function handler. This moves the latency associated with heavy class loading out of the invocation
path, optimizing startup performance with SnapStart.

If you can't preload dependencies or resources during initialization, then we recommend that you
preload them with dummy invocations. To do this, update the function handler code, as shown in
the following example from the pet store function on the AWS Labs GitHub repository.

private static SpringLambdaContainerHandler<AwsProxyRequest, AwsProxyResponse> handler;
 static {
 try {
 handler =
 SpringLambdaContainerHandler.getAwsProxyHandler(PetStoreSpringAppConfig.class);

 // Use the onStartup method of the handler to register the custom filter
 handler.onStartup(servletContext -> {
 FilterRegistration.Dynamic registration =
 servletContext.addFilter("CognitoIdentityFilter", CognitoIdentityFilter.class);

Best practices 1121

https://github.com/awslabs/aws-serverless-java-container/tree/main/samples/spring/pet-store

AWS Lambda Developer Guide

 registration.addMappingForUrlPatterns(EnumSet.of(DispatcherType.REQUEST),
 false, "/*");
 });

 // Send a fake Amazon API Gateway request to the handler to load classes
 ahead of time
 ApiGatewayRequestIdentity identity = new ApiGatewayRequestIdentity();
 identity.setApiKey("foo");
 identity.setAccountId("foo");
 identity.setAccessKey("foo");

 AwsProxyRequestContext reqCtx = new AwsProxyRequestContext();
 reqCtx.setPath("/pets");
 reqCtx.setStage("default");
 reqCtx.setAuthorizer(null);
 reqCtx.setIdentity(identity);

 AwsProxyRequest req = new AwsProxyRequest();
 req.setHttpMethod("GET");
 req.setPath("/pets");
 req.setBody("");
 req.setRequestContext(reqCtx);

 Context ctx = new TestContext();
 handler.proxy(req, ctx);

 } catch (ContainerInitializationException e) {
 // if we fail here. We re-throw the exception to force another cold start
 e.printStackTrace();
 throw new RuntimeException("Could not initialize Spring framework", e);
 }
 }

Python

To maximize the benefits of SnapStart, focus on efficient code organization and resource
management within your Python functions. As a general guideline, perform heavy computational
tasks during the initialization phase. This approach moves time-consuming operations out of the
invocation path, improving overall function performance. To implement this strategy effectively,
we recommend the following best practices:

• Import dependencies outside of the function handler.

Performance tuning 1122

AWS Lambda Developer Guide

• Create boto3 instances outside of the handler.

• Initialize static resources or configurations before the handler is invoked.

• Consider using a before-snapshot runtime hook for resource-intensive tasks such as downloading
external files, pre-loading frameworks like Django, or loading machine learning models.

Example — Optimize Python function for SnapStart

Import all dependencies outside of Lambda handler
from snapshot_restore_py import register_before_snapshot
import boto3
import pandas
import pydantic

Create S3 and SSM clients outside of Lambda handler
s3_client = boto3.client("s3")

Register the function to be called before snapshot
@register_before_snapshot
def download_llm_models():
 # Download an object from S3 and save to tmp
 # This files will persist in this snapshot
 with open('/tmp/FILE_NAME', 'wb') as f:
 s3_client.download_fileobj('amzn-s3-demo-bucket', 'OBJECT_NAME', f)
 ...

def lambda_handler(event, context):
 ...

.NET

To reduce just-in-time (JIT) compilation and assembly loading time, consider invoking your
function handler from a RegisterBeforeCheckpoint runtime hook. Because of how .NET tiered
compilation works, you’ll get optimal results by invoking the handler multiple times, as shown in
the following example.

Important

Make sure that your dummy function invocation does not produce unintended side effects,
such as initiating business transactions.

Performance tuning 1123

AWS Lambda Developer Guide

Example

public class Function
{
 public Function()
 {
 Amazon.Lambda.Core.SnapshotRestore.RegisterBeforeSnapshot(FunctionWarmup);
 }

 // Warmup method that calls the function handler before snapshot to warm up
 the .NET code and runtime.
 // This speeds up future cold starts after restoring from a snapshot.

 private async ValueTask FunctionWarmup()
 {
 var request = new APIGatewayProxyRequest
 {
 Path = "/heathcheck",
 HttpMethod = "GET"
 };

 for (var i = 0; i < 10; i++)
 {
 await FunctionHandler(request, null);
 }
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request, ILambdaContext context)
 {
 //
 // Process HTTP request
 //

 var response = new APIGatewayProxyResponse
 {
 StatusCode = 200
 };

 return await Task.FromResult(response);
 }
}

Performance tuning 1124

AWS Lambda Developer Guide

Networking best practices

The state of connections that your function establishes during the initialization phase isn't
guaranteed when Lambda resumes your function from a snapshot. In most cases, network
connections that an AWS SDK establishes automatically resume. For other connections, we
recommend the following best practices.

Re-establish network connections

Always re-establish your network connections when your function resumes from a snapshot. We
recommend that you re-establish network connections in the function handler. Alternatively, you
can use an after-restore runtime hook.

Don't use hostname as a unique execution environment identifier

We recommend against using hostname to identify your execution environment as a unique node
or container in your applications. With SnapStart, a single snapshot is used as the initial state
for multiple execution environments. All execution environments return the same hostname
value for InetAddress.getLocalHost() (Java), socket.gethostname() (Python), and
Dns.GetHostName() (.NET). For applications that require a unique execution environment
identity or hostname value, we recommend that you generate a unique ID in the function handler.
Or, use an after-restore runtime hook to generate a unique ID, and then use the unique ID as the
identifier for the execution environment.

Avoid binding connections to fixed source ports

We recommend that you avoid binding network connections to fixed source ports. Connections are
re-established when a function resumes from a snapshot, and network connections that are bound
to a fixed source port might fail.

Avoid using Java DNS cache

Lambda functions already cache DNS responses. If you use another DNS cache with SnapStart, then
you might experience connection timeouts when the function resumes from a snapshot.

The java.util.logging.Logger class can indirectly enable the JVM DNS cache. To override the
default settings, set networkaddress.cache.ttl to 0 before initializing logger. Example:

public class MyHandler {
 // first set TTL property

Networking best practices 1125

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/InetAddress.html#inetaddress-caching-heading

AWS Lambda Developer Guide

 static{
 java.security.Security.setProperty("networkaddress.cache.ttl" , "0");
 }
 // then instantiate logger
 var logger = org.apache.logging.log4j.LogManager.getLogger(MyHandler.class);
}

To prevent UnknownHostException failures in the Java 11 runtime, we recommend
setting networkaddress.cache.negative.ttl to 0. In Java 17 and later runtimes,
this step isn't necessary. You can set this property for a Lambda function with the
AWS_LAMBDA_JAVA_NETWORKADDRESS_CACHE_NEGATIVE_TTL=0 environment variable.

Disabling the JVM DNS cache does not disable Lambda's managed DNS caching.

Networking best practices 1126

AWS Lambda Developer Guide

Troubleshooting SnapStart errors for Lambda functions

This page addresses common issues that occur when using Lambda SnapStart, including snapshot
creation errors, timeout errors, and internal service errors.

SnapStartNotReadyException

Error: An error occurred (SnapStartNotReadyException) when calling the Invoke20150331
operation: Lambda is initializing your function. It will be ready to invoke once your function state
becomes ACTIVE.

Common causes

This error occurs when you try to invoke a function version that is in the Inactive state. Your
function version becomes Inactive when it hasn't been invoked for 14 days or when Lambda
periodically recycles the execution environment

Resolution

Wait until the function version reaches the Active state, and then invoke it again.

SnapStartTimeoutException

Issue: You receive a SnapStartTimeoutException when you try to invoke a SnapStart function
version.

Common cause

During the Restore phase, Lambda restores the Java runtime and runs any after-restore runtime
hooks. If an after-restore runtime hook runs for longer than 10 seconds, the Restore phase times
out and you get an error when you try to invoke the function. Network connection and credentials
issues can also cause Restore phase timeouts.

Resolution

Check the function's CloudWatch logs for timeout errors that happened during the Restore phase.
Make sure that all after-restore hooks complete in less than 10 seconds.

Troubleshooting 1127

AWS Lambda Developer Guide

Example CloudWatch log

{ "cause": "Lambda couldn't restore the snapshot within the timeout limit. (Service:
 Lambda, Status Code: 408, Request ID: 11a222c3-410f-427c-ab22-931d6bcbf4f2)", "error":
 "Lambda.SnapStartTimeoutException"}

500 Internal Service Error

Error: Lambda was unable to create a new snapshot because you have reached your concurrent
snapshot creation limit.

Common cause

A 500 error is an internal error within the Lambda service itself, rather than an issue with your
function or code. These errors are often intermittent.

Resolution

Try to publish the function version again.

401 Unauthorized

Error: Bad session token or header key

Common cause

This error occurs when using the AWS Systems Manager Parameter Store and AWS Secrets Manager
extension with Lambda SnapStart.

Resolution

The AWS Systems Manager Parameter Store and AWS Secrets Manager extension isn't compatible
with SnapStart. The extension generates credentials for communicating with AWS Secrets Manager
during function initialization, which causes expired credential errors when used with SnapStart.

UnknownHostException (Java)

Error: Unable to execute HTTP request: Certificate for abc.us-east-1.amazonaws.com doesn't
match any of the subject alternative names.

500 Internal Service Error 1128

AWS Lambda Developer Guide

Common cause

Lambda functions already cache DNS responses. If you use another DNS cache with SnapStart, then
you might experience connection timeouts when the function resumes from a snapshot.

Resolution

To prevent UnknownHostException failures in the Java 11 runtime, we recommend
setting networkaddress.cache.negative.ttl to 0. In Java 17 and later runtimes,
this step isn't necessary. You can set this property for a Lambda function with the
AWS_LAMBDA_JAVA_NETWORKADDRESS_CACHE_NEGATIVE_TTL=0 environment variable.

Snapshot creation failures

Error: AWS Lambda could not invoke your SnapStart function. If this error persists, check your
function's CloudWatch logs for initialization errors.

Resolution

Review your function's Amazon CloudWatch logs for before-checkpoint runtime hook timeouts.
You can also try publishing a new function version, which can sometimes resolve the issue.

Snapshot creation latency

Issue: When you publish a new function version, the function stays in the Pending state for a long
time.

Common cause

When Lambda creates a snapshot, your initialization code can run for up to 15 minutes. The time
limit is 130 seconds or the configured function timeout (maximum 900 seconds), whichever is
higher.

If your function is attached to a VPC, Lambda might also need to create network interfaces before
the function becomes Active. If you try to invoke the function version while the function is
Pending, you might get a 409 ResourceConflictException. If the function is invoked using an
Amazon API Gateway endpoint, you might get a 500 error in API Gateway.

Resolution

Wait at least 15 minutes for the function version to initialize before invoking it.

Snapshot creation failures 1129

AWS Lambda Developer Guide

Invoking Lambda with events from other AWS services

Some AWS services can directly invoke Lambda functions using triggers. These services push
events to Lambda, and the function is invoked immediately when the specified event occurs.
Triggers are suitable for discrete events and real-time processing. When you create a trigger using
the Lambda console, the console interacts with the corresponding AWS service to configure the
event notification on that service. The trigger is actually stored and managed by the service that
generates the events, not by Lambda.

The events are data structured in JSON format. The JSON structure varies depending on the service
that generates it and the event type, but they all contain the data that the function needs to
process the event.

A function can have multiple triggers. Each trigger acts as a client invoking your function
independently, and each event that Lambda passes to your function has data from only one
trigger. Lambda converts the event document into an object and passes it to your function handler.

Depending on the service, the event-driven invocation can be synchronous or asynchronous.

• For synchronous invocation, the service that generates the event waits for the response from
your function. That service defines the data that the function needs to return in the response.
The service controls the error strategy, such as whether to retry on errors.

• For asynchronous invocation, Lambda queues the event before passing it to your function. When
Lambda queues the event, it immediately sends a success response to the service that generated
the event. After the function processes the event, Lambda doesn’t return a response to the
event-generating service.

Creating a trigger

The easiest way to create a trigger is to use the Lambda console. When you create a trigger using
the console, Lambda automatically adds the required permissions to the function's resource-based
policy.

To create a trigger using the Lambda console

1. Open the Functions page of the Lambda console.

2. Select the function you want to create a trigger for.

Creating a trigger 1130

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. In the Function overview pane, choose Add trigger.

4. Select the AWS service you want to invoke your function.

5. Fill out the options in the Trigger configuration pane and choose Add. Depending on the AWS
service you choose to invoke your function, the trigger configuration options will be different.

Services that can invoke Lambda functions

The following table lists services that can invoke Lambda functions.

Service Method of invocation

Amazon Managed Streaming
for Apache Kafka

Event source mapping

Self-managed Apache Kafka Event source mapping

Amazon API Gateway Event-driven; synchronous invocation

AWS CloudFormation Event-driven; asynchronous invocation

Amazon CloudWatch Logs Event-driven; asynchronous invocation

AWS CodeCommit Event-driven; asynchronous invocation

AWS CodePipeline Event-driven; asynchronous invocation

Amazon Cognito Event-driven; synchronous invocation

AWS Config Event-driven; asynchronous invocation

Amazon Connect Event-driven; synchronous invocation

Amazon DocumentDB Event source mapping

Amazon DynamoDB Event source mapping

Elastic Load Balancing
(Application Load Balancer)

Event-driven; synchronous invocation

Services list 1131

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-notify-lambda-cc.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-events.html
https://docs.aws.amazon.com/connect/latest/adminguide/connect-lambda-functions.html

AWS Lambda Developer Guide

Service Method of invocation

Amazon EventBridge
(CloudWatch Events)

Event-driven; asynchronous invocation (event buses),
synchronous or asynchronous invocation (pipes and schedules)

AWS IoT Event-driven; asynchronous invocation

Amazon Kinesis Event source mapping

Amazon Data Firehose Event-driven; synchronous invocation

Amazon Lex Event-driven; synchronous invocation

Amazon MQ Event source mapping

Amazon Simple Email Service Event-driven; asynchronous invocation

Amazon Simple Notification
Service

Event-driven; asynchronous invocation

Amazon Simple Queue
Service

Event source mapping

Amazon Simple Storage
Service (Amazon S3)

Event-driven; asynchronous invocation

Amazon Simple Storage
Service Batch

Event-driven; synchronous invocation

Secrets Manager Secret rotation

AWS Step Functions Event-driven; synchronous or asynchronous invocation

Amazon VPC Lattice Event-driven; synchronous invocation

Services list 1132

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/lexv2/latest/dg/lambda.html
https://docs.aws.amazon.com/ses/latest/dg/receiving-email-action-lambda.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotate-secrets_lambda.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-lambda.html
https://docs.aws.amazon.com/vpc-lattice/latest/ug/lambda-functions.html

AWS Lambda Developer Guide

Using Lambda with Apache Kafka

Lambda supports Apache Kafka as an event source. Apache Kafka is an open-source event
streaming platform designed to handle high-throughput, real-time data pipelines and streaming
applications. There are two main ways to use Lambda with Apache Kafka:

• the section called “MSK” – Amazon Managed Streaming for Apache Kafka (Amazon MSK) is
a fully-managed service by AWS. Amazon MSK helps automate management of your Kafka
infrastructure, including provisioning, patching, and scaling.

• the section called “Self-managed Apache Kafka” – In AWS terminology, a self-managed cluster
includes non-AWS hosted Kafka clusters. For example, you can still use Lambda with a Kafka
cluster hosted with a non-AWS cloud provider such as Confluent Cloud or Redpanda.

When deciding between Amazon MSK and self-managed Apache Kafka, consider your operational
needs and control requirements. Amazon MSK is a better choice if you want AWS to quickly help
you manage a scalable, production-ready Kafka setup with minimal operational overhead. It
simplifies security, monitoring, and high availability, helping you focus on application development
rather than infrastructure management. On the other hand, self-managed Apache Kafka is better
suited for use cases running on non-AWS hosted environments, including on-premises clusters.

Topics

• Using Lambda with Amazon MSK

• Using Lambda with self-managed Apache Kafka

• Using schema registries with Kafka event sources in Lambda

• Low latency processing for Kafka event sources

Apache Kafka 1133

https://kafka.apache.org/
https://www.confluent.io/confluent-cloud/
https://www.redpanda.com/

AWS Lambda Developer Guide

Using Lambda with Amazon MSK

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully-managed service that you
can use to build and run applications that use Apache Kafka to process streaming data. Amazon
MSK simplifies the setup, scaling, and management of Kafka clusters. Amazon MSK also makes
it easier to configure your application for multiple Availability Zones and for security with AWS
Identity and Access Management (IAM).

This chapter explains how to use an Amazon MSK cluster as an event source for your Lambda
function. The general process for integrating Amazon MSK with Lambda involves the following
steps:

1. Cluster and network setup – First, set up your Amazon MSK cluster. This includes the correct
networking configuration to allow Lambda to access your cluster.

2. Event source mapping setup – Then, create the event source mapping resource that Lambda
needs to securely connect your Amazon MSK cluster to your function.

3. Function and permissions setup – Finally, ensure that your function is correctly set up, and has
the necessary permissions in its execution role.

For examples on how to set up a Lambda integration with an Amazon MSK cluster, see the section
called “Tutorial”, Using Amazon MSK as an event source for AWS Lambda on the AWS Compute
Blog, and Amazon MSK Lambda Integration in the Amazon MSK Labs.

Topics

• Example event

• Configuring your Amazon MSK cluster and Amazon VPC network for Lambda

• Configuring Amazon MSK event sources for Lambda

• Configuring Lambda execution role permissions

• Using event filtering with an Amazon MSK event source

• Capturing discarded batches for an Amazon MSK event source

• Tutorial: Using an Amazon MSK event source mapping to invoke a Lambda function

MSK 1134

https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://docs.aws.amazon.com/msk/latest/developerguide/what-is-msk.html
https://aws.amazon.com/blogs/compute/using-amazon-msk-as-an-event-source-for-aws-lambda/
https://amazonmsk-labs.workshop.aws/en/msklambda.html

AWS Lambda Developer Guide

Example event

Lambda sends the batch of messages in the event parameter when it invokes your function. The
event payload contains an array of messages. Each array item contains details of the Amazon MSK
topic and partition identifier, together with a timestamp and a base64-encoded message.

{
 "eventSource":"aws:kafka",
 "eventSourceArn":"arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers":"b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "records":{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[
 {
 "headerKey":[
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }
]
 }

MSK 1135

AWS Lambda Developer Guide

}

Configuring your Amazon MSK cluster and Amazon VPC network for Lambda

To connect your AWS Lambda function to your Amazon MSK cluster, you need to correctly
configure your cluster and the Amazon Virtual Private Cloud (VPC) it resides in. This page describes
how to configure your cluster and VPC. If your cluster and VPC are already configured properly, see
the section called “Configure event source” to configure the event source mapping.

Topics

• Overview of network configuration requirements for Lambda and MSK integrations

• Configuring a NAT gateway for an MSK event source

• Configuring AWS PrivateLink endpoints for an MSK event source

Overview of network configuration requirements for Lambda and MSK integrations

The networking configuration required for a Lambda and MSK integration depends on the network
architecture of your application. There are three main resources involved in this integration: the
Amazon MSK cluster, the Lambda function, and the Lambda event source mapping. Each of these
resources resides in a different VPC:

• Your Amazon MSK cluster typically resides in a private subnet of a VPC that you manage.

• Your Lambda function resides in an AWS-managed VPC owned by Lambda.

• Your Lambda event source mapping resides in another AWS-managed VPC owned by Lambda,
separate from the VPC that contains your function.

The event source mapping is the intermediary resource between the MSK cluster and the Lambda
function. The event source mapping has two primary jobs. First, it polls your MSK cluster for new
messages. Then, it invokes your Lambda function with those messages. Since these three resources
are in different VPCs, both the poll and invoke operations require cross-VPC network calls.

The network configuration requirements for your event source mapping depends on whether it
uses provisioned mode or on-demand mode, as shown in the following diagram:

MSK 1136

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

AWS Lambda Developer Guide

The way that the Lambda event source mapping polls your MSK cluster for new messages is the
same in both modes. To establish a connection between your event source mapping and your MSK
cluster, Lambda creates a hyperplane ENI (or reuses an existing one, if available) in your private
subnet to establish a secure connection. As illustrated in the diagram, this hyperplane ENI uses the
subnet and security group configuration of your MSK cluster, not your Lambda function.

After polling the message from the cluster, the way Lambda invokes your function is different in
each mode:

• In provisioned mode, Lambda automatically handles the connection between the event source
mapping VPC and the function VPC. So, you don’t need any additional networking components
to successfully invoke your function.

• In on-demand mode, your Lambda event source mapping invokes your function via a path
through your customer-managed VPC. Because of this, you need to configure either a NAT
gateway in the public subnet of your VPC, or AWS PrivateLink endpoints in the private subnet of
the VPC that provide access to Lambda, AWS Security Token Service (STS), and optionally, AWS
Secrets Manager. Correctly configuring either one of these options allows a connection between
your VPC and the Lambda-managed runtime VPC, which is necessary to invoke your function.

A NAT gateway allows resources in your private subnet to access the public internet. Using this
configuration means your traffic traverses the internet before invoking the Lambda function. AWS
PrivateLink endpoints allow private subnets to securely connect to AWS services or other private
VPC resources without traversing the public internet. See the section called “Configuring a NAT
gateway for an MSK event source” or the section called “Configuring AWS PrivateLink endpoints for
an MSK event source” for details on how to configure these resources.

MSK 1137

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

AWS Lambda Developer Guide

So far, we’ve assumed that your MSK cluster resides in a private subnet within your VPC, which is
the more common case. However, even if your MSK cluster is in a public subnet within your VPC,
you must configure AWS PrivateLink endpoints to enable a secure connection. The following table
summarizes the networking configuration requirements based on how you configure your MSK
cluster and Lambda event source mapping:

MSK cluster location (in
customer-managed VPC)

Lambda event source
mapping scaling mode

Required networking
configuration

Private subnet On-demand mode NAT gateway (in your VPC's
public subnet), or AWS
PrivateLink endpoints (in
your VPC's private subnet)
to enable access to Lambda,
AWS STS, and optionally,
Secrets Manager.

Public subnet On-demand mode AWS PrivateLink endpoints
(in your VPC's public subnet)
to enable access to Lambda,
AWS STS, and optionally,
Secrets Manager.

Private subnet Provisioned mode None

Public subnet Provisioned mode None

In addition, the security groups associated with your MSK cluster must allow traffic over the correct
ports. Ensure that you have the following security group rules configured:

• Inbound rules – Allow all traffic on the default broker port. The port that MSK uses depends on
the type of authentication on the cluster: 9098 for IAM authentication, 9096 for SASL/SCRAM,
and 9094 for TLS. Alternatively, you can use a self-referencing security group rule to allow access
from instances within the same security group.

• Outbound rules – Allow all traffic on port 443 for external destinations if your function needs
to communicate with other AWS services. Alternatively, you can use a self-referencing security

MSK 1138

AWS Lambda Developer Guide

group rule to limit access to the broker if you don’t need to communicate with other AWS
services.

• Amazon VPC endpoint inbound rules – If you’re using an Amazon VPC endpoint, the security
group associated with the endpoint must allow inbound traffic on port 443 from the cluster’s
security group.

Configuring a NAT gateway for an MSK event source

You can configure a NAT gateway to allow your event source mapping to poll messages from your
cluster, and invoke the function via a path through your VPC. This is required only if your event
source mapping uses on-demand mode, and your cluster resides within a private subnet of your
VPC. If your cluster resides in a public subnet of your VPC, or your event source mapping uses
provisioned mode, you don’t need to configure a NAT gateway.

A NAT gateway allows resources in a private subnet to access the public internet. If you need
private connectivity to Lambda, see the section called “Configuring AWS PrivateLink endpoints for
an MSK event source” instead.

After you configure your NAT gateway, you must configure the appropriate route tables. This
allows traffic from your private subnet to route to the public internet via the NAT gateway.

MSK 1139

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Lambda Developer Guide

The following steps guide you through configuring a NAT gateway using the console. Repeat these
steps as necessary for each Availability Zone (AZ).

To configure a NAT gateway and proper routing (console)

1. Follow the steps in Create a NAT gateway, noting the following:

• NAT gateways should always reside in a public subnet. Create NAT gateways with public
connectivity.

• If your MSK cluster is replicated across multiple AZs, create one NAT gateway per AZ. For
example, in each AZ, your VPC should have one private subnet containing your cluster, and
one public subnet containing your NAT gateway. For a setup with three AZs, you’ll have three
private subnets, three public subnets, and three NAT gateways.

2. After you create your NAT gateway, open the Amazon VPC console and choose Route tables in
the left menu.

MSK 1140

https://docs.aws.amazon.com/vpc/latest/userguide/nat-gateway-working-with.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

3. Choose Create route table.

4. Associate this route table with the VPC that contains your MSK cluster. Optionally, enter a
name for your route table.

5. Choose Create route table.

6. Choose the route table you just created.

7. Under the Subnet associations tab, choose Edit subnet associations.

• Associate this route table with the private subnet that contains your MSK cluster.

8. Choose Edit routes.

9. Choose Add route:

1. For Destination, choose 0.0.0.0/0.

2. For Target, choose NAT gateway.

3. In the search box, choose the NAT gateway you created in step 1. This should be the NAT
gateway in the same AZ as the private subnet that contains your MSK cluster (the private
subnet that you associated with this route table in step 6).

10. Choose Save changes.

Configuring AWS PrivateLink endpoints for an MSK event source

You can configure AWS PrivateLink endpoints to poll messages from your cluster, and invoke the
function via a path through your VPC. These endpoints should allow your MSK cluster to access the
following:

• The Lambda service

• The AWS Security Token Service (STS)

• Optionally, the AWS Secrets Manager service. This is required if the secret required for cluster
authentication is stored in Secrets Manager.

Configuring PrivateLink endpoints is required only if your event source mapping uses on-demand
mode. If your event source mapping uses provisioned mode, Lambda establishes the required
connections for you.

PrivateLink endpoints allow secure, private access to AWS services over AWS PrivateLink.
Alternatively, to configure a NAT gateway to give your MSK cluster access to the public internet, see
the section called “Configuring a NAT gateway for an MSK event source”.

MSK 1141

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

AWS Lambda Developer Guide

After you configure your VPC endpoints, your MSK cluster should have direct and private access to
Lambda, STS, and optionally, Secrets Manager.

The following steps guide you through configuring a PrivateLink endpoint using the console.
Repeat these steps as necessary for each endpoint (Lambda, STS, Secrets Manager).

To configure VPC PrivateLink endpoints (console)

1. Open the Amazon VPC console and choose Endpoints in the left menu.

2. Choose Create endpoint.

3. Optionally, enter a name for your endpoint.

4. For Type, choose AWS services.

5. Under Services, start typing the name of the service. For example, to create an endpoint to
connect to Lambda, type lambda in the search box.

MSK 1142

https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

6. In the results, you should see the service endpoint in the current region. For example, in the
US East (N. Virginia) region, you should see com.amazonaws.us-east-2.lambda. Select this
service.

7. Under Network settings, select the VPC that contains your MSK cluster.

8. Under Subnets, select the AZs that your MSK cluster is in.

• For each AZ, under Subnet ID, choose the private subnet that contains your MSK cluster.

9. Under Security groups, select the security groups associated with your MSK cluster.

10. Choose Create endpoint.

By default, Amazon VPC endpoints have open IAM policies that allow broad access to resources.
Best practice is to restrict these policies to perform the needed actions using that endpoint. For
example, for your Secrets Manager endpoint, you can modify its policy such that it allows only your
function’s execution role to access the secret.

Example VPC endpoint policy – Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws::iam::123456789012:role/my-role"
]
 },
 "Resource": "arn:aws::secretsmanager:us-west-2:123456789012:secret:my-
secret"
 }
]
}

For the AWS STS and Lambda endpoints, you can restrict the calling principal to the Lambda
service principal. However, ensure that you use "Resource": "*" in these policies.

Example VPC endpoint policy – AWS STS endpoint

{

MSK 1143

AWS Lambda Developer Guide

 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

Example VPC endpoint policy – Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

Configuring Amazon MSK event sources for Lambda

To use an Amazon MSK cluster as an event source for your Lambda function, you create an event
source mapping that connects the two resources. This page describes how to create an event
source mapping for Amazon MSK.

This page assumes that you've already properly configured your MSK cluster and the Amazon
Virtual Private Cloud (VPC) it resides in. If you need to set up your cluster or VPC, see the section
called “Cluster and network setup”.

Topics

MSK 1144

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

AWS Lambda Developer Guide

• Using an Amazon MSK cluster as an event source

• Creating a Lambda event source mapping for an Amazon MSK event source

• Configuring cluster authentication methods in Lambda

• Customizable consumer group ID in Lambda

• Polling and stream starting positions in Lambda

• Event poller scaling modes in Lambda

• Creating cross-account event source mappings in Lambda

• All Amazon MSK event source configuration parameters in Lambda

Using an Amazon MSK cluster as an event source

When you add your Apache Kafka or Amazon MSK cluster as a trigger for your Lambda function,
the cluster is used as an event source.

Lambda reads event data from the Kafka topics that you specify as Topics in a
CreateEventSourceMapping request, based on the starting position that you specify. After
successful processing, your Kafka topic is committed to your Kafka cluster.

Lambda reads messages sequentially for each Kafka topic partition. A single Lambda payload
can contain messages from multiple partitions. When more records are available, Lambda
continues processing records in batches, based on the BatchSize value that you specify in a
CreateEventSourceMapping request, until your function catches up with the topic.

After Lambda processes each batch, it commits the offsets of the messages in that batch. If your
function returns an error for any of the messages in a batch, Lambda retries the whole batch of
messages until processing succeeds or the messages expire. You can send records that fail all retry
attempts to an on-failure destination for later processing.

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes.

MSK 1145

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html

AWS Lambda Developer Guide

Creating a Lambda event source mapping for an Amazon MSK event source

To create an event source mapping, you can use the Lambda console, the AWS Command Line
Interface (CLI), or an AWS SDK.

Note

When you create the event source mapping, Lambda creates a hyperplane ENI in the
private subnet that contains your MSK cluster, allowing Lambda to establish a secure
connection. This hyperplane ENI allows uses the subnet and security group configuration of
your MSK cluster, not your Lambda function.

The following console steps add an Amazon MSK cluster as a trigger for your Lambda function.
Under the hood, this creates an event source mapping resource.

To add an Amazon MSK trigger to your Lambda function (console)

1. Open the Function page of the Lambda console.

2. Choose the name of the Lambda function you want to add an Amazon MSK trigger to.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, choose MSK.

5. To specify your Kafka cluster details, do the following:

1. For MSK cluster, select your cluster.

2. For Topic name, enter the name of the Kafka topic to consume messages from.

3. For Consumer group ID, enter the ID of a Kafka consumer group to join, if applicable. For
more information, see the section called “Consumer group ID”.

6. For Cluster authentication, make the necessary configurations. For more information about
cluster authentication, see the section called “Cluster authentication”.

• Toggle on Use authentication if you want Lambda to perform authentication with your MSK
cluster when establishing a connection. Authentication is recommended.

• If you use authentication, for Authentication method, choose the authentication method to
use.

• If you use authentication, for Secrets Manager key, choose the Secrets Manager key that
contains the authentication credentials needed to access your cluster.

MSK 1146

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://aws.amazon.com/getting-started/tools-sdks/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

7. Under Event poller configuration, make the necessary configurations.

• Choose Activate trigger to enable the trigger immediately after creation.

• Choose whether you want to Configure provisioned mode for your event source mapping.
For more information, see the section called “Event poller scaling”.

• If you configure provisioned mode, enter a value for Minimum event pollers, a value for
Maximum event pollers, or both values.

• For Starting position, choose how you want Lambda to start reading from your stream. For
more information, see the section called “Polling and stream positions”.

8. Under Batching, make the necessary configurations. For more information about batching, see
the section called “Batching behavior”.

1. For Batch size, enter the maximum number of messages to receive in a single batch.

2. For Batch window, enter the maximum number of seconds that Lambda spends gathering
records before invoking the function.

9. Under Filtering, make the necessary configurations. For more information about filtering, see
the section called “Event filtering”.

• For Filter criteria, add filter criteria definitions to determine whether or not to process an
event.

10. Under Failure handling, make the necessary configurations. For more information about
failure handling, see the section called “On-failure destinations”.

• For On-failure destination, specify the ARN of your on-failure destination.

11. For Tags, enter the tags to associate with this event source mapping.

12. To create the trigger, choose Add.

You can also create the event source mapping using the AWS CLI with the create-event-source-
mapping command. The following example creates an event source mapping to map the Lambda
function my-msk-function to the AWSKafkaTopic topic, starting from the LATEST message.
This command also uses the SourceAccessConfiguration object to instruct Lambda to use SASL/
SCRAM authentication when connecting to the cluster.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:cluster/my-cluster/fc2f5bdf-
fd1b-45ad-85dd-15b4a5a6247e-2 \

MSK 1147

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_SourceAccessConfiguration.html

AWS Lambda Developer Guide

 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function
 --source-access-configurations '[{"Type": "SASL_SCRAM_512_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:111122223333:secret:my-secret"}]'

If the cluster uses mTLS authentication, include a SourceAccessConfiguration object that specifies
CLIENT_CERTIFICATE_TLS_AUTH and a Secrets Manager key ARN. This is shown in the following
command:

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:cluster/my-cluster/fc2f5bdf-
fd1b-45ad-85dd-15b4a5a6247e-2 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function
 --source-access-configurations '[{"Type": "CLIENT_CERTIFICATE_TLS_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:111122223333:secret:my-secret"}]'

When the cluster uses IAM authentication, you don’t need a SourceAccessConfiguration object.
This is shown in the following command:

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:cluster/my-cluster/fc2f5bdf-
fd1b-45ad-85dd-15b4a5a6247e-2 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function

Configuring cluster authentication methods in Lambda

Lambda needs permission to access your Amazon MSK cluster, retrieve records, and perform other
tasks. Amazon MSK supports several ways to authenticate with your MSK cluster.

Cluster authentication methods

• Unauthenticated access

• SASL/SCRAM authentication

• Mutual TLS authentication

• IAM authentication

MSK 1148

https://docs.aws.amazon.com/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_SourceAccessConfiguration.html

AWS Lambda Developer Guide

• How Lambda chooses a bootstrap broker

Unauthenticated access

If no clients access the cluster over the internet, you can use unauthenticated access.

SASL/SCRAM authentication

Lambda supports Simple Authentication and Security Layer/Salted Challenge Response
Authentication Mechanism (SASL/SCRAM) authentication, with the SHA-512 hash function
and Transport Layer Security (TLS) encryption. For Lambda to connect to the cluster, store the
authentication credentials (username and password) in a Secrets Manager secret, and reference this
secret when configuring your event source mapping.

For more information about using Secrets Manager, see Sign-in credentials authentication with
Secrets Manager in the Amazon Managed Streaming for Apache Kafka Developer Guide.

Note

Amazon MSK doesn’t support SASL/PLAIN authentication.

Mutual TLS authentication

Mutual TLS (mTLS) provides two-way authentication between the client and the server. The client
sends a certificate to the server for the server to verify the client. The server also sends a certificate
to the client for the client to verify the server.

For Amazon MSK integrations with Lambda, your MSK cluster acts as the server, and Lambda acts
as the client.

• For Lambda to verify your MSK cluster, you configure a client certificate as a secret in Secrets
Manager, and reference this certificate in your event source mapping configuration. The client
certificate must be signed by a certificate authority (CA) in the server’s trust store.

• The MSK cluster also sends a server certificate to Lambda. The server certificate must be signed
by a certificate authority (CA) in the AWS trust store.

Amazon MSK doesn’t support self-signed server certificates. All brokers in Amazon MSK use public
certificates signed by Amazon Trust Services CAs, which Lambda trusts by default.

MSK 1149

https://docs.aws.amazon.com/msk/latest/developerguide/msk-password-tutorial.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password-tutorial.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-encryption.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-encryption.html
https://www.amazontrust.com/repository/

AWS Lambda Developer Guide

Configuring the mTLS secret

The CLIENT_CERTIFICATE_TLS_AUTH secret requires a certificate field and a private key field.
For an encrypted private key, the secret requires a private key password. Both the certificate and
private key must be in PEM format.

Note

Lambda supports the PBES1 (but not PBES2) private key encryption algorithms.

The certificate field must contain a list of certificates, beginning with the client certificate, followed
by any intermediate certificates, and ending with the root certificate. Each certificate must start on
a new line with the following structure:

-----BEGIN CERTIFICATE-----
 <certificate contents>
-----END CERTIFICATE-----

Secrets Manager supports secrets up to 65,536 bytes, which is enough space for long certificate
chains.

The private key must be in PKCS #8 format, with the following structure:

-----BEGIN PRIVATE KEY-----
 <private key contents>
-----END PRIVATE KEY-----

For an encrypted private key, use the following structure:

-----BEGIN ENCRYPTED PRIVATE KEY-----
 <private key contents>
-----END ENCRYPTED PRIVATE KEY-----

The following example shows the contents of a secret for mTLS authentication using an encrypted
private key. For an encrypted private key, you include the private key password in the secret.

{
 "privateKeyPassword": "testpassword",

MSK 1150

https://datatracker.ietf.org/doc/html/rfc2898/#section-6.1
https://datatracker.ietf.org/doc/html/rfc5208

AWS Lambda Developer Guide

 "certificate": "-----BEGIN CERTIFICATE-----
MIIE5DCCAsygAwIBAgIRAPJdwaFaNRrytHBto0j5BA0wDQYJKoZIhvcNAQELBQAw
...
j0Lh4/+1HfgyE2KlmII36dg4IMzNjAFEBZiCRoPimO40s1cRqtFHXoal0QQbIlxk
cmUuiAii9R0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIFgjCCA2qgAwIBAgIQdjNZd6uFf9hbNC5RdfmHrzANBgkqhkiG9w0BAQsFADBb
...
rQoiowbbk5wXCheYSANQIfTZ6weQTgiCHCCbuuMKNVS95FkXm0vqVD/YpXKwA/no
c8PH3PSoAaRwMMgOSA2ALJvbRz8mpg==
-----END CERTIFICATE-----",
 "privateKey": "-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIFKzBVBgkqhkiG9w0BBQ0wSDAnBgkqhkiG9w0BBQwwGgQUiAFcK5hT/X7Kjmgp
...
QrSekqF+kWzmB6nAfSzgO9IaoAaytLvNgGTckWeUkWn/V0Ck+LdGUXzAC4RxZnoQ
zp2mwJn2NYB7AZ7+imp0azDZb+8YG2aUCiyqb6PnnA==
-----END ENCRYPTED PRIVATE KEY-----"
}

For more information about mTLS for Amazon MSK, and instructions on how to generate a
client certificate, see Mutual TLS client authentication for Amazon MSK in the Amazon Managed
Streaming for Apache Kafka Developer Guide.

IAM authentication

You can use AWS Identity and Access Management (IAM) to authenticate the identity of clients that
connect to the MSK cluster. With IAM auth, Lambda relies on the permissions in your function’s
execution role to connect to the cluster, retrieve records, and perform other required actions. For
a sample policy that contains the necessary permissions, see Create authorization policies for the
IAM role in the Amazon Managed Streaming for Apache Kafka Developer Guide.

If IAM auth is active on your MSK cluster, and you don’t provide a secret, Lambda automatically
defaults to using IAM auth.

For more information about IAM authentication in Amazon MSK, see IAM access control.

How Lambda chooses a bootstrap broker

Lambda chooses a bootstrap broker based on the authentication methods available on your
cluster, and whether you provide a secret for authentication. If you provide a secret for mTLS or
SASL/SCRAM, Lambda automatically chooses that auth method. If you don't provide a secret,

MSK 1151

https://docs.aws.amazon.com/msk/latest/developerguide/msk-authentication.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-iam-access-control-policies.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-iam-access-control-policies.html
https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-get-bootstrap-brokers.html

AWS Lambda Developer Guide

Lambda selects the strongest auth method that's active on your cluster. The following is the order
of priority in which Lambda selects a broker, from strongest to weakest auth:

• mTLS (secret provided for mTLS)

• SASL/SCRAM (secret provided for SASL/SCRAM)

• SASL IAM (no secret provided, and IAM auth active)

• Unauthenticated TLS (no secret provided, and IAM auth not active)

• Plaintext (no secret provided, and both IAM auth and unauthenticated TLS are not active)

Note

If Lambda can't connect to the most secure broker type, Lambda doesn't attempt to
connect to a different (weaker) broker type. If you want Lambda to choose a weaker broker
type, deactivate all stronger auth methods on your cluster.

Customizable consumer group ID in Lambda

When setting up Kafka as an event source, you can specify a consumer group ID. This consumer
group ID is an existing identifier for the Kafka consumer group that you want your Lambda
function to join. You can use this feature to seamlessly migrate any ongoing Kafka record
processing setups from other consumers to Lambda.

Kafka distributes messages across all consumers in a consumer group. If you specify a consumer
group ID that has other active consumers, Lambda receives only a portion of the messages from
the Kafka topic. If you want Lambda to handle all messages in the topic, turn off any other
consumers in that consumer group.

Additionally, if you specify a consumer group ID, and Kafka finds a valid existing consumer group
with the same ID, Lambda ignores the StartingPosition for your event source mapping. Instead,
Lambda begins processing records according to the committed offset of the consumer group. If
you specify a consumer group ID, and Kafka cannot find an existing consumer group, then Lambda
configures your event source with the specified StartingPosition.

The consumer group ID that you specify must be unique among all your Kafka event sources. After
creating a Kafka event source mapping with the consumer group ID specified, you cannot update
this value.

MSK 1152

https://developer.confluent.io/learn-more/kafka-on-the-go/consumer-groups/

AWS Lambda Developer Guide

Polling and stream starting positions in Lambda

The StartingPosition parameter tells Lambda when to start reading messages from your stream.
There are three options to choose from:

• Latest – Lambda starts reading just after the most recent record in the Kafka topic.

• Trim horizon – Lambda starts reading from the last untrimmed record in the Kafka topic. This is
also the oldest record in the topic.

• At timestamp – Lambda starts reading from a position defined by a timestamp, in Unix time
seconds. Use the StartingPositionTimestamp parameter to specify the timestamp.

Stream polling during an event source mapping create or update is eventually consistent:

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take up to 90 seconds to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during a create or update. To ensure that no events are missed,
specify either TRIM_HORIZON or AT_TIMESTAMP.

Event poller scaling modes in Lambda

You can choose between two modes of event poller scaling for your Kafka event source mapping:

Scaling modes

• On-demand mode (default)

• Provisioned mode

• Best practices and considerations when using provisioned mode

On-demand mode (default)

When you initially create an Amazon MSK event source, Lambda allocates a default number of
event pollers to process all partitions in the Kafka topic. Lambda automatically scales up or down
the number of event pollers based on message load.

MSK 1153

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-StartingPosition
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-StartingPositionTimestamp

AWS Lambda Developer Guide

In one-minute intervals, Lambda evaluates the offset lag of all the partitions in the topic. If the
offset lag is too high, the partition is receiving messages faster than Lambda can process them.
If necessary, Lambda adds or removes event pollers from the topic. This autoscaling process of
adding or removing event pollers occurs within three minutes of evaluation.

If your target Lambda function is throttled, Lambda reduces the number of event pollers. This
action reduces the workload on the function by reducing the number of messages that event
pollers can retrieve and send to the function.

Provisioned mode

For workloads where you need to fine-tune the throughput of your event source mapping, you
can use provisioned mode. In provisioned mode, you define minimum and maximum limits for
the amount of provisioned event pollers. These provisioned event pollers are dedicated to your
event source mapping, and can handle unexpected message spikes through responsive autoscaling.
We recommend that you use provisioned mode for Kafka workloads that have strict performance
requirements.

In Lambda, an event poller is a compute unit capable of handling up to 5 MBps of throughput.
For reference, suppose your event source produces an average payload of 1MB, and the average
function duration is 1 sec. If the payload doesn’t undergo any transformation (such as filtering),
a single poller can support 5 MBps throughput, and 5 concurrent Lambda invocations. Using
provisioned mode incurs additional costs. For pricing estimates, see AWS Lambda pricing.

Note

When using provisioned mode, you don't need to create AWS PrivateLink VPC endpoints or
grant the associated permissions as part of your network configuration.

In provisioned mode, the range of accepted values for the minimum number of event pollers
(MinimumPollers) is between 1 and 200, inclusive. The range of accepted values for the
maximum number of event pollers (MaximumPollers) is between 1 and 2,000, inclusive.
MaximumPollers must be greater than or equal to MinimumPollers. In addition, to maintain
ordered processing within partitions, Lambda caps the MaximumPollers to the number of
partitions in the topic.

For more details about choosing appropriate values for minimum and maximum event pollers, see
the section called “Best practices and considerations when using provisioned mode”.

MSK 1154

https://aws.amazon.com/lambda/pricing/

AWS Lambda Developer Guide

You can configure provisioned mode for your Amazon MSK event source mapping using the
console or the Lambda API.

To configure provisioned mode for an existing Amazon MSK event source mapping (console)

1. Open the Functions page of the Lambda console.

2. Choose the function with the Amazon MSK event source mapping you want to configure
provisioned mode for.

3. Choose Configuration, then choose Triggers.

4. Choose the Amazon MSK event source mapping that you want to configure provisioned mode
for, then choose Edit.

5. Under Event source mapping configuration, choose Configure provisioned mode.

• For Minimum event pollers, enter a value between 1 and 200. If you don't specify a value,
Lambda chooses a default value of 1.

• For Maximum event pollers, enter a value between 1 and 2,000. This value must be greater
than or equal to your value for Minimum event pollers. If you don't specify a value, Lambda
chooses a default value of 200.

6. Choose Save.

You can configure provisioned mode programmatically using the ProvisionedPollerConfig object in
your EventSourceMappingConfiguration. For example, the following UpdateEventSourceMapping
CLI command configures a MinimumPollers value of 5, and a MaximumPollers value of 100.

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --provisioned-poller-config '{"MinimumPollers": 5, "MaximumPollers": 100}'

After configuring provisioned mode, you can observe the usage of event pollers for your workload
by monitoring the ProvisionedPollers metric. For more information, see the section called
“Event source mapping metrics”.

To disable provisioned mode and return to default (on-demand) mode, you can use the following
UpdateEventSourceMapping CLI command:

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \

MSK 1155

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_ProvisionedPollerConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_EventSourceMappingConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

 --provisioned-poller-config '{}'

Best practices and considerations when using provisioned mode

The optimal configuration of minimum and maximum event pollers for your event source mapping
depends on your application's performance requirements. We recommend that you start with the
default minimum event pollers to baseline the performance profile. Adjust your configuration
based on observed message processing patterns and your desired performance profile.

For workloads with spiky traffic and strict performance needs, increase the minimum event pollers
to handle sudden surges in messages. To determine the minimum event pollers required, consider
your workload's messages per second and average payload size, and use the throughput capacity of
a single event poller (up to 5 MBps) as a reference.

To maintain ordered processing within a partition, Lambda limits the maximum event pollers to
the number of partitions in the topic. Additionally, the maximum event pollers your event source
mapping can scale to depends on the function's concurrency settings.

When activating provisioned mode, update your network settings to remove AWS PrivateLink VPC
endpoints and associated permissions.

Creating cross-account event source mappings in Lambda

You can use multi-VPC private connectivity to connect a Lambda function to a provisioned MSK
cluster in a different AWS account. Multi-VPC connectivity uses AWS PrivateLink, which keeps all
traffic within the AWS network.

Note

You can't create cross-account event source mappings for serverless MSK clusters.

To create a cross-account event source mapping, you must first configure multi-VPC
connectivity for the MSK cluster. When you create the event source mapping, use the managed
VPC connection ARN instead of the cluster ARN, as shown in the following examples. The
CreateEventSourceMapping operation also differs depending on which authentication type the
MSK cluster uses.

MSK 1156

https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html#mvpc-cluster-owner-action-turn-on
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html#mvpc-cluster-owner-action-turn-on
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html

AWS Lambda Developer Guide

Example — Create cross-account event source mapping for cluster that uses IAM authentication

When the cluster uses IAM role-based authentication, you don't need a SourceAccessConfiguration
object. Example:

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:vpc-connection/444455556666/
my-cluster-name/51jn98b4-0a61-46cc-b0a6-61g9a3d797d5-7 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function

Example — Create cross-account event source mapping for cluster that uses SASL/SCRAM
authentication

If the cluster uses SASL/SCRAM authentication, you must include a SourceAccessConfiguration
object that specifies SASL_SCRAM_512_AUTH and a Secrets Manager secret ARN.

There are two ways to use secrets for cross-account Amazon MSK event source mappings with
SASL/SCRAM authentication:

• Create a secret in the Lambda function account and sync it with the cluster secret. Create a
rotation to keep the two secrets in sync. This option allows you to control the secret from the
function account.

• Use the secret that's associated with the MSK cluster. This secret must allow cross-account access
to the Lambda function account. For more information, see Permissions to AWS Secrets Manager
secrets for users in a different account.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:vpc-connection/444455556666/
my-cluster-name/51jn98b4-0a61-46cc-b0a6-61g9a3d797d5-7 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function \
 --source-access-configurations '[{"Type": "SASL_SCRAM_512_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:444455556666:secret:my-secret"}]'

MSK 1157

https://docs.aws.amazon.com/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples_cross.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples_cross.html

AWS Lambda Developer Guide

Example — Create cross-account event source mapping for cluster that uses mTLS
authentication

If the cluster uses mTLS authentication, you must include a SourceAccessConfiguration object that
specifies CLIENT_CERTIFICATE_TLS_AUTH and a Secrets Manager secret ARN. The secret can be
stored in the cluster account or the Lambda function account.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:vpc-connection/444455556666/
my-cluster-name/51jn98b4-0a61-46cc-b0a6-61g9a3d797d5-7 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function \
 --source-access-configurations '[{"Type": "CLIENT_CERTIFICATE_TLS_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:444455556666:secret:my-secret"}]'

All Amazon MSK event source configuration parameters in Lambda

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Amazon MSK, as shown in the following table.

Parameter Required Default Notes

AmazonMan
agedKafkaEventSour
ceConfig

N Contains the
ConsumerGroupId
field, which defaults
to a unique value.

Can set only on
Create

BatchSize N 100 Maximum: 10,000

DestinationConfig N N/A the section called
“On-failure destinati
ons”

Enabled N True

EventSourceArn Y N/A Can set only on
Create

MSK 1158

https://docs.aws.amazon.com/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Parameter Required Default Notes

FilterCriteria N N/A Control which events
Lambda sends to
your function

FunctionName Y N/A

KMSKeyArn N N/A the section called
“Encryption of filter
criteria”

MaximumBa
tchingWindowInSeco
nds

N 500 ms Batching behavior

ProvisionedPollers
Config

N MinimumPollers :
default value of 1 if
not specified

MaximumPollers :
default value of 200
if not specified

the section called
“Provisioned mode”

SourceAccessConfig
urations

N No credentials SASL/SCRAM
or CLIENT_CE
RTIFICATE_TLS_AUTH
(MutualTLS)
authentication
credentials for your
event source

StartingPosition Y N/A AT_TIMESTAMP,
TRIM_HORIZON, or
LATEST

Can set only on
Create

MSK 1159

AWS Lambda Developer Guide

Parameter Required Default Notes

StartingPositionTi
mestamp

N N/A Required if StartingP
osition is set to
AT_TIMESTAMP

Tags N N/A the section called
“Event source
mapping tags”

Topics Y N/A Kafka topic name

Can set only on
Create

Configuring Lambda execution role permissions

To access the Amazon MSK cluster, your function and event source mapping need permissions to
perform various Amazon MSK API actions. Add these permissions to the function's execution role. If
your users need access, add the required permissions to the identity policy for the user or role.

To cover all required permissions, you can attach the AWSLambdaMSKExecutionRole managed
policy to your execution role. Alternatively, you can add each permission manually.

Topics

• Basic permissions

• Cluster access permissions

• VPC permissions

• Optional permissions

• Troubleshooting common authentication and authorization errors

Basic permissions

Your Lambda function execution role must have the following required permissions to create and
store logs in CloudWatch Logs.

• logs:CreateLogGroup

MSK 1160

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html

AWS Lambda Developer Guide

• logs:CreateLogStream

• logs:PutLogEvents

Cluster access permissions

For Lambda to access your Amazon MSK cluster on your behalf, your Lambda function must have
the following permissions in its execution role:

• kafka:DescribeCluster

• kafka:DescribeClusterV2

• kafka:GetBootstrapBrokers

• kafka:DescribeVpcConnection: Only required for cross-account event source mappings.

• kafka:ListVpcConnections: Not required in execution role, but required for an IAM principal that is
creating a cross-account event source mapping.

You only need to add one of either kafka:DescribeCluster or kafka:DescribeClusterV2. For
provisioned Amazon MSK clusters, either permission works. For serverless Amazon MSK clusters,
you must use kafka:DescribeClusterV2.

Note

Lambda eventually plans to remove the kafka:DescribeCluster permission from the
AWSLambdaMSKExecutionRole managed policy. If you use this policy, migrate any
applications using kafka:DescribeCluster to use kafka:DescribeClusterV2 instead.

VPC permissions

If your Amazon MSK cluster is in a private subnet of your VPC, your Lambda function must have
additional permissions to access your Amazon VPC resources. These include your VPC, subnets,
security groups, and network interfaces. Your function's execution role must have the following
permissions:

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

MSK 1161

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html
https://docs.aws.amazon.com/msk/1.0/apireference/vpc-connection-arn.html
https://docs.aws.amazon.com/msk/1.0/apireference/vpc-connections.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html

AWS Lambda Developer Guide

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

Optional permissions

Your Lambda function might also need permissions to:

• Access your SCRAM secret, if you're using SASL/SCRAM authentication. This lets your function
use a username and password to connect to Kafka.

• Describe your Secrets Manager secret, if you're using SASL/SCRAM or mTLS authentication. This
allows your function to retrieve the credentials or certificates needed for secure connections.

• Access your AWS KMS customer-managed key, if you want to encrypt your filter criteria. This
helps keep your message filtering rules secret.

• Access your schema registry secrets, if you're using a schema registry with authentication:

• For AWS Glue Schema Registry: Your function needs glue:GetRegistry and
glue:GetSchemaVersion permissions. These allow your function to look up and use the
message format rules stored in AWS Glue.

• For Confluent Schema Registry with BASIC_AUTH or CLIENT_CERTIFICATE_TLS_AUTH: Your
function needs secretsmanager:GetSecretValue permission for the secret containing
the authentication credentials. This lets your function retrieve the username/password or
certificates needed to access the Confluent Schema Registry.

• For private CA certificates: Your function needs secretsmanager:GetSecretValue permission for
the secret containing the certificate. This allows your function to verify the identity of schema
registries that use custom certificates.

These correspond to the following required permissions:

• kafka:ListScramSecrets - Allows listing of SCRAM secrets for Kafka authentication

• secretsmanager:GetSecretValue - Enables retrieval of secrets from Secrets Manager

• kms:Decrypt - Permits decryption of encrypted data using AWS KMS

• glue:GetRegistry - Allows access to AWS Glue Schema Registry

• glue:GetSchemaVersion - Enables retrieval of specific schema versions from AWS Glue Schema
Registry

MSK 1162

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.confluent.io/platform/current/schema-registry/security/index.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/glue/latest/webapi/API_GetRegistry.html
https://docs.aws.amazon.com/glue/latest/webapi/API_GetSchemaVersion.html

AWS Lambda Developer Guide

Additionally, if you want to send records of failed invocations to an on-failure destination, you'll
need the following permissions depending on the destination type:

• For Amazon SQS destinations: sqs:SendMessage - Allows sending messages to an Amazon SQS
queue

• For Amazon SNS destinations: sns:Publish - Permits publishing messages to an Amazon SNS
topic

• For Amazon S3 bucket destinations: s3:PutObject and s3:ListBucket - Enables writing and listing
objects in an Amazon S3 bucket

Troubleshooting common authentication and authorization errors

If any of the permissions required to consume data from the Amazon MSK cluster are missing,
Lambda displays one of the following error messages in the event source mapping under
LastProcessingResult. For more information about each supported authentication method, see the
section called “Cluster authentication”.

Error messages

• Cluster failed to authorize Lambda

• SASL authentication failed

• Server failed to authenticate Lambda

• Provided certificate or private key is invalid

Cluster failed to authorize Lambda

For SASL/SCRAM or mTLS, this error indicates that the provided user doesn't have all of the
following required Kafka access control list (ACL) permissions:

• DescribeConfigs Cluster

• Describe Group

• Read Group

• Describe Topic

• Read Topic

MSK 1163

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListBucket.html

AWS Lambda Developer Guide

For IAM access control, your function's execution role is missing one or more of the permissions
required to access the group or topic. Review the list of required permissions on this page.

When you create either Kafka ACLs or an IAM policy with the required Kafka cluster permissions,
specify the topic and group as resources. The topic name must match the topic in the event source
mapping. The group name must match the event source mapping's UUID.

After you add the required permissions to the execution role, it might take several minutes for the
changes to take effect.

SASL authentication failed

For SASL/SCRAM, this error indicates that the provided user name and password aren't valid.

For IAM access control, the execution role is missing the kafka-cluster:Connect permission for
the MSK cluster. Add this permission to the role and specify the cluster's Amazon Resource Name
(ARN) as a resource.

You might see this error occurring intermittently. The cluster rejects connections after the number
of TCP connections exceeds the Amazon MSK service quota. Lambda backs off and retries until
a connection is successful. After Lambda connects to the cluster and polls for records, the last
processing result changes to OK.

Server failed to authenticate Lambda

This error indicates that the Amazon MSK Kafka brokers failed to authenticate with Lambda. This
can occur for any of the following reasons:

• You didn't provide a client certificate for mTLS authentication.

• You provided a client certificate, but the brokers aren't configured to use mTLS.

• A client certificate isn't trusted by the brokers.

Provided certificate or private key is invalid

This error indicates that the Amazon MSK consumer couldn't use the provided certificate or
private key. Make sure that the certificate and key use PEM format, and that the private key
encryption uses a PBES1 algorithm. See the section called “Configuring the mTLS secret” for more
information.

MSK 1164

https://docs.aws.amazon.com/msk/latest/developerguide/limits.html

AWS Lambda Developer Guide

Using event filtering with an Amazon MSK event source

You can use event filtering to control which records from a stream or queue Lambda sends to your
function. For general information about how event filtering works, see the section called “Event
filtering”.

This section focuses on event filtering for Amazon MSK event sources.

Note

Amazon MSK event source mappings only support filtering on the value key.

Topics

• Amazon MSK event filtering basics

Amazon MSK event filtering basics

The following example record shows a message converted to a Base64 encoded string in the value
field.

{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[]
 }
]
}

Suppose your Apache Kafka producer is writing messages to your topic in the following JSON
format.

{
 "device_ID": "AB1234",
 "session":{

MSK 1165

AWS Lambda Developer Guide

 "start_time": "yyyy-mm-ddThh:mm:ss",
 "duration": 162
 }
}

Use the value key to filter records. Suppose you wanted to filter only those records where
device_ID begins with the letters AB. The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"value\" : { \"device_ID\" : [{ \"prefix\": \"AB\" }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "value": {
 "device_ID": [{ "prefix": "AB" }]
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "value" : { "device_ID" : [{ "prefix": "AB" }] } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kafka:us-east-2:123456789012:cluster/my-cluster/
b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \

MSK 1166

AWS Lambda Developer Guide

 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : { \"device_ID\" :
 [{ \"prefix\": \"AB\" }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : { \"device_ID\" :
 [{ \"prefix\": \"AB\" }] } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "value" : { "device_ID" : [{ "prefix": "AB" }] } }'

With Amazon MSK, you can also filter records where the message is a plain string. Suppose you
want to ignore those messages where the string is "error". The FilterCriteria object would
look as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"value\" : [{ \"anything-but\": [\"error\"] }] }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "value": [
 {
 "anything-but": ["error"]
 }
]
}

MSK 1167

AWS Lambda Developer Guide

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "value" : [{ "anything-but": ["error"] }] }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kafka:us-east-2:123456789012:cluster/my-cluster/
b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : [{ \"anything-but\":
 [\"error\"] }] }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : [{ \"anything-but\":
 [\"error\"] }] }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "value" : [{ "anything-but": ["error"] }] }'

Amazon MSK messages must be UTF-8 encoded strings, either plain strings or in JSON format.
That's because Lambda decodes Amazon MSK byte arrays into UTF-8 before applying filter criteria.

MSK 1168

AWS Lambda Developer Guide

If your messages use another encoding, such as UTF-16 or ASCII, or if the message format doesn't
match the FilterCriteria format, Lambda processes metadata filters only. The following table
summarizes the specific behavior:

Incoming message format Filter pattern format for
message properties

Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Plain string Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Non-UTF-8 encoded string JSON, plain string, or no
pattern

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Capturing discarded batches for an Amazon MSK event source

To retain records of failed event source mapping invocations, add a destination to your function's
event source mapping. Each record sent to the destination is a JSON document containing
metadata about the failed invocation. For Amazon S3 destinations, Lambda also sends the entire

MSK 1169

AWS Lambda Developer Guide

invocation record along with the metadata. You can configure any Amazon SNS topic, Amazon SQS
queue, or S3 bucket as a destination.

With Amazon S3 destinations, you can use the Amazon S3 Event Notifications feature to receive
notifications when objects are uploaded to your destination S3 bucket. You can also configure S3
Event Notifications to invoke another Lambda function to perform automated processing on failed
batches.

Your execution role must have permissions for the destination:

• For SQS destinations: sqs:SendMessage

• For SNS destinations: sns:Publish

• For S3 bucket destinations: s3:PutObject and s3:ListBucket

You must deploy a VPC endpoint for your on-failure destination service inside your Amazon MSK
cluster VPC.

Additionally, if you configured a KMS key on your destination, Lambda needs the following
permissions depending on the destination type:

• If you've enabled encryption with your own KMS key for an S3 destination, kms:GenerateDataKey
is required. If the KMS key and S3 bucket destination are in a different account from your
Lambda function and execution role, configure the KMS key to trust the execution role to allow
kms:GenerateDataKey.

• If you've enabled encryption with your own KMS key for SQS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SQS queue destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

• If you've enabled encryption with your own KMS key for SNS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SNS topic destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

Configuring on-failure destinations for an Amazon MSK event source mapping

To configure an on-failure destination using the console, follow these steps:

MSK 1170

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ListObjectsV2.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Lambda Developer Guide

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Event source mapping invocation.

5. For Event source mapping, choose an event source that's configured for this function.

6. For Condition, select On failure. For event source mapping invocations, this is the only
accepted condition.

7. For Destination type, choose the destination type that Lambda sends invocation records to.

8. For Destination, choose a resource.

9. Choose Save.

You can also configure an on-failure destination using the AWS CLI. For example, the following
create-event-source-mapping command adds an event source mapping with an SQS on-failure
destination to MyFunction:

aws lambda create-event-source-mapping \
--function-name "MyFunction" \
--event-source-arn arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2 \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sqs:us-
east-1:123456789012:dest-queue"}}'

The following update-event-source-mapping command adds an S3 on-failure destination to the
event source associated with the input uuid:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": "arn:aws:s3:::dest-bucket"}}'

To remove a destination, supply an empty string as the argument to the destination-config
parameter:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": ""}}'

MSK 1171

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

Security best practices for Amazon S3 destinations

Deleting an S3 bucket that's configured as a destination without removing the destination from
your function's configuration can create a security risk. If another user knows your destination
bucket's name, they can recreate the bucket in their AWS account. Records of failed invocations will
be sent to their bucket, potentially exposing data from your function.

Warning

To ensure that invocation records from your function can't be sent to an S3 bucket
in another AWS account, add a condition to your function's execution role that limits
s3:PutObject permissions to buckets in your account.

The following example shows an IAM policy that limits your function's s3:PutObject permissions
to buckets in your account. This policy also gives Lambda the s3:ListBucket permission it needs
to use an S3 bucket as a destination.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3BucketResourceAccountWrite",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*/*",
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEquals": {
 "s3:ResourceAccount": "111122223333"
 }
 }
 }
]
}

MSK 1172

AWS Lambda Developer Guide

To add a permissions policy to your funcion's execution role using the AWS Management Console
or AWS CLI, refer to the instructions in the following procedures:

Console

To add a permissions policy to a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Select the Lambda function whose execution role you want to modify.

3. In the Configuration tab, select Permissions.

4. In the Execution role tab, select your function's Role name to open the role's IAM console
page.

5. Add a permissions policy to the role by doing the following:

a. In the Permissions policies pane, choose Add permissions and select Create inline
policy.

b. In Policy editor, select JSON.

c. Paste the policy you want to add into the editor (replacing the existing JSON), and
then choose Next.

d. Under Policy details, enter a Policy name.

e. Choose Create policy.

AWS CLI

To add a permissions policy to a function's execution role (CLI)

1. Create a JSON policy document with the required permissions and save it in a local
directory.

2. Use the IAM put-role-policy CLI command to add the permissions to your function's
execution role. Run the following command from the directory you saved your JSON policy
document in and replace the role name, policy name, and policy document with your own
values.

aws iam put-role-policy \
--role-name my_lambda_role \
--policy-name LambdaS3DestinationPolicy \
--policy-document file://my_policy.json

MSK 1173

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

SNS and SQS example invocation record

The following example shows what Lambda sends to an SNS topic or SQS queue destination for
a failed Kafka event source invocation. Each of the keys under recordsInfo contains both the
Kafka topic and partition, separated by a hyphen. For example, for the key "Topic-0", Topic is
the Kafka topic, and 0 is the partition. For each topic and partition, you can use the offsets and
timestamp data to find the original invocation records.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",

MSK 1174

AWS Lambda Developer Guide

 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 }
}

S3 destination example invocation record

For S3 destinations, Lambda sends the entire invocation record along with the metadata to the
destination. The following example shows that Lambda sends to an S3 bucket destination for a
failed Kafka event source invocation. In addition to all of the fields from the previous example for
SQS and SNS destinations, the payload field contains the original invocation record as an escaped
JSON string.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },

MSK 1175

AWS Lambda Developer Guide

 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 },
 "payload": "<Whole Event>" // Only available in S3
}

Tip

We recommend enabling S3 versioning on your destination bucket.

Tutorial: Using an Amazon MSK event source mapping to invoke a Lambda
function

In this tutorial, you will perform the following:

• Create a Lambda function in the same AWS account as an existing Amazon MSK cluster.

• Configure networking and authentication for Lambda to communicate with Amazon MSK.

• Set up a Lambda Amazon MSK event source mapping, which runs your Lambda function when
events show up in the topic.

After you are finished with these steps, when events are sent to Amazon MSK, you will be able to
set up a Lambda function to process those events automatically with your own custom Lambda
code.

What can you do with this feature?

Example solution: Use an MSK event source mapping to deliver live scores to your customers.

Consider the following scenario: Your company hosts a web application where your customers can
view information about live events, such as sports games. Information updates from the game are
provided to your team through a Kafka topic on Amazon MSK. You want to design a solution that

MSK 1176

AWS Lambda Developer Guide

consumes updates from the MSK topic to provide an updated view of the live event to customers
inside an application you develop. You have decided on the following design approach: Your client
applications will communicate with a serverless backend hosted in AWS. Clients will connect over
websocket sessions using the Amazon API Gateway WebSocket API.

In this solution, you need a component that reads MSK events, performs some custom logic to
prepare those events for the application layer and then forwards that information to the API
Gateway API. You can implement this component with AWS Lambda, by providing your custom
logic in a Lambda function, then calling it with a AWS Lambda Amazon MSK event source mapping.

For more information about implementing solutions using the Amazon API Gateway WebSocket
API, see WebSocket API tutorials in the API Gateway documentation.

Prerequisites

An AWS account with the following preconfigured resources:

To fulfill these prerequisites, we recommend following Getting started using Amazon MSK in
the Amazon MSK documentation.

• An Amazon MSK cluster. See Create an Amazon MSK cluster in Getting started using Amazon
MSK.

• The following configuration:

• Ensure IAM role-based authentication is Enabled in your cluster security settings. This
improves your security by limiting your Lambda function to only access the Amazon MSK
resources needed. This is enabled by default on new Amazon MSK clusters.

• Ensure Public access is off in your cluster networking settings. Restricting your Amazon MSK
cluster's access to the internet improves your security by limiting how many intermediaries
handle your data. This is enabled by default on new Amazon MSK clusters.

• A Kafka topic in your Amazon MSK cluster to use for this solution. See Create a topic in Getting
started using Amazon MSK.

• A Kafka admin host set up to retrieve information from your Kafka cluster and send Kafka events
to your topic for testing, such as an Amazon EC2 instance with the Kafka admin CLI and Amazon
MSK IAM library installed. See Create a client machine in Getting started using Amazon MSK.

Once you have set up these resources, gather the following information from your AWS account to
confirm that you are ready to continue.

MSK 1177

https://docs.aws.amazon.com/apigateway/latest/developerguide/websocket-api-chat-app.html
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-cluster.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-topic.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-client-machine.html

AWS Lambda Developer Guide

• The name of your Amazon MSK cluster. You can find this information in the Amazon MSK
console.

• The cluster UUID, part of the ARN for your Amazon MSK cluster, which you can find in
the Amazon MSK console. Follow the procedures in Listing clusters in the Amazon MSK
documentation to find this information.

• The security groups associated with your Amazon MSK cluster. You can find this
information in the Amazon MSK console. In the following steps, refer to these as your
clusterSecurityGroups.

• The id of the Amazon VPC containing your Amazon MSK cluster. You can find this information by
identifying subnets associated with your Amazon MSK cluster in the Amazon MSK console, then
identifying the Amazon VPC associated with the subnet in the Amazon VPC Console.

• The name of the Kafka topic used in your solution. You can find this information by calling
your Amazon MSK cluster with the Kafka topics CLI from your Kafka admin host. For more
information about the topics CLI, see Adding and removing topics in the Kafka documentation.

• The name of a consumer group for your Kafka topic, suitable for use by your Lambda function.
This group can be created automatically by Lambda, so you don't need to create it with the Kafka
CLI. If you do need to manage your consumer groups, to learn more about the consumer-groups
CLI, see Managing Consumer Groups in the Kafka documentation.

The following permissions in your AWS account:

• Permission to create and manage a Lambda function.

• Permission to create IAM policies and associate them with your Lambda function.

• Permission to create Amazon VPC endpoints and alter networking configuration in the Amazon
VPC hosting your Amazon MSK cluster.

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

MSK 1178

https://docs.aws.amazon.com/msk/latest/developerguide/msk-list-clusters.html
https://kafka.apache.org/documentation/#basic_ops_add_topic
https://kafka.apache.org/documentation/#basic_ops_consumer_group
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Configure network connectivity for Lambda to communicate with Amazon MSK

Use AWS PrivateLink to connect Lambda and Amazon MSK. You can do so by creating interface
Amazon VPC endpoints in the Amazon VPC console. For more information about networking
configuration, see the section called “Cluster and network setup”.

When a Amazon MSK event source mapping runs on the behalf of a Lambda function, it
assumes the Lambda function’s execution role. This IAM role authorizes the mapping to access
resources secured by IAM, such as your Amazon MSK cluster. Although the components share an
execution role, the Amazon MSK mapping and your Lambda function have separate connectivity
requirements for their respective tasks, as shown in the following diagram.

MSK 1179

https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Your event source mapping belongs to your Amazon MSK cluster security group. In this networking
step, create Amazon VPC endpoints from your Amazon MSK cluster VPC to connect the event
source mapping to the Lambda and STS services. Secure these endpoints to accept traffic from
your Amazon MSK cluster security group. Then, adjust the Amazon MSK cluster security groups to
allow the event source mapping to communicate with the Amazon MSK cluster.

You can configure the following steps using the AWS Management Console.

To configure interface Amazon VPC endpoints to connect Lambda and Amazon MSK

1. Create a security group for your interface Amazon VPC endpoints, endpointSecurityGroup,
that allows inbound TCP traffic on 443 from clusterSecurityGroups. Follow the procedure
in Create a security group in the Amazon EC2 documentation to create a security group. Then,
follow the procedure in Add rules to a security group in the Amazon EC2 documentation to
add appropriate rules.

Create a security group with the following information:

MSK 1180

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#creating-security-group
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule

AWS Lambda Developer Guide

When adding your inbound rules, create a rule for each security group in
clusterSecurityGroups. For each rule:

• For Type, select HTTPS.

• For Source, select one of clusterSecurityGroups.

2. Create an endpoint connecting the Lambda service to the Amazon VPC containing your
Amazon MSK cluster. Follow the procedure in Create an interface endpoint.

Create an interface endpoint with the following information:

• For Service name, select com.amazonaws.regionName.lambda, where regionName
hosts your Lambda function.

• For VPC, select the Amazon VPC containing your Amazon MSK cluster.

• For Security groups, select endpointSecurityGroup, which you created earlier.

• For Subnets, select the subnets that host your Amazon MSK cluster.

• For Policy, provide the following policy document, which secures the endpoint for use by
the Lambda service principal for the lambda:InvokeFunction action.

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

• Ensure Enable DNS name remains set.

3. Create an endpoint connecting the AWS STS service to the Amazon VPC containing your
Amazon MSK cluster. Follow the procedure in Create an interface endpoint.

Create an interface endpoint with the following information:

MSK 1181

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

AWS Lambda Developer Guide

• For Service name, select AWS STS.

• For VPC, select the Amazon VPC containing your Amazon MSK cluster.

• For Security groups, select endpointSecurityGroup.

• For Subnets, select the subnets that host your Amazon MSK cluster.

• For Policy, provide the following policy document, which secures the endpoint for use by
the Lambda service principal for the sts:AssumeRole action.

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

• Ensure Enable DNS name remains set.

4. For each security group associated with your Amazon MSK cluster, that is, in
clusterSecurityGroups, allow the following:

• Allow all inbound and outbound TCP traffic on 9098 to all of clusterSecurityGroups,
including within itself.

• Allow all outbound TCP traffic on 443.

Some of this traffic is allowed by default security group rules, so if your cluster is attached to
a single security group, and that group has default rules, additional rules are not necessary.
To adjust security group rules, follow the procedures in Add rules to a security group in the
Amazon EC2 documentation.

Add rules to your security groups with the following information:

• For each inbound rule or outbound rule for port 9098, provide

MSK 1182

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule

AWS Lambda Developer Guide

• For Type, select Custom TCP.

• For Port range, provide 9098.

• For Source, provide one of clusterSecurityGroups.

• For each inbound rule for port 443, for Type, select HTTPS.

Create an IAM role for Lambda to read from your Amazon MSK topic

Identify the auth requirements for Lambda to read from your Amazon MSK topic, then define them
in a policy. Create a role, lambdaAuthRole, that authorizes Lambda to use those permissions.
Authorize actions on your Amazon MSK cluster using kafka-cluster IAM actions. Then,
authorize Lambda to perform Amazon MSK kafka and Amazon EC2 actions needed to discover
and connect to your Amazon MSK cluster, as well as CloudWatch actions so Lambda can log what it
has done.

To describe the auth requirements for Lambda to read from Amazon MSK

1. Write an IAM policy document (a JSON document), clusterAuthPolicy, that allows Lambda
to read from your Kafka topic in your Amazon MSK cluster using your Kafka consumer group.
Lambda requires a Kafka consumer group to be set when reading.

Alter the following template to align with your prerequisites:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:DescribeGroup",
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeClusterDynamicConfiguration"
],
 "Resource": [

MSK 1183

AWS Lambda Developer Guide

 "arn:aws:kafka:us-
east-1:111122223333:cluster/mskClusterName/cluster-uuid",
 "arn:aws:kafka:us-
east-1:111122223333:topic/mskClusterName/cluster-uuid/mskTopicName",
 "arn:aws:kafka:us-
east-1:111122223333:group/mskClusterName/cluster-uuid/mskGroupName"
]
 }
]
}

For more information, consult the section called “Configure permissions”. When writing your
policy:

• Replace us-east-1 and 111122223333 with the AWS Region and AWS account of your
Amazon MSK cluster.

• For mskClusterName, provide the name of your Amazon MSK cluster.

• For cluster-uuid, provide the UUID in the ARN for your Amazon MSK cluster.

• For mskTopicName, provide the name of your Kafka topic.

• For mskGroupName, provide the name of your Kafka consumer group.

2. Identify the Amazon MSK, Amazon EC2 and CloudWatch permissions required for Lambda to
discover and connect your Amazon MSK cluster, and log those events.

The AWSLambdaMSKExecutionRole managed policy permissively defines the required
permissions. Use it in the following steps.

In a production environment, assess AWSLambdaMSKExecutionRole to restrict your
execution role policy based on the principle of least privilege, then write a policy for your role
that replaces this managed policy.

For details about the IAM policy language, see the IAM documentation.

Now that you have written your policy document, create an IAM policy so you can attach it to your
role. You can do this using the console with the following procedure.

MSK 1184

https://docs.aws.amazon.com/iam/

AWS Lambda Developer Guide

To create an IAM policy from your policy document

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Paste clusterAuthPolicy.

6. When you are finished adding permissions to the policy, choose Next.

7. On the Review and create page, type a Policy Name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

8. Choose Create policy to save your new policy.

For more information, see Creating IAM policies in the IAM documentation.

Now that you have appropriate IAM policies, create a role and attach them to it. You can do this
using the console with the following procedure.

To create an execution role in the IAM console

1. Open the Roles page in the IAM console.

2. Choose Create role.

3. Under Trusted entity type, choose AWS service.

4. Under Use case, choose Lambda.

5. Choose Next.

6. Select the following policies:

• clusterAuthPolicy

• AWSLambdaMSKExecutionRole

7. Choose Next.

8. For Role name, enter lambdaAuthRole and then choose Create role.

For more information, see the section called “Execution role (permissions for functions to access
other resources)”.

MSK 1185

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

Create a Lambda function to read from your Amazon MSK topic

Create a Lambda function configured to use your IAM role. You can create your Lambda function
using the console.

To create a Lambda function using your auth configuration

1. Open the Lambda console and select Create function from the header.

2. Select Author from scratch.

3. For Function name, provide an appropriate name of your choice.

4. For Runtime, choose the Latest supported version of Node.js to use the code provided in
this tutorial.

5. Choose Change default execution role.

6. Select Use an existing role.

7. For Existing role, select lambdaAuthRole.

In a production environment, you usually need to add further policies to the execution role for
your Lambda function to meaningfully process your Amazon MSK events. For more information on
adding policies to your role, see Add or remove identity permissions in the IAM documentation.

Create an event source mapping to your Lambda function

Your Amazon MSK event source mapping provides the Lambda service the information necessary
to invoke your Lambda when appropriate Amazon MSK events occur. You can create a Amazon
MSK mapping using the console. Create a Lambda trigger, then the event source mapping is
automatically set up.

To create a Lambda trigger (and event source mapping)

1. Navigate to your Lambda function's overview page.

2. In the function overview section, choose Add trigger on the bottom left.

3. In the Select a source dropdown, select Amazon MSK.

4. Don't set authentication.

5. For MSK cluster, select your cluster's name.

6. For Batch size, enter 1. This step makes this feature easier to test, and is not an ideal value in
production.

MSK 1186

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

AWS Lambda Developer Guide

7. For Topic name, provide the name of your Kafka topic.

8. For Consumer group ID, provide the id of your Kafka consumer group.

Update your Lambda function to read your streaming data

Lambda provides information about Kafka events through the event method parameter. For an
example structure of a Amazon MSK event, see the section called “ Example event”. After you
understand how to interpret Lambda forwarded Amazon MSK events, you can alter your Lambda
function code to use the information they provide.

Provide the following code to your Lambda function to log the contents of a Lambda Amazon MSK
event for testing purposes:

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using .NET.

using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KafkaEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace MSKLambda;

public class Function
{

MSK 1187

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 /// <param name="input">The event for the Lambda function handler to
 process.</param>
 /// <param name="context">The ILambdaContext that provides methods for
 logging and describing the Lambda environment.</param>
 /// <returns></returns>
 public void FunctionHandler(KafkaEvent evnt, ILambdaContext context)
 {

 foreach (var record in evnt.Records)
 {
 Console.WriteLine("Key:" + record.Key);
 foreach (var eventRecord in record.Value)
 {
 var valueBytes = eventRecord.Value.ToArray();
 var valueText = Encoding.UTF8.GetString(valueBytes);

 Console.WriteLine("Message:" + valueText);
 }
 }
 }

}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Go.

package main

import (
 "encoding/base64"

MSK 1188

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.KafkaEvent) {
 for key, records := range event.Records {
 fmt.Println("Key:", key)

 for _, record := range records {
 fmt.Println("Record:", record)

 decodedValue, _ := base64.StdEncoding.DecodeString(record.Value)
 message := string(decodedValue)
 fmt.Println("Message:", message)
 }
 }
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KafkaEvent;
import com.amazonaws.services.lambda.runtime.events.KafkaEvent.KafkaEventRecord;

MSK 1189

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

import java.util.Base64;
import java.util.Map;

public class Example implements RequestHandler<KafkaEvent, Void> {

 @Override
 public Void handleRequest(KafkaEvent event, Context context) {
 for (Map.Entry<String, java.util.List<KafkaEventRecord>> entry :
 event.getRecords().entrySet()) {
 String key = entry.getKey();
 System.out.println("Key: " + key);

 for (KafkaEventRecord record : entry.getValue()) {
 System.out.println("Record: " + record);

 byte[] value = Base64.getDecoder().decode(record.getValue());
 String message = new String(value);
 System.out.println("Message: " + message);
 }
 }

 return null;
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using JavaScript.

exports.handler = async (event) => {
 // Iterate through keys
 for (let key in event.records) {

MSK 1190

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 console.log('Key: ', key)
 // Iterate through records
 event.records[key].map((record) => {
 console.log('Record: ', record)
 // Decode base64
 const msg = Buffer.from(record.value, 'base64').toString()
 console.log('Message:', msg)
 })
 }
}

Consuming an Amazon MSK event with Lambda using TypeScript.

import { MSKEvent, Context } from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "msk-handler-sample",
});

export const handler = async (
 event: MSKEvent,
 context: Context
): Promise<void> => {
 for (const [topic, topicRecords] of Object.entries(event.records)) {
 logger.info(`Processing key: ${topic}`);

 // Process each record in the partition
 for (const record of topicRecords) {
 try {
 // Decode the message value from base64
 const decodedMessage = Buffer.from(record.value, 'base64').toString();

 logger.info({
 message: decodedMessage
 });
 }
 catch (error) {
 logger.error('Error processing event', { error });
 throw error;
 }

MSK 1191

AWS Lambda Developer Guide

 };
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using PHP.

<?php
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

// using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kafka\KafkaEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */

MSK 1192

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 public function handle(mixed $event, Context $context): void
 {
 $kafkaEvent = new KafkaEvent($event);
 $this->logger->info("Processing records");
 $records = $kafkaEvent->getRecords();

 foreach ($records as $record) {
 try {
 $key = $record->getKey();
 $this->logger->info("Key: $key");

 $values = $record->getValue();
 $this->logger->info(json_encode($values));

 foreach ($values as $value) {
 $this->logger->info("Value: $value");
 }

 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Python.

MSK 1193

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

import base64

def lambda_handler(event, context):
 # Iterate through keys
 for key in event['records']:
 print('Key:', key)
 # Iterate through records
 for record in event['records'][key]:
 print('Record:', record)
 # Decode base64
 msg = base64.b64decode(record['value']).decode('utf-8')
 print('Message:', msg)

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Ruby.

require 'base64'

def lambda_handler(event:, context:)
 # Iterate through keys
 event['records'].each do |key, records|
 puts "Key: #{key}"

 # Iterate through records
 records.each do |record|
 puts "Record: #{record}"

 # Decode base64
 msg = Base64.decode64(record['value'])
 puts "Message: #{msg}"

MSK 1194

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 end
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Rust.

use aws_lambda_events::event::kafka::KafkaEvent;
use lambda_runtime::{run, service_fn, tracing, Error, LambdaEvent};
use base64::prelude::*;
use serde_json::{Value};
use tracing::{info};

/// Pre-Requisites:
/// 1. Install Cargo Lambda - see https://www.cargo-lambda.info/guide/getting-
started.html
/// 2. Add packages tracing, tracing-subscriber, serde_json, base64
///
/// This is the main body for the function.
/// Write your code inside it.
/// There are some code example in the following URLs:
/// - https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples
/// - https://github.com/aws-samples/serverless-rust-demo/

async fn function_handler(event: LambdaEvent<KafkaEvent>) -> Result<Value, Error>
 {

 let payload = event.payload.records;

 for (_name, records) in payload.iter() {

 for record in records {

MSK 1195

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 let record_text = record.value.as_ref().ok_or("Value is None")?;
 info!("Record: {}", &record_text);

 // perform Base64 decoding
 let record_bytes = BASE64_STANDARD.decode(record_text)?;
 let message = std::str::from_utf8(&record_bytes)?;

 info!("Message: {}", message);
 }

 }

 Ok(().into())
}

#[tokio::main]
async fn main() -> Result<(), Error> {

 // required to enable CloudWatch error logging by the runtime
 tracing::init_default_subscriber();
 info!("Setup CW subscriber!");

 run(service_fn(function_handler)).await
}

You can provide function code to your Lambda using the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. In the DEPLOY section, choose Deploy to update your function's code:

MSK 1196

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Test your Lambda function to verify it is connected to your Amazon MSK topic

You can now verify whether or not your Lambda is being invoked by the event source by inspecting
CloudWatch event logs.

To verify whether your Lambda function is being invoked

1. Use your Kafka admin host to generate Kafka events using the kafka-console-producer
CLI. For more information, see Write some events into the topic in the Kafka documentation.
Send enough events to fill up the batch defined by batch size for your event source mapping
defined in the previous step, or Lambda will wait for more information to invoke.

2. If your function runs, Lambda writes what happened to CloudWatch. In the console, navigate
to your Lambda function's detail page.

3. Select the Configuration tab.

4. From the sidebar, select Monitoring and operations tools.

5. Identify the CloudWatch log group under Logging configuration. The log group should start
with /aws/lambda. Choose the link to the log group.

6. In the CloudWatch console, inspect the Log events for the log events Lambda has sent to the
log stream. Identify if there are log events containing the message from your Kafka event, as
in the following image. If there are, you have successfully connected a Lambda function to
Amazon MSK with a Lambda event source mapping.

MSK 1197

https://kafka.apache.org/documentation/#quickstart_send

AWS Lambda Developer Guide

Using Lambda with self-managed Apache Kafka

This topic describes how to use Lambda with a self-managed Kafka cluster. In AWS terminology,
a self-managed cluster includes non-AWS hosted Kafka clusters. For example, you can host your
Kafka cluster with a cloud provider such as Confluent Cloud.

Apache Kafka as an event source operates similarly to using Amazon Simple Queue Service
(Amazon SQS) or Amazon Kinesis. Lambda internally polls for new messages from the event
source and then synchronously invokes the target Lambda function. Lambda reads the messages
in batches and provides these to your function as an event payload. The maximum batch size is
configurable (the default is 100 messages). For more information, see the section called “Batching
behavior”.

To optimize the throughput of your self-managed Apache Kafka event source mapping, configure
provisioned mode. In provisioned mode, you can define the minimum and maximum number of
event pollers allocated to your event source mapping. This can improve the ability of your event
source mapping to handle unexpected message spikes. For more information, see provisioned
mode.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

For Kafka-based event sources, Lambda supports processing control parameters, such as batching
windows and batch size. For more information, see Batching behavior.

For an example of how to use self-managed Kafka as an event source, see Using self-hosted
Apache Kafka as an event source for AWS Lambda on the AWS Compute Blog.

Topics

• Example event

• Configuring self-managed Apache Kafka event sources for Lambda

• Processing self-managed Apache Kafka messages with Lambda

• Using event filtering with a self-managed Apache Kafka event source

Self-managed Apache Kafka 1198

https://www.confluent.io/confluent-cloud/
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://aws.amazon.com/blogs/compute/using-self-hosted-apache-kafka-as-an-event-source-for-aws-lambda/
https://aws.amazon.com/blogs/compute/using-self-hosted-apache-kafka-as-an-event-source-for-aws-lambda/

AWS Lambda Developer Guide

• Capturing discarded batches for a self-managed Apache Kafka event source

• Troubleshooting self-managed Apache Kafka event source mapping errors

Example event

Lambda sends the batch of messages in the event parameter when it invokes your Lambda
function. The event payload contains an array of messages. Each array item contains details of
the Kafka topic and Kafka partition identifier, together with a timestamp and a base64-encoded
message.

{
 "eventSource": "SelfManagedKafka",
 "bootstrapServers":"b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "records":{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[
 {
 "headerKey":[
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]

Self-managed Apache Kafka 1199

AWS Lambda Developer Guide

 }
]
 }
}

Configuring self-managed Apache Kafka event sources for Lambda

Before you create an event source mapping for your self-managed Apache Kafka cluster, you need
to ensure that your cluster and the VPC it resides in are correctly configured. You also need to make
sure that your Lambda function's execution role has the necessary IAM permissions.

Follow the instructions in the following sections to configure your self-managed Apache Kafka
cluster and Lambda function. To learn how to create the event source mapping, see the section
called “Adding a Kafka cluster as an event source”.

Topics

• Kafka cluster authentication

• API access and Lambda function permissions

• Configure network security

Kafka cluster authentication

Lambda supports several methods to authenticate with your self-managed Apache Kafka cluster.
Make sure that you configure the Kafka cluster to use one of these supported authentication
methods. For more information about Kafka security, see the Security section of the Kafka
documentation.

SASL/SCRAM authentication

Lambda supports Simple Authentication and Security Layer/Salted Challenge Response
Authentication Mechanism (SASL/SCRAM) authentication with Transport Layer Security (TLS)
encryption (SASL_SSL). Lambda sends the encrypted credentials to authenticate with the cluster.
Lambda doesn't support SASL/SCRAM with plaintext (SASL_PLAINTEXT). For more information
about SASL/SCRAM authentication, see RFC 5802.

Lambda also supports SASL/PLAIN authentication. Because this mechanism uses clear text
credentials, the connection to the server must use TLS encryption to ensure that the credentials are
protected.

Self-managed Apache Kafka 1200

http://kafka.apache.org/documentation.html#security
https://tools.ietf.org/html/rfc5802

AWS Lambda Developer Guide

For SASL authentication, you store the sign-in credentials as a secret in AWS Secrets Manager. For
more information about using Secrets Manager, see Create an AWS Secrets Manager secret in the
AWS Secrets Manager User Guide.

Important

To use Secrets Manager for authentication, secrets must be stored in the same AWS region
as your Lambda function.

Mutual TLS authentication

Mutual TLS (mTLS) provides two-way authentication between the client and server. The client
sends a certificate to the server for the server to verify the client, and the server sends a certificate
to the client for the client to verify the server.

In self-managed Apache Kafka, Lambda acts as the client. You configure a client certificate (as a
secret in Secrets Manager) to authenticate Lambda with your Kafka brokers. The client certificate
must be signed by a CA in the server's trust store.

The Kafka cluster sends a server certificate to Lambda to authenticate the Kafka brokers with
Lambda. The server certificate can be a public CA certificate or a private CA/self-signed certificate.
The public CA certificate must be signed by a certificate authority (CA) that's in the Lambda trust
store. For a private CA/self-signed certificate, you configure the server root CA certificate (as a
secret in Secrets Manager). Lambda uses the root certificate to verify the Kafka brokers.

For more information about mTLS, see Introducing mutual TLS authentication for Amazon MSK as
an event source.

Configuring the client certificate secret

The CLIENT_CERTIFICATE_TLS_AUTH secret requires a certificate field and a private key field.
For an encrypted private key, the secret requires a private key password. Both the certificate and
private key must be in PEM format.

Note

Lambda supports the PBES1 (but not PBES2) private key encryption algorithms.

Self-managed Apache Kafka 1201

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://aws.amazon.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source
https://aws.amazon.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source
https://datatracker.ietf.org/doc/html/rfc2898/#section-6.1

AWS Lambda Developer Guide

The certificate field must contain a list of certificates, beginning with the client certificate, followed
by any intermediate certificates, and ending with the root certificate. Each certificate must start on
a new line with the following structure:

-----BEGIN CERTIFICATE-----
 <certificate contents>
-----END CERTIFICATE-----

Secrets Manager supports secrets up to 65,536 bytes, which is enough space for long certificate
chains.

The private key must be in PKCS #8 format, with the following structure:

-----BEGIN PRIVATE KEY-----
 <private key contents>
-----END PRIVATE KEY-----

For an encrypted private key, use the following structure:

-----BEGIN ENCRYPTED PRIVATE KEY-----
 <private key contents>
-----END ENCRYPTED PRIVATE KEY-----

The following example shows the contents of a secret for mTLS authentication using an encrypted
private key. For an encrypted private key, include the private key password in the secret.

{"privateKeyPassword":"testpassword",
"certificate":"-----BEGIN CERTIFICATE-----
MIIE5DCCAsygAwIBAgIRAPJdwaFaNRrytHBto0j5BA0wDQYJKoZIhvcNAQELBQAw
...
j0Lh4/+1HfgyE2KlmII36dg4IMzNjAFEBZiCRoPimO40s1cRqtFHXoal0QQbIlxk
cmUuiAii9R0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIFgjCCA2qgAwIBAgIQdjNZd6uFf9hbNC5RdfmHrzANBgkqhkiG9w0BAQsFADBb
...
rQoiowbbk5wXCheYSANQIfTZ6weQTgiCHCCbuuMKNVS95FkXm0vqVD/YpXKwA/no
c8PH3PSoAaRwMMgOSA2ALJvbRz8mpg==
-----END CERTIFICATE-----",
"privateKey":"-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIFKzBVBgkqhkiG9w0BBQ0wSDAnBgkqhkiG9w0BBQwwGgQUiAFcK5hT/X7Kjmgp

Self-managed Apache Kafka 1202

https://datatracker.ietf.org/doc/html/rfc5208

AWS Lambda Developer Guide

...
QrSekqF+kWzmB6nAfSzgO9IaoAaytLvNgGTckWeUkWn/V0Ck+LdGUXzAC4RxZnoQ
zp2mwJn2NYB7AZ7+imp0azDZb+8YG2aUCiyqb6PnnA==
-----END ENCRYPTED PRIVATE KEY-----"
}

Configuring the server root CA certificate secret

You create this secret if your Kafka brokers use TLS encryption with certificates signed by a private
CA. You can use TLS encryption for VPC, SASL/SCRAM, SASL/PLAIN, or mTLS authentication.

The server root CA certificate secret requires a field that contains the Kafka broker's root CA
certificate in PEM format. The following example shows the structure of the secret.

{"certificate":"-----BEGIN CERTIFICATE-----
MIID7zCCAtegAwIBAgIBADANBgkqhkiG9w0BAQsFADCBmDELMAkGA1UEBhMCVVMx
EDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAjBgNVBAoT
HFN0YXJmaWVsZCBUZWNobm9sb2dpZXMsIEluYy4xOzA5BgNVBAMTMlN0YXJmaWVs
ZCBTZXJ2aWNlcyBSb290IENlcnRpZmljYXRlIEF1dG...
-----END CERTIFICATE-----"
}

API access and Lambda function permissions

In addition to accessing your self-managed Kafka cluster, your Lambda function needs permissions
to perform various API actions. You add these permissions to the function's execution role. If your
users need access to any API actions, add the required permissions to the identity policy for the
AWS Identity and Access Management (IAM) user or role.

Required Lambda function permissions

To create and store logs in a log group in Amazon CloudWatch Logs, your Lambda function must
have the following permissions in its execution role:

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

Optional Lambda function permissions

Your Lambda function might also need permissions to:

Self-managed Apache Kafka 1203

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html

AWS Lambda Developer Guide

• Describe your Secrets Manager secret.

• Access your AWS Key Management Service (AWS KMS) customer managed key.

• Access your Amazon VPC.

• Send records of failed invocations to a destination.

Secrets Manager and AWS KMS permissions

Depending on the type of access control that you're configuring for your Kafka brokers, your
Lambda function might need permission to access your Secrets Manager secret or to decrypt your
AWS KMS customer managed key. To access these resources, your function's execution role must
have the following permissions:

• secretsmanager:GetSecretValue

• kms:Decrypt

VPC permissions

If only users within a VPC can access your self-managed Apache Kafka cluster, your Lambda
function must have permission to access your Amazon VPC resources. These resources include your
VPC, subnets, security groups, and network interfaces. To access these resources, your function's
execution role must have the following permissions:

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

Adding permissions to your execution role

To access other AWS services that your self-managed Apache Kafka cluster uses, Lambda uses the
permissions policies that you define in your Lambda function's execution role.

By default, Lambda is not permitted to perform the required or optional actions for a self-
managed Apache Kafka cluster. You must create and define these actions in an IAM trust policy

Self-managed Apache Kafka 1204

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-role-trust-policy.html

AWS Lambda Developer Guide

for your execution role. This example shows how you might create a policy that allows Lambda to
access your Amazon VPC resources.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource":"*"
 }
]
 }

Granting users access with an IAM policy

By default, users and roles don't have permission to perform event source API operations. To grant
access to users in your organization or account, you create or update an identity-based policy. For
more information, see Controlling access to AWS resources using policies in the IAM User Guide.

Configure network security

To give Lambda full access to self-managed Apache Kafka through your event source mapping,
either your cluster must use a public endpoint (public IP address), or you must provide access to the
Amazon VPC you created the cluster in.

When you use self-managed Apache Kafka with Lambda, create AWS PrivateLink VPC endpoints
that provide your function access to the resources in your Amazon VPC.

Self-managed Apache Kafka 1205

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

AWS Lambda Developer Guide

Note

AWS PrivateLink VPC endpoints are required for functions with event source mappings that
use the default (on-demand) mode for event pollers. If your event source mapping uses
provisioned mode, you don't need to configure AWS PrivateLink VPC endpoints.

Create an endpoint to provide access to the following resources:

• Lambda — Create an endpoint for the Lambda service principal.

• AWS STS — Create an endpoint for the AWS STS in order for a service principal to assume a role
on your behalf.

• Secrets Manager — If your cluster uses Secrets Manager to store credentials, create an endpoint
for Secrets Manager.

Alternatively, configure a NAT gateway on each public subnet in the Amazon VPC. For more
information, see the section called “Internet access for VPC functions”.

When you create an event source mapping for self-managed Apache Kafka, Lambda checks
whether Elastic Network Interfaces (ENIs) are already present for the subnets and security groups
configured for your Amazon VPC. If Lambda finds existing ENIs, it attempts to re-use them.
Otherwise, Lambda creates new ENIs to connect to the event source and invoke your function.

Note

Lambda functions always run inside VPCs owned by the Lambda service. Your function's
VPC configuration does not affect the event source mapping. Only the networking
configuration of the event source's determines how Lambda connects to your event source.

Configure the security groups for the Amazon VPC containing your cluster. By default, self-
managed Apache Kafka uses the following ports: 9092.

• Inbound rules – Allow all traffic on the default broker port for the security group associated
with your event source. Alternatively, you can use a self-referencing security group rule to allow
access from instances within the same security group.

Self-managed Apache Kafka 1206

AWS Lambda Developer Guide

• Outbound rules – Allow all traffic on port 443 for external destinations if your function needs to
communicate with AWS services. Alternatively, you can also use a self-referencing security group
rule to limit access to the broker if you don't need to communicate with other AWS services.

• Amazon VPC endpoint inbound rules — If you are using an Amazon VPC endpoint, the security
group associated with your Amazon VPC endpoint must allow inbound traffic on port 443 from
the cluster security group.

If your cluster uses authentication, you can also restrict the endpoint policy for the Secrets
Manager endpoint. To call the Secrets Manager API, Lambda uses your function role, not the
Lambda service principal.

Example VPC endpoint policy — Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws::iam::123456789012:role/my-role"
]
 },
 "Resource": "arn:aws::secretsmanager:us-west-2:123456789012:secret:my-
secret"
 }
]
 }

When you use Amazon VPC endpoints, AWS routes your API calls to invoke your function using
the endpoint's Elastic Network Interface (ENI). The Lambda service principal needs to call
lambda:InvokeFunction on any roles and functions that use those ENIs.

By default, Amazon VPC endpoints have open IAM policies that allow broad access to resources.
Best practice is to restrict these policies to perform the needed actions using that endpoint.
To ensure that your event source mapping is able to invoke your Lambda function, the VPC
endpoint policy must allow the Lambda service principal to call sts:AssumeRole and
lambda:InvokeFunction. Restricting your VPC endpoint policies to allow only API calls

Self-managed Apache Kafka 1207

AWS Lambda Developer Guide

originating within your organization prevents the event source mapping from functioning properly,
so "Resource": "*" is required in these policies.

The following example VPC endpoint policies show how to grant the required access to the
Lambda service principal for the AWS STS and Lambda endpoints.

Example VPC Endpoint policy — AWS STS endpoint

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
 }

Example VPC Endpoint policy — Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
 }

Self-managed Apache Kafka 1208

AWS Lambda Developer Guide

Processing self-managed Apache Kafka messages with Lambda

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

Topics

• Adding a Kafka cluster as an event source

• Self-managed Apache Kafka configuration parameters

• Using a Kafka cluster as an event source

• Polling and stream starting positions

• Message throughput scaling behavior for self-managed Apache Kafka event source mappings

• Amazon CloudWatch metrics

Adding a Kafka cluster as an event source

To create an event source mapping, add your Kafka cluster as a Lambda function trigger using the
Lambda console, an AWS SDK, or the AWS Command Line Interface (AWS CLI).

This section describes how to create an event source mapping using the Lambda console and the
AWS CLI.

Prerequisites

• A self-managed Apache Kafka cluster. Lambda supports Apache Kafka version 0.10.1.0 and later.

• An execution role with permission to access the AWS resources that your self-managed Kafka
cluster uses.

Customizable consumer group ID

When setting up Kafka as an event source, you can specify a consumer group ID. This consumer
group ID is an existing identifier for the Kafka consumer group that you want your Lambda
function to join. You can use this feature to seamlessly migrate any ongoing Kafka record
processing setups from other consumers to Lambda.

Self-managed Apache Kafka 1209

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

If you specify a consumer group ID and there are other active pollers within that consumer group,
Kafka distributes messages across all consumers. In other words, Lambda doesn't receive all
message for the Kafka topic. If you want Lambda to handle all messages in the topic, turn off any
other pollers in that consumer group.

Additionally, if you specify a consumer group ID, and Kafka finds a valid existing consumer group
with the same ID, Lambda ignores the StartingPosition parameter for your event source
mapping. Instead, Lambda begins processing records according to the committed offset of the
consumer group. If you specify a consumer group ID, and Kafka cannot find an existing consumer
group, then Lambda configures your event source with the specified StartingPosition.

The consumer group ID that you specify must be unique among all your Kafka event sources. After
creating a Kafka event source mapping with the consumer group ID specified, you cannot update
this value.

Adding a self-managed Kafka cluster (console)

Follow these steps to add your self-managed Apache Kafka cluster and a Kafka topic as a trigger
for your Lambda function.

To add an Apache Kafka trigger to your Lambda function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your Lambda function.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, do the following:

a. Choose the Apache Kafka trigger type.

b. For Bootstrap servers, enter the host and port pair address of a Kafka broker in your
cluster, and then choose Add. Repeat for each Kafka broker in the cluster.

c. For Topic name, enter the name of the Kafka topic used to store records in the cluster.

d. (Optional) For Batch size, enter the maximum number of records to receive in a single
batch.

e. For Batch window, enter the maximum amount of seconds that Lambda spends gathering
records before invoking the function.

f. (Optional) For Consumer group ID, enter the ID of a Kafka consumer group to join.

Self-managed Apache Kafka 1210

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

g. (Optional) For Starting position, choose Latest to start reading the stream from the latest
record, Trim horizon to start at the earliest available record, or At timestamp to specify a
timestamp to start reading from.

h. (Optional) For VPC, choose the Amazon VPC for your Kafka cluster. Then, choose the VPC
subnets and VPC security groups.

This setting is required if only users within your VPC access your brokers.

i. (Optional) For Authentication, choose Add, and then do the following:

i. Choose the access or authentication protocol of the Kafka brokers in your cluster.

• If your Kafka broker uses SASL/PLAIN authentication, choose BASIC_AUTH.

• If your broker uses SASL/SCRAM authentication, choose one of the SASL_SCRAM
protocols.

• If you're configuring mTLS authentication, choose the
CLIENT_CERTIFICATE_TLS_AUTH protocol.

ii. For SASL/SCRAM or mTLS authentication, choose the Secrets Manager secret key that
contains the credentials for your Kafka cluster.

j. (Optional) For Encryption, choose the Secrets Manager secret containing the root CA
certificate that your Kafka brokers use for TLS encryption, if your Kafka brokers use
certificates signed by a private CA.

This setting applies to TLS encryption for SASL/SCRAM or SASL/PLAIN, and to mTLS
authentication.

k. To create the trigger in a disabled state for testing (recommended), clear Enable trigger.
Or, to enable the trigger immediately, select Enable trigger.

5. To create the trigger, choose Add.

Adding a self-managed Kafka cluster (AWS CLI)

Use the following example AWS CLI commands to create and view a self-managed Apache Kafka
trigger for your Lambda function.

Using SASL/SCRAM

If Kafka users access your Kafka brokers over the internet, specify the Secrets Manager secret that
you created for SASL/SCRAM authentication. The following example uses the create-event-source-

Self-managed Apache Kafka 1211

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

AWS Lambda Developer Guide

mapping AWS CLI command to map a Lambda function named my-kafka-function to a Kafka
topic named AWSKafkaTopic.

aws lambda create-event-source-mapping \
 --topics AWSKafkaTopic \
 --source-access-configuration Type=SASL_SCRAM_512_AUTH,URI=arn:aws:secretsmanager:us-
east-1:111122223333:secret:MyBrokerSecretName \
 --function-name arn:aws:lambda:us-east-1:111122223333:function:my-kafka-function \
 --self-managed-event-source '{"Endpoints":{"KAFKA_BOOTSTRAP_SERVERS":
["abc3.xyz.com:9092", "abc2.xyz.com:9092"]}}'

Using a VPC

If only Kafka users within your VPC access your Kafka brokers, you must specify your VPC, subnets,
and VPC security group. The following example uses the create-event-source-mapping AWS
CLI command to map a Lambda function named my-kafka-function to a Kafka topic named
AWSKafkaTopic.

aws lambda create-event-source-mapping \
 --topics AWSKafkaTopic \
 --source-access-configuration '[{"Type": "VPC_SUBNET", "URI":
 "subnet:subnet-0011001100"}, {"Type": "VPC_SUBNET", "URI":
 "subnet:subnet-0022002200"}, {"Type": "VPC_SECURITY_GROUP", "URI":
 "security_group:sg-0123456789"}]' \
 --function-name arn:aws:lambda:us-east-1:111122223333:function:my-kafka-function \
 --self-managed-event-source '{"Endpoints":{"KAFKA_BOOTSTRAP_SERVERS":
["abc3.xyz.com:9092", "abc2.xyz.com:9092"]}}'

Viewing the status using the AWS CLI

The following example uses the get-event-source-mapping AWS CLI command to describe the
status of the event source mapping that you created.

aws lambda get-event-source-mapping
 --uuid dh38738e-992b-343a-1077-3478934hjkfd7

Self-managed Apache Kafka configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Apache Kafka.

Self-managed Apache Kafka 1212

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

DestinationConfig N N/A the section called
“On-failure destinati
ons”

Enabled N True

FilterCriteria N N/A Control which events
Lambda sends to
your function

FunctionName Y N/A

KMSKeyArn N N/A the section called
“Encryption of filter
criteria”

MaximumBa
tchingWindowInSeco
nds

N 500 ms Batching behavior

ProvisionedPollers
Config

N MinimumPollers :
default value of 1 if
not specified

MaximumPollers :
default value of 200
if not specified

the section called
“Configuring
provisioned mode”

SelfManagedEventSo
urce

Y N/A List of Kafka Brokers.
Can set only on
Create

SelfManagedKafkaEv
entSourceConfig

N Contains the
ConsumerGroupId

Can set only on
Create

Self-managed Apache Kafka 1213

AWS Lambda Developer Guide

Parameter Required Default Notes

field which defaults
to a unique value.

SourceAccessConfig
urations

N No credentials VPC information
or authentication
credentials for the
cluster

For SASL_PLAIN, set
to BASIC_AUTH

StartingPosition Y N/A AT_TIMESTAMP,
TRIM_HORIZON, or
LATEST

Can set only on
Create

StartingPositionTi
mestamp

N N/A Required if StartingP
osition is set to
AT_TIMESTAMP

Tags N N/A the section called
“Event source
mapping tags”

Topics Y N/A Topic name

Can set only on
Create

Using a Kafka cluster as an event source

When you add your Apache Kafka or Amazon MSK cluster as a trigger for your Lambda function,
the cluster is used as an event source.

Self-managed Apache Kafka 1214

AWS Lambda Developer Guide

Lambda reads event data from the Kafka topics that you specify as Topics in a
CreateEventSourceMapping request, based on the StartingPosition that you specify. After
successful processing, your Kafka topic is committed to your Kafka cluster.

If you specify the StartingPosition as LATEST, Lambda starts reading from the latest
message in each partition belonging to the topic. Because there can be some delay after trigger
configuration before Lambda starts reading the messages, Lambda doesn't read any messages
produced during this window.

Lambda processes records from one or more Kafka topic partitions that you specify and sends
a JSON payload to your function. A single Lambda payload can contain messages from multiple
partitions. When more records are available, Lambda continues processing records in batches,
based on the BatchSize value that you specify in a CreateEventSourceMapping request, until your
function catches up with the topic.

If your function returns an error for any of the messages in a batch, Lambda retries the whole
batch of messages until processing succeeds or the messages expire. You can send records that fail
all retry attempts to an on-failure destination for later processing.

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

Self-managed Apache Kafka 1215

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html

AWS Lambda Developer Guide

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Message throughput scaling behavior for self-managed Apache Kafka event source mappings

You can choose between two modes of message throughput scaling behavior for your Amazon
MSK event source mapping:

• the section called “Default (on-demand) mode”

• Provisioned mode

Default (on-demand) mode

When you initially create an self-managed Apache Kafka event source, Lambda allocates a default
number of event pollers to process all partitions in the Kafka topic. Lambda automatically scales up
or down the number of event pollers based on message load.

In one-minute intervals, Lambda evaluates the consumer offset lag of all the partitions in the topic.
If the offset lag is too high, the partition is receiving messages faster than Lambda can process
them. If necessary, Lambda adds or removes event pollers from the topic. This autoscaling process
of adding or removing event pollers occurs within three minutes of evaluation.

If your target Lambda function is throttled, Lambda reduces the number of event pollers. This
action reduces the workload on the function by reducing the number of messages that event
pollers can retrieve and send to the function.

To monitor the throughput of your Kafka topic, you can view the Apache Kafka consumer metrics,
such as consumer_lag and consumer_offset.

Configuring provisioned mode

For workloads where you need to fine-tune the throughput of your event source mapping, you
can use provisioned mode. In provisioned mode, you define minimum and maximum limits for
the amount of provisioned event pollers. These provisioned event pollers are dedicated to your
event source mapping, and can handle unexpected message spikes instantly when they occur.
We recommend that you use provisioned mode for Kafka workloads that have strict performance
requirements.

Self-managed Apache Kafka 1216

AWS Lambda Developer Guide

In Lambda, an event poller is a compute unit capable of handling up to 5 MBps of throughput.
For reference, suppose your event source produces an average payload of 1MB, and the average
function duration is 1 sec. If the payload doesn’t undergo any transformation (such as filtering),
a single poller can support 5 MBps throughput, and 5 concurrent Lambda invocations. Using
provisioned mode incurs additional costs. For pricing estimates, see AWS Lambda pricing.

In provisioned mode, the range of accepted values for the minimum number of event pollers
(MinimumPollers) is between 1 and 200, inclusive. The range of accepted values for the
maximum number of event pollers (MaximumPollers) is between 1 and 2,000, inclusive.
MaximumPollers must be greater than or equal to MinimumPollers. In addition, to maintain
ordered processing within partitions, Lambda caps the MaximumPollers to the number of
partitions in the topic.

For more details about choosing appropriate values for minimum and maximum event pollers, see
the section called “Best practices and considerations when using provisioned mode”.

You can configure provisioned mode for your self-managed Apache Kafka event source mapping
using the console or the Lambda API.

To configure provisioned mode for an existing self-managed Apache Kafka event source
mapping (console)

1. Open the Functions page of the Lambda console.

2. Choose the function with the self-managed Apache Kafka event source mapping you want to
configure provisioned mode for.

3. Choose Configuration, then choose Triggers.

4. Choose the self-managed Apache Kafka event source mapping that you want to configure
provisioned mode for, then choose Edit.

5. Under Event source mapping configuration, choose Configure provisioned mode.

• For Minimum event pollers, enter a value between 1 and 200. If you don't specify a value,
Lambda chooses a default value of 1.

• For Maximum event pollers, enter a value between 1 and 2,000. This value must be greater
than or equal to your value for Minimum event pollers. If you don't specify a value, Lambda
chooses a default value of 200.

6. Choose Save.

Self-managed Apache Kafka 1217

https://aws.amazon.com/lambda/pricing/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

You can configure provisioned mode programmatically using the ProvisionedPollerConfig object in
your EventSourceMappingConfiguration. For example, the following UpdateEventSourceMapping
CLI command configures a MinimumPollers value of 5, and a MaximumPollers value of 100.

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --provisioned-poller-config '{"MinimumPollers": 5, "MaximumPollers": 100}'

After configuring provisioned mode, you can observe the usage of event pollers for your workload
by monitoring the ProvisionedPollers metric. For more information, see the section called
“Event source mapping metrics”.

To disable provisioned mode and return to default (on-demand) mode, you can use the following
UpdateEventSourceMapping CLI command:

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --provisioned-poller-config '{}'

Best practices and considerations when using provisioned mode

The optimal configuration of minimum and maximum event pollers for your event source mapping
depends on your application's performance requirements. We recommend that you start with the
default minimum event pollers to baseline the performance profile. Adjust your configuration
based on observed message processing patterns and your desired performance profile.

For workloads with spiky traffic and strict performance needs, increase the minimum event pollers
to handle sudden surges in messages. To determine the minimum event pollers required, consider
your workload's messages per second and average payload size, and use the throughput capacity of
a single event poller (up to 5 MBps) as a reference.

To maintain ordered processing within a partition, Lambda limits the maximum event pollers to
the number of partitions in the topic. Additionally, the maximum event pollers your event source
mapping can scale to depends on the function's concurrency settings.

When activating provisioned mode, update your network settings to remove AWS PrivateLink VPC
endpoints and associated permissions.

Self-managed Apache Kafka 1218

https://docs.aws.amazon.com/lambda/latest/api/API_ProvisionedPollerConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_EventSourceMappingConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Amazon CloudWatch metrics

Lambda emits the OffsetLag metric while your function processes records. The value of this
metric is the difference in offset between the last record written to the Kafka event source topic
and the last record that your function's consumer group processed. You can use OffsetLag to
estimate the latency between when a record is added and when your consumer group processes it.

An increasing trend in OffsetLag can indicate issues with pollers in your function's consumer
group. For more information, see Using CloudWatch metrics with Lambda.

Using event filtering with a self-managed Apache Kafka event source

You can use event filtering to control which records from a stream or queue Lambda sends to your
function. For general information about how event filtering works, see the section called “Event
filtering”.

This section focuses on event filtering for self-managed Apache Kafka event sources.

Note

Self-managed Apache Kafka event source mappings only support filtering on the value
key.

Topics

• Self-managed Apache Kafka event filtering basics

Self-managed Apache Kafka event filtering basics

Suppose a producer is writing messages to a topic in your self-managed Apache Kafka cluster,
either in valid JSON format or as plain strings. An example record would look like the following,
with the message converted to a Base64 encoded string in the value field.

{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",

Self-managed Apache Kafka 1219

AWS Lambda Developer Guide

 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[]
 }
]
}

Suppose your Apache Kafka producer is writing messages to your topic in the following JSON
format.

{
 "device_ID": "AB1234",
 "session":{
 "start_time": "yyyy-mm-ddThh:mm:ss",
 "duration": 162
 }
}

You can use the value key to filter records. Suppose you wanted to filter only those records where
device_ID begins with the letters AB. The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"value\" : { \"device_ID\" : [{ \"prefix\": \"AB\" }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "value": {
 "device_ID": [{ "prefix": "AB" }]
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

Self-managed Apache Kafka 1220

AWS Lambda Developer Guide

{ "value" : { "device_ID" : [{ "prefix": "AB" }] } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kafka:us-east-2:123456789012:cluster/my-cluster/
b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : { \"device_ID\" :
 [{ \"prefix\": \"AB\" }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : { \"device_ID\" :
 [{ \"prefix\": \"AB\" }] } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "value" : { "device_ID" : [{ "prefix": "AB" }] } }'

With self-managed Apache Kafka, you can also filter records where the message is a plain string.
Suppose you want to ignore those messages where the string is "error". The FilterCriteria
object would look as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"value\" : [{ \"anything-but\": [\"error\"] }] }"
 }

Self-managed Apache Kafka 1221

AWS Lambda Developer Guide

]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "value": [
 {
 "anything-but": ["error"]
 }
]
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "value" : [{ "anything-but": ["error"] }] }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kafka:us-east-2:123456789012:cluster/my-cluster/
b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : [{ \"anything-but\":
 [\"error\"] }] }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : [{ \"anything-but\":
 [\"error\"] }] }"}]}'

Self-managed Apache Kafka 1222

AWS Lambda Developer Guide

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "value" : [{ "anything-but": ["error"] }] }'

Self-managed Apache Kafka messages must be UTF-8 encoded strings, either plain strings or
in JSON format. That's because Lambda decodes Kafka byte arrays into UTF-8 before applying
filter criteria. If your messages use another encoding, such as UTF-16 or ASCII, or if the message
format doesn't match the FilterCriteria format, Lambda processes metadata filters only. The
following table summarizes the specific behavior:

Incoming message format Filter pattern format for
message properties

Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Plain string Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Self-managed Apache Kafka 1223

AWS Lambda Developer Guide

Incoming message format Filter pattern format for
message properties

Resulting action

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Non-UTF-8 encoded string JSON, plain string, or no
pattern

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Capturing discarded batches for a self-managed Apache Kafka event source

To retain records of failed event source mapping invocations, add a destination to your function's
event source mapping. Each record sent to the destination is a JSON document containing
metadata about the failed invocation. For Amazon S3 destinations, Lambda also sends the entire
invocation record along with the metadata. You can configure any Amazon SNS topic, Amazon SQS
queue, or S3 bucket as a destination.

With Amazon S3 destinations, you can use the Amazon S3 Event Notifications feature to receive
notifications when objects are uploaded to your destination S3 bucket. You can also configure S3
Event Notifications to invoke another Lambda function to perform automated processing on failed
batches.

Your execution role must have permissions for the destination:

• For SQS destinations: sqs:SendMessage

• For SNS destinations: sns:Publish

• For S3 bucket destinations: s3:PutObject and s3:ListBucket

You must deploy a VPC endpoint for your on-failure destination service inside your Apache Kafka
cluster VPC.

Additionally, if you configured a KMS key on your destination, Lambda needs the following
permissions depending on the destination type:

• If you've enabled encryption with your own KMS key for an S3 destination, kms:GenerateDataKey
is required. If the KMS key and S3 bucket destination are in a different account from your

Self-managed Apache Kafka 1224

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ListObjectsV2.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Lambda Developer Guide

Lambda function and execution role, configure the KMS key to trust the execution role to allow
kms:GenerateDataKey.

• If you've enabled encryption with your own KMS key for SQS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SQS queue destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

• If you've enabled encryption with your own KMS key for SNS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SNS topic destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

Configuring on-failure destinations for an self-managed Apache Kafka event source mapping

To configure an on-failure destination using the console, follow these steps:

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Event source mapping invocation.

5. For Event source mapping, choose an event source that's configured for this function.

6. For Condition, select On failure. For event source mapping invocations, this is the only
accepted condition.

7. For Destination type, choose the destination type that Lambda sends invocation records to.

8. For Destination, choose a resource.

9. Choose Save.

You can also configure an on-failure destination using the AWS CLI. For example, the following
create-event-source-mapping command adds an event source mapping with an SQS on-failure
destination to MyFunction:

aws lambda create-event-source-mapping \
--function-name "MyFunction" \

Self-managed Apache Kafka 1225

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

AWS Lambda Developer Guide

--event-source-arn arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2 \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sqs:us-
east-1:123456789012:dest-queue"}}'

The following update-event-source-mapping command adds an S3 on-failure destination to the
event source associated with the input uuid:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": "arn:aws:s3:::dest-bucket"}}'

To remove a destination, supply an empty string as the argument to the destination-config
parameter:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": ""}}'

Security best practices for Amazon S3 destinations

Deleting an S3 bucket that's configured as a destination without removing the destination from
your function's configuration can create a security risk. If another user knows your destination
bucket's name, they can recreate the bucket in their AWS account. Records of failed invocations will
be sent to their bucket, potentially exposing data from your function.

Warning

To ensure that invocation records from your function can't be sent to an S3 bucket
in another AWS account, add a condition to your function's execution role that limits
s3:PutObject permissions to buckets in your account.

The following example shows an IAM policy that limits your function's s3:PutObject permissions
to buckets in your account. This policy also gives Lambda the s3:ListBucket permission it needs
to use an S3 bucket as a destination.

{
 "Version": "2012-10-17",

Self-managed Apache Kafka 1226

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

 "Statement": [
 {
 "Sid": "S3BucketResourceAccountWrite",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*/*",
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEquals": {
 "s3:ResourceAccount": "111122223333"
 }
 }
 }
]
}

To add a permissions policy to your funcion's execution role using the AWS Management Console
or AWS CLI, refer to the instructions in the following procedures:

Console

To add a permissions policy to a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Select the Lambda function whose execution role you want to modify.

3. In the Configuration tab, select Permissions.

4. In the Execution role tab, select your function's Role name to open the role's IAM console
page.

5. Add a permissions policy to the role by doing the following:

a. In the Permissions policies pane, choose Add permissions and select Create inline
policy.

b. In Policy editor, select JSON.

c. Paste the policy you want to add into the editor (replacing the existing JSON), and
then choose Next.

Self-managed Apache Kafka 1227

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

d. Under Policy details, enter a Policy name.

e. Choose Create policy.

AWS CLI

To add a permissions policy to a function's execution role (CLI)

1. Create a JSON policy document with the required permissions and save it in a local
directory.

2. Use the IAM put-role-policy CLI command to add the permissions to your function's
execution role. Run the following command from the directory you saved your JSON policy
document in and replace the role name, policy name, and policy document with your own
values.

aws iam put-role-policy \
--role-name my_lambda_role \
--policy-name LambdaS3DestinationPolicy \
--policy-document file://my_policy.json

SNS and SQS example invocation record

The following example shows what Lambda sends to an SNS topic or SQS queue destination for
a failed Kafka event source invocation. Each of the keys under recordsInfo contains both the
Kafka topic and partition, separated by a hyphen. For example, for the key "Topic-0", Topic is
the Kafka topic, and 0 is the partition. For each topic and partition, you can use the offsets and
timestamp data to find the original invocation records.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },

Self-managed Apache Kafka 1228

AWS Lambda Developer Guide

 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 }
}

S3 destination example invocation record

For S3 destinations, Lambda sends the entire invocation record along with the metadata to the
destination. The following example shows that Lambda sends to an S3 bucket destination for a
failed Kafka event source invocation. In addition to all of the fields from the previous example for
SQS and SNS destinations, the payload field contains the original invocation record as an escaped
JSON string.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1

Self-managed Apache Kafka 1229

AWS Lambda Developer Guide

 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 },
 "payload": "<Whole Event>" // Only available in S3
}

Tip

We recommend enabling S3 versioning on your destination bucket.

Self-managed Apache Kafka 1230

AWS Lambda Developer Guide

Troubleshooting self-managed Apache Kafka event source mapping errors

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using self-managed Apache Kafka with Lambda. If you find an issue that is not listed here,
you can use the Feedback button on this page to report it.

For more help with troubleshooting, visit the AWS Knowledge Center.

Authentication and authorization errors

If any of the permissions required to consume data from the Kafka cluster are missing,
Lambda displays one of the following error messages in the event source mapping under
LastProcessingResult.

Error messages

• Cluster failed to authorize Lambda

• SASL authentication failed

• Server failed to authenticate Lambda

• Lambda failed to authenticate server

• Provided certificate or private key is invalid

Cluster failed to authorize Lambda

For SASL/SCRAM or mTLS, this error indicates that the provided user doesn't have all of the
following required Kafka access control list (ACL) permissions:

• DescribeConfigs Cluster

• Describe Group

• Read Group

• Describe Topic

• Read Topic

When you create Kafka ACLs with the required kafka-cluster permissions, specify the topic and
group as resources. The topic name must match the topic in the event source mapping. The group
name must match the event source mapping's UUID.

Self-managed Apache Kafka 1231

https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Lambda

AWS Lambda Developer Guide

After you add the required permissions to the execution role, it might take several minutes for the
changes to take effect.

SASL authentication failed

For SASL/SCRAM or SASL/PLAIN, this error indicates that the provided sign-in credentials aren't
valid.

Server failed to authenticate Lambda

This error indicates that the Kafka broker failed to authenticate Lambda. This can occur for any of
the following reasons:

• You didn't provide a client certificate for mTLS authentication.

• You provided a client certificate, but the Kafka brokers aren't configured to use mTLS
authentication.

• A client certificate isn't trusted by the Kafka brokers.

Lambda failed to authenticate server

This error indicates that Lambda failed to authenticate the Kafka broker. This can occur for any of
the following reasons:

• The Kafka brokers use self-signed certificates or a private CA, but didn't provide the server root
CA certificate.

• The server root CA certificate doesn't match the root CA that signed the broker's certificate.

• Hostname validation failed because the broker's certificate doesn't contain the broker's DNS
name or IP address as a subject alternative name.

Provided certificate or private key is invalid

This error indicates that the Kafka consumer couldn't use the provided certificate or private key.
Make sure that the certificate and key use PEM format, and that the private key encryption uses a
PBES1 algorithm.

Event source mapping errors

When you add your Apache Kafka cluster as an event source for your Lambda function, if your
function encounters an error, your Kafka consumer stops processing records. Consumers of a topic

Self-managed Apache Kafka 1232

AWS Lambda Developer Guide

partition are those that subscribe to, read, and process your records. Your other Kafka consumers
can continue processing records, provided they don't encounter the same error.

To determine the cause of a stopped consumer, check the StateTransitionReason field in the
response of EventSourceMapping. The following list describes the event source errors that you
can receive:

ESM_CONFIG_NOT_VALID

The event source mapping configuration isn't valid.

EVENT_SOURCE_AUTHN_ERROR

Lambda couldn't authenticate the event source.

EVENT_SOURCE_AUTHZ_ERROR

Lambda doesn't have the required permissions to access the event source.

FUNCTION_CONFIG_NOT_VALID

The function configuration isn't valid.

Note

If your Lambda event records exceed the allowed size limit of 6 MB, they can go
unprocessed.

Self-managed Apache Kafka 1233

AWS Lambda Developer Guide

Using schema registries with Kafka event sources in Lambda

Schema registries help you define and manage data stream schemas. A schema defines the
structure and format of a data record. In the context of Kafka event source mappings, you can
configure a schema registry to validate the structure and format of Kafka messages against
predefined schemas before they reach your Lambda function. This adds a layer of data governance
to your application and allows you to efficiently manage data formats, ensure schema compliance,
and optimize costs through event filtering.

This feature works with all programming languages, but consider these important points:

• Powertools for Lambda provides specific support for Java, Python, and TypeScript, maintaining
consistency with existing Kafka development patterns and allowing direct access to business
objects without custom deserialization code

• This feature is only available for event source mappings using provisioned mode. Schema
registry doesn't support event source mappings in on-demand mode. If you're using provisioned
mode and you have a schema registry configured, you can't change to on-demand mode unless
you remove your schema registry configuration first. For more information, see the section called
“Provisioned mode”

• You can configure only one schema registry per event source mapping (ESM). Using a schema
registry with your Kafka event source may increase your Lambda Event Poller Unit (EPU) usage,
which is a pricing dimension for Provisioned mode.

Topics

• Schema registry options

• How Lambda performs schema validation for Kafka messages

• Configuring a Kafka schema registry

• Filtering for Avro and Protobuf

• Payload formats and deserialization behavior

• Working with deserialized data in Lambda functions

• Authentication methods for your schema registry

• Error handling and troubleshooting for schema registry issues

Schema registries with event sources 1234

AWS Lambda Developer Guide

Schema registry options

Lambda supports the following schema registry options:

• AWS Glue Schema Registry

• Confluent Cloud Schema Registry

• Self-managed Confluent Schema Registry

Your schema registry supports validating messages in the following data formats:

• Apache Avro

• Protocol Buffers (Protobuf)

• JSON Schema (JSON-SE)

To use a schema registry, first ensure that your event source mapping is in provisioned mode. When
you use a schema registry, Lambda adds metadata about the schema to the payload. For more
information, see Payload formats and deserialization behavior.

How Lambda performs schema validation for Kafka messages

When you configure a schema registry, Lambda performs the following steps for each Kafka
message:

1. Lambda polls the Kafka record from your cluster.

2. Lambda validates selected message attributes in the record against a specific schema in your
schema registry.

• If the schema associated with the message is not found in the registry, Lambda sends the
message to a DLQ with reason code SCHEMA_NOT_FOUND.

3. Lambda deserializes the message according to the schema registry configuration to validate
the message. If event filtering is configured, Lambda then performs filtering based on the
configured filter criteria.

• If deserialization fails, Lambda sends the message to a DLQ with reason code
DESERIALIZATION_ERROR. If no DLQ is configured, Lambda drops the message.

4. If the message is validated by the schema registry, and isn't filtered out by your filter criteria,
Lambda invokes your function with the message.

Schema registries with event sources 1235

https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.confluent.io/platform/current/schema-registry/index.html
https://docs.confluent.io/platform/current/schema-registry/index.html

AWS Lambda Developer Guide

This feature is intended to validate messages that are already produced using Kafka clients
integrated with a schema registry. We recommend configuring your Kafka producers to work with
your schema registry to create properly formatted messages.

Configuring a Kafka schema registry

The following console steps add a Kafka schema registry configuration to your event source
mapping.

To add a Kafka schema registry configuration to your event source mapping (console)

1. Open the Function page of the Lambda console.

2. Choose Configuration.

3. Choose Triggers.

4. Select the Kafka event source mapping that you want to configure a schema registry for, and
choose Edit.

5. Under Event poller configuration, choose Configure schema registry. Your event source
mapping must be in provisioned mode to see this option.

6. For Schema registry URI, enter the ARN of your AWS Glue schema registry, or the HTTPS URL
of your Confluent Cloud schema registry or Self-Managed Confluent Schema Registry.

7. The following configuration steps tell Lambda how to access your schema registry. For more
information, see ???.

• For Access configuration type, choose the type of authentication Lambda uses to access
your schema registry.

• For Access configuration URI, enter the ARN of the Secrets Manager secret to authenticate
with your schema registry, if applicable. Ensure that your function's execution role contains
the correct permissions.

8. The Encryption field applies only if your schema registry is signed by a private Certificate
Authority (CA) or a certificate authority (CA) that's not in the Lambda trust store.. If applicable,
provide the secret key containing the private CA certificate used by your schema registry for
TLS encryption.

9. For Event record format, choose how you want Lambda to deliver the records your function
after schema validation. For more information, see Payload format examples.

Schema registries with event sources 1236

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

• If you choose JSON, Lambda delivers the attributes that you select in the Schema validation
attribute below in standard JSON format. For the attributes that you don't select, Lambda
delivers them as-is.

• If you choose SOURCE, Lambda delivers the attributes that you select in the Schema
validation attribute below in its original source format.

10. For Schema validation attribute, select the message attributes that you want Lambda to
validate and deserialize using your schema registry. You must select at least one of either KEY
or VALUE. If you chose JSON for event record format, Lambda also deserializes the selected
message attributes before sending them to your function. For more information, see Payload
formats and deserialization behavior.

11. Choose Save.

You can also use the Lambda API to create or update your event source mapping with a
schema registry configuration. The following examples demonstrate how to configure
an AWS Glue or Confluent schema registry using the AWS CLI, which corresponds to the
UpdateEventSourceMapping and CreateEventSourceMapping API operations in the AWS Lambda
API Reference:

Important

If you are updating any schema registry configuration field using the AWS CLI or the
update-event-source-mapping API, you must update all the fields of schema registry
configuration.

Create Event Source Mapping

aws lambda create-event-source-mapping \
 --function-name my-schema-validator-function \
 --event-source-arn arn:aws:kafka:us-east-1:123456789012:cluster/my-cluster/
a1b2c3d4-5678-90ab-cdef-11111EXAMPLE \
 --topics my-kafka-topic \
 --provisioned-poller-config MinimumPollers=1,MaximumPollers=1 \
 --amazon-managed-kafka-event-source-mapping '{
 "SchemaRegistryConfig" : {
 "SchemaRegistryURI": "https://abcd-ef123.us-west-2.aws.confluent.cloud",
 "AccessConfigs": [{

Schema registries with event sources 1237

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html

AWS Lambda Developer Guide

 "Type": "BASIC_AUTH",
 "URI": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName"
 }],
 "EventRecordFormat": "JSON",
 "SchemaValidationConfigs": [
 {
 "Attribute": "KEY"
 },
 {
 "Attribute": "VALUE"
 }]
 }
 }'

Update AWS Glue Schema Registry

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --amazon-managed-kafka-event-source-mapping '{
 "SchemaRegistryConfig" : {
 "SchemaRegistryURI": "arn:aws:glue:us-east-1:123456789012:registry/
registryName",
 "EventRecordFormat": "JSON",
 "SchemaValidationConfigs": [
 {
 "Attribute": "KEY"
 },
 {
 "Attribute": "VALUE"
 }]
 }
 }'

Update Confluent Schema Registry with Authentication

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --amazon-managed-kafka-event-source-mapping '{
 "SchemaRegistryConfig" : {
 "SchemaRegistryURI": "https://abcd-ef123.us-west-2.aws.confluent.cloud",
 "AccessConfigs": [{
 "Type": "BASIC_AUTH",

Schema registries with event sources 1238

AWS Lambda Developer Guide

 "URI": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName"
 }],
 "EventRecordFormat": "JSON",
 "SchemaValidationConfigs": [
 {
 "Attribute": "KEY"
 },
 {
 "Attribute": "VALUE"
 }]
 }
 }'

Update Confluent Schema Registry without Authentication

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --amazon-managed-kafka-event-source-mapping '{
 "SchemaRegistryConfig" : {
 "SchemaRegistryURI": "https://abcd-ef123.us-west-2.aws.confluent.cloud",
 "EventRecordFormat": "JSON",
 "SchemaValidationConfigs": [
 {
 "Attribute": "KEY"
 },
 {
 "Attribute": "VALUE"
 }]
 }
 }'

Remove Schema Registry Configuration

To remove a schema registry configuration from your event source mapping, you can use the
CLI command UpdateEventSourceMapping in the AWS Lambda API Reference.

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --amazon-managed-kafka-event-source-mapping '{
 "SchemaRegistryConfig" : {}
 }'

Schema registries with event sources 1239

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Filtering for Avro and Protobuf

When using Avro or Protobuf formats with a schema registry, you can apply event filtering to your
Lambda function. The filter patterns are applied to the deserialized classic JSON representation
of your data after schema validation. For example, with an Avro schema defining product details
including price, you can filter messages based on the price value:

Note

When being deserialized, Avro is converted to standard JSON, which means it cannot be
directly converted back to an Avro object. If you need to convert to an Avro object, use the
SOURCE format instead.
For Protobuf deserialization, field names in the resulting JSON match those defined in your
schema, rather than being converted to camel case as Protobuf typically does. Keep this in
mind when creating filtering patterns.

aws lambda create-event-source-mapping \
 --function-name myAvroFunction \
 --topics myAvroTopic \
 --starting-position TRIM_HORIZON \
 --kafka-bootstrap-servers '["broker1:9092", "broker2:9092"]' \
 --schema-registry-config '{
 "SchemaRegistryURI": "arn:aws:glue:us-east-1:123456789012:registry/
myAvroRegistry",
 "EventRecordFormat": "JSON",
 "SchemaValidationConfigs": [
 {
 "Attribute": "VALUE"
 }
]
 }' \
 --filter-criteria '{
 "Filters": [
 {
 "Pattern": "{ \"value\" : { \"field_1\" : [\"value1\"], \"field_2\" :
 [\"value2\"] } }"
 }
]
 }'

Schema registries with event sources 1240

AWS Lambda Developer Guide

In this example, the filter pattern analyzes the value object, matching messages in field_1 with
"value1" and field_2 with "value2". The filter criteria are evaluated against the deserialized
data, after Lambda converts the message from Avro format to JSON.

For more detailed information on event filtering, see Lambda event filtering.

Payload formats and deserialization behavior

When using a schema registry, Lambda delivers the final payload to your function in a format
similar to the regular event payload, with some additional fields. The additional fields depend on
the SchemaValidationConfigs parameter. For each attribute that you select for validation (key
or value), Lambda adds corresponding schema metadata to the payload.

Note

You must update your aws-lambda-java-events to version 3.16.0 or above to use schema
metadata fields.

For example, if you validate the value field, Lambda adds a field called valueSchemaMetadata
to your payload. Similarly, for the key field, Lambda adds a field called keySchemaMetadata. This
metadata contains information about the data format and the schema ID used for validation:

"valueSchemaMetadata": {
 "dataFormat": "AVRO",
 "schemaId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
}

The EventRecordFormat parameter can be set to either JSON or SOURCE, which determines how
Lambda handles schema-validated data before delivering it to your function. Each option provides
different processing capabilities:

• JSON - Lambda deserializes the validated attributes into standard JSON format, making the data
ready for direct use in languages with native JSON support. This format is ideal when you don't
need to preserve the original binary format or work with generated classes.

• SOURCE - Lambda preserves the original binary format of the data as a Base64-encoded string,
allowing direct conversion to Avro or Protobuf objects. This format is essential when working
with strongly-typed languages or when you need to maintain the full capabilities of Avro or
Protobuf schemas.

Schema registries with event sources 1241

https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-events

AWS Lambda Developer Guide

Based on these format characteristics and language-specific considerations, we recommend the
following formats:

Recommended formats based on programming language

Language Avro Protobuf JSON

Java SOURCE SOURCE SOURCE

Python JSON JSON JSON

NodeJS JSON JSON JSON

.NET SOURCE SOURCE SOURCE

Others JSON JSON JSON

The following sections describe these formats in detail and provide example payloads for each
format.

JSON format

If you choose JSON as the EventRecordFormat, Lambda validates and deserializes the message
attributes that you've selected in the SchemaValidationConfigs field (the key and/or value
attributes). Lambda delivers these selected attributes as base64-encoded strings of their standard
JSON representation in your function.

Note

When being deserialized, Avro is converted to standard JSON, which means it cannot be
directly converted back to an Avro object. If you need to convert to an Avro object, use the
SOURCE format instead.
For Protobuf deserialization, field names in the resulting JSON match those defined in your
schema, rather than being converted to camel case as Protobuf typically does. Keep this in
mind when creating filtering patterns.

The following shows an example payload, assuming you choose JSON as the
EventRecordFormat, and both the key and value attributes as SchemaValidationConfigs:

Schema registries with event sources 1242

AWS Lambda Developer Guide

{
 "eventSource":"aws:kafka",
 "eventSourceArn":"arn:aws:kafka:us-east-1:123456789012:cluster/vpc-2priv-2pub/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111-1",
 "bootstrapServers":"b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "records":{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==", //Base64 encoded string of JSON
 "keySchemaMetadata": {
 "dataFormat": "AVRO",
 "schemaId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "value":"abcDEFghiJKLmnoPQRstuVWXyz1234", //Base64 encoded string of JSON
 "valueSchemaMetadata": {
 "dataFormat": "AVRO",
 "schemaId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "headers":[
 {
 "headerKey":[
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }

Schema registries with event sources 1243

AWS Lambda Developer Guide

]
 }
}

In this example:

• Both key and value are base64-encoded strings of their JSON representation after
deserialization.

• Lambda includes schema metadata for both attributes in keySchemaMetadata and
valueSchemaMetadata.

• Your function can decode the key and value strings to access the deserialized JSON data.

The JSON format is recommended for languages that aren't strongly typed, such as Python or
Node.js. These languages have native support for converting JSON into objects.

Source format

If you choose SOURCE as the EventRecordFormat, Lambda still validates the record against the
schema registry, but delivers the original binary data to your function without deserialization.
This binary data is delivered as a Base64 encoded string of the original byte data, with producer-
appended metadata removed. As a result, you can directly convert the raw binary data into
Avro and Protobuf objects within your function code. We recommend using Powertools for AWS
Lambda, which will deserialize the raw binary data and give you Avro and Protobuf objects directly.

For example, if you configure Lambda to validate both the key and value attributes but use the
SOURCE format, your function receives a payload like this:

{
 "eventSource": "aws:kafka",
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/vpc-2priv-2pub/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111-1",
 "bootstrapServers": "b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "records": {
 "mytopic-0": [
 {
 "topic": "mytopic",
 "partition": 0,
 "offset": 15,

Schema registries with event sources 1244

AWS Lambda Developer Guide

 "timestamp": 1545084650987,
 "timestampType": "CREATE_TIME",
 "key": "abcDEFghiJKLmnoPQRstuVWXyz1234==", // Base64 encoded string of
 Original byte data, producer-appended metadata removed
 "keySchemaMetadata": {
 "dataFormat": "AVRO",
 "schemaId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "value": "abcDEFghiJKLmnoPQRstuVWXyz1234==", // Base64 encoded string
 of Original byte data, producer-appended metadata removed
 "valueSchemaMetadata": {
 "dataFormat": "AVRO",
 "schemaId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "headers": [
 {
 "headerKey": [
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }
]
 }
}

In this example:

• Both key and value contain the original binary data as Base64 encoded strings.

• Your function needs to handle deserialization using the appropriate libraries.

Schema registries with event sources 1245

AWS Lambda Developer Guide

Choosing SOURCE for EventRecordFormat is recommended if you're using Avro-generated or
Protobuf-generated objects, especially with Java functions. This is because Java is strongly typed,
and requires specific deserializers for Avro and Protobuf formats. In your function code, you can
use your preferred Avro or Protobuf library to deserialize the data.

Working with deserialized data in Lambda functions

Powertools for AWS Lambda helps you deserialize Kafka records in your function code based on
the format you use. This utility simplifies working with Kafka records by handling data conversion
and providing ready-to-use objects.

To use Powertools for AWS Lambda in your function, you need to add Powertools for AWS Lambda
either as a layer or include it as a dependency when building your Lambda function. For setup
instructions and more information, see the Powertools for AWS Lambda documentation for your
preferred language:

• Powertools for AWS Lambda (Java)

• Powertools for AWS Lambda (Python)

• Powertools for AWS Lambda (TypeScript)

• Powertools for AWS Lambda (.NET)

Note

When working with schema registry integration, you can choose SOURCE or JSON format.
Each option supports different serialization formats as shown below:

Format Supports

SOURCE Avro and Protobuf (using Lambda Schema
Registry integration)

JSON JSON data

When using the SOURCE or JSON format, you can use Powertools for AWS to help deserialize the
data in your function code. Here are examples of how to handle different data formats:

Schema registries with event sources 1246

https://docs.powertools.aws.dev/lambda/java/latest/utilities/kafka/
https://docs.powertools.aws.dev/lambda/python/latest/utilities/kafka/
https://docs.powertools.aws.dev/lambda/typescript/latest/features/kafka/
https://docs.powertools.aws.dev/lambda/dotnet/utilities/kafka/

AWS Lambda Developer Guide

AVRO

Java example:

package org.demo.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.demo.kafka.avro.AvroProduct;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import software.amazon.lambda.powertools.kafka.Deserialization;
import software.amazon.lambda.powertools.kafka.DeserializationType;
import software.amazon.lambda.powertools.logging.Logging;

public class AvroDeserializationFunction implements
 RequestHandler<ConsumerRecords<String, AvroProduct>, String> {

 private static final Logger LOGGER =
 LoggerFactory.getLogger(AvroDeserializationFunction.class);

 @Override
 @Logging
 @Deserialization(type = DeserializationType.KAFKA_AVRO)
 public String handleRequest(ConsumerRecords<String, AvroProduct> records,
 Context context) {
 for (ConsumerRecord<String, AvroProduct> consumerRecord : records) {
 LOGGER.info("ConsumerRecord: {}", consumerRecord);

 AvroProduct product = consumerRecord.value();
 LOGGER.info("AvroProduct: {}", product);

 String key = consumerRecord.key();
 LOGGER.info("Key: {}", key);
 }

 return "OK";
 }

Schema registries with event sources 1247

AWS Lambda Developer Guide

}

Python example:

from aws_lambda_powertools.utilities.kafka_consumer.kafka_consumer import
 kafka_consumer
from aws_lambda_powertools.utilities.kafka_consumer.schema_config import
 SchemaConfig
from aws_lambda_powertools.utilities.kafka_consumer.consumer_records import
 ConsumerRecords

from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools import Logger

logger = Logger(service="kafkaConsumerPowertools")

value_schema_str = open("customer_profile.avsc", "r").read()

schema_config = SchemaConfig(
value_schema_type="AVRO",
value_schema=value_schema_str)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context:LambdaContext):

 for record in event.records:
 value = record.value
 logger.info(f"Received value: {value}")

TypeScript example:

import { kafkaConsumer } from '@aws-lambda-powertools/kafka';

import type { ConsumerRecords } from '@aws-lambda-powertools/kafka/types';
import { Logger } from '@aws-lambda-powertools/logger';
import type { Context } from 'aws-lambda';

const logger = new Logger();

type Value = {
 id: number;
 name: string;
 price: number;

Schema registries with event sources 1248

AWS Lambda Developer Guide

};

const schema = '{
 "type": "record",
 "name": "Product",
 "fields": [
 { "name": "id", "type": "int" },
 { "name": "name", "type": "string" },
 { "name": "price", "type": "double" }
]
}';

export const handler = kafkaConsumer<string, Value>(
 (event: ConsumerRecords<string, Value>, _context: Context) => {
 for (const record of event.records) {
 logger.info(Processing record with key: ${record.key});
 logger.info(Record value: ${JSON.stringify(record.value)});
 // You can add more processing logic here
 }
 },
 {
 value: {
 type: 'avro',
 schema: schema,
 },
 }
);

.NET example:

using Amazon.Lambda.Core;
using AWS.Lambda.Powertools.Kafka;
using AWS.Lambda.Powertools.Kafka.Avro;
using AWS.Lambda.Powertools.Logging;
using Com.Example;

// Assembly attribute to enable the Lambda function's Kafka event to be converted
 into a .NET class.
[assembly: LambdaSerializer(typeof(PowertoolsKafkaAvroSerializer))]

namespace ProtoBufClassLibrary;

public class Function

Schema registries with event sources 1249

AWS Lambda Developer Guide

{
 public string FunctionHandler(ConsumerRecords<string, CustomerProfile> records,
 ILambdaContext context)
 {
 foreach (var record in records)
 {
 Logger.LogInformation("Processing messagem from topic: {topic}",
 record.Topic);
 Logger.LogInformation("Partition: {partition}, Offset: {offset}",
 record.Partition, record.Offset);
 Logger.LogInformation("Produced at: {timestamp}", record.Timestamp);

 foreach (var header in record.Headers.DecodedValues())
 {
 Logger.LogInformation($"{header.Key}: {header.Value}");
 }

 Logger.LogInformation("Processing order for: {fullName}",
 record.Value.FullName);
 }

 return "Processed " + records.Count() + " records";
 }
}

PROTOBUF

Java example:

package org.demo.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.demo.kafka.protobuf.ProtobufProduct;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import software.amazon.lambda.powertools.kafka.Deserialization;
import software.amazon.lambda.powertools.kafka.DeserializationType;
import software.amazon.lambda.powertools.logging.Logging;

Schema registries with event sources 1250

AWS Lambda Developer Guide

public class ProtobufDeserializationFunction
 implements RequestHandler<ConsumerRecords<String, ProtobufProduct>, String>
 {

 private static final Logger LOGGER =
 LoggerFactory.getLogger(ProtobufDeserializationFunction.class);

 @Override
 @Logging
 @Deserialization(type = DeserializationType.KAFKA_PROTOBUF)
 public String handleRequest(ConsumerRecords<String, ProtobufProduct> records,
 Context context) {
 for (ConsumerRecord<String, ProtobufProduct> consumerRecord : records) {
 LOGGER.info("ConsumerRecord: {}", consumerRecord);

 ProtobufProduct product = consumerRecord.value();
 LOGGER.info("ProtobufProduct: {}", product);

 String key = consumerRecord.key();
 LOGGER.info("Key: {}", key);
 }

 return "OK";
 }

}

Python example:

from aws_lambda_powertools.utilities.kafka_consumer.kafka_consumer import
 kafka_consumer

from aws_lambda_powertools.utilities.kafka_consumer.schema_config import
 SchemaConfig
from aws_lambda_powertools.utilities.kafka_consumer.consumer_records import
 ConsumerRecords

from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools import Logger

from user_pb2 import User # protobuf generated class

logger = Logger(service="kafkaConsumerPowertools")

Schema registries with event sources 1251

AWS Lambda Developer Guide

schema_config = SchemaConfig(
value_schema_type="PROTOBUF",
value_schema=User)

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context:LambdaContext):

 for record in event.records:
 value = record.value
 logger.info(f"Received value: {value}")

TypeScript example:

import { kafkaConsumer } from '@aws-lambda-powertools/kafka';
import type { ConsumerRecords } from '@aws-lambda-powertools/kafka/types';
import { Logger } from '@aws-lambda-powertools/logger';
import type { Context } from 'aws-lambda';
import { Product } from './product.generated.js';

const logger = new Logger();

type Value = {
 id: number;
 name: string;
 price: number;
};

export const handler = kafkaConsumer<string, Value>(
 (event: ConsumerRecords<string, Value>, _context: Context) => {
 for (const record of event.records) {
 logger.info(Processing record with key: ${record.key});
 logger.info(Record value: ${JSON.stringify(record.value)});
 }
 },
 {
 value: {
 type: 'protobuf',
 schema: Product,
 },
 }
);

Schema registries with event sources 1252

AWS Lambda Developer Guide

.NET example:

using Amazon.Lambda.Core;
using AWS.Lambda.Powertools.Kafka;
using AWS.Lambda.Powertools.Kafka.Protobuf;
using AWS.Lambda.Powertools.Logging;
using Com.Example;

// Assembly attribute to enable the Lambda function's Kafka event to be converted
 into a .NET class.
[assembly: LambdaSerializer(typeof(PowertoolsKafkaProtobufSerializer))]

namespace ProtoBufClassLibrary;

public class Function
{
 public string FunctionHandler(ConsumerRecords<string, CustomerProfile> records,
 ILambdaContext context)
 {
 foreach (var record in records)
 {
 Logger.LogInformation("Processing messagem from topic: {topic}",
 record.Topic);
 Logger.LogInformation("Partition: {partition}, Offset: {offset}",
 record.Partition, record.Offset);
 Logger.LogInformation("Produced at: {timestamp}", record.Timestamp);

 foreach (var header in record.Headers.DecodedValues())
 {
 Logger.LogInformation($"{header.Key}: {header.Value}");
 }

 Logger.LogInformation("Processing order for: {fullName}",
 record.Value.FullName);
 }

 return "Processed " + records.Count() + " records";
 }
}

JSON

Java example:

Schema registries with event sources 1253

AWS Lambda Developer Guide

package org.demo.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import software.amazon.lambda.powertools.kafka.Deserialization;
import software.amazon.lambda.powertools.kafka.DeserializationType;
import software.amazon.lambda.powertools.logging.Logging;

public class JsonDeserializationFunction implements
 RequestHandler<ConsumerRecords<String, Product>, String> {

 private static final Logger LOGGER =
 LoggerFactory.getLogger(JsonDeserializationFunction.class);

 @Override
 @Logging
 @Deserialization(type = DeserializationType.KAFKA_JSON)
 public String handleRequest(ConsumerRecords<String, Product> consumerRecords,
 Context context) {
 for (ConsumerRecord<String, Product> consumerRecord : consumerRecords) {
 LOGGER.info("ConsumerRecord: {}", consumerRecord);

 Product product = consumerRecord.value();
 LOGGER.info("Product: {}", product);

 String key = consumerRecord.key();
 LOGGER.info("Key: {}", key);
 }

 return "OK";
 }
}

Python example:

from aws_lambda_powertools.utilities.kafka_consumer.kafka_consumer import
 kafka_consumer

Schema registries with event sources 1254

AWS Lambda Developer Guide

from aws_lambda_powertools.utilities.kafka_consumer.schema_config import
 SchemaConfig
from aws_lambda_powertools.utilities.kafka_consumer.consumer_records import
 ConsumerRecords

from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools import Logger

logger = Logger(service="kafkaConsumerPowertools")

schema_config = SchemaConfig(value_schema_type="JSON")

@kafka_consumer(schema_config=schema_config)
def lambda_handler(event: ConsumerRecords, context:LambdaContext):

 for record in event.records:
 value = record.value
 logger.info(f"Received value: {value}")

TypeScript example:

import { kafkaConsumer } from '@aws-lambda-powertools/kafka';
import type { ConsumerRecords } from '@aws-lambda-powertools/kafka/types';
import { Logger } from '@aws-lambda-powertools/logger';
import type { Context } from 'aws-lambda';

const logger = new Logger();

type Value = {
 id: number;
 name: string;
 price: number;
};

export const handler = kafkaConsumer<string, Value>(
 (event: ConsumerRecords<string, Value>, _context: Context) => {
 for (const record of event.records) {
 logger.info(Processing record with key: ${record.key});
 logger.info(Record value: ${JSON.stringify(record.value)});
 // You can add more processing logic here
 }
 },

Schema registries with event sources 1255

AWS Lambda Developer Guide

 {
 value: {
 type: 'json',
 },
 }
);

.NET example:

using Amazon.Lambda.Core;
using AWS.Lambda.Powertools.Kafka;
using AWS.Lambda.Powertools.Kafka.Json;
using AWS.Lambda.Powertools.Logging;
using Com.Example;

// Assembly attribute to enable the Lambda function's Kafka event to be converted
 into a .NET class.
[assembly: LambdaSerializer(typeof(PowertoolsKafkaJsonSerializer))]

namespace JsonClassLibrary;

public class Function
{
 public string FunctionHandler(ConsumerRecords<string, CustomerProfile> records,
 ILambdaContext context)
 {
 foreach (var record in records)
 {
 Logger.LogInformation("Processing messagem from topic: {topic}",
 record.Topic);
 Logger.LogInformation("Partition: {partition}, Offset: {offset}",
 record.Partition, record.Offset);
 Logger.LogInformation("Produced at: {timestamp}", record.Timestamp);

 foreach (var header in record.Headers.DecodedValues())
 {
 Logger.LogInformation($"{header.Key}: {header.Value}");
 }

 Logger.LogInformation("Processing order for: {fullName}",
 record.Value.FullName);
 }

Schema registries with event sources 1256

AWS Lambda Developer Guide

 return "Processed " + records.Count() + " records";
 }
}

Authentication methods for your schema registry

To use a schema registry, Lambda needs to be able to securely access it. If you're working with an
AWS Glue schema registry, Lambda relies on IAM authentication. This means that your function's
execution role must have the following permissions to access the AWS Glue registry:

• GetRegistry in the AWS Glue Web API Reference

• GetSchemaVersion in the AWS Glue Web API Reference

Example of the required IAM policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetRegistry",
 "glue:GetSchemaVersion"
],
 "Resource": [
 "*"
]
 }
]
}

Note

For AWS Glue schema registries, if you provide AccessConfigs for a AWS Glue registry,
Lambda will return a validation exception.

Schema registries with event sources 1257

https://docs.aws.amazon.com/glue/latest/webapi/API_GetRegistry.html
https://docs.aws.amazon.com/glue/latest/webapi/API_GetSchemaVersion.html

AWS Lambda Developer Guide

If you're working with a Confluent schema registry, you can choose one of three supported
authentication methods for the Type parameter of your KafkaSchemaRegistryAccessConfig object:

• BASIC_AUTH — Lambda uses username and password or API Key and API Secret authentication
to access your registry. If you choose this option, provide the Secrets Manager ARN containing
your credentials in the URI field.

• CLIENT_CERTIFICATE_TLS_AUTH — Lambda uses mutual TLS authentication with client
certificates. To use this option, Lambda needs access to both the certificate and the private key.
Provide the Secrets Manager ARN containing these credentials in the URI field.

• NO_AUTH — The public CA certificate must be signed by a certificate authority (CA) that's in
the Lambda trust store. For a private CA/self-signed certificate, you configure the server root CA
certificate. To use this option, omit the AccessConfigs parameter.

Additionally, if Lambda needs access to a private CA certificate to verify your schema registry's TLS
certificate, choose SERVER_ROOT_CA_CERT as the Type and provide the Secrets Manager ARN to
the certificate in the URI field.

Note

To configure the SERVER_ROOT_CA_CERT option in the console, provide the secret ARN
containing the certificate in the Encryption field.

The authentication configuration for your schema registry is separate from any authentication
you've configured for your Kafka cluster. You must configure both separately, even if they use
similar authentication methods.

Error handling and troubleshooting for schema registry issues

When using a schema registry with your Amazon MSK event source, you may encounter various
errors. This section provides guidance on common issues and how to resolve them.

Configuration errors

These errors occur when setting up your schema registry configuration.

Schema registries with event sources 1258

https://docs.aws.amazon.com/lambda/latest/api/API_KafkaSchemaRegistryAccessConfig

AWS Lambda Developer Guide

Provisioned mode required

Error message: SchemaRegistryConfig is only available for Provisioned
Mode. To configure Schema Registry, please enable Provisioned Mode by
specifying MinimumPollers in ProvisionedPollerConfig.

Resolution: Enable provisioned mode for your event source mapping by configuring the
MinimumPollers parameter in ProvisionedPollerConfig.

Invalid schema registry URL

Error message: Malformed SchemaRegistryURI provided. Please provide a valid
URI or ARN. For example, https://schema-registry.example.com:8081 or
arn:aws:glue:us-east-1:123456789012:registry/ExampleRegistry.

Resolution: Provide a valid HTTPS URL for Confluent Schema Registry or a valid ARN for AWS
Glue Schema Registry.

Invalid or missing event record format

Error message: EventRecordFormat is a required field for
SchemaRegistryConfig. Please provide one of supported format types:
SOURCE, JSON.

Resolution: Specify either SOURCE or JSON as the EventRecordFormat in your schema registry
configuration.

Duplicate validation attributes

Error message: Duplicate KEY/VALUE Attribute in SchemaValidationConfigs.
SchemaValidationConfigs must contain at most one KEY/VALUE Attribute.

Resolution: Remove duplicate KEY or VALUE attributes from your SchemaValidationConfigs.
Each attribute type can only appear once.

Missing validation configuration

Error message: SchemaValidationConfigs is a required field for
SchemaRegistryConfig.

Resolution: Add SchemaValidationConfigs to your configuration, specifying at least one
validation attribute (KEY or VALUE).

Schema registries with event sources 1259

AWS Lambda Developer Guide

Access and permission errors

These errors occur when Lambda cannot access the schema registry due to permission or
authentication issues.

AWS Glue Schema Registry access denied

Error message: Cannot access Glue Schema with provided role. Please ensure
the provided role can perform the GetRegistry and GetSchemaVersion
Actions on your schema.

Resolution: Add the required permissions (glue:GetRegistry and
glue:GetSchemaVersion) to your function's execution role.

Confluent Schema Registry access denied

Error message: Cannot access Confluent Schema with the provided access
configuration.

Resolution: Verify that your authentication credentials (stored in Secrets Manager) are correct
and have the necessary permissions to access the schema registry.

Cross-account AWS Glue Schema Registry

Error message: Cross-account Glue Schema Registry ARN not supported.

Resolution: Use a AWS Glue Schema Registry that's in the same AWS account as your Lambda
function.

Cross-region AWS Glue Schema Registry

Error message: Cross-region Glue Schema Registry ARN not supported.

Resolution: Use a AWS Glue Schema Registry that's in the same region as your Lambda
function.

Secret access issues

Error message: Lambda received InvalidRequestException from Secrets
Manager.

Resolution: Verify that your function's execution role has permission to access the secret and
that the secret is not encrypted with a default AWS KMS key if accessing from a different
account.

Schema registries with event sources 1260

AWS Lambda Developer Guide

Connection errors

These errors occur when Lambda cannot establish a connection to the schema registry.

VPC connectivity issues

Error message: Cannot connect to your Schema Registry. Your Kafka cluster's
VPC must be able to connect to the schema registry. You can provide
access by configuring AWS PrivateLink or a NAT Gateway or VPC Peering
between Kafka Cluster VPC and the schema registry VPC.

Resolution: Configure your VPC networking to allow connections to the schema registry using
AWS PrivateLink, a NAT Gateway, or VPC peering.

TLS handshake failure

Error message: Unable to establish TLS handshake with the schema registry.
Please provide correct CA-certificate or client certificate using
Secrets Manager to access your schema registry.

Resolution: Verify that your CA certificates and client certificates (for mTLS) are correct and
properly configured in Secrets Manager.

Throttling

Error message: Receiving throttling errors when accessing the schema
registry. Please increase API TPS limits for your schema registry.

Resolution: Increase the API rate limits for your schema registry or reduce the rate of requests
from your application.

Self-managed schema registry errors

Error message: Lambda received an internal server an unexpected error from
the provided self-managed schema registry.

Resolution: Check the health and configuration of your self-managed schema registry server.

Schema registries with event sources 1261

AWS Lambda Developer Guide

Low latency processing for Kafka event sources

AWS Lambda natively supports low latency event processing for applications that require
consistent end-to-end latencies of less than 100 milliseconds. This page provides configuration
details and recommendations to enable low latency workflows.

Enable low latency processing

To enable low latency processing on a Kafka event source mapping, the following basic
configuration is required:

• Enable provisioned mode. For more information, see Configuring provisioned mode.

• Set the event source mapping's MaximumBatchingWindowInSeconds parameter to 0. For
more information, see Batching behavior.

Fine-tuning your low latency Kafka ESM

Consider the following recommendations to optimize your Kafka event source mapping for low
latency:

Provisioned mode configuration

In provisioned mode for Kafka event source mapping, Lambda allows you to fine-tune the
throughput of your event source mapping by configuring a minimum and maximum number
of resources called event pollers. An event poller (or a poller) represents a compute resource
that underpins an event source mapping in the provisioned mode, and allocates up to 5 MB/s
throughput. Each event poller supports up to 5 concurrent Lambda invocations.

To determine the optimal poller configuration for your application, consider your peak ingestion
rate and processing requirements. Let's look at a simplified example:

With a batch size of 20 records and an average target function duration of 50ms, each poller
can handle 2,000 records per second subject to 5 MB/s limit. This is calculated as: (20 records ×
1000ms/50ms) × 5 concurrent Lambda invocations. Therefore, if your desired peak ingestion rate is
20,000 records per second, you would need at least 10 event pollers.

Low latency Apache Kafka 1262

AWS Lambda Developer Guide

Note

We recommend to provision additional event pollers as buffer to avoid consistently
operating at maximum capacity.

Provisioned mode automatically scales your event pollers based on traffic patterns within
configured minimum and maximum event pollers which can trigger rebalance, and therefore,
introduce additional latency. You can disable auto-scaling by configuring same value for minimum
and maximum event poller.

Additional considerations

Some of the additional considerations include:

• Cold starts from the invocation of your Lambda target function can potentially increase end-to-
end latency. To reduce this risk, consider enabling provisioned concurrency or SnapStart on your
event source mapping's target function. Additionally, optimize your function's memory allocation
to ensure consistent and optimal executions.

• When MaximumBatchingWindowInSeconds is set to 0, Lambda will immediately process any
available records without waiting to fill the complete batch size. For example, if your batch size
is set to 1,000 records but only 100 records are available, Lambda will process those 100 records
immediately rather than waiting for the full 1,000 records to accumulate.

Important

The optimal configuration for low latency processing varies significantly based on your
specific workload. We strongly recommend testing different configurations with your actual
workload to determine the best settings for your use case.

Low latency Apache Kafka 1263

AWS Lambda Developer Guide

Invoking a Lambda function using an Amazon API Gateway
endpoint

You can create a web API with an HTTP endpoint for your Lambda function by using Amazon
API Gateway. API Gateway provides tools for creating and documenting web APIs that route
HTTP requests to Lambda functions. You can secure access to your API with authentication and
authorization controls. Your APIs can serve traffic over the internet or can be accessible only within
your VPC.

Tip

Lambda offers two ways to invoke your function through an HTTP endpoint: API Gateway
and Lambda function URLs. If you're not sure which is the best method for your use case,
see the section called “API Gateway vs function URLs”.

Resources in your API define one or more methods, such as GET or POST. Methods have an
integration that routes requests to a Lambda function or another integration type. You can define
each resource and method individually, or use special resource and method types to match all
requests that fit a pattern. A proxy resource catches all paths beneath a resource. The ANY method
catches all HTTP methods.

Sections

• Choosing an API type

• Adding an endpoint to your Lambda function

• Proxy integration

• Event format

• Response format

• Permissions

• Sample application

• Tutorial: Using Lambda with API Gateway

• Handling Lambda errors with an API Gateway API

• Select a method to invoke your Lambda function using an HTTP request

API Gateway 1264

https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html

AWS Lambda Developer Guide

Choosing an API type

API Gateway supports three types of APIs that invoke Lambda functions:

• HTTP API: A lightweight, low-latency RESTful API.

• REST API: A customizable, feature-rich RESTful API.

• WebSocket API: A web API that maintains persistent connections with clients for full-duplex
communication.

HTTP APIs and REST APIs are both RESTful APIs that process HTTP requests and return responses.
HTTP APIs are newer and are built with the API Gateway version 2 API. The following features are
new for HTTP APIs:

HTTP API features

• Automatic deployments – When you modify routes or integrations, changes deploy
automatically to stages that have automatic deployment enabled.

• Default stage – You can create a default stage ($default) to serve requests at the root path of
your API's URL. For named stages, you must include the stage name at the beginning of the path.

• CORS configuration – You can configure your API to add CORS headers to outgoing responses,
instead of adding them manually in your function code.

REST APIs are the classic RESTful APIs that API Gateway has supported since launch. REST APIs
currently have more customization, integration, and management features.

REST API features

• Integration types – REST APIs support custom Lambda integrations. With a custom integration,
you can send just the body of the request to the function, or apply a transform template to the
request body before sending it to the function.

• Access control – REST APIs support more options for authentication and authorization.

• Monitoring and tracing – REST APIs support AWS X-Ray tracing and additional logging options.

For a detailed comparison, see Choose between HTTP APIs and REST APIs in the API Gateway
Developer Guide.

Choosing an API type 1265

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html

AWS Lambda Developer Guide

WebSocket APIs also use the API Gateway version 2 API and support a similar feature set. Use a
WebSocket API for applications that benefit from a persistent connection between the client and
API. WebSocket APIs provide full-duplex communication, which means that both the client and the
API can send messages continuously without waiting for a response.

HTTP APIs support a simplified event format (version 2.0). For an example of an event from an
HTTP API, see Create AWS Lambda proxy integrations for HTTP APIs in API Gateway.

For more information, see Create AWS Lambda proxy integrations for HTTP APIs in API Gateway.

Adding an endpoint to your Lambda function

To add a public endpoint to your Lambda function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add trigger.

4. Select API Gateway.

5. Choose Create an API or Use an existing API.

a. New API: For API type, choose HTTP API. For more information, see Choosing an API
type.

b. Existing API: Select the API from the dropdown list or enter the API ID (for example,
r3pmxmplak).

6. For Security, choose Open.

7. Choose Add.

Proxy integration

API Gateway APIs are comprised of stages, resources, methods, and integrations. The stage and
resource determine the path of the endpoint:

API path format

• /prod/ – The prod stage and root resource.

• /prod/user – The prod stage and user resource.

• /dev/{proxy+} – Any route in the dev stage.

Adding an endpoint to your Lambda function 1266

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

• / – (HTTP APIs) The default stage and root resource.

A Lambda integration maps a path and HTTP method combination to a Lambda function. You
can configure API Gateway to pass the body of the HTTP request as-is (custom integration), or to
encapsulate the request body in a document that includes all of the request information including
headers, resource, path, and method.

For more information, see Lambda proxy integrations in API Gateway.

Event format

Amazon API Gateway invokes your function synchronously with an event that contains a JSON
representation of the HTTP request. For a custom integration, the event is the body of the request.
For a proxy integration, the event has a defined structure. For an example of a proxy event from
an API Gateway REST API, see Input format of a Lambda function for proxy integration in the API
Gateway Developer Guide.

Response format

API Gateway waits for a response from your function and relays the result to the caller. For a
custom integration, you define an integration response and a method response to convert the
output from the function to an HTTP response. For a proxy integration, the function must respond
with a representation of the response in a specific format.

The following example shows a response object from a Node.js function. The response object
represents a successful HTTP response that contains a JSON document.

Example index.mjs – Proxy integration response object (Node.js)

var response = {
 "statusCode": 200,
 "headers": {
 "Content-Type": "application/json"
 },
 "isBase64Encoded": false,
 "multiValueHeaders": {
 "X-Custom-Header": ["My value", "My other value"],
 },
 "body": "{\n \"TotalCodeSize\": 104330022,\n \"FunctionCount\": 26\n}"
 }

Event format 1267

https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format

AWS Lambda Developer Guide

The Lambda runtime serializes the response object into JSON and sends it to the API. The API
parses the response and uses it to create an HTTP response, which it then sends to the client that
made the original request.

Example HTTP response

< HTTP/1.1 200 OK
 < Content-Type: application/json
 < Content-Length: 55
 < Connection: keep-alive
 < x-amzn-RequestId: 32998fea-xmpl-4268-8c72-16138d629356
 < X-Custom-Header: My value
 < X-Custom-Header: My other value
 < X-Amzn-Trace-Id: Root=1-5e6aa925-ccecxmplbae116148e52f036
 <
 {
 "TotalCodeSize": 104330022,
 "FunctionCount": 26
 }

Permissions

Amazon API Gateway gets permission to invoke your function from the function's resource-
based policy. You can grant invoke permission to an entire API, or grant limited access to a stage,
resource, or method.

When you add an API to your function by using the Lambda console, using the API Gateway
console, or in an AWS SAM template, the function's resource-based policy is updated automatically.
The following is an example function policy.

Example function policy

JSON

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "nodejs-apig-functiongetEndpointPermissionProd-BWDBXMPLXE2F",

Permissions 1268

AWS Lambda Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-east-2:111122223333:function:nodejs-apig-
function-1G3MXMPLXVXYI",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:execute-api:us-
east-2:111122223333:ktyvxmpls1/*/GET/"
 }
 }
 }
]
}

You can manage function policy permissions manually with the following API operations:

• AddPermission

• RemovePermission

• GetPolicy

To grant invocation permission to an existing API, use the add-permission command. Example:

aws lambda add-permission \
 --function-name my-function \
 --statement-id apigateway-get --action lambda:InvokeFunction \
 --principal apigateway.amazonaws.com \
 --source-arn "arn:aws:execute-api:us-east-2:123456789012:mnh1xmpli7/default/GET/"

You should see the following output:

{
 "Statement": "{\"Sid\":\"apigateway-test-2\",\"Effect\":\"Allow\",\"Principal
\":{\"Service\":\"apigateway.amazonaws.com\"},\"Action\":\"lambda:InvokeFunction
\",\"Resource\":\"arn:aws:lambda:us-east-2:123456789012:function:my-function

Permissions 1269

https://docs.aws.amazon.com/lambda/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_RemovePermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetPolicy.html

AWS Lambda Developer Guide

\",\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":\"arn:aws:execute-api:us-
east-2:123456789012:mnh1xmpli7/default/GET\"}}}"
}

Note

If your function and API are in different AWS Regions, the Region identifier in the source
ARN must match the Region of the function, not the Region of the API. When API Gateway
invokes a function, it uses a resource ARN that is based on the ARN of the API, but modified
to match the function's Region.

The source ARN in this example grants permission to an integration on the GET method of the root
resource in the default stage of an API, with ID mnh1xmpli7. You can use an asterisk in the source
ARN to grant permissions to multiple stages, methods, or resources.

Resource patterns

• mnh1xmpli7/*/GET/* – GET method on all resources in all stages.

• mnh1xmpli7/prod/ANY/user – ANY method on the user resource in the prod stage.

• mnh1xmpli7/*/*/* – Any method on all resources in all stages.

For details on viewing the policy and removing statements, see Viewing resource-based IAM
policies in Lambda.

Sample application

The API Gateway with Node.js sample app includes a function with an AWS SAM template that
creates a REST API that has AWS X-Ray tracing enabled. It also includes scripts for deploying,
invoking the function, testing the API, and cleanup.

Tutorial: Using Lambda with API Gateway

In this tutorial, you create a REST API through which you invoke a Lambda function using an HTTP
request. Your Lambda function will perform create, read, update, and delete (CRUD) operations
on a DynamoDB table. This function is provided here for demonstration, but you will learn to
configure an API Gateway REST API that can invoke any Lambda function.

Sample application 1270

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig

AWS Lambda Developer Guide

Using API Gateway provides users with a secure HTTP endpoint to invoke your Lambda function
and can help manage large volumes of calls to your function by throttling traffic and automatically
validating and authorizing API calls. API Gateway also provides flexible security controls using AWS
Identity and Access Management (IAM) and Amazon Cognito. This is useful for use cases where
advance authorization is required for calls to your application.

Tip

Lambda offers two ways to invoke your function through an HTTP endpoint: API Gateway
and Lambda function URLs. If you're not sure which is the best method for your use case,
see the section called “API Gateway vs function URLs”.

To complete this tutorial, you will go through the following stages:

1. Create and configure a Lambda function in Python or Node.js to perform operations on a
DynamoDB table.

2. Create a REST API in API Gateway to connect to your Lambda function.

3. Create a DynamoDB table and test it with your Lambda function in the console.

Tutorial 1271

AWS Lambda Developer Guide

4. Deploy your API and test the full setup using curl in a terminal.

By completing these stages, you will learn how to use API Gateway to create an HTTP endpoint
that can securely invoke a Lambda function at any scale. You will also learn how to deploy your API,
and how to test it in the console and by sending an HTTP request using a terminal.

Create a permissions policy

Before you can create an execution role for your Lambda function, you first need to create a
permissions policy to give your function permission to access the required AWS resources. For this
tutorial, the policy allows Lambda to perform CRUD operations on a DynamoDB table and write to
Amazon CloudWatch Logs.

To create the policy

1. Open the Policies page of the IAM console.

2. Choose Create Policy.

3. Choose the JSON tab, and then paste the following custom policy into the JSON editor.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1428341300017",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "",
 "Resource": "*",

Tutorial 1272

https://console.aws.amazon.com/iam/home#/policies

AWS Lambda Developer Guide

 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Effect": "Allow"
 }
]
}

4. Choose Next: Tags.

5. Choose Next: Review.

6. Under Review policy, for the policy Name, enter lambda-apigateway-policy.

7. Choose Create policy.

Create an execution role

An execution role is an AWS Identity and Access Management (IAM) role that grants a Lambda
function permission to access AWS services and resources. To enable your function to perform
operations on a DynamoDB table, you attach the permissions policy you created in the previous
step.

To create an execution role and attach your custom permissions policy

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For the type of trusted entity, choose AWS service, then for the use case, choose Lambda.

4. Choose Next.

5. In the policy search box, enter lambda-apigateway-policy.

6. In the search results, select the policy that you created (lambda-apigateway-policy), and
then choose Next.

7. Under Role details, for the Role name, enter lambda-apigateway-role, then choose
Create role.

Create the Lambda function

1. Open the Functions page of the Lambda console and choose Create Function.

Tutorial 1273

https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose Author from scratch.

3. For Function name, enter LambdaFunctionOverHttps.

4. For Runtime, choose the latest Node.js or Python runtime.

5. Under Permissions, expand Change default execution role.

6. Choose Use an existing role, and then select the lambda-apigateway-role role that you
created earlier.

7. Choose Create function.

8. In the Code source pane, replace the default code with the following Node.js or Python code.

Node.js

The region setting must match the AWS Region where you deploy the function and create
the DynamoDB table.

Example index.mjs

import { DynamoDBDocumentClient, PutCommand, GetCommand,
 UpdateCommand, DeleteCommand} from "@aws-sdk/lib-dynamodb";
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

const ddbClient = new DynamoDBClient({ region: "us-east-2" });
const ddbDocClient = DynamoDBDocumentClient.from(ddbClient);

// Define the name of the DDB table to perform the CRUD operations on
const tablename = "lambda-apigateway";

/**
 * Provide an event that contains the following keys:
 *
 * - operation: one of 'create,' 'read,' 'update,' 'delete,' or 'echo'
 * - payload: a JSON object containing the parameters for the table item
 * to perform the operation on
 */
export const handler = async (event, context) => {

 const operation = event.operation;

 if (operation == 'echo'){
 return(event.payload);
 }

Tutorial 1274

AWS Lambda Developer Guide

 else {
 event.payload.TableName = tablename;
 let response;

 switch (operation) {
 case 'create':
 response = await ddbDocClient.send(new
 PutCommand(event.payload));
 break;
 case 'read':
 response = await ddbDocClient.send(new
 GetCommand(event.payload));
 break;
 case 'update':
 response = ddbDocClient.send(new UpdateCommand(event.payload));
 break;
 case 'delete':
 response = ddbDocClient.send(new DeleteCommand(event.payload));
 break;
 default:
 response = 'Unknown operation: ${operation}';
 }
 console.log(response);
 return response;
 }
};

Python

Example lambda_function.py

import boto3

Define the DynamoDB table that Lambda will connect to
table_name = "lambda-apigateway"

Create the DynamoDB resource
dynamo = boto3.resource('dynamodb').Table(table_name)

Define some functions to perform the CRUD operations
def create(payload):
 return dynamo.put_item(Item=payload['Item'])

Tutorial 1275

AWS Lambda Developer Guide

def read(payload):
 return dynamo.get_item(Key=payload['Key'])

def update(payload):
 return dynamo.update_item(**{k: payload[k] for k in ['Key',
 'UpdateExpression',
 'ExpressionAttributeNames', 'ExpressionAttributeValues'] if k in payload})

def delete(payload):
 return dynamo.delete_item(Key=payload['Key'])

def echo(payload):
 return payload

operations = {
 'create': create,
 'read': read,
 'update': update,
 'delete': delete,
 'echo': echo,
}

def lambda_handler(event, context):
 '''Provide an event that contains the following keys:
 - operation: one of the operations in the operations dict below
 - payload: a JSON object containing parameters to pass to the
 operation being performed
 '''

 operation = event['operation']
 payload = event['payload']

 if operation in operations:
 return operations[operation](payload)

 else:
 raise ValueError(f'Unrecognized operation "{operation}"')

Tutorial 1276

AWS Lambda Developer Guide

Note

In this example, the name of the DynamoDB table is defined as a variable in your
function code. In a real application, best practice is to pass this parameter as an
environment variable and to avoid hardcoding the table name. For more information
see Using AWS Lambda environment variables.

9. In the DEPLOY section, choose Deploy to update your function's code:

Test the function

Before integrating your function with API Gateway, confirm that you have deployed the function
successfully. Use the Lambda console to send a test event to your function.

1. On the Lambda console page for your function, choose the Test tab.

2. Scroll down to the Event JSON section and replace the default event with the following. This
event matches the structure expected by the Lambda function.

{
 "operation": "echo",
 "payload": {
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
 }

Tutorial 1277

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

AWS Lambda Developer Guide

}

3. Choose Test.

4. Under Executing function: succeeded, expand Details. You should see the following response:

{
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
}

Create a REST API using API Gateway

In this step, you create the API Gateway REST API you will use to invoke your Lambda function.

To create the API

1. Open the API Gateway console.

2. Choose Create API.

3. In the REST API box, choose Build.

4. Under API details, leave New API selected, and for API Name, enter DynamoDBOperations.

5. Choose Create API.

Create a resource on your REST API

To add an HTTP method to your API, you first need to create a resource for that method to operate
on. Here you create the resource to manage your DynamoDB table.

To create the resource

1. In the API Gateway console, on the Resources page for your API, choose Create resource.

2. In Resource details, for Resource name enter DynamoDBManager.

3. Choose Create Resource.

Tutorial 1278

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/apigateway

AWS Lambda Developer Guide

Create an HTTP POST method

In this step, you create a method (POST) for your DynamoDBManager resource. You link this POST
method to your Lambda function so that when the method receives an HTTP request, API Gateway
invokes your Lambda function.

Note

For the purpose of this tutorial, one HTTP method (POST) is used to invoke a single
Lambda function which carries out all of the operations on your DynamoDB table. In a real
application, best practice is to use a different Lambda function and HTTP method for each
operation. For more information, see The Lambda monolith in Serverless Land.

To create the POST method

1. On the Resources page for your API, ensure that the /DynamoDBManager resource is
highlighted. Then, in the Methods pane, choose Create method.

2. For Method type, choose POST.

3. For Integration type, leave Lambda function selected.

4. For Lambda function, choose the Amazon Resource Name (ARN) for your function
(LambdaFunctionOverHttps).

5. Choose Create method.

Create a DynamoDB table

Create an empty DynamoDB table that your Lambda function will perform CRUD operations on.

To create the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Choose Create table.

3. Under Table details, do the following:

1. For Table name, enter lambda-apigateway.

2. For Partition key, enter id, and keep the data type set as String.

Tutorial 1279

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/monolith
https://console.aws.amazon.com/dynamodbv2#tables

AWS Lambda Developer Guide

4. Under Table settings, keep the Default settings.

5. Choose Create table.

Test the integration of API Gateway, Lambda, and DynamoDB

You're now ready to test the integration of your API Gateway API method with your Lambda
function and your DynamoDB table. Using the API Gateway console, you send requests directly to
your POST method using the console's test function. In this step, you first use a create operation
to add a new item to your DynamoDB table, then you use an update operation to modify the item.

Test 1: To create a new item in your DynamoDB table

1. In the API Gateway console, choose your API (DynamoDBOperations).

2. Choose the POST method under the DynamoDBManager resource.

3. Choose the Test tab. You might need to choose the right arrow button to show the tab.

4. Under Test method, leave Query strings and Headers empty. For Request body, paste the
following JSON:

{
 "operation": "create",
 "payload": {
 "Item": {
 "id": "1234ABCD",
 "number": 5
 }
 }
}

5. Choose Test.

The results that are displayed when the test completes should show status 200. This status
code indicates that the create operation was successful.

To confirm, check that your DynamoDB table now contains the new item.

6. Open the Tables page of the DynamoDB console and choose the lambda-apigateway table.

7. Chose Explore table items. In the Items returned pane, you should see one item with the id
1234ABCD and the number 5. Example:

Tutorial 1280

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/dynamodbv2#tables

AWS Lambda Developer Guide

Test 2: To update the item in your DynamoDB table

1. In the API Gateway console, return to your POST method's Test tab.

2. Under Test method, leave Query strings and Headers empty. For Request body, paste the
following JSON:

{
 "operation": "update",
 "payload": {
 "Key": {
 "id": "1234ABCD"
 },
 "UpdateExpression": "SET #num = :newNum",
 "ExpressionAttributeNames": {
 "#num": "number"
 },
 "ExpressionAttributeValues": {
 ":newNum": 10
 }
 }
}

3. Choose Test.

The results which are displayed when the test completes should show status 200. This status
code indicates that the update operation was successful.

To confirm, check that the item in your DynamoDB table has been modified.

4. Open the Tables page of the DynamoDB console and choose the lambda-apigateway table.

5. Chose Explore table items. In the Items returned pane, you should see one item with the id
1234ABCD and the number 10.

Tutorial 1281

https://console.aws.amazon.com/apigateway
https://console.aws.amazon.com/dynamodbv2#tables

AWS Lambda Developer Guide

Deploy the API

For a client to call the API, you must create a deployment and an associated stage. A stage
represents a snapshot of your API including its methods and integrations.

To deploy the API

1. Open the APIs page of the API Gateway console and choose the DynamoDBOperations API.

2. On the Resources page for your API choose Deploy API.

3. For Stage, choose *New stage*, then for Stage name, enter test.

4. Choose Deploy.

5. In the Stage details pane, copy the Invoke URL. You will use this in the next step to invoke
your function using an HTTP request.

Use curl to invoke your function using HTTP requests

You can now invoke your Lambda function by issuing an HTTP request to your API. In this step,
you will create a new item in your DynamoDB table and then perform read, update, and delete
operations on that item.

To create an item in your DynamoDB table using curl

1. Run the following curl command using the invoke URL you copied in the previous step. This
command uses the following options:

• -H: Adds a custom header to the request. Here, it specifies the content type as JSON.

• -d: Sends data in the request body. This option uses an HTTP POST method by default.

Tutorial 1282

https://console.aws.amazon.com/apigateway

AWS Lambda Developer Guide

Linux/macOS

curl https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/DynamoDBManager
 \
-H "Content-Type: application/json" \
-d '{"operation": "create", "payload": {"Item": {"id": "5678EFGH", "number":
 15}}}'

PowerShell

curl.exe 'https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/
DynamoDBManager' -H 'Content-Type: application/json' -d '{\"operation\":
 \"create\", \"payload\": {\"Item\": {\"id\": \"5678EFGH\", \"number\": 15}}}'

If the operation was successful, you should see a response returned with an HTTP status code
of 200.

2. You can also use the DynamoDB console to verify that the new item is in your table by doing
the following:

1. Open the Tables page of the DynamoDB console and choose the lambda-apigateway
table.

2. Choose Explore table items. In the Items returned pane, you should see an item with the id
5678EFGH and the number 15.

To read the item in your DynamoDB table using curl

• Run the following curl command to read the value of the item you just created. Use your own
invoke URL.

Linux/macOS

curl https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/DynamoDBManager
 \
-H "Content-Type: application/json" \
-d '{"operation": "read", "payload": {"Key": {"id": "5678EFGH"}}}'

Tutorial 1283

https://console.aws.amazon.com/dynamodbv2#tables

AWS Lambda Developer Guide

PowerShell

curl.exe 'https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/
DynamoDBManager' -H 'Content-Type: application/json' -d '{\"operation\": \"read
\", \"payload\": {\"Key\": {\"id\": \"5678EFGH\"}}}'

You should see output like one of the following depending on whether you chose the Node.js
or Python function code:

Node.js

{"$metadata":
{"httpStatusCode":200,"requestId":"7BP3G5Q0C0O1E50FBQI9NS099JVV4KQNSO5AEMVJF66Q9ASUAAJG",
"attempts":1,"totalRetryDelay":0},"Item":{"id":"5678EFGH","number":15}}

Python

{"Item":{"id":"5678EFGH","number":15},"ResponseMetadata":
{"RequestId":"QNDJICE52E86B82VETR6RKBE5BVV4KQNSO5AEMVJF66Q9ASUAAJG",
"HTTPStatusCode":200,"HTTPHeaders":{"server":"Server","date":"Wed, 31 Jul 2024
 00:37:01 GMT","content-type":"application/x-amz-json-1.0",
"content-length":"52","connection":"keep-alive","x-amzn-
requestid":"QNDJICE52E86B82VETR6RKBE5BVV4KQNSO5AEMVJF66Q9ASUAAJG","x-amz-
crc32":"2589610852"},
"RetryAttempts":0}}

To update the item in your DynamoDB table using curl

1. Run the following curl command to update the item you just created by changing the
number value. Use your own invoke URL.

Linux/macOS

curl https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/DynamoDBManager
 \
-H "Content-Type: application/json" \

Tutorial 1284

AWS Lambda Developer Guide

-d '{"operation": "update", "payload": {"Key": {"id": "5678EFGH"},
 "UpdateExpression": "SET #num = :new_value", "ExpressionAttributeNames":
 {"#num": "number"}, "ExpressionAttributeValues": {":new_value": 42}}}'

PowerShell

curl.exe 'https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/
DynamoDBManager' -H 'Content-Type: application/json' -d '{\"operation\":
 \"update\", \"payload\": {\"Key\": {\"id\": \"5678EFGH\"}, \"UpdateExpression
\": \"SET #num = :new_value\", \"ExpressionAttributeNames\": {\"#num\": \"number
\"}, \"ExpressionAttributeValues\": {\":new_value\": 42}}}'

2. To confirm that the value of number for the item has been updated, run another read
command:

Linux/macOS

curl https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/DynamoDBManager
 \
-H "Content-Type: application/json" \
-d '{"operation": "read", "payload": {"Key": {"id": "5678EFGH"}}}'

PowerShell

curl.exe 'https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/
DynamoDBManager' -H 'Content-Type: application/json' -d '{\"operation\": \"read
\", \"payload\": {\"Key\": {\"id\": \"5678EFGH\"}}}'

To delete the item in your DynamoDB table using curl

1. Run the following curl command to delete the item you just created. Use your own invoke
URL.

Linux/macOS

curl https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/DynamoDBManager
 \
-H "Content-Type: application/json" \
-d '{"operation": "delete", "payload": {"Key": {"id": "5678EFGH"}}}'

Tutorial 1285

AWS Lambda Developer Guide

PowerShell

curl.exe 'https://l8togsqxd8.execute-api.us-east-2.amazonaws.com/test/
DynamoDBManager' -H 'Content-Type: application/json' -d '{\"operation\":
 \"delete\", \"payload\": {\"Key\": {\"id\": \"5678EFGH\"}}}'

2. Confirm that the delete operation was successful. In the Items returned pane of the
DynamoDB console Explore items page, verify that the item with id 5678EFGH is no longer in
the table.

Clean up your resources (optional)

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the API

1. Open the APIs page of the API Gateway console.

2. Select the API you created.

3. Choose Actions, Delete.

4. Choose Delete.

Tutorial 1286

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/apigateway/main/apis

AWS Lambda Developer Guide

To delete the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Select the table you created.

3. Choose Delete.

4. Enter delete in the text box.

5. Choose Delete table.

Handling Lambda errors with an API Gateway API

API Gateway treats all invocation and function errors as internal errors. If the Lambda API rejects
the invocation request, API Gateway returns a 500 error code. If the function runs but returns an
error, or returns a response in the wrong format, API Gateway returns a 502. In both cases, the
body of the response from API Gateway is {"message": "Internal server error"}.

Note

API Gateway does not retry any Lambda invocations. If Lambda returns an error, API
Gateway returns an error response to the client.

The following example shows an X-Ray trace map for a request that resulted in a function error and
a 502 from API Gateway. The client receives the generic error message.

To customize the error response, you must catch errors in your code and format a response in the
required format.

Example index.mjs – Error formatting

var formatError = function(error){
 var response = {

Errors 1287

https://console.aws.amazon.com/dynamodb/home#tables:
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig/function/index.mjs

AWS Lambda Developer Guide

 "statusCode": error.statusCode,
 "headers": {
 "Content-Type": "text/plain",
 "x-amzn-ErrorType": error.code
 },
 "isBase64Encoded": false,
 "body": error.code + ": " + error.message
 }
 return response
}

API Gateway converts this response into an HTTP error with a custom status code and body. In the
trace map, the function node is green because it handled the error.

Select a method to invoke your Lambda function using an HTTP
request

Many common use cases for Lambda involve invoking your function using an HTTP request. For
example, you might want a web application to invoke your function through a browser request.
Lambda functions can also be used to create full REST APIs, handle user interactions from mobile
apps, process data from external services via HTTP calls, or create custom webhooks.

The following sections explain what your choices are for invoking Lambda through HTTP and
provide information to help you make the right decision for your particular use case.

What are your choices when selecting an HTTP invoke method?

Lambda offers two main methods to invoke a function using an HTTP request - function URLs and
API Gateway. The key differences between these two options are as follows:

• Lambda function URLs provide a simple, direct HTTP endpoint for a Lambda function. They are
optimized for simplicity and cost-effectiveness and provide the fastest path to expose a Lambda
function via HTTP.

API Gateway vs function URLs 1288

AWS Lambda Developer Guide

• API Gateway is a more advanced service for building fully-featured APIs. API Gateway is
optimized for building and managing productions APIs at scale and provides comprehensive
tools for security, monitoring, and traffic management.

Recommendations if you already know your requirements

If you're already clear on your requirements, here are our basic recommendations:

We recommend function URLs for simple applications or prototyping where you only need basic
authentication methods and request/response handling and where you want to keep costs and
complexity to a minimum.

API Gateway is a better choice for production applications at scale or for cases where you need
more advanced features like OpenAPI Description support, a choice of authentication options,
custom domain names, or rich request/response handling including throttling, caching, and
request/response transformation.

What to consider when selecting a method to invoke your Lambda function

When selecting between function URLs and API Gateway, you need to consider the following
factors:

• Your authentication needs, such as whether you require OAuth or Amazon Cognito to
authenticate users

• Your scaling requirements and the complexity of the API you want to implement

• Whether you need advanced features such as request validation and request/response
formatting

• Your monitoring requirements

• Your cost goals

By understanding these factors, you can select the option that best balances your security,
complexity, and cost requirements.

The following information summarizes the main differences between the two options.

Authentication

• Function URLs provide basic authentication options through AWS Identity and Access
Management (IAM). You can configure your endpoints to be either public (no authentication) or

API Gateway vs function URLs 1289

https://www.openapis.org/

AWS Lambda Developer Guide

to require IAM authentication. With IAM authentication, you can use standard AWS credentials
or IAM roles to control access. While straightforward to set up, this approach provides limited
options compared with other authenticaton methods.

• API Gateway provides access to a more comprehensive range of authentication options. As
well as IAM authentication, you can use Lambda authorizers (custom authentication logic),
Amazon Cognito user pools, and OAuth2.0 flows. This flexibility allows you to implement
complex authentication schemes, including third-party authentication providers, token-based
authentication, and multi-factor authentication.

Request/response handling

• Function URLs provide basic HTTP request and response handling. They support standard HTTP
methods and include built-in cross-origin resource sharing (CORS) support. While they can
handle JSON payloads and query parameters naturally, they don't offer request transformation
or validation capabilities. Response handling is similarly straightforward – the client receives the
response from your Lambda function exactly as Lambda returns it.

• API Gateway provides sophisticated request and response handling capabilities. You can define
request validators, transform requests and responses using mapping templates, set up request/
response headers, and implement response caching. API Gateway also supports binary payloads
and custom domain names and can modify responses before they reach the client. You can set
up models for request/response validation and transformation using JSON Schema.

Scaling

• Function URLs scale directly with your Lambda function's concurrency limits and handle traffic
spikes by scaling your function up to its maximum configured concurrency limit. Once that limit
is reached, Lambda responds to additional requests with HTTP 429 responses. There's no built-
in queuing mechanism, so handling scaling is entirely dependent on your Lambda function's
configuration. By default, Lambda functions have a limit of 1,000 concurrent executions per AWS
Region.

• API Gateway provides additional scaling capabilities on top of Lambda's own scaling. It includes
built-in request queuing and throttling controls, allowing you to manage traffic spikes more
gracefully. API Gateway can handle up to 10,000 requests per second per region by default,
with a burst capacity of 5,000 requests per second. It also provides tools to throttle requests at
different levels (API, stage, or method) to protect your backend.

API Gateway vs function URLs 1290

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html

AWS Lambda Developer Guide

Monitoring

• Function URLs offer basic monitoring through Amazon CloudWatch metrics, including request
count, latency, and error rates. You get access to standard Lambda metrics and logs, which show
the raw requests coming into your function. While this provides essential operational visibility,
the metrics are focused mainly on function execution.

• API Gateway provides comprehensive monitoring capabilities including detailed metrics, logging,
and tracing options. You can monitor API calls, latency, error rates, and cache hit/miss rates
through CloudWatch. API Gateway also integrates with AWS X-Ray for distributed tracing and
provides customizable logging formats.

Cost

• Function URLs follow the standard Lambda pricing model – you only pay for function
invocations and compute time. There are no additional charges for the URL endpoint itself. This
makes it a cost-effective choice for simple APIs or low-traffic applications if you don't need the
additional features of API Gateway.

• API Gateway offers a free tier that includes one million API calls received for REST APIs and
one million API calls received for HTTP APIs. After this, API Gateway charges for API calls, data
transfer, and caching (if enabled). Refer to the API Gateway pricing page to understand the costs
for your own use case.

Other features

• Function URLs are designed for simplicity and direct Lambda integration. They support both
HTTP and HTTPS endpoints, offer built-in CORS support, and provide dual-stack (IPv4 and IPv6)
endpoints. While they lack advanced features, they excel in scenarios where you need a quick,
straightforward way to expose Lambda functions via HTTP.

• API Gateway includes numerous additional features such as API versioning, stage management,
API keys for usage plans, API documentation through Swagger/OpenAPI, WebSocket APIs,
private APIs within a VPC, and WAF integration for additional security. It also supports canary
deployments, mock integrations for testing, and integration with other AWS services beyond
Lambda.

API Gateway vs function URLs 1291

https://aws.amazon.com/api-gateway/pricing/#Free_Tier
https://aws.amazon.com/api-gateway/pricing/

AWS Lambda Developer Guide

Select a method to invoke your Lambda function

Now that you've read about the criteria for selecting between Lambda function URLs and API
Gateway and the key differences between them, you can select the option that best meets your
needs and use the following resources to help you get started using it.

Function URLs

Get started with function URLs with the following resources

• Follow the tutorial Creating a Lambda function with a function URL

• Learn more about function URLs in the the section called “Function URLs” chapter of this
guide

• Try the in-console guided tutorial Create a simple web app by doing the following:

1. Open the functions page of the Lambda console.

2. Open the help panel by choosing the icon in the top right corner of the screen.

3. Select Tutorials.

4. In Create a simple web app, choose Start tutorial.

API Gateway

Get started with Lambda and API Gateway with the following resources

• Follow the tutorial Using Lambda with API Gateway to create a REST API integrated with a
backend Lambda function.

• Learn more about the different kinds of API offered by API Gateway in the following sections
of the Amazon API Gateway Developer Guide:

• API Gateway REST APIs

API Gateway vs function URLs 1292

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html

AWS Lambda Developer Guide

• API Gateway HTTP APIs

• API Gateway WebSocket APIs

• Try one or more of the examples in the Tutorials and workshops section of the Amazon API
Gateway Developer Guide.

Using AWS Lambda with AWS Infrastructure Composer

AWS Infrastructure Composer is a visual builder for desiging modern applications on AWS. You
design your application architecture by dragging, grouping, and connecting AWS services in a visual
canvas. Infrastructure Composer creates infrastructure as code (IaC) templates from your design
that you can deploy using AWS SAM or AWS CloudFormation.

Exporting a Lambda function to Infrastructure Composer

You can get started using Infrastructure Composer by creating a new project based on the
configuration of an existing Lambda function using the Lambda console. To export your function's
configuration and code to Infrastructure Composer to create a new project, do the following:

1. Open the Functions page of the Lambda console.

2. Select the function you want to use as a basis for your Infrastructure Composer project.

3. In the Function overview pane, choose Export to Infrastructure Composer.

To export your function's configuration and code to Infrastructure Composer, Lambda creates
an Amazon S3 bucket in your account to temporarily store this data.

4. In the dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Infrastructure Composer.

5. (Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

6. To save your project and function files in Infrastructure Composer, activate local sync mode.

Infrastructure Composer 1293

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-tutorials.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html

AWS Lambda Developer Guide

Note

If you've used the Export to Application Composer feature before and created an Amazon
S3 bucket using the default name, Lambda can re-use this bucket if it still exists. Accept the
default bucket name in the dialog box to re-use the existing bucket.

Amazon S3 transfer bucket configuration

The Amazon S3 bucket that Lambda creates to transfer your function's configuration automatically
encrypts objects using the AES 256 encryption standard. Lambda also configures the bucket to
use the bucket owner condition to ensure that only your AWS account is able to add objects to the
bucket.

Lambda configures the bucket to automatically delete objects 10 days after they are uploaded.
However, Lambda doesn't automaticaly delete the bucket itself. To delete the bucket from your
AWS account, follow the instructions in Deleting a bucket. The default bucket name uses the prefix
lambdasam, a 10-digit alphanumeric string, and the AWS Region you created your function in:

lambdasam-06f22da95b-us-east-1

To avoid additional charges being added to your AWS account, we recommend that you delete
the Amazon S3 bucket as soon as you have finished exporting your function to Infrastructure
Composer.

Standard Amazon S3 pricing applies.

Required permissions

To use the Lambda integration with Infrastructure Composer feature, you need certain permissions
to download an AWS SAM template and to write your function's configuration to Amazon S3.

To download an AWS SAM template, you must have permission to use the following API actions:

• GetPolicy

• iam:GetPolicyVersion

• iam:GetRole

• iam:GetRolePolicy

Exporting a Lambda function to Infrastructure Composer 1294

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-owner-condition.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/lambda/latest/api/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRolePolicy.html

AWS Lambda Developer Guide

• iam:ListAttachedRolePolicies

• iam:ListRolePolicies

• iam:ListRoles

You can grant permission to use all of these actions by adding the AWSLambda_ReadOnlyAccess
AWS managed policy to your IAM user role.

For Lambda to write your function's configuration to Amazon S3, you must have permission to use
the following API actions:

• S3:PutObject

• S3:CreateBucket

• S3:PutBucketEncryption

• S3:PutBucketLifecycleConfiguration

If you are unable to export your function's configuration to Infrastructure Composer, check
that your account has the required permissions for these operations. If you have the required
permissions, but still cannot export your function's configuration, check for any resource-based
policies that might limit access to Amazon S3.

Other resources

For a more detailed tutorial on how to design a serverless application in Infrastructure Composer
based on an existing Lambda function, see the section called “Infrastructure as code (IaC)”.

To use Infrastructure Composer and AWS SAM to design and deploy a complete serverless
application using Lambda, you can also follow the AWS Infrastructure Composer tutorial in the
AWS Serverless Patterns Workshop.

Other resources 1295

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutBucketLifecycleConfiguration.html
https://catalog.workshops.aws/serverless-patterns/en-US/dive-deeper/module1a
https://catalog.workshops.aws/serverless-patterns/en-US

AWS Lambda Developer Guide

Using AWS Lambda with AWS CloudFormation

In an AWS CloudFormation template, you can specify a Lambda function as the target of a custom
resource. Use custom resources to process parameters, retrieve configuration values, or call other
AWS services during stack lifecycle events.

The following example invokes a function that's defined elsewhere in the template.

Example – Custom resource definition

Resources:
 primerinvoke:
 Type: AWS::CloudFormation::CustomResource
 Version: "1.0"
 Properties:
 ServiceToken: !GetAtt primer.Arn
 FunctionName: !Ref randomerror

The service token is the Amazon Resource Name (ARN) of the function that AWS CloudFormation
invokes when you create, update, or delete the stack. You can also include additional properties like
FunctionName, which AWS CloudFormation passes to your function as is.

AWS CloudFormation invokes your Lambda function asynchronously with an event that includes a
callback URL.

Example – AWS CloudFormation message event

{
 "RequestType": "Create",
 "ServiceToken": "arn:aws:lambda:us-east-1:123456789012:function:lambda-error-
processor-primer-14ROR2T3JKU66",
 "ResponseURL": "https://cloudformation-custom-resource-response-useast1.s3-us-
east-1.amazonaws.com/arn%3Aaws%3Acloudformation%3Aus-east-1%3A123456789012%3Astack/
lambda-error-processor/1134083a-2608-1e91-9897-022501a2c456%7Cprimerinvoke
%7C5d478078-13e9-baf0-464a-7ef285ecc786?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1555451971&Signature=28UijZePE5I4dvukKQqM
%2F9Rf1o4%3D",
 "StackId": "arn:aws:cloudformation:us-east-1:123456789012:stack/lambda-error-
processor/1134083a-2608-1e91-9897-022501a2c456",
 "RequestId": "5d478078-13e9-baf0-464a-7ef285ecc786",
 "LogicalResourceId": "primerinvoke",
 "ResourceType": "AWS::CloudFormation::CustomResource",

CloudFormation 1296

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html

AWS Lambda Developer Guide

 "ResourceProperties": {
 "ServiceToken": "arn:aws:lambda:us-east-1:123456789012:function:lambda-error-
processor-primer-14ROR2T3JKU66",
 "FunctionName": "lambda-error-processor-randomerror-ZWUC391MQAJK"
 }
}

The function is responsible for returning a response to the callback URL that indicates success or
failure. For the full response syntax, see Custom resource response objects.

Example – AWS CloudFormation custom resource response

{
 "Status": "SUCCESS",
 "PhysicalResourceId": "2019/04/18/[$LATEST]b3d1bfc65f19ec610654e4d9b9de47a0",
 "StackId": "arn:aws:cloudformation:us-east-1:123456789012:stack/lambda-error-
processor/1134083a-2608-1e91-9897-022501a2c456",
 "RequestId": "5d478078-13e9-baf0-464a-7ef285ecc786",
 "LogicalResourceId": "primerinvoke"
}

AWS CloudFormation provides a library called cfn-response that handles sending the
response. If you define your function within a template, you can require the library by name. AWS
CloudFormation then adds the library to the deployment package that it creates for the function.

If your function that a Custom Resource uses has an Elastic Network Interface attached to it, add
the following resources to the VPC policy where region is the Region the function is in without
the dashes. For example, us-east-1 is useast1. This will allow the Custom Resource to respond
to the callback URL that sends a signal back to the AWS CloudFormation stack.

arn:aws:s3:::cloudformation-custom-resource-response-region",
"arn:aws:s3:::cloudformation-custom-resource-response-region/*",

The following example function invokes a second function. If the call succeeds, the function sends
a success response to AWS CloudFormation, and the stack update continues. The template uses the
AWS::Serverless::Function resource type provided by AWS Serverless Application Model.

Example – Custom resource function

Transform: 'AWS::Serverless-2016-10-31'

CloudFormation 1297

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/crpg-ref-responses.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

Resources:
 primer:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs16.x
 InlineCode: |
 var aws = require('aws-sdk');
 var response = require('cfn-response');
 exports.handler = function(event, context) {
 // For Delete requests, immediately send a SUCCESS response.
 if (event.RequestType == "Delete") {
 response.send(event, context, "SUCCESS");
 return;
 }
 var responseStatus = "FAILED";
 var responseData = {};
 var functionName = event.ResourceProperties.FunctionName
 var lambda = new aws.Lambda();
 lambda.invoke({ FunctionName: functionName }, function(err, invokeResult) {
 if (err) {
 responseData = {Error: "Invoke call failed"};
 console.log(responseData.Error + ":\n", err);
 }
 else responseStatus = "SUCCESS";
 response.send(event, context, responseStatus, responseData);
 });
 };
 Description: Invoke a function to create a log stream.
 MemorySize: 128
 Timeout: 8
 Role: !GetAtt role.Arn
 Tracing: Active

If the function that the custom resource invokes isn't defined in a template, you can get the source
code for cfn-response from cfn-response module in the AWS CloudFormation User Guide.

For more information about custom resources, see Custom resources in the AWS CloudFormation
User Guide.

CloudFormation 1298

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-lambda-function-code-cfnresponsemodule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html

AWS Lambda Developer Guide

Process Amazon DocumentDB events with Lambda

You can use a Lambda function to process events in an Amazon DocumentDB (with MongoDB
compatibility) change stream by configuring an Amazon DocumentDB cluster as an event source.
Then, you can automate event-driven workloads by invoking your Lambda function each time that
data changes with your Amazon DocumentDB cluster.

Note

Lambda supports version 4.0 and 5.0 of Amazon DocumentDB only. Lambda doesn't
support version 3.6.
Also, for event source mappings, Lambda supports instance-based clusters and regional
clusters only. Lambda doesn't support elastic clusters or global clusters. This limitation
doesn't apply when using Lambda as a client to connect to Amazon DocumentDB. Lambda
can connect to all cluster types to perform CRUD operations.

Lambda processes events from Amazon DocumentDB change streams sequentially in the order in
which they arrive. Because of this, your function can handle only one concurrent invocation from
Amazon DocumentDB at a time. To monitor your function, you can track its concurrency metrics.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

Topics

• Example Amazon DocumentDB event

• Prerequisites and permissions

• Configure network security

• Creating an Amazon DocumentDB event source mapping (console)

• Creating an Amazon DocumentDB event source mapping (SDK or CLI)

• Polling and stream starting positions

Amazon DocumentDB 1299

https://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-concurrency.html
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

AWS Lambda Developer Guide

• Monitoring your Amazon DocumentDB event source

• Tutorial: Using AWS Lambda with Amazon DocumentDB Streams

Example Amazon DocumentDB event

{
 "eventSourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:canaryclusterb2a659a2-qo5tcmqkcl03",
 "events": [
 {
 "event": {
 "_id": {
 "_data": "0163eeb6e7000000090100000009000041e1"
 },
 "clusterTime": {
 "$timestamp": {
 "t": 1676588775,
 "i": 9
 }
 },
 "documentKey": {
 "_id": {
 "$oid": "63eeb6e7d418cd98afb1c1d7"
 }
 },
 "fullDocument": {
 "_id": {
 "$oid": "63eeb6e7d418cd98afb1c1d7"
 },
 "anyField": "sampleValue"
 },
 "ns": {
 "db": "test_database",
 "coll": "test_collection"
 },
 "operationType": "insert"
 }
 }
],
 "eventSource": "aws:docdb"
}

Example Amazon DocumentDB event 1300

AWS Lambda Developer Guide

For more information about the events in this example and their shapes, see Change Events on the
MongoDB Documentation website.

Prerequisites and permissions

Before you can use Amazon DocumentDB as an event source for your Lambda function, note the
following prerequisites. You must:

• Have an existing Amazon DocumentDB cluster in the same AWS account and AWS Region
as your function. If you don't have an existing cluster, you can create one by following the
steps in Get Started with Amazon DocumentDB in the Amazon DocumentDB Developer Guide.
Alternatively, the first set of steps in Tutorial: Using AWS Lambda with Amazon DocumentDB
Streams guide you through creating an Amazon DocumentDB cluster with all the necessary
prerequisites.

• Allow Lambda to access the Amazon Virtual Private Cloud (Amazon VPC) resources associated
with your Amazon DocumentDB cluster. For more information, see Configure network security.

• Enable TLS on your Amazon DocumentDB cluster. This is the default setting. If you disable TLS,
then Lambda cannot communicate with your cluster.

• Activate change streams on your Amazon DocumentDB cluster. For more information, see
Using Change Streams with Amazon DocumentDB in the Amazon DocumentDB Developer Guide.

• Provide Lambda with credentials to access your Amazon DocumentDB cluster. When setting
up the event source, provide the AWS Secrets Manager key that contains the authentication
details (username and password) required to access your cluster. To provide this key during setup,
do either of the following:

• If you're using the Lambda console for setup, then provide the key in the Secrets manager key
field.

• If you're using the AWS Command Line Interface (AWS CLI) for setup, then provide this key
in the source-access-configurations option. You can include this option with either
the create-event-source-mapping command or the update-event-source-mapping
command. For example:

aws lambda create-event-source-mapping \
 ...
 --source-access-configurations
 '[{"Type":"BASIC_AUTH","URI":"arn:aws:secretsmanager:us-
west-2:123456789012:secret:DocDBSecret-AbC4E6"}]' \
 ...

Prerequisites and permissions 1301

https://www.mongodb.com/docs/manual/reference/change-events/
https://docs.aws.amazon.com/documentdb/latest/developerguide/get-started-guide.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

• Grant Lambda permissions to manage resources related to your Amazon DocumentDB
stream. Manually add the following permissions to your function's execution role:

• rds:DescribeDBClusters

• rds:DescribeDBClusterParameters

• rds:DescribeDBSubnetGroups

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• kms:Decrypt

• secretsmanager:GetSecretValue

• Keep the size of Amazon DocumentDB change stream events that you send to Lambda
under 6 MB. Lambda supports payload sizes of up to 6 MB. If your change stream tries to
send Lambda an event larger than 6 MB, then Lambda drops the message and emits the
OversizedRecordCount metric. Lambda emits all metrics on a best-effort basis.

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

Configure network security

To give Lambda full access to Amazon DocumentDB through your event source mapping, either
your cluster must use a public endpoint (public IP address), or you must provide access to the
Amazon VPC you created the cluster in.

Configure network security 1302

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameters.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_DescribeDBSubnetGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html

AWS Lambda Developer Guide

When you use Amazon DocumentDB with Lambda, create AWS PrivateLink VPC endpoints that
provide your function access to the resources in your Amazon VPC.

Note

AWS PrivateLink VPC endpoints are required for functions with event source mappings that
use the default (on-demand) mode for event pollers. If your event source mapping uses
provisioned mode, you don't need to configure AWS PrivateLink VPC endpoints.

Create an endpoint to provide access to the following resources:

• Lambda — Create an endpoint for the Lambda service principal.

• AWS STS — Create an endpoint for the AWS STS in order for a service principal to assume a role
on your behalf.

• Secrets Manager — If your cluster uses Secrets Manager to store credentials, create an endpoint
for Secrets Manager.

Alternatively, configure a NAT gateway on each public subnet in the Amazon VPC. For more
information, see the section called “Internet access for VPC functions”.

When you create an event source mapping for Amazon DocumentDB, Lambda checks whether
Elastic Network Interfaces (ENIs) are already present for the subnets and security groups
configured for your Amazon VPC. If Lambda finds existing ENIs, it attempts to re-use them.
Otherwise, Lambda creates new ENIs to connect to the event source and invoke your function.

Note

Lambda functions always run inside VPCs owned by the Lambda service. Your function's
VPC configuration does not affect the event source mapping. Only the networking
configuration of the event source's determines how Lambda connects to your event source.

Configure the security groups for the Amazon VPC containing your cluster. By default, Amazon
DocumentDB uses the following ports: 27017.

Configure network security 1303

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

AWS Lambda Developer Guide

• Inbound rules – Allow all traffic on the default broker port for the security group associated
with your event source. Alternatively, you can use a self-referencing security group rule to allow
access from instances within the same security group.

• Outbound rules – Allow all traffic on port 443 for external destinations if your function needs to
communicate with AWS services. Alternatively, you can also use a self-referencing security group
rule to limit access to the broker if you don't need to communicate with other AWS services.

• Amazon VPC endpoint inbound rules — If you are using an Amazon VPC endpoint, the security
group associated with your Amazon VPC endpoint must allow inbound traffic on port 443 from
the cluster security group.

If your cluster uses authentication, you can also restrict the endpoint policy for the Secrets
Manager endpoint. To call the Secrets Manager API, Lambda uses your function role, not the
Lambda service principal.

Example VPC endpoint policy — Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws::iam::123456789012:role/my-role"
]
 },
 "Resource": "arn:aws::secretsmanager:us-west-2:123456789012:secret:my-
secret"
 }
]
 }

When you use Amazon VPC endpoints, AWS routes your API calls to invoke your function using
the endpoint's Elastic Network Interface (ENI). The Lambda service principal needs to call
lambda:InvokeFunction on any roles and functions that use those ENIs.

By default, Amazon VPC endpoints have open IAM policies that allow broad access to resources.
Best practice is to restrict these policies to perform the needed actions using that endpoint.
To ensure that your event source mapping is able to invoke your Lambda function, the VPC

Configure network security 1304

AWS Lambda Developer Guide

endpoint policy must allow the Lambda service principal to call sts:AssumeRole and
lambda:InvokeFunction. Restricting your VPC endpoint policies to allow only API calls
originating within your organization prevents the event source mapping from functioning properly,
so "Resource": "*" is required in these policies.

The following example VPC endpoint policies show how to grant the required access to the
Lambda service principal for the AWS STS and Lambda endpoints.

Example VPC Endpoint policy — AWS STS endpoint

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
 }

Example VPC Endpoint policy — Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
 }

Configure network security 1305

AWS Lambda Developer Guide

Creating an Amazon DocumentDB event source mapping (console)

For a Lambda function to read from an Amazon DocumentDB cluster's change stream, create an
event source mapping. This section describes how to do this from the Lambda console. For AWS
SDK and AWS CLI instructions, see the section called “Creating an Amazon DocumentDB event
source mapping (SDK or CLI)”.

To create an Amazon DocumentDB event source mapping (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, in the dropdown list, choose DocumentDB.

5. Configure the required options, and then choose Add.

Lambda supports the following options for Amazon DocumentDB event sources:

• DocumentDB cluster – Select an Amazon DocumentDB cluster.

• Activate trigger – Choose whether you want to activate the trigger immediately. If you select
this check box, then your function immediately starts receiving traffic from the specified Amazon
DocumentDB change stream upon creation of the event source mapping. We recommend that
you clear the check box to create the event source mapping in a deactivated state for testing.
After creation, you can activate the event source mapping at any time.

• Database name – Enter the name of a database within the cluster to consume.

• (Optional) Collection name – Enter the name of a collection within the database to consume.
If you don't specify a collection, then Lambda listens to all events from each collection in the
database.

• Batch size – Set the maximum number of messages to retrieve in a single batch, up to 10,000.
The default batch size is 100.

• Starting position – Choose the position in the stream to start reading records from.

• Latest – Process only new records that are added to the stream. Your function starts
processing records only after Lambda finishes creating your event source. This means that
some records may be dropped until your event source is created successfully.

• Trim horizon – Process all records in the stream. Lambda uses the log retention duration of
your cluster to determine where to start reading events from. Specifically, Lambda starts

Creating an Amazon DocumentDB event source mapping (console) 1306

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

reading from current_time - log_retention_duration. Your change stream must
already be active before this timestamp for Lambda to read all events properly.

• At timestamp – Process records starting from a specific time. Your change stream must
already be active before the specified timestamp for Lambda to read all events properly.

• Authentication – Choose the authentication method for accessing the brokers in your cluster.

• BASIC_AUTH – With basic authentication, you must provide the Secrets Manager key that
contains the credentials to access your cluster.

• Secrets Manager key – Choose the Secrets Manager key that contains the authentication details
(username and password) required to access your Amazon DocumentDB cluster.

• (Optional) Batch window – Set the maximum amount of time in seconds to gather records
before invoking your function, up to 300.

• (Optional) Full document configuration – For document update operations, choose what you
want to send to the stream. The default value is Default, which means that for each change
stream event, Amazon DocumentDB sends only a delta describing the changes made. For more
information about this field, see FullDocument in the MongoDB Javadoc API documentation.

• Default – Lambda sends only a partial document describing the changes made.

• UpdateLookup – Lambda sends a delta describing the changes, along with a copy of the entire
document.

Creating an Amazon DocumentDB event source mapping (SDK or CLI)

To create or manage an Amazon DocumentDB event source mapping with an AWS SDK, you can
use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

To create the event source mapping with the AWS CLI, use the create-event-source-mapping
command. The following example uses this command to map a function named my-function
to an Amazon DocumentDB change stream. The event source is specified by an Amazon Resource
Name (ARN), with a batch size of 500, starting from the timestamp in Unix time. The command

Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1307

https://mongodb.github.io/mongo-java-driver/3.9/javadoc/com/mongodb/client/model/changestream/FullDocument.html#DEFAULT
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

AWS Lambda Developer Guide

also specifies the Secrets Manager key that Lambda uses to connect to Amazon DocumentDB.
Additionally, it includes document-db-event-source-config parameters that specify the
database and the collection to read from.

aws lambda create-event-source-mapping --function-name my-function \
 --event-source-arn arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy
 --batch-size 500 \
 --starting-position AT_TIMESTAMP \
 --starting-position-timestamp 1541139109 \
 --source-access-configurations
 '[{"Type":"BASIC_AUTH","URI":"arn:aws:secretsmanager:us-
east-1:123456789012:secret:DocDBSecret-BAtjxi"}]' \
 --document-db-event-source-config '{"DatabaseName":"test_database",
 "CollectionName": "test_collection"}' \

You should see output that looks like this:

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "BatchSize": 500,
 "DocumentDBEventSourceConfig": {
 "CollectionName": "test_collection",
 "DatabaseName": "test_database",
 "FullDocument": "Default"
 },
 "MaximumBatchingWindowInSeconds": 0,
 "EventSourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541348195.412,
 "LastProcessingResult": "No records processed",
 "State": "Creating",
 "StateTransitionReason": "User action"
}

After creation, you can use the update-event-source-mapping command to update the
settings for your Amazon DocumentDB event source. The following example updates the batch size
to 1,000 and the batch window to 10 seconds. For this command, you need the UUID of your event
source mapping, which you can retrieve using the list-event-source-mapping command or
the Lambda console.

Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1308

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

aws lambda update-event-source-mapping --function-name my-function \
 --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
 --batch-size 1000 \
 --batch-window 10

You should see this output that looks like this:

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "BatchSize": 500,
 "DocumentDBEventSourceConfig": {
 "CollectionName": "test_collection",
 "DatabaseName": "test_database",
 "FullDocument": "Default"
 },
 "MaximumBatchingWindowInSeconds": 0,
 "EventSourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541359182.919,
 "LastProcessingResult": "OK",
 "State": "Updating",
 "StateTransitionReason": "User action"
}

Lambda updates settings asynchronously, so you may not see these changes in the output until
the process completes. To view the current settings of your event source mapping, use the get-
event-source-mapping command.

aws lambda get-event-source-mapping --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b

You should see this output that looks like this:

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "DocumentDBEventSourceConfig": {
 "CollectionName": "test_collection",
 "DatabaseName": "test_database",
 "FullDocument": "Default"
 },
 "BatchSize": 1000,

Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1309

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html

AWS Lambda Developer Guide

 "MaximumBatchingWindowInSeconds": 10,
 "EventSourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541359182.919,
 "LastProcessingResult": "OK",
 "State": "Enabled",
 "StateTransitionReason": "User action"
}

To delete your Amazon DocumentDB event source mapping, use the delete-event-source-
mapping command.

aws lambda delete-event-source-mapping \
 --uuid 2b733gdc-8ac3-cdf5-af3a-1827b3b11284

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Monitoring your Amazon DocumentDB event source

To help you monitor your Amazon DocumentDB event source, Lambda emits the IteratorAge
metric when your function finishes processing a batch of records. Iterator age is the difference
between the timestamp of the most recent event and the current timestamp. Essentially, the
IteratorAge metric indicates how old the last processed record in the batch is. If your function is
currently processing new events, then you can use the iterator age to estimate the latency between
when a record is added and when your function processes it. An increasing trend in IteratorAge

Polling and stream starting positions 1310

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-event-source-mapping.html

AWS Lambda Developer Guide

can indicate issues with your function. For more information, see Using CloudWatch metrics with
Lambda.

Amazon DocumentDB change streams aren't optimized to handle large time gaps between events.
If your Amazon DocumentDB event source doesn't receive any events for an extended period of
time, Lambda may disable the event source mapping. The length of this time period can vary from
a few weeks to a few months depending on cluster size and other workloads.

Lambda supports payloads of up to 6 MB. However, Amazon DocumentDB change stream events
can be up to 16 MB in size. If your change stream tries to send Lambda a change stream event
larger than 6 MB, then Lambda drops the message and emits the OversizedRecordCount metric.
Lambda emits all metrics on a best-effort basis.

Tutorial: Using AWS Lambda with Amazon DocumentDB Streams

In this tutorial, you create a basic Lambda function that consumes events from an Amazon
DocumentDB (with MongoDB compatibility) change stream. To complete this tutorial, you will go
through the following stages:

• Set up your Amazon DocumentDB cluster, connect to it, and activate change streams on it.

• Create your Lambda function, and configure your Amazon DocumentDB cluster as an event
source for your function.

• Test the setup by inserting items into your Amazon DocumentDB database.

Create the Amazon DocumentDB cluster

1. Open the Amazon DocumentDB console. Under Clusters, choose Create.

2. Create a cluster with the following configuration:

• For Cluster type, choose Instance-based cluster. This is the default option.

• Under Cluster configuration, make sure that Engine version 5.0.0 is selected. This is the
default option.

• Under Instance configuration:

• For DB instance class, select Memory optimized classes. This is the default option.

• For Number of regular replica instances, choose 1.

• For Instance class, use the default selection.

Tutorial 1311

https://console.aws.amazon.com/docdb/home#

AWS Lambda Developer Guide

• Under Authentication, enter a username for the primary user, and then choose Self
managed. Enter a password, then confirm it.

• Keep all other default settings.

3. Choose Create cluster.

Create the secret in Secrets Manager

While Amazon DocumentDB is creating your cluster, create an AWS Secrets Manager secret to store
your database credentials. You'll provide this secret when you create the Lambda event source
mapping in a later step.

To create the secret in Secrets Manager

1. Open the Secrets Manager console and choose Store a new secret.

2. For Choose secret type, choose the following options:

• Under Basic details:

• Secret type: Credentials for your Amazon DocumentDB database

• Under Credentials, enter the same username and password that you used to create your
Amazon DocumentDB cluster.

• Database: Choose your Amazon DocumentDB cluster.

• Choose Next.

3. For Configure secret, choose the following options:

• Secret name: DocumentDBSecret

• Choose Next.

4. Choose Next.

5. Choose Store.

6. Refresh the console to verify that you successfully stored the DocumentDBSecret secret.

Note the Secret ARN. You’ll need it in a later step.

Tutorial 1312

https://console.aws.amazon.com/secretsmanager/home#

AWS Lambda Developer Guide

Connect to the cluster

Connect to your Amazon DocumentDB cluster using AWS CloudShell

1. On the Amazon DocumentDB management console, under Clusters, locate the cluster you
created. Choose your cluster by clicking the check box next to it.

2. Choose Connect to cluster. The CloudShell Run command screen appears.

3. In the New environment name field, enter a unique name, such as "test" and choose Create
and run.

4. When prompted, enter your password. When the prompt becomes rs0 [direct: primary]
<env-name>>, you are successfully connected to your Amazon DocumentDB cluster.

Activate change streams

For this tutorial, you’ll track changes to the products collection of the docdbdemo database in
your Amazon DocumentDB cluster. You do this by activating change streams.

To create a new database within your cluster

1. Run the following command to create a new database called docdbdemo:

use docdbdemo

2. In the terminal window, use the following command to insert a record into docdbdemo:

db.products.insertOne({"hello":"world"})

You should see an output like this:

{
 acknowledged: true,
 insertedId: ObjectId('67f85066ca526410fd531d59')
}

3. Next, activate change streams on the products collection of the docdbdemo database using
the following command:

db.adminCommand({modifyChangeStreams: 1,
 database: "docdbdemo",

Tutorial 1313

https://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html

AWS Lambda Developer Guide

 collection: "products",
 enable: true});

You should see output that looks like this:

{ "ok" : 1, "operationTime" : Timestamp(1680126165, 1) }

Create interface VPC endpoints

Next, create interface VPC endpoints to ensure that Lambda and Secrets Manager (used later to
store our cluster access credentials) can connect to your default VPC.

To create interface VPC endpoints

1. Open the VPC console. In the left menu, under Virtual private cloud, choose Endpoints.

2. Choose Create endpoint. Create an endpoint with the following configuration:

• For Name tag, enter lambda-default-vpc.

• For Service category, choose AWS services.

• For Services, enter lambda in the search box. Choose the service with format
com.amazonaws.<region>.lambda.

• For VPC, choose the VPC that your Amazon DocumentDB cluster is in. This is typically the
default VPC.

• For Subnets, check the boxes next to each availability zone. Choose the correct subnet ID for
each availability zone.

• For IP address type, select IPv4.

• For Security groups, choose the security group that your Amazon DocumentDB cluster uses.
This is typically the default security group.

• Keep all other default settings.

• Choose Create endpoint.

3. Again, choose Create endpoint. Create an endpoint with the following configuration:

• For Name tag, enter secretsmanager-default-vpc.

• For Service category, choose AWS services.

Tutorial 1314

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://console.aws.amazon.com/vpc/home#
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

AWS Lambda Developer Guide

• For Services, enter secretsmanager in the search box. Choose the service with format
com.amazonaws.<region>.secretsmanager.

• For VPC, choose the VPC that your Amazon DocumentDB cluster is in. This is typically the
default VPC.

• For Subnets, check the boxes next to each availability zone. Choose the correct subnet ID for
each availability zone.

• For IP address type, select IPv4.

• For Security groups, choose the security group that your Amazon DocumentDB cluster uses.
This is typically the default security group.

• Keep all other default settings.

• Choose Create endpoint.

This completes the cluster setup portion of this tutorial.

Create the execution role

In the next set of steps, you’ll create your Lambda function. First, you need to create the execution
role that gives your function permission to access your cluster. You do this by creating an IAM
policy first, then attaching this policy to an IAM role.

To create IAM policy

1. Open the Policies page in the IAM console and choose Create policy.

2. Choose the JSON tab. In the following policy, replace the Secrets Manager resource ARN in
the final line of the statement with your secret ARN from earlier, and copy the policy into the
editor.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LambdaESMNetworkingAccess",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",

Tutorial 1315

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://console.aws.amazon.com/iam/home#/policies

AWS Lambda Developer Guide

 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "LambdaDocDBESMAccess",
 "Effect": "Allow",
 "Action": [
 "rds:DescribeDBClusters",
 "rds:DescribeDBClusterParameters",
 "rds:DescribeDBSubnetGroups"
],
 "Resource": "*"
 },
 {
 "Sid": "LambdaDocDBESMGetSecretValueAccess",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:DocumentDBSecret"
 }
]
}

3. Choose Next: Tags, then choose Next: Review.

4. For Name, enter AWSDocumentDBLambdaPolicy.

5. Choose Create policy.

To create the IAM role

1. Open the Roles page in the IAM console and choose Create role.

2. For Select trusted entity, choose the following options:

• Trusted entity type: AWS service

Tutorial 1316

https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

• Service or use case: Lambda

• Choose Next.

3. For Add permissions, choose the AWSDocumentDBLambdaPolicy policy you just created, as
well as the AWSLambdaBasicExecutionRole to give your function permissions to write to
Amazon CloudWatch Logs.

4. Choose Next.

5. For Role name, enter AWSDocumentDBLambdaExecutionRole.

6. Choose Create role.

Create the Lambda function

This tutorial uses the Python 3.13 runtime, but we’ve also provided example code files for other
runtimes. You can select the tab in the following box to see the code for the runtime you’re
interested in.

The code receives an Amazon DocumentDB event input and processes the message that it contains.

To create the Lambda function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Choose Author from scratch

4. Under Basic information, do the following:

a. For Function name, enter ProcessDocumentDBRecords

b. For Runtime, choose Python 3.13.

c. For Architecture, choose x86_64.

5. In the Change default execution role tab, do the following:

a. Expand the tab, then choose Use an existing role.

b. Select the AWSDocumentDBLambdaExecutionRole you created earlier.

6. Choose Create function.

Tutorial 1317

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To deploy the function code

1. Choose the Python tab in the following box and copy the code.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using .NET.

using Amazon.Lambda.Core;
using System.Text.Json;
using System;
using System.Collections.Generic;
using System.Text.Json.Serialization;
//Assembly attribute to enable the Lambda function's JSON input to be
 converted into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaDocDb;

public class Function
{

 /// <summary>
 /// Lambda function entry point to process Amazon DocumentDB events.
 /// </summary>
 /// <param name="event">The Amazon DocumentDB event.</param>
 /// <param name="context">The Lambda context object.</param>
 /// <returns>A string to indicate successful processing.</returns>
 public string FunctionHandler(Event evnt, ILambdaContext context)
 {

 foreach (var record in evnt.Events)
 {

Tutorial 1318

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

 ProcessDocumentDBEvent(record, context);
 }

 return "OK";
 }

 private void ProcessDocumentDBEvent(DocumentDBEventRecord record,
 ILambdaContext context)
 {

 var eventData = record.Event;
 var operationType = eventData.OperationType;
 var databaseName = eventData.Ns.Db;
 var collectionName = eventData.Ns.Coll;
 var fullDocument = JsonSerializer.Serialize(eventData.FullDocument,
 new JsonSerializerOptions { WriteIndented = true });

 context.Logger.LogLine($"Operation type: {operationType}");
 context.Logger.LogLine($"Database: {databaseName}");
 context.Logger.LogLine($"Collection: {collectionName}");
 context.Logger.LogLine($"Full document:\n{fullDocument}");
 }

 public class Event
 {
 [JsonPropertyName("eventSourceArn")]
 public string EventSourceArn { get; set; }

 [JsonPropertyName("events")]
 public List<DocumentDBEventRecord> Events { get; set; }

 [JsonPropertyName("eventSource")]
 public string EventSource { get; set; }
 }

 public class DocumentDBEventRecord
 {
 [JsonPropertyName("event")]
 public EventData Event { get; set; }
 }

 public class EventData

Tutorial 1319

AWS Lambda Developer Guide

 {
 [JsonPropertyName("_id")]
 public IdData Id { get; set; }

 [JsonPropertyName("clusterTime")]
 public ClusterTime ClusterTime { get; set; }

 [JsonPropertyName("documentKey")]
 public DocumentKey DocumentKey { get; set; }

 [JsonPropertyName("fullDocument")]
 public Dictionary<string, object> FullDocument { get; set; }

 [JsonPropertyName("ns")]
 public Namespace Ns { get; set; }

 [JsonPropertyName("operationType")]
 public string OperationType { get; set; }
 }

 public class IdData
 {
 [JsonPropertyName("_data")]
 public string Data { get; set; }
 }

 public class ClusterTime
 {
 [JsonPropertyName("$timestamp")]
 public Timestamp Timestamp { get; set; }
 }

 public class Timestamp
 {
 [JsonPropertyName("t")]
 public long T { get; set; }

 [JsonPropertyName("i")]
 public int I { get; set; }
 }

 public class DocumentKey
 {
 [JsonPropertyName("_id")]

Tutorial 1320

AWS Lambda Developer Guide

 public Id Id { get; set; }
 }

 public class Id
 {
 [JsonPropertyName("$oid")]
 public string Oid { get; set; }
 }

 public class Namespace
 {
 [JsonPropertyName("db")]
 public string Db { get; set; }

 [JsonPropertyName("coll")]
 public string Coll { get; set; }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Go.

package main

import (
 "context"
 "encoding/json"
 "fmt"

 "github.com/aws/aws-lambda-go/lambda"

Tutorial 1321

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

)

type Event struct {
 Events []Record `json:"events"`
}

type Record struct {
 Event struct {
 OperationType string `json:"operationType"`
 NS struct {
 DB string `json:"db"`
 Coll string `json:"coll"`
 } `json:"ns"`
 FullDocument interface{} `json:"fullDocument"`
 } `json:"event"`
}

func main() {
 lambda.Start(handler)
}

func handler(ctx context.Context, event Event) (string, error) {
 fmt.Println("Loading function")
 for _, record := range event.Events {
 logDocumentDBEvent(record)
 }

 return "OK", nil
}

func logDocumentDBEvent(record Record) {
 fmt.Printf("Operation type: %s\n", record.Event.OperationType)
 fmt.Printf("db: %s\n", record.Event.NS.DB)
 fmt.Printf("collection: %s\n", record.Event.NS.Coll)
 docBytes, _ := json.MarshalIndent(record.Event.FullDocument, "", " ")
 fmt.Printf("Full document: %s\n", string(docBytes))
}

Tutorial 1322

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Java.

import java.util.List;
import java.util.Map;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class Example implements RequestHandler<Map<String, Object>, String> {

 @SuppressWarnings("unchecked")
 @Override
 public String handleRequest(Map<String, Object> event, Context context) {
 List<Map<String, Object>> events = (List<Map<String, Object>>)
 event.get("events");
 for (Map<String, Object> record : events) {
 Map<String, Object> eventData = (Map<String, Object>)
 record.get("event");
 processEventData(eventData);
 }

 return "OK";
 }

 @SuppressWarnings("unchecked")
 private void processEventData(Map<String, Object> eventData) {
 String operationType = (String) eventData.get("operationType");
 System.out.println("operationType: %s".formatted(operationType));

 Map<String, Object> ns = (Map<String, Object>) eventData.get("ns");

Tutorial 1323

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

 String db = (String) ns.get("db");
 System.out.println("db: %s".formatted(db));
 String coll = (String) ns.get("coll");
 System.out.println("coll: %s".formatted(coll));

 Map<String, Object> fullDocument = (Map<String, Object>)
 eventData.get("fullDocument");
 System.out.println("fullDocument: %s".formatted(fullDocument));
 }

}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using JavaScript.

console.log('Loading function');
exports.handler = async (event, context) => {
 event.events.forEach(record => {
 logDocumentDBEvent(record);
 });
 return 'OK';
};

const logDocumentDBEvent = (record) => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument,
 null, 2));
};

Tutorial 1324

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

Consuming a Amazon DocumentDB event with Lambda using TypeScript

import { DocumentDBEventRecord, DocumentDBEventSubscriptionContext } from
 'aws-lambda';

console.log('Loading function');

export const handler = async (
 event: DocumentDBEventSubscriptionContext,
 context: any
): Promise<string> => {
 event.events.forEach((record: DocumentDBEventRecord) => {
 logDocumentDBEvent(record);
 });
 return 'OK';
};

const logDocumentDBEvent = (record: DocumentDBEventRecord): void => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument,
 null, 2));
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using PHP.

Tutorial 1325

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

<?php

require __DIR__.'/vendor/autoload.php';

use Bref\Context\Context;
use Bref\Event\Handler;

class DocumentDBEventHandler implements Handler
{
 public function handle($event, Context $context): string
 {

 $events = $event['events'] ?? [];
 foreach ($events as $record) {
 $this->logDocumentDBEvent($record['event']);
 }
 return 'OK';
 }

 private function logDocumentDBEvent($event): void
 {
 // Extract information from the event record

 $operationType = $event['operationType'] ?? 'Unknown';
 $db = $event['ns']['db'] ?? 'Unknown';
 $collection = $event['ns']['coll'] ?? 'Unknown';
 $fullDocument = $event['fullDocument'] ?? [];

 // Log the event details

 echo "Operation type: $operationType\n";
 echo "Database: $db\n";
 echo "Collection: $collection\n";
 echo "Full document: " . json_encode($fullDocument,
 JSON_PRETTY_PRINT) . "\n";
 }
}
return new DocumentDBEventHandler();

Tutorial 1326

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Python.

import json

def lambda_handler(event, context):
 for record in event.get('events', []):
 log_document_db_event(record)
 return 'OK'

def log_document_db_event(record):
 event_data = record.get('event', {})
 operation_type = event_data.get('operationType', 'Unknown')
 db = event_data.get('ns', {}).get('db', 'Unknown')
 collection = event_data.get('ns', {}).get('coll', 'Unknown')
 full_document = event_data.get('fullDocument', {})

 print(f"Operation type: {operation_type}")
 print(f"db: {db}")
 print(f"collection: {collection}")
 print("Full document:", json.dumps(full_document, indent=2))

Tutorial 1327

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Ruby.

require 'json'

def lambda_handler(event:, context:)
 event['events'].each do |record|
 log_document_db_event(record)
 end
 'OK'
end

def log_document_db_event(record)
 event_data = record['event'] || {}
 operation_type = event_data['operationType'] || 'Unknown'
 db = event_data.dig('ns', 'db') || 'Unknown'
 collection = event_data.dig('ns', 'coll') || 'Unknown'
 full_document = event_data['fullDocument'] || {}

 puts "Operation type: #{operation_type}"
 puts "db: #{db}"
 puts "collection: #{collection}"
 puts "Full document: #{JSON.pretty_generate(full_document)}"
end

Tutorial 1328

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Rust.

use lambda_runtime::{service_fn, tracing, Error, LambdaEvent};
use aws_lambda_events::{
 event::documentdb::{DocumentDbEvent, DocumentDbInnerEvent},
 };

// Built with the following dependencies:
//lambda_runtime = "0.11.1"
//serde_json = "1.0"
//tokio = { version = "1", features = ["macros"] }
//tracing = { version = "0.1", features = ["log"] }
//tracing-subscriber = { version = "0.3", default-features = false, features
 = ["fmt"] }
//aws_lambda_events = "0.15.0"

async fn function_handler(event: LambdaEvent<DocumentDbEvent>) ->Result<(),
 Error> {

 tracing::info!("Event Source ARN: {:?}", event.payload.event_source_arn);
 tracing::info!("Event Source: {:?}", event.payload.event_source);

 let records = &event.payload.events;

 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

Tutorial 1329

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

 for record in records{
 log_document_db_event(record);
 }

 tracing::info!("Document db records processed");

 // Prepare the response
 Ok(())

}

fn log_document_db_event(record: &DocumentDbInnerEvent)-> Result<(), Error>{
 tracing::info!("Change Event: {:?}", record.event);

 Ok(())

}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 let func = service_fn(function_handler);
 lambda_runtime::run(func).await?;
 Ok(())

}

2. In the Code source pane on the Lambda console, paste the code into the code editor, replacing
the code that Lambda created.

3. In the DEPLOY section, choose Deploy to update your function's code:

Tutorial 1330

AWS Lambda Developer Guide

Create the Lambda event source mapping

Create the event source mapping that associates your Amazon DocumentDB change stream with
your Lambda function. After you create this event source mapping, AWS Lambda immediately
starts polling the stream.

To create the event source mapping

1. Open the Functions page in the Lambda console.

2. Choose the ProcessDocumentDBRecords function you created earlier.

3. Choose the Configurationtab, then choose Triggers in the left menu.

4. Choose Add trigger.

5. Under Trigger configuration, for the source, select Amazon DocumentDB.

6. Create the event source mapping with the following configuration:

• Amazon DocumentDB cluster: Choose the cluster you created earlier.

• Database name: docdbdemo

• Collection name: products

• Batch size: 1

• Starting position: Latest

• Authentication: BASIC_AUTH

• Secrets Manager key: Choose the secret for your Amazon DocumentDB cluster. It will be
called something like rds!cluster-12345678-a6f0-52c0-b290-db4aga89274f.

• Batch window: 1

• Full document configuration: UpdateLookup

7. Choose Add. Creating your event source mapping can take a few minutes.

Tutorial 1331

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Test your function

Wait for the event source mapping to reach the Enabled state. This can take several minutes. Then,
test the end-to-end setup by inserting, updating, and deleting database records. Before you begin:

1. Reconnect to your Amazon DocumentDB cluster in your CloudShell environment.

2. Run the following command to ensure that you’re using the docdbdemo database:

use docdbdemo

Insert a record

Insert a record into the products collection of the docdbdemo database:

db.products.insertOne({"name":"Pencil", "price": 1.00})

Verify that your function successfully processed this event by checking CloudWatch Logs. You
should see a log entry like this:

Tutorial 1332

AWS Lambda Developer Guide

Update a record

Update the record you just inserted with the following command:

db.products.updateOne(
 { "name": "Pencil" },
 { $set: { "price": 0.50 }}
)

Verify that your function successfully processed this event by checking CloudWatch Logs. You
should see a log entry like this:

Delete a record

Delete the record that you just updated with the following command:

db.products.deleteOne({ "name": "Pencil" })

Verify that your function successfully processed this event by checking CloudWatch Logs. You
should see a log entry like this:

Tutorial 1333

AWS Lambda Developer Guide

Troubleshooting

If you don't see any database events in your function's CloudWatch logs, check the following:

• Make sure that the Lambda event source mapping (also known as a trigger) is in the Enabled
state. Event source mappings can take several minutes to create.

• If the event source mapping is Enabled but you still don't see database events in CloudWatch:

• Make sure that the Database name in the event source mapping is set to docdbdemo.

• Check the event source mapping Last processing result field for the following message
"PROBLEM: Connection error. Your VPC must be able to connect to Lambda and STS, as well as
Secrets Manager if authentication is required." If you see this error, make sure that you created
the Lambda and Secrets Manager VPC interface endpoints, and that the endpoints use the
same VPC and subnets that your Amazon DocumentDB cluster uses.

Tutorial 1334

AWS Lambda Developer Guide

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

Tutorial 1335

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

To delete the VPC endpoints

1. Open the VPC console. In the left menu, under Virtual private cloud, choose Endpoints.

2. Select the endpoints you created.

3. Choose Actions, Delete VPC endpoints.

4. Enter delete in the text input field.

5. Choose Delete.

To delete the Amazon DocumentDB cluster

1. Open the Amazon DocumentDB console.

2. Choose the Amazon DocumentDB cluster you created for this tutorial, and disable deletion
protection.

3. In the main Clusters page, choose your Amazon DocumentDB cluster again.

4. Choose Actions, Delete.

5. For Create final cluster snapshot, select No.

6. Enter delete in the text input field.

7. Choose Delete.

To delete the secret in Secrets Manager

1. Open the Secrets Manager console.

2. Choose the secret you created for this tutorial.

3. Choose Actions, Delete secret.

4. Choose Schedule deletion.

Tutorial 1336

https://console.aws.amazon.com/vpc/home#
https://console.aws.amazon.com/docdb/home#
https://console.aws.amazon.com/secretsmanager/home#

AWS Lambda Developer Guide

Using AWS Lambda with Amazon DynamoDB

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

You can use an AWS Lambda function to process records in an Amazon DynamoDB stream. With
DynamoDB Streams, you can trigger a Lambda function to perform additional work each time a
DynamoDB table is updated.

Topics

• Polling and batching streams

• Polling and stream starting positions

• Simultaneous readers of a shard in DynamoDB Streams

• Example event

• Process DynamoDB records with Lambda

• Configuring partial batch response with DynamoDB and Lambda

• Retain discarded records for a DynamoDB event source in Lambda

• Implementing stateful DynamoDB stream processing in Lambda

• Lambda parameters for Amazon DynamoDB event source mappings

• Using event filtering with a DynamoDB event source

• Tutorial: Using AWS Lambda with Amazon DynamoDB streams

Polling and batching streams

Lambda polls shards in your DynamoDB stream for records at a base rate of 4 times per second.
When records are available, Lambda invokes your function and waits for the result. If processing
succeeds, Lambda resumes polling until it receives more records.

By default, Lambda invokes your function as soon as records are available. If the batch that
Lambda reads from the event source has only one record in it, Lambda sends only one record to
the function. To avoid invoking the function with a small number of records, you can tell the event

DynamoDB 1337

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

AWS Lambda Developer Guide

source to buffer records for up to 5 minutes by configuring a batching window. Before invoking the
function, Lambda continues to read records from the event source until it has gathered a full batch,
the batching window expires, or the batch reaches the payload limit of 6 MB. For more information,
see Batching behavior.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

Lambda doesn't wait for any configured extensions to complete before sending the next batch
for processing. In other words, your extensions may continue to run as Lambda processes the next
batch of records. This can cause throttling issues if you breach any of your account's concurrency
settings or limits. To detect whether this is a potential issue, monitor your functions and check
whether you're seeing higher concurrency metrics than expected for your event source mapping.
Due to short times in between invokes, Lambda may briefly report higher concurrency usage than
the number of shards. This can be true even for Lambda functions without extensions.

Configure the ParallelizationFactor setting to process one shard of a DynamoDB stream with more
than one Lambda invocation simultaneously. You can specify the number of concurrent batches
that Lambda polls from a shard via a parallelization factor from 1 (default) to 10. For example,
when you set ParallelizationFactor to 2, you can have 200 concurrent Lambda invocations
at maximum to process 100 DynamoDB stream shards (though in practice, you may see different
values for the ConcurrentExecutions metric). This helps scale up the processing throughput
when the data volume is volatile and the IteratorAge is high. When you increase the number of
concurrent batches per shard, Lambda still ensures in-order processing at the item (partition and
sort key) level.

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

Polling and stream starting positions 1338

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-ParallelizationFactor

AWS Lambda Developer Guide

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON.

Simultaneous readers of a shard in DynamoDB Streams

For single-Region tables that are not global tables, you can design for up to two Lambda functions
to read from the same DynamoDB Streams shard at the same time. Exceeding this limit can result
in request throttling. For global tables, we recommend you limit the number of simultaneous
functions to one to avoid request throttling.

Example event

Example

{
 "Records": [
 {
 "eventID": "1",
 "eventVersion": "1.0",
 "dynamodb": {
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "NewImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES",
 "SequenceNumber": "111",
 "SizeBytes": 26
 },

Simultaneous readers 1339

AWS Lambda Developer Guide

 "awsRegion": "us-west-2",
 "eventName": "INSERT",
 "eventSourceARN": "arn:aws:dynamodb:us-east-2:123456789012:table/my-table/
stream/2024-06-10T19:26:16.525",
 "eventSource": "aws:dynamodb"
 },
 {
 "eventID": "2",
 "eventVersion": "1.0",
 "dynamodb": {
 "OldImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "SequenceNumber": "222",
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "SizeBytes": 59,
 "NewImage": {
 "Message": {
 "S": "This item has changed"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "awsRegion": "us-west-2",
 "eventName": "MODIFY",
 "eventSourceARN": "arn:aws:dynamodb:us-east-2:123456789012:table/my-table/
stream/2024-06-10T19:26:16.525",
 "eventSource": "aws:dynamodb"
 }
]}

Example event 1340

AWS Lambda Developer Guide

Process DynamoDB records with Lambda

Create an event source mapping to tell Lambda to send records from your stream to a Lambda
function. You can create multiple event source mappings to process the same data with multiple
Lambda functions, or to process items from multiple streams with a single function.

To configure your function to read from DynamoDB Streams, attach the
AWSLambdaDynamoDBExecutionRole AWS managed policy to your execution role and then create
a DynamoDB trigger.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Attach policies.

6. In the search field, enter AWSLambdaDynamoDBExecutionRole. Add this policy to your
execution role. This is an AWS managed policy that contains the permissions your function
needs to read from the DynamoDB stream. For more information about this policy, see
AWSLambdaDynamoDBExecutionRole in the AWS Managed Policy Reference.

7. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

Create mapping 1341

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html

AWS Lambda Developer Guide

8. Choose a trigger type.

9. Configure the required options, and then choose Add.

Lambda supports the following options for DynamoDB event sources:

Event source options

• DynamoDB table – The DynamoDB table to read records from.

• Batch size – The number of records to send to the function in each batch, up to 10,000. Lambda
passes all of the records in the batch to the function in a single call, as long as the total size of
the events doesn't exceed the payload limit for synchronous invocation (6 MB).

• Batch window – Specify the maximum amount of time to gather records before invoking the
function, in seconds.

• Starting position – Process only new records, or all existing records.

• Latest – Process new records that are added to the stream.

• Trim horizon – Process all records in the stream.

After processing any existing records, the function is caught up and continues to process new
records.

• On-failure destination – A standard SQS queue or standard SNS topic for records that can't be
processed. When Lambda discards a batch of records that's too old or has exhausted all retries,
Lambda sends details about the batch to the queue or topic.

• Retry attempts – The maximum number of times that Lambda retries when the function returns
an error. This doesn't apply to service errors or throttles where the batch didn't reach the
function.

• Maximum age of record – The maximum age of a record that Lambda sends to your function.

• Split batch on error – When the function returns an error, split the batch into two before
retrying. Your original batch size setting remains unchanged.

Create mapping 1342

AWS Lambda Developer Guide

• Concurrent batches per shard – Concurrently process multiple batches from the same shard.

• Enabled – Set to true to enable the event source mapping. Set to false to stop processing
records. Lambda keeps track of the last record processed and resumes processing from that point
when the mapping is reenabled.

Note

You are not charged for GetRecords API calls invoked by Lambda as part of DynamoDB
triggers.

To manage the event source configuration later, choose the trigger in the designer.

Configuring partial batch response with DynamoDB and Lambda

When consuming and processing streaming data from an event source, by default Lambda
checkpoints to the highest sequence number of a batch only when the batch is a complete
success. Lambda treats all other results as a complete failure and retries processing the batch up
to the retry limit. To allow for partial successes while processing batches from a stream, turn on
ReportBatchItemFailures. Allowing partial successes can help to reduce the number of retries
on a record, though it doesn’t entirely prevent the possibility of retries in a successful record.

To turn on ReportBatchItemFailures, include the enum value ReportBatchItemFailures
in the FunctionResponseTypes list. This list indicates which response types are enabled for your
function. You can configure this list when you create or update an event source mapping.

Note

Even when your function code returns partial batch failure responses, these responses will
not be processed by Lambda unless the ReportBatchItemFailures feature is explicitly
turned on for your event source mapping.

Report syntax

When configuring reporting on batch item failures, the StreamsEventResponse class is returned
with a list of batch item failures. You can use a StreamsEventResponse object to return the

Batch item failures 1343

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-FunctionResponseTypes
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

sequence number of the first failed record in the batch. You can also create your own custom class
using the correct response syntax. The following JSON structure shows the required response
syntax:

{
 "batchItemFailures": [
 {
 "itemIdentifier": "<SequenceNumber>"
 }
]
}

Note

If the batchItemFailures array contains multiple items, Lambda uses the record with
the lowest sequence number as the checkpoint. Lambda then retries all records starting
from that checkpoint.

Success and failure conditions

Lambda treats a batch as a complete success if you return any of the following:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

Lambda treats a batch as a complete failure if you return any of the following:

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

Lambda retries failures based on your retry strategy.

Batch item failures 1344

AWS Lambda Developer Guide

Bisecting a batch

If your invocation fails and BisectBatchOnFunctionError is turned on, the batch is bisected
regardless of your ReportBatchItemFailures setting.

When a partial batch success response is received and both BisectBatchOnFunctionError
and ReportBatchItemFailures are turned on, the batch is bisected at the returned sequence
number and Lambda retries only the remaining records.

Here are some examples of function code that return the list of failed message IDs in the batch:

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public StreamsEventResponse FunctionHandler(DynamoDBEvent dynamoEvent,
 ILambdaContext context)

Batch item failures 1345

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");
 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>();
 StreamsEventResponse streamsEventResponse = new StreamsEventResponse();

 foreach (var record in dynamoEvent.Records)
 {
 try
 {
 var sequenceNumber = record.Dynamodb.SequenceNumber;
 context.Logger.LogInformation(sequenceNumber);
 }
 catch (Exception ex)
 {
 context.Logger.LogError(ex.Message);
 batchItemFailures.Add(new StreamsEventResponse.BatchItemFailure()
 { ItemIdentifier = record.Dynamodb.SequenceNumber });
 }
 }

 if (batchItemFailures.Count > 0)
 {
 streamsEventResponse.BatchItemFailures = batchItemFailures;
 }

 context.Logger.LogInformation("Stream processing complete.");
 return streamsEventResponse;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Batch item failures 1346

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Reporting DynamoDB batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

type BatchItemFailure struct {
 ItemIdentifier string `json:"ItemIdentifier"`
}

type BatchResult struct {
 BatchItemFailures []BatchItemFailure `json:"BatchItemFailures"`
}

func HandleRequest(ctx context.Context, event events.DynamoDBEvent)
 (*BatchResult, error) {
 var batchItemFailures []BatchItemFailure
 curRecordSequenceNumber := ""

 for _, record := range event.Records {
 // Process your record
 curRecordSequenceNumber = record.Change.SequenceNumber
 }

 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, BatchItemFailure{ItemIdentifier:
 curRecordSequenceNumber})
 }

 batchResult := BatchResult{
 BatchItemFailures: batchItemFailures,
 }

 return &batchResult, nil
}

func main() {
 lambda.Start(HandleRequest)

Batch item failures 1347

AWS Lambda Developer Guide

}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;
import com.amazonaws.services.lambda.runtime.events.models.dynamodb.StreamRecord;

import java.util.ArrayList;
import java.util.List;

public class ProcessDynamodbRecords implements RequestHandler<DynamodbEvent,
 StreamsEventResponse> {

 @Override
 public StreamsEventResponse handleRequest(DynamodbEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (DynamodbEvent.DynamodbStreamRecord dynamodbStreamRecord :
 input.getRecords()) {
 try {
 //Process your record
 StreamRecord dynamodbRecord = dynamodbStreamRecord.getDynamodb();

Batch item failures 1348

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 curRecordSequenceNumber = dynamodbRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse();
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using JavaScript.

export const handler = async (event) => {
 const records = event.Records;
 let curRecordSequenceNumber = "";

 for (const record of records) {
 try {
 // Process your record
 curRecordSequenceNumber = record.dynamodb.SequenceNumber;
 } catch (e) {
 // Return failed record's sequence number
 return { batchItemFailures: [{ itemIdentifier:
 curRecordSequenceNumber }] };

Batch item failures 1349

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 }
 }

 return { batchItemFailures: [] };
};

Reporting DynamoDB batch item failures with Lambda using TypeScript.

import {
 DynamoDBBatchResponse,
 DynamoDBBatchItemFailure,
 DynamoDBStreamEvent,
} from "aws-lambda";

export const handler = async (
 event: DynamoDBStreamEvent
): Promise<DynamoDBBatchResponse> => {
 const batchItemFailures: DynamoDBBatchItemFailure[] = [];
 let curRecordSequenceNumber;

 for (const record of event.Records) {
 curRecordSequenceNumber = record.dynamodb?.SequenceNumber;

 if (curRecordSequenceNumber) {
 batchItemFailures.push({
 itemIdentifier: curRecordSequenceNumber,
 });
 }
 }

 return { batchItemFailures: batchItemFailures };
};

Batch item failures 1350

AWS Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using PHP.

<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\DynamoDb\DynamoDbEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array
 {
 $dynamoDbEvent = new DynamoDbEvent($event);
 $this->logger->info("Processing records");

 $records = $dynamoDbEvent->getRecords();
 $failedRecords = [];
 foreach ($records as $record) {

Batch item failures 1351

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(
 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Batch item failures 1352

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["dynamodb"]["SequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Ruby.

def lambda_handler(event:, context:)
 records = event["Records"]
 cur_record_sequence_number = ""

 records.each do |record|
 begin
 # Process your record
 cur_record_sequence_number = record["dynamodb"]["SequenceNumber"]
 rescue StandardError => e
 # Return failed record's sequence number
 return {"batchItemFailures" => [{"itemIdentifier" =>
 cur_record_sequence_number}]}
 end

Batch item failures 1353

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 end

 {"batchItemFailures" => []}
 end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Rust.

use aws_lambda_events::{
 event::dynamodb::{Event, EventRecord, StreamRecord},
 streams::{DynamoDbBatchItemFailure, DynamoDbEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Process the stream record
fn process_record(record: &EventRecord) -> Result<(), Error> {
 let stream_record: &StreamRecord = &record.change;

 // process your stream record here...
 tracing::info!("Data: {:?}", stream_record);

 Ok(())
}

/// Main Lambda handler here...
async fn function_handler(event: LambdaEvent<Event>) ->
 Result<DynamoDbEventResponse, Error> {
 let mut response = DynamoDbEventResponse {
 batch_item_failures: vec![],
 };

 let records = &event.payload.records;

Batch item failures 1354

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in records {
 tracing::info!("EventId: {}", record.event_id);

 // Couldn't find a sequence number
 if record.change.sequence_number.is_none() {
 response.batch_item_failures.push(DynamoDbBatchItemFailure {
 item_identifier: Some("".to_string()),
 });
 return Ok(response);
 }

 // Process your record here...
 if process_record(record).is_err() {
 response.batch_item_failures.push(DynamoDbBatchItemFailure {
 item_identifier: record.change.sequence_number.clone(),
 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

 tracing::info!("Successfully processed {} record(s)", records.len());

 Ok(response)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

Batch item failures 1355

AWS Lambda Developer Guide

 run(service_fn(function_handler)).await
}

Retain discarded records for a DynamoDB event source in Lambda

Error handling for DynamoDB event source mappings depends on whether the error occurs before
the function is invoked or during function invocation:

• Before invocation: If a Lambda event source mapping is unable to invoke the function due
to throttling or other issues, it retries until the records expire or exceed the maximum age
configured on the event source mapping (MaximumRecordAgeInSeconds).

• During invocation: If the function is invoked but returns an error, Lambda retries until the
records expire, exceed the maximum age (MaximumRecordAgeInSeconds), or reach the
configured retry quota (MaximumRetryAttempts). For function errors, you can also configure
BisectBatchOnFunctionError, which splits a failed batch into two smaller batches, isolating bad
records and avoiding timeouts. Splitting batches doesn't consume the retry quota.

If the error handling measures fail, Lambda discards the records and continues processing batches
from the stream. With the default settings, this means that a bad record can block processing on
the affected shard for up to one day. To avoid this, configure your function's event source mapping
with a reasonable number of retries and a maximum record age that fits your use case.

Configuring destinations for failed invocations

To retain records of failed event source mapping invocations, add a destination to your function's
event source mapping. Each record sent to the destination is a JSON document containing
metadata about the failed invocation. For Amazon S3 destinations, Lambda also sends the entire
invocation record along with the metadata. You can configure any Amazon SNS topic, Amazon SQS
queue, or S3 bucket as a destination.

With Amazon S3 destinations, you can use the Amazon S3 Event Notifications feature to receive
notifications when objects are uploaded to your destination S3 bucket. You can also configure S3
Event Notifications to invoke another Lambda function to perform automated processing on failed
batches.

Your execution role must have permissions for the destination:

Error handling 1356

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRecordAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRecordAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRetryAttempts
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-response-BisectBatchOnFunctionError
https://docs.aws.amazon.com/

AWS Lambda Developer Guide

• For SQS destinations: sqs:SendMessage

• For SNS destinations: sns:Publish

• For S3 bucket destinations: s3:PutObject and s3:ListBucket

If you've enabled encryption with your own KMS key for an S3 destination, your function's
execution role must also have permission to call kms:GenerateDataKey. If the KMS key and S3
bucket destination are in a different account from your Lambda function and execution role,
configure the KMS key to trust the execution role to allow kms:GenerateDataKey.

To configure an on-failure destination using the console, follow these steps:

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Event source mapping invocation.

5. For Event source mapping, choose an event source that's configured for this function.

6. For Condition, select On failure. For event source mapping invocations, this is the only
accepted condition.

7. For Destination type, choose the destination type that Lambda sends invocation records to.

8. For Destination, choose a resource.

9. Choose Save.

You can also configure an on-failure destination using the AWS Command Line Interface (AWS CLI).
For example, the following create-event-source-mapping command adds an event source mapping
with an SQS on-failure destination to MyFunction:

aws lambda create-event-source-mapping \
--function-name "MyFunction" \
--event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table/
stream/2024-06-10T19:26:16.525 \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sqs:us-
east-1:123456789012:dest-queue"}}'

The following update-event-source-mapping command updates an event source mapping to send
failed invocation records to an SNS destination after two retry attempts, or if the records are more
than an hour old.

Error handling 1357

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ListObjectsV2.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--maximum-retry-attempts 2 \
--maximum-record-age-in-seconds 3600 \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sns:us-
east-1:123456789012:dest-topic"}}'

Updated settings are applied asynchronously and aren't reflected in the output until the process
completes. Use the get-event-source-mapping command to view the current status.

To remove a destination, supply an empty string as the argument to the destination-config
parameter:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": ""}}'

Security best practices for Amazon S3 destinations

Deleting an S3 bucket that's configured as a destination without removing the destination from
your function's configuration can create a security risk. If another user knows your destination
bucket's name, they can recreate the bucket in their AWS account. Records of failed invocations will
be sent to their bucket, potentially exposing data from your function.

Warning

To ensure that invocation records from your function can't be sent to an S3 bucket
in another AWS account, add a condition to your function's execution role that limits
s3:PutObject permissions to buckets in your account.

The following example shows an IAM policy that limits your function's s3:PutObject permissions
to buckets in your account. This policy also gives Lambda the s3:ListBucket permission it needs
to use an S3 bucket as a destination.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3BucketResourceAccountWrite",

Error handling 1358

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html

AWS Lambda Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*/*",
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEquals": {
 "s3:ResourceAccount": "111122223333"
 }
 }
 }
]
}

To add a permissions policy to your funcion's execution role using the AWS Management Console
or AWS CLI, refer to the instructions in the following procedures:

Console

To add a permissions policy to a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Select the Lambda function whose execution role you want to modify.

3. In the Configuration tab, select Permissions.

4. In the Execution role tab, select your function's Role name to open the role's IAM console
page.

5. Add a permissions policy to the role by doing the following:

a. In the Permissions policies pane, choose Add permissions and select Create inline
policy.

b. In Policy editor, select JSON.

c. Paste the policy you want to add into the editor (replacing the existing JSON), and
then choose Next.

d. Under Policy details, enter a Policy name.

e. Choose Create policy.

Error handling 1359

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

AWS CLI

To add a permissions policy to a function's execution role (CLI)

1. Create a JSON policy document with the required permissions and save it in a local
directory.

2. Use the IAM put-role-policy CLI command to add the permissions to your function's
execution role. Run the following command from the directory you saved your JSON policy
document in and replace the role name, policy name, and policy document with your own
values.

aws iam put-role-policy \
--role-name my_lambda_role \
--policy-name LambdaS3DestinationPolicy \
--policy-document file://my_policy.json

Example Amazon SNS and Amazon SQS invocation record

The following example shows an invocation record Lambda sends to an SQS or SNS destination for
a DynamoDB stream.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:13:49.717Z",
 "DDBStreamBatchInfo": {
 "shardId": "shardId-00000001573689847184-864758bb",
 "startSequenceNumber": "800000000003126276362",
 "endSequenceNumber": "800000000003126276362",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:13:19Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:13:19Z",

Error handling 1360

AWS Lambda Developer Guide

 "batchSize": 1,
 "streamArn": "arn:aws:dynamodb:us-east-2:123456789012:table/mytable/
stream/2019-11-14T00:04:06.388"
 }
}

You can use this information to retrieve the affected records from the stream for troubleshooting.
The actual records aren't included, so you must process this record and retrieve them from the
stream before they expire and are lost.

Example Amazon S3 invocation record

The following example shows an invocation record Lambda sends to an S3 bucket for a DynamoDB
stream. In addition to all of the fields from the previous example for SQS and SNS destinations, the
payload field contains the original invocation record as an escaped JSON string.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:13:49.717Z",
 "DDBStreamBatchInfo": {
 "shardId": "shardId-00000001573689847184-864758bb",
 "startSequenceNumber": "800000000003126276362",
 "endSequenceNumber": "800000000003126276362",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:13:19Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:13:19Z",
 "batchSize": 1,
 "streamArn": "arn:aws:dynamodb:us-east-2:123456789012:table/mytable/
stream/2019-11-14T00:04:06.388"
 },
 "payload": "<Whole Event>" // Only available in S3
}

Error handling 1361

AWS Lambda Developer Guide

The S3 object containing the invocation record uses the following naming convention:

aws/lambda/<ESM-UUID>/<shardID>/YYYY/MM/DD/YYYY-MM-DDTHH.MM.SS-<Random UUID>

Implementing stateful DynamoDB stream processing in Lambda

Lambda functions can run continuous stream processing applications. A stream represents
unbounded data that flows continuously through your application. To analyze information from
this continuously updating input, you can bound the included records using a window defined in
terms of time.

Tumbling windows are distinct time windows that open and close at regular intervals. By default,
Lambda invocations are stateless—you cannot use them for processing data across multiple
continuous invocations without an external database. However, with tumbling windows, you can
maintain your state across invocations. This state contains the aggregate result of the messages
previously processed for the current window. Your state can be a maximum of 1 MB per shard. If it
exceeds that size, Lambda terminates the window early.

Each record in a stream belongs to a specific window. Lambda will process each record at least
once, but doesn't guarantee that each record will be processed only once. In rare cases, such as
error handling, some records might be processed more than once. Records are always processed in
order the first time. If records are processed more than once, they might be processed out of order.

Aggregation and processing

Your user managed function is invoked both for aggregation and for processing the final results
of that aggregation. Lambda aggregates all records received in the window. You can receive these
records in multiple batches, each as a separate invocation. Each invocation receives a state. Thus,
when using tumbling windows, your Lambda function response must contain a state property.
If the response does not contain a state property, Lambda considers this a failed invocation. To
satisfy this condition, your function can return a TimeWindowEventResponse object, which has
the following JSON shape:

Example TimeWindowEventResponse values

{
 "state": {
 "1": 282,
 "2": 715
 },

Stateful processing 1362

AWS Lambda Developer Guide

 "batchItemFailures": []
}

Note

For Java functions, we recommend using a Map<String, String> to represent the state.

At the end of the window, the flag isFinalInvokeForWindow is set to true to indicate that this
is the final state and that it’s ready for processing. After processing, the window completes and
your final invocation completes, and then the state is dropped.

At the end of your window, Lambda uses final processing for actions on the aggregation results.
Your final processing is synchronously invoked. After successful invocation, your function
checkpoints the sequence number and stream processing continues. If invocation is unsuccessful,
your Lambda function suspends further processing until a successful invocation.

Example DynamodbTimeWindowEvent

{
 "Records":[
 {
 "eventID":"1",
 "eventName":"INSERT",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },

Stateful processing 1363

AWS Lambda Developer Guide

 "SequenceNumber":"111",
 "SizeBytes":26,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"2",
 "eventName":"MODIFY",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"222",
 "SizeBytes":59,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"3",
 "eventName":"REMOVE",
 "eventVersion":"1.0",

Stateful processing 1364

AWS Lambda Developer Guide

 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"333",
 "SizeBytes":38,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 }
],
 "window": {
 "start": "2020-07-30T17:00:00Z",
 "end": "2020-07-30T17:05:00Z"
 },
 "state": {
 "1": "state1"
 },
 "shardId": "shard123456789",
 "eventSourceARN": "stream-ARN",
 "isFinalInvokeForWindow": false,
 "isWindowTerminatedEarly": false
}

Configuration

You can configure tumbling windows when you create or update an event source mapping. To
configure a tumbling window, specify the window in seconds (TumblingWindowInSeconds). The
following example AWS Command Line Interface (AWS CLI) command creates a streaming event
source mapping that has a tumbling window of 120 seconds. The Lambda function defined for
aggregation and processing is named tumbling-window-example-function.

Stateful processing 1365

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-TumblingWindowInSeconds

AWS Lambda Developer Guide

aws lambda create-event-source-mapping \
--event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table/
stream/2024-06-10T19:26:16.525 \
--function-name tumbling-window-example-function \
--starting-position TRIM_HORIZON \
--tumbling-window-in-seconds 120

Lambda determines tumbling window boundaries based on the time when records were inserted
into the stream. All records have an approximate timestamp available that Lambda uses in
boundary determinations.

Tumbling window aggregations do not support resharding. When the shard ends, Lambda
considers the window closed, and the child shards start their own window in a fresh state.

Tumbling windows fully support the existing retry policies maxRetryAttempts and
maxRecordAge.

Example Handler.py – Aggregation and processing

The following Python function demonstrates how to aggregate and then process your final state:

def lambda_handler(event, context):
 print('Incoming event: ', event)
 print('Incoming state: ', event['state'])

#Check if this is the end of the window to either aggregate or process.
 if event['isFinalInvokeForWindow']:
 # logic to handle final state of the window
 print('Destination invoke')
 else:
 print('Aggregate invoke')

#Check for early terminations
 if event['isWindowTerminatedEarly']:
 print('Window terminated early')

 #Aggregation logic
 state = event['state']
 for record in event['Records']:
 state[record['dynamodb']['NewImage']['Id']] = state.get(record['dynamodb']
['NewImage']['Id'], 0) + 1

 print('Returning state: ', state)

Stateful processing 1366

AWS Lambda Developer Guide

 return {'state': state}

Lambda parameters for Amazon DynamoDB event source mappings

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
DynamoDB Streams.

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

BisectBatchOnFunct
ionError

N false none

DestinationConfig N N/A Standard Amazon
SQS queue or
standard Amazon
SNS topic destination
for discarded records

Enabled N true none

EventSourceArn Y N/A ARN of the data
stream or a stream
consumer

FilterCriteria N N/A Control which events
Lambda sends to
your function

FunctionName Y N/A none

FunctionResponseTy
pes

N N/A To let your function
report specific
failures in a batch,
include the value
ReportBat
chItemFailures

Parameters 1367

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Parameter Required Default Notes

in FunctionR
esponseTypes .
For more informati
on, see Configuri
ng partial batch
response with
DynamoDB and
Lambda.

MaximumBa
tchingWindowInSeco
nds

N 0 none

MaximumRe
cordAgeInSeconds

N -1 -1 means infinite:
failed records are
retried until the
record expires. The
data retention limit
for DynamoDB
Streams is 24 hours.

Minimum: -1

Maximum: 604,800

MaximumRe
tryAttempts

N -1 -1 means infinite:
failed records are
retried until the
record expires

Minimum: 0

Maximum: 10,000

ParallelizationFactor N 1 Maximum: 10

Parameters 1368

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html#Streams.DataRetention
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html#Streams.DataRetention
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html#Streams.DataRetention

AWS Lambda Developer Guide

Parameter Required Default Notes

StartingPosition Y N/A TRIM_HORIZON or
LATEST

TumblingWindowInSe
conds

N N/A Minimum: 0

Maximum: 900

Using event filtering with a DynamoDB event source

You can use event filtering to control which records from a stream or queue Lambda sends to your
function. For general information about how event filtering works, see the section called “Event
filtering”.

This section focuses on event filtering for DynamoDB event sources.

Note

DynamoDB event source mappings only support filtering on the dynamodb key.

Topics

• DynamoDB event

• Filtering with table attributes

• Filtering with Boolean expressions

• Using the Exists operator

• JSON format for DynamoDB filtering

DynamoDB event

Suppose you have a DynamoDB table with the primary key CustomerName and attributes
AccountManager and PaymentTerms. The following shows an example record from your
DynamoDB table’s stream.

{
 "eventID": "1",

Event filtering 1369

AWS Lambda Developer Guide

 "eventVersion": "1.0",
 "dynamodb": {
 "ApproximateCreationDateTime": "1678831218.0",
 "Keys": {
 "CustomerName": {
 "S": "AnyCompany Industries"
 }
 },
 "NewImage": {
 "AccountManager": {
 "S": "Pat Candella"
 },
 "PaymentTerms": {
 "S": "60 days"
 },
 "CustomerName": {
 "S": "AnyCompany Industries"
 }
 },
 "SequenceNumber": "111",
 "SizeBytes": 26,
 "StreamViewType": "NEW_IMAGE"
 }
 }

To filter based on the key and attribute values in your DynamoDB table, use the dynamodb key in
the record. The following sections provide examples for different filter types.

Filtering with table keys

Suppose you want your function to process only those records where the primary key
CustomerName is “AnyCompany Industries.” The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\" : { \"Keys\" : { \"CustomerName\" : { \"S\" :
 [\"AnyCompany Industries\"] } } } }"
 }
]
 }

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

Event filtering 1370

AWS Lambda Developer Guide

{
 "dynamodb": {
 "Keys": {
 "CustomerName": {
 "S": ["AnyCompany Industries"]
 }
 }
 }
 }

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "dynamodb" : { "Keys" : { "CustomerName" : { "S" : ["AnyCompany
 Industries"] } } } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"Keys\" :
 { \"CustomerName\" : { \"S\" : [\"AnyCompany Industries\"] } } } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"Keys\" :
 { \"CustomerName\" : { \"S\" : [\"AnyCompany Industries\"] } } } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

Event filtering 1371

AWS Lambda Developer Guide

FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb" : { "Keys" : { "CustomerName" : { "S" : ["AnyCompany
 Industries"] } } } }'

Filtering with table attributes

With DynamoDB, you can also use the NewImage and OldImage keys to filter for attribute values.
Suppose you want to filter records where the AccountManager attribute in the latest table image
is “Pat Candella” or "Shirley Rodriguez." The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\" : { \"NewImage\" : { \"AccountManager\" : { \"S
\" : [\"Pat Candella\", \"Shirley Rodriguez\"] } } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb": {
 "NewImage": {
 "AccountManager": {
 "S": ["Pat Candella", "Shirley Rodriguez"]
 }
 }
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

Event filtering 1372

AWS Lambda Developer Guide

{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat Candella",
 "Shirley Rodriguez"] } } } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\", \"Shirley Rodriguez
\"] } } } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\", \"Shirley Rodriguez
\"] } } } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat
 Candella", "Shirley Rodriguez"] } } } }'

Filtering with Boolean expressions

You can also create filters using Boolean AND expressions. These expressions can include both
your table's key and attribute parameters. Suppose you want to filter records where the NewImage
value of AccountManager is "Pat Candella" and the OldImage value is "Terry Whitlock". The
FilterCriteria object would be as follows.

Event filtering 1373

AWS Lambda Developer Guide

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\" : { \"NewImage\" : { \"AccountManager\" : { \"S
\" : [\"Pat Candella\"] } } } , \"dynamodb\" : { \"OldImage\" : { \"AccountManager
\" : { \"S\" : [\"Terry Whitlock\"] } } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb" : {
 "NewImage" : {
 "AccountManager" : {
 "S" : [
 "Pat Candella"
]
 }
 }
 },
 "dynamodb": {
 "OldImage": {
 "AccountManager": {
 "S": [
 "Terry Whitlock"
]
 }
 }
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

Event filtering 1374

AWS Lambda Developer Guide

{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat
 Candella"] } } } , "dynamodb" : { "OldImage" : { "AccountManager" : { "S" :
 ["Terry Whitlock"] } } } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\"] } } } , \"dynamodb\" :
 { \"OldImage\" : { \"AccountManager\" : { \"S\" : [\"Terry Whitlock\"] } } } }
 "}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\"] } } } , \"dynamodb\" :
 { \"OldImage\" : { \"AccountManager\" : { \"S\" : [\"Terry Whitlock\"] } } } }
 "}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat
 Candella"] } } } , "dynamodb" : { "OldImage" : { "AccountManager" : { "S" :
 ["Terry Whitlock"] } } } }'

Event filtering 1375

AWS Lambda Developer Guide

Note

DynamoDB event filtering doesn’t support the use of numeric operators (numeric equals
and numeric range). Even if items in your table are stored as numbers, these parameters are
converted to strings in the JSON record object.

Using the Exists operator

Because of the way that JSON event objects from DynamoDB are structured, using the Exists
operator requires special care. The Exists operator only works on leaf nodes in the event JSON,
so if your filter pattern uses Exists to test for an intermediate node, it won't work. Consider the
following DynamoDB table item:

{
 "UserID": {"S": "12345"},
 "Name": {"S": "John Doe"},
 "Organizations": {"L": [
 {"S":"Sales"},
 {"S":"Marketing"},
 {"S":"Support"}
]
 }
}

You might want to create a filter pattern like the following that would test for events containing
"Organizations":

{ "dynamodb" : { "NewImage" : { "Organizations" : [{ "exists": true }] } } }

However, this filter pattern would never return a match because "Organizations" is not a leaf
node. The following example shows how to properly use the Exists operator to construct the
desired filter pattern:

{ "dynamodb" : { "NewImage" : {"Organizations": {"L": {"S": [{"exists":
 true }] } } } } }

Event filtering 1376

AWS Lambda Developer Guide

JSON format for DynamoDB filtering

To properly filter events from DynamoDB sources, both the data field and your filter criteria for
the data field (dynamodb) must be in valid JSON format. If either field isn't in a valid JSON format,
Lambda drops the message or throws an exception. The following table summarizes the specific
behavior:

Incoming data format Filter pattern format for
data properties

Resulting action

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for
data properties must be in a
valid JSON format.

Non-JSON Valid JSON Lambda drops the record.

Non-JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Non-JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for
data properties must be in a
valid JSON format.

Event filtering 1377

AWS Lambda Developer Guide

Tutorial: Using AWS Lambda with Amazon DynamoDB streams

In this tutorial, you create a Lambda function to consume events from an Amazon DynamoDB
stream.

Prerequisites

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Create the execution role

Create the execution role that gives your function permission to access AWS resources.

To create an execution role

1. Open the roles page in the IAM console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Lambda.

• Permissions – AWSLambdaDynamoDBExecutionRole.

• Role name – lambda-dynamodb-role.

The AWSLambdaDynamoDBExecutionRole has the permissions that the function needs to read
items from DynamoDB and write logs to CloudWatch Logs.

Tutorial 1378

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

Create the function

Create a Lambda function that processes your DynamoDB events. The function code writes some of
the incoming event data to CloudWatch Logs.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public void FunctionHandler(DynamoDBEvent dynamoEvent, ILambdaContext
 context)
 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");

 foreach (var record in dynamoEvent.Records)
 {
 context.Logger.LogInformation($"Event ID: {record.EventID}");

Tutorial 1379

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 context.Logger.LogInformation($"Event Name: {record.EventName}");

 context.Logger.LogInformation(JsonSerializer.Serialize(record));
 }

 context.Logger.LogInformation("Stream processing complete.");
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/events"
 "fmt"
)

func HandleRequest(ctx context.Context, event events.DynamoDBEvent) (*string,
 error) {
 if len(event.Records) == 0 {
 return nil, fmt.Errorf("received empty event")
 }

 for _, record := range event.Records {
 LogDynamoDBRecord(record)
 }

Tutorial 1380

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 message := fmt.Sprintf("Records processed: %d", len(event.Records))
 return &message, nil
}

func main() {
 lambda.Start(HandleRequest)
}

func LogDynamoDBRecord(record events.DynamoDBEventRecord){
 fmt.Println(record.EventID)
 fmt.Println(record.EventName)
 fmt.Printf("%+v\n", record.Change)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import
 com.amazonaws.services.lambda.runtime.events.DynamodbEvent.DynamodbStreamRecord;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

public class example implements RequestHandler<DynamodbEvent, Void> {

 private static final Gson GSON = new
 GsonBuilder().setPrettyPrinting().create();

 @Override
 public Void handleRequest(DynamodbEvent event, Context context) {

Tutorial 1381

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 System.out.println(GSON.toJson(event));
 event.getRecords().forEach(this::logDynamoDBRecord);
 return null;
 }

 private void logDynamoDBRecord(DynamodbStreamRecord record) {
 System.out.println(record.getEventID());
 System.out.println(record.getEventName());
 System.out.println("DynamoDB Record: " +
 GSON.toJson(record.getDynamodb()));
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

Tutorial 1382

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

Consuming a DynamoDB event with Lambda using TypeScript.

export const handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
}
const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using PHP.

<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\DynamoDb\DynamoDbEvent;
use Bref\Event\DynamoDb\DynamoDbHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends DynamoDbHandler
{
 private StderrLogger $logger;

Tutorial 1383

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleDynamoDb(DynamoDbEvent $event, Context $context): void
 {
 $this->logger->info("Processing DynamoDb table items");
 $records = $event->getRecords();

 foreach ($records as $record) {
 $eventName = $record->getEventName();
 $keys = $record->getKeys();
 $old = $record->getOldImage();
 $new = $record->getNewImage();

 $this->logger->info("Event Name:".$eventName."\n");
 $this->logger->info("Keys:". json_encode($keys)."\n");
 $this->logger->info("Old Image:". json_encode($old)."\n");
 $this->logger->info("New Image:". json_encode($new));

 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }

 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords items");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Tutorial 1384

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Python.

import json

def lambda_handler(event, context):
 print(json.dumps(event, indent=2))

 for record in event['Records']:
 log_dynamodb_record(record)

def log_dynamodb_record(record):
 print(record['eventID'])
 print(record['eventName'])
 print(f"DynamoDB Record: {json.dumps(record['dynamodb'])}")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Ruby.

Tutorial 1385

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

def lambda_handler(event:, context:)
 return 'received empty event' if event['Records'].empty?

 event['Records'].each do |record|
 log_dynamodb_record(record)
 end

 "Records processed: #{event['Records'].length}"
 end

 def log_dynamodb_record(record)
 puts record['eventID']
 puts record['eventName']
 puts "DynamoDB Record: #{JSON.generate(record['dynamodb'])}"
 end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Rust.

use lambda_runtime::{service_fn, tracing, Error, LambdaEvent};
use aws_lambda_events::{
 event::dynamodb::{Event, EventRecord},
 };

// Built with the following dependencies:
//lambda_runtime = "0.11.1"
//serde_json = "1.0"
//tokio = { version = "1", features = ["macros"] }
//tracing = { version = "0.1", features = ["log"] }

Tutorial 1386

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

//tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }
//aws_lambda_events = "0.15.0"

async fn function_handler(event: LambdaEvent<Event>) ->Result<(), Error> {

 let records = &event.payload.records;
 tracing::info!("event payload: {:?}",records);
 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 for record in records{
 log_dynamo_dbrecord(record);
 }

 tracing::info!("Dynamo db records processed");

 // Prepare the response
 Ok(())

}

fn log_dynamo_dbrecord(record: &EventRecord)-> Result<(), Error>{
 tracing::info!("EventId: {}", record.event_id);
 tracing::info!("EventName: {}", record.event_name);
 tracing::info!("DynamoDB Record: {:?}", record.change);
 Ok(())

}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 let func = service_fn(function_handler);
 lambda_runtime::run(func).await?;
 Ok(())

Tutorial 1387

AWS Lambda Developer Guide

}

To create the function

1. Copy the sample code into a file named example.js.

2. Create a deployment package.

zip function.zip example.js

3. Create a Lambda function with the create-function command.

aws lambda create-function --function-name ProcessDynamoDBRecords \
 --zip-file fileb://function.zip --handler example.handler --runtime nodejs22.x
 \
 --role arn:aws:iam::111122223333:role/lambda-dynamodb-role

Test the Lambda function

In this step, you invoke your Lambda function manually using the invoke AWS Lambda CLI
command and the following sample DynamoDB event. Copy the following into a file named
input.txt.

Example input.txt

{
 "Records":[
 {
 "eventID":"1",
 "eventName":"INSERT",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{

Tutorial 1388

AWS Lambda Developer Guide

 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"111",
 "SizeBytes":26,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"2",
 "eventName":"MODIFY",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"222",
 "SizeBytes":59,
 "StreamViewType":"NEW_AND_OLD_IMAGES"

Tutorial 1389

AWS Lambda Developer Guide

 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"3",
 "eventName":"REMOVE",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"333",
 "SizeBytes":38,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 }
]
}

Run the following invoke command.

aws lambda invoke --function-name ProcessDynamoDBRecords \
 --cli-binary-format raw-in-base64-out \
 --payload file://input.txt outputfile.txt

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

Tutorial 1390

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

The function returns the string message in the response body.

Verify the output in the outputfile.txt file.

Create a DynamoDB table with a stream enabled

Create an Amazon DynamoDB table with a stream enabled.

To create a DynamoDB table

1. Open the DynamoDB console.

2. Choose Create table.

3. Create a table with the following settings.

• Table name – lambda-dynamodb-stream

• Primary key – id (string)

4. Choose Create.

To enable streams

1. Open the DynamoDB console.

2. Choose Tables.

3. Choose the lambda-dynamodb-stream table.

4. Under Exports and streams, choose DynamoDB stream details.

5. Choose Turn on.

6. For View type, choose Key attributes only.

7. Choose Turn on stream.

Write down the stream ARN. You need this in the next step when you associate the stream with
your Lambda function. For more information on enabling streams, see Capturing table activity with
DynamoDB Streams.

Add an event source in AWS Lambda

Create an event source mapping in AWS Lambda. This event source mapping associates the
DynamoDB stream with your Lambda function. After you create this event source mapping, AWS
Lambda starts polling the stream.

Tutorial 1391

https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

AWS Lambda Developer Guide

Run the following AWS CLI create-event-source-mapping command. After the command
runs, note down the UUID. You'll need this UUID to refer to the event source mapping in any
commands, for example, when deleting the event source mapping.

aws lambda create-event-source-mapping --function-name ProcessDynamoDBRecords \
 --batch-size 100 --starting-position LATEST --event-source DynamoDB-stream-arn

This creates a mapping between the specified DynamoDB stream and the Lambda function.
You can associate a DynamoDB stream with multiple Lambda functions, and associate the same
Lambda function with multiple streams. However, the Lambda functions will share the read
throughput for the stream they share.

You can get the list of event source mappings by running the following command.

aws lambda list-event-source-mappings

The list returns all of the event source mappings you created, and for each mapping it shows
the LastProcessingResult, among other things. This field is used to provide an informative
message if there are any problems. Values such as No records processed (indicates that AWS
Lambda has not started polling or that there are no records in the stream) and OK (indicates AWS
Lambda successfully read records from the stream and invoked your Lambda function) indicate
that there are no issues. If there are issues, you receive an error message.

If you have a lot of event source mappings, use the function name parameter to narrow down the
results.

aws lambda list-event-source-mappings --function-name ProcessDynamoDBRecords

Test the setup

Test the end-to-end experience. As you perform table updates, DynamoDB writes event records to
the stream. As AWS Lambda polls the stream, it detects new records in the stream and invokes your
Lambda function on your behalf by passing events to the function.

1. In the DynamoDB console, add, update, and delete items to the table. DynamoDB writes records
of these actions to the stream.

2. AWS Lambda polls the stream and when it detects updates to the stream, it invokes your
Lambda function by passing in the event data it finds in the stream.

Tutorial 1392

AWS Lambda Developer Guide

3. Your function runs and creates logs in Amazon CloudWatch. You can verify the logs reported in
the Amazon CloudWatch console.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Select the table you created.

3. Choose Delete.

4. Enter delete in the text box.

5. Choose Delete table.

Tutorial 1393

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/dynamodb/home#tables:

AWS Lambda Developer Guide

Process Amazon EC2 lifecycle events with a Lambda function

You can use AWS Lambda to process lifecycle events from Amazon Elastic Compute Cloud and
manage Amazon EC2 resources. Amazon EC2 sends events to Amazon EventBridge (CloudWatch
Events) for lifecycle events such as when an instance changes state, when an Amazon Elastic Block
Store volume snapshot completes, or when a spot instance is scheduled to be terminated. You
configure EventBridge (CloudWatch Events) to forward those events to a Lambda function for
processing.

EventBridge (CloudWatch Events) invokes your Lambda function asynchronously with the event
document from Amazon EC2.

Example instance lifecycle event

{
 "version": "0",
 "id": "b6ba298a-7732-2226-xmpl-976312c1a050",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "111122223333",
 "time": "2019-10-02T17:59:30Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:ec2:us-east-1:111122223333:instance/i-0c314xmplcd5b8173"
],
 "detail": {
 "instance-id": "i-0c314xmplcd5b8173",
 "state": "running"
 }
}

For details on configuring events, see Invoke a Lambda function on a schedule. For an example
function that processes Amazon EBS snapshot notifications, see EventBridge Scheduler for Amazon
EBS.

You can also use the AWS SDK to manage instances and other resources with the Amazon EC2 API.

Granting permissions to EventBridge (CloudWatch Events)

To process lifecycle events from Amazon EC2, EventBridge (CloudWatch Events) needs permission
to invoke your function. This permission comes from the function's resource-based policy. If

EC2 1394

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-lifecycle.html
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-cloud-watch-events.html
https://docs.aws.amazon.com/ebs/latest/userguide/ebs-cloud-watch-events.html

AWS Lambda Developer Guide

you use the EventBridge (CloudWatch Events) console to configure an event trigger, the console
updates the resource-based policy on your behalf. Otherwise, add a statement like the following:

Example resource-based policy statement for Amazon EC2 lifecycle notifications

{
 "Sid": "ec2-events",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-east-1:12456789012:function:my-function",
 "Condition": {
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:events:us-east-1:12456789012:rule/*"
 }
 }
}

To add a statement, use the add-permission AWS CLI command.

aws lambda add-permission --action lambda:InvokeFunction --statement-id ec2-events \
--principal events.amazonaws.com --function-name my-function --source-arn
 'arn:aws:events:us-east-1:12456789012:rule/*'

If your function uses the AWS SDK to manage Amazon EC2 resources, add Amazon EC2 permissions
to the function's execution role.

Granting permissions to EventBridge (CloudWatch Events) 1395

AWS Lambda Developer Guide

Process Application Load Balancer requests with Lambda

You can use a Lambda function to process requests from an Application Load Balancer. Elastic
Load Balancing supports Lambda functions as a target for an Application Load Balancer. Use load
balancer rules to route HTTP requests to a function, based on path or header values. Process the
request and return an HTTP response from your Lambda function.

Elastic Load Balancing invokes your Lambda function synchronously with an event that contains
the request body and metadata.

Example Application Load Balancer request event

{
 "requestContext": {
 "elb": {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-
east-1:123456789012:targetgroup/lambda-279XGJDqGZ5rsrHC2Fjr/49e9d65c45c6791a"
 }
 },
 "httpMethod": "GET",
 "path": "/lambda",
 "queryStringParameters": {
 "query": "1234ABCD"
 },
 "headers": {
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,image/apng,*/*;q=0.8",
 "accept-encoding": "gzip",
 "accept-language": "en-US,en;q=0.9",
 "connection": "keep-alive",
 "host": "lambda-alb-123578498.us-east-1.elb.amazonaws.com",
 "upgrade-insecure-requests": "1",
 "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36",
 "x-amzn-trace-id": "Root=1-5c536348-3d683b8b04734faae651f476",
 "x-forwarded-for": "72.12.164.125",
 "x-forwarded-port": "80",
 "x-forwarded-proto": "http",
 "x-imforwards": "20"
 },
 "body": "",
 "isBase64Encoded": False

Elastic Load Balancing (Application Load Balancer) 1396

AWS Lambda Developer Guide

}

Your function processes the event and returns a response document to the load balancer in JSON.
Elastic Load Balancing converts the document to an HTTP success or error response and returns it
to the user.

Example response document format

{
 "statusCode": 200,
 "statusDescription": "200 OK",
 "isBase64Encoded": False,
 "headers": {
 "Content-Type": "text/html"
 },
 "body": "<h1>Hello from Lambda!</h1>"
}

To configure an Application Load Balancer as a function trigger, grant Elastic Load Balancing
permission to run the function, create a target group that routes requests to the function, and add
a rule to the load balancer that sends requests to the target group.

Use the add-permission command to add a permission statement to your function's resource-
based policy.

aws lambda add-permission --function-name alb-function \
--statement-id load-balancer --action "lambda:InvokeFunction" \
--principal elasticloadbalancing.amazonaws.com

You should see the following output:

{
 "Statement": "{\"Sid\":\"load-balancer\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"elasticloadbalancing.amazonaws.com\"},\"Action\":\"lambda:InvokeFunction
\",\"Resource\":\"arn:aws:lambda:us-west-2:123456789012:function:alb-function\"}"
}

For instructions on configuring the Application Load Balancer listener and target group, see
Lambda functions as a target in the User Guide for Application Load Balancers.

Elastic Load Balancing (Application Load Balancer) 1397

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/lambda-functions.html

AWS Lambda Developer Guide

Invoke a Lambda function on a schedule

Amazon EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage
tasks from one central, managed service. With EventBridge Scheduler, you can create schedules
using cron and rate expressions for recurring patterns, or configure one-time invocations. You can
set up flexible time windows for delivery, define retry limits, and set the maximum retention time
for unprocessed events.

When you set up EventBridge Scheduler with Lambda, EventBridge Scheduler invokes your Lambda
function asynchronously. This page explains how to use EventBridge Scheduler to invoke a Lambda
function on a schedule.

Set up the execution role

When you create a new schedule, EventBridge Scheduler must have permission to invoke its target
API operation on your behalf. You grant these permissions to EventBridge Scheduler using an
execution role. The permission policy you attach to your schedule's execution role defines the
required permissions. These permissions depend on the target API you want EventBridge Scheduler
to invoke.

When you use the EventBridge Scheduler console to create a schedule, as in the following
procedure, EventBridge Scheduler automatically sets up an execution role based on your selected
target. If you want to create a schedule using one of the EventBridge Scheduler SDKs, the AWS
CLI, or AWS CloudFormation, you must have an existing execution role that grants the permissions
EventBridge Scheduler requires to invoke a target. For more information about manually setting up
an execution role for your schedule, see Setting up an execution role in the EventBridge Scheduler
User Guide.

Create a schedule

To create a schedule by using the console

1. Open the Amazon EventBridge Scheduler console at https://console.aws.amazon.com/
scheduler/home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

Invoke using an EventBridge Scheduler 1398

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://console.aws.amazon.com/scheduler/home/
https://console.aws.amazon.com/scheduler/home/

AWS Lambda Developer Guide

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example, My first
schedule.

c. For Schedule group, choose a schedule group from the dropdown list. If you don't have a
group, choose default. To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. • Choose your schedule options.

Occurrence Do this...

One-time schedule

A one-time schedule
invokes a target only once
at the date and time that
you specify.

For Date and time, do the
following:

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

• For Timezone, choose
the timezone.

Recurring schedule

A recurring schedule
invokes a target at a rate
that you specify using a
cron expression or rate
expression.

a. For Schedule type, do
one of the following:

• To use a cron
expression to define
the schedule, choose
Cron-based schedule
and enter the cron
expression.

• To use a rate
expression to define
the schedule, choose
Rate-based schedule
and enter the rate
expression.

Create a schedule 1399

AWS Lambda Developer Guide

Occurrence Do this...

For more informati
on about cron and
rate expressions,
see Schedule types
on EventBridge
Scheduler in the
Amazon EventBridge
Scheduler User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within
15 minutes after the
start of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, choose the AWS API operation that EventBridge Scheduler invokes:

a. Choose AWS Lambda Invoke.

Create a schedule 1400

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

AWS Lambda Developer Guide

b. In the Invoke section, select a function or choose Create new Lambda function.

c. (Optional) Enter a JSON payload. If you don't enter a payload, EventBridge Scheduler uses
an empty event to invoke the function.

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

• Toggle Retry.

• For Maximum age of event, enter the maximum hour(s) and min(s) that EventBridge
Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same AWS account
where you're creating the
schedule

a. Choose Select an
Amazon SQS queue in
my AWS account as a
DLQ.

Create a schedule 1401

AWS Lambda Developer Guide

Dead-letter queue (DLQ)
option

Do this...

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different AWS account
from where you're creating
the schedule

a. Choose Specify an
Amazon SQS queue in
other AWS accounts as
a DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

If you choose this option, enter an existing KMS key ARN or choose Create an AWS KMS
key to navigate to the AWS KMS console. For more information about how EventBridge
Scheduler encrypts your data at rest, see Encryption at rest in the Amazon EventBridge
Scheduler User Guide.

e. To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,
EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

To confirm that EventBridge Scheduler invoked the function, check the function's Amazon
CloudWatch logs.

Create a schedule 1402

https://docs.aws.amazon.com/scheduler/latest/UserGuide/encryption-rest.html

AWS Lambda Developer Guide

Related resources

For more information about EventBridge Scheduler, see the following:

• EventBridge Scheduler User Guide

• EventBridge Scheduler API Reference

• EventBridge Scheduler Pricing

Related resources 1403

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/APIReference/Welcome.html
https://aws.amazon.com/eventbridge/pricing/#Scheduler

AWS Lambda Developer Guide

Using AWS Lambda with AWS IoT

AWS IoT provides secure communication between internet-connected devices (such as sensors) and
the AWS Cloud. This makes it possible for you to collect, store, and analyze telemetry data from
multiple devices.

You can create AWS IoT rules for your devices to interact with AWS services. The AWS IoT Rules
Engine provides a SQL-based language to select data from message payloads and send the data
to other services, such as Amazon S3, Amazon DynamoDB, and AWS Lambda. You define a rule to
invoke a Lambda function when you want to invoke another AWS service or a third-party service.

When an incoming IoT message triggers the rule, AWS IoT invokes your Lambda function
asynchronously and passes data from the IoT message to the function.

The following example shows a moisture reading from a greenhouse sensor. The row and pos
values identify the location of the sensor. This example event is based on the greenhouse type in
the AWS IoT Rules tutorials.

Example AWS IoT message event

{
 "row" : "10",
 "pos" : "23",
 "moisture" : "75"
}

For asynchronous invocation, Lambda queues the message and retries if your function returns
an error. Configure your function with a destination to retain events that your function could not
process.

You need to grant permission for the AWS IoT service to invoke your Lambda function. Use the
add-permission command to add a permission statement to your function's resource-based
policy.

aws lambda add-permission --function-name my-function \
--statement-id iot-events --action "lambda:InvokeFunction" --principal
 iot.amazonaws.com

You should see the following output:

IoT 1404

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules-tutorial.html

AWS Lambda Developer Guide

{
 "Statement": "{\"Sid\":\"iot-events\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"iot.amazonaws.com\"},\"Action\":\"lambda:InvokeFunction\",\"Resource\":
\"arn:aws:lambda:us-east-1:123456789012:function:my-function\"}"
}

For more information about how to use Lambda with AWS IoT, see Creating an AWS Lambda rule.

IoT 1405

https://docs.aws.amazon.com/iot/latest/developerguide/iot-lambda-rule.html

AWS Lambda Developer Guide

How Lambda processes records from Amazon Kinesis Data
Streams

You can use a Lambda function to process records in an Amazon Kinesis data stream. You can map
a Lambda function to a Kinesis Data Streams shared-throughput consumer (standard iterator),
or to a dedicated-throughput consumer with enhanced fan-out. For standard iterators, Lambda
polls each shard in your Kinesis stream for records using HTTP protocol. The event source mapping
shares read throughput with other consumers of the shard.

For details about Kinesis data streams, see Reading Data from Amazon Kinesis Data Streams.

Note

Kinesis charges for each shard and, for enhanced fan-out, data read from the stream. For
pricing details, see Amazon Kinesis pricing.

Topics

• Polling and batching streams

• Example event

• Process Amazon Kinesis Data Streams records with Lambda

• Configuring partial batch response with Kinesis Data Streams and Lambda

• Retain discarded batch records for a Kinesis Data Streams event source in Lambda

• Implementing stateful Kinesis Data Streams processing in Lambda

• Lambda parameters for Amazon Kinesis Data Streams event source mappings

• Using event filtering with a Kinesis event source

• Tutorial: Using Lambda with Kinesis Data Streams

Polling and batching streams

Lambda reads records from the data stream and invokes your function synchronously with an
event that contains stream records. Lambda reads records in batches and invokes your function to
process records from the batch. Each batch contains records from a single shard/data stream.

Kinesis Data Streams 1406

https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/kinesis/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/kinesis/latest/dev/building-consumers.html
https://aws.amazon.com/kinesis/data-streams/pricing

AWS Lambda Developer Guide

For standard Kinesis data streams, Lambda polls shards in your stream for records at a rate of once
per second for each shard. For Kinesis enhanced fan-out, Lambda uses an HTTP/2 connection to
listen for records being pushed from Kinesis. When records are available, Lambda invokes your
function and waits for the result.

By default, Lambda invokes your function as soon as records are available. If the batch that
Lambda reads from the event source has only one record in it, Lambda sends only one record to
the function. To avoid invoking the function with a small number of records, you can tell the event
source to buffer records for up to 5 minutes by configuring a batching window. Before invoking the
function, Lambda continues to read records from the event source until it has gathered a full batch,
the batching window expires, or the batch reaches the payload limit of 6 MB. For more information,
see Batching behavior.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

Lambda doesn't wait for any configured extensions to complete before sending the next batch
for processing. In other words, your extensions may continue to run as Lambda processes the next
batch of records. This can cause throttling issues if you breach any of your account's concurrency
settings or limits. To detect whether this is a potential issue, monitor your functions and check
whether you're seeing higher concurrency metrics than expected for your event source mapping.
Due to short times in between invokes, Lambda may briefly report higher concurrency usage than
the number of shards. This can be true even for Lambda functions without extensions.

Configure the ParallelizationFactor setting to process one shard of a Kinesis data stream with more
than one Lambda invocation simultaneously. You can specify the number of concurrent batches
that Lambda polls from a shard via a parallelization factor from 1 (default) to 10. For example,
when you set ParallelizationFactor to 2, you can have 200 concurrent Lambda invocations
at maximum to process 100 Kinesis data shards (though in practice, you may see different values
for the ConcurrentExecutions metric). This helps scale up the processing throughput when the
data volume is volatile and the IteratorAge is high. When you increase the number of concurrent
batches per shard, Lambda still ensures in-order processing at the partition-key level.

Polling and batching streams 1407

https://docs.aws.amazon.com/streams/latest/dev/building-enhanced-consumers-api.html
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-ParallelizationFactor

AWS Lambda Developer Guide

You can also use ParallelizationFactor with Kinesis aggregation. The behavior of the event
source mapping depends on whether you're using enhanced fan-out:

• Without enhanced fan-out: All of the events inside an aggregated event must have the same
partition key. The partition key must also match that of the aggregated event. If the events
inside the aggregated event have different partition keys, Lambda cannot guarantee in-order
processing of the events by partition key.

• With enhanced fan-out: First, Lambda decodes the aggregated event into its individual events.
The aggregated event can have a different partition key than events it contains. However, events
that don't correspond to the partition key are dropped and lost. Lambda doesn't process these
events, and doesn't send them to a configured failure destination.

Example event

Example

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1545084650.987
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-
stream"
 },
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",

Example event 1408

https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://github.com/awslabs/kinesis-aggregation/blob/master/potential_data_loss.md

AWS Lambda Developer Guide

 "sequenceNumber":
 "49590338271490256608559692540925702759324208523137515618",
 "data": "VGhpcyBpcyBvbmx5IGEgdGVzdC4=",
 "approximateArrivalTimestamp": 1545084711.166
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692540925702759324208523137515618",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-
stream"
 }
]
}

Process Amazon Kinesis Data Streams records with Lambda

To process Amazon Kinesis Data Streams records with Lambda, create a consumer for your stream
and then create a Lambda event source mapping.

Configuring your data stream and function

Your Lambda function is a consumer application for your data stream. It processes one batch
of records at a time from each shard. You can map a Lambda function to a shared-throughput
consumer (standard iterator), or to a dedicated-throughput consumer with enhanced fan-out.

• Standard iterator: Lambda polls each shard in your Kinesis stream for records at a base rate of
once per second. When more records are available, Lambda keeps processing batches until the
function catches up with the stream. The event source mapping shares read throughput with
other consumers of the shard.

• Enhanced fan-out: To minimize latency and maximize read throughput, create a data stream
consumer with enhanced fan-out. Enhanced fan-out consumers get a dedicated connection to
each shard that doesn't impact other applications reading from the stream. Stream consumers
use HTTP/2 to reduce latency by pushing records to Lambda over a long-lived connection
and by compressing request headers. You can create a stream consumer with the Kinesis
RegisterStreamConsumer API.

Create mapping 1409

https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_RegisterStreamConsumer.html

AWS Lambda Developer Guide

aws kinesis register-stream-consumer \
--consumer-name con1 \
--stream-arn arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream

You should see the following output:

{
 "Consumer": {
 "ConsumerName": "con1",
 "ConsumerARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream/
consumer/con1:1540591608",
 "ConsumerStatus": "CREATING",
 "ConsumerCreationTimestamp": 1540591608.0
 }
}

To increase the speed at which your function processes records, add shards to your data stream.
Lambda processes records in each shard in order. It stops processing additional records in a shard if
your function returns an error. With more shards, there are more batches being processed at once,
which lowers the impact of errors on concurrency.

If your function can't scale up to handle the total number of concurrent batches, request a quota
increase or reserve concurrency for your function.

Create an event source mapping to invoke a Lambda function

To invoke your Lambda function with records from your data stream, create an event source
mapping. You can create multiple event source mappings to process the same data with multiple
Lambda functions, or to process items from multiple data streams with a single function. When
processing items from multiple streams, each batch contains records from only a single shard or
stream.

You can configure event source mappings to process records from a stream in a different AWS
account. To learn more, see the section called “Cross-account mappings”.

Before you create an event source mapping, you need to give your Lambda function permission
to read from a Kinesis data stream. Lambda needs the following permissions to manage resources
related to your Kinesis data stream:

• kinesis:DescribeStream

Create mapping 1410

https://repost.aws/knowledge-center/kinesis-data-streams-open-shards
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/lambda/latest/api/API_DescribeStream.html

AWS Lambda Developer Guide

• kinesis:DescribeStreamSummary

• kinesis:GetRecords

• kinesis:GetShardIterator

• kinesis:ListShards

• kinesis:SubscribeToShard

The AWS managed policy AWSLambdaKinesisExecutionRole includes these permissions. Add this
managed policy to your function as described in the following procedure.

Note

• You don't need the kinesis:ListStreams permission to create and manage event
source mappings for Kinesis. However, if you create an event source mapping in the
console and you don't have this permission, you won't be able to select a Kinesis stream
from a dropdown list and the console will display an error. To create the event source
mapping, you'll need to manually enter the Amazon Resource Name (ARN) of your
stream.

• Lambda makes kinesis:GetRecords and kinesis:GetShardIterator API calls
when retrying failed invocations.

AWS Management Console

To add Kinesis permissions to your function

1. Open the Functions page of the Lambda console and select your function.

2. In the Configuration tab, select Permissions.

3. In the Execution role pane, under Role name, choose the link to your function’s execution
role. This link opens the page for that role in the IAM console.

4. In the Permissions policies pane, choose Add permissions, then select Attach policies.

5. In the search field, enter AWSLambdaKinesisExecutionRole.

6. Select the checkbox next to the policy and choose Add permission.

Create mapping 1411

https://docs.aws.amazon.com/lambda/latest/api/API_DescribeStreamSummary.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetRecords.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetShardIterator.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListShards.html
https://docs.aws.amazon.com/lambda/latest/api/API_SubscribeToShard.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaKinesisExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

AWS CLI

To add Kinesis permissions to your function

• Run the following CLI command to add the AWSLambdaKinesisExecutionRole policy to
your function’s execution role:

aws iam attach-role-policy \
--role-name MyFunctionRole \
--policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaKinesisExecutionRole

AWS SAM

To add Kinesis permissions to your function

• In your function’s definition, add the Policies property as shown in the following
example:

Resources:
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: ./my-function/
 Handler: index.handler
 Runtime: nodejs22.x
 Policies:
 - AWSLambdaKinesisExecutionRole

After configuring the required permissions, create the event source mapping.

AWS Management Console

To create the Kinesis event source mapping

1. Open the Functions page of the Lambda console and select your function.

2. In the Function overview pane, choose Add trigger.

3. Under Trigger configuration, for the source, select Kinesis.

4. Select the Kinesis stream you want to create the event source mapping for and, optionally,
a consumer of your stream.

Create mapping 1412

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. (Optional) edit the Batch size, Starting position, and Batch window for your event source
mapping.

6. Choose Add.

When creating your event source mapping from the console, your IAM role must have the
kinesis:ListStreams and kinesis:ListStreamConsumers permissions.

AWS CLI

To create the Kinesis event source mapping

• Run the following CLI command to create a Kinesis event source mapping. Choose your
own batch size and starting position according to your use case.

aws lambda create-event-source-mapping \
--function-name MyFunction \
--event-source-arn arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream \
--starting-position LATEST \
--batch-size 100

To specify a batching window, add the --maximum-batching-window-in-seconds option.
For more information about using this and other parameters, see create-event-source-mapping
in the AWS CLI Command Reference.

AWS SAM

To create the Kinesis event source mapping

• In your function’s definition, add the KinesisEvent property as shown in the following
example:

Resources:
 MyFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: ./my-function/
 Handler: index.handler
 Runtime: nodejs22.x
 Policies:
 - AWSLambdaKinesisExecutionRole
 Events:

Create mapping 1413

https://docs.aws.amazon.com/lambda/latest/api/API_ListStreams.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListStreamConsumers.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

AWS Lambda Developer Guide

 KinesisEvent:
 Type: Kinesis
 Properties:
 Stream: !GetAtt MyKinesisStream.Arn
 StartingPosition: LATEST
 BatchSize: 100

 MyKinesisStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1

To learn more about creating an event source mapping for Kinesis Data Streams in AWS SAM,
see Kinesis in the AWS Serverless Application Model Developer Guide.

Polling and stream starting position

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Creating a cross-account event source mapping

Amazon Kinesis Data Streams supports resource-based policies. Because of this, you can process
data ingested into a stream in one AWS account with a Lambda function in another account.

To create an event source mapping for your Lambda function using a Kinesis stream in a different
AWS account, you must configure the stream using a resource-based policy to give your Lambda
function permission to read items. To learn how to configure your stream to allow cross-account

Create mapping 1414

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-kinesis.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

AWS Lambda Developer Guide

access, see Sharing access with cross-account AWS Lambda functions in the Amazon Kinesis
Streams Developer guide.

Once you’ve configured your stream with a resource-based policy that gives your Lambda function
the required permissions, create the event source mapping using any of the methods described in
the previous section.

If you choose to create your event source mapping using the Lambda console, paste the ARN of
your stream directly into the input field. If you want to specify a consumer for your stream, pasting
the ARN of the consumer automatically populates the stream field.

Configuring partial batch response with Kinesis Data Streams and
Lambda

When consuming and processing streaming data from an event source, by default Lambda
checkpoints to the highest sequence number of a batch only when the batch is a complete
success. Lambda treats all other results as a complete failure and retries processing the batch up
to the retry limit. To allow for partial successes while processing batches from a stream, turn on
ReportBatchItemFailures. Allowing partial successes can help to reduce the number of retries
on a record, though it doesn’t entirely prevent the possibility of retries in a successful record.

To turn on ReportBatchItemFailures, include the enum value ReportBatchItemFailures
in the FunctionResponseTypes list. This list indicates which response types are enabled for your
function. You can configure this list when you create or update an event source mapping.

Note

Even when your function code returns partial batch failure responses, these responses will
not be processed by Lambda unless the ReportBatchItemFailures feature is explicitly
turned on for your event source mapping.

Report syntax

When configuring reporting on batch item failures, the StreamsEventResponse class is returned
with a list of batch item failures. You can use a StreamsEventResponse object to return the
sequence number of the first failed record in the batch. You can also create your own custom class
using the correct response syntax. The following JSON structure shows the required response
syntax:

Batch item failures 1415

https://docs.aws.amazon.com/streams/latest/dev/resource-based-policy-examples.html#Resource-based-policy-examples-lambda
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-FunctionResponseTypes
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

{
 "batchItemFailures": [
 {
 "itemIdentifier": "<SequenceNumber>"
 }
]
}

Note

If the batchItemFailures array contains multiple items, Lambda uses the record with
the lowest sequence number as the checkpoint. Lambda then retries all records starting
from that checkpoint.

Success and failure conditions

Lambda treats a batch as a complete success if you return any of the following:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

Lambda treats a batch as a complete failure if you return any of the following:

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

Lambda retries failures based on your retry strategy.

Bisecting a batch

If your invocation fails and BisectBatchOnFunctionError is turned on, the batch is bisected
regardless of your ReportBatchItemFailures setting.

Batch item failures 1416

AWS Lambda Developer Guide

When a partial batch success response is received and both BisectBatchOnFunctionError
and ReportBatchItemFailures are turned on, the batch is bisected at the returned sequence
number and Lambda retries only the remaining records.

Here are some examples of function code that return the list of failed message IDs in the batch:

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using System.Text.Json.Serialization;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegration;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task<StreamsEventResponse> FunctionHandler(KinesisEvent evnt,
 ILambdaContext context)
 {
 if (evnt.Records.Count == 0)

Batch item failures 1417

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 {
 Logger.LogInformation("Empty Kinesis Event received");
 return new StreamsEventResponse();
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 return new StreamsEventResponse
 {
 BatchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>
 {
 new StreamsEventResponse.BatchItemFailure
 { ItemIdentifier = record.Kinesis.SequenceNumber }
 }
 };
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 return new StreamsEventResponse();
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work

Batch item failures 1418

AWS Lambda Developer Guide

 return data;
 }
}

public class StreamsEventResponse
{
 [JsonPropertyName("batchItemFailures")]
 public IList<BatchItemFailure> BatchItemFailures { get; set; }
 public class BatchItemFailure
 {
 [JsonPropertyName("itemIdentifier")]
 public string ItemIdentifier { get; set; }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

Batch item failures 1419

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 for _, record := range kinesisEvent.Records {
 curRecordSequenceNumber := ""

 // Process your record
 if /* Your record processing condition here */ {
 curRecordSequenceNumber = record.Kinesis.SequenceNumber
 }

 // Add a condition to check if the record processing failed
 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": curRecordSequenceNumber})
 }
 }

 kinesisBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return kinesisBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

Batch item failures 1420

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

public class ProcessKinesisRecords implements RequestHandler<KinesisEvent,
 StreamsEventResponse> {

 @Override
 public StreamsEventResponse handleRequest(KinesisEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (KinesisEvent.KinesisEventRecord kinesisEventRecord :
 input.getRecords()) {
 try {
 //Process your record
 KinesisEvent.Record kinesisRecord =
 kinesisEventRecord.getKinesis();
 curRecordSequenceNumber = kinesisRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse(batchItemFailures);
 }
}

Batch item failures 1421

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Javascript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Batch item failures 1422

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
 KinesisStreamBatchResponse,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<KinesisStreamBatchResponse> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

Batch item failures 1423

AWS Lambda Developer Guide

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

Batch item failures 1424

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array
 {
 $kinesisEvent = new KinesisEvent($event);
 $this->logger->info("Processing records");
 $records = $kinesisEvent->getRecords();

 $failedRecords = [];
 foreach ($records as $record) {
 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(
 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Batch item failures 1425

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["kinesis"]["sequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Batch item failures 1426

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 batch_item_failures = []

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue StandardError => err
 puts "An error occurred #{err}"
 # Since we are working with streams, we can return the failed item
 immediately.
 # Lambda will immediately begin to retry processing from this failed item
 onwards.
 return { batchItemFailures: [{ itemIdentifier: record['kinesis']
['sequenceNumber'] }] }
 end
 end

 puts "Successfully processed #{event['Records'].length} records."
 { batchItemFailures: batch_item_failures }
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('utf-8')
 # Placeholder for actual async work
 sleep(1)
 data
end

Batch item failures 1427

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::kinesis::KinesisEvent,
 kinesis::KinesisEventRecord,
 streams::{KinesisBatchItemFailure, KinesisEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) ->
 Result<KinesisEventResponse, Error> {
 let mut response = KinesisEventResponse {
 batch_item_failures: vec![],
 };

 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in &event.payload.records {
 tracing::info!(
 "EventId: {}",
 record.event_id.as_deref().unwrap_or_default()
);

 let record_processing_result = process_record(record);

 if record_processing_result.is_err() {
 response.batch_item_failures.push(KinesisBatchItemFailure {
 item_identifier: record.kinesis.sequence_number.clone(),

Batch item failures 1428

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(response)
}

fn process_record(record: &KinesisEventRecord) -> Result<(), Error> {
 let record_data = std::str::from_utf8(record.kinesis.data.as_slice());

 if let Some(err) = record_data.err() {
 tracing::error!("Error: {}", err);
 return Err(Error::from(err));
 }

 let record_data = record_data.unwrap_or_default();

 // do something interesting with the data
 tracing::info!("Data: {}", record_data);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

Batch item failures 1429

AWS Lambda Developer Guide

 run(service_fn(function_handler)).await
}

Retain discarded batch records for a Kinesis Data Streams event source
in Lambda

Error handling for Kinesis event source mappings depends on whether the error occurs before the
function is invoked or during function invocation:

• Before invocation: If a Lambda event source mapping is unable to invoke the function due
to throttling or other issues, it retries until the records expire or exceed the maximum age
configured on the event source mapping (MaximumRecordAgeInSeconds).

• During invocation: If the function is invoked but returns an error, Lambda retries until the
records expire, exceed the maximum age (MaximumRecordAgeInSeconds), or reach the
configured retry quota (MaximumRetryAttempts). For function errors, you can also configure
BisectBatchOnFunctionError, which splits a failed batch into two smaller batches, isolating bad
records and avoiding timeouts. Splitting batches doesn't consume the retry quota.

If the error handling measures fail, Lambda discards the records and continues processing batches
from the stream. With the default settings, this means that a bad record can block processing
on the affected shard for up to one week. To avoid this, configure your function's event source
mapping with a reasonable number of retries and a maximum record age that fits your use case.

Configuring destinations for failed invocations

To retain records of failed event source mapping invocations, add a destination to your function's
event source mapping. Each record sent to the destination is a JSON document containing
metadata about the failed invocation. For Amazon S3 destinations, Lambda also sends the entire
invocation record along with the metadata. You can configure any Amazon SNS topic, Amazon SQS
queue, or S3 bucket as a destination.

With Amazon S3 destinations, you can use the Amazon S3 Event Notifications feature to receive
notifications when objects are uploaded to your destination S3 bucket. You can also configure S3
Event Notifications to invoke another Lambda function to perform automated processing on failed
batches.

Your execution role must have permissions for the destination:

Error handling 1430

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRecordAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRecordAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRetryAttempts
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-response-BisectBatchOnFunctionError
https://docs.aws.amazon.com/

AWS Lambda Developer Guide

• For SQS destinations: sqs:SendMessage

• For SNS destinations: sns:Publish

• For S3 bucket destinations: s3:PutObject and s3:ListBucket

If you've enabled encryption with your own KMS key for an S3 destination, your function's
execution role must also have permission to call kms:GenerateDataKey. If the KMS key and S3
bucket destination are in a different account from your Lambda function and execution role,
configure the KMS key to trust the execution role to allow kms:GenerateDataKey.

To configure an on-failure destination using the console, follow these steps:

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Event source mapping invocation.

5. For Event source mapping, choose an event source that's configured for this function.

6. For Condition, select On failure. For event source mapping invocations, this is the only
accepted condition.

7. For Destination type, choose the destination type that Lambda sends invocation records to.

8. For Destination, choose a resource.

9. Choose Save.

You can also configure an on-failure destination using the AWS Command Line Interface (AWS CLI).
For example, the following create-event-source-mapping command adds an event source mapping
with an SQS on-failure destination to MyFunction:

aws lambda create-event-source-mapping \
--function-name "MyFunction" \
--event-source-arn arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sqs:us-
east-1:123456789012:dest-queue"}}'

The following update-event-source-mapping command updates an event source mapping to send
failed invocation records to an SNS destination after two retry attempts, or if the records are more
than an hour old.

Error handling 1431

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ListObjectsV2.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--maximum-retry-attempts 2 \
--maximum-record-age-in-seconds 3600 \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sns:us-
east-1:123456789012:dest-topic"}}'

Updated settings are applied asynchronously and aren't reflected in the output until the process
completes. Use the get-event-source-mapping command to view the current status.

To remove a destination, supply an empty string as the argument to the destination-config
parameter:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": ""}}'

Security best practices for Amazon S3 destinations

Deleting an S3 bucket that's configured as a destination without removing the destination from
your function's configuration can create a security risk. If another user knows your destination
bucket's name, they can recreate the bucket in their AWS account. Records of failed invocations will
be sent to their bucket, potentially exposing data from your function.

Warning

To ensure that invocation records from your function can't be sent to an S3 bucket
in another AWS account, add a condition to your function's execution role that limits
s3:PutObject permissions to buckets in your account.

The following example shows an IAM policy that limits your function's s3:PutObject permissions
to buckets in your account. This policy also gives Lambda the s3:ListBucket permission it needs
to use an S3 bucket as a destination.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3BucketResourceAccountWrite",

Error handling 1432

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html

AWS Lambda Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*/*",
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringEquals": {
 "s3:ResourceAccount": "111122223333"
 }
 }
 }
]
}

To add a permissions policy to your funcion's execution role using the AWS Management Console
or AWS CLI, refer to the instructions in the following procedures:

Console

To add a permissions policy to a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Select the Lambda function whose execution role you want to modify.

3. In the Configuration tab, select Permissions.

4. In the Execution role tab, select your function's Role name to open the role's IAM console
page.

5. Add a permissions policy to the role by doing the following:

a. In the Permissions policies pane, choose Add permissions and select Create inline
policy.

b. In Policy editor, select JSON.

c. Paste the policy you want to add into the editor (replacing the existing JSON), and
then choose Next.

d. Under Policy details, enter a Policy name.

e. Choose Create policy.

Error handling 1433

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

AWS CLI

To add a permissions policy to a function's execution role (CLI)

1. Create a JSON policy document with the required permissions and save it in a local
directory.

2. Use the IAM put-role-policy CLI command to add the permissions to your function's
execution role. Run the following command from the directory you saved your JSON policy
document in and replace the role name, policy name, and policy document with your own
values.

aws iam put-role-policy \
--role-name my_lambda_role \
--policy-name LambdaS3DestinationPolicy \
--policy-document file://my_policy.json

Example Amazon SNS and Amazon SQS invocation record

The following example shows what Lambda sends to an SQS queue or SNS topic for a failed Kinesis
event source invocation. Because Lambda sends only the metadata for these destination types, use
the streamArn, shardId, startSequenceNumber, and endSequenceNumber fields to obtain
the full original record. All of the fields shown in the KinesisBatchInfo property will always be
present.

{
 "requestContext": {
 "requestId": "c9b8fa9f-5a7f-xmpl-af9c-0c604cde93a5",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KinesisBatchInfo": {
 "shardId": "shardId-000000000001",

Error handling 1434

AWS Lambda Developer Guide

 "startSequenceNumber":
 "49601189658422359378836298521827638475320189012309704722",
 "endSequenceNumber":
 "49601189658422359378836298522902373528957594348623495186",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:38:04.835Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:38:05.580Z",
 "batchSize": 500,
 "streamArn": "arn:aws:kinesis:us-east-2:123456789012:stream/mystream"
 }
}

You can use this information to retrieve the affected records from the stream for troubleshooting.
The actual records aren't included, so you must process this record and retrieve them from the
stream before they expire and are lost.

Example Amazon S3 invocation record

The following example shows what Lambda sends to an Amazon S3 bucket for a failed Kinesis
event source invocation. In addition to all of the fields from the previous example for SQS and SNS
destinations, the payload field contains the original invocation record as an escaped JSON string.

{
 "requestContext": {
 "requestId": "c9b8fa9f-5a7f-xmpl-af9c-0c604cde93a5",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KinesisBatchInfo": {
 "shardId": "shardId-000000000001",
 "startSequenceNumber":
 "49601189658422359378836298521827638475320189012309704722",
 "endSequenceNumber":
 "49601189658422359378836298522902373528957594348623495186",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:38:04.835Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:38:05.580Z",

Error handling 1435

AWS Lambda Developer Guide

 "batchSize": 500,
 "streamArn": "arn:aws:kinesis:us-east-2:123456789012:stream/mystream"
 },
 "payload": "<Whole Event>" // Only available in S3
}

The S3 object containing the invocation record uses the following naming convention:

aws/lambda/<ESM-UUID>/<shardID>/YYYY/MM/DD/YYYY-MM-DDTHH.MM.SS-<Random UUID>

Implementing stateful Kinesis Data Streams processing in Lambda

Lambda functions can run continuous stream processing applications. A stream represents
unbounded data that flows continuously through your application. To analyze information from
this continuously updating input, you can bound the included records using a window defined in
terms of time.

Tumbling windows are distinct time windows that open and close at regular intervals. By default,
Lambda invocations are stateless—you cannot use them for processing data across multiple
continuous invocations without an external database. However, with tumbling windows, you can
maintain your state across invocations. This state contains the aggregate result of the messages
previously processed for the current window. Your state can be a maximum of 1 MB per shard. If it
exceeds that size, Lambda terminates the window early.

Each record in a stream belongs to a specific window. Lambda will process each record at least
once, but doesn't guarantee that each record will be processed only once. In rare cases, such as
error handling, some records might be processed more than once. Records are always processed in
order the first time. If records are processed more than once, they might be processed out of order.

Aggregation and processing

Your user managed function is invoked both for aggregation and for processing the final results
of that aggregation. Lambda aggregates all records received in the window. You can receive these
records in multiple batches, each as a separate invocation. Each invocation receives a state. Thus,
when using tumbling windows, your Lambda function response must contain a state property.
If the response does not contain a state property, Lambda considers this a failed invocation. To
satisfy this condition, your function can return a TimeWindowEventResponse object, which has
the following JSON shape:

Stateful processing 1436

AWS Lambda Developer Guide

Example TimeWindowEventResponse values

{
 "state": {
 "1": 282,
 "2": 715
 },
 "batchItemFailures": []
}

Note

For Java functions, we recommend using a Map<String, String> to represent the state.

At the end of the window, the flag isFinalInvokeForWindow is set to true to indicate that this
is the final state and that it’s ready for processing. After processing, the window completes and
your final invocation completes, and then the state is dropped.

At the end of your window, Lambda uses final processing for actions on the aggregation results.
Your final processing is synchronously invoked. After successful invocation, your function
checkpoints the sequence number and stream processing continues. If invocation is unsuccessful,
your Lambda function suspends further processing until a successful invocation.

Example KinesisTimeWindowEvent

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1607497475.000
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",

Stateful processing 1437

AWS Lambda Developer Guide

 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-kinesis-role",
 "awsRegion": "us-east-1",
 "eventSourceARN": "arn:aws:kinesis:us-east-1:123456789012:stream/lambda-
stream"
 }
],
 "window": {
 "start": "2020-12-09T07:04:00Z",
 "end": "2020-12-09T07:06:00Z"
 },
 "state": {
 "1": 282,
 "2": 715
 },
 "shardId": "shardId-000000000006",
 "eventSourceARN": "arn:aws:kinesis:us-east-1:123456789012:stream/lambda-stream",
 "isFinalInvokeForWindow": false,
 "isWindowTerminatedEarly": false
}

Configuration

You can configure tumbling windows when you create or update an event source mapping. To
configure a tumbling window, specify the window in seconds (TumblingWindowInSeconds). The
following example AWS Command Line Interface (AWS CLI) command creates a streaming event
source mapping that has a tumbling window of 120 seconds. The Lambda function defined for
aggregation and processing is named tumbling-window-example-function.

aws lambda create-event-source-mapping \
--event-source-arn arn:aws:kinesis:us-east-1:123456789012:stream/lambda-stream \
--function-name tumbling-window-example-function \
--starting-position TRIM_HORIZON \
--tumbling-window-in-seconds 120

Lambda determines tumbling window boundaries based on the time when records were inserted
into the stream. All records have an approximate timestamp available that Lambda uses in
boundary determinations.

Tumbling window aggregations do not support resharding. When a shard ends, Lambda considers
the current window to be closed, and any child shards will start their own window in a fresh state.

Stateful processing 1438

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-TumblingWindowInSeconds

AWS Lambda Developer Guide

When no new records are being added to the current window, Lambda waits for up to 2 minutes
before assuming that the window is over. This helps ensure that the function reads all records in
the current window, even if the records are added intermittently.

Tumbling windows fully support the existing retry policies maxRetryAttempts and
maxRecordAge.

Example Handler.py – Aggregation and processing

The following Python function demonstrates how to aggregate and then process your final state:

def lambda_handler(event, context):
 print('Incoming event: ', event)
 print('Incoming state: ', event['state'])

#Check if this is the end of the window to either aggregate or process.
 if event['isFinalInvokeForWindow']:
 # logic to handle final state of the window
 print('Destination invoke')
 else:
 print('Aggregate invoke')

#Check for early terminations
 if event['isWindowTerminatedEarly']:
 print('Window terminated early')

 #Aggregation logic
 state = event['state']
 for record in event['Records']:
 state[record['kinesis']['partitionKey']] = state.get(record['kinesis']
['partitionKey'], 0) + 1

 print('Returning state: ', state)
 return {'state': state}

Lambda parameters for Amazon Kinesis Data Streams event source
mappings

All Lambda event source mappings share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Kinesis.

Parameters 1439

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

BisectBatchOnFunct
ionError

N false none

DestinationConfig N N/A Amazon SQS queue
or Amazon SNS
topic destination for
discarded records.
For more informati
on, see Configuring
destinations for failed
invocations.

Enabled N true none

EventSourceArn Y N/A ARN of the data
stream or a stream
consumer

FunctionName Y N/A none

FunctionResponseTy
pes

N N/A To let your function
report specific
failures in a batch,
include the value
ReportBat
chItemFailures
in FunctionR
esponseTypes .
For more informati
on, see Configuri
ng partial batch
response with Kinesis
Data Streams and
Lambda.

Parameters 1440

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-BatchSize
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-BisectBatchOnFunctionError
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-BisectBatchOnFunctionError
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-DestinationConfig
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-Enabled
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-EventSourceArn
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-FunctionName
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-FunctionResponseTypes
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-FunctionResponseTypes

AWS Lambda Developer Guide

Parameter Required Default Notes

MaximumBa
tchingWindowInSeco
nds

N 0 none

MaximumRe
cordAgeInSeconds

N -1 -1 means infinite:
Lambda doesn't
discard records
(Kinesis Data Streams
data retention
settings still apply)

Minimum: -1

Maximum: 604,800

MaximumRe
tryAttempts

N -1 -1 means infinite:
failed records are
retried until the
record expires

Minimum: -1

Maximum: 10,000

ParallelizationFactor N 1 Maximum: 10

StartingPosition Y N/A AT_TIMESTAMP,
TRIM_HORIZON, or
LATEST

StartingPositionTi
mestamp

N N/A Only valid if
StartingPosition is set
to AT_TIMESTAMP.
The time from which
to start reading, in
Unix time seconds

Parameters 1441

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumBatchingWindowInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumBatchingWindowInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumBatchingWindowInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRecordAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRecordAgeInSeconds
https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRetryAttempts
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumRetryAttempts
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-ParallelizationFactor
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-StartingPosition
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-StartingPositionTimestamp
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-StartingPositionTimestamp

AWS Lambda Developer Guide

Parameter Required Default Notes

TumblingWindowInSe
conds

N N/A Minimum: 0

Maximum: 900

Using event filtering with a Kinesis event source

You can use event filtering to control which records from a stream or queue Lambda sends to your
function. For general information about how event filtering works, see the section called “Event
filtering”.

This section focuses on event filtering for Kinesis event sources.

Note

Kinesis event source mappings only support filtering on the data key.

Topics

• Kinesis event filtering basics

• Filtering Kinesis aggregated records

Kinesis event filtering basics

Suppose a producer is putting JSON formatted data into your Kinesis data stream. An example
record would look like the following, with the JSON data converted to a Base64 encoded string in
the data field.

{
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber": "49590338271490256608559692538361571095921575989136588898",
 "data":
 "eyJSZWNvcmROdW1iZXIiOiAiMDAwMSIsICJUaW1lU3RhbXAiOiAieXl5eS1tbS1kZFRoaDptbTpzcyIsICJSZXF1ZXN0Q29kZSI6ICJBQUFBIn0=",
 "approximateArrivalTimestamp": 1545084650.987

Event filtering 1442

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-TumblingWindowInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-TumblingWindowInSeconds

AWS Lambda Developer Guide

 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
}

As long as the data the producer puts into the stream is valid JSON, you can use event filtering to
filter records using the data key. Suppose a producer is putting records into your Kinesis stream in
the following JSON format.

{
 "record": 12345,
 "order": {
 "type": "buy",
 "stock": "ANYCO",
 "quantity": 1000
 }
}

To filter only those records where the order type is “buy,” the FilterCriteria object would be as
follows.

{
 "Filters": [
 {
 "Pattern": "{ \"data\" : { \"order\" : { \"type\" : [\"buy\"] } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "data": {
 "order": {
 "type": ["buy"]

Event filtering 1443

AWS Lambda Developer Guide

 }
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "data" : { "order" : { "type" : ["buy"] } } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kinesis:us-east-2:123456789012:stream/my-stream \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"order\" : { \"type
\" : [\"buy\"] } } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"order\" : { \"type
\" : [\"buy\"] } } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "data" : { "order" : { "type" : ["buy"] } } }'

Event filtering 1444

AWS Lambda Developer Guide

To properly filter events from Kinesis sources, both the data field and your filter criteria for the
data field must be in valid JSON format. If either field isn't in a valid JSON format, Lambda drops
the message or throws an exception. The following table summarizes the specific behavior:

Incoming data format Filter pattern format for
data properties

Resulting action

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for
data properties must be in a
valid JSON format.

Non-JSON Valid JSON Lambda drops the record.

Non-JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Non-JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for
data properties must be in a
valid JSON format.

Filtering Kinesis aggregated records

With Kinesis, you can aggregate multiple records into a single Kinesis Data Streams record to
increase your data throughput. Lambda can only apply filter criteria to aggregated records

Event filtering 1445

AWS Lambda Developer Guide

when you use Kinesis enhanced fan-out. Filtering aggregated records with standard Kinesis isn't
supported. When using enhanced fan-out, you configure a Kinesis dedicated-throughput consumer
to act as the trigger for your Lambda function. Lambda then filters the aggregated records and
passes only those records that meet your filter criteria.

To learn more about Kinesis record aggregation, refer to the Aggregation section on the Kinesis
Producer Library (KPL) Key Concepts page. To Learn more about using Lambda with Kinesis
enhanced fan-out, see Increasing real-time stream processing performance with Amazon Kinesis
Data Streams enhanced fan-out and AWS Lambda on the AWS compute blog.

Tutorial: Using Lambda with Kinesis Data Streams

In this tutorial, you create a Lambda function to consume events from a Amazon Kinesis data
stream.

1. Custom app writes records to the stream.

2. AWS Lambda polls the stream and, when it detects new records in the stream, invokes your
Lambda function.

3. AWS Lambda runs the Lambda function by assuming the execution role you specified at the time
you created the Lambda function.

Prerequisites

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Tutorial 1446

https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://aws.amazon.com/blogs/compute/increasing-real-time-stream-processing-performance-with-amazon-kinesis-data-streams-enhanced-fan-out-and-aws-lambda/
https://aws.amazon.com/blogs/compute/increasing-real-time-stream-processing-performance-with-amazon-kinesis-data-streams-enhanced-fan-out-and-aws-lambda/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Create the execution role

Create the execution role that gives your function permission to access AWS resources.

To create an execution role

1. Open the roles page in the IAM console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – AWS Lambda.

• Permissions – AWSLambdaKinesisExecutionRole.

• Role name – lambda-kinesis-role.

The AWSLambdaKinesisExecutionRole policy has the permissions that the function needs to read
items from Kinesis and write logs to CloudWatch Logs.

Create the function

Create a Lambda function that processes your Kinesis messages. The function code logs the event
ID and event data of the Kinesis record to CloudWatch Logs.

This tutorial uses the Node.js 22 runtime, but we've also provided example code in other runtime
languages. You can select the tab in the following box to see code for the runtime you're interested
in. The JavaScript code you'll use in this step is in the first example shown in the JavaScript tab.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

Tutorial 1447

https://console.aws.amazon.com/iam/home#/roles
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegrationSampleCode;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task FunctionHandler(KinesisEvent evnt, ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return;
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 throw;
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 }

Tutorial 1448

AWS Lambda Developer Guide

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent) error {
 if len(kinesisEvent.Records) == 0 {
 log.Printf("empty Kinesis event received")
 return nil
 }

 for _, record := range kinesisEvent.Records {

Tutorial 1449

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 log.Printf("processed Kinesis event with EventId: %v", record.EventID)
 recordDataBytes := record.Kinesis.Data
 recordDataText := string(recordDataBytes)
 log.Printf("record data: %v", recordDataText)
 // TODO: Do interesting work based on the new data
 }
 log.Printf("successfully processed %v records", len(kinesisEvent.Records))
 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

public class Handler implements RequestHandler<KinesisEvent, Void> {
 @Override
 public Void handleRequest(final KinesisEvent event, final Context context) {
 LambdaLogger logger = context.getLogger();
 if (event.getRecords().isEmpty()) {
 logger.log("Empty Kinesis Event received");

Tutorial 1450

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 return null;
 }
 for (KinesisEvent.KinesisEventRecord record : event.getRecords()) {
 try {
 logger.log("Processed Event with EventId: "+record.getEventID());
 String data = new String(record.getKinesis().getData().array());
 logger.log("Data:"+ data);
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex) {
 logger.log("An error occurred:"+ex.getMessage());
 throw ex;
 }
 }
 logger.log("Successfully processed:"+event.getRecords().size()+"
 records");
 return null;
 }

}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);

Tutorial 1451

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 throw err;
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Consuming a Kinesis event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);

Tutorial 1452

AWS Lambda Developer Guide

 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 throw err;
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 }
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Kinesis\KinesisHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

Tutorial 1453

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

class Handler extends KinesisHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleKinesis(KinesisEvent $event, Context $context): void
 {
 $this->logger->info("Processing records");
 $records = $event->getRecords();
 foreach ($records as $record) {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Tutorial 1454

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import base64
def lambda_handler(event, context):

 for record in event['Records']:
 try:
 print(f"Processed Kinesis Event - EventID: {record['eventID']}")
 record_data = base64.b64decode(record['kinesis']
['data']).decode('utf-8')
 print(f"Record Data: {record_data}")
 # TODO: Do interesting work based on the new data
 except Exception as e:
 print(f"An error occurred {e}")
 raise e
 print(f"Successfully processed {len(event['Records'])} records.")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Tutorial 1455

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

Consuming an Kinesis event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue => err
 $stderr.puts "An error occurred #{err}"
 raise err
 end
 end
 puts "Successfully processed #{event['Records'].length} records."
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('UTF-8')
 # Placeholder for actual async work
 # You can use Ruby's asynchronous programming tools like async/await or fibers
 here.
 return data
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using Rust.

Tutorial 1456

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::kinesis::KinesisEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) -> Result<(), Error>
 {
 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 event.payload.records.iter().for_each(|record| {
 tracing::info!("EventId:
 {}",record.event_id.as_deref().unwrap_or_default());

 let record_data = std::str::from_utf8(&record.kinesis.data);

 match record_data {
 Ok(data) => {
 // log the record data
 tracing::info!("Data: {}", data);
 }
 Err(e) => {
 tracing::error!("Error: {}", e);
 }
 }
 });

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)

Tutorial 1457

AWS Lambda Developer Guide

 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

To create the function

1. Create a directory for the project, and then switch to that directory.

mkdir kinesis-tutorial
cd kinesis-tutorial

2. Copy the sample JavaScript code into a new file named index.js.

3. Create a deployment package.

zip function.zip index.js

4. Create a Lambda function with the create-function command.

aws lambda create-function --function-name ProcessKinesisRecords \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs22.x \
--role arn:aws:iam::111122223333:role/lambda-kinesis-role

Test the Lambda function

Invoke your Lambda function manually using the invoke AWS Lambda CLI command and a
sample Kinesis event.

To test the Lambda function

1. Copy the following JSON into a file and save it as input.txt.

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",

Tutorial 1458

AWS Lambda Developer Guide

 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1545084650.987
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::111122223333:role/lambda-kinesis-
role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:111122223333:stream/
lambda-stream"
 }
]
}

2. Use the invoke command to send the event to the function.

aws lambda invoke --function-name ProcessKinesisRecords \
--cli-binary-format raw-in-base64-out \
--payload file://input.txt outputfile.txt

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

The response is saved to out.txt.

Create a Kinesis stream

Use the create-stream command to create a stream.

aws kinesis create-stream --stream-name lambda-stream --shard-count 1

Run the following describe-stream command to get the stream ARN.

Tutorial 1459

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

aws kinesis describe-stream --stream-name lambda-stream

You should see the following output:

{
 "StreamDescription": {
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {
 "StartingHashKey": "0",
 "EndingHashKey": "340282366920746074317682119384634633455"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49591073947768692513481539594623130411957558361251844610"
 }
 }
],
 "StreamARN": "arn:aws:kinesis:us-east-1:111122223333:stream/lambda-stream",
 "StreamName": "lambda-stream",
 "StreamStatus": "ACTIVE",
 "RetentionPeriodHours": 24,
 "EnhancedMonitoring": [
 {
 "ShardLevelMetrics": []
 }
],
 "EncryptionType": "NONE",
 "KeyId": null,
 "StreamCreationTimestamp": 1544828156.0
 }
}

You use the stream ARN in the next step to associate the stream with your Lambda function.

Add an event source in AWS Lambda

Run the following AWS CLI add-event-source command.

aws lambda create-event-source-mapping --function-name ProcessKinesisRecords \
--event-source arn:aws:kinesis:us-east-1:111122223333:stream/lambda-stream \

Tutorial 1460

AWS Lambda Developer Guide

--batch-size 100 --starting-position LATEST

Note the mapping ID for later use. You can get a list of event source mappings by running the
list-event-source-mappings command.

aws lambda list-event-source-mappings --function-name ProcessKinesisRecords \
--event-source arn:aws:kinesis:us-east-1:111122223333:stream/lambda-stream

In the response, you can verify the status value is enabled. Event source mappings can be disabled
to pause polling temporarily without losing any records.

Test the setup

To test the event source mapping, add event records to your Kinesis stream. The --data value is a
string that the CLI encodes to base64 prior to sending it to Kinesis. You can run the same command
more than once to add multiple records to the stream.

aws kinesis put-record --stream-name lambda-stream --partition-key 1 \
--data "Hello, this is a test."

Lambda uses the execution role to read records from the stream. Then it invokes your Lambda
function, passing in batches of records. The function decodes data from each record and logs it,
sending the output to CloudWatch Logs. View the logs in the CloudWatch console.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

Tutorial 1461

https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the Kinesis stream

1. Sign in to the AWS Management Console and open the Kinesis console at https://
console.aws.amazon.com/kinesis.

2. Select the stream you created.

3. Choose Actions, Delete.

4. Enter delete in the text input field.

5. Choose Delete.

Tutorial 1462

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

AWS Lambda Developer Guide

Using Lambda with Kubernetes

You can deploy and manage Lambda functions with the Kubernetes API using AWS Controllers for
Kubernetes (ACK) or Crossplane.

AWS Controllers for Kubernetes (ACK)

You can use ACK to deploy and manage AWS resources from the Kubernetes API. Through ACK,
AWS provides open-source custom controllers for AWS services such as Lambda, Amazon Elastic
Container Registry (Amazon ECR), Amazon Simple Storage Service (Amazon S3), and Amazon
SageMaker AI. Each supported AWS service has its own custom controller. In your Kubernetes
cluster, install a controller for each AWS service that you want to use. Then, create a Custom
Resource Definition (CRD) to define the AWS resources.

We recommend that you use Helm 3.8 or later to install ACK controllers. Every ACK controller
comes with its own Helm chart, which installs the controller, CRDs, and Kubernetes RBAC rules. For
more information, see Install an ACK Controller in the ACK documentation.

After you create the ACK custom resource, you can use it like any other built-in Kubernetes object.
For example, you can deploy and manage Lambda functions with your preferred Kubernetes
toolchains, including kubectl.

Here are some example use cases for provisioning Lambda functions through ACK:

• Your organization uses role-based access control (RBAC) and IAM roles for service accounts to
create permissions boundaries. With ACK, you can reuse this security model for Lambda without
having to create new users and policies.

• Your organization has a DevOps process to deploy resources into an Amazon Elastic Kubernetes
Service (Amazon EKS) cluster using Kubernetes manifests. With ACK, you can use a manifest to
provision Lambda functions without creating separate infrastructure as code templates.

For more information about using ACK, see the Lambda tutorial in the ACK documentation.

Crossplane

Crossplane is an open-source Cloud Native Computing Foundation (CNCF) project that uses
Kubernetes to manage cloud infrastructure resources. With Crossplane, developers can request
infrastructure without needing to understand its complexities. Platform teams retain control over
how the infrastructure is provisioned and managed.

Kubernetes 1463

https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://docs.crossplane.io/latest/packages/providers/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://helm.sh/docs/intro/install/
https://aws-controllers-k8s.github.io/community/docs/user-docs/install/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://aws-controllers-k8s.github.io/community/docs/tutorials/lambda-oci-example/
https://docs.crossplane.io/latest/packages/providers/

AWS Lambda Developer Guide

Using Crossplane, you can deploy and manage Lambda functions with your preferred Kubernetes
toolchains such as kubectl, and any CI/CD pipeline that can deploy manifests to Kubernetes. Here
are some example use cases for provisioning Lambda functions through Crossplane:

• Your organization wants to enforce compliance by ensuring that Lambda functions have the
correct tags. Platform teams can use Crossplane Compositions to define this policy through API
abstractions. Developers can then use these abstractions to deploy Lambda functions with tags.

• Your project uses GitOps with Kubernetes. In this model, Kubernetes continuously reconciles
the git repository (desired state) with the resources running inside the cluster (current state). If
there are differences, the GitOps process automatically makes changes to the cluster. You can
use GitOps with Kubernetes for deploying and managing Lambda functions through Crossplane,
using familiar Kubernetes tools and concepts such as CRDs and Controllers.

To learn more about using Crossplane with Lambda, see the following:

• AWS Blueprints for Crossplane: This repository includes examples of how to use Crossplane to
deploy AWS resources, including Lambda functions.

Note

AWS Blueprints for Crossplane are under active development and should not be used in
production.

• Deploying Lambda with Amazon EKS and Crossplane: This video demonstrates an advanced
example of deploying an AWS serverless architecture with Crossplane, exploring the design from
both the developer and platform perspectives.

Crossplane 1464

https://kubernetes.io/docs/reference/kubectl/
https://docs.crossplane.io/latest/get-started/get-started-with-composition/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/concepts/architecture/controller/
https://github.com/awslabs/crossplane-on-eks/blob/main/examples/upbound-aws-provider/README.md#deploy-the-examples
https://www.youtube.com/watch?v=m-9KLq29K4k

AWS Lambda Developer Guide

Using Lambda with Amazon MQ

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ. A message
broker enables software applications and components to communicate using various programming
languages, operating systems, and formal messaging protocols through either topic or queue event
destinations.

Amazon MQ can also manage Amazon Elastic Compute Cloud (Amazon EC2) instances on your
behalf by installing ActiveMQ or RabbitMQ brokers and by providing different network topologies
and other infrastructure needs.

You can use a Lambda function to process records from your Amazon MQ message broker. Lambda
invokes your function through an event source mapping, a Lambda resource that reads messages
from your broker and invokes the function synchronously.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

The Amazon MQ event source mapping has the following configuration restrictions:

• Concurrency – Lambda functions that use an Amazon MQ event source mapping have a
default maximum concurrency setting. For ActiveMQ, the Lambda service limits the number
of concurrent execution environments to five per Amazon MQ event source mapping. For
RabbitMQ, the number of concurrent execution environments is limited to 1 per Amazon MQ
event source mapping. Even if you change your function's reserved or provisioned concurrency
settings, the Lambda service won't make more execution environments available. To request an
increase in the default maximum concurrency for a single Amazon MQ event source mapping,

MQ 1465

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://activemq.apache.org/
https://www.rabbitmq.com
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

AWS Lambda Developer Guide

contact Support with the event source mapping UUID, as well as the region. Because increases
are applied at the specific event source mapping level, not the account or region level, you need
to manually request a scaling increase for each event source mapping.

• Cross account – Lambda does not support cross-account processing. You cannot use Lambda to
process records from an Amazon MQ message broker that is in a different AWS account.

• Authentication – For ActiveMQ, only the ActiveMQ SimpleAuthenticationPlugin is supported. For
RabbitMQ, only the PLAIN authentication mechanism is supported. Users must use AWS Secrets
Manager to manage their credentials. For more information about ActiveMQ authentication, see
Integrating ActiveMQ brokers with LDAP in the Amazon MQ Developer Guide.

• Connection quota – Brokers have a maximum number of allowed connections per wire-level
protocol. This quota is based on the broker instance type. For more information, see the Brokers
section of Quotas in Amazon MQ in the Amazon MQ Developer Guide.

• Connectivity – You can create brokers in a public or private virtual private cloud (VPC). For
private VPCs, your Lambda function needs access to the VPC to receive messages. For more
information, see the section called “Configure network security” later in this section.

• Event destinations – Only queue destinations are supported. However, you can use a virtual
topic, which behaves as a topic internally while interacting with Lambda as a queue. For more
information, see Virtual Destinations on the Apache ActiveMQ website, and Virtual Hosts on the
RabbitMQ website.

• Network topology – For ActiveMQ, only one single-instance or standby broker is supported per
event source mapping. For RabbitMQ, only one single-instance broker or cluster deployment is
supported per event source mapping. Single-instance brokers require a failover endpoint. For
more information about these broker deployment modes, see Active MQ Broker Architecture and
Rabbit MQ Broker Architecturein the Amazon MQ Developer Guide.

• Protocols – Supported protocols depend on the type of Amazon MQ integration.

• For ActiveMQ integrations, Lambda consumes messages using the OpenWire/Java Message
Service (JMS) protocol. No other protocols are supported for consuming messages. Within the
JMS protocol, only TextMessage and BytesMessage are supported. Lambda also supports
JMS custom properties. For more information about the OpenWire protocol, see OpenWire on
the Apache ActiveMQ website.

• For RabbitMQ integrations, Lambda consumes messages using the AMQP 0-9-1 protocol.
No other protocols are supported for consuming messages. For more information about
RabbitMQ's implementation of the AMQP 0-9-1 protocol, see AMQP 0-9-1 Complete
Reference Guide on the RabbitMQ website.

MQ 1466

https://activemq.apache.org/security#simple-authentication-plugin
https://www.rabbitmq.com/access-control.html#mechanisms
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/security-authentication-authorization.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-limits.html#broker-limits
https://activemq.apache.org/virtual-destinations
https://www.rabbitmq.com/vhosts.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-broker-architecture.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/rabbitmq-broker-architecture.html
https://activemq.apache.org/components/cms/api_docs/activemqcpp-3.6.0/html/classactivemq_1_1commands_1_1_active_m_q_text_message.html
https://activemq.apache.org/components/cms/api_docs/activemqcpp-3.9.0/html/classactivemq_1_1commands_1_1_active_m_q_bytes_message.html
https://activemq.apache.org/openwire.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html

AWS Lambda Developer Guide

Lambda automatically supports the latest versions of ActiveMQ and RabbitMQ that Amazon MQ
supports. For the latest supported versions, see Amazon MQ release notes in the Amazon MQ
Developer Guide.

Note

By default, Amazon MQ has a weekly maintenance window for brokers. During that window
of time, brokers are unavailable. For brokers without standby, Lambda cannot process any
messages during that window.

Topics

• Understanding the Lambda consumer group for Amazon MQ

• Configuring Amazon MQ event source for Lambda

• Event source mapping parameters

• Filter events from an Amazon MQ event source

• Troubleshoot Amazon MQ event source mapping errors

Understanding the Lambda consumer group for Amazon MQ

To interact with Amazon MQ, Lambda creates a consumer group which can read from your Amazon
MQ brokers. The consumer group is created with the same ID as the event source mapping UUID.

For Amazon MQ event sources, Lambda batches records together and sends them to your function
in a single payload. To control behavior, you can configure the batching window and batch size.
Lambda pulls messages until it processes the payload size maximum of 6 MB, the batching window
expires, or the number of records reaches the full batch size. For more information, see Batching
behavior.

The consumer group retrieves the messages as a BLOB of bytes, base64-encodes them into a single
JSON payload, and then invokes your function. If your function returns an error for any of the
messages in a batch, Lambda retries the whole batch of messages until processing succeeds or the
messages expire.

Understanding the Lambda consumer group for Amazon MQ 1467

https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-release-notes.html

AWS Lambda Developer Guide

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

You can monitor a given function's concurrency usage using the ConcurrentExecutions
metric in Amazon CloudWatch. For more information about concurrency, see the section called
“Configuring reserved concurrency”.

Example Amazon MQ record events

ActiveMQ

{
 "eventSource": "aws:mq",
 "eventSourceArn": "arn:aws:mq:us-
east-2:111122223333:broker:test:b-9bcfa592-423a-4942-879d-eb284b418fc8",
 "messages": [
 {
 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
east-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/text-message",
 "deliveryMode": 1,
 "replyTo": null,
 "type": null,
 "expiration": "60000",
 "priority": 1,
 "correlationId": "myJMSCoID",
 "redelivered": false,
 "destination": {
 "physicalName": "testQueue"
 },
 "data":"QUJDOkFBQUE=",
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959,
 "properties": {
 "index": "1",

Understanding the Lambda consumer group for Amazon MQ 1468

AWS Lambda Developer Guide

 "doAlarm": "false",
 "myCustomProperty": "value"
 }
 },
 {
 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
east-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/bytes-message",
 "deliveryMode": 1,
 "replyTo": null,
 "type": null,
 "expiration": "60000",
 "priority": 2,
 "correlationId": "myJMSCoID1",
 "redelivered": false,
 "destination": {
 "physicalName": "testQueue"
 },
 "data":"LQaGQ82S48k=",
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959,
 "properties": {
 "index": "1",
 "doAlarm": "false",
 "myCustomProperty": "value"
 }
 }
]
}

RabbitMQ

{
 "eventSource": "aws:rmq",
 "eventSourceArn": "arn:aws:mq:us-
east-2:111122223333:broker:pizzaBroker:b-9bcfa592-423a-4942-879d-eb284b418fc8",
 "rmqMessagesByQueue": {
 "pizzaQueue::/": [
 {
 "basicProperties": {
 "contentType": "text/plain",

Understanding the Lambda consumer group for Amazon MQ 1469

AWS Lambda Developer Guide

 "contentEncoding": null,
 "headers": {
 "header1": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 49
]
 },
 "header2": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 50
]
 },
 "numberInHeader": 10
 },
 "deliveryMode": 1,
 "priority": 34,
 "correlationId": null,
 "replyTo": null,
 "expiration": "60000",
 "messageId": null,
 "timestamp": "Jan 1, 1970, 12:33:41 AM",
 "type": null,
 "userId": "AIDACKCEVSQ6C2EXAMPLE",
 "appId": null,
 "clusterId": null,
 "bodySize": 80
 },
 "redelivered": false,
 "data": "eyJ0aW1lb3V0IjowLCJkYXRhIjoiQ1pybWYwR3c4T3Y0YnFMUXhENEUifQ=="
 }
]
 }
}

Understanding the Lambda consumer group for Amazon MQ 1470

AWS Lambda Developer Guide

Note

In the RabbitMQ example, pizzaQueue is the name of the RabbitMQ queue, and / is the
name of the virtual host. When receiving messages, the event source lists messages under
pizzaQueue::/.

Configuring Amazon MQ event source for Lambda

Topics

• Configure network security

• Create the event source mapping

Configure network security

To give Lambda full access to Amazon MQ through your event source mapping, either your broker
must use a public endpoint (public IP address), or you must provide access to the Amazon VPC you
created the broker in.

When you use Amazon MQ with Lambda, create AWS PrivateLink VPC endpoints that provide your
function access to the resources in your Amazon VPC.

Note

AWS PrivateLink VPC endpoints are required for functions with event source mappings that
use the default (on-demand) mode for event pollers. If your event source mapping uses
provisioned mode, you don't need to configure AWS PrivateLink VPC endpoints.

Create an endpoint to provide access to the following resources:

• Lambda — Create an endpoint for the Lambda service principal.

• AWS STS — Create an endpoint for the AWS STS in order for a service principal to assume a role
on your behalf.

• Secrets Manager — If your broker uses Secrets Manager to store credentials, create an endpoint
for Secrets Manager.

Configure event source 1471

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html

AWS Lambda Developer Guide

Alternatively, configure a NAT gateway on each public subnet in the Amazon VPC. For more
information, see the section called “Internet access for VPC functions”.

When you create an event source mapping for Amazon MQ, Lambda checks whether Elastic
Network Interfaces (ENIs) are already present for the subnets and security groups configured for
your Amazon VPC. If Lambda finds existing ENIs, it attempts to re-use them. Otherwise, Lambda
creates new ENIs to connect to the event source and invoke your function.

Note

Lambda functions always run inside VPCs owned by the Lambda service. Your function's
VPC configuration does not affect the event source mapping. Only the networking
configuration of the event source's determines how Lambda connects to your event source.

Configure the security groups for the Amazon VPC containing your broker. By default, Amazon
MQ uses the following ports: 61617 (Amazon MQ for ActiveMQ), and 5671 (Amazon MQ for
RabbitMQ).

• Inbound rules – Allow all traffic on the default broker port for the security group associated
with your event source. Alternatively, you can use a self-referencing security group rule to allow
access from instances within the same security group.

• Outbound rules – Allow all traffic on port 443 for external destinations if your function needs to
communicate with AWS services. Alternatively, you can also use a self-referencing security group
rule to limit access to the broker if you don't need to communicate with other AWS services.

• Amazon VPC endpoint inbound rules — If you are using an Amazon VPC endpoint, the security
group associated with your Amazon VPC endpoint must allow inbound traffic on port 443 from
the broker security group.

If your broker uses authentication, you can also restrict the endpoint policy for the Secrets Manager
endpoint. To call the Secrets Manager API, Lambda uses your function role, not the Lambda service
principal.

Example VPC endpoint policy — Secrets Manager endpoint

{
 "Statement": [
 {

Configure event source 1472

AWS Lambda Developer Guide

 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws::iam::123456789012:role/my-role"
]
 },
 "Resource": "arn:aws::secretsmanager:us-west-2:123456789012:secret:my-
secret"
 }
]
 }

When you use Amazon VPC endpoints, AWS routes your API calls to invoke your function using
the endpoint's Elastic Network Interface (ENI). The Lambda service principal needs to call
lambda:InvokeFunction on any roles and functions that use those ENIs.

By default, Amazon VPC endpoints have open IAM policies that allow broad access to resources.
Best practice is to restrict these policies to perform the needed actions using that endpoint.
To ensure that your event source mapping is able to invoke your Lambda function, the VPC
endpoint policy must allow the Lambda service principal to call sts:AssumeRole and
lambda:InvokeFunction. Restricting your VPC endpoint policies to allow only API calls
originating within your organization prevents the event source mapping from functioning properly,
so "Resource": "*" is required in these policies.

The following example VPC endpoint policies show how to grant the required access to the
Lambda service principal for the AWS STS and Lambda endpoints.

Example VPC Endpoint policy — AWS STS endpoint

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }

Configure event source 1473

AWS Lambda Developer Guide

]
 }

Example VPC Endpoint policy — Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
 }

Create the event source mapping

Create an event source mapping to tell Lambda to send records from an Amazon MQ broker to a
Lambda function. You can create multiple event source mappings to process the same data with
multiple functions, or to process items from multiple sources with a single function.

To configure your function to read from Amazon MQ, add the required permissions and create an
MQ trigger in the Lambda console.

To read records from an Amazon MQ broker, your Lambda function needs the following
permissions. You grant Lambda permission to interact with your Amazon MQ broker and its
underlying resouces by adding permission statements to your function execution role:

• mq:DescribeBroker

• secretsmanager:GetSecretValue

• ec2:CreateNetworkInterface

• ec2:DeleteNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

Configure event source 1474

https://docs.aws.amazon.com/amazon-mq/latest/api-reference/brokers-broker-id.html#brokers-broker-id-http-methods
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSubnets.html

AWS Lambda Developer Guide

• ec2:DescribeVpcs

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

Note

When using an encrypted customer managed key, add the kms:Decrypt permission as
well.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Create inline policy.

6. In the Policy editor, choose JSON. Enter the following policy. Your function needs these
permissions to read from an Amazon MQ broker.

JSON

{
 "Version": "2012-10-17",

Configure event source 1475

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#clusters-clusterarn-bootstrap-brokersget
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "mq:DescribeBroker",
 "secretsmanager:GetSecretValue",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
 }

Note

When using an encrypted customer managed key, you must also add the
kms:Decrypt permission.

7. Choose Next. Enter a policy name and then choose Create policy.

8. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

9. Choose the MQ trigger type.

10. Configure the required options, and then choose Add.

Configure event source 1476

AWS Lambda Developer Guide

Lambda supports the following options for Amazon MQ event sources:

• MQ broker – Select an Amazon MQ broker.

• Batch size – Set the maximum number of messages to retrieve in a single batch.

• Queue name – Enter the Amazon MQ queue to consume.

• Source access configuration – Enter virtual host information and the Secrets Manager secret
that stores your broker credentials.

• Enable trigger – Disable the trigger to stop processing records.

To enable or disable the trigger (or delete it), choose the MQ trigger in the designer. To reconfigure
the trigger, use the event source mapping API operations.

Event source mapping parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Amazon MQ and RabbitMQ.

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

Enabled N true none

FunctionName Y N/A none

FilterCriteria N N/A Control which events
Lambda sends to
your function

MaximumBa
tchingWindowInSeco
nds

N 500 ms Batching behavior

Queues N N/A The name of the
Amazon MQ broker
destination queue to
consume.

Parameters 1477

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Parameter Required Default Notes

SourceAccessConfig
urations

N N/A For ActiveMQ,
BASIC_AUTH
credentials. For
RabbitMQ, can
contain both
BASIC_AUTH
credentials and
VIRTUAL_HOST
information.

Filter events from an Amazon MQ event source

You can use event filtering to control which records from a stream or queue Lambda sends to your
function. For general information about how event filtering works, see the section called “Event
filtering”.

This section focuses on event filtering for Amazon MQ event sources.

Note

Amazon MQ event source mappings only support filtering on the data key.

Topics

• Amazon MQ event filtering basics

Amazon MQ event filtering basics

Suppose your Amazon MQ message queue contains messages either in valid JSON format or as
plain strings. An example record would look like the following, with the data converted to a Base64
encoded string in the data field.

ActiveMQ

{

Event filtering 1478

AWS Lambda Developer Guide

 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
east-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/text-message",
 "deliveryMode": 1,
 "replyTo": null,
 "type": null,
 "expiration": "60000",
 "priority": 1,
 "correlationId": "myJMSCoID",
 "redelivered": false,
 "destination": {
 "physicalName": "testQueue"
 },
 "data":"QUJDOkFBQUE=",
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959,
 "properties": {
 "index": "1",
 "doAlarm": "false",
 "myCustomProperty": "value"
 }
}

RabbitMQ

{
 "basicProperties": {
 "contentType": "text/plain",
 "contentEncoding": null,
 "headers": {
 "header1": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 49
]
 },
 "header2": {
 "bytes": [

Event filtering 1479

AWS Lambda Developer Guide

 118,
 97,
 108,
 117,
 101,
 50
]
 },
 "numberInHeader": 10
 },
 "deliveryMode": 1,
 "priority": 34,
 "correlationId": null,
 "replyTo": null,
 "expiration": "60000",
 "messageId": null,
 "timestamp": "Jan 1, 1970, 12:33:41 AM",
 "type": null,
 "userId": "AIDACKCEVSQ6C2EXAMPLE",
 "appId": null,
 "clusterId": null,
 "bodySize": 80
 },
 "redelivered": false,
 "data": "eyJ0aW1lb3V0IjowLCJkYXRhIjoiQ1pybWYwR3c4T3Y0YnFMUXhENEUifQ=="
}

For both Active MQ and Rabbit MQ brokers, you can use event filtering to filter records using the
data key. Suppose your Amazon MQ queue contains messages in the following JSON format.

{
 "timeout": 0,
 "IPAddress": "203.0.113.254"
}

To filter only those records where the timeout field is greater than 0, the FilterCriteria
object would be as follows.

{
 "Filters": [
 {

Event filtering 1480

AWS Lambda Developer Guide

 "Pattern": "{ \"data\" : { \"timeout\" : [{ \"numeric\": [\">\",
 0] } }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "data": {
 "timeout": [{ "numeric": [">", 0] }]
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

to add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "data" : { "timeout" : [{ "numeric": [">", 0] }] } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:mq:us-east-2:123456789012:broker:my-
broker:b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"timeout\" :
 [{ \"numeric\": [\">\", 0] }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"timeout\" :
 [{ \"numeric\": [\">\", 0] }] } }"}]}'

Event filtering 1481

AWS Lambda Developer Guide

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"timeout\" :
 [{ \"numeric\": [\">\", 0] }] } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "data" : { "timeout" : [{ "numeric": [">", 0] }] } }'

With Amazon MQ, you can also filter records where the message is a plain string. Suppose you
want to process only records where the message begins with "Result: ". The FilterCriteria
object would look as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"data\" : [{ \"prefix\": \"Result: \" }] }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "data": [
 {
 "prefix": "Result: "
 }
]
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Event filtering 1482

AWS Lambda Developer Guide

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "data" : [{ "prefix": "Result: " }] }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:mq:us-east-2:123456789012:broker:my-
broker:b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : [{ \"prefix\":
 \"Result: \" }] }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : [{ \"prefix\":
 \"Result: \" }] }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "data" : [{ "prefix": "Result " }] }'

Amazon MQ messages must be UTF-8 encoded strings, either plain strings or in JSON format.
That's because Lambda decodes Amazon MQ byte arrays into UTF-8 before applying filter criteria.
If your messages use another encoding, such as UTF-16 or ASCII, or if the message format doesn't
match the FilterCriteria format, Lambda processes metadata filters only. The following table
summarizes the specific behavior:

Event filtering 1483

AWS Lambda Developer Guide

Incoming message format Filter pattern format for
message properties

Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Plain string Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Non-UTF-8 encoded string JSON, plain string, or no
pattern

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Troubleshoot Amazon MQ event source mapping errors

When a Lambda function encounters an unrecoverable error, your Amazon MQ consumer stops
processing records. Any other consumers can continue processing, provided that they do not
encounter the same error. To determine the potential cause of a stopped consumer, check the
StateTransitionReason field in the return details of your EventSourceMapping for one of
the following codes:

Troubleshoot 1484

AWS Lambda Developer Guide

ESM_CONFIG_NOT_VALID

The event source mapping configuration is not valid.

EVENT_SOURCE_AUTHN_ERROR

Lambda failed to authenticate the event source.

EVENT_SOURCE_AUTHZ_ERROR

Lambda does not have the required permissions to access the event source.

FUNCTION_CONFIG_NOT_VALID

The function's configuration is not valid.

Records also go unprocessed if Lambda drops them due to their size. The size limit for Lambda
records is 6 MB. To redeliver messages upon function error, you can use a dead-letter queue (DLQ).
For more information, see Message Redelivery and DLQ Handling on the Apache ActiveMQ website
and Reliability Guide on the RabbitMQ website.

Note

Lambda does not support custom redelivery policies. Instead, Lambda uses a policy with
the default values from the Redelivery Policy page on the Apache ActiveMQ website, with
maximumRedeliveries set to 6.

Troubleshoot 1485

https://activemq.apache.org/message-redelivery-and-dlq-handling
https://www.rabbitmq.com/reliability.html
https://activemq.apache.org/redelivery-policy

AWS Lambda Developer Guide

Using AWS Lambda with Amazon RDS

You can connect a Lambda function to an Amazon Relational Database Service (Amazon RDS)
database directly and through an Amazon RDS Proxy. Direct connections are useful in simple
scenarios, and proxies are recommended for production. A database proxy manages a pool of
shared database connections which enables your function to reach high concurrency levels without
exhausting database connections.

We recommend using Amazon RDS Proxy for Lambda functions that make frequent short database
connections, or open and close large numbers of database connections. For more information, see
Automatically connecting a Lambda function and a DB instance in the Amazon Relational Database
Service Developer Guide.

Tip

To quickly connect a Lambda function to an Amazon RDS database, you can use the in-
console guided wizard. To open the wizard, do the following:

1. Open the Functions page of the Lambda console.

2. Select the function you want to connect a database to.

3. On the Configuration tab, select RDS databases.

4. Choose Connect to RDS database.

After you've connected your function to a database, you can create a proxy by choosing
Add proxy.

Configuring your function to work with RDS resources

In the Lambda console, you can provision, and configure, Amazon RDS database instances and
proxy resources. You can do this by navigating to RDS databases under the Configuration tab.
Alternatively, you can also create and configure connections to Lambda functions in the Amazon
RDS console. When configuring an RDS database instance to use with Lambda, note the following
criteria:

• To connect to a database, your function must be in the same Amazon VPC where your database
runs.

RDS 1486

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/lambda-rds-connect.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/lambda-rds-connect.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

• You can use Amazon RDS databases with MySQL, MariaDB, PostgreSQL, or Microsoft SQL Server
engines.

• You can also use Aurora DB clusters with MySQL or PostgreSQL engines.

• You need to provide a Secrets Manager secret for database authentication.

• An IAM role must provide permission to use the secret, and a trust policy must allow Amazon
RDS to assume the role.

• The IAM principal that uses the console to configure the Amazon RDS resource, and connect it to
your function must have the following permissions:

Example permissions policy

Note

You need the Amazon RDS Proxy permissions only if you configure an Amazon RDS Proxy
to manage a pool of your database connections.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateSecurityGroup",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces"
],
 "Resource": "*"
 },
 {

Configuring your function to work with RDS resources 1487

AWS Lambda Developer Guide

 "Effect": "Allow",
 "Action": [
 "rds-db:connect",
 "rds:CreateDBProxy",
 "rds:CreateDBInstance",
 "rds:CreateDBSubnetGroup",
 "rds:DescribeDBClusters",
 "rds:DescribeDBInstances",
 "rds:DescribeDBSubnetGroups",
 "rds:DescribeDBProxies",
 "rds:DescribeDBProxyTargets",
 "rds:DescribeDBProxyTargetGroups",
 "rds:RegisterDBProxyTargets",
 "rds:ModifyDBInstance",
 "rds:ModifyDBProxy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:ListFunctions",
 "lambda:UpdateFunctionConfiguration"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:CreatePolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds",
 "secretsmanager:CreateSecret"

Configuring your function to work with RDS resources 1488

AWS Lambda Developer Guide

],
 "Resource": "*"
 }
]
}

Amazon RDS charges an hourly rate for proxies based on the database instance size, see RDS Proxy
pricing for details. For more information on proxy connections in general, see Using Amazon RDS
Proxy in the Amazon RDS User Guide.

SSL/TLS requirements for Amazon RDS connections

To make secure SSL/TLS connections to an Amazon RDS database instance, your Lambda function
must verify the database server's identity using a trusted certificate. Lambda handles these
certificates differently depending on your deployment package type:

• .zip file archives: Lambda's managed runtimes include both Certificate Authority (CA) certificates
and the certificates required for connections to Amazon RDS database instances. It might take
up to 4 weeks for Amazon RDS certificates for new AWS Regions to be added to the Lambda
managed runtimes.

• Container images: AWS base images include only CA certificates. If your function connects to an
Amazon RDS database instance, you must include the appropriate certificates in your container
image. In your Dockerfile, download the certificate bundle that corresponds with the AWS Region
where you host your database. Example:

RUN curl https://truststore.pki.rds.amazonaws.com/us-east-1/us-east-1-bundle.pem -o /
us-east-1-bundle.pem

This command downloads the Amazon RDS certificate bundle and saves it at the absolute path
/us-east-1-bundle.pem in your container's root directory. When configuring the database
connection in your function code, you must reference this exact path. Example:

Node.js

The readFileSync function is required because Node.js database clients need the actual
certificate content in memory, not just the path to the certificate file. Without readFileSync,
the client interprets the path string as certificate content, resulting in a "self-signed certificate
in certificate chain" error.

Configuring your function to work with RDS resources 1489

https://aws.amazon.com/rds/proxy/pricing/
https://aws.amazon.com/rds/proxy/pricing/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html#UsingWithRDS.SSL.CertificatesDownload
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html#UsingWithRDS.SSL.CertificatesDownload

AWS Lambda Developer Guide

Example Node.js connection config for OCI function

import { readFileSync } from 'fs';

// ...

let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: {
 ca: readFileSync('/us-east-1-bundle.pem') // Load RDS certificate content
 from file into memory
 }
};

Python

Example Python connection config for OCI function

connection = pymysql.connect(
 host=proxy_host_name,
 user=db_username,
 password=token,
 db=db_name,
 port=port,
 ssl={'ca': '/us-east-1-bundle.pem'} #Path to the certificate in container
)

Java

For Java functions using JDBC connections, the connection string must include:

• useSSL=true

• requireSSL=true

• An sslCA parameter that points to the location of the Amazon RDS certificate in the
container image

Example Java connection string for OCI function

// Define connection string

Configuring your function to work with RDS resources 1490

AWS Lambda Developer Guide

String connectionString = String.format("jdbc:mysql://%s:%s/%s?
useSSL=true&requireSSL=true&sslCA=/us-east-1-bundle.pem", // Path to the certificate
 in container
 System.getenv("ProxyHostName"),
 System.getenv("Port"),
 System.getenv("DBName"));

.NET

Example .NET connection string for MySQL connection in OCI function

/// Build the Connection String with the Token
string connectionString =
 $"Server={Environment.GetEnvironmentVariable("RDS_ENDPOINT")};" +
 $"Port={Environment.GetEnvironmentVariable("RDS_PORT")};" +

 $"Uid={Environment.GetEnvironmentVariable("RDS_USERNAME")};" +
 $"Pwd={authToken};" +
 "SslMode=Required;" +
 "SslCa=/us-east-1-bundle.pem"; // Path to the certificate
 in container

Go

For Go functions using MySQL connections, load the Amazon RDS certificate into a certificate
pool and register it with the MySQL driver. The connection string must then reference this
configuration using the tls parameter.

Example Go code for MySQL connection in OCI function

import (
 "crypto/tls"
 "crypto/x509"
 "os"
 "github.com/go-sql-driver/mysql"
)

...

// Create certificate pool and register TLS config
rootCertPool := x509.NewCertPool()
pem, err := os.ReadFile("/us-east-1-bundle.pem") // Path to the certificate in
 container

Configuring your function to work with RDS resources 1491

AWS Lambda Developer Guide

if err != nil {
 panic("failed to read certificate file: " + err.Error())
}
if ok := rootCertPool.AppendCertsFromPEM(pem); !ok {
 panic("failed to append PEM")
}

mysql.RegisterTLSConfig("custom", &tls.Config{
 RootCAs: rootCertPool,
})

dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?allowCleartextPasswords=true&tls=custom",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

Ruby

Example Ruby connection config for OCI function

conn = Mysql2::Client.new(
 host: endpoint,
 username: user,
 password: token,
 port: port,
 database: db_name,
 sslca: '/us-east-1-bundle.pem', # Path to the certificate in container
 sslverify: true
)

Connecting to an Amazon RDS database in a Lambda function

The following code examples shows how to implement a Lambda function that connects to an
Amazon RDS database. The function makes a simple database request and returns the result.

Note

These code examples are valid for .zip deployment packages only. If you're deploying your
function using a container image, you must specify the Amazon RDS certificate file in your
function code, as explained in the preceding section.

Connecting to an Amazon RDS database in a Lambda function 1492

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using .NET.

using System.Data;
using System.Text.Json;
using Amazon.Lambda.APIGatewayEvents;
using Amazon.Lambda.Core;
using MySql.Data.MySqlClient;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace aws_rds;

public class InputModel
{
 public string key1 { get; set; }
 public string key2 { get; set; }
}

public class Function
{
 /// <summary>
 // Handles the Lambda function execution for connecting to RDS using IAM
 authentication.
 /// </summary>
 /// <param name="input">The input event data passed to the Lambda function</
param>
 /// <param name="context">The Lambda execution context that provides runtime
 information</param>
 /// <returns>A response object containing the execution result</returns>

Connecting to an Amazon RDS database in a Lambda function 1493

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 public async Task<APIGatewayProxyResponse>
 FunctionHandler(APIGatewayProxyRequest request, ILambdaContext context)
 {
 // Sample Input: {"body": "{\"key1\":\"20\", \"key2\":\"25\"}"}
 var input = JsonSerializer.Deserialize<InputModel>(request.Body);

 /// Obtain authentication token
 var authToken = RDSAuthTokenGenerator.GenerateAuthToken(
 Environment.GetEnvironmentVariable("RDS_ENDPOINT"),
 Convert.ToInt32(Environment.GetEnvironmentVariable("RDS_PORT")),
 Environment.GetEnvironmentVariable("RDS_USERNAME")
);

 /// Build the Connection String with the Token
 string connectionString =
 $"Server={Environment.GetEnvironmentVariable("RDS_ENDPOINT")};" +

 $"Port={Environment.GetEnvironmentVariable("RDS_PORT")};" +

 $"Uid={Environment.GetEnvironmentVariable("RDS_USERNAME")};" +
 $"Pwd={authToken};";

 try
 {
 await using var connection = new MySqlConnection(connectionString);
 await connection.OpenAsync();

 const string sql = "SELECT @param1 + @param2 AS Sum";

 await using var command = new MySqlCommand(sql, connection);
 command.Parameters.AddWithValue("@param1", int.Parse(input.key1 ??
 "0"));
 command.Parameters.AddWithValue("@param2", int.Parse(input.key2 ??
 "0"));

 await using var reader = await command.ExecuteReaderAsync();
 if (await reader.ReadAsync())
 {
 int result = reader.GetInt32("Sum");

 //Sample Response: {"statusCode":200,"body":"{\"message\":\"The
 sum is: 45\"}","isBase64Encoded":false}
 return new APIGatewayProxyResponse

Connecting to an Amazon RDS database in a Lambda function 1494

AWS Lambda Developer Guide

 {
 StatusCode = 200,
 Body = JsonSerializer.Serialize(new { message = $"The sum is:
 {result}" })
 };
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

 return new APIGatewayProxyResponse
 {
 StatusCode = 500,
 Body = JsonSerializer.Serialize(new { error = "Internal server
 error" })
 };
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Go.

/*
Golang v2 code here.
*/

package main

import (

Connecting to an Amazon RDS database in a Lambda function 1495

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 "context"
 "database/sql"
 "encoding/json"
 "fmt"
 "os"

 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/go-sql-driver/mysql"
)

type MyEvent struct {
 Name string `json:"name"`
}

func HandleRequest(event *MyEvent) (map[string]interface{}, error) {

 var dbName string = os.Getenv("DatabaseName")
 var dbUser string = os.Getenv("DatabaseUser")
 var dbHost string = os.Getenv("DBHost") // Add hostname without https
 var dbPort int = os.Getenv("Port") // Add port number
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = os.Getenv("AWS_REGION")

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

Connecting to an Amazon RDS database in a Lambda function 1496

AWS Lambda Developer Guide

 defer db.Close()

 var sum int
 err = db.QueryRow("SELECT ?+? AS sum", 3, 2).Scan(&sum)
 if err != nil {
 panic(err)
 }
 s := fmt.Sprint(sum)
 message := fmt.Sprintf("The selected sum is: %s", s)

 messageBytes, err := json.Marshal(message)
 if err != nil {
 return nil, err
 }

 messageString := string(messageBytes)
 return map[string]interface{}{
 "statusCode": 200,
 "headers": map[string]string{"Content-Type": "application/json"},
 "body": messageString,
 }, nil
}

func main() {
 lambda.Start(HandleRequest)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Java.

import com.amazonaws.services.lambda.runtime.Context;

Connecting to an Amazon RDS database in a Lambda function 1497

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyRequestEvent;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyResponseEvent;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rdsdata.RdsDataClient;
import software.amazon.awssdk.services.rdsdata.model.ExecuteStatementRequest;
import software.amazon.awssdk.services.rdsdata.model.ExecuteStatementResponse;
import software.amazon.awssdk.services.rdsdata.model.Field;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class RdsLambdaHandler implements
 RequestHandler<APIGatewayProxyRequestEvent, APIGatewayProxyResponseEvent> {

 @Override
 public APIGatewayProxyResponseEvent handleRequest(APIGatewayProxyRequestEvent
 event, Context context) {
 APIGatewayProxyResponseEvent response = new
 APIGatewayProxyResponseEvent();

 try {
 // Obtain auth token
 String token = createAuthToken();

 // Define connection configuration
 String connectionString = String.format("jdbc:mysql://%s:%s/%s?
useSSL=true&requireSSL=true",
 System.getenv("ProxyHostName"),
 System.getenv("Port"),
 System.getenv("DBName"));

 // Establish a connection to the database
 try (Connection connection =
 DriverManager.getConnection(connectionString, System.getenv("DBUserName"),
 token);
 PreparedStatement statement =
 connection.prepareStatement("SELECT ? + ? AS sum")) {

 statement.setInt(1, 3);
 statement.setInt(2, 2);

Connecting to an Amazon RDS database in a Lambda function 1498

AWS Lambda Developer Guide

 try (ResultSet resultSet = statement.executeQuery()) {
 if (resultSet.next()) {
 int sum = resultSet.getInt("sum");
 response.setStatusCode(200);
 response.setBody("The selected sum is: " + sum);
 }
 }
 }

 } catch (Exception e) {
 response.setStatusCode(500);
 response.setBody("Error: " + e.getMessage());
 }

 return response;
 }

 private String createAuthToken() {
 // Create RDS Data Service client
 RdsDataClient rdsDataClient = RdsDataClient.builder()
 .region(Region.of(System.getenv("AWS_REGION")))
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 // Define authentication request
 ExecuteStatementRequest request = ExecuteStatementRequest.builder()
 .resourceArn(System.getenv("ProxyHostName"))
 .secretArn(System.getenv("DBUserName"))
 .database(System.getenv("DBName"))
 .sql("SELECT 'RDS IAM Authentication'")
 .build();

 // Execute request and obtain authentication token
 ExecuteStatementResponse response =
 rdsDataClient.executeStatement(request);
 Field tokenField = response.records().get(0).get(0);

 return tokenField.stringValue();
 }
}

Connecting to an Amazon RDS database in a Lambda function 1499

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
/*
Node.js code here.
*/
// ES6+ example
import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

async function createAuthToken() {
 // Define connection authentication parameters
 const dbinfo = {

 hostname: process.env.ProxyHostName,
 port: process.env.Port,
 username: process.env.DBUserName,
 region: process.env.AWS_REGION,

 }

 // Create RDS Signer object
 const signer = new Signer(dbinfo);

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps() {

 // Obtain auth token

Connecting to an Amazon RDS database in a Lambda function 1500

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 const token = await createAuthToken();
 // Define connection configuration
 let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: 'Amazon RDS'
 }
 // Create the connection to the DB
 const conn = await mysql.createConnection(connectionConfig);
 // Obtain the result of the query
 const [res,] = await conn.execute('select ?+? as sum', [3, 2]);
 return res;

}

export const handler = async (event) => {
 // Execute database flow
 const result = await dbOps();
 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify("The selected sum is: " + result[0].sum)
 }
};

Connecting to an Amazon RDS database in a Lambda function using TypeScript.

import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

// RDS settings
// Using '!' (non-null assertion operator) to tell the TypeScript compiler that
 the DB settings are not null or undefined,
const proxy_host_name = process.env.PROXY_HOST_NAME!
const port = parseInt(process.env.PORT!)
const db_name = process.env.DB_NAME!
const db_user_name = process.env.DB_USER_NAME!
const aws_region = process.env.AWS_REGION!

Connecting to an Amazon RDS database in a Lambda function 1501

AWS Lambda Developer Guide

async function createAuthToken(): Promise<string> {

 // Create RDS Signer object
 const signer = new Signer({
 hostname: proxy_host_name,
 port: port,
 region: aws_region,
 username: db_user_name
 });

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps(): Promise<mysql.QueryResult | undefined> {
 try {
 // Obtain auth token
 const token = await createAuthToken();
 const conn = await mysql.createConnection({
 host: proxy_host_name,
 user: db_user_name,
 password: token,
 database: db_name,
 ssl: 'Amazon RDS' // Ensure you have the CA bundle for SSL connection
 });
 const [rows, fields] = await conn.execute('SELECT ? + ? AS sum', [3, 2]);
 console.log('result:', rows);
 return rows;
 }
 catch (err) {
 console.log(err);
 }
}

export const lambdaHandler = async (event: any): Promise<{ statusCode: number;
 body: string }> => {
 // Execute database flow
 const result = await dbOps();

 // Return error is result is undefined
 if (result == undefined)
 return {

Connecting to an Amazon RDS database in a Lambda function 1502

AWS Lambda Developer Guide

 statusCode: 500,
 body: JSON.stringify(`Error with connection to DB host`)
 }

 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify(`The selected sum is: ${result[0].sum}`)
 };
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using PHP.

<?php
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;
use Aws\Rds\AuthTokenGenerator;
use Aws\Credentials\CredentialProvider;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {

Connecting to an Amazon RDS database in a Lambda function 1503

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 $this->logger = $logger;
 }

 private function getAuthToken(): string {
 // Define connection authentication parameters
 $dbConnection = [
 'hostname' => getenv('DB_HOSTNAME'),
 'port' => getenv('DB_PORT'),
 'username' => getenv('DB_USERNAME'),
 'region' => getenv('AWS_REGION'),
];

 // Create RDS AuthTokenGenerator object
 $generator = new
 AuthTokenGenerator(CredentialProvider::defaultProvider());

 // Request authorization token from RDS, specifying the username
 return $generator->createToken(
 $dbConnection['hostname'] . ':' . $dbConnection['port'],
 $dbConnection['region'],
 $dbConnection['username']
);
 }

 private function getQueryResults() {
 // Obtain auth token
 $token = $this->getAuthToken();

 // Define connection configuration
 $connectionConfig = [
 'host' => getenv('DB_HOSTNAME'),
 'user' => getenv('DB_USERNAME'),
 'password' => $token,
 'database' => getenv('DB_NAME'),
];

 // Create the connection to the DB
 $conn = new PDO(

 "mysql:host={$connectionConfig['host']};dbname={$connectionConfig['database']}",
 $connectionConfig['user'],
 $connectionConfig['password'],
 [

Connecting to an Amazon RDS database in a Lambda function 1504

AWS Lambda Developer Guide

 PDO::MYSQL_ATTR_SSL_CA => '/path/to/rds-ca-2019-root.pem',
 PDO::MYSQL_ATTR_SSL_VERIFY_SERVER_CERT => true,
]
);

 // Obtain the result of the query
 $stmt = $conn->prepare('SELECT ?+? AS sum');
 $stmt->execute([3, 2]);

 return $stmt->fetch(PDO::FETCH_ASSOC);
 }

 /**
 * @param mixed $event
 * @param Context $context
 * @return array
 */
 public function handle(mixed $event, Context $context): array
 {
 $this->logger->info("Processing query");

 // Execute database flow
 $result = $this->getQueryResults();

 return [
 'sum' => $result['sum']
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function 1505

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

Connecting to an Amazon RDS database in a Lambda function using Python.

import json
import os
import boto3
import pymysql

RDS settings
proxy_host_name = os.environ['PROXY_HOST_NAME']
port = int(os.environ['PORT'])
db_name = os.environ['DB_NAME']
db_user_name = os.environ['DB_USER_NAME']
aws_region = os.environ['AWS_REGION']

Fetch RDS Auth Token
def get_auth_token():
 client = boto3.client('rds')
 token = client.generate_db_auth_token(
 DBHostname=proxy_host_name,
 Port=port
 DBUsername=db_user_name
 Region=aws_region
)
 return token

def lambda_handler(event, context):
 token = get_auth_token()
 try:
 connection = pymysql.connect(
 host=proxy_host_name,
 user=db_user_name,
 password=token,
 db=db_name,
 port=port,
 ssl={'ca': 'Amazon RDS'} # Ensure you have the CA bundle for SSL
 connection
)

 with connection.cursor() as cursor:
 cursor.execute('SELECT %s + %s AS sum', (3, 2))
 result = cursor.fetchone()

 return result

Connecting to an Amazon RDS database in a Lambda function 1506

AWS Lambda Developer Guide

 except Exception as e:
 return (f"Error: {str(e)}") # Return an error message if an exception
 occurs

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Ruby.

Ruby code here.

require 'aws-sdk-rds'
require 'json'
require 'mysql2'

def lambda_handler(event:, context:)
 endpoint = ENV['DBEndpoint'] # Add the endpoint without https"
 port = ENV['Port'] # 3306
 user = ENV['DBUser']
 region = ENV['DBRegion'] # 'us-east-1'
 db_name = ENV['DBName']

 credentials = Aws::Credentials.new(
 ENV['AWS_ACCESS_KEY_ID'],
 ENV['AWS_SECRET_ACCESS_KEY'],
 ENV['AWS_SESSION_TOKEN']
)
 rds_client = Aws::RDS::AuthTokenGenerator.new(
 region: region,
 credentials: credentials
)

 token = rds_client.auth_token(

Connecting to an Amazon RDS database in a Lambda function 1507

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 endpoint: endpoint+ ':' + port,
 user_name: user,
 region: region
)

 begin
 conn = Mysql2::Client.new(
 host: endpoint,
 username: user,
 password: token,
 port: port,
 database: db_name,
 sslca: '/var/task/global-bundle.pem',
 sslverify: true,
 enable_cleartext_plugin: true
)
 a = 3
 b = 2
 result = conn.query("SELECT #{a} + #{b} AS sum").first['sum']
 puts result
 conn.close
 {
 statusCode: 200,
 body: result.to_json
 }
 rescue => e
 puts "Database connection failed due to #{e}"
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Rust.

Connecting to an Amazon RDS database in a Lambda function 1508

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

use aws_config::BehaviorVersion;
use aws_credential_types::provider::ProvideCredentials;
use aws_sigv4::{
 http_request::{sign, SignableBody, SignableRequest, SigningSettings},
 sign::v4,
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use serde_json::{json, Value};
use sqlx::postgres::PgConnectOptions;
use std::env;
use std::time::{Duration, SystemTime};

const RDS_CERTS: &[u8] = include_bytes!("global-bundle.pem");

async fn generate_rds_iam_token(
 db_hostname: &str,
 port: u16,
 db_username: &str,
) -> Result<String, Error> {
 let config = aws_config::load_defaults(BehaviorVersion::v2024_03_28()).await;

 let credentials = config
 .credentials_provider()
 .expect("no credentials provider found")
 .provide_credentials()
 .await
 .expect("unable to load credentials");
 let identity = credentials.into();
 let region = config.region().unwrap().to_string();

 let mut signing_settings = SigningSettings::default();
 signing_settings.expires_in = Some(Duration::from_secs(900));
 signing_settings.signature_location =
 aws_sigv4::http_request::SignatureLocation::QueryParams;

 let signing_params = v4::SigningParams::builder()
 .identity(&identity)
 .region(®ion)
 .name("rds-db")
 .time(SystemTime::now())
 .settings(signing_settings)
 .build()?;

Connecting to an Amazon RDS database in a Lambda function 1509

AWS Lambda Developer Guide

 let url = format!(
 "https://{db_hostname}:{port}/?Action=connect&DBUser={db_user}",
 db_hostname = db_hostname,
 port = port,
 db_user = db_username
);

 let signable_request =
 SignableRequest::new("GET", &url, std::iter::empty(),
 SignableBody::Bytes(&[]))
 .expect("signable request");

 let (signing_instructions, _signature) =
 sign(signable_request, &signing_params.into())?.into_parts();

 let mut url = url::Url::parse(&url).unwrap();
 for (name, value) in signing_instructions.params() {
 url.query_pairs_mut().append_pair(name, &value);
 }

 let response = url.to_string().split_off("https://".len());

 Ok(response)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(handler)).await
}

async fn handler(_event: LambdaEvent<Value>) -> Result<Value, Error> {
 let db_host = env::var("DB_HOSTNAME").expect("DB_HOSTNAME must be set");
 let db_port = env::var("DB_PORT")
 .expect("DB_PORT must be set")
 .parse::<u16>()
 .expect("PORT must be a valid number");
 let db_name = env::var("DB_NAME").expect("DB_NAME must be set");
 let db_user_name = env::var("DB_USERNAME").expect("DB_USERNAME must be set");

 let token = generate_rds_iam_token(&db_host, db_port, &db_user_name).await?;

 let opts = PgConnectOptions::new()
 .host(&db_host)
 .port(db_port)

Connecting to an Amazon RDS database in a Lambda function 1510

AWS Lambda Developer Guide

 .username(&db_user_name)
 .password(&token)
 .database(&db_name)
 .ssl_root_cert_from_pem(RDS_CERTS.to_vec())
 .ssl_mode(sqlx::postgres::PgSslMode::Require);

 let pool = sqlx::postgres::PgPoolOptions::new()
 .connect_with(opts)
 .await?;

 let result: i32 = sqlx::query_scalar("SELECT $1 + $2")
 .bind(3)
 .bind(2)
 .fetch_one(&pool)
 .await?;

 println!("Result: {:?}", result);

 Ok(json!({
 "statusCode": 200,
 "content-type": "text/plain",
 "body": format!("The selected sum is: {result}")
 }))
}

Processing event notifications from Amazon RDS

You can use Lambda to process event notifications from an Amazon RDS database. Amazon RDS
sends notifications to an Amazon Simple Notification Service (Amazon SNS) topic, which you can
configure to invoke a Lambda function. Amazon SNS wraps the message from Amazon RDS in its
own event document and sends it to your function.

For more information about configuring an Amazon RDS database to send notifications, see Using
Amazon RDS event notifications.

Example Amazon RDS message in an Amazon SNS event

{
 "Records": [
 {

Processing event notifications from Amazon RDS 1511

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

AWS Lambda Developer Guide

 "EventVersion": "1.0",
 "EventSubscriptionArn": "arn:aws:sns:us-east-2:123456789012:rds-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "EventSource": "aws:sns",
 "Sns": {
 "SignatureVersion": "1",
 "Timestamp": "2023-01-02T12:45:07.000Z",
 "Signature": "tcc6faL2yUC6dgZdmrwh1Y4cGa/ebXEkAi6RibDsvpi
+tE/1+82j...65r==",
 "SigningCertUrl": "https://sns.us-east-2.amazonaws.com/
SimpleNotificationService-ac565b8b1a6c5d002d285f9598aa1d9b.pem",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",
 "Message": "{\"Event Source\":\"db-instance\",\"Event Time\":\"2023-01-02
 12:45:06.000\",\"Identifier Link\":\"https://console.aws.amazon.com/rds/home?
region=eu-west-1#dbinstance:id=dbinstanceid\",\"Source ID\":\"dbinstanceid\",\"Event ID
\":\"http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/USER_Events.html#RDS-
EVENT-0002\",\"Event Message\":\"Finished DB Instance backup\"}",
 "MessageAttributes": {},
 "Type": "Notification",
 "UnsubscribeUrl": "https://sns.us-east-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-2:123456789012:test-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "TopicArn":"arn:aws:sns:us-east-2:123456789012:sns-lambda",
 "Subject": "RDS Notification Message"
 }
 }
]
 }

Complete Lambda and Amazon RDS tutorial

• Using a Lambda function to access an Amazon RDS database – From the Amazon RDS User
Guide, learn how to use a Lambda function to write data to an Amazon RDS database through
an Amazon RDS Proxy. Your Lambda function will read records from an Amazon SQS queue and
write new items to a table in your database whenever a message is added.

Select a database service for your Lambda-based applications

Many serverless applications need to store and retrieve data. AWS offers multiple database options
that work with Lambda functions. Two of the most popular choices are Amazon DynamoDB, a
NoSQL database service, and Amazon RDS, a traditional relational database solution. The following

Complete Lambda and Amazon RDS tutorial 1512

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

sections explain the key differences between these services when using them with Lambda and
help you select the right database service for your serverless application.

To learn more about the other database services offered by AWS, and to understand their use cases
and tradeoffs more generally, see Choosing an AWS database service. All of the AWS database
services are compatible with Lambda, but not all of them may be suited to your particular use case.

What are your choices when selecting a database service with Lambda?

AWS offers multiple database services. For serverless applications, two of the most popular choices
are DynamoDB and Amazon RDS.

• DynamoDB is a fully managed NoSQL database service optimized for serverless applications. It
provides seamless scaling and consistent single-digit millisecond performance at any scale.

• Amazon RDS is a managed relational database service that supports multiple database
engines including MySQL and PostgreSQL. It provides familiar SQL capabilities with managed
infrastructure.

Recommendations if you already know your requirements

If you're already clear on your requirements, here are our basic recommendations:

We recommend DynamoDB for serverless applications that need consistent low-latency
performance, automatic scaling, and don't require complex joins or transactions. It's particularly
well-suited for Lambda-based applications due to its serverless nature.

Amazon RDS is a better choice when you need complex SQL queries, joins, or have existing
applications using relational databases. However, be aware that connecting Lambda functions to
Amazon RDS requires additional configuration and can impact cold start times.

What to consider when selecting a database service

When selecting between DynamoDB and Amazon RDS for your Lambda applications, consider
these factors:

• Connection management and cold starts

• Data access patterns

• Query complexity

Amazon RDS vs DynamoDB 1513

https://docs.aws.amazon.com/decision-guides/latest/databases-on-aws-how-to-choose/databases-on-aws-how-to-choose.html

AWS Lambda Developer Guide

• Data consistency requirements

• Scaling characteristics

• Cost model

By understanding these factors, you can select the option that best meets the needs of your
particular use case.

Connection management and cold starts

• DynamoDB uses an HTTP API for all operations. Lambda functions can make immediate requests
without maintaining connections, resulting in better cold start performance. Each request is
authenticated using AWS credentials without connection overhead.

• Amazon RDS requires managing connection pools since it uses traditional database connections.
This can impact cold starts as new Lambda instances need to establish connections. You'll need
to implement connection pooling strategies and potentially use Amazon RDS Proxy to manage
connections effectively. Note that using Amazon RDS Proxy incurs additional costs.

Data access patterns

• DynamoDB works best with known access patterns and single-table designs. It's ideal for Lambda
applications that need consistent low-latency access to data based on primary keys or secondary
indexes.

• Amazon RDS provides flexibility for complex queries and changing access patterns. It's better
suited when your Lambda functions need to perform unique, tailored queries or complex joins
across multiple tables.

Query complexity

• DynamoDB excels at simple, key-based operations and predefined access patterns. Complex
queries must be designed around index structures, and joins must be handled in application
code.

• Amazon RDS supports complex SQL queries with joins, subqueries, and aggregations. This can
simplify your Lambda function code when complex data operations are needed.

Amazon RDS vs DynamoDB 1514

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-proxy.html

AWS Lambda Developer Guide

Data consistency requirements

• DynamoDB offers both eventual and strong consistency options, with strong consistency
available for single-item reads. Transactions are supported but with some limitations.

• Amazon RDS provides full atomicity, consistency, isolation, and durability (ACID) compliance and
complex transaction support. If your Lambda functions require complex transactions or strong
consistency across multiple records, Amazon RDS might be more suitable.

Scaling characteristics

• DynamoDB scales automatically with your workload. It can handle sudden spikes in traffic from
Lambda functions without pre-provisioning. You can use on-demand capacity mode to pay only
for what you use, perfectly matching Lambda's scaling model.

• Amazon RDS has fixed capacity based on the instance size you choose. If multiple Lambda
functions try to connect simultaneously, you may exceed your connection quota. You need to
carefully manage connection pools and potentially implement retry logic.

Cost model

• DynamoDB's pricing aligns well with serverless applications. With on-demand capacity, you pay
only for the actual reads and writes performed by your Lambda functions. There are no charges
for idle time.

• Amazon RDS charges for the running instance regardless of usage. This can be less cost-effective
for sporadic workloads that can be typical in serverless applications. However, it might be more
economical for high-throughput workloads with consistent usage.

Getting started with your chosen database service

Now that you've read about the criteria for selecting between DynamoDB and Amazon RDS and the
key differences between them, you can select the option that best matches your needs and use the
following resources to get started using it.

Amazon RDS vs DynamoDB 1515

AWS Lambda Developer Guide

DynamoDB

Get started with DynamoDB with the following resources

• For an introduction to the DynamoDB service, read What is DynamoDB? in the Amazon
DynamoDB Developer Guide.

• Follow the tutorial Using Lambda with API Gateway to see an example of using a Lambda
function to perform CRUD operations on a DynamoDB table in response to an API request.

• Read Programming with DynamoDB and the AWS SDKs in the Amazon DynamoDB Developer
Guide to learn more about how to access DynamoDB from within your Lambda function by
using one of the AWS SDKs.

Amazon RDS

Get started with Amazon RDS with the following resources

• For an introduction to the Amazon RDS service, read What is Amazon Relational Database
Service (Amazon RDS)? in the Amazon Relational Database Service User Guide.

• Follow the tutorial Using a Lambda function to access an Amazon RDS database in the
Amazon Relational Database Service User Guide.

• Learn more about using Lambda with Amazon RDS by reading the section called “RDS”.

Amazon RDS vs DynamoDB 1516

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

Process Amazon S3 event notifications with Lambda

You can use Lambda to process event notifications from Amazon Simple Storage Service. Amazon
S3 can send an event to a Lambda function when an object is created or deleted. You configure
notification settings on a bucket, and grant Amazon S3 permission to invoke a function on the
function's resource-based permissions policy.

Warning

If your Lambda function uses the same bucket that triggers it, it could cause the function
to run in a loop. For example, if the bucket triggers a function each time an object is
uploaded, and the function uploads an object to the bucket, then the function indirectly
triggers itself. To avoid this, use two buckets, or configure the trigger to only apply to a
prefix used for incoming objects.

Amazon S3 invokes your function asynchronously with an event that contains details about the
object. The following example shows an event that Amazon S3 sent when a deployment package
was uploaded to Amazon S3.

Example Amazon S3 notification event

{
 "Records": [
 {
 "eventVersion": "2.1",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-2",
 "eventTime": "2019-09-03T19:37:27.192Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "AWS:AIDAINPONIXQXHT3IKHL2"
 },
 "requestParameters": {
 "sourceIPAddress": "205.255.255.255"
 },
 "responseElements": {
 "x-amz-request-id": "D82B88E5F771F645",
 "x-amz-id-2":
 "vlR7PnpV2Ce81l0PRw6jlUpck7Jo5ZsQjryTjKlc5aLWGVHPZLj5NeC6qMa0emYBDXOo6QBU0Wo="
 },

S3 1517

https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html

AWS Lambda Developer Guide

 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "828aa6fc-f7b5-4305-8584-487c791949c1",
 "bucket": {
 "name": "amzn-s3-demo-bucket",
 "ownerIdentity": {
 "principalId": "A3I5XTEXAMAI3E"
 },
 "arn": "arn:aws:s3:::lambda-artifacts-deafc19498e3f2df"
 },
 "object": {
 "key": "b21b84d653bb07b05b1e6b33684dc11b",
 "size": 1305107,
 "eTag": "b21b84d653bb07b05b1e6b33684dc11b",
 "sequencer": "0C0F6F405D6ED209E1"
 }
 }
 }
]
}

To invoke your function, Amazon S3 needs permission from the function's resource-based policy.
When you configure an Amazon S3 trigger in the Lambda console, the console modifies the
resource-based policy to allow Amazon S3 to invoke the function if the bucket name and account
ID match. If you configure the notification in Amazon S3, you use the Lambda API to update
the policy. You can also use the Lambda API to grant permission to another account, or restrict
permission to a designated alias.

If your function uses the AWS SDK to manage Amazon S3 resources, it also needs Amazon S3
permissions in its execution role.

Topics

• Tutorial: Using an Amazon S3 trigger to invoke a Lambda function

• Tutorial: Using an Amazon S3 trigger to create thumbnail images

Tutorial: Using an Amazon S3 trigger to invoke a Lambda function

In this tutorial, you use the console to create a Lambda function and configure a trigger for an
Amazon Simple Storage Service (Amazon S3) bucket. Every time that you add an object to your
Amazon S3 bucket, your function runs and outputs the object type to Amazon CloudWatch Logs.

Tutorial: Use an S3 trigger 1518

AWS Lambda Developer Guide

This tutorial demonstrates how to:

1. Create an Amazon S3 bucket.

2. Create a Lambda function that returns the object type of objects in an Amazon S3 bucket.

3. Configure a Lambda trigger that invokes your function when objects are uploaded to your
bucket.

4. Test your function, first with a dummy event, and then using the trigger.

By completing these steps, you’ll learn how to configure a Lambda function to run whenever
objects are added to or deleted from an Amazon S3 bucket. You can complete this tutorial using
only the AWS Management Console.

Tutorial: Use an S3 trigger 1519

AWS Lambda Developer Guide

Create an Amazon S3 bucket

To create an Amazon S3 bucket

1. Open the Amazon S3 console and select the General purpose buckets page.

2. Select the AWS Region closest to your geographical location. You can change your region using
the drop-down list at the top of the screen. Later in the tutorial, you must create your Lambda
function in the same Region.

3. Choose Create bucket.

4. Under General configuration, do the following:

a. For Bucket type, ensure General purpose is selected.

b. For Bucket name, enter a globally unique name that meets the Amazon S3 Bucket naming
rules. Bucket names can contain only lower case letters, numbers, dots (.), and hyphens (-).

5. Leave all other options set to their default values and choose Create bucket.

Tutorial: Use an S3 trigger 1520

https://console.aws.amazon.com/s3
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

Upload a test object to your bucket

To upload a test object

1. Open the Buckets page of the Amazon S3 console and choose the bucket you created during
the previous step.

2. Choose Upload.

3. Choose Add files and select the object that you want to upload. You can select any file (for
example, HappyFace.jpg).

4. Choose Open, then choose Upload.

Later in the tutorial, you’ll test your Lambda function using this object.

Create a permissions policy

Create a permissions policy that allows Lambda to get objects from an Amazon S3 bucket and to
write to Amazon CloudWatch Logs.

Tutorial: Use an S3 trigger 1521

https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

To create the policy

1. Open the Policies page of the IAM console.

2. Choose Create Policy.

3. Choose the JSON tab, and then paste the following custom policy into the JSON editor.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*/*"
 }
]
}

4. Choose Next: Tags.

5. Choose Next: Review.

6. Under Review policy, for the policy Name, enter s3-trigger-tutorial.

7. Choose Create policy.

Tutorial: Use an S3 trigger 1522

https://console.aws.amazon.com/iam/home#/policies

AWS Lambda Developer Guide

Create an execution role

An execution role is an AWS Identity and Access Management (IAM) role that grants a Lambda
function permission to access AWS services and resources. In this step, create an execution role
using the permissions policy that you created in the previous step.

To create an execution role and attach your custom permissions policy

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For the type of trusted entity, choose AWS service, then for the use case, choose Lambda.

4. Choose Next.

5. In the policy search box, enter s3-trigger-tutorial.

6. In the search results, select the policy that you created (s3-trigger-tutorial), and then
choose Next.

7. Under Role details, for the Role name, enter lambda-s3-trigger-role, then choose
Create role.

Tutorial: Use an S3 trigger 1523

https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

Create the Lambda function

Create a Lambda function in the console using the Python 3.13 runtime.

To create the Lambda function

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same AWS Region you created your Amazon S3 bucket in. You
can change your Region using the drop-down list at the top of the screen.

3. Choose Create function.

4. Choose Author from scratch

5. Under Basic information, do the following:

a. For Function name, enter s3-trigger-tutorial

b. For Runtime, choose Python 3.13.

c. For Architecture, choose x86_64.

6. In the Change default execution role tab, do the following:

Tutorial: Use an S3 trigger 1524

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. Expand the tab, then choose Use an existing role.

b. Select the lambda-s3-trigger-role you created earlier.

7. Choose Create function.

Deploy the function code

This tutorial uses the Python 3.13 runtime, but we’ve also provided example code files for other
runtimes. You can select the tab in the following box to see the code for the runtime you’re
interested in.

The Lambda function retrieves the key name of the uploaded object and the name of the bucket
from the event parameter it receives from Amazon S3. The function then uses the get_object
method from the AWS SDK for Python (Boto3) to retrieve the object's metadata, including the
content type (MIME type) of the uploaded object.

To deploy the function code

1. Choose the Python tab in the following box and copy the code.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Tutorial: Use an S3 trigger 1525

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3/client/get_object.html
https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

Consuming an S3 event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using System;
using Amazon.Lambda.S3Events;
using System.Web;

// Assembly attribute to enable the Lambda function's JSON input to be
 converted into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace S3Integration
{
 public class Function
 {
 private static AmazonS3Client _s3Client;
 public Function() : this(null)
 {
 }

 internal Function(AmazonS3Client s3Client)
 {
 _s3Client = s3Client ?? new AmazonS3Client();
 }

 public async Task<string> Handler(S3Event evt, ILambdaContext
 context)
 {
 try
 {
 if (evt.Records.Count <= 0)
 {
 context.Logger.LogLine("Empty S3 Event received");
 return string.Empty;
 }

 var bucket = evt.Records[0].S3.Bucket.Name;

Tutorial: Use an S3 trigger 1526

AWS Lambda Developer Guide

 var key =
 HttpUtility.UrlDecode(evt.Records[0].S3.Object.Key);

 context.Logger.LogLine($"Request is for {bucket} and {key}");

 var objectResult = await _s3Client.GetObjectAsync(bucket,
 key);

 context.Logger.LogLine($"Returning {objectResult.Key}");

 return objectResult.Key;
 }
 catch (Exception e)
 {
 context.Logger.LogLine($"Error processing request -
 {e.Message}");

 return string.Empty;
 }
 }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"

Tutorial: Use an S3 trigger 1527

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

func handler(ctx context.Context, s3Event events.S3Event) error {
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Printf("failed to load default config: %s", err)
 return err
 }
 s3Client := s3.NewFromConfig(sdkConfig)

 for _, record := range s3Event.Records {
 bucket := record.S3.Bucket.Name
 key := record.S3.Object.URLDecodedKey
 headOutput, err := s3Client.HeadObject(ctx, &s3.HeadObjectInput{
 Bucket: &bucket,
 Key: &key,
 })
 if err != nil {
 log.Printf("error getting head of object %s/%s: %s", bucket, key, err)
 return err
 }
 log.Printf("successfully retrieved %s/%s of type %s", bucket, key,
 *headOutput.ContentType)
 }

 return nil
}

func main() {
 lambda.Start(handler)
}

Tutorial: Use an S3 trigger 1528

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import software.amazon.awssdk.services.s3.model.HeadObjectRequest;
import software.amazon.awssdk.services.s3.model.HeadObjectResponse;
import software.amazon.awssdk.services.s3.S3Client;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import
 com.amazonaws.services.lambda.runtime.events.models.s3.S3EventNotification.S3EventNotificationRecord;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Handler implements RequestHandler<S3Event, String> {
 private static final Logger logger =
 LoggerFactory.getLogger(Handler.class);
 @Override
 public String handleRequest(S3Event s3event, Context context) {
 try {
 S3EventNotificationRecord record = s3event.getRecords().get(0);
 String srcBucket = record.getS3().getBucket().getName();
 String srcKey = record.getS3().getObject().getUrlDecodedKey();

 S3Client s3Client = S3Client.builder().build();

Tutorial: Use an S3 trigger 1529

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 HeadObjectResponse headObject = getHeadObject(s3Client, srcBucket,
 srcKey);

 logger.info("Successfully retrieved " + srcBucket + "/" + srcKey +
 " of type " + headObject.contentType());

 return "Ok";
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private HeadObjectResponse getHeadObject(S3Client s3Client, String
 bucket, String key) {
 HeadObjectRequest headObjectRequest = HeadObjectRequest.builder()
 .bucket(bucket)
 .key(key)
 .build();
 return s3Client.headObject(headObjectRequest);
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using JavaScript.

import { S3Client, HeadObjectCommand } from "@aws-sdk/client-s3";

const client = new S3Client();

export const handler = async (event, context) => {

 // Get the object from the event and show its content type

Tutorial: Use an S3 trigger 1530

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\
+/g, ' '));

 try {
 const { ContentType } = await client.send(new HeadObjectCommand({
 Bucket: bucket,
 Key: key,
 }));

 console.log('CONTENT TYPE:', ContentType);
 return ContentType;

 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}.
 Make sure they exist and your bucket is in the same region as this
 function.`;
 console.log(message);
 throw new Error(message);
 }
};

Consuming an S3 event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { S3Event } from 'aws-lambda';
import { S3Client, HeadObjectCommand } from '@aws-sdk/client-s3';

const s3 = new S3Client({ region: process.env.AWS_REGION });

export const handler = async (event: S3Event): Promise<string | undefined> =>
 {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/
g, ' '));
 const params = {
 Bucket: bucket,
 Key: key,
 };

Tutorial: Use an S3 trigger 1531

AWS Lambda Developer Guide

 try {
 const { ContentType } = await s3.send(new HeadObjectCommand(params));
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make
 sure they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using PHP.

<?php

use Bref\Context\Context;
use Bref\Event\S3\S3Event;
use Bref\Event\S3\S3Handler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends S3Handler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;

Tutorial: Use an S3 trigger 1532

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 }

 public function handleS3(S3Event $event, Context $context) : void
 {
 $this->logger->info("Processing S3 records");

 // Get the object from the event and show its content type
 $records = $event->getRecords();

 foreach ($records as $record)
 {
 $bucket = $record->getBucket()->getName();
 $key = urldecode($record->getObject()->getKey());

 try {
 $fileSize = urldecode($record->getObject()->getSize());
 echo "File Size: " . $fileSize . "\n";
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 echo $e->getMessage() . "\n";
 echo 'Error getting object ' . $key . ' from bucket ' .
 $bucket . '. Make sure they exist and your bucket is in the same region as
 this function.' . "\n";
 throw $e;
 }
 }
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Tutorial: Use an S3 trigger 1533

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

Consuming an S3 event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import json
import urllib.parse
import boto3

print('Loading function')

s3 = boto3.client('s3')

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']
['key'], encoding='utf-8')
 try:
 response = s3.get_object(Bucket=bucket, Key=key)
 print("CONTENT TYPE: " + response['ContentType'])
 return response['ContentType']
 except Exception as e:
 print(e)
 print('Error getting object {} from bucket {}. Make sure they
 exist and your bucket is in the same region as this function.'.format(key,
 bucket))
 raise e

Tutorial: Use an S3 trigger 1534

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Ruby.

require 'json'
require 'uri'
require 'aws-sdk'

puts 'Loading function'

def lambda_handler(event:, context:)
 s3 = Aws::S3::Client.new(region: 'region') # Your AWS region
 # puts "Received event: #{JSON.dump(event)}"

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = URI.decode_www_form_component(event['Records'][0]['s3']['object']
['key'], Encoding::UTF_8)
 begin
 response = s3.get_object(bucket: bucket, key: key)
 puts "CONTENT TYPE: #{response.content_type}"
 return response.content_type
 rescue StandardError => e
 puts e.message
 puts "Error getting object #{key} from bucket #{bucket}. Make sure they
 exist and your bucket is in the same region as this function."
 raise e
 end
end

Tutorial: Use an S3 trigger 1535

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::s3::S3Event;
use aws_sdk_s3::{Client};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Main function
#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 // Initialize the AWS SDK for Rust
 let config = aws_config::load_from_env().await;
 let s3_client = Client::new(&config);

 let res = run(service_fn(|request: LambdaEvent<S3Event>| {
 function_handler(&s3_client, request)
 })).await;

 res
}

async fn function_handler(
 s3_client: &Client,

Tutorial: Use an S3 trigger 1536

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 evt: LambdaEvent<S3Event>
) -> Result<(), Error> {
 tracing::info!(records = ?evt.payload.records.len(), "Received request
 from SQS");

 if evt.payload.records.len() == 0 {
 tracing::info!("Empty S3 event received");
 }

 let bucket =
 evt.payload.records[0].s3.bucket.name.as_ref().expect("Bucket name to
 exist");
 let key = evt.payload.records[0].s3.object.key.as_ref().expect("Object
 key to exist");

 tracing::info!("Request is for {} and object {}", bucket, key);

 let s3_get_object_result = s3_client
 .get_object()
 .bucket(bucket)
 .key(key)
 .send()
 .await;

 match s3_get_object_result {
 Ok(_) => tracing::info!("S3 Get Object success, the s3GetObjectResult
 contains a 'body' property of type ByteStream"),
 Err(_) => tracing::info!("Failure with S3 Get Object request")
 }

 Ok(())
}

2. In the Code source pane on the Lambda console, paste the code into the code editor, replacing
the code that Lambda created.

3. In the DEPLOY section, choose Deploy to update your function's code:

Tutorial: Use an S3 trigger 1537

AWS Lambda Developer Guide

Create the Amazon S3 trigger

To create the Amazon S3 trigger

1. In the Function overview pane, choose Add trigger.

2. Select S3.

3. Under Bucket, select the bucket you created earlier in the tutorial.

Tutorial: Use an S3 trigger 1538

AWS Lambda Developer Guide

4. Under Event types, be sure that All object create events is selected.

5. Under Recursive invocation, select the check box to acknowledge that using the same Amazon
S3 bucket for input and output is not recommended.

6. Choose Add.

Note

When you create an Amazon S3 trigger for a Lambda function using the Lambda console,
Amazon S3 configures an event notification on the bucket you specify. Before configuring
this event notification, Amazon S3 performs a series of checks to confirm that the event
destination exists and has the required IAM policies. Amazon S3 also performs these tests
on any other event notifications configured for that bucket.
Because of this check, if the bucket has previously configured event destinations for
resources that no longer exist, or for resources that don't have the required permissions
policies, Amazon S3 won't be able to create the new event notification. You'll see the
following error message indicating that your trigger couldn't be created:

An error occurred when creating the trigger: Unable to validate the following
 destination configurations.

You can see this error if you previously configured a trigger for another Lambda function
using the same bucket, and you have since deleted the function or modified its permissions
policies.

Test your Lambda function with a dummy event

Tutorial: Use an S3 trigger 1539

https://docs.aws.amazon.com/AmazonS3/latest/userguide/EventNotifications.html

AWS Lambda Developer Guide

To test the Lambda function with a dummy event

1. In the Lambda console page for your function, choose the Test tab.

2. For Event name, enter MyTestEvent.

3. In the Event JSON, paste the following test event. Be sure to replace these values:

• Replace us-east-1 with the region you created your Amazon S3 bucket in.

• Replace both instances of amzn-s3-demo-bucket with the name of your own Amazon S3
bucket.

• Replace test%2FKey with the name of the test object you uploaded to your bucket earlier
(for example, HappyFace.jpg).

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-1",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "responseElements": {
 "x-amz-request-id": "EXAMPLE123456789",
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH"
 },
 "s3": {
 "s3SchemaVersion": "1.0",

Tutorial: Use an S3 trigger 1540

AWS Lambda Developer Guide

 "configurationId": "testConfigRule",
 "bucket": {
 "name": "amzn-s3-demo-bucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 },
 "arn": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 "object": {
 "key": "test%2Fkey",
 "size": 1024,
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901"
 }
 }
 }
]
}

4. Choose Save.

5. Choose Test.

6. If your function runs successfully, you’ll see output similar to the following in the Execution
results tab.

Response
"image/jpeg"

Function Logs
START RequestId: 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 Version: $LATEST
2021-02-18T21:40:59.280Z 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 INFO INPUT
 BUCKET AND KEY: { Bucket: 'amzn-s3-demo-bucket', Key: 'HappyFace.jpg' }
2021-02-18T21:41:00.215Z 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 INFO CONTENT
 TYPE: image/jpeg
END RequestId: 12b3cae7-5f4e-415e-93e6-416b8f8b66e6
REPORT RequestId: 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 Duration: 976.25 ms
 Billed Duration: 977 ms Memory Size: 128 MB Max Memory Used: 90 MB Init
 Duration: 430.47 ms

Request ID
12b3cae7-5f4e-415e-93e6-416b8f8b66e6

Tutorial: Use an S3 trigger 1541

AWS Lambda Developer Guide

Test the Lambda function with the Amazon S3 trigger

To test your function with the configured trigger, upload an object to your Amazon S3 bucket using
the console. To verify that your Lambda function ran as expected, use CloudWatch Logs to view
your function’s output.

To upload an object to your Amazon S3 bucket

1. Open the Buckets page of the Amazon S3 console and choose the bucket that you created
earlier.

2. Choose Upload.

3. Choose Add files and use the file selector to choose an object you want to upload. This object
can be any file you choose.

4. Choose Open, then choose Upload.

To verify the function invocation using CloudWatch Logs

1. Open the CloudWatch console.

2. Make sure you're working in the same AWS Region you created your Lambda function in. You
can change your Region using the drop-down list at the top of the screen.

Tutorial: Use an S3 trigger 1542

https://console.aws.amazon.com/s3/buckets
https://console.aws.amazon.com/cloudwatch/home

AWS Lambda Developer Guide

3. Choose Logs, then choose Log groups.

4. Choose the log group for your function (/aws/lambda/s3-trigger-tutorial).

5. Under Log streams, choose the most recent log stream.

6. If your function was invoked correctly in response to your Amazon S3 trigger, you’ll see output
similar to the following. The CONTENT TYPE you see depends on the type of file you uploaded
to your bucket.

2022-05-09T23:17:28.702Z 0cae7f5a-b0af-4c73-8563-a3430333cc10 INFO CONTENT
 TYPE: image/jpeg

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

Tutorial: Use an S3 trigger 1543

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the S3 bucket

1. Open the Amazon S3 console.

2. Select the bucket you created.

3. Choose Delete.

4. Enter the name of the bucket in the text input field.

5. Choose Delete bucket.

Next steps

In Tutorial: Using an Amazon S3 trigger to create thumbnail images, the Amazon S3 trigger invokes
a function that creates a thumbnail image for each image file that is uploaded to a bucket. This
tutorial requires a moderate level of AWS and Lambda domain knowledge. It demonstrates how
to create resources using the AWS Command Line Interface (AWS CLI) and how to create a .zip file
archive deployment package for the function and its dependencies.

Tutorial: Using an Amazon S3 trigger to create thumbnail images

In this tutorial, you create and configure a Lambda function that resizes images added to an
Amazon Simple Storage Service (Amazon S3) bucket. When you add an image file to your bucket,
Amazon S3 invokes your Lambda function. The function then creates a thumbnail version of the
image and outputs it to a different Amazon S3 bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1544

https://console.aws.amazon.com/s3/home#

AWS Lambda Developer Guide

To complete this tutorial, you carry out the following steps:

1. Create source and destination Amazon S3 buckets and upload a sample image.

2. Create a Lambda function that resizes an image and outputs a thumbnail to an Amazon S3
bucket.

3. Configure a Lambda trigger that invokes your function when objects are uploaded to your source
bucket.

4. Test your function, first with a dummy event, and then by uploading an image to your source
bucket.

By completing these steps, you’ll learn how to use Lambda to carry out a file processing task on
objects added to an Amazon S3 bucket. You can complete this tutorial using the AWS Command
Line Interface (AWS CLI) or the AWS Management Console.

If you're looking for a simpler example to learn how to configure an Amazon S3 trigger for Lambda,
you can try Tutorial: Using an Amazon S3 trigger to invoke a Lambda function.

Topics

• Prerequisites

• Create two Amazon S3 buckets

• Upload a test image to your source bucket

• Create a permissions policy

• Create an execution role

Tutorial: Use an Amazon S3 trigger to create thumbnails 1545

https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html

AWS Lambda Developer Guide

• Create the function deployment package

• Create the Lambda function

• Configure Amazon S3 to invoke the function

• Test your Lambda function with a dummy event

• Test your function using the Amazon S3 trigger

• Clean up your resources

Prerequisites

If you want to use the AWS CLI to complete the tutorial, install the latest version of the AWS
Command Line Interface.

For your Lambda function code, you can use Python or Node.js. Install the language support tools
and a package manager for the language that you want to use.

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1546

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Create two Amazon S3 buckets

First create two Amazon S3 buckets. The first bucket is the source bucket you will upload your
images to. The second bucket is used by Lambda to save the resized thumbnail when you invoke
your function.

AWS Management Console

To create the Amazon S3 buckets (console)

1. Open the Amazon S3 console and select the General purpose buckets page.

2. Select the AWS Region closest to your geographical location. You can change your region
using the drop-down list at the top of the screen. Later in the tutorial, you must create your
Lambda function in the same Region.

3. Choose Create bucket.

4. Under General configuration, do the following:

a. For Bucket type, ensure General purpose is selected.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1547

https://console.aws.amazon.com/s3

AWS Lambda Developer Guide

b. For Bucket name, enter a globally unique name that meets the Amazon S3 Bucket
naming rules. Bucket names can contain only lower case letters, numbers, dots (.), and
hyphens (-).

5. Leave all other options set to their default values and choose Create bucket.

6. Repeat steps 1 to 5 to create your destination bucket. For Bucket name, enter amzn-s3-
demo-source-bucket-resized, where amzn-s3-demo-source-bucket is the name of
the source bucket you just created.

AWS CLI

To create the Amazon S3 buckets (AWS CLI)

1. Run the following CLI command to create your source bucket. The name you choose for
your bucket must be globally unique and follow the Amazon S3 Bucket naming rules.
Names can only contain lower case letters, numbers, dots (.), and hyphens (-). For region
and LocationConstraint, choose the AWS Region closest to your geographical location.

aws s3api create-bucket --bucket amzn-s3-demo-source-bucket --region us-east-1 \
--create-bucket-configuration LocationConstraint=us-east-1

Later in the tutorial, you must create your Lambda function in the same AWS Region as
your source bucket, so make a note of the region you chose.

2. Run the following command to create your destination bucket. For the bucket name,
you must use amzn-s3-demo-source-bucket-resized, where amzn-s3-demo-
source-bucket is the name of the source bucket you created in step 1. For region and
LocationConstraint, choose the same AWS Region you used to create your source
bucket.

aws s3api create-bucket --bucket amzn-s3-demo-source-bucket-resized --region us-
east-1 \
--create-bucket-configuration LocationConstraint=us-east-1

Tutorial: Use an Amazon S3 trigger to create thumbnails 1548

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html

AWS Lambda Developer Guide

Upload a test image to your source bucket

Later in the tutorial, you’ll test your Lambda function by invoking it using the AWS CLI or the
Lambda console. To confirm that your function is operating correctly, your source bucket needs to
contain a test image. This image can be any JPG or PNG file you choose.

AWS Management Console

To upload a test image to your source bucket (console)

1. Open the Buckets page of the Amazon S3 console.

2. Select the source bucket you created in the previous step.

3. Choose Upload.

4. Choose Add files and use the file selector to choose the object you want to upload.

5. Choose Open, then choose Upload.

AWS CLI

To upload a test image to your source bucket (AWS CLI)

• From the directory containing the image you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test image.

aws s3api put-object --bucket amzn-s3-demo-source-bucket --key HappyFace.jpg --
body ./HappyFace.jpg

Tutorial: Use an Amazon S3 trigger to create thumbnails 1549

https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

Create a permissions policy

The first step in creating your Lambda function is to create a permissions policy. This policy gives
your function the permissions it needs to access other AWS resources. For this tutorial, the policy
gives Lambda read and write permissions for Amazon S3 buckets and allows it to write to Amazon
CloudWatch Logs.

AWS Management Console

To create the policy (console)

1. Open the Policies page of the AWS Identity and Access Management (IAM) console.

2. Choose Create policy.

3. Choose the JSON tab, and then paste the following custom policy into the JSON editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [

Tutorial: Use an Amazon S3 trigger to create thumbnails 1550

https://console.aws.amazon.com/iamv2/home#policies

AWS Lambda Developer Guide

 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::*/*"
 }
]
}

4. Choose Next.

5. Under Policy details, for Policy name, enter LambdaS3Policy.

6. Choose Create policy.

AWS CLI

To create the policy (AWS CLI)

1. Save the following JSON in a file named policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],

Tutorial: Use an Amazon S3 trigger to create thumbnails 1551

AWS Lambda Developer Guide

 "Resource": "arn:aws:s3:::*/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::*/*"
 }
]
}

2. From the directory you saved the JSON policy document in, run the following CLI
command.

aws iam create-policy --policy-name LambdaS3Policy --policy-document file://
policy.json

Create an execution role

An execution role is an IAM role that grants a Lambda function permission to access AWS services
and resources. To give your function read and write access to an Amazon S3 bucket, you attach the
permissions policy you created in the previous step.

AWS Management Console

To create an execution role and attach your permissions policy (console)

1. Open the Roles page of the (IAM) console.

2. Choose Create role.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1552

https://console.aws.amazon.com/iamv2/home#roles

AWS Lambda Developer Guide

3. For Trusted entity type, select AWS service, and for Use case, select Lambda.

4. Choose Next.

5. Add the permissions policy you created in the previous step by doing the following:

a. In the policy search box, enter LambdaS3Policy.

b. In the search results, select the check box for LambdaS3Policy.

c. Choose Next.

6. Under Role details, for the Role name enter LambdaS3Role.

7. Choose Create role.

AWS CLI

To create an execution role and attach your permissions policy (AWS CLI)

1. Save the following JSON in a file named trust-policy.json. This trust policy
allows Lambda to use the role’s permissions by giving the service principal
lambda.amazonaws.com permission to call the AWS Security Token Service (AWS STS)
AssumeRole action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. From the directory you saved the JSON trust policy document in, run the following CLI
command to create the execution role.

aws iam create-role --role-name LambdaS3Role --assume-role-policy-document
 file://trust-policy.json

Tutorial: Use an Amazon S3 trigger to create thumbnails 1553

AWS Lambda Developer Guide

3. To attach the permissions policy you created in the previous step, run the following CLI
command. Replace the AWS account number in the policy’s ARN with your own account
number.

aws iam attach-role-policy --role-name LambdaS3Role --policy-arn
 arn:aws:iam::123456789012:policy/LambdaS3Policy

Create the function deployment package

To create your function, you create a deployment package containing your function code and its
dependencies. For this CreateThumbnail function, your function code uses a separate library
for the image resizing. Follow the instructions for your chosen language to create a deployment
package containing the required library.

Node.js

To create the deployment package (Node.js)

1. Create a directory named lambda-s3 for your function code and dependencies and
navigate into it.

mkdir lambda-s3
cd lambda-s3

2. Create a new Node.js project with npm. To accept the default options provided in the
interactive experience, press Enter.

npm init

Tutorial: Use an Amazon S3 trigger to create thumbnails 1554

AWS Lambda Developer Guide

3. Save the following function code in a file named index.mjs. Make sure to replace us-
east-1 with the AWS Region in which you created your own source and destination
buckets.

// dependencies
import { S3Client, GetObjectCommand, PutObjectCommand } from '@aws-sdk/client-
s3';

import { Readable } from 'stream';

import sharp from 'sharp';
import util from 'util';

// create S3 client
const s3 = new S3Client({region: 'us-east-1'});

// define the handler function
export const handler = async (event, context) => {

// Read options from the event parameter and get the source bucket
console.log("Reading options from event:\n", util.inspect(event, {depth: 5}));
 const srcBucket = event.Records[0].s3.bucket.name;

// Object key may have spaces or unicode non-ASCII characters
const srcKey = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/
g, " "));
const dstBucket = srcBucket + "-resized";
const dstKey = "resized-" + srcKey;

// Infer the image type from the file suffix
const typeMatch = srcKey.match(/\.([^.]*)$/);
if (!typeMatch) {
 console.log("Could not determine the image type.");
 return;
}

// Check that the image type is supported
const imageType = typeMatch[1].toLowerCase();
if (imageType != "jpg" && imageType != "png") {
 console.log(`Unsupported image type: ${imageType}`);
 return;
}

Tutorial: Use an Amazon S3 trigger to create thumbnails 1555

AWS Lambda Developer Guide

// Get the image from the source bucket. GetObjectCommand returns a stream.
try {
 const params = {
 Bucket: srcBucket,
 Key: srcKey
 };
 var response = await s3.send(new GetObjectCommand(params));
 var stream = response.Body;

// Convert stream to buffer to pass to sharp resize function.
 if (stream instanceof Readable) {
 var content_buffer = Buffer.concat(await stream.toArray());

 } else {
 throw new Error('Unknown object stream type');
 }

} catch (error) {
 console.log(error);
 return;
}

// set thumbnail width. Resize will set the height automatically to maintain
 aspect ratio.
const width = 200;

// Use the sharp module to resize the image and save in a buffer.
try {
 var output_buffer = await sharp(content_buffer).resize(width).toBuffer();

} catch (error) {
 console.log(error);
 return;
}

// Upload the thumbnail image to the destination bucket
try {
 const destparams = {
 Bucket: dstBucket,
 Key: dstKey,
 Body: output_buffer,

Tutorial: Use an Amazon S3 trigger to create thumbnails 1556

AWS Lambda Developer Guide

 ContentType: "image"
 };

 const putResult = await s3.send(new PutObjectCommand(destparams));

 } catch (error) {
 console.log(error);
 return;
 }

 console.log('Successfully resized ' + srcBucket + '/' + srcKey +
 ' and uploaded to ' + dstBucket + '/' + dstKey);
 };

4. In your lambda-s3 directory, install the sharp library using npm. Note that the latest
version of sharp (0.33) isn't compatible with Lambda. Install version 0.32.6 to complete this
tutorial.

npm install sharp@0.32.6

The npm install command creates a node_modules directory for your modules. After
this step, your directory structure should look like the following.

lambda-s3
|- index.mjs
|- node_modules
| |- base64js
| |- bl
| |- buffer
...
|- package-lock.json
|- package.json

5. Create a .zip deployment package containing your function code and its dependencies. In
MacOS and Linux, run the following command.

zip -r function.zip .

In Windows, use your preferred zip utility to create a .zip file. Ensure that your index.mjs,
package.json, and package-lock.json files and your node_modules directory are all
at the root of your .zip file.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1557

AWS Lambda Developer Guide

Python

To create the deployment package (Python)

1. Save the example code as a file named lambda_function.py.

import boto3
import os
import sys
import uuid
from urllib.parse import unquote_plus
from PIL import Image
import PIL.Image

s3_client = boto3.client('s3')

def resize_image(image_path, resized_path):
 with Image.open(image_path) as image:
 image.thumbnail(tuple(x / 2 for x in image.size))
 image.save(resized_path)

def lambda_handler(event, context):
 for record in event['Records']:
 bucket = record['s3']['bucket']['name']
 key = unquote_plus(record['s3']['object']['key'])
 tmpkey = key.replace('/', '')
 download_path = '/tmp/{}{}'.format(uuid.uuid4(), tmpkey)
 upload_path = '/tmp/resized-{}'.format(tmpkey)
 s3_client.download_file(bucket, key, download_path)
 resize_image(download_path, upload_path)
 s3_client.upload_file(upload_path, '{}-resized'.format(bucket), 'resized-
{}'.format(key))

2. In the same directory in which you created your lambda_function.py file, create a new
directory named package and install the Pillow (PIL) library and the AWS SDK for Python
(Boto3). Although the Lambda Python runtime includes a version of the Boto3 SDK, we
recommend that you add all of your function's dependencies to your deployment package,
even if they are included in the runtime. For more information, see Runtime dependencies
in Python.

mkdir package
pip install \

Tutorial: Use an Amazon S3 trigger to create thumbnails 1558

https://pypi.org/project/Pillow/
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-dependencies

AWS Lambda Developer Guide

--platform manylinux2014_x86_64 \
--target=package \
--implementation cp \
--python-version 3.12 \
--only-binary=:all: --upgrade \
pillow boto3

The Pillow library contains C/C++ code. By using the --platform
manylinux_2014_x86_64 and --only-binary=:all: options, pip will download and
install a version of Pillow that contains pre-compiled binaries compatible with the Amazon
Linux 2 operating system. This ensures that your deployment package will work in the
Lambda execution environment, regardless of the operating system and architecture of
your local build machine.

3. Create a .zip file containing your application code and the Pillow and Boto3 libraries. In
Linux or MacOS, run the following commands from your command line interface.

cd package
zip -r ../lambda_function.zip .
cd ..
zip lambda_function.zip lambda_function.py

In Windows, use your preferred zip tool to create the lambda_function.zip file. Make
sure that your lambda_function.py file and the folders containing your dependencies
are all at the root of the .zip file.

You can also create your deployment package using a Python virtual environment. See Working
with .zip file archives for Python Lambda functions

Tutorial: Use an Amazon S3 trigger to create thumbnails 1559

AWS Lambda Developer Guide

Create the Lambda function

You can create your Lambda function using either the AWS CLI or the Lambda console. Follow the
instructions for your chosen language to create the function.

AWS Management Console

To create the function (console)

To create your Lambda function using the console, you first create a basic function containing
some ‘Hello world’ code. You then replace this code with your own function code by uploading
the.zip or JAR file you created in the previous step.

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same AWS Region you created your Amazon S3 bucket in.
You can change your region using the drop-down list at the top of the screen.

3. Choose Create function.

4. Choose Author from scratch.

5. Under Basic information, do the following:

Tutorial: Use an Amazon S3 trigger to create thumbnails 1560

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. For Function name, enter CreateThumbnail.

b. For Runtime, choose either Node.js 22.x or Python 3.12 according to the language you
chose for your function.

c. For Architecture, choose x86_64.

6. In the Change default execution role tab, do the following:

a. Expand the tab, then choose Use an existing role.

b. Select the LambdaS3Role you created earlier.

7. Choose Create function.

To upload the function code (console)

1. In the Code source pane, choose Upload from.

2. Choose .zip file.

3. Choose Upload.

4. In the file selector, select your .zip file and choose Open.

5. Choose Save.

AWS CLI

To create the function (AWS CLI)

• Run the CLI command for the language you chose. For the role parameter, make sure to
replace 123456789012 with your own AWS account ID. For the region parameter, replace
us-east-1 with the region you created your Amazon S3 buckets in.

• For Node.js, run the following command from the directory containing your
function.zip file.

aws lambda create-function --function-name CreateThumbnail \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs22.x \
--timeout 10 --memory-size 1024 \
--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-east-1

• For Python, run the following command from the directory containing your
lambda_function.zip file.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1561

AWS Lambda Developer Guide

aws lambda create-function --function-name CreateThumbnail \
--zip-file fileb://lambda_function.zip --handler
 lambda_function.lambda_handler \
--runtime python3.13 --timeout 10 --memory-size 1024 \
--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-east-1

Configure Amazon S3 to invoke the function

For your Lambda function to run when you upload an image to your source bucket, you need to
configure a trigger for your function. You can configure the Amazon S3 trigger using either the
console or the AWS CLI.

Important

This procedure configures the Amazon S3 bucket to invoke your function every time that an
object is created in the bucket. Be sure to configure this only on the source bucket. If your
Lambda function creates objects in the same bucket that invokes it, your function can be
invoked continuously in a loop. This can result in un expected charges being billed to your
AWS account.

AWS Management Console

To configure the Amazon S3 trigger (console)

1. Open the Functions page of the Lambda console and choose your function
(CreateThumbnail).

Tutorial: Use an Amazon S3 trigger to create thumbnails 1562

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose Add trigger.

3. Select S3.

4. Under Bucket, select your source bucket.

5. Under Event types, select All object create events.

6. Under Recursive invocation, select the check box to acknowledge that using the same
Amazon S3 bucket for input and output is not recommended. You can learn more about
recursive invocation patterns in Lambda by reading Recursive patterns that cause run-away
Lambda functions in Serverless Land.

7. Choose Add.

When you create a trigger using the Lambda console, Lambda automatically creates a
resource based policy to give the service you select permission to invoke your function.

AWS CLI

To configure the Amazon S3 trigger (AWS CLI)

1. For your Amazon S3 source bucket to invoke your function when you add an image file,
you first need to configure permissions for your function using a resource based policy.
A resource-based policy statement gives other AWS services permission to invoke your
function. To give Amazon S3 permission to invoke your function, run the following CLI
command. Be sure to replace the source-account parameter with your own AWS account
ID and to use your own source bucket name.

aws lambda add-permission --function-name CreateThumbnail \
--principal s3.amazonaws.com --statement-id s3invoke --action
 "lambda:InvokeFunction" \
--source-arn arn:aws:s3:::amzn-s3-demo-source-bucket \
--source-account 123456789012

The policy you define with this command allows Amazon S3 to invoke your function only
when an action takes place on your source bucket.

Note

Although Amazon S3 bucket names are globally unique, when using resource-based
policies it is best practice to specify that the bucket must belong to your account.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1563

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Lambda Developer Guide

This is because if you delete a bucket, it is possible for another AWS account to
create a bucket with the same Amazon Resource Name (ARN).

2. Save the following JSON in a file named notification.json. When applied to your
source bucket, this JSON configures the bucket to send a notification to your Lambda
function every time a new object is added. Replace the AWS account number and AWS
Region in the Lambda function ARN with your own account number and region.

{
"LambdaFunctionConfigurations": [
 {
 "Id": "CreateThumbnailEventConfiguration",
 "LambdaFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:CreateThumbnail",
 "Events": ["s3:ObjectCreated:Put"]
 }
]
}

3. Run the following CLI command to apply the notification settings in the JSON file you
created to your source bucket. Replace amzn-s3-demo-source-bucket with the name of
your own source bucket.

aws s3api put-bucket-notification-configuration --bucket amzn-s3-demo-source-
bucket \
--notification-configuration file://notification.json

To learn more about the put-bucket-notification-configuration command and
the notification-configuration option, see put-bucket-notification-configuration in
the AWS CLI Command Reference.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1564

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-notification-configuration.html

AWS Lambda Developer Guide

Test your Lambda function with a dummy event

Before you test your whole setup by adding an image file to your Amazon S3 source bucket, you
test that your Lambda function is working correctly by invoking it with a dummy event. An event in
Lambda is a JSON-formatted document that contains data for your function to process. When your
function is invoked by Amazon S3, the event sent to your function contains information such as the
bucket name, bucket ARN, and object key.

AWS Management Console

To test your Lambda function with a dummy event (console)

1. Open the Functions page of the Lambda console and choose your function
(CreateThumbnail).

2. Choose the Test tab.

3. To create your test event, in the Test event pane, do the following:

a. Under Test event action, select Create new event.

b. For Event name, enter myTestEvent.

c. For Template, select S3 Put.

d. Replace the values for the following parameters with your own values.

• For awsRegion, replace us-east-1 with the AWS Region you created your Amazon
S3 buckets in.

• For name, replace amzn-s3-demo-bucket with the name of your own Amazon S3
source bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1565

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

• For key, replace test%2Fkey with the filename of the test object you uploaded to
your source bucket in the step Upload a test image to your source bucket.

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-1",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "responseElements": {
 "x-amz-request-id": "EXAMPLE123456789",
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH"
 },
 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "testConfigRule",
 "bucket": {
 "name": "amzn-s3-demo-bucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 },
 "arn": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 "object": {
 "key": "test%2Fkey",
 "size": 1024,
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901"
 }
 }
 }
]
}

Tutorial: Use an Amazon S3 trigger to create thumbnails 1566

AWS Lambda Developer Guide

e. Choose Save.

4. In the Test event pane, choose Test.

5. To check the your function has created a resized verison of your image and stored it in your
target Amazon S3 bucket, do the following:

a. Open the Buckets page of the Amazon S3 console.

b. Choose your target bucket and confirm that your resized file is listed in the Objects
pane.

AWS CLI

To test your Lambda function with a dummy event (AWS CLI)

1. Save the following JSON in a file named dummyS3Event.json. Replace the values for the
following parameters with your own values:

• For awsRegion, replace us-east-1 with the AWS Region you created your Amazon S3
buckets in.

• For name, replace amzn-s3-demo-bucket with the name of your own Amazon S3
source bucket.

• For key, replace test%2Fkey with the filename of the test object you uploaded to your
source bucket in the step Upload a test image to your source bucket.

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-1",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "responseElements": {

Tutorial: Use an Amazon S3 trigger to create thumbnails 1567

https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

 "x-amz-request-id": "EXAMPLE123456789",
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH"
 },
 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "testConfigRule",
 "bucket": {
 "name": "amzn-s3-demo-bucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 },
 "arn": "arn:aws:s3:::amzn-s3-demo-bucket"
 },
 "object": {
 "key": "test%2Fkey",
 "size": 1024,
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901"
 }
 }
 }
]
}

2. From the directory you saved your dummyS3Event.json file in, invoke the function
by running the following CLI command. This command invokes your Lambda function
synchronously by specifying RequestResponse as the value of the invocation-type
parameter. To learn more about synchronous and asynchronous invocation, see Invoking
Lambda functions.

aws lambda invoke --function-name CreateThumbnail \
--invocation-type RequestResponse --cli-binary-format raw-in-base64-out \
--payload file://dummyS3Event.json outputfile.txt

The cli-binary-format option is required if you are using version 2 of the AWS CLI. To make
this the default setting, run aws configure set cli-binary-format raw-in-
base64-out. For more information, see AWS CLI supported global command line options.

3. Verify that your function has created a thumbnail version of your image and saved it to
your target Amazon S3 bucket. Run the following CLI command, replacing amzn-s3-
demo-source-bucket-resized with the name of your own destination bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1568

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

aws s3api list-objects-v2 --bucket amzn-s3-demo-source-bucket-resized

You should see output similar to the following. The Key parameter shows the filename of
your resized image file.

{
 "Contents": [
 {
 "Key": "resized-HappyFace.jpg",
 "LastModified": "2023-06-06T21:40:07+00:00",
 "ETag": "\"d8ca652ffe83ba6b721ffc20d9d7174a\"",
 "Size": 2633,
 "StorageClass": "STANDARD"
 }
]
}

Test your function using the Amazon S3 trigger

Now that you’ve confirmed your Lambda function is operating correctly, you’re ready to test your
complete setup by adding an image file to your Amazon S3 source bucket. When you add your
image to the source bucket, your Lambda function should be automatically invoked. Your function
creates a resized version of the file and stores it in your target bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1569

AWS Lambda Developer Guide

AWS Management Console

To test your Lambda function using the Amazon S3 trigger (console)

1. To upload an image to your Amazon S3 bucket, do the following:

a. Open the Buckets page of the Amazon S3 console and choose your source bucket.

b. Choose Upload.

c. Choose Add files and use the file selector to choose the image file you want to upload.
Your image object can be any .jpg or .png file.

d. Choose Open, then choose Upload.

2. Verify that Lambda has saved a resized version of your image file in your target bucket by
doing the following:

a. Navigate back to the Buckets page of the Amazon S3 console and choose your
destination bucket.

b. In the Objects pane, you should now see two resized image files, one from each test
of your Lambda function. To download your resized image, select the file, then choose
Download.

AWS CLI

To test your Lambda function using the Amazon S3 trigger (AWS CLI)

1. From the directory containing the image you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test image. Your test image can
be any .jpg or .png file.

aws s3api put-object --bucket amzn-s3-demo-source-bucket --key SmileyFace.jpg --
body ./SmileyFace.jpg

2. Verify that your function has created a thumbnail version of your image and saved it to
your target Amazon S3 bucket. Run the following CLI command, replacing amzn-s3-
demo-source-bucket-resized with the name of your own destination bucket.

aws s3api list-objects-v2 --bucket amzn-s3-demo-source-bucket-resized

Tutorial: Use an Amazon S3 trigger to create thumbnails 1570

https://console.aws.amazon.com/s3/buckets
https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

If your function runs successfully, you’ll see output similar to the following. Your target
bucket should now contain two resized files.

{
 "Contents": [
 {
 "Key": "resized-HappyFace.jpg",
 "LastModified": "2023-06-07T00:15:50+00:00",
 "ETag": "\"7781a43e765a8301713f533d70968a1e\"",
 "Size": 2763,
 "StorageClass": "STANDARD"
 },
 {
 "Key": "resized-SmileyFace.jpg",
 "LastModified": "2023-06-07T00:13:18+00:00",
 "ETag": "\"ca536e5a1b9e32b22cd549e18792cdbc\"",
 "Size": 1245,
 "StorageClass": "STANDARD"
 }
]
}

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the policy that you created

1. Open the Policies page of the IAM console.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1571

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/policies

AWS Lambda Developer Guide

2. Select the policy that you created (AWSLambdaS3Policy).

3. Choose Policy actions, Delete.

4. Choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the S3 bucket

1. Open the Amazon S3 console.

2. Select the bucket you created.

3. Choose Delete.

4. Enter the name of the bucket in the text input field.

5. Choose Delete bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1572

https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/s3/home#

AWS Lambda Developer Guide

Use Secrets Manager secrets in Lambda functions

AWS Secrets Manager helps you manage credentials, API keys, and other secrets that your Lambda
functions need. We recommend that you use the AWS Parameters and Secrets Lambda extension
to retrieve secrets in your Lambda functions. The extension offers better performance and lower
costs compared to retrieving secrets directly using the AWS SDK.

The AWS Parameters and Secrets Lambda extension maintains a local cache of secrets, eliminating
the need for your function to call Secrets Manager for every invocation. When your function
requests a secret, the extension first checks its cache. If the secret is available and hasn't expired,
it's returned immediately. Otherwise, the extension retrieves it from Secrets Manager, caches it,
and then returns it to your function. This caching mechanism results in faster response times and
reduced costs by minimizing API calls to Secrets Manager.

The extension uses a simple HTTP interface compatible with any Lambda runtime. By default, it
caches secrets for 300 seconds (5 minutes) and can hold up to 1,000 secrets. You can customize
these settings with environment variables.

When to use Secrets Manager with Lambda

Common scenarios for using Secrets Manager with Lambda include:

• Storing database credentials that your function uses to connect to Amazon RDS or other
databases

• Managing API keys for external services your function calls

• Storing encryption keys or other sensitive configuration data

• Rotating credentials automatically without needing to update your function code

Use Secrets Manager in a Lambda function

This section assumes that you already have a Secrets Manager secret. To create a secret, see Create
an AWS Secrets Manager secret.

Create the deployment package

Choose your preferred runtime and follow the steps to create a function that retrieves secrets from
Secrets Manager. The example function retrieves a secret from Secrets Manager and can be used to
access database credentials, API keys, or other sensitive configuration data in your applications.

Secrets Manager 1573

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Lambda Developer Guide

Python

To create a Python function

1. Create and navigate to a new project directory. Example:

mkdir my_function
cd my_function

2. Create a file named lambda_function.py with the following code. For secret_name,
use the name or Amazon Resource Name (ARN) of your secret.

import json
import os
import requests

def lambda_handler(event, context):
 try:
 # Replace with the name or ARN of your secret
 secret_name = "arn:aws:secretsmanager:us-
east-1:111122223333:secret:SECRET_NAME"

 secrets_extension_endpoint = f"http://localhost:2773/secretsmanager/get?
secretId={secret_name}"
 headers = {"X-Aws-Parameters-Secrets-Token":
 os.environ.get('AWS_SESSION_TOKEN')}

 response = requests.get(secrets_extension_endpoint, headers=headers)
 print(f"Response status code: {response.status_code}")

 secret = json.loads(response.text)["SecretString"]
 print(f"Retrieved secret: {secret}")

 return {
 'statusCode': response.status_code,
 'body': json.dumps({
 'message': 'Successfully retrieved secret',
 'secretRetrieved': True
 })
 }

 except Exception as e:
 print(f"Error: {str(e)}")

Use Secrets Manager in a function 1574

AWS Lambda Developer Guide

 return {
 'statusCode': 500,
 'body': json.dumps({
 'message': 'Error retrieving secret',
 'error': str(e)
 })
 }

3. Create a file named requirements.txt with this content:

requests

4. Install the dependencies:

pip install -r requirements.txt -t .

5. Create a .zip file containing all files:

zip -r function.zip .

Node.js

To create a Node.js function

1. Create and navigate to a new project directory. Example:

mkdir my_function
cd my_function

2. Create a file named index.mjs with the following code. For secret_name, use the name
or Amazon Resource Name (ARN) of your secret.

import http from 'http';

export const handler = async (event) => {
 try {
 // Replace with the name or ARN of your secret
 const secretName = "arn:aws:secretsmanager:us-
east-1:111122223333:secret:SECRET_NAME";
 const options = {
 hostname: 'localhost',

Use Secrets Manager in a function 1575

AWS Lambda Developer Guide

 port: 2773,
 path: `/secretsmanager/get?secretId=${secretName}`,
 headers: {
 'X-Aws-Parameters-Secrets-Token': process.env.AWS_SESSION_TOKEN
 }
 };

 const response = await new Promise((resolve, reject) => {
 http.get(options, (res) => {
 let data = '';
 res.on('data', (chunk) => { data += chunk; });
 res.on('end', () => {
 resolve({
 statusCode: res.statusCode,
 body: data
 });
 });
 }).on('error', reject);
 });

 const secret = JSON.parse(response.body).SecretString;
 console.log('Retrieved secret:', secret);

 return {
 statusCode: response.statusCode,
 body: JSON.stringify({
 message: 'Successfully retrieved secret',
 secretRetrieved: true
 })
 };
 } catch (error) {
 console.error('Error:', error);
 return {
 statusCode: 500,
 body: JSON.stringify({
 message: 'Error retrieving secret',
 error: error.message
 })
 };
 }
};

3. Create a .zip file containing the index.mjs file:

Use Secrets Manager in a function 1576

AWS Lambda Developer Guide

zip -r function.zip index.mjs

Java

To create a Java function

1. Create a Maven project:

mvn archetype:generate \
 -DgroupId=example \
 -DartifactId=lambda-secrets-demo \
 -DarchetypeArtifactId=maven-archetype-quickstart \
 -DarchetypeVersion=1.4 \
 -DinteractiveMode=false

2. Navigate to the project directory:

cd lambda-secrets-demo

3. Open the pom.xml and replace the contents with the following:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>example</groupId>
 <artifactId>lambda-secrets-demo</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.1</version>

Use Secrets Manager in a function 1577

AWS Lambda Developer Guide

 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.4</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <createDependencyReducedPom>false</
createDependencyReducedPom>
 <finalName>function</finalName>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

4. Rename the /lambda-secrets-demo/src/main/java/example/
App.java to Hello.java to match Lambda's default Java handler name
(example.Hello::handleRequest):

mv src/main/java/example/App.java src/main/java/example/Hello.java

5. Open the Hello.java file and replace its contents with the following. For secretName,
use the name or Amazon Resource Name (ARN) of your secret.

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import java.net.URI;
import java.net.http.HttpClient;
import java.net.http.HttpRequest;

Use Secrets Manager in a function 1578

AWS Lambda Developer Guide

import java.net.http.HttpResponse;

public class Hello implements RequestHandler<Object, String> {
 private final HttpClient client = HttpClient.newHttpClient();

 @Override
 public String handleRequest(Object input, Context context) {
 try {
 // Replace with the name or ARN of your secret
 String secretName = "arn:aws:secretsmanager:us-
east-1:111122223333:secret:SECRET_NAME";
 String endpoint = "http://localhost:2773/secretsmanager/get?
secretId=" + secretName;

 HttpRequest request = HttpRequest.newBuilder()
 .uri(URI.create(endpoint))
 .header("X-Aws-Parameters-Secrets-Token",
 System.getenv("AWS_SESSION_TOKEN"))
 .GET()
 .build();

 HttpResponse<String> response = client.send(request,
 HttpResponse.BodyHandlers.ofString());

 String secret = response.body();
 secret = secret.substring(secret.indexOf("SecretString") + 15);
 secret = secret.substring(0, secret.indexOf("\""));

 System.out.println("Retrieved secret: " + secret);
 return String.format(
 "{\"statusCode\": %d, \"body\": \"%s\"}",
 response.statusCode(), "Successfully retrieved secret"
);

 } catch (Exception e) {
 e.printStackTrace();
 return String.format(
 "{\"body\": \"Error retrieving secret: %s\"}",
 e.getMessage()
);
 }
 }
}

Use Secrets Manager in a function 1579

AWS Lambda Developer Guide

6. Remove the test directory. Maven creates this by default, but we don't need it for this
example.

rm -rf src/test

7. Build the project:

mvn package

8. Download the JAR file (target/function.jar) for later use.

Create the function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Select Author from scratch.

4. For Function name, enter secret-retrieval-demo.

5. Choose your preferred Runtime.

6. Choose Create function.

To upload the deployment package

1. In the function's Code tab, choose Upload from and select .zip file (for Python and Node.js) or
.jar file (for Java).

2. Upload the deployment package you created earlier.

3. Choose Save.

Add the extension

To add the AWS Parameters and Secrets Lambda extension as a layer

1. In the function's Code tab, scroll down to Layers.

2. Choose Add a layer.

3. Select AWS layers.

4. Choose AWS-Parameters-and-Secrets-Lambda-Extension.

5. Select the latest version.

Use Secrets Manager in a function 1580

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

6. Choose Add.

Add permissions

To add Secrets Manager permissions to your execution role

1. Choose the Configuration tab, and then choose Permissions.

2. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

3. Choose Add permissions, and then choose Create inline policy.

4. Choose the JSON tab and add the following policy. For Resource, enter the ARN of your
secret.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:us-
east-1:111122223333:secret:SECRET_NAME"
 }
]
}

5. Choose Next.

6. Enter a name for the policy.

Use Secrets Manager in a function 1581

AWS Lambda Developer Guide

7. Choose Create policy.

Test the function

To test the function

1. Return to the Lambda console.

2. Select the Test tab.

3. Choose Test. You should see the following response:

Environment variables

The AWS Parameters and Secrets Lambda extension uses the following default settings. You can
override these settings by creating the corresponding environment variables. To view the current
settings for a function, set PARAMETERS_SECRETS_EXTENSION_LOG_LEVEL to DEBUG. The
extension will log its configuration information to CloudWatch Logs at the start of each function
invocation.

Setting Default
value

Valid
values

Environment variable Details

HTTP port 2773 1 - 65535 PARAMETERS_SECRETS
_EXTENSION_HTTP_PO
RT

Port for the local HTTP
server

Cache
enabled

TRUE TRUE |
FALSE

PARAMETERS_SECRETS
_EXTENSION_CACHE_E
NABLED

Enable or disable the
cache

Environment variables 1582

AWS Lambda Developer Guide

Setting Default
value

Valid
values

Environment variable Details

Cache size 1000 0 - 1000 PARAMETERS_SECRETS
_EXTENSION_CACHE_S
IZE

Set to 0 to disable
caching

Secrets
Manager
TTL

300
seconds

0 - 300
seconds

SECRETS_MANAGER_TTL Time-to-live for cached
secrets. Set to 0 to
disable caching. This
variable is ignored if the
value for PARAMETER
S_SECRETS_EXTENSIO
N_CACHE_SIZE is 0.

Parameter
Store TTL

300
seconds

0 - 300
seconds

SSM_PARAMETER_STOR
E_TTL

Time-to-live for cached
parameters. Set to 0 to
disable caching. This
variable is ignored if the
value for PARAMETER
S_SECRETS_EXTENSIO
N_CACHE_SIZE is 0.

Log level INFO DEBUG
| INFO |
WARN |
ERROR |
NONE

PARAMETERS_SECRETS
_EXTENSION_LOG_LEV
EL

The level of detail
reported in logs for the
extension

Max
connectio
ns

3 1 or
greater

PARAMETERS_SECRETS
_EXTENSION_MAX_CON
NECTIONS

Maximum number of
HTTP connections for
requests to Parameter
Store or Secrets Manager

Secrets
Manager
timeout

0 (no
timeout)

All whole
numbers

SECRETS_MANAGER_TI
MEOUT_MILLIS

Timeout for requests
to Secrets Manager (in
milliseconds)

Environment variables 1583

AWS Lambda Developer Guide

Setting Default
value

Valid
values

Environment variable Details

Parameter
Store
timeout

0 (no
timeout)

All whole
numbers

SSM_PARAMETER_STOR
E_TIMEOUT_MILLIS

Timeout for requests
to Parameter Store (in
milliseconds)

Working with secret rotation

If you rotate secrets frequently, the default 300-second cache duration might cause your function
to use outdated secrets. You have two options to ensure your function uses the latest secret value:

• Reduce the cache TTL by setting the SECRETS_MANAGER_TTL environment variable to a lower
value (in seconds). For example, setting it to 60 ensures your function will never use a secret
that's more than one minute old.

• Use the AWSCURRENT or AWSPREVIOUS staging labels in your secret request to ensure you get
the specific version you want:

secretsmanager/get?secretId=YOUR_SECRET_NAME&versionStage=AWSCURRENT

Choose the approach that best balances your needs for performance and freshness. A lower TTL
means more frequent calls to Secrets Manager but ensures you're working with the most recent
secret values.

Secret rotation 1584

AWS Lambda Developer Guide

Using Lambda with Amazon SQS

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

You can use a Lambda function to process messages in an Amazon Simple Queue Service (Amazon
SQS) queue. Lambda supports both standard queues and first-in, first-out (FIFO) queues for event
source mappings. The Lambda function and the Amazon SQS queue must be in the same AWS
Region, although they can be in different AWS accounts.

Topics

• Understanding polling and batching behavior for Amazon SQS event source mappings

• Example standard queue message event

• Example FIFO queue message event

• Creating and configuring an Amazon SQS event source mapping

• Configuring scaling behavior for SQS event source mappings

• Handling errors for an SQS event source in Lambda

• Lambda parameters for Amazon SQS event source mappings

• Using event filtering with an Amazon SQS event source

• Tutorial: Using Lambda with Amazon SQS

• Tutorial: Using a cross-account Amazon SQS queue as an event source

Understanding polling and batching behavior for Amazon SQS event
source mappings

With Amazon SQS event source mappings, Lambda polls the queue and invokes your function
synchronously with an event. Each event can contain a batch of multiple messages from the queue.
Lambda receives these events one batch at a time, and invokes your function once for each batch.
When your function successfully processes a batch, Lambda deletes its messages from the queue.

When Lambda receives a batch, the messages stay in the queue but are hidden for the length of
the queue's visibility timeout. If your function successfully processes all messages in the batch,

SQS 1585

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html

AWS Lambda Developer Guide

Lambda deletes the messages from the queue. By default, if your function encounters an error
while processing a batch, all messages in that batch become visible in the queue again after the
visibility timeout expires. For this reason, your function code must be able to process the same
message multiple times without unintended side effects.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the AWS Knowledge Center.

To prevent Lambda from processing a message multiple times, you can either configure your
event source mapping to include batch item failures in your function response, or you can use the
DeleteMessage API to remove messages from the queue as your Lambda function successfully
processes them.

For more information about configuration parameters that Lambda supports for SQS event source
mappings, see the section called “Creating an SQS event source mapping”.

Example standard queue message event

Example Amazon SQS message event (standard queue)

{
 "Records": [
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {
 "myAttribute": {
 "stringValue": "myValue",

Example standard queue message event 1586

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

AWS Lambda Developer Guide

 "stringListValues": [],
 "binaryListValues": [],
 "dataType": "String"
 }
 },
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
 "awsRegion": "us-east-2"
 },
 {
 "messageId": "2e1424d4-f796-459a-8184-9c92662be6da",
 "receiptHandle": "AQEBzWwaftRI0KuVm4tP+/7q1rGgNqicHq...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082650636",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082650649"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
 "awsRegion": "us-east-2"
 }
]
}

By default, Lambda polls up to 10 messages in your queue at once and sends that batch to your
function. To avoid invoking the function with a small number of records, you can configure the
event source to buffer records for up to 5 minutes by configuring a batch window. Before invoking
the function, Lambda continues to poll messages from the standard queue until the batch window
expires, the invocation payload size quota is reached, or the configured maximum batch size is
reached.

If you're using a batch window and your SQS queue contains very low traffic, Lambda might wait
for up to 20 seconds before invoking your function. This is true even if you set a batch window
lower than 20 seconds.

Example standard queue message event 1587

AWS Lambda Developer Guide

Note

In Java, you might experience null pointer errors when deserializing JSON. This could
be due to how case of "Records" and "eventSourceARN" is converted by the JSON object
mapper.

Example FIFO queue message event

For FIFO queues, records contain additional attributes that are related to deduplication and
sequencing.

Example Amazon SQS message event (FIFO queue)

{
 "Records": [
 {
 "messageId": "11d6ee51-4cc7-4302-9e22-7cd8afdaadf5",
 "receiptHandle": "AQEBBX8nesZEXmkhsmZeyIE8iQAMig7qw...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1573251510774",
 "SequenceNumber": "18849496460467696128",
 "MessageGroupId": "1",
 "SenderId": "AIDAIO23YVJENQZJOL4VO",
 "MessageDeduplicationId": "1",
 "ApproximateFirstReceiveTimestamp": "1573251510774"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:fifo.fifo",
 "awsRegion": "us-east-2"
 }
]
}

Example FIFO queue message event 1588

AWS Lambda Developer Guide

Creating and configuring an Amazon SQS event source mapping

To process Amazon SQS messages with Lambda, configure your queue with the appropriate
settings, then create a Lambda event source mapping.

Configuring a queue to use with Lambda

If you don't already have an existing Amazon SQS queue, create one to serve as an event source for
your Lambda function. The Lambda function and the Amazon SQS queue must be in the same AWS
Region, although they can be in different AWS accounts.

To allow your function time to process each batch of records, set the source queue's visibility
timeout to at least six times the configuration timeout on your function. The extra time allows
Lambda to retry if your function is throttled while processing a previous batch.

By default, if Lambda encounters an error at any point while processing a batch, all messages
in that batch return to the queue. After the visibility timeout, the messages become visible to
Lambda again. You can configure your event source mapping to use partial batch responses to
return only the failed messages back to the queue. In addition, if your function fails to process a
message multiple times, Amazon SQS can send it to a dead-letter queue. We recommend setting
the maxReceiveCount on your source queue's redrive policy to at least 5. This gives Lambda a
few chances to retry before sending failed messages directly to the dead-letter queue.

Setting up Lambda execution role permissions

The AWSLambdaSQSQueueExecutionRole AWS managed policy includes the permissions that
Lambda needs to read from your Amazon SQS queue. You can add this managed policy to your
function's execution role.

Optionally, if you're using an encrypted queue, you also need to add the following permission to
your execution role:

• kms:Decrypt

Creating an SQS event source mapping

Create an event source mapping to tell Lambda to send items from your queue to a Lambda
function. You can create multiple event source mappings to process items from multiple queues

Create mapping 1589

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-create-queue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html#policies-for-dead-letter-queues
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Lambda Developer Guide

with a single function. When Lambda invokes the target function, the event can contain multiple
items, up to a configurable maximum batch size.

To configure your function to read from Amazon SQS, attach the
AWSLambdaSQSQueueExecutionRole AWS managed policy to your execution role. Then, create an
SQS event source mapping from the console using the following steps.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Attach policies.

6. In the search field, enter AWSLambdaSQSQueueExecutionRole. Add this policy to your
execution role. This is an AWS managed policy that contains the permissions your function
needs to read from an Amazon SQS queue. For more information about this policy, see
AWSLambdaSQSQueueExecutionRole in the AWS Managed Policy Reference.

7. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

Create mapping 1590

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html

AWS Lambda Developer Guide

8. Choose a trigger type.

9. Configure the required options, and then choose Add.

Lambda supports the following configuration options for Amazon SQS event sources:

SQS queue

The Amazon SQS queue to read records from. The Lambda function and the Amazon SQS queue
must be in the same AWS Region, although they can be in different AWS accounts.

Enable trigger

The status of the event source mapping. Enable trigger is selected by default.

Batch size

The maximum number of records to send to the function in each batch. For a standard queue,
this can be up to 10,000 records. For a FIFO queue, the maximum is 10. For a batch size over
10, you must also set the batch window (MaximumBatchingWindowInSeconds) to at least 1
second.

Configure your function timeout to allow enough time to process an entire batch of items. If
items take a long time to process, choose a smaller batch size. A large batch size can improve
efficiency for workloads that are very fast or have a lot of overhead. If you configure reserved
concurrency on your function, set a minimum of five concurrent executions to reduce the
chance of throttling errors when Lambda invokes your function.

Lambda passes all of the records in the batch to the function in a single call, as long as the total
size of the events doesn't exceed the invocation payload size quota for synchronous invocation
(6 MB). Both Lambda and Amazon SQS generate metadata for each record. This additional
metadata is counted towards the total payload size and can cause the total number of records
sent in a batch to be lower than your configured batch size. The metadata fields that Amazon
SQS sends can be variable in length. For more information about the Amazon SQS metadata
fields, see the ReceiveMessage API operation documentation in the Amazon Simple Queue
Service API Reference.

Batch window

The maximum amount of time to gather records before invoking the function, in seconds. This
applies only to standard queues.

Create mapping 1591

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/configurations#timeouts
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

AWS Lambda Developer Guide

If you're using a batch window greater than 0 seconds, you must account for the
increased processing time in your queue's visibility timeout. We recommend setting
your queue's visibility timeout to six times your function timeout, plus the value of
MaximumBatchingWindowInSeconds. This allows time for your Lambda function to process
each batch of events and to retry in the event of a throttling error.

When messages become available, Lambda starts processing messages in batches. Lambda
starts processing five batches at a time with five concurrent invocations of your function. If
messages are still available, Lambda adds up to 300 more instances of your function a minute,
up to a maximum of 1,000 function instances. To learn more about function scaling and
concurrency, see Lambda function scaling.

To process more messages, you can optimize your Lambda function for higher throughput. For
more information, see Understanding how AWS Lambda scales with Amazon SQS standard
queues.

Maximum concurrency

The maximum number of concurrent functions that the event source can invoke. For more
information, see Configuring maximum concurrency for Amazon SQS event sources.

Filter criteria

Add filter criteria to control which events Lambda sends to your function for processing. For
more information, see Control which events Lambda sends to your function.

Configuring scaling behavior for SQS event source mappings

For standard queues, Lambda uses long polling to poll a queue until it becomes active. When
messages are available, Lambda starts processing five batches at a time with five concurrent
invocations of your function. If messages are still available, Lambda increases the number of
processes that are reading batches by up to 300 more instances per minute. The maximum number
of batches that an event source mapping can process simultaneously is 1,000. When traffic is low,
Lambda scales back the processing to five concurrent batches, and can optimize to as few as 2
concurrent batches to reduce the SQS calls and corresponding costs. However, this optimization is
not available when you enable the maximum concurrency setting.

For FIFO queues, Lambda sends messages to your function in the order that it receives them. When
you send a message to a FIFO queue, you specify a message group ID. Amazon SQS ensures that

Scaling behavior 1592

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://aws.amazon.com/blogs/compute/understanding-how-aws-lambda-scales-when-subscribed-to-amazon-sqs-queues/%23:~:text=If%20there%20are%20more%20messages,messages%20from%20the%20SQS%20queue.
https://aws.amazon.com/blogs/compute/understanding-how-aws-lambda-scales-when-subscribed-to-amazon-sqs-queues/%23:~:text=If%20there%20are%20more%20messages,messages%20from%20the%20SQS%20queue.
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html#sqs-long-polling
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html

AWS Lambda Developer Guide

messages in the same group are delivered to Lambda in order. When Lambda reads your messages
into batches, each batch may contain messages from more than one message group, but the order
of the messages is maintained. If your function returns an error, the function attempts all retries on
the affected messages before Lambda receives additional messages from the same group.

Configuring maximum concurrency for Amazon SQS event sources

You can use the maximum concurrency setting to control scaling behavior for your SQS event
sources. The maximum concurrency setting limits the number of concurrent instances of the
function that an Amazon SQS event source can invoke. Maximum concurrency is an event source-
level setting. If you have multiple Amazon SQS event sources mapped to one function, each event
source can have a separate maximum concurrency setting. You can use maximum concurrency to
prevent one queue from using all of the function's reserved concurrency or the rest of the account's
concurrency quota. There is no charge for configuring maximum concurrency on an Amazon SQS
event source.

Importantly, maximum concurrency and reserved concurrency are two independent settings.
Don't set maximum concurrency higher than the function's reserved concurrency. If you configure
maximum concurrency, make sure that your function's reserved concurrency is greater than or
equal to the total maximum concurrency for all Amazon SQS event sources on the function.
Otherwise, Lambda may throttle your messages.

When your account's concurrency quota is set to the default value of 1,000, an Amazon SQS
event source mapping can scale to invoke function instances up to this value, unless you specify a
maximum concurrency.

If you receive an increase to your account's default concurrency quota, Lambda may not be able
to invoke concurrent functions instances up to your new quota. By default, Lambda can scale to
invoke up to 1,250 concurrent function instances for an Amazon SQS event source mapping. If
this is insufficient for your use case, contact AWS support to discuss an increase to your account's
Amazon SQS event source mapping concurrency.

Note

For FIFO queues, concurrent invocations are capped either by the number of message
group IDs (messageGroupId) or the maximum concurrency setting—whichever is lower.
For example, if you have six message group IDs and maximum concurrency is set to 10, your
function can have a maximum of six concurrent invocations.

Scaling behavior 1593

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html

AWS Lambda Developer Guide

You can configure maximum concurrency on new and existing Amazon SQS event source mappings.

Configure maximum concurrency using the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Under Function overview, choose SQS. This opens the Configuration tab.

4. Select the Amazon SQS trigger and choose Edit.

5. For Maximum concurrency, enter a number between 2 and 1,000. To turn off maximum
concurrency, leave the box empty.

6. Choose Save.

Configure maximum concurrency using the AWS Command Line Interface (AWS CLI)

Use the update-event-source-mapping command with the --scaling-config option. Example:

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --scaling-config '{"MaximumConcurrency":5}'

To turn off maximum concurrency, enter an empty value for --scaling-config:

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --scaling-config "{}"

Configure maximum concurrency using the Lambda API

Use the CreateEventSourceMapping or UpdateEventSourceMapping action with a ScalingConfig
object.

Handling errors for an SQS event source in Lambda

To handle errors related to an SQS event source, Lambda automatically uses a retry strategy with
a backoff strategy. You can also customize error handling behavior by configuring your SQS event
source mapping to return partial batch responses.

Error handling 1594

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_ScalingConfig.html

AWS Lambda Developer Guide

Backoff strategy for failed invocations

When an invocation fails, Lambda attempts to retry the invocation while implementing a backoff
strategy. The backoff strategy differs slightly depending on whether Lambda encountered the
failure due to an error in your function code, or due to throttling.

• If your function code caused the error, Lambda will stop processing and retrying the invocation.
In the meantime, Lambda gradually backs off, reducing the amount of concurrency allocated
to your Amazon SQS event source mapping. After your queue's visibility timeout runs out, the
message will again reappear in the queue.

• If the invocation fails due to throttling, Lambda gradually backs off retries by reducing the
amount of concurrency allocated to your Amazon SQS event source mapping. Lambda continues
to retry the message until the message's timestamp exceeds your queue's visibility timeout, at
which point Lambda drops the message.

Implementing partial batch responses

When your Lambda function encounters an error while processing a batch, all messages in that
batch become visible in the queue again by default, including messages that Lambda processed
successfully. As a result, your function can end up processing the same message several times.

To avoid reprocessing successfully processed messages in a failed batch, you can configure your
event source mapping to make only the failed messages visible again. This is called a partial
batch response. To turn on partial batch responses, specify ReportBatchItemFailures for
the FunctionResponseTypes action when configuring your event source mapping. This lets your
function return a partial success, which can help reduce the number of unnecessary retries on
records.

When ReportBatchItemFailures is activated, Lambda doesn't scale down message polling
when function invocations fail. If you expect some messages to fail—and you don't want those
failures to impact the message processing rate—use ReportBatchItemFailures.

Note

Keep the following in mind when using partial batch responses:

• If your function throws an exception, the entire batch is considered a complete failure.

Error handling 1595

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html#lambda-UpdateEventSourceMapping-request-FunctionResponseTypes

AWS Lambda Developer Guide

• If you're using this feature with a FIFO queue, your function should stop processing
messages after the first failure and return all failed and unprocessed messages in
batchItemFailures. This helps preserve the ordering of messages in your queue.

To activate partial batch reporting

1. Review the Best practices for implementing partial batch responses.

2. Run the following command to activate ReportBatchItemFailures for your function.
To retrieve your event source mapping's UUID, run the list-event-source-mappings AWS CLI
command.

aws lambda update-event-source-mapping \
--uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
--function-response-types "ReportBatchItemFailures"

3. Update your function code to catch all exceptions and return failed messages in a
batchItemFailures JSON response. The batchItemFailures response must include a list
of message IDs, as itemIdentifier JSON values.

For example, suppose you have a batch of five messages, with message IDs id1, id2, id3,
id4, and id5. Your function successfully processes id1, id3, and id5. To make messages id2
and id4 visible again in your queue, your function should return the following response:

{
 "batchItemFailures": [
 {
 "itemIdentifier": "id2"
 },
 {
 "itemIdentifier": "id4"
 }
]
}

Here are some examples of function code that return the list of failed message IDs in the
batch:

Error handling 1596

https://docs.aws.amazon.com/prescriptive-guidance/latest/lambda-event-filtering-partial-batch-responses-for-sqs/best-practices-partial-batch-responses.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/list-event-source-mappings.html

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be
 converted into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)
 {
 //Add failed message identifier to the batchItemFailures list

Error handling 1597

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }
 context.Logger.LogInformation($"Processed message {message.Body}");
 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/aws/aws-lambda-go/events"

Error handling 1598

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, sqsEvent events.SQSEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, message := range sqsEvent.Records {

 if /* Your message processing condition here */ {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": message.MessageId})
 }
 }

 sqsBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return sqsBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;

Error handling 1599

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSBatchResponse;

import java.util.ArrayList;
import java.util.List;

public class ProcessSQSMessageBatch implements RequestHandler<SQSEvent,
 SQSBatchResponse> {
 @Override
 public SQSBatchResponse handleRequest(SQSEvent sqsEvent, Context context)
 {

 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<SQSBatchResponse.BatchItemFailure>();
 String messageId = "";
 for (SQSEvent.SQSMessage message : sqsEvent.getRecords()) {
 try {
 //process your message
 } catch (Exception e) {
 //Add failed message identifier to the batchItemFailures
 list
 batchItemFailures.add(new
 SQSBatchResponse.BatchItemFailure(message.getMessageId()));
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using JavaScript.

Error handling 1600

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

// Node.js 20.x Lambda runtime, AWS SDK for Javascript V3
export const handler = async (event, context) => {
 const batchItemFailures = [];
 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }
 return { batchItemFailures };
};

async function processMessageAsync(record, context) {
 if (record.body && record.body.includes("error")) {
 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);
}

Reporting SQS batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, SQSBatchResponse, Context, SQSBatchItemFailure,
 SQSRecord } from 'aws-lambda';

export const handler = async (event: SQSEvent, context: Context):
 Promise<SQSBatchResponse> => {
 const batchItemFailures: SQSBatchItemFailure[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return {batchItemFailures: batchItemFailures};
};

Error handling 1601

AWS Lambda Developer Guide

async function processMessageAsync(record: SQSRecord): Promise<void> {
 if (record.body && record.body.includes("error")) {
 throw new Error('There is an error in the SQS Message.');
 }
 console.log(`Processed message ${record.body}`);
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

use Bref\Context\Context;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException

Error handling 1602

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 $this->logger->info("Processing SQS records");
 $records = $event->getRecords();

 foreach ($records as $record) {
 try {
 // Assuming the SQS message is in JSON format
 $message = json_decode($record->getBody(), true);
 $this->logger->info(json_encode($message));
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $this->markAsFailed($record);
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords SQS
 records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Python.

Error handling 1603

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

def lambda_handler(event, context):
 if event:
 batch_item_failures = []
 sqs_batch_response = {}

 for record in event["Records"]:
 try:
 # process message
 except Exception as e:
 batch_item_failures.append({"itemIdentifier":
 record['messageId']})

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []
 sqs_batch_response = {}

 event["Records"].each do |record|

Error handling 1604

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::sqs::{SqsBatchResponse, SqsEvent},
 sqs::{BatchItemFailure, SqsMessage},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn process_record(_: &SqsMessage) -> Result<(), Error> {
 Err(Error::from("Error processing message"))
}

async fn function_handler(event: LambdaEvent<SqsEvent>) ->
 Result<SqsBatchResponse, Error> {
 let mut batch_item_failures = Vec::new();
 for record in event.payload.records {

Error handling 1605

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 match process_record(&record).await {
 Ok(_) => (),
 Err(_) => batch_item_failures.push(BatchItemFailure {
 item_identifier: record.message_id.unwrap(),
 }),
 }
 }

 Ok(SqsBatchResponse {
 batch_item_failures,
 })
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(function_handler)).await
}

If the failed events do not return to the queue, see How do I troubleshoot Lambda function SQS
ReportBatchItemFailures? in the AWS Knowledge Center.

Success and failure conditions

Lambda treats a batch as a complete success if your function returns any of the following:

• An empty batchItemFailures list

• A null batchItemFailures list

• An empty EventResponse

• A null EventResponse

Lambda treats a batch as a complete failure if your function returns any of the following:

• An invalid JSON response

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

• An itemIdentifier value with a message ID that doesn't exist

Error handling 1606

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-sqs-report-batch-item-failures/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-sqs-report-batch-item-failures/

AWS Lambda Developer Guide

CloudWatch metrics

To determine whether your function is correctly reporting batch item failures, you can monitor the
NumberOfMessagesDeleted and ApproximateAgeOfOldestMessage Amazon SQS metrics in
Amazon CloudWatch.

• NumberOfMessagesDeleted tracks the number of messages removed from your queue. If this
drops to 0, this is a sign that your function response is not correctly returning failed messages.

• ApproximateAgeOfOldestMessage tracks how long the oldest message has stayed in your
queue. A sharp increase in this metric can indicate that your function is not correctly returning
failed messages.

Lambda parameters for Amazon SQS event source mappings

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Amazon SQS.

Parameter Required Default Notes

BatchSize N 10 For standard queues,
the maximum
is 10,000. For
FIFO queues, the
maximum is 10.

Enabled N true none

EventSourceArn Y N/A The ARN of the data
stream or a stream
consumer

FunctionName Y N/A none

FilterCriteria N N/A Control which events
Lambda sends to
your function

Parameters 1607

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

Parameter Required Default Notes

FunctionResponseTy
pes

N N/A To let your function
report specific
failures in a batch,
include the value
ReportBat
chItemFailures
in FunctionR
esponseTypes .
For more informati
on, see Implement
ing partial batch
responses.

MaximumBa
tchingWindowInSeco
nds

N 0 Batching window is
not supported for
FIFO queues

ScalingConfig N N/A Configuring
maximum concurren
cy for Amazon SQS
event sources

Using event filtering with an Amazon SQS event source

You can use event filtering to control which records from a stream or queue Lambda sends to your
function. For general information about how event filtering works, see the section called “Event
filtering”.

This section focuses on event filtering for Amazon SQS event sources.

Note

Amazon SQS event source mappings only support filtering on the body key.

Event filtering 1608

AWS Lambda Developer Guide

Topics

• Amazon SQS event filtering basics

Amazon SQS event filtering basics

Suppose your Amazon SQS queue contains messages in the following JSON format.

{
 "RecordNumber": 1234,
 "TimeStamp": "yyyy-mm-ddThh:mm:ss",
 "RequestCode": "AAAA"
}

An example record for this queue would look as follows.

{
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "{\n "RecordNumber": 1234,\n "TimeStamp": "yyyy-mm-ddThh:mm:ss",\n
 "RequestCode": "AAAA"\n}",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-west-2:123456789012:my-queue",
 "awsRegion": "us-west-2"
}

To filter based on the contents of your Amazon SQS messages, use the body key in the Amazon
SQS message record. Suppose you want to process only those records where the RequestCode in
your Amazon SQS message is “BBBB.” The FilterCriteria object would be as follows.

{
 "Filters": [
 {

Event filtering 1609

AWS Lambda Developer Guide

 "Pattern": "{ \"body\" : { \"RequestCode\" : [\"BBBB\"] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "body": {
 "RequestCode": ["BBBB"]
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "body" : { "RequestCode" : ["BBBB"] } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RequestCode\" :
 [\"BBBB\"] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RequestCode\" :
 [\"BBBB\"] } }"}]}'

Event filtering 1610

AWS Lambda Developer Guide

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "body" : { "RequestCode" : ["BBBB"] } }'

Suppose you want your function to process only those records where RecordNumber is greater
than 9999. The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"body\" : { \"RecordNumber\" : [{ \"numeric\": [\">\",
 9999] }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "body": {
 "RecordNumber": [
 {
 "numeric": [">", 9999]
 }
]
 }
}

You can add your filter using the console, AWS CLI or an AWS SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

Event filtering 1611

AWS Lambda Developer Guide

{ "body" : { "RecordNumber" : [{ "numeric": [">", 9999] }] } }

AWS CLI

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RecordNumber\" :
 [{ \"numeric\": [\">\", 9999] }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RecordNumber\" :
 [{ \"numeric\": [\">\", 9999] }] } }"}]}'

AWS SAM

To add this filter using AWS SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "body" : { "RecordNumber" : [{ "numeric": [">", 9999] }] } }'

For Amazon SQS, the message body can be any string. However, this can be problematic if your
FilterCriteria expect body to be in a valid JSON format. The reverse scenario is also true—
if the incoming message body is in JSON format but your filter criteria expects body to be a plain
string, this can lead to unintended behavior.

To avoid this issue, ensure that the format of body in your FilterCriteria matches the
expected format of body in messages that you receive from your queue. Before filtering your
messages, Lambda automatically evaluates the format of the incoming message body and of your
filter pattern for body. If there is a mismatch, Lambda drops the message. The following table
summarizes this evaluation:

Event filtering 1612

AWS Lambda Developer Guide

Incoming message body
format

Filter pattern body format Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda drops the message.

Valid JSON Plain string Lambda drops the message.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Tutorial: Using Lambda with Amazon SQS

In this tutorial, you create a Lambda function that consumes messages from an Amazon Simple
Queue Service (Amazon SQS) queue. The Lambda function runs whenever a new message is added
to the queue. The function writes the messages to an Amazon CloudWatch Logs stream. The
following diagram shows the AWS resources you use to complete the tutorial.

Tutorial 1613

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

AWS Lambda Developer Guide

To complete this tutorial, you carry out the following steps:

1. Create a Lambda function that writes messages to CloudWatch Logs.

2. Create an Amazon SQS queue.

3. Create a Lambda event source mapping. The event source mapping reads the Amazon SQS
queue and invokes your Lambda function when a new message is added.

4. Test the setup by adding messages to your queue and monitoring the results in CloudWatch
Logs.

Prerequisites

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Tutorial 1614

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

Create the execution role

An execution role is an AWS Identity and Access Management (IAM) role that grants a Lambda
function permission to access AWS services and resources. To allow your function to read items
from Amazon SQS, attach the AWSLambdaSQSQueueExecutionRole permissions policy.

To create an execution role and attach an Amazon SQS permissions policy

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Use case, choose Lambda.

5. Choose Next.

6. In the Permissions policies search box, enter AWSLambdaSQSQueueExecutionRole.

7. Select the AWSLambdaSQSQueueExecutionRole policy, and then choose Next.

8. Under Role details, for Role name, enter lambda-sqs-role, then choose Create role.

After role creation, note down the Amazon Resource Name (ARN) of your execution role. You'll
need it in later steps.

Tutorial 1615

https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

Create the function

Create a Lambda function that processes your Amazon SQS messages. The function code logs the
body of the Amazon SQS message to CloudWatch Logs.

This tutorial uses the Node.js 22 runtime, but we've also provided example code in other runtime
languages. You can select the tab in the following box to see code for the runtime you're interested
in. The JavaScript code you'll use in this step is in the first example shown in the JavaScript tab.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

Tutorial 1616

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

 context.Logger.LogInformation("done");
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }
}

Tutorial 1617

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package integration_sqs_to_lambda

import (
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.SQSEvent) error {
 for _, record := range event.Records {
 err := processMessage(record)
 if err != nil {
 return err
 }
 }
 fmt.Println("done")
 return nil
}

func processMessage(record events.SQSMessage) error {
 fmt.Printf("Processed message %s\n", record.Body)
 // TODO: Do interesting work based on the new message
 return nil
}

func main() {
 lambda.Start(handler)
}

Tutorial 1618

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Function implements RequestHandler<SQSEvent, Void> {
 @Override
 public Void handleRequest(SQSEvent sqsEvent, Context context) {
 for (SQSMessage msg : sqsEvent.getRecords()) {
 processMessage(msg, context);
 }
 context.getLogger().log("done");
 return null;
 }

 private void processMessage(SQSMessage msg, Context context) {
 try {
 context.getLogger().log("Processed message " + msg.getBody());

 // TODO: Do interesting work based on the new message

 } catch (Exception e) {
 context.getLogger().log("An error occurred");
 throw e;
 }

Tutorial 1619

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SQS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

Tutorial 1620

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;

Tutorial 1621

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

use Bref\Event\InvalidLambdaEvent;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $body = $record->getBody();
 // TODO: Do interesting work based on the new message
 }
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Python.

Tutorial 1622

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for message in event['Records']:
 process_message(message)
 print("done")

def process_message(message):
 try:
 print(f"Processed message {message['body']}")
 # TODO: Do interesting work based on the new message
 except Exception as err:
 print("An error occurred")
 raise err

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message

Tutorial 1623

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sqs::SqsEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<SqsEvent>) -> Result<(), Error> {
 event.payload.records.iter().for_each(|record| {
 // process the record
 tracing::info!("Message body: {}",
 record.body.as_deref().unwrap_or_default())
 });

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()

Tutorial 1624

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

 .init();

 run(service_fn(function_handler)).await
}

To create a Node.js Lambda function

1. Create a directory for the project, and then switch to that directory.

mkdir sqs-tutorial
cd sqs-tutorial

2. Copy the sample JavaScript code into a new file named index.js.

3. Create a deployment package using the following zip command.

zip function.zip index.js

4. Create a Lambda function using the create-function AWS CLI command. For the role
parameter, enter the ARN of the execution role that you created earlier.

Note

The Lambda function and the Amazon SQS queue must be in the same AWS Region.

aws lambda create-function --function-name ProcessSQSRecord \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs22.x \
--role arn:aws:iam::111122223333:role/lambda-sqs-role

Tutorial 1625

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

AWS Lambda Developer Guide

Test the function

Invoke your Lambda function manually using the invoke AWS CLI command and a sample
Amazon SQS event.

To invoke the Lambda function with a sample event

1. Save the following JSON as a file named input.json. This JSON simulates an event that
Amazon SQS might send to your Lambda function, where "body" contains the actual message
from the queue. In this example, the message is "test".

Example Amazon SQS event

This is a test event—you don't need to change the message or the account number.

{
 "Records": [
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "test",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "098f6bcd4621d373cade4e832627b4f6",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-1:111122223333:my-queue",

Tutorial 1626

AWS Lambda Developer Guide

 "awsRegion": "us-east-1"
 }
]
}

2. Run the following invoke AWS CLI command. This command returns CloudWatch logs in the
response. For more information about retrieving logs, see Access logs with the AWS CLI.

aws lambda invoke --function-name ProcessSQSRecord --payload file://input.json out
 --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

3. Find the INFO log in the response. This is where the Lambda function logs the message body.
You should see logs that look like this:

2023-09-11T22:45:04.271Z 348529ce-2211-4222-9099-59d07d837b60 INFO Processed
 message test
2023-09-11T22:45:04.288Z 348529ce-2211-4222-9099-59d07d837b60 INFO done

Create an Amazon SQS queue

Create an Amazon SQS queue that the Lambda function can use as an event source. The Lambda
function and the Amazon SQS queue must be in the same AWS Region.

Tutorial 1627

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

To create a queue

1. Open the Amazon SQS console.

2. Choose Create queue.

3. Enter a name for the queue. Leave all other options at the default settings.

4. Choose Create queue.

After creating the queue, note down its ARN. You need this in the next step when you associate the
queue with your Lambda function.

Configure the event source

Connect the Amazon SQS queue to your Lambda function by creating an event source mapping.
The event source mapping reads the Amazon SQS queue and invokes your Lambda function when
a new message is added.

To create a mapping between your Amazon SQS queue and your Lambda function, use the create-
event-source-mapping AWS CLI command. Example:

aws lambda create-event-source-mapping --function-name ProcessSQSRecord --batch-size
 10 \
--event-source-arn arn:aws:sqs:us-east-1:111122223333:my-queue

To get a list of your event source mappings, use the list-event-source-mappings command.
Example:

aws lambda list-event-source-mappings --function-name ProcessSQSRecord

Tutorial 1628

https://console.aws.amazon.com/sqs
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/2.1.29/reference/lambda/list-event-source-mappings.html

AWS Lambda Developer Guide

Send a test message

To send an Amazon SQS message to the Lambda function

1. Open the Amazon SQS console.

2. Choose the queue that you created earlier.

3. Choose Send and receive messages.

4. Under Message body, enter a test message, such as "this is a test message."

5. Choose Send message.

Lambda polls the queue for updates. When there is a new message, Lambda invokes your function
with this new event data from the queue. If the function handler returns without exceptions,
Lambda considers the message successfully processed and begins reading new messages in the
queue. After successfully processing a message, Lambda automatically deletes it from the queue.
If the handler throws an exception, Lambda considers the batch of messages not successfully
processed, and Lambda invokes the function with the same batch of messages.

Tutorial 1629

https://console.aws.amazon.com/sqs

AWS Lambda Developer Guide

Check the CloudWatch logs

To confirm that the function processed the message

1. Open the Functions page of the Lambda console.

2. Choose the ProcessSQSRecord function.

3. Choose Monitor.

4. Choose View CloudWatch logs.

5. In the CloudWatch console, choose the Log stream for the function.

6. Find the INFO log. This is where the Lambda function logs the message body. You should see
the message that you sent from the Amazon SQS queue. Example:

2023-09-11T22:49:12.730Z b0c41e9c-0556-5a8b-af83-43e59efeec71 INFO Processed
 message this is a test message.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

Tutorial 1630

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the Amazon SQS queue

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the queue you created.

3. Choose Delete.

4. Enter confirm in the text input field.

5. Choose Delete.

Tutorial: Using a cross-account Amazon SQS queue as an event source

In this tutorial, you create a Lambda function that consumes messages from an Amazon Simple
Queue Service (Amazon SQS) queue in a different AWS account. This tutorial involves two AWS
accounts: Account A refers to the account that contains your Lambda function, and Account B
refers to the account that contains the Amazon SQS queue.

Prerequisites

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

SQS cross-account tutorial 1631

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Create the execution role (Account A)

In Account A, create an execution role that gives your function permission to access the required
AWS resources.

To create an execution role

1. Open the Roles page in the AWS Identity and Access Management (IAM) console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – AWS Lambda

• Permissions – AWSLambdaSQSQueueExecutionRole

• Role name – cross-account-lambda-sqs-role

The AWSLambdaSQSQueueExecutionRole policy has the permissions that the function needs to
read items from Amazon SQS and to write logs to Amazon CloudWatch Logs.

Create the function (Account A)

In Account A, create a Lambda function that processes your Amazon SQS messages. The Lambda
function and the Amazon SQS queue must be in the same AWS Region.

The following Node.js code example writes each message to a log in CloudWatch Logs.

Example index.mjs

export const handler = async function(event, context) {
 event.Records.forEach(record => {
 const { body } = record;
 console.log(body);
 });
 return {};

SQS cross-account tutorial 1632

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

}

To create the function

Note

Following these steps creates a Node.js function. For other languages, the steps are similar,
but some details are different.

1. Save the code example as a file named index.mjs.

2. Create a deployment package.

zip function.zip index.mjs

3. Create the function using the create-function AWS Command Line Interface (AWS CLI)
command. Replace arn:aws:iam::111122223333:role/cross-account-lambda-sqs-
role with the ARN of the execution role that you created earlier.

aws lambda create-function --function-name CrossAccountSQSExample \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs22.x \
--role arn:aws:iam::111122223333:role/cross-account-lambda-sqs-role

Test the function (Account A)

In Account A, test your Lambda function manually using the invoke AWS CLI command and a
sample Amazon SQS event.

If the handler returns normally without exceptions, Lambda considers the message to be
successfully processed and begins reading new messages in the queue. After successfully
processing a message, Lambda automatically deletes it from the queue. If the handler throws
an exception, Lambda considers the batch of messages not successfully processed, and Lambda
invokes the function with the same batch of messages.

1. Save the following JSON as a file named input.txt.

{
 "Records": [
 {

SQS cross-account tutorial 1633

AWS Lambda Developer Guide

 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "test",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "098f6bcd4621d373cade4e832627b4f6",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-1:111122223333:example-queue",
 "awsRegion": "us-east-1"
 }
]
}

The preceding JSON simulates an event that Amazon SQS might send to your Lambda
function, where "body" contains the actual message from the queue.

2. Run the following invoke AWS CLI command.

aws lambda invoke --function-name CrossAccountSQSExample \
--cli-binary-format raw-in-base64-out \
--payload file://input.txt outputfile.txt

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

3. Verify the output in the file outputfile.txt.

Create an Amazon SQS queue (Account B)

In Account B, create an Amazon SQS queue that the Lambda function in Account A can use as an
event source. The Lambda function and the Amazon SQS queue must be in the same AWS Region.

To create a queue

1. Open the Amazon SQS console.

SQS cross-account tutorial 1634

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.aws.amazon.com/sqs

AWS Lambda Developer Guide

2. Choose Create queue.

3. Create a queue with the following properties.

• Type – Standard

• Name – LambdaCrossAccountQueue

• Configuration – Keep the default settings.

• Access policy – Choose Advanced. Paste in the following JSON policy. Replace the following
values:

• 111122223333: AWS account ID for Account A

• 444455556666: AWS account ID for Account B

JSON

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [
 {
 "Sid": "Queue1_AllActions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:role/cross-account-lambda-
sqs-role"
]
 },
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:us-
east-1:444455556666:LambdaCrossAccountQueue"
 }
]
}

This policy grants the Lambda execution role in Account A permissions to consume
messages from this Amazon SQS queue.

4. After creating the queue, record its Amazon Resource Name (ARN). You need this in the next
step when you associate the queue with your Lambda function.

SQS cross-account tutorial 1635

AWS Lambda Developer Guide

Configure the event source (Account A)

In Account A, create an event source mapping between the Amazon SQS queue in Account B and
your Lambda function by running the following create-event-source-mapping AWS CLI
command. Replace arn:aws:sqs:us-east-1:444455556666:LambdaCrossAccountQueue
with the ARN of the Amazon SQS queue that you created in the previous step.

aws lambda create-event-source-mapping --function-name CrossAccountSQSExample --batch-
size 10 \
--event-source-arn arn:aws:sqs:us-east-1:444455556666:LambdaCrossAccountQueue

To get a list of your event source mappings, run the following command.

aws lambda list-event-source-mappings --function-name CrossAccountSQSExample \
--event-source-arn arn:aws:sqs:us-east-1:444455556666:LambdaCrossAccountQueue

Test the setup

You can now test the setup as follows:

1. In Account B, open the Amazon SQS console.

2. Choose LambdaCrossAccountQueue, which you created earlier.

3. Choose Send and receive messages.

4. Under Message body, enter a test message.

5. Choose Send message.

Your Lambda function in Account A should receive the message. Lambda will continue to poll the
queue for updates. When there is a new message, Lambda invokes your function with this new
event data from the queue. Your function runs and creates logs in Amazon CloudWatch. You can
view the logs in the CloudWatch console.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

In Account A, clean up your execution role and Lambda function.

SQS cross-account tutorial 1636

https://console.aws.amazon.com/sqs
https://console.aws.amazon.com/cloudwatch

AWS Lambda Developer Guide

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

In Account B, clean up the Amazon SQS queue.

To delete the Amazon SQS queue

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the queue you created.

3. Choose Delete.

4. Enter confirm in the text input field.

5. Choose Delete.

SQS cross-account tutorial 1637

https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

AWS Lambda Developer Guide

Orchestrating Lambda functions with Step Functions

Lambda functions that manage multiple tasks, implement retry logic, or contain branching logic
are anti-patterns. Instead, we recommend writing Lambda functions that perform single tasks and
using AWS Step Functions to orchestrate your application workflows.

For example, processing an order might require validating the order details, checking inventory
levels, processing payment, and generating an invoice. Write separate Lambda functions for each
task and use Step Functions to manage the workflow. Step Functions coordinates the flow of data
between your functions and handles errors at each step. This separation makes your workflows
easier to visualize, modify, and maintain as they grow more complex.

When to use Step Functions with Lambda

The following scenarios are good examples of when to use Step Functions to orchestrate Lambda-
based applications.

• Sequential processing

• Complex error handling

• Conditional workflows and human approvals

• Parallel processing

Sequential processing

Sequential processing is when one task must complete before the next task can begin. For
example, in an order processing system, payment processing can't begin until order validation is
complete, and invoice generation must wait for payment confirmation. Write separate Lambda
functions for each task and use Step Functions to manage the sequence and handle data flow
between functions.

Anti-pattern example

A single Lambda function manages the entire order processing workflow by:

• Invoking other Lambda functions in sequence

• Parsing and validating responses from each function

• Implementing error handling and recovery logic

Step Functions 1638

AWS Lambda Developer Guide

• Managing the flow of data between functions

Recommended approach

Use two Lambda functions: one to validate the order and one to process the payment. Step
Functions coordinates these functions by:

• Running tasks in the correct sequence

• Passing data between functions

• Implementing error handling at each step

• Using Choice states to ensure only valid orders proceed to payment

Example workflow graph

When to use Step Functions 1639

https://docs.aws.amazon.com/step-functions/latest/dg/state-choice.html

AWS Lambda Developer Guide

Complex error handling

While Lambda provides retry capabilities for asynchronous invocations and event source mappings,
Step Functions offers more sophisticated error handling for complex workflows. You can configure
automatic retries with exponential backoff and set different retry policies for different types of
errors. When retries are exhausted, use Catch to route errors to a fallback state. This is particularly
useful when you need workflow-level error handling that coordinates multiple functions and
services.

To learn more about handling Lambda function errors in a state machine, see Handling errors in
The AWS Step Functions Workshop.

Anti-pattern example

A single Lambda function handles all of the following:

• Attempts to call a payment processing service

• If the payment service is unavailable, the function waits and tries again later.

• Implements a custom exponential backoff for the wait time

• After all attempts fail, catch the error and choose another flow

Recommended approach

Use a single Lambda function focused solely on payment processing. Step Functions manages error
handling by:

• Automatically retrying failed tasks with configurable backoff periods

• Applying different retry policies based on error types

• Routing different types of errors to appropriate fallback states

• Maintaining error handling state and history

When to use Step Functions 1640

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html#error-handling-retrying-after-an-error
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html#error-handling-retrying-after-an-error
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html#error-handling-fallback-states
https://catalog.workshops.aws/stepfunctions/handling-errors
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html#error-handling-retrying-after-an-error

AWS Lambda Developer Guide

Example workflow graph

Conditional workflows and human approvals

Use the Step Functions Choice state to route workflows based on function output and the
waitForTaskToken suffix to pause workflows for human decisions. For example, to process a credit
limit increase request, use a Lambda function to evaluate risk factors. Then, use Step Functions to
route high-risk requests to manual approval and low-risk requests to automatic approval.

To deploy an example workflow that uses a callback task token integration pattern, see Callback
with Task Token in The AWS Step Functions Workshop.

Anti-pattern example

A single Lambda function manages a complex approval workflow by:

• Implementing nested conditional logic to evaluate credit requests

• Invoking different approval functions based on request amounts

• Managing multiple approval paths and decision points

• Tracking the state of pending approvals

• Implementing timeout and notification logic for approvals

When to use Step Functions 1641

https://docs.aws.amazon.com/step-functions/latest/dg/state-choice.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html#connect-wait-token
https://catalog.workshops.aws/stepfunctions/integrating-services/3-callback-token
https://catalog.workshops.aws/stepfunctions/integrating-services/3-callback-token

AWS Lambda Developer Guide

Recommended approach

Use three Lambda functions: one to evaluate the risk of each request, one to approve low-risk
requests, and one to route high-risk requests to a manager for review. Step Functions manages the
workflow by:

• Using Choice states to route requests based on amount and risk level

• Pausing execution while waiting for human approval

• Managing timeouts for pending approvals

• Providing visibility into the current state of each request

Example workflow graph

Parallel processing

Step Functions provides three ways to handle parallel processing:

When to use Step Functions 1642

https://docs.aws.amazon.com/step-functions/latest/dg/state-choice.html

AWS Lambda Developer Guide

• The Parallel state executes multiple branches of your workflow simultaneously. Use this when
you need to run different functions in parallel, such as generating thumbnails while extracting
image metadata.

• The Inline Map state processes arrays of data with up to 40 concurrent iterations. Use this for
small to medium datasets where you need to perform the same operation on each item.

• The Distributed Map state handles large-scale parallel processing with up to 10,000 concurrent
executions, supporting both JSON arrays and Amazon Simple Storage Service (Amazon S3) data
sources. Use this when processing large datasets or when you need higher concurrency.

Anti-pattern example

A single Lambda function attempts to manage parallel processing by:

• Simultaneously invoking multiple image processing functions

• Implementing custom parallel execution logic

• Managing timeouts and error handling for each parallel task

• Collecting and aggregating results from all functions

Recommended approach

Use three Lambda functions: one to create a thumbnail image, one to add a watermark, and one to
extract the metadata. Step Functions manages these functions by:

• Running all functions simultaneously using the Parallel state

• Collecting results from each function into an ordered array

• Managing timeouts and error handling across all parallel executions

• Proceeding only when all parallel branches complete

When to use Step Functions 1643

https://docs.aws.amazon.com/step-functions/latest/dg/state-parallel.html
https://docs.aws.amazon.com/step-functions/latest/dg/state-map-inline.html
https://docs.aws.amazon.com/step-functions/latest/dg/state-map-distributed.html
https://docs.aws.amazon.com/step-functions/latest/dg/state-parallel.html

AWS Lambda Developer Guide

Example workflow graph

When not to use Step Functions with Lambda

Not all Lambda-based applications benefit from using Step Functions. Consider these scenarios
when choosing your application architecture.

• Simple applications

• Complex data processing

• CPU-intensive workloads

Simple applications

For applications that don't require complex orchestration, using Step Functions might add
unnecessary complexity. For example, if you're simply processing messages from an Amazon
SQS queue or responding to Amazon EventBridge events, you can configure these services to
invoke your Lambda functions directly. Similarly, if your application consists of only one or two
Lambda functions with straightforward error handling, direct Lambda invocation or event-driven
architectures might be simpler to deploy and maintain.

When not to use Step Functions 1644

AWS Lambda Developer Guide

Complex data processing

You can use the Step Functions Distributed Map state to concurrently process large Amazon
S3 datasets with Lambda functions. This is effective for many large-scale parallel workloads,
including processing semi-structured data like JSON or CSV files. However, for more complex data
transformations or advanced analytics, consider these alternatives:

• Data transformation pipelines: Use AWS Glue for ETL jobs that process structured or semi-
structured data from multiple sources. AWS Glue is particularly useful when you need built-in
data catalog and schema management capabilities.

• Data analytics: Use Amazon EMR for petabyte-scale data analytics, especially when you need
Apache Hadoop ecosystem tools or for machine learning workloads that exceed Lambda's
memory limits.

CPU-intensive workloads

While Step Functions can orchestrate CPU-intensive tasks, Lambda functions may not be suitable
for these workloads due to their limited CPU resources. For computationally intensive operations
within your workflows, consider these alternatives:

• Container orchestration: Use Step Functions to manage Amazon Elastic Container Service
(Amazon ECS) tasks for more consistent and scalable compute resources.

• Batch processing: Integrate AWS Batch with Step Functions for managing compute-intensive
batch jobs that require sustained CPU usage.

When not to use Step Functions 1645

https://docs.aws.amazon.com/step-functions/latest/dg/state-map-distributed.html

AWS Lambda Developer Guide

Invoke a Lambda function with Amazon S3 batch events

You can use Amazon S3 batch operations to invoke a Lambda function on a large set of Amazon
S3 objects. Amazon S3 tracks the progress of batch operations, sends notifications, and stores a
completion report that shows the status of each action.

To run a batch operation, you create an Amazon S3 batch operations job. When you create the job,
you provide a manifest (the list of objects) and configure the action to perform on those objects.

When the batch job starts, Amazon S3 invokes the Lambda function synchronously for each object
in the manifest. The event parameter includes the names of the bucket and the object.

The following example shows the event that Amazon S3 sends to the Lambda function for an
object that is named customerImage1.jpg in the amzn-s3-demo-bucket bucket.

Example Amazon S3 batch request event

{
"invocationSchemaVersion": "1.0",
 "invocationId": "YXNkbGZqYWRmaiBhc2RmdW9hZHNmZGpmaGFzbGtkaGZza2RmaAo",
 "job": {
 "id": "f3cc4f60-61f6-4a2b-8a21-d07600c373ce"
 },
 "tasks": [
 {
 "taskId": "dGFza2lkZ29lc2hlcmUK",
 "s3Key": "customerImage1.jpg",
 "s3VersionId": "1",
 "s3BucketArn": "arn:aws:s3:::amzn-s3-demo-bucket"
 }
]
}

Your Lambda function must return a JSON object with the fields as shown in the following
example. You can copy the invocationId and taskId from the event parameter. You can return
a string in the resultString. Amazon S3 saves the resultString values in the completion
report.

Example Amazon S3 batch request response

S3 Batch 1646

https://docs.aws.amazon.com/AmazonS3/latest/dev/batch-ops-operations.html

AWS Lambda Developer Guide

{
 "invocationSchemaVersion": "1.0",
 "treatMissingKeysAs" : "PermanentFailure",
 "invocationId" : "YXNkbGZqYWRmaiBhc2RmdW9hZHNmZGpmaGFzbGtkaGZza2RmaAo",
 "results": [
 {
 "taskId": "dGFza2lkZ29lc2hlcmUK",
 "resultCode": "Succeeded",
 "resultString": "[\"Alice\", \"Bob\"]"
 }
]
}

Invoking Lambda functions from Amazon S3 batch operations

You can invoke the Lambda function with an unqualified or qualified function ARN. If you want
to use the same function version for the entire batch job, configure a specific function version in
the FunctionARN parameter when you create your job. If you configure an alias or the $LATEST
qualifier, the batch job immediately starts calling the new version of the function if the alias or
$LATEST is updated during the job execution.

Note that you can't reuse an existing Amazon S3 event-based function for batch operations. This
is because the Amazon S3 batch operation passes a different event parameter to the Lambda
function and expects a return message with a specific JSON structure.

In the resource-based policy that you create for the Amazon S3 batch job, ensure that you set
permission for the job to invoke your Lambda function.

In the execution role for the function, set a trust policy for Amazon S3 to assume the role when it
runs your function.

If your function uses the AWS SDK to manage Amazon S3 resources, you need to add Amazon S3
permissions in the execution role.

When the job runs, Amazon S3 starts multiple function instances to process the Amazon S3 objects
in parallel, up to the concurrency limit of the function. Amazon S3 limits the initial ramp-up of
instances to avoid excess cost for smaller jobs.

If the Lambda function returns a TemporaryFailure response code, Amazon S3 retries the
operation.

Invoking Lambda functions from Amazon S3 batch operations 1647

https://docs.aws.amazon.com/AmazonS3/latest/userguide/batch-ops-iam-role-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/batch-ops-iam-role-policies.html

AWS Lambda Developer Guide

For more information about Amazon S3 batch operations, see Performing batch operations in the
Amazon S3 Developer Guide.

For an example of how to use a Lambda function in Amazon S3 batch operations, see Invoking a
Lambda function from Amazon S3 batch operations in the Amazon S3 Developer Guide.

Invoking Lambda functions from Amazon S3 batch operations 1648

https://docs.aws.amazon.com/AmazonS3/latest/dev/batch-ops.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/batch-ops-invoke-lambda.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/batch-ops-invoke-lambda.html

AWS Lambda Developer Guide

Invoking Lambda functions with Amazon SNS notifications

You can use a Lambda function to process Amazon Simple Notification Service (Amazon SNS)
notifications. Amazon SNS supports Lambda functions as a target for messages sent to a topic. You
can subscribe your function to topics in the same account or in other AWS accounts. For a detailed
walkthrough, see the section called “Tutorial”.

Lambda supports SNS triggers for standard SNS topics only. FIFO topics aren't supported.

Lambda processes SNS messages asynchronously by queuing the messages and handling retries.
If Amazon SNS can't reach Lambda or the message is rejected, Amazon SNS retries at increasing
intervals over several hours. For details, see Reliability in the Amazon SNS FAQs.

Warning

Lambda asynchronous invocations process each event at least once, and duplicate
processing of records can occur. To avoid potential issues related to duplicate events, we
strongly recommend that you make your function code idempotent. To learn more, see
How do I make my Lambda function idempotent in the AWS Knowledge Center.

Topics

• Adding an Amazon SNS topic trigger for a Lambda function using the console

• Manually adding an Amazon SNS topic trigger for a Lambda function

• Sample SNS event shape

• Tutorial: Using AWS Lambda with Amazon Simple Notification Service

Adding an Amazon SNS topic trigger for a Lambda function using the
console

To add an SNS topic as a trigger for a Lambda function, the easiest way is to use the Lambda
console. When you add the trigger via the console, Lambda automatically sets up the necessary
permissions and subscriptions to start receiving events from the SNS topic.

To add an SNS topic as a trigger for a Lambda function (console)

1. Open the Functions page of the Lambda console.

SNS 1649

https://aws.amazon.com/sns/faqs/#Reliability
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose the name of a function you want to add the trigger for.

3. Choose Configuration, and then choose Triggers.

4. Choose Add trigger.

5. Under Trigger configuration, in the dropdown menu, choose SNS.

6. For SNS topic, choose the SNS topic to subscribe to.

Manually adding an Amazon SNS topic trigger for a Lambda function

To set up an SNS trigger for a Lambda function manually, you need to complete the following
steps:

• Define a resource-based policy for your function to allow SNS to invoke it.

• Subscribe your Lambda function to the Amazon SNS topic.

Note

If your SNS topic and your Lambda function are in different AWS accounts, you also need
to grant extra permissions to allow cross-account subscriptions to the SNS topic. For
more information, see Grant cross-account permission for Amazon SNS subscription.

You can use the AWS Command Line Interface (AWS CLI) to complete both of these steps. First,
to define a resource-based policy for a Lambda function that allows SNS invocations, use the
following AWS CLI command. Be sure to replace the value of --function-name with your
Lambda function name, and the value of --source-arn with your SNS topic ARN.

aws lambda add-permission --function-name example-function \
 --source-arn arn:aws:sns:us-east-1:123456789012:sns-topic-for-lambda \
 --statement-id function-with-sns --action "lambda:InvokeFunction" \
 --principal sns.amazonaws.com

To subscribe your function to the SNS topic, use the following AWS CLI command. Replace the
value of --topic-arn with your SNS topic ARN, and the value of --notification-endpoint
with your Lambda function ARN.

aws sns subscribe --protocol lambda \
 --region us-east-1 \

Manually adding an Amazon SNS topic trigger for a Lambda function 1650

AWS Lambda Developer Guide

 --topic-arn arn:aws:sns:us-east-1:123456789012:sns-topic-for-lambda \
 --notification-endpoint arn:aws:lambda:us-east-1:123456789012:function:example-
function

Sample SNS event shape

Amazon SNS invokes your function asynchronously with an event that contains a message and
metadata.

Example Amazon SNS message event

{
 "Records": [
 {
 "EventVersion": "1.0",
 "EventSubscriptionArn": "arn:aws:sns:us-east-1:123456789012:sns-lambda:21be56ed-
a058-49f5-8c98-aedd2564c486",
 "EventSource": "aws:sns",
 "Sns": {
 "SignatureVersion": "1",
 "Timestamp": "2019-01-02T12:45:07.000Z",
 "Signature": "tcc6faL2yUC6dgZdmrwh1Y4cGa/ebXEkAi6RibDsvpi+tE/1+82j...65r==",
 "SigningCertURL": "https://sns.us-east-1.amazonaws.com/
SimpleNotificationService-ac565b8b1a6c5d002d285f9598aa1d9b.pem",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",
 "Message": "Hello from SNS!",
 "MessageAttributes": {
 "Test": {
 "Type": "String",
 "Value": "TestString"
 },
 "TestBinary": {
 "Type": "Binary",
 "Value": "TestBinary"
 }
 },
 "Type": "Notification",
 "UnsubscribeUrl": "https://sns.us-east-1.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-1:123456789012:test-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "TopicArn":"arn:aws:sns:us-east-1:123456789012:sns-lambda",
 "Subject": "TestInvoke"
 }

Sample SNS event shape 1651

AWS Lambda Developer Guide

 }
]
}

Tutorial: Using AWS Lambda with Amazon Simple Notification Service

In this tutorial, you use a Lambda function in one AWS account to subscribe to an Amazon Simple
Notification Service (Amazon SNS) topic in a separate AWS account. When you publish messages to
your Amazon SNS topic, your Lambda function reads the contents of the message and outputs it
to Amazon CloudWatch Logs. To complete this tutorial, you use the AWS Command Line Interface
(AWS CLI).

To complete this tutorial, you perform the following steps:

• In account A, create an Amazon SNS topic.

• In account B, create a Lambda function that will read messages from the topic.

• In account B, create a subscription to the topic.

• Publish messages to the Amazon SNS topic in account A and confirm that the Lambda function
in account B outputs them to CloudWatch Logs.

By completing these steps, you will learn how to configure an Amazon SNS topic to invoke a
Lambda function. You will also learn how to create an AWS Identity and Access Management (IAM)
policy that gives permission for a resource in another AWS account to invoke Lambda.

In the tutorial, you use two separate AWS accounts. The AWS CLI commands illustrate this by using
two named profiles called accountA and accountB, each configured for use with a different AWS

Tutorial 1652

AWS Lambda Developer Guide

account. To learn how to configure the AWS CLI to use different profiles, see Configuration and
credential file settings in the AWS Command Line Interface User Guide for Version 2. Be sure to
configure the same default AWS Region for both profiles.

If the AWS CLI profiles you create for the two AWS accounts use different names, or if you use the
default profile and one named profile, modify the AWS CLI commands in the following steps as
needed.

Prerequisites

Install the AWS Command Line Interface

If you have not yet installed the AWS Command Line Interface, follow the steps at Installing or
updating the latest version of the AWS CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Create an Amazon SNS topic (account A)

To create the topic

• In account A, create an Amazon SNS standard topic using the following AWS CLI command.

Tutorial 1653

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

aws sns create-topic --name sns-topic-for-lambda --profile accountA

You should see output similar to the following.

{
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:sns-topic-for-lambda"
}

Make a note of the Amazon Resource Name (ARN) of your topic. You’ll need it later in the
tutorial when you add permissions to your Lambda function to subscribe to the topic.

Create a function execution role (account B)

An execution role is an IAM role that grants a Lambda function permission to access AWS services
and resources. Before you create your function in account B, you create a role that gives the
function basic permissions to write logs to CloudWatch Logs. We’ll add the permissions to read
from your Amazon SNS topic in a later step.

To create an execution role

1. In account B open the roles page in the IAM console.

2. Choose Create role.

3. For Trusted entity type, choose AWS service.

4. For Use case, choose Lambda.

5. Choose Next.

6. Add a basic permissions policy to the role by doing the following:

a. In the Permissions policies search box, enter AWSLambdaBasicExecutionRole.

Tutorial 1654

https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

b. Choose Next.

7. Finalize the role creation by doing the following:

a. Under Role details, enter lambda-sns-role for Role name.

b. Choose Create role.

Create a Lambda function (account B)

Create a Lambda function that processes your Amazon SNS messages. The function code logs the
message contents of each record to Amazon CloudWatch Logs.

This tutorial uses the Node.js 22 runtime, but we've also provided example code in other runtime
languages. You can select the tab in the following box to see code for the runtime you're interested
in. The JavaScript code you'll use in this step is in the first example shown in the JavaScript tab.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

Tutorial 1655

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

public class Function
{
 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record
 {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Tutorial 1656

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, snsEvent events.SNSEvent) {
 for _, record := range snsEvent.Records {
 processMessage(record)
 }
 fmt.Println("done")
}

func processMessage(record events.SNSEventRecord) {
 message := record.SNS.Message
 fmt.Printf("Processed message: %s\n", message)
 // TODO: Process your record here
}

func main() {
 lambda.Start(handler)
}

Tutorial 1657

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;
import com.amazonaws.services.lambda.runtime.events.SNSEvent.SNSRecord;

import java.util.Iterator;
import java.util.List;

public class SNSEventHandler implements RequestHandler<SNSEvent, Boolean> {
 LambdaLogger logger;

 @Override
 public Boolean handleRequest(SNSEvent event, Context context) {
 logger = context.getLogger();
 List<SNSRecord> records = event.getRecords();
 if (!records.isEmpty()) {
 Iterator<SNSRecord> recordsIter = records.iterator();
 while (recordsIter.hasNext()) {
 processRecord(recordsIter.next());
 }
 }
 return Boolean.TRUE;
 }

 public void processRecord(SNSRecord record) {

Tutorial 1658

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

 try {
 String message = record.getSNS().getMessage();
 logger.log("message: " + message);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");

Tutorial 1659

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

AWS Lambda Developer Guide

 throw err;
 }
}

Consuming an SNS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Tutorial 1660

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

Consuming an SNS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

/*
Since native PHP support for AWS Lambda is not available, we are utilizing Bref's
 PHP functions runtime for AWS Lambda.
For more information on Bref's PHP runtime for Lambda, refer to: https://bref.sh/
docs/runtimes/function

Another approach would be to create a custom runtime.
A practical example can be found here: https://aws.amazon.com/blogs/apn/aws-
lambda-custom-runtime-for-php-a-practical-example/
*/

// Additional composer packages may be required when using Bref or any other PHP
 functions runtime.
// require __DIR__ . '/vendor/autoload.php';

use Bref\Context\Context;
use Bref\Event\Sns\SnsEvent;
use Bref\Event\Sns\SnsHandler;

class Handler extends SnsHandler
{
 public function handleSns(SnsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $message = $record->getMessage();

 // TODO: Implement your custom processing logic here
 // Any exception thrown will be logged and the invocation will be
 marked as failed

 echo "Processed Message: $message" . PHP_EOL;
 }
 }
}

return new Handler();

Tutorial 1661

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for record in event['Records']:
 process_message(record)
 print("done")

def process_message(record):
 try:
 message = record['Sns']['Message']
 print(f"Processed message {message}")
 # TODO; Process your record here

 except Exception as e:
 print("An error occurred")
 raise e

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Tutorial 1662

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

Consuming an SNS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")
 raise
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sns::SnsEvent;
use aws_lambda_events::sns::SnsRecord;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use tracing::info;

// Built with the following dependencies:
// aws_lambda_events = { version = "0.10.0", default-features = false, features
 = ["sns"] }
// lambda_runtime = "0.8.1"
// tokio = { version = "1", features = ["macros"] }

Tutorial 1663

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

// tracing = { version = "0.1", features = ["log"] }
// tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }

async fn function_handler(event: LambdaEvent<SnsEvent>) -> Result<(), Error> {
 for event in event.payload.records {
 process_record(&event)?;
 }

 Ok(())
}

fn process_record(record: &SnsRecord) -> Result<(), Error> {
 info!("Processing SNS Message: {}", record.sns.message);

 // Implement your record handling code here.

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

To create the function

1. Create a directory for the project, and then switch to that directory.

mkdir sns-tutorial
cd sns-tutorial

2. Copy the sample JavaScript code into a new file named index.js.

3. Create a deployment package using the following zip command.

Tutorial 1664

AWS Lambda Developer Guide

zip function.zip index.js

4. Run the following AWS CLI command to create your Lambda function in account B.

aws lambda create-function --function-name Function-With-SNS \
 --zip-file fileb://function.zip --handler index.handler --runtime nodejs22.x \
 --role arn:aws:iam::<AccountB_ID>:role/lambda-sns-role \
 --timeout 60 --profile accountB

You should see output similar to the following.

{
 "FunctionName": "Function-With-SNS",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:Function-With-
SNS",
 "Runtime": "nodejs22.x",
 "Role": "arn:aws:iam::123456789012:role/lambda_basic_role",
 "Handler": "index.handler",
 ...
 "RuntimeVersionConfig": {
 "RuntimeVersionArn": "arn:aws:lambda:us-
west-2::runtime:7d5f06b69c951da8a48b926ce280a9daf2e8bb1a74fc4a2672580c787d608206"
 }
}

5. Record the Amazon Resource Name (ARN) of your function. You’ll need it later in the tutorial
when you add permissions to allow Amazon SNS to invoke your function.

Add permissions to function (account B)

Tutorial 1665

AWS Lambda Developer Guide

For Amazon SNS to invoke your function, you need to grant it permission in a statement on a
resource-based policy. You add this statement using the AWS CLI add-permission command.

To grant Amazon SNS permission to invoke your function

• In account B, run the following AWS CLI command using the ARN for your Amazon SNS topic
you recorded earlier.

aws lambda add-permission --function-name Function-With-SNS \
 --source-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
 --statement-id function-with-sns --action "lambda:InvokeFunction" \
 --principal sns.amazonaws.com --profile accountB

You should see output similar to the following.

{
 "Statement": "{\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":
 \"arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda\"}},
 \"Action\":[\"lambda:InvokeFunction\"],
 \"Resource\":\"arn:aws:lambda:us-east-1:<AccountB_ID>:function:Function-With-
SNS\",
 \"Effect\":\"Allow\",\"Principal\":{\"Service\":\"sns.amazonaws.com\"},
 \"Sid\":\"function-with-sns\"}"
}

Note

If the account with the Amazon SNS topic is hosted in an opt-in AWS Region, you
need to specify the region in the principal. For example, if you're working with an
Amazon SNS topic in the Asia Pacific (Hong Kong) region, you need to specify sns.ap-
east-1.amazonaws.com instead of sns.amazonaws.com for the principal.

Tutorial 1666

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

AWS Lambda Developer Guide

Grant cross-account permission for Amazon SNS subscription (account A)

For your Lambda function in account B to subscribe to the Amazon SNS topic you created in
account A, you need to grant permission for account B to subscribe to your topic. You grant this
permission using the AWS CLI add-permission command.

To grant permission for account B to subscribe to the topic

• In account A, run the following AWS CLI command. Use the ARN for the Amazon SNS topic you
recorded earlier.

aws sns add-permission --label lambda-access --aws-account-id <AccountB_ID> \
 --topic-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
 --action-name Subscribe ListSubscriptionsByTopic --profile accountA

Create a subscription (account B)

In account B, you now subscribe your Lambda function to the Amazon SNS topic you created at
the beginning of the tutorial in account A. When a message is sent to this topic (sns-topic-for-
lambda), Amazon SNS invokes your Lambda function Function-With-SNS in account B.

Tutorial 1667

AWS Lambda Developer Guide

To create a subscription

• In account B, run the following AWS CLI command. Use your default region you created your
topic in and the ARNs for your topic and Lambda function.

aws sns subscribe --protocol lambda \
 --region us-east-1 \
 --topic-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
 --notification-endpoint arn:aws:lambda:us-
east-1:<AccountB_ID>:function:Function-With-SNS \
 --profile accountB

You should see output similar to the following.

{
 "SubscriptionArn": "arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-
lambda:5d906xxxx-7c8x-45dx-a9dx-0484e31c98xx"
}

Publish messages to topic (account A and account B)

Now that your Lambda function in account B is subscribed to your Amazon SNS topic in account A,
it’s time to test your setup by publishing messages to your topic. To confirm that Amazon SNS has
invoked your Lambda function, you use CloudWatch Logs to view your function’s output.

To publish a message to your topic and view your function's output

1. Enter Hello World into a text file and save it as message.txt.

2. From the same directory you saved your text file in, run the following AWS CLI command in
account A. Use the ARN for your own topic.

Tutorial 1668

AWS Lambda Developer Guide

aws sns publish --message file://message.txt --subject Test \
 --topic-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
 --profile accountA

This will return a message ID with a unique identifier, indicating that Amazon SNS has
accepted the message. Amazon SNS then attempts to deliver the message to the topic’s
subscribers. To confirm that Amazon SNS has invoked your Lambda function, use CloudWatch
Logs to view your function’s output:

3. In account B, open the Log groups page of the Amazon CloudWatch console.

4. Choose the log group for your function (/aws/lambda/Function-With-SNS).

5. Choose the most recent log stream.

6. If your function was correctly invoked, you’ll see output similar to the following showing the
contents of the message you published to your topic.

2023-07-31T21:42:51.250Z c1cba6b8-ade9-4380-aa32-d1a225da0e48 INFO Processed
 message Hello World
2023-07-31T21:42:51.250Z c1cba6b8-ade9-4380-aa32-d1a225da0e48 INFO done

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

In Account A, clean up your Amazon SNS topic.

To delete the Amazon SNS topic

1. Open the Topics page of the Amazon SNS console.

2. Select the topic you created.

3. Choose Delete.

4. Enter delete me in the text input field.

5. Choose Delete.

In Account B, clean up your execution role, Lambda function, and Amazon SNS subscription.

Tutorial 1669

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups
https://console.aws.amazon.com/sns/home#topics:

AWS Lambda Developer Guide

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

To delete the Amazon SNS subscription

1. Open the Subscriptions page of the Amazon SNS console.

2. Select the subscription you created.

3. Choose Delete, Delete.

Tutorial 1670

https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/sns/home#subscriptions:

AWS Lambda Developer Guide

Managing permissions in AWS Lambda

You can use AWS Identity and Access Management (IAM) to manage permissions in AWS Lambda.
There are two main categories of permissions that you need to consider when working with
Lambda functions:

• Permissions that your Lambda functions need to perform API actions and access other AWS
resources

• Permissions that other AWS users and entities need to access your Lambda functions

Lambda functions often need to access other AWS resources, and perform various API operations
on those resources. For example, you might have a Lambda function that responds to an event by
updating entries in an Amazon DynamoDB database. In this case, your function needs permissions
to access the database, as well as permissions to put or update items in that database.

You define the permissions that your Lambda function needs in a special IAM role called an
execution role. In this role, you can attach a policy that defines every permission your function
needs to access other AWS resources, and read from event sources. Every Lambda function
must have an execution role. At a minimum, your execution role must have access to Amazon
CloudWatch because Lambda functions log to CloudWatch Logs by default. You can attach
the AWSLambdaBasicExecutionRole managed policy to your execution role to satisfy this
requirement.

To give other AWS accounts, organizations, and services permissions to access your Lambda
resources, you have a few options:

• You can use identity-based policies to grant other users access to your Lambda resources.
Identity-based policies can apply to users directly, or to groups and roles that are associated with
a user.

• You can use resource-based policies to give other accounts and AWS services permissions to
access your Lambda resources. When a user tries to access a Lambda resource, Lambda considers
both the user's identity-based policies and the resource's resource-based policy. When an AWS
service such as Amazon Simple Storage Service (Amazon S3) calls your Lambda function, Lambda
considers only the resource-based policy.

• You can use an attribute-based access control (ABAC) model to control access to your Lambda
functions. With ABAC, you can attach tags to a Lambda function, pass them in certain API

1671

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaBasicExecutionRole.html

AWS Lambda Developer Guide

requests, or attach them to the IAM principal making the request. Specify the same tags in the
condition element of an IAM policy to control function access.

In AWS, it's a best practice to grant only the permissions required to perform a task (least-privilege
permissions). To implement this in Lambda, we recommend starting with an AWS managed
policy. You can use these managed policies as-is, or as a starting point for writing your own more
restrictive policies.

To help you fine-tune your permissions for least-privilege access, Lambda provides some additional
conditions you can include in your policies. For more information, see the section called “Resources
and Conditions”.

For more information about IAM, see the IAM User Guide.

1672

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS Lambda Developer Guide

Defining Lambda function permissions with an execution role

A Lambda function's execution role is an AWS Identity and Access Management (IAM) role that
grants the function permission to access AWS services and resources. For example, you might
create an execution role that has permission to send logs to Amazon CloudWatch and upload trace
data to AWS X-Ray. This page provides information on how to create, view, and manage a Lambda
function's execution role.

Lambda automatically assumes your execution role when you invoke your function. You should
avoid manually calling sts:AssumeRole to assume the execution role in your function code. If
your use case requires that the role assumes itself, you must include the role itself as a trusted
principal in your role's trust policy. For more information on how to modify a role trust policy, see
Modifying a role trust policy (console) in the IAM User Guide.

In order for Lambda to properly assume your execution role, the role's trust policy must specify the
Lambda service principal (lambda.amazonaws.com) as a trusted service.

Topics

• Creating an execution role in the IAM console

• Creating and managing roles with the AWS CLI

• Grant least privilege access to your Lambda execution role

• Viewing and updating permissions in the execution role

• Working with AWS managed policies in the execution role

• Using source function ARN to control function access behavior

Creating an execution role in the IAM console

By default, Lambda creates an execution role with minimal permissions when you
create a function in the Lambda console. Specifically, this execution role includes the
AWSLambdaBasicExecutionRole managed policy, which gives your function basic permissions
to log events to Amazon CloudWatch Logs.

Your functions typically need additional permissions to perform more meaningful tasks. For
example, you might have a Lambda function that responds to an event by updating entries in an
Amazon DynamoDB database. You can create an execution role with the necessary permissions
using the IAM console.

Execution role (permissions for functions to access other resources) 1673

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaBasicExecutionRole.html

AWS Lambda Developer Guide

To create an execution role in the IAM console

1. Open the Roles page in the IAM console.

2. Choose Create role.

3. Under Trusted entity type, choose AWS service.

4. Under Use case, choose Lambda.

5. Choose Next.

6. Select the AWS managed policies that you want to attach to your role. For example, if your
function needs to access DynamoDB, select the AWSLambdaDynamoDBExecutionRole
managed policy.

7. Choose Next.

8. Enter a Role name and then choose Create role.

For detailed instructions, see Creating a role for an AWS service (console) in the IAM User Guide.

After you create your execution role, attach it to your function. When you create a function in the
Lambda console, you can attach any execution role that you previously created to the function.
If you want to attach a new execution role to an existing function, follow the steps in the section
called “Updating a function's execution role”.

Creating and managing roles with the AWS CLI

To create an execution role with the AWS Command Line Interface (AWS CLI), use the create-role
command. When using this command, you can specify the trust policy inline. A role's trust policy
gives the specified principals permission to assume the role. In the following example, you grant
the Lambda service principal permission to assume your role. Note that requirements for escaping
quotes in the JSON string may vary depending on your shell.

aws iam create-role \
 --role-name lambda-ex \
 --assume-role-policy-document '{"Version": "2012-10-17","Statement":
 [{ "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action":
 "sts:AssumeRole"}]}'

You can also define the trust policy for the role using a separate JSON file. In the following
example, trust-policy.json is a file in the current directory.

Creating and managing roles with the AWS CLI 1674

https://console.aws.amazon.com/iam/home#/roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

AWS Lambda Developer Guide

Example trust-policy.json

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

aws iam create-role \
 --role-name lambda-ex \
 --assume-role-policy-document file://trust-policy.json

You should see the following output:

{
 "Role": {
 "Path": "/",
 "RoleName": "lambda-ex",
 "RoleId": "AROAQFOXMPL6TZ6ITKWND",
 "Arn": "arn:aws:iam::123456789012:role/lambda-ex",
 "CreateDate": "2020-01-17T23:19:12Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]

Creating and managing roles with the AWS CLI 1675

AWS Lambda Developer Guide

 }
 }
}

To add permissions to the role, use the attach-policy-to-role command. The following command
adds the AWSLambdaBasicExecutionRole managed policy to the lambda-ex execution role.

aws iam attach-role-policy --role-name lambda-ex --policy-arn arn:aws:iam::aws:policy/
service-role/AWSLambdaBasicExecutionRole

After you create your execution role, attach it to your function. When you create a function in the
Lambda console, you can attach any execution role that you previously created to the function.
If you want to attach a new execution role to an existing function, follow the steps in the section
called “Updating a function's execution role”.

Grant least privilege access to your Lambda execution role

When you first create an IAM role for your Lambda function during the development phase, you
might sometimes grant permissions beyond what is required. Before publishing your function
in the production environment, as a best practice, adjust the policy to include only the required
permissions. For more information, see Apply least-privilege permissions in the IAM User Guide.

Use IAM Access Analyzer to help identify the required permissions for the IAM execution role policy.
IAM Access Analyzer reviews your AWS CloudTrail logs over the date range that you specify and
generates a policy template with only the permissions that the function used during that time. You
can use the template to create a managed policy with fine-grained permissions, and then attach it
to the IAM role. That way, you grant only the permissions that the role needs to interact with AWS
resources for your specific use case.

For more information, see Generate policies based on access activity in the IAM User Guide.

Viewing and updating permissions in the execution role

This topic covers how you can view and update your function's execution role.

Topics

• Viewing a function's execution role

• Updating a function's execution role

Grant least privilege access to your Lambda execution role 1676

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html

AWS Lambda Developer Guide

Viewing a function's execution role

To view a function's execution role, use the Lambda console.

To view a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose Permissions.

4. Under Execution role, you can view the role that's currently being used as the function's
execution role. For convenience, you can view all the resources and actions that the function
can access under the Resource summary section. You can also choose a service from the
dropdown list to see all permissions related to that service.

Updating a function's execution role

You can add or remove permissions from a function's execution role at any time, or configure your
function to use a different role. If your function needs access to any other services or resources, you
must add the necessary permissions to the execution role.

When you add permissions to your function, perform a trivial update to its code or configuration as
well. This forces running instances of your function, which have outdated credentials, to stop and
be replaced.

To update a function's execution role, you can use the Lambda console.

To update a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose Permissions.

4. Under Execution role, choose Edit.

5. If you want to update your function to use a different role as the execution role, choose the
new role in the dropdown menu under Existing role.

Update execution role 1677

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Note

If you want to update the permissions within an existing execution role, you can only
do so in the AWS Identity and Access Management (IAM) console.

If you want to create a new role to use as the execution role, choose Create a new role from
AWS policy templates under Execution role. Then, enter a name for your new role under Role
name, and specify any policies you want to attach to the new role under Policy templates.

6. Choose Save.

Working with AWS managed policies in the execution role

The following AWS managed policies provide permissions that are required to use Lambda
features.

Change Description Date

AWSLambdaMSKExecut
ionRole – Lambda added
the kafka:DescribeClusterV2
permission to this policy.

AWSLambdaMSKExecut
ionRole grants permissio
ns to read and access records
from an Amazon Managed
Streaming for Apache Kafka
(Amazon MSK) cluster,
manage elastic network
interfaces (ENIs), and write to
CloudWatch Logs.

June 17, 2022

AWSLambdaBasicExec
utionRole – Lambda started
tracking changes to this
policy.

AWSLambdaBasicExec
utionRole grants
permissions to upload logs to
CloudWatch.

February 14, 2022

AWSLambdaDynamoDBE
xecutionRole – Lambda

AWSLambdaDynamoDBE
xecutionRole grants
permissions to read records

February 14, 2022

AWS managed policies 1678

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html#v2-clusters-clusterarnget
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole

AWS Lambda Developer Guide

Change Description Date

started tracking changes to
this policy.

from an Amazon DynamoDB
stream and write to
CloudWatch Logs.

AWSLambdaKinesisEx
ecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaKinesisEx
ecutionRole grants
permissions to read events
from an Amazon Kinesis
data stream and write to
CloudWatch Logs.

February 14, 2022

AWSLambdaMSKExecut
ionRole – Lambda started
tracking changes to this
policy.

AWSLambdaMSKExecut
ionRole grants permissio
ns to read and access records
from an Amazon Managed
Streaming for Apache Kafka
(Amazon MSK) cluster,
manage elastic network
interfaces (ENIs), and write to
CloudWatch Logs.

February 14, 2022

AWSLambdaSQSQueueE
xecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaSQSQueueE
xecutionRole grants
permissions to read a
message from an Amazon
Simple Queue Service
(Amazon SQS) queue and
write to CloudWatch Logs.

February 14, 2022

AWSLambdaVPCAccess
ExecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaVPCAccess
ExecutionRole grants
permissions to manage ENIs
within an Amazon VPC and
write to CloudWatch Logs.

February 14, 2022

AWS managed policies 1679

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaKinesisExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaKinesisExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaSQSQueueExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaSQSQueueExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole

AWS Lambda Developer Guide

Change Description Date

AWSXRayDaemonWrite
Access – Lambda started
tracking changes to this
policy.

AWSXRayDaemonWrite
Access grants permissions
to upload trace data to X-Ray.

February 14, 2022

CloudWatchLambdaIn
sightsExecutionRolePolicy
– Lambda started tracking
changes to this policy.

CloudWatchLambdaIn
sightsExecutionRol
ePolicy grants permissio
ns to write runtime metrics to
CloudWatch Lambda Insights.

February 14, 2022

AmazonS3ObjectLamb
daExecutionRolePolicy –
Lambda started tracking
changes to this policy.

AmazonS3ObjectLamb
daExecutionRolePol
icy grants permissions to
interact with Amazon Simple
Storage Service (Amazon S3)
object Lambda and to write
to CloudWatch Logs.

February 14, 2022

For some features, the Lambda console attempts to add missing permissions to your execution
role in a customer managed policy. These policies can become numerous. To avoid creating extra
policies, add the relevant AWS managed policies to your execution role before enabling features.

When you use an event source mapping to invoke your function, Lambda uses the execution role to
read event data. For example, an event source mapping for Kinesis reads events from a data stream
and sends them to your function in batches.

When a service assumes a role in your account, you can include the aws:SourceAccount and
aws:SourceArn global condition context keys in your role trust policy to limit access to the role
to only requests that are generated by expected resources. For more information, see Cross-service
confused deputy prevention for AWS Security Token Service.

In addition to the AWS managed policies, the Lambda console provides templates for creating
a custom policy with permissions for additional use cases. When you create a function in the
Lambda console, you can choose to create a new execution role with permissions from one or more
templates. These templates are also applied automatically when you create a function from a

AWS managed policies 1680

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonS3ObjectLambdaExecutionRolePolicy
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonS3ObjectLambdaExecutionRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html#cross-service-confused-deputy-prevention
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html#cross-service-confused-deputy-prevention

AWS Lambda Developer Guide

blueprint, or when you configure options that require access to other services. Example templates
are available in this guide's GitHub repository.

Using source function ARN to control function access behavior

It's common for your Lambda function code to make API requests to other AWS services. To make
these requests, Lambda generates an ephemeral set of credentials by assuming your function's
execution role. These credentials are available as environment variables during your function's
invocation. When working with AWS SDKs, you don't need to provide credentials for the SDK
directly in code. By default, the credential provider chain sequentially checks each place where
you can set credentials and selects the first one available—usually the environment variables
(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN).

Lambda injects the source function ARN into the credentials context if the request is an AWS
API request that comes from within your execution environment. Lambda also injects the source
function ARN for the following AWS API requests that Lambda makes on your behalf outside of
your execution environment:

Service Action Reason

CloudWatch Logs CreateLogGroup ,
CreateLogStream ,
PutLogEvents

To store logs into a
CloudWatch Logs log group

X-Ray PutTraceSegments To send trace data to X-Ray

Amazon EFS ClientMount To connect your function to
an Amazon Elastic File System
(Amazon EFS) file system

Other AWS API calls that Lambda makes outside of your execution environment on your behalf
using the same execution role don't contain the source function ARN. Examples of such API calls
outside the execution environment include:

• Calls to AWS Key Management Service (AWS KMS) to automatically encrypt and decrypt your
environment variables.

• Calls to Amazon Elastic Compute Cloud (Amazon EC2) to create elastic network interfaces (ENIs)
for a VPC-enabled function.

Source function ARN 1681

https://github.com/awsdocs/aws-lambda-developer-guide/tree/master/iam-policies

AWS Lambda Developer Guide

• Calls to AWS services, such as Amazon Simple Queue Service (Amazon SQS), to read from an
event source that's set up as an event source mapping.

With the source function ARN in the credentials context, you can verify whether a call
to your resource came from a specific Lambda function's code. To verify this, use the
lambda:SourceFunctionArn condition key in an IAM identity-based policy or service control
policy (SCP).

Note

You cannot use the lambda:SourceFunctionArn condition key in resource-based
policies.

With this condition key in your identity-based policies or SCPs, you can implement security controls
for the API actions that your function code makes to other AWS services. This has a few key
security applications, such as helping you identify the source of a credential leak.

Note

The lambda:SourceFunctionArn condition key is different from the
lambda:FunctionArn and aws:SourceArn condition keys. The lambda:FunctionArn
condition key applies only to event source mappings and helps define which functions your
event source can invoke. The aws:SourceArn condition key applies only to policies where
your Lambda function is the target resource, and helps define which other AWS services
and resources can invoke that function. The lambda:SourceFunctionArn condition key
can apply to any identity-based policy or SCP to define the specific Lambda functions that
have permissions to make specific AWS API calls to other resources.

To use lambda:SourceFunctionArn in your policy, include it as a condition with any of the ARN
condition operators. The value of the key must be a valid ARN.

For example, suppose your Lambda function code makes an s3:PutObject call that targets a
specific Amazon S3 bucket. You might want to allow only one specific Lambda function to have
s3:PutObject access that bucket. In this case, your function's execution role should have a policy
attached that looks like this:

Source function ARN 1682

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN

AWS Lambda Developer Guide

Example policy granting a specific Lambda function access to an Amazon S3 resource

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleSourceFunctionArn",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::lambda_bucket/*",
 "Condition": {
 "ArnEquals": {
 "lambda:SourceFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:source_lambda"
 }
 }
 }
]
}

This policy allows only s3:PutObject access if the source is the Lambda function with ARN
arn:aws:lambda:us-east-1:123456789012:function:source_lambda. This policy doesn't
allow s3:PutObject access to any other calling identity. This is true even if a different function or
entity makes an s3:PutObject call with the same execution role.

Note

The lambda:SourceFunctionARN condition key doesn't support Lambda function
versions or function aliases. If you use the ARN for a particular function version or alias,
your function won't have permission to take the action you specify. Be sure to use the
unqualified ARN for your function without a version or alias suffix.

You can also use lambda:SourceFunctionArn in SCPs. For example, suppose you want to
restrict access to your bucket to either a single Lambda function's code or to calls from a specific
Amazon Virtual Private Cloud (VPC). The following SCP illustrates this.

Source function ARN 1683

AWS Lambda Developer Guide

Example policy denying access to Amazon S3 under specific conditions

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:*"
],
 "Resource": "arn:aws:s3:::lambda_bucket/*",
 "Effect": "Deny",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceVpc": [
 "vpc-12345678"
]
 }
 }
 },
 {
 "Action": [
 "s3:*"
],
 "Resource": "arn:aws:s3:::lambda_bucket/*",
 "Effect": "Deny",
 "Condition": {
 "ArnNotEqualsIfExists": {
 "lambda:SourceFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:source_lambda"
 }
 }
 }
]
}

This policy denies all S3 actions unless they come from a specific Lambda function with ARN
arn:aws:lambda:*:123456789012:function:source_lambda, or unless they come
from the specified VPC. The StringNotEqualsIfExists operator tells IAM to process this

Source function ARN 1684

AWS Lambda Developer Guide

condition only if the aws:SourceVpc key is present in the request. Similarly, IAM considers the
ArnNotEqualsIfExists operator only if the lambda:SourceFunctionArn exists.

Source function ARN 1685

AWS Lambda Developer Guide

Granting other AWS entities access to your Lambda functions

To give other AWS accounts, organizations, and services permissions to access your Lambda
resources, you have a few options:

• You can use identity-based policies to grant other users access to your Lambda resources.
Identity-based policies can apply to users directly, or to groups and roles that are associated with
a user.

• You can use resource-based policies to give other accounts and AWS services permissions to
access your Lambda resources. When a user tries to access a Lambda resource, Lambda considers
both the user's identity-based policies and the resource's resource-based policy. When an AWS
service such as Amazon Simple Storage Service (Amazon S3) calls your Lambda function, Lambda
considers only the resource-based policy.

• You can use an attribute-based access control (ABAC) model to control access to your Lambda
functions. With ABAC, you can attach tags to a Lambda function, pass them in certain API
requests, or attach them to the IAM principal making the request. Specify the same tags in the
condition element of an IAM policy to control function access.

To help you fine-tune your permissions for least-privilege access, Lambda provides some additional
conditions you can include in your policies. For more information, see the section called “Resources
and Conditions”.

Identity-based IAM policies for Lambda

You can use identity-based policies in AWS Identity and Access Management (IAM) to grant users
in your account access to Lambda. Identity-based policies can apply to users, user groups, or roles.
You can also grant users in another account permission to assume a role in your account and access
your Lambda resources.

Lambda provides AWS managed policies that grant access to Lambda API actions and, in some
cases, access to other AWS services used to develop and manage Lambda resources. Lambda
updates these managed policies as needed to ensure that your users have access to new features
when they're released.

• AWSLambda_FullAccess – Grants full access to Lambda actions and other AWS services used to
develop and maintain Lambda resources.

• AWSLambda_ReadOnlyAccess – Grants read-only access to Lambda resources.

Access permissions (permissions for other entities to access your functions) 1686

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_FullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html

AWS Lambda Developer Guide

• AWSLambdaRole – Grants permissions to invoke Lambda functions.

AWS managed policies grant permission to API actions without restricting the Lambda functions or
layers that a user can modify. For finer-grained control, you can create your own policies that limit
the scope of a user's permissions.

Topics

• Granting users access to a Lambda function

• Granting users access to a Lambda layer

Granting users access to a Lambda function

Use identity-based policies to allow users, user groups, or roles to perform operations on Lambda
functions.

Note

For a function defined as a container image, the user permission to access the image must
be configured in Amazon Elastic Container Registry (Amazon ECR). For an example, see
Amazon ECR repository policies.

The following shows an example of a permissions policy with limited scope. It allows a user to
create and manage Lambda functions named with a designated prefix (intern-), and configured
with a designated execution role.

Example Function development policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadOnlyPermissions",
 "Effect": "Allow",
 "Action": [
 "lambda:GetAccountSettings",

Identity-based policies 1687

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaRole.html

AWS Lambda Developer Guide

 "lambda:GetEventSourceMapping",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:GetFunctionCodeSigningConfig",
 "lambda:GetFunctionConcurrency",
 "lambda:ListEventSourceMappings",
 "lambda:ListFunctions",
 "lambda:ListTags",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Sid": "DevelopFunctions",
 "Effect": "Allow",
 "NotAction": [
 "lambda:AddPermission",
 "lambda:PutFunctionConcurrency"
],
 "Resource": "arn:aws:lambda:*:*:function:intern-*"
 },
 {
 "Sid": "DevelopEventSourceMappings",
 "Effect": "Allow",
 "Action": [
 "lambda:DeleteEventSourceMapping",
 "lambda:UpdateEventSourceMapping",
 "lambda:CreateEventSourceMapping"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "lambda:FunctionArn": "arn:aws:lambda:*:*:function:intern-*"
 }
 }
 },
 {
 "Sid": "PassExecutionRole",
 "Effect": "Allow",
 "Action": [
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",

Identity-based policies 1688

AWS Lambda Developer Guide

 "iam:PassRole",
 "iam:SimulatePrincipalPolicy"
],
 "Resource": "arn:aws:iam::*:role/intern-lambda-execution-role"
 },
 {
 "Sid": "ViewLogs",
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/lambda/intern-*"
 }
]
}

The permissions in the policy are organized into statements based on the resources and conditions
that they support.

• ReadOnlyPermissions – The Lambda console uses these permissions when you browse and
view functions. They don't support resource patterns or conditions.

 "Action": [
 "lambda:GetAccountSettings",
 "lambda:GetEventSourceMapping",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:GetFunctionCodeSigningConfig",
 "lambda:GetFunctionConcurrency",
 "lambda:ListEventSourceMappings",
 "lambda:ListFunctions",
 "lambda:ListTags",
 "iam:ListRoles"
],
 "Resource": "*"

• DevelopFunctions – Use any Lambda action that operates on functions prefixed with
intern-, except AddPermission and PutFunctionConcurrency. AddPermission
modifies the resource-based policy on the function and can have security implications.

Identity-based policies 1689

AWS Lambda Developer Guide

PutFunctionConcurrency reserves scaling capacity for a function and can take capacity away
from other functions.

 "NotAction": [
 "lambda:AddPermission",
 "lambda:PutFunctionConcurrency"
],
 "Resource": "arn:aws:lambda:*:*:function:intern-*"

• DevelopEventSourceMappings – Manage event source mappings on functions that are
prefixed with intern-. These actions operate on event source mappings, but you can restrict
them by function with a condition.

 "Action": [
 "lambda:DeleteEventSourceMapping",
 "lambda:UpdateEventSourceMapping",
 "lambda:CreateEventSourceMapping"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "lambda:FunctionArn": "arn:aws:lambda:*:*:function:intern-*"
 }
 }

• PassExecutionRole – View and pass only a role named intern-lambda-execution-role,
which must be created and managed by a user with IAM permissions. PassRole is used when
you assign an execution role to a function.

 "Action": [
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:PassRole",
 "iam:SimulatePrincipalPolicy"
],
 "Resource": "arn:aws:iam::*:role/intern-lambda-execution-role"

Identity-based policies 1690

AWS Lambda Developer Guide

• ViewLogs – Use CloudWatch Logs to view logs for functions that are prefixed with intern-.

 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/lambda/intern-*"

This policy allows a user to get started with Lambda, without putting other users' resources at risk.
It doesn't allow a user to configure a function to be triggered by or call other AWS services, which
requires broader IAM permissions. It also doesn't include permission to services that don't support
limited-scope policies, like CloudWatch and X-Ray. Use the read-only policies for these services to
give the user access to metrics and trace data.

When you configure triggers for your function, you need access to use the AWS service that invokes
your function. For example, to configure an Amazon S3 trigger, you need permission to use the
Amazon S3 actions that manage bucket notifications. Many of these permissions are included in
the AWSLambda_FullAccess managed policy.

Granting users access to a Lambda layer

Use identity-based policies to allow users, user groups, or roles to perform operations on Lambda
layers. The following policy grants a user permission to create layers and use them with functions.
The resource patterns allow the user to work in any AWS Region and with any layer version, as long
as the name of the layer starts with test-.

Example layer development policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublishLayers",
 "Effect": "Allow",
 "Action": [
 "lambda:PublishLayerVersion"
],

Identity-based policies 1691

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_FullAccess.html

AWS Lambda Developer Guide

 "Resource": "arn:aws:lambda:*:*:layer:test-*"
 },
 {
 "Sid": "ManageLayerVersions",
 "Effect": "Allow",
 "Action": [
 "lambda:GetLayerVersion",
 "lambda:DeleteLayerVersion"
],
 "Resource": "arn:aws:lambda:*:*:layer:test-*:*"
 }
]
}

You can also enforce layer use during function creation and configuration with the
lambda:Layer condition. For example, you can prevent users from using layers published
by other accounts. The following policy adds a condition to the CreateFunction and
UpdateFunctionConfiguration actions to require that any layers specified come from account
123456789012.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConfigureFunctions",
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringLike": {
 "lambda:Layer": [
 "arn:aws:lambda:*:123456789012:layer:*:*"
]
 }
 }
 }

Identity-based policies 1692

AWS Lambda Developer Guide

]
}

To ensure that the condition applies, verify that no other statements grant the user permission to
these actions.

Viewing resource-based IAM policies in Lambda

Lambda supports resource-based permissions policies for Lambda functions and layers. You can
use resource-based policies to grant access to other AWS accounts, organizations, or services.
Resource-based policies apply to a single function, version, alias, or layer version.

Console

To view a function's resource-based policy

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Permissions.

4. Scroll down to Resource-based policy and then choose View policy document. The
resource-based policy shows the permissions that are applied when another account or
AWS service attempts to access the function. The following example shows a statement
that allows Amazon S3 to invoke a function named my-function for a bucket named
amzn-s3-demo-bucket in account 123456789012.

Example resource-based policy

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "lambda-allow-s3-my-function",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",

Resource-based policies 1693

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

 "Resource": "arn:aws:lambda:us-east-2:123456789012:function:my-
function",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:s3:::amzn-s3-demo-bucket"
 }
 }
 }
]
}

AWS CLI

To view a function's resource-based policy, use the get-policy command.

aws lambda get-policy \
 --function-name my-function \
 --output text

You should see the following output:

{"Version":"2012-10-17","Id":"default","Statement":
[{"Sid":"sns","Effect":"Allow","Principal":
{"Service":"s3.amazonaws.com"},"Action":"lambda:InvokeFunction","Resource":"arn:aws:lambda:us-
east-2:123456789012:function:my-function","Condition":{"ArnLike":
{"AWS:SourceArn":"arn:aws:sns:us-east-2:123456789012:lambda*"}}}]}

For versions and aliases, append the version number or alias to the function name.

aws lambda get-policy --function-name my-function:PROD

To remove permissions from your function, use remove-permission.

aws lambda remove-permission \
 --function-name example \

Resource-based policies 1694

AWS Lambda Developer Guide

 --statement-id sns

Use the get-layer-version-policy command to view the permissions on a layer.

aws lambda get-layer-version-policy \
 --layer-name my-layer \
 --version-number 3 \
 --output text

You should see the following output:

b0cd9796-d4eb-4564-939f-de7fe0b42236 {"Sid":"engineering-
org","Effect":"Allow","Principal":"*","Action":"lambda:GetLayerVersion","Resource":"arn:aws:lambda:us-
west-2:123456789012:layer:my-layer:3","Condition":{"StringEquals":
{"aws:PrincipalOrgID":"o-t194hfs8cz"}}}"

Use remove-layer-version-permission to remove statements from the policy.

aws lambda remove-layer-version-permission --layer-name my-layer --version-number 3
 --statement-id engineering-org

Supported API actions

The following Lambda API actions support resource-based policies:

• CreateAlias

• DeleteAlias

• DeleteFunction

• DeleteFunctionConcurrency

• DeleteFunctionEventInvokeConfig

• DeleteProvisionedConcurrencyConfig

• GetAlias

• GetFunction

• GetFunctionConcurrency

• GetFunctionConfiguration

Resource-based policies 1695

https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionEventInvokeConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html

AWS Lambda Developer Guide

• GetFunctionEventInvokeConfig

• GetPolicy

• GetProvisionedConcurrencyConfig

• Invoke

• InvokeFunctionUrl (permission only)

• ListAliases

• ListFunctionEventInvokeConfigs

• ListProvisionedConcurrencyConfigs

• ListTags

• ListVersionsByFunction

• PublishVersion

• PutFunctionConcurrency

• PutFunctionEventInvokeConfig

• PutProvisionedConcurrencyConfig

• TagResource

• UntagResource

• UpdateAlias

• UpdateFunctionCode

• UpdateFunctionEventInvokeConfig

Granting Lambda function access to AWS services

When you use an AWS service to invoke your function, you grant permission in a statement on a
resource-based policy. You can apply the statement to the entire function, or limit the statement to
a single version or alias.

Note

When you add a trigger to your function with the Lambda console, the console updates the
function's resource-based policy to allow the service to invoke it. To grant permissions to
other accounts or services that aren't available in the Lambda console, you can use the AWS
CLI.

Resource-based policies 1696

https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionEventInvokeConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetPolicy.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListAliases.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctionEventInvokeConfigs.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListProvisionedConcurrencyConfigs.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListTags.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListVersionsByFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionEventInvokeConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionEventInvokeConfig.html

AWS Lambda Developer Guide

Add a statement with the add-permission command. The simplest resource-based policy statement
allows a service to invoke a function. The following command grants Amazon Simple Notification
Service permission to invoke a function named my-function.

aws lambda add-permission \
 --function-name my-function \
 --action lambda:InvokeFunction \
 --statement-id sns \
 --principal sns.amazonaws.com \
 --output text

You should see the following output:

{"Sid":"sns","Effect":"Allow","Principal":
{"Service":"sns.amazonaws.com"},"Action":"lambda:InvokeFunction","Resource":"arn:aws:lambda:us-
east-2:123456789012:function:my-function"}

This lets Amazon SNS call the Invoke API action on the function, but it doesn't restrict the Amazon
SNS topic that triggers the invocation. To ensure that your function is only invoked by a specific
resource, specify the Amazon Resource Name (ARN) of the resource with the source-arn option.
The following command only allows Amazon SNS to invoke the function for subscriptions to a
topic named my-topic.

aws lambda add-permission \
 --function-name my-function \
 --action lambda:InvokeFunction \
 --statement-id sns-my-topic \
 --principal sns.amazonaws.com \
 --source-arn arn:aws:sns:us-east-2:123456789012:my-topic

Some services can invoke functions in other accounts. If you specify a source ARN that has your
account ID in it, that isn't an issue. For Amazon S3, however, the source is a bucket whose ARN
doesn't have an account ID in it. It's possible that you could delete the bucket and another account
could create a bucket with the same name. Use the source-account option with your account ID
to ensure that only resources in your account can invoke the function.

aws lambda add-permission \
 --function-name my-function \
 --action lambda:InvokeFunction \
 --statement-id s3-account \

Resource-based policies 1697

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-permission.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

 --principal s3.amazonaws.com \
 --source-arn arn:aws:s3:::amzn-s3-demo-bucket \
 --source-account 123456789012

Granting function access to an organization

To grant permissions to an organization in AWS Organizations, specify the organization ID as the
principal-org-id. The following add-permission command grants invocation access to all users
in organization o-a1b2c3d4e5f.

aws lambda add-permission \
 --function-name example \
 --statement-id PrincipalOrgIDExample \
 --action lambda:InvokeFunction \
 --principal * \
 --principal-org-id o-a1b2c3d4e5f

Note

In this command, Principal is *. This means that all users in the organization o-
a1b2c3d4e5f get function invocation permissions. If you specify an AWS account or role
as the Principal, then only that principal gets function invocation permissions, but only
if they are also part of the o-a1b2c3d4e5f organization.

This command creates a resource-based policy that looks like the following:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PrincipalOrgIDExample",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-east-2:123456789012:function:example",
 "Condition": {
 "StringEquals": {

Resource-based policies 1698

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-permission.html

AWS Lambda Developer Guide

 "aws:PrincipalOrgID": "o-a1b2c3d4e5f"
 }
 }
 }
]
}

For more information, see aws:PrincipalOrgID in the IAM user guide.

Granting Lambda function access to other accounts

To share a function with another AWS account, add a cross-account permissions statement to the
function's resource-based policy. Run the add-permission command and specify the account ID as
the principal. The following example grants account 111122223333 permission to invoke my-
function with the prod alias.

aws lambda add-permission \
 --function-name my-function:prod \
 --statement-id xaccount \
 --action lambda:InvokeFunction \
 --principal 111122223333 \
 --output text

You should see the following output:

{"Sid":"xaccount","Effect":"Allow","Principal":
{"AWS":"arn:aws:iam::111122223333:root"},"Action":"lambda:InvokeFunction","Resource":"arn:aws:lambda:us-
east-1:123456789012:function:my-function"}

The resource-based policy grants permission for the other account to access the function, but
doesn't allow users in that account to exceed their permissions. Users in the other account must
have the corresponding user permissions to use the Lambda API.

To limit access to a user or role in another account, specify the full ARN of the identity as the
principal. For example, arn:aws:iam::123456789012:user/developer.

The alias limits which version the other account can invoke. It requires the other account to include
the alias in the function ARN.

aws lambda invoke \

Resource-based policies 1699

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-permission.html

AWS Lambda Developer Guide

 --function-name arn:aws:lambda:us-east-2:123456789012:function:my-function:prod out

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "1"
}

The function owner can then update the alias to point to a new version without the caller needing
to change the way they invoke your function. This ensures that the other account doesn't need
to change its code to use the new version, and it only has permission to invoke the version of the
function associated with the alias.

You can grant cross-account access for most API actions that operate on an existing function. For
example, you could grant access to lambda:ListAliases to let an account get a list of aliases, or
lambda:GetFunction to let them download your function code. Add each permission separately,
or use lambda:* to grant access to all actions for the specified function.

To grant other accounts permission for multiple functions, or for actions that don't operate on a
function, we recommend that you use IAM roles.

Granting Lambda layer access to other accounts

To share a layer with another AWS account, add a cross-account permissions statement to the
layer's resource-based policy. Run the add-layer-version-permission command and specify the
account ID as the principal. In each statement, you can grant permission to a single account, all
accounts, or an organization in AWS Organizations.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission \
 --layer-name bash-runtime \
 --version-number 2 \
 --statement-id xaccount \
 --action lambda:GetLayerVersion \
 --principal 111122223333 \
 --output text

You should see output similar to the following:

Resource-based policies 1700

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

AWS Lambda Developer Guide

{"Sid":"xaccount","Effect":"Allow","Principal":
{"AWS":"arn:aws:iam::111122223333:root"},"Action":"lambda:GetLayerVersion","Resource":"arn:aws:lambda:us-
east-1:123456789012:layer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

To grant permission to all accounts in an AWS Organizations organization, use the
organization-id option. The following example grants all accounts in organization o-
t194hfs8cz permission to use version 3 of my-layer.

aws lambda add-layer-version-permission \
 --layer-name my-layer \
 --version-number 3 \
 --statement-id engineering-org \
 --principal '*' \
 --action lambda:GetLayerVersion \
 --organization-id o-t194hfs8cz \
 --output text

You should see the following output:

{"Sid":"engineering-
org","Effect":"Allow","Principal":"*","Action":"lambda:GetLayerVersion","Resource":"arn:aws:lambda:us-
east-2:123456789012:layer:my-layer:3","Condition":{"StringEquals":
{"aws:PrincipalOrgID":"o-t194hfs8cz"}}}"

To grant permission to multiple accounts or organizations, you must add multiple statements.

Using attribute-based access control in Lambda

With attribute-based access control (ABAC), you can use tags to control access to your Lambda
resources. You can attach tags to certain Lambda resources, attach them to certain API requests,
or attach them to the AWS Identity and Access Management (IAM) principal making the request.
For more information about how AWS grants attribute-based access, see Controlling access to AWS
resources using tags in the IAM User Guide.

You can use ABAC to grant least privilege without specifying an Amazon Resource Name (ARN) or
ARN pattern in the IAM policy. Instead, you can specify a tag in the condition element of an IAM

Attribute-based access control 1701

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Lambda Developer Guide

policy to control access. Scaling is easier with ABAC because you don't have to update your IAM
policies when you create new resources. Instead, add tags to the new resources to control access.

In Lambda, tags work on the following resources:

• Functions–For more information on tagging functions see, the section called “Tags”.

• Code signing configurations–For more information on tagging code signing configurations, see
the section called “Code signing configuration tags”.

• Event source mappings–For more information on tagging event source mappings, see the section
called “Event source mapping tags”.

Tags aren't supported for layers.

You can use the following condition keys to write IAM policy rules based on tags:

• aws:ResourceTag/tag-key: Control access based on the tags that are attached to a Lambda
resource.

• aws:RequestTag/tag-key: Require tags to be present in a request, such as when creating a new
function.

• aws:PrincipalTag/tag-key: Control what the IAM principal (the person making the request) is
allowed to do based on the tags that are attached to their IAM user or role.

• aws:TagKeys: Control whether specific tag keys can be used in a request.

You can only specify conditions for actions that support them. For a list of conditions supported
by each Lambda action, see Actions, resources, and condition keys for AWS Lambda in the Service
Authorization Reference. For aws:ResourceTag/tag-key support, refer to "Resource types defined
by AWS Lambda." For aws:RequestTag/tag-key and aws:TagKeys support, refer to "Actions
defined by AWS Lambda."

Topics

• Secure your functions by tag

Secure your functions by tag

The following steps demonstrate one way to set up permissions for functions using ABAC. In this
example scenario, you'll create four IAM permissions policies. Then, you'll attach these policies to

Attribute-based access control 1702

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principaltag
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awslambda.html

AWS Lambda Developer Guide

a new IAM role. Finally, you'll create an IAM user and give that user permission to assume the new
role.

Topics

• Prerequisites

• Step 1: Require tags on new functions

• Step 2: Allow actions based on tags attached to a Lambda function and IAM principal

• Step 3: Grant list permissions

• Step 4: Grant IAM permissions

• Step 5: Create the IAM role

• Step 6: Create the IAM user

• Step 7: Test the permissions

• Step 8: Clean up your resources

Prerequisites

Make sure that you have a Lambda execution role. You'll use this role when you grant IAM
permissions and when you create a Lambda function.

Step 1: Require tags on new functions

When using ABAC with Lambda, it's a best practice to require that all functions have tags. This
helps ensure that your ABAC permissions policies work as expected.

Create an IAM policy similar to the following example. This policy uses the aws:RequestTag/tag-
key, aws:ResourceTag/tag-key, and aws:TagKeys condition keys to require that new functions and
the IAM principal creating the functions both have the project tag. The ForAllValues modifier
ensures that project is the only allowed tag. If you don't include the ForAllValues modifier,
users can add other tags to the function as long as they also pass project.

Example – Require tags on new functions

JSON

{
 "Version": "2012-10-17",

Attribute-based access control 1703

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

AWS Lambda Developer Guide

 "Statement": {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:TagResource"
],
 "Resource": "arn:aws:lambda:*:*:function:*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/project": "${aws:PrincipalTag/project}",
 "aws:ResourceTag/project": "${aws:PrincipalTag/project}"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": "project"
 }
 }
 }
 }

Step 2: Allow actions based on tags attached to a Lambda function and IAM principal

Create a second IAM policy using the aws:ResourceTag/tag-key condition key to require the
principal's tag to match the tag that's attached to the function. The following example policy
allows principals with the project tag to invoke functions with the project tag. If a function has
any other tags, the action is denied.

Example – Require matching tags on function and IAM principal

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunction"
],
 "Resource": "arn:aws:lambda:*:*:function:*",
 "Condition": {

Attribute-based access control 1704

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

AWS Lambda Developer Guide

 "StringEquals": {
 "aws:ResourceTag/project": "${aws:PrincipalTag/project}"
 }
 }
 }
]
 }

Step 3: Grant list permissions

Create a policy that allows the principal to list Lambda functions and IAM roles. This allows the
principal to see all Lambda functions and IAM roles on the console and when calling the API
actions.

Example – Grant Lambda and IAM list permissions

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllResourcesLambdaNoTags",
 "Effect": "Allow",
 "Action": [
 "lambda:GetAccountSettings",
 "lambda:ListFunctions",
 "iam:ListRoles"
],
 "Resource": "*"
 }
]
 }

Step 4: Grant IAM permissions

Create a policy that allows iam:PassRole. This permission is required when you assign an execution
role to a function. In the following example policy, replace the example ARN with the ARN of your
Lambda execution role.

Attribute-based access control 1705

AWS Lambda Developer Guide

Note

Do not use the ResourceTag condition key in a policy with the iam:PassRole action.
You cannot use the tag on an IAM role to control access to who can pass that role. For more
information about permissions required to pass a role to a service, see Granting a user
permissions to pass a role to an AWS service.

Example – Grant permission to pass the execution role

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::111122223333:role/lambda-ex"
 }
]
 }

Step 5: Create the IAM role

It's a best practice to use roles to delegate permissions. Create an IAM role called abac-project-
role:

• On Step 1: Select trusted entity: Choose AWS account and then choose This account.

• On Step 2: Add permissions: Attach the four IAM policies that you created in the previous steps.

• On Step 3: Name, review, and create: Choose Add tag. For Key, enter project. Don't enter a
Value.

Attribute-based access control 1706

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#delegate-using-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

AWS Lambda Developer Guide

Step 6: Create the IAM user

Create an IAM user called abac-test-user. In the Set permissions section, choose Attach
existing policies directly and then choose Create policy. Enter the following policy definition.
Replace 111122223333 with your AWS account ID. This policy allows abac-test-user to assume
abac-project-role.

Example – Allow IAM user to assume ABAC role

JSON

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::111122223333:role/abac-project-role"
 }
 }

Step 7: Test the permissions

1. Sign in to the AWS console as abac-test-user. For more information, see Sign in as an IAM
user.

2. Switch to the abac-project-role role. For more information, see Switching to a role
(console).

3. Create a Lambda function:

• Under Permissions, choose Change default execution role, and then for Execution role,
choose Use an existing role. Choose the same execution role that you used in Step 4: Grant
IAM permissions.

• Under Advanced settings, choose Enable tags and then choose Add new tag. For Key, enter
project. Don't enter a Value.

4. Test the function.

5. Create a second Lambda function and add a different tag, such as environment. This
operation should fail because the ABAC policy that you created in Step 1: Require tags on new
functions only allows the principal to create functions with the project tag.

Attribute-based access control 1707

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingYourAccountIdentifiers
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

AWS Lambda Developer Guide

6. Create a third function without tags. This operation should fail because the ABAC policy that
you created in Step 1: Require tags on new functions doesn't allow the principal to create
functions without tags.

This authorization strategy allows you to control access without creating new policies for each
new user. To grant access to new users, simply give them permission to assume the role that
corresponds to their assigned project.

Step 8: Clean up your resources

To delete the IAM role

1. Open the Roles page of the IAM console.

2. Select the role that you created in step 5.

3. Choose Delete.

4. To confirm deletion, enter the role name in the text input field.

5. Choose Delete.

To delete the IAM user

1. Open the Users page of the IAM console.

2. Select the IAM user that you created in step 6.

3. Choose Delete.

4. To confirm deletion, enter the user name in the text input field.

5. Choose Delete user.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type confirm in the text input field and choose Delete.

Attribute-based access control 1708

https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/iam/home#/users
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Fine-tuning the Resources and Conditions sections of policies

You can restrict the scope of a user's permissions by specifying resources and conditions in an AWS
Identity and Access Management (IAM) policy. Each action in a policy supports a combination of
resource and condition types that varies depending on the behavior of the action.

Every IAM policy statement grants permission to an action that's performed on a resource. When
the action doesn't act on a named resource, or when you grant permission to perform the action
on all resources, the value of the resource in the policy is a wildcard (*). For many actions, you can
restrict the resources that a user can modify by specifying the Amazon Resource Name (ARN) of a
resource, or an ARN pattern that matches multiple resources.

By resource type, the general design of how to restrict the scope of an action is the following:

• Functions–Actions that operate on a function can be restricted to a specific function by function,
version, or alias ARN.

• Event source mappings–Actions can be restricted to specific event source mapping resources
by ARN. Event source mappings are always associated with a function. You can also use the
lambda:FunctionArn condition to restrict actions by associated function.

• Layers–Actions related to layer usage and permissions act on a version of a layer.

• Code signing configuration–Actions can be restricted to specific code signing configuration
resources by ARN.

• Tags–Use standard tag conditions. For more information, see the section called “Attribute-based
access control”.

To restrict permissions by resource, specify the resource by ARN.

Lambda resource ARN format

• Function – arn:aws:lambda:us-west-2:123456789012:function:my-function

• Function version – arn:aws:lambda:us-west-2:123456789012:function:my-
function:1

• Function alias – arn:aws:lambda:us-west-2:123456789012:function:my-
function:TEST

• Event source mapping – arn:aws:lambda:us-west-2:123456789012:event-source-
mapping:fa123456-14a1-4fd2-9fec-83de64ad683de6d47

Resources and Conditions 1709

AWS Lambda Developer Guide

• Layer – arn:aws:lambda:us-west-2:123456789012:layer:my-layer

• Layer version – arn:aws:lambda:us-west-2:123456789012:layer:my-layer:1

• Code signing configuration – arn:aws:lambda:us-west-2:123456789012:code-signing-
config:my-csc

For example, the following policy allows a user in AWS account 123456789012 to invoke a
function named my-function in the US West (Oregon) AWS Region.

Example invoke function policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Invoke",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:my-
function"
 }
]
}

This is a special case where the action identifier (lambda:InvokeFunction) differs from the
API operation (Invoke). For other actions, the action identifier is the operation name prefixed by
lambda:.

Sections

• Understanding the Condition section in policies

• Referencing functions in the Resource section of policies

• Supported IAM actions and function behaviors

Resources and Conditions 1710

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

Understanding the Condition section in policies

Conditions are an optional policy element that applies additional logic to determine if an action
is allowed. In addition to common conditions that all actions support, Lambda defines condition
types that you can use to restrict the values of additional parameters on some actions.

For example, the lambda:Principal condition lets you restrict the service or account that a user
can grant invocation access to on a function's resource-based policy. The following policy lets a
user grant permission to Amazon Simple Notification Service (Amazon SNS) topics to invoke a
function named test.

Example manage function policy permissions

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",
 "lambda:RemovePermission"
],
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:test:*",
 "Condition": {
 "StringEquals": {
 "lambda:Principal": "sns.amazonaws.com"
 }
 }
 }
]
}

The condition requires that the principal is Amazon SNS and not another service or account. The
resource pattern requires that the function name is test and includes a version number or alias.
For example, test:v1.

Resources and Conditions 1711

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Lambda Developer Guide

For more information on resources and conditions for Lambda and other AWS services, see Actions,
resources, and condition keys for AWS services in the Service Authorization Reference.

Referencing functions in the Resource section of policies

You reference a Lambda function in a policy statement using an Amazon Resource Name (ARN).
The format of a function ARN depends on whether you are referencing the whole function
(unqualified) or a function version or alias (qualified).

When making Lambda API calls, users can specify a version or alias by passing a version ARN or
alias ARN in the GetFunction FunctionName parameter, or by setting a value in the GetFunction
Qualifier parameter. Lambda makes authorization decisions by comparing the resource element
in the IAM policy with both the FunctionName and Qualifier passed in API calls. If there is a
mismatch, Lambda denies the request.

Whether you are allowing or denying an action on your function, you must use the correct function
ARN types in your policy statement to achieve the results that you expect. For example, if your
policy references the unqualified ARN, Lambda accepts requests that reference the unqualified ARN
but denies requests that reference a qualified ARN.

Note

You can't use a wildcard character (*) to match the account ID. For more information on
accepted syntax, see IAM JSON policy reference in the IAM User Guide.

Example allowing invocation of an unqualified ARN

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:myFunction"
 }
]

Resources and Conditions 1712

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS Lambda Developer Guide

}

If your policy references a specific qualified ARN, Lambda accepts requests that reference that ARN
but denies requests that reference the unqualified ARN or a different qualified ARN, for example,
myFunction:2.

Example allowing invocation of a specific qualified ARN

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:myFunction:1"
 }
]
}

If your policy references any qualified ARN using :*, Lambda accepts any qualified ARN but denies
requests that reference the unqualified ARN.

Example allowing invocation of any qualified ARN

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:myFunction:*"
 }
]

Resources and Conditions 1713

AWS Lambda Developer Guide

}

If your policy references any ARN using *, Lambda accepts any qualified or unqualified ARN.

Example allowing invocation of any qualified or unqualified ARN

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:myFunction*"
 }
]
}

Supported IAM actions and function behaviors

Actions define what can be permitted through IAM policies. For a list of actions supported in
Lambda, see Actions, resources, and condition keys for AWS Lambda in the Service Authorization
Reference. In most cases, when an IAM action permits an Lambda API action, the name of the IAM
action is the same as the name of the Lambda API action, with the following exceptions:

API action IAM action

Invoke lambda:InvokeFunction

GetLayerVersion

GetLayerVersionByArn

lambda:GetLayerVersion

In addition to the resources and conditions defined in the Service Authorization Reference, Lambda
supports the following resources and conditions for certain actions. Many of these are related to

Resources and Conditions 1714

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awslambda.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetLayerVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetLayerVersionByArn.html

AWS Lambda Developer Guide

referencing functions in the resource section of policies. Actions that operate on a function can
be restricted to a specific function by function, version, or alias ARN, as described in the following
table.

Action Resource Condition

AddPermission

RemovePermission

Invoke–Permission: lambda:In
vokeFunction

Function version

Function alias

N/A

UpdateFunctionConfiguration N/A lambda:CodeSigning
ConfigArn

CreateFunctionUrlConfig

DeleteFunctionUrlConfig

GetFunctionUrlConfig

UpdateFunctionUrlConfig

Function alias N/A

Resources and Conditions 1715

https://docs.aws.amazon.com/lambda/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_RemovePermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionUrlConfig.html

AWS Lambda Developer Guide

Security in AWS Lambda

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS Lambda, see
AWS services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Lambda. The following topics show you how to configure Lambda to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your Lambda resources.

For more information about applying security principles to Lambda applications, see Security in
Serverless Land.

Topics

• Data protection in AWS Lambda

• Identity and Access Management for AWS Lambda

• Create a governance strategy for Lambda functions and layers

• Compliance validation for AWS Lambda

• Resilience in AWS Lambda

• Infrastructure security in AWS Lambda

• Securing workloads with public endpoints

• Using code signing to verify code integrity with Lambda

1716

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/security-ops

AWS Lambda Developer Guide

Data protection in AWS Lambda

The AWS shared responsibility model applies to data protection in AWS Lambda. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Lambda or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Sections

• Encryption in transit

Data protection 1717

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS Lambda Developer Guide

• Data encryption at rest for AWS Lambda

Encryption in transit

Lambda API endpoints only support secure connections over HTTPS. When you manage Lambda
resources with the AWS Management Console,AWS SDK, or the Lambda API, all communication is
encrypted with Transport Layer Security (TLS). For a full list of API endpoints, see AWS Regions and
endpoints in the AWS General Reference.

When you connect your function to a file system, Lambda uses encryption in transit for all
connections. For more information, see Data encryption in Amazon EFS in the Amazon Elastic File
System User Guide.

When you use environment variables, you can enable console encryption helpers to use client-
side encryption to protect the environment variables in transit. For more information, see Securing
Lambda environment variables.

Data encryption at rest for AWS Lambda

Lambda always provides at-rest encryption for the following resources using an AWS owned key or
an AWS managed key:

• Environment variables

• Files that you upload to Lambda, including deployment packages and layer archives

• Event source mapping filter criteria objects

You can optionally configure Lambda to use a customer managed key to encrypt your environment
variables, .zip deployment packages, and filter criteria objects.

Amazon CloudWatch Logs and AWS X-Ray also encrypt data by default, and can be configured
to use a customer managed key. For details, see Encrypt log data in CloudWatch Logs and Data
protection in AWS X-Ray.

Monitoring your encryption keys for Lambda

When you use an AWS KMS customer managed key with Lambda, you can use AWS CloudTrail. The
following examples are CloudTrail events for Decrypt, DescribeKey, and GenerateDataKey
calls made by Lambda to access data encrypted by your customer managed key.

Encryption in transit 1718

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/efs/latest/ug/encryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-encryption.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-encryption.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Lambda Developer Guide

Decrypt

If you used a AWS KMS customer managed key to encrypt your filter criteria object, Lambda
sends a Decrypt request on your behalf when you try to access it in plaintext (for example,
from a ListEventSourceMappings call). The following example event records the Decrypt
operation:

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA123456789EXAMPLE:example",
 "arn": "arn:aws:sts::123456789012:assumed-role/role-name/example",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROA123456789EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/role-name",
 "accountId": "123456789012",
 "userName": "role-name"
 },
 "attributes": {
 "creationDate": "2024-05-30T00:45:23Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "lambda.amazonaws.com"
 },
 "eventTime": "2024-05-30T01:05:46Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "eu-west-1",
 "sourceIPAddress": "lambda.amazonaws.com",
 "userAgent": "lambda.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:eu-west-1:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "encryptionContext": {
 "aws-crypto-public-key": "ABCD
+7876787678+CDEFGHIJKL/888666888999888555444111555222888333111==",

Encryption at rest 1719

AWS Lambda Developer Guide

 "aws:lambda:EventSourceArn": "arn:aws:sqs:eu-west-1:123456789012:sample-
source",
 "aws:lambda:FunctionArn": "arn:aws:lambda:eu-
west-1:123456789012:function:sample-function"
 },
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:eu-west-1:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management",
 "sessionCredentialFromConsole": "true"
}

DescribeKey

If you used a AWS KMS customer managed key to encrypt your filter criteria object, Lambda
sends a DescribeKey request on your behalf when you try to access it (for example, from
a GetEventSourceMapping call). The following example event records the DescribeKey
operation:

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA123456789EXAMPLE:example",
 "arn": "arn:aws:sts::123456789012:assumed-role/role-name/example",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {

Encryption at rest 1720

AWS Lambda Developer Guide

 "type": "Role",
 "principalId": "AROA123456789EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/role-name",
 "accountId": "123456789012",
 "userName": "role-name"
 },
 "attributes": {
 "creationDate": "2024-05-30T00:45:23Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2024-05-30T01:09:40Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "eu-west-1",
 "sourceIPAddress": "54.240.197.238",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36",
 "requestParameters": {
 "keyId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:eu-west-1:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.eu-west-1.amazonaws.com"
 },
 "sessionCredentialFromConsole": "true"

Encryption at rest 1721

AWS Lambda Developer Guide

}

GenerateDataKey

When you use a AWS KMS customer managed key to encrypt your filter criteria object in a
CreateEventSourceMapping or UpdateEventSourceMapping call, Lambda sends a
GenerateDataKey request on your behalf to generate a data key to encrypt the filter criteria
(envelope encryption). The following example event records the GenerateDataKey operation:

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA123456789EXAMPLE:example",
 "arn": "arn:aws:sts::123456789012:assumed-role/role-name/example",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROA123456789EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/role-name",
 "accountId": "123456789012",
 "userName": "role-name"
 },
 "attributes": {
 "creationDate": "2024-05-30T00:06:07Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "lambda.amazonaws.com"
 },
 "eventTime": "2024-05-30T01:04:18Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "eu-west-1",
 "sourceIPAddress": "lambda.amazonaws.com",
 "userAgent": "lambda.amazonaws.com",
 "requestParameters": {
 "numberOfBytes": 32,
 "keyId": "arn:aws:kms:eu-west-1:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 "encryptionContext": {

Encryption at rest 1722

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

AWS Lambda Developer Guide

 "aws-crypto-public-key": "ABCD
+7876787678+CDEFGHIJKL/888666888999888555444111555222888333111==",
 "aws:lambda:EventSourceArn": "arn:aws:sqs:eu-west-1:123456789012:sample-
source",
 "aws:lambda:FunctionArn": "arn:aws:lambda:eu-
west-1:123456789012:function:sample-function"
 },
 },
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbbb",
 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:eu-west-1:123456789012:key/a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Identity and Access Management for AWS Lambda

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Lambda resources. IAM is an AWS service that you can use
with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Lambda works with IAM

Identity and Access Management 1723

AWS Lambda Developer Guide

• Identity-based policy examples for AWS Lambda

• AWS managed policies for AWS Lambda

• Troubleshooting AWS Lambda identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Lambda.

Service user – If you use the Lambda service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more Lambda features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in Lambda,
see Troubleshooting AWS Lambda identity and access.

Service administrator – If you're in charge of Lambda resources at your company, you probably
have full access to Lambda. It's your job to determine which Lambda features and resources your
service users should access. You must then submit requests to your IAM administrator to change
the permissions of your service users. Review the information on this page to understand the basic
concepts of IAM. To learn more about how your company can use IAM with Lambda, see How AWS
Lambda works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Lambda. To view example Lambda identity-based policies
that you can use in IAM, see Identity-based policy examples for AWS Lambda.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 1724

AWS Lambda Developer Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 1725

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS Lambda Developer Guide

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

Authenticating with identities 1726

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS Lambda Developer Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 1727

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Lambda Developer Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 1728

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS Lambda Developer Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached

Managing access using policies 1729

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Lambda works with IAM

Before you use IAM to manage access to Lambda, learn what IAM features are available to use with
Lambda.

IAM feature Lambda support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

How AWS Lambda works with IAM 1730

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Lambda Developer Guide

IAM feature Lambda support

Temporary credentials Yes

Forward access sessions (FAS) No

Service roles Yes

Service-linked roles Partial

To get a high-level view of how Lambda and other AWS services work with most IAM features, see
AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Lambda

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Lambda

To view examples of Lambda identity-based policies, see Identity-based policy examples for AWS
Lambda.

Resource-based policies within Lambda

Supports resource-based policies: Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that

How AWS Lambda works with IAM 1731

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS Lambda Developer Guide

support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

You can attach a resource-based policy to a Lambda function or layer. This policy defines which
principals can perform actions on the function or layer.

To learn how to attach a resource-based policy to a function or layer, see Viewing resource-based
IAM policies in Lambda.

Policy actions for Lambda

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Lambda actions, see Actions defined by AWS Lambda in the Service Authorization
Reference.

Policy actions in Lambda use the following prefix before the action:

How AWS Lambda works with IAM 1732

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awslambda.html#awslambda-actions-as-permissions

AWS Lambda Developer Guide

lambda

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "lambda:action1",
 "lambda:action2"
]

To view examples of Lambda identity-based policies, see Identity-based policy examples for AWS
Lambda.

Policy resources for Lambda

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Lambda resource types and their ARNs, see Resource types defined by AWS Lambda
in the Service Authorization Reference. To learn with which actions you can specify the ARN of each
resource, see Actions defined by AWS Lambda.

To view examples of Lambda identity-based policies, see Identity-based policy examples for AWS
Lambda.

How AWS Lambda works with IAM 1733

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awslambda.html#awslambda-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awslambda.html#awslambda-actions-as-permissions

AWS Lambda Developer Guide

Policy condition keys for Lambda

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Lambda condition keys, see Condition keys for AWS Lambda in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by AWS Lambda.

To view examples of Lambda identity-based policies, see Identity-based policy examples for AWS
Lambda.

ACLs in Lambda

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Lambda

Supports ABAC (tags in policies): Partial

How AWS Lambda works with IAM 1734

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awslambda.html#awslambda-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awslambda.html#awslambda-actions-as-permissions

AWS Lambda Developer Guide

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

For more information about tagging Lambda resources, see Using attribute-based access control in
Lambda.

Using temporary credentials with Lambda

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate

How AWS Lambda works with IAM 1735

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

AWS Lambda Developer Guide

temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Lambda

Supports forward access sessions (FAS): No

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Lambda

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

In Lambda, a service role is known as an execution role.

Warning

Changing the permissions for an execution role might break Lambda functionality.

Service-linked roles for Lambda

Supports service-linked roles: Partial

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

Lambda doesn't have service-linked roles, but Lambda@Edge does. For more information, see
Service-Linked Roles for Lambda@Edge in the Amazon CloudFront Developer Guide.

How AWS Lambda works with IAM 1736

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles

AWS Lambda Developer Guide

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS Lambda

By default, users and roles don't have permission to create or modify Lambda resources. They also
can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS
CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an
IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles,
and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Lambda, including the format of the ARNs
for each of the resource types, see Actions, resources, and condition keys for AWS Lambda in the
Service Authorization Reference.

Topics

• Policy best practices

• Using the Lambda console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Lambda resources
in your account. These actions can incur costs for your AWS account. When you create or edit
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on

Identity-based policy examples 1737

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awslambda.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS Lambda Developer Guide

specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Lambda console

To access the AWS Lambda console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Lambda resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

For an example policy that grants minimal access for function development, see Granting users
access to a Lambda function. In addition to Lambda APIs, the Lambda console uses other services
to display trigger configuration and let you add new triggers. If your users use Lambda with other

Identity-based policy examples 1738

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Lambda Developer Guide

services, they need access to those services as well. For details on configuring other services with
Lambda, see Invoking Lambda with events from other AWS services.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policy examples 1739

AWS Lambda Developer Guide

AWS managed policies for AWS Lambda

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

Topics

• AWS managed policy: AWSLambda_FullAccess

• AWS managed policy: AWSLambda_ReadOnlyAccess

• AWS managed policy: AWSLambdaBasicExecutionRole

• AWS managed policy: AWSLambdaDynamoDBExecutionRole

• AWS managed policy: AWSLambdaENIManagementAccess

• AWS managed policy: AWSLambdaInvocation-DynamoDB

• AWS managed policy: AWSLambdaKinesisExecutionRole

• AWS managed policy: AWSLambdaMSKExecutionRole

• AWS managed policy: AWSLambdaRole

• AWS managed policy: AWSLambdaSQSQueueExecutionRole

• AWS managed policy: AWSLambdaVPCAccessExecutionRole

• Lambda updates to AWS managed policies

AWS managed policies 1740

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Lambda Developer Guide

AWS managed policy: AWSLambda_FullAccess

This policy grants full access to Lambda actions. It also grants permissions to other AWS services
that are used to develop and maintain Lambda resources.

You can attach the AWSLambda_FullAccess policy to your users, groups, and roles.

Permissions details

This policy includes the following permissions:

• lambda – Allows principals full access to Lambda.

• cloudformation – Allows principals to describe AWS CloudFormation stacks and list the
resources in those stacks.

• cloudwatch – Allows principals to list Amazon CloudWatch metrics and get metric data.

• ec2 – Allows principals to describe security groups, subnets, and VPCs.

• iam – Allows principals to get policies, policy versions, roles, role policies, attached role policies,
and the list of roles. This policy also allows principals to pass roles to Lambda. The PassRole
permission is used when you assign an execution role to a function.

• kms – Allows principals to list aliases.

• logs – Allows principals to describe log streams, get log events, filter log events, and to start
and stop Live Tail sessions.

• states – Allows principals to describe and list AWS Step Functions state machines.

• tag – Allows principals to get resources based on their tags.

• xray – Allows principals to get AWS X-Ray trace summaries and retrieve a list of traces specified
by ID.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambda_FullAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambda_ReadOnlyAccess

This policy grants read-only access to Lambda resources and to other AWS services that are used to
develop and maintain Lambda resources.

You can attach the AWSLambda_ReadOnlyAccess policy to your users, groups, and roles.

AWS managed policies 1741

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_FullAccess.html

AWS Lambda Developer Guide

Permissions details

This policy includes the following permissions:

• lambda – Allows principals to get and list all resources.

• cloudformation – Allows principals to describe and list AWS CloudFormation stacks and list
the resources in those stacks.

• cloudwatch – Allows principals to list Amazon CloudWatch metrics and get metric data.

• ec2 – Allows principals to describe security groups, subnets, and VPCs.

• iam – Allows principals to get policies, policy versions, roles, role policies, attached role policies,
and the list of roles.

• kms – Allows principals to list aliases.

• logs – Allows principals to describe log streams, get log events, filter log events, and to start
and stop Live Tail sessions.

• states – Allows principals to describe and list AWS Step Functions state machines.

• tag – Allows principals to get resources based on their tags.

• xray – Allows principals to get AWS X-Ray trace summaries and retrieve a list of traces specified
by ID.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambda_ReadOnlyAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaBasicExecutionRole

This policy grants permissions to upload logs to CloudWatch Logs.

You can attach the AWSLambdaBasicExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaBasicExecutionRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaDynamoDBExecutionRole

This policy grants permissions to read records from an Amazon DynamoDB stream and write to
CloudWatch Logs.

You can attach the AWSLambdaDynamoDBExecutionRole policy to your users, groups, and roles.

AWS managed policies 1742

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaBasicExecutionRole.html

AWS Lambda Developer Guide

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaDynamoDBExecutionRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaENIManagementAccess

This policy grants permissions to create, describe, and delete elastic network interfaces used by a
VPC-enabled Lambda function.

You can attach the AWSLambdaENIManagementAccess policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaENIManagementAccess in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaInvocation-DynamoDB

This policy grants read access to Amazon DynamoDB Streams.

You can attach the AWSLambdaInvocation-DynamoDB policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaInvocation-DynamoDB in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaKinesisExecutionRole

This policy grants permissions to read events from an Amazon Kinesis data stream and write to
CloudWatch Logs.

You can attach the AWSLambdaKinesisExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaKinesisExecutionRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaMSKExecutionRole

This policy grants permissions to read and access records from an Amazon Managed Streaming for
Apache Kafka cluster, manage elastic network interfaces, and write to CloudWatch Logs.

You can attach the AWSLambdaMSKExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaMSKExecutionRole in the AWS Managed Policy Reference Guide.

AWS managed policies 1743

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaENIManagementAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaInvocation-DynamoDB.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaKinesisExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html

AWS Lambda Developer Guide

AWS managed policy: AWSLambdaRole

This policy grants permissions to invoke Lambda functions.

You can attach the AWSLambdaRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaSQSQueueExecutionRole

This policy grants permissions to read and delete messages from an Amazon Simple Queue Service
queue, and grants write permissions to CloudWatch Logs.

You can attach the AWSLambdaSQSQueueExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaSQSQueueExecutionRole in the AWS Managed Policy Reference Guide.

AWS managed policy: AWSLambdaVPCAccessExecutionRole

This policy grants permissions to manage elastic network interfaces within an Amazon Virtual
Private Cloud and write to CloudWatch Logs.

You can attach the AWSLambdaVPCAccessExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaVPCAccessExecutionRole in the AWS Managed Policy Reference Guide.

Lambda updates to AWS managed policies

Change Description Date

AWSLambda_ReadOnlyAccess
and AWSLambda_FullAccess –
Change

Lambda updated the
AWSLambda_ReadOnly
Access and AWSLambda
_FullAccess policies
to allow the logs:Star
tLiveTail and
logs:StopLiveTail
actions.

March 17, 2025

AWS managed policies 1744

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_FullAccess.html

AWS Lambda Developer Guide

Change Description Date

AWSLambdaVPCAccess
ExecutionRole – Change

Lambda updated the
AWSLambdaVPCAccess
ExecutionRole policy to
allow the action ec2:Descr
ibeSubnets .

January 5, 2024

AWSLambda_ReadOnlyAccess
– Change

Lambda updated the
AWSLambda_ReadOnly
Access policy to allow
principals to list AWS
CloudFormation stacks.

July 27, 2023

AWS Lambda started tracking
changes

AWS Lambda started tracking
changes for its AWS managed
policies.

July 27, 2023

Troubleshooting AWS Lambda identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Lambda and IAM.

Topics

• I am not authorized to perform an action in Lambda

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Lambda resources

I am not authorized to perform an action in Lambda

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
lambda:GetWidget permissions.

Troubleshooting 1745

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html

AWS Lambda Developer Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 lambda:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the lambda:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Lambda.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Lambda. However, the action requires the service to have permissions that
are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Lambda resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Lambda supports these features, see How AWS Lambda works with IAM.

Troubleshooting 1746

AWS Lambda Developer Guide

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Create a governance strategy for Lambda functions and layers

To build and deploy serverless, cloud-native applications, you must allow for agility and speed
to market with appropriate governance and guardrails. You set business-level priorities, maybe
emphasizing agility as the top priority, or alternatively emphasizing risk aversion via governance,
guardrails, and controls. Realistically, you won't have an "either/or" strategy but an "and" strategy
that balances both agility and guardrails in your software development lifecycle. No matter where
these requirements fall in your company's lifecycle, governance capabilities are likely to become an
implementation requirement in your processes and toolchains.

Here are a few examples of governance controls that an organization might implement for
Lambda:

• Lambda functions must not be publicly accessible.

• Lambda functions must be attached to a VPC.

• Lambda functions should not use deprecated runtimes.

• Lambda functions must be tagged with a set of required tags.

• Lambda layers must not be accessible outside of the organization.

• Lambda functions with an attached security group must have matching tags between the
function and security group.

• Lambda functions with an attached layer must use an approved version

• Lambda environment variables must be encrypted at rest with a customer managed key.

The following diagram is an example of an in-depth governance strategy that implements controls
and policy throughout the software development and deployment process:

Governance 1747

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Lambda Developer Guide

The following topics explain how to implement controls for developing and deploying Lambda
functions in your organization, both for the startup and the enterprise. Your organization might
already have tools in place. The following topics take a modular approach to these controls, so that
you can pick and choose the components you actually need.

Topics

• Proactive controls for Lambda with AWS CloudFormation Guard

• Implement preventative controls for Lambda with AWS Config

• Detect non-compliant Lambda deployments and configurations with AWS Config

• Lambda code signing with AWS Signer

• Automate security assessments for Lambda with Amazon Inspector

• Implement observability for Lambda security and compliance

Governance 1748

AWS Lambda Developer Guide

Proactive controls for Lambda with AWS CloudFormation Guard

AWS CloudFormation Guard is an open-source, general-purpose, policy-as-code evaluation tool.
This can be used for preventative governance and compliance by validating Infrastructure as Code
(IaC) templates and service compositions against policy rules. These rules can be customized based
on your team or organizational requirements. For Lambda functions, the Guard rules can be used
to control resource creation and configuration updates by defining the required property settings
needed while creating or updating a Lambda function.

Compliance administrators define the list of controls and governance policies that are required for
deploying and updating Lambda functions. Platform administrators implement the controls in CI/
CD pipelines, as pre-commit validation webhooks with code repositories, and provide developers
with command line tools for validating templates and code on local workstations. Developers
author code, validate templates with command line tools, and then commit code to repositories,
which are then automatically validated via the CI/CD pipelines prior to deployment into an AWS
environment.

Guard allows you to write your rules and implement your controls with a domain-specific language
as follows.

For example, suppose you want to ensure that developers choose only the latest runtimes. You
could specify two different policies, one to identify runtimes that are already deprecated and
another to identify runtimes that are to be deprecated soon. To do this, you might write the
following etc/rules.guard file:

Proactive controls with Guard 1749

https://docs.aws.amazon.com/cfn-guard/latest/ug/what-is-guard.html
https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html

AWS Lambda Developer Guide

let lambda_functions = Resources.*[
 Type == "AWS::Lambda::Function"
]

rule lambda_already_deprecated_runtime when %lambda_functions !empty {
 %lambda_functions {
 Properties {
 when Runtime exists {
 Runtime !in ["dotnetcore3.1", "nodejs12.x", "python3.6", "python2.7",
 "dotnet5.0", "dotnetcore2.1", "ruby2.5", "nodejs10.x", "nodejs8.10", "nodejs4.3",
 "nodejs6.10", "dotnetcore1.0", "dotnetcore2.0", "nodejs4.3-edge", "nodejs"] <<Lambda
 function is using a deprecated runtime.>>
 }
 }
 }
}

rule lambda_soon_to_be_deprecated_runtime when %lambda_functions !empty {
 %lambda_functions {
 Properties {
 when Runtime exists {
 Runtime !in ["nodejs16.x", "nodejs14.x", "python3.7", "java8",
 "dotnet7", "go1.x", "ruby2.7", "provided"] <<Lambda function is using a runtime that
 is targeted for deprecation.>>
 }
 }
 }
}

Now suppose you write the following iac/lambda.yaml CloudFormation template that defines a
Lambda function:

 Fn:
 Type: AWS::Lambda::Function
 Properties:
 Runtime: python3.7
 CodeUri: src
 Handler: fn.handler
 Role: !GetAtt FnRole.Arn
 Layers:
 - arn:aws:lambda:us-east-1:111122223333:layer:LambdaInsightsExtension:35

Proactive controls with Guard 1750

AWS Lambda Developer Guide

After installing the Guard utility, validate your template:

cfn-guard validate --rules etc/rules.guard --data iac/lambda.yaml

The output looks like this:

lambda.yaml Status = FAIL
FAILED rules
rules.guard/lambda_soon_to_be_deprecated_runtime

Evaluating data lambda.yaml against rules rules.guard
Number of non-compliant resources 1
Resource = Fn {
 Type = AWS::Lambda::Function
 Rule = lambda_soon_to_be_deprecated_runtime {
 ALL {
 Check = Runtime not IN
 ["nodejs16.x","nodejs14.x","python3.7","java8","dotnet7","go1.x","ruby2.7","provided"]
 {
 ComparisonError {
 Message = Lambda function is using a runtime that is targeted for
 deprecation.
 Error = Check was not compliant as property [/Resources/
Fn/Properties/Runtime[L:88,C:15]] was not present in [(resolved, Path=[L:0,C:0]
 Value=["nodejs16.x","nodejs14.x","python3.7","java8","dotnet7","go1.x","ruby2.7","provided"])]
 }
 PropertyPath = /Resources/Fn/Properties/Runtime[L:88,C:15]
 Operator = NOT IN
 Value = "python3.7"
 ComparedWith =
 [["nodejs16.x","nodejs14.x","python3.7","java8","dotnet7","go1.x","ruby2.7","provided"]]
 Code:
 86. Fn:
 87. Type: AWS::Lambda::Function
 88. Properties:
 89. Runtime: python3.7
 90. CodeUri: src
 91. Handler: fn.handler

 }
 }
 }
}

Proactive controls with Guard 1751

https://docs.aws.amazon.com/cfn-guard/latest/ug/setting-up.html

AWS Lambda Developer Guide

Guard allows your developers to see from their local developer workstations that they need to
update the template to use a runtime that is allowed by the organization. This happens prior
to committing to a code repository and subsequently failing checks within a CI/CD pipeline. As
a result, your developers get this feedback on how to develop compliant templates and shift
their time to writing code that delivers business value. This control can be applied on the local
developer workstation, in a pre-commit validation webhook, and/or in the CI/CD pipeline prior to
deployment.

Caveats

If you're using AWS Serverless Application Model (AWS SAM) templates to define
Lambda functions, be aware that you need to update the Guard rule to search for the
AWS::Serverless::Function resource type as follows.

let lambda_functions = Resources.*[
 Type == "AWS::Serverless::Function"
]

Guard also expects the properties to be included within the resource definition. Meanwhile, AWS
SAM templates allow for properties to be specified in a separate Globals section. Properties that
are defined in the Globals section are not validated with your Guard rules.

As outlined in the Guard troubleshooting documentation, be aware that Guard doesn't support
short-form intrinsics like !GetAtt or !Sub and instead requires using the expanded forms:
Fn::GetAtt and Fn::Sub. (The earlier example doesn't evaluate the Role property, so the short-
form intrinsic was used for simplicity.)

Proactive controls with Guard 1752

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy-globals.html
https://docs.aws.amazon.com/cfn-guard/latest/ug/troubleshooting.html

AWS Lambda Developer Guide

Implement preventative controls for Lambda with AWS Config

It is essential to ensure compliance in your serverless applications as early in the development
process as possible. In this topic, we cover how to implement preventative controls using AWS
Config. This allows you to implement compliance checks earlier in the development process and
enables you to implement the same controls in your CI/CD pipelines. This also standardizes your
controls in a centrally managed repository of rules so that you can apply your controls consistently
across your AWS accounts.

For example, suppose your compliance administrators defined a requirement to ensure that all
Lambda functions include AWS X-Ray tracing. With AWS Config's proactive mode, you can run
compliance checks on your Lambda function resources before deployment, reducing the risk of
deploying improperly configured Lambda functions and saving developers time by giving them
faster feedback on infrastructure as code templates. The following is a visualization of the flow for
preventative controls with AWS Config:

Consider a requirement that all Lambda functions must have tracing enabled. In response, the
platform team identifies the need for a specific AWS Config rule to run proactively across all

Proactive controls with AWS Config 1753

https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html
https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html

AWS Lambda Developer Guide

accounts. This rule flags any Lambda function that lacks a configured X-Ray tracing configuration
as a non-compliant resource. The team develops a rule, packages it in a conformance pack,
and deploys the conformance pack across all AWS accounts to ensure that all accounts in the
organization uniformly apply these controls. You can write the rule in AWS CloudFormation Guard
2.x.x syntax, which takes the following form:

rule name when condition { assertion }

The following is a sample Guard rule that checks to ensure Lambda functions has tracing enabled:

rule lambda_tracing_check {
 when configuration.tracingConfig exists {
 configuration.tracingConfig.mode == "Active"
 }
}

The platform team takes further action by mandating that every AWS CloudFormation deployment
invokes a pre-create/update hook. They assume full responsibility for developing this hook and
configuring the pipeline, strengthening the centralized control of compliance rules and sustaining
their consistent application across all deployments. To develop, package, and register a hook, see
Developing AWS CloudFormation Hooks in the CloudFormation Command Line Interface (CFN-CLI)
documentation. You can use the CloudFormation CLI to create the hook project:

cfn init

This command asks you for some basic information about your hook project and creates a project
with following files in it:

README.md
<hook-name>.json
rpdk.log
src/handler.py
template.yml
hook-role.yaml

As a hook developer, you need to add the desired target resource type in the <hook-name>.json
configuration file. In the configuration below, a hook is configured to execute before any Lambda
function is created using CloudFormation. You can add similar handlers for preUpdate and
preDelete actions as well.

Proactive controls with AWS Config 1754

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/hooks-structure.html
https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/hooks-develop.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/initiating-hooks-project-python.html

AWS Lambda Developer Guide

 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::Lambda::Function"
],
 "permissions": []
 }
 }

You also need to ensure that the CloudFormation hook has appropriate permissions to call the AWS
Config APIs. You can do that by updating the role definition file named hook-role.yaml. The role
definition file has the following trust policy by default, which allows CloudFormation to assume the
role.

 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - hooks.cloudformation.amazonaws.com
 - resources.cloudformation.amazonaws.com

To allow this hook to call config APIs, you must add following permissions to the Policy statement.
Then you submit the hook project using the cfn submit command, where CloudFormation
creates a role for you with the required permissions.

 Policies:
 - PolicyName: HookTypePolicy
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Action:
 - "config:Describe*"
 - "config:Get*"
 - "config:List*"
 - "config:SelectResourceConfig"
 Resource: "*

Proactive controls with AWS Config 1755

AWS Lambda Developer Guide

Next, you need to write a Lambda function in a src/handler.py file. Within this file, you
find methods named preCreate, preUpdate, and preDelete already created when you
initiated the project. You aim to write a common, reusable function that calls the AWS Config
StartResourceEvaluation API in proactive mode using the AWS SDK for Python (Boto3). This
API call takes resource properties as input and evaluates the resource against the rule definition.

def validate_lambda_tracing_config(resource_type, function_properties:
 MutableMapping[str, Any]) -> ProgressEvent:
 LOG.info("Fetching proactive data")
 config_client = boto3.client('config')
 resource_specs = {
 'ResourceId': 'MyFunction',
 'ResourceType': resource_type,
 'ResourceConfiguration': json.dumps(function_properties),
 'ResourceConfigurationSchemaType': 'CFN_RESOURCE_SCHEMA'
 }
 LOG.info("Resource Specifications:", resource_specs)
 eval_response = config_client.start_resource_evaluation(EvaluationMode='PROACTIVE',
 ResourceDetails=resource_specs, EvaluationTimeout=60)
 ResourceEvaluationId = eval_response.ResourceEvaluationId
 compliance_response =
 config_client.get_compliance_details_by_resource(ResourceEvaluationId=ResourceEvaluationId)
 LOG.info("Compliance Verification:",
 compliance_response.EvaluationResults[0].ComplianceType)
 if "NON_COMPLIANT" == compliance_response.EvaluationResults[0].ComplianceType:
 return ProgressEvent(status=OperationStatus.FAILED, message="Lambda function
 found with no tracing enabled : FAILED", errorCode=HandlerErrorCode.NonCompliant)
 else:
 return ProgressEvent(status=OperationStatus.SUCCESS, message="Lambda function
 found with tracing enabled : PASS.")

Now you can call the common function from the handler for the pre-create hook. Here's an
example of the handler:

@hook.handler(HookInvocationPoint.CREATE_PRE_PROVISION)
def pre_create_handler(
 session: Optional[SessionProxy],
 request: HookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: TypeConfigurationModel
) -> ProgressEvent:
 LOG.info("Starting execution of the hook")

Proactive controls with AWS Config 1756

AWS Lambda Developer Guide

 target_name = request.hookContext.targetName
 LOG.info("Target Name:", target_name)
 if "AWS::Lambda::Function" == target_name:
 return validate_lambda_tracing_config(target_name,
 request.hookContext.targetModel.get("resourceProperties")
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

After this step you can register the hook and configure it to listen to all AWS Lambda function
creation events.

A developer prepares the infrastructure as code (IaC) template for a serverless microservice using
Lambda. This preparation includes adherence to internal standards, followed by locally testing and
committing the template to the repository. Here's an example IaC template:

 MyLambdaFunction:
 Type: 'AWS::Lambda::Function'
 Properties:
 Handler: index.handler
 Role: !GetAtt LambdaExecutionRole.Arn
 FunctionName: MyLambdaFunction
 Code:
 ZipFile: |
 import json

 def handler(event, context):
 return {
 'statusCode': 200,
 'body': json.dumps('Hello World!')
 }
 Runtime: python3.13
 TracingConfig:
 Mode: PassThrough
 MemorySize: 256
 Timeout: 10

As part of the CI/CD process, when the CloudFormation template is deployed, the CloudFormation
service invokes the pre-create/update hook right before provisioning AWS::Lambda::Function
resource type. The hook utilizes AWS Config rules running in proactive mode to verify that the
Lambda function configuration includes the mandated tracing configuration. The response from
the hook determines the next step. If compliant, the hook signals success, and CloudFormation

Proactive controls with AWS Config 1757

AWS Lambda Developer Guide

proceeds to provision the resources. If not, the CloudFormation stack deployment fails, the pipeline
comes to an immediate halt, and the system records the details for subsequent review. Compliance
notifications are sent to the relevant stakeholders.

You can find the hook success/fail information in the CloudFormation console:

If you have logs enabled for your CloudFormation hook, you can capture the hook evaluation
result. Here is a sample log for a hook with a failed status, indicating that the Lambda function
does not have X-Ray enabled:

Proactive controls with AWS Config 1758

AWS Lambda Developer Guide

If the developer chooses to change the IaC to update TracingConfig Mode value to Active
and redeploy, the hook executes successfully and the stack proceeds with creating the Lambda
resource.

In this way, you can implement preventative controls with AWS Config in proactive mode when
developing and deploying serverless resources in your AWS accounts. By integrating AWS Config
rules into the CI/CD pipeline, you can identify and optionally block non-compliant resource
deployments, such as Lambda functions that lack an active tracing configuration. This ensures
that only resources that comply with the latest governance policies are deployed into your AWS
environments.

Proactive controls with AWS Config 1759

AWS Lambda Developer Guide

Detect non-compliant Lambda deployments and configurations with
AWS Config

In addition to proactive evaluation, AWS Config can also reactively detect resource deployments
and configurations that do not comply with your governance policies. This is important because
governance policies evolve as your organization learns and implements new best practices.

Consider a scenario where you set a brand new policy when deploying or updating Lambda
functions: All Lambda functions must always use a specific, approved Lambda layer version. You
can configure AWS Config to monitor new or updated functions for layer configurations. If AWS
Config detects a function that is not using an approved layer version, it flags the function as a
non-compliant resource. You can optionally configure AWS Config to automatically remediate
the resource by specifying a remediation action using an AWS Systems Manager automation
document. For example, you could write an automation document in Python using the AWS
SDK for Python (Boto3), which updates the non-compliant function to point to the approved
layer version. Thus, AWS Config serves as both a detective and corrective control, automating
compliance management.

Let's break down this process into three important implementation phases:

Phase 1: Identify access resources

Start by activating AWS Config across your accounts and configuring it to record AWS Lambda
functions. This allows AWS Config to observe when Lambda functions are created or updated.
You can then configure custom policy rules to check for specific policy violations, which use AWS
CloudFormation Guard syntax. Guard rules take the following general form:

Detective controls with AWS Config 1760

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_develop-rules_cfn-guard.html

AWS Lambda Developer Guide

rule name when condition { assertion }

Below is a sample rule that checks to ensure that a layer is not set to an old layer version:

rule desiredlayer when configuration.layers !empty {
 some configuration.layers[*].arn != CONFIG_RULE_PARAMETERS.OldLayerArn
}

Let's understand the rule syntax and structure:

• Rule name: The name of the rule in the provided example is desiredlayer.

• Condition: This clause specifies the condition under which the rule should be checked. In the
provided example, the condition is configuration.layers !empty. This means the resource
should be evaluated only when the layers property in the configuration isn't empty.

• Assertion: After the when clause, an assertion determines what the rule checks. The assertion
some configuration.layers[*].arn != CONFIG_RULE_PARAMETERS.OldLayerArn
checks if any of the Lambda layer ARNs do not match the OldLayerArn value. If they do not
match, the assertion is true and the rule passes; otherwise, it fails.

CONFIG_RULE_PARAMETERS is a special set of parameters that is configured with the AWS Config
rule. In this case, OldLayerArn is a parameter inside CONFIG_RULE_PARAMETERS. This allows
users to provide a specific ARN value that they consider old or deprecated, and then the rule checks
if any Lambda functions are using this old ARN.

Phase 2: Visualize and design

AWS Config gathers configuration data and stores that data in Amazon Simple Storage Service
(Amazon S3) buckets. You can use Amazon Athena to query this data directly from your S3
buckets. With Athena, you can aggregate this data at the organizational level, generating a holistic
view of your resource configurations across all your accounts. To set up aggregation of resource
configuration data, see Visualizing AWS Config data using Athena and Amazon QuickSight on the
AWS Cloud Operations and Management blog.

The following is a sample Athena query to identify all Lambda functions using a particular layer
ARN:

WITH unnested AS (

Detective controls with AWS Config 1761

https://aws.amazon.com/athena/
https://aws.amazon.com/blogs/mt/visualizing-aws-config-data-using-amazon-athena-and-amazon-quicksight/

AWS Lambda Developer Guide

 SELECT
 item.awsaccountid AS account_id,
 item.awsregion AS region,
 item.configuration AS lambda_configuration,
 item.resourceid AS resourceid,
 item.resourcename AS resourcename,
 item.configuration AS configuration,
 json_parse(item.configuration) AS lambda_json
 FROM
 default.aws_config_configuration_snapshot,
 UNNEST(configurationitems) as t(item)
 WHERE
 "dt" = 'latest'
 AND item.resourcetype = 'AWS::Lambda::Function'
)

 SELECT DISTINCT
 region as Region,
 resourcename as FunctionName,
 json_extract_scalar(lambda_json, '$.memorySize') AS memory_size,
 json_extract_scalar(lambda_json, '$.timeout') AS timeout,
 json_extract_scalar(lambda_json, '$.version') AS version
 FROM
 unnested
 WHERE
 lambda_configuration LIKE '%arn:aws:lambda:us-
east-1:111122223333:layer:AnyGovernanceLayer:24%'

Here are results from the query:

Detective controls with AWS Config 1762

AWS Lambda Developer Guide

With the AWS Config data aggregated across the organization, you can then create a dashboard
using Amazon QuickSight. By importing your Athena results into QuickSight, you can visualize
how well your Lambda functions adhere to the layer version rule. This dashboard can highlight
compliant and non-compliant resources, which helps you to determine your enforcement policy,
as outlined in the next section. The following image is an example dashboard that reports on the
distribution of layer versions applied to functions within the organization.

Phase 3: Implement and enforce

You can now optionally pair your layer version rule that you created in phase 1 with a remediation
action via a Systems Manager automation document, which you author as a Python script written
with AWS SDK for Python (Boto3). The script calls the UpdateFunctionConfiguration API action for
each Lambda function, updating the function configuration with the new layer ARN. Alternatively,
you could have the script submit a pull request to the code repository to update the layer ARN. This
way future code deployments are also updated with the correct layer ARN.

Detective controls with AWS Config 1763

https://aws.amazon.com/quicksight/
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

Lambda code signing with AWS Signer

AWS Signer is a fully managed code-signing service that allows you to validate your code against
a digital signature to confirm that code is unaltered and from a trusted publisher. AWS Signer can
be used in conjunction with AWS Lambda to verify that functions and layers are unaltered prior to
deployment into your AWS environments. This protects your organization from malicious actors
who might have gained credentials to create new or update existing functions.

To set up code signing for your Lambda functions, start by creating an S3 bucket with versioning
enabled. After that, create a signing profile with AWS Signer, specify Lambda as the platform and
then specify a period of days in which the signing profile is valid. Example:

 Signer:
 Type: AWS::Signer::SigningProfile
 Properties:
 PlatformId: AWSLambda-SHA384-ECDSA
 SignatureValidityPeriod:
 Type: DAYS
 Value: !Ref pValidDays

Then use the signing profile and create a signing configuration with Lambda. You have to specify
what to do when the signing configuration sees an artifact that does not match a digital signature
that it expected: warn (but allow the deployment) or enforce (and block the deployment). The
example below is configured to enforce and block deployments.

 SigningConfig:
 Type: AWS::Lambda::CodeSigningConfig
 Properties:
 AllowedPublishers:
 SigningProfileVersionArns:
 - !GetAtt Signer.ProfileVersionArn
 CodeSigningPolicies:
 UntrustedArtifactOnDeployment: Enforce

You now have AWS Signer configured with Lambda to block untrusted deployments. Let's assume
you've finished coding a feature request and are now ready to deploy the function. The first step is
to zip the code up with the appropriate dependencies and then sign the artifact using the signing
profile that you created. You can do this by uploading the zip artifact to the S3 bucket and then
starting a signing job.

Code signing 1764

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html

AWS Lambda Developer Guide

aws signer start-signing-job \
--source 's3={bucketName=your-versioned-bucket,key=your-prefix/your-zip-
artifact.zip,version=QyaJ3c4qa50LXV.9VaZgXHlsGbvCXxpT}' \
--destination 's3={bucketName=your-versioned-bucket,prefix=your-prefix/}' \
--profile-name your-signer-id

You get an output as follows, where the jobId is the object that is created in the destination
bucket and prefix and jobOwner is the 12-digit AWS account ID where the job was run.

{
 "jobId": "87a3522b-5c0b-4d7d-b4e0-4255a8e05388",
 "jobOwner": "111122223333"
 }

And now you can deploy your function using the signed S3 object and the code signing
configuration that you created.

 Fn:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: s3://your-versioned-bucket/your-prefix/87a3522b-5c0b-4d7d-
b4e0-4255a8e05388.zip
 Handler: fn.handler
 Role: !GetAtt FnRole.Arn
 CodeSigningConfigArn: !Ref pSigningConfigArn

You can alternatively test a function deployment with the original unsigned source zip artifact. The
deployment should fail with the following message:

Lambda cannot deploy the function. The function or layer might be signed using a
 signature that the client is not configured to accept. Check the provided signature
 for unsigned.

If you are building and deploying your functions using the AWS Serverless Application Model (AWS
SAM), the package command handles uploading the zip artifact to S3 and also starts the signing
job and gets the signed artifact. You can do this with the following command and parameters:

sam package -t your-template.yaml \
--output-template-file your-output.yaml \
--s3-bucket your-versioned-bucket \

Code signing 1765

AWS Lambda Developer Guide

--s3-prefix your-prefix \
--signing-profiles your-signer-id

AWS Signer helps you verify that zip artifacts that are deployed into your accounts are trusted
for deployment. You can include the process above in your CI/CD pipelines and require that all
functions have a code signing configuration attached using the techniques outlined in previous
topics. By using code signing with your Lambda function deployments, you prevent malicious
actors who might have gotten credentials to create or update functions from injecting malicious
code in your functions.

Code signing 1766

AWS Lambda Developer Guide

Automate security assessments for Lambda with Amazon Inspector

Amazon Inspector is a vulnerability management service that continually scans workloads for
known software vulnerabilities and unintended network exposure. Amazon Inspector creates a
finding that describes the vulnerability, identifies the affected resource, rates the severity of the
vulnerability, and provides remediation guidance.

Amazon Inspector support provides continuous, automated security vulnerability assessments for
Lambda functions and layers. Amazon Inspector provides two scan types for Lambda:

• Lambda standard scanning (default): Scans application dependencies within a Lambda function
and its layers for package vulnerabilities.

• Lambda code scanning: Scans the custom application code in your functions and layers for code
vulnerabilities. You can either activate Lambda standard scanning or activate Lambda standard
scanning together with Lambda code scanning.

To enable Amazon Inspector, navigate to the Amazon Inspector console, expand the Settings
section, and choose Account Management. On the Accounts tab, choose Activate, and then select
one of the scan options.

You can enable Amazon Inspector for multiple accounts and delegate permissions to manage
Amazon Inspector for the organization to specific accounts while setting up Amazon Inspector.
While enabling, you need to grant Amazon Inspector permissions by creating the role:
AWSServiceRoleForAmazonInspector2. The Amazon Inspector console allows you to create
this role using a one-click option.

For Lambda standard scanning, Amazon Inspector initiates vulnerability scans of Lambda functions
in the following situations:

• As soon as Amazon Inspector discovers an existing Lambda function.

• When you deploy a new Lambda function.

• When you deploy an update to the application code or dependencies of an existing Lambda
function or its layers.

• Whenever Amazon Inspector adds a new common vulnerabilities and exposures (CVE) item to its
database, and that CVE is relevant to your function.

Code scanning 1767

https://aws.amazon.com/inspector/
https://docs.aws.amazon.com/inspector/latest/user/findings-types.html#findings-types-package
https://docs.aws.amazon.com/inspector/latest/user/findings-types.html#findings-types-code
https://docs.aws.amazon.com/inspector/latest/user/findings-types.html#findings-types-code
https://console.aws.amazon.com/inspector/

AWS Lambda Developer Guide

For Lambda code scanning, Amazon Inspector evaluates your Lambda function application
code using automated reasoning and machine learning that analyzes your application code for
overall security compliance. If Amazon Inspector detects a vulnerability in your Lambda function
application code, Amazon Inspector produces a detailed Code Vulnerability finding. For a list of
possible detections, see the Amazon CodeGuru Detector Library.

To view the findings, go to the Amazon Inspector console. On the Findings menu, choose By
Lambda function to display the security scan results that were performed on Lambda functions.

To exclude a Lambda function from standard scanning, tag the function with the following key-
value pair:

• Key:InspectorExclusion

• Value:LambdaStandardScanning

To exclude a Lambda function from code scans, tag the function with the following key-value pair:

• Key:InspectorCodeExclusion

• Value:LambdaCodeScanning

For example, as shown in following image, Amazon Inspector automatically detects vulnerabilities
and categorizes the findings of type Code Vulnerability, which indicates that the vulnerability is
in the code of the function, and not in one of the code-dependent libraries. You can check these
details for a specific function or multiple functions at once.

Code scanning 1768

https://docs.aws.amazon.com/codeguru/detector-library/
https://console.aws.amazon.com/inspector/

AWS Lambda Developer Guide

You can dive further into each of these findings and learn how to remediate the issue.

Code scanning 1769

AWS Lambda Developer Guide

Code scanning 1770

AWS Lambda Developer Guide

While working with your Lambda functions, ensure that you comply with the naming conventions
for your Lambda functions. For more information, see Working with Lambda environment
variables.

You are responsible for the remediation suggestions that you accept. Always review remediation
suggestions before accepting them. You might need to make edits to remediation suggestions to
ensure that your code does what you intended.

Code scanning 1771

AWS Lambda Developer Guide

Implement observability for Lambda security and compliance

AWS Config is a useful tool to find and fix non-compliant AWS Serverless resources. Every change
you make to your serverless resources is recorded in AWS Config. Additionally, AWS Config
allows you to store configuration snapshot data on S3. You can use Amazon Athena and Amazon
QuickSight to make dashboards and see AWS Config data. In Detect non-compliant Lambda
deployments and configurations with AWS Config, we discussed how we can visualize a certain
configuration like Lambda layers. This topic expands on these concepts.

Visibility into Lambda configurations

You can use queries to pull important configurations like AWS account ID, Region, AWS X-Ray
tracing configuration, VPC configuration, memory size, runtime, and tags. Here is a sample query
you can use to pull this information from Athena:

WITH unnested AS (
 SELECT
 item.awsaccountid AS account_id,
 item.awsregion AS region,
 item.configuration AS lambda_configuration,
 item.resourceid AS resourceid,
 item.resourcename AS resourcename,
 item.configuration AS configuration,
 json_parse(item.configuration) AS lambda_json
 FROM
 default.aws_config_configuration_snapshot,
 UNNEST(configurationitems) as t(item)
 WHERE
 "dt" = 'latest'
 AND item.resourcetype = 'AWS::Lambda::Function'
)

 SELECT DISTINCT
 account_id,
 tags,
 region as Region,
 resourcename as FunctionName,
 json_extract_scalar(lambda_json, '$.memorySize') AS memory_size,
 json_extract_scalar(lambda_json, '$.timeout') AS timeout,
 json_extract_scalar(lambda_json, '$.runtime') AS version
 json_extract_scalar(lambda_json, '$.vpcConfig.SubnetIds') AS vpcConfig
 json_extract_scalar(lambda_json, '$.tracingConfig.mode') AS tracingConfig

Observability 1772

AWS Lambda Developer Guide

 FROM
 unnested

You can use the query to build an QuickSight dashboard and visualize the data. To aggregate AWS
resource configuration data, create tables in Athena, and build QuickSight dashboards on the data
from Athena, see Visualizing AWS Config data using Athena and Amazon QuickSight on the AWS
Cloud Operations and Management blog. Notably, this query also retrieves tag information for the
functions. This allows for deeper insights into your workloads and environments, especially if you
employ custom tags.

For more information on actions that you can take, see the Addressing the observability findings
section later in this topic.

Visibility into Lambda compliance

With the data generated by AWS Config, you can create organization-level dashboards to monitor
compliance. This allows for consistent tracking and monitoring of:

• Compliance packs by compliance score

• Rules by non-compliant resources

Observability 1773

https://aws.amazon.com/blogs/mt/visualizing-aws-config-data-using-amazon-athena-and-amazon-quicksight/

AWS Lambda Developer Guide

• Compliance status

Check each rule to identify non-compliant resources for that rule. For example, if your organization
mandates that all Lambda functions must be associated with a VPC and if you have deployed an
AWS Config rule to identify compliance, you can select the lambda-inside-vpc rule in the list
above.

Observability 1774

AWS Lambda Developer Guide

For more information on actions that you can take, see the Addressing the observability findings
section below.

Visibility into Lambda function boundaries using Security Hub

To ensure that AWS services including Lambda are used securely, AWS introduced the Foundational
Security Best Practices v1.0.0. This set of best practices provides clear guidelines for securing
resources and data in the AWS environment, emphasizing the importance of maintaining a
strong security posture. The AWS Security Hub complements this by offering a unified security
and compliance center. It aggregates, organizes, and prioritizes security findings from multiple

Observability 1775

AWS Lambda Developer Guide

AWS services like Amazon Inspector, AWS Identity and Access Management Access Analyzer, and
Amazon GuardDuty.

If you have Security Hub, Amazon Inspector, IAM Access Analyzer, and GuardDuty enabled within
your AWS organization, Security Hub automatically aggregates findings from these services. For
instance, let's consider Amazon Inspector. Using Security Hub, you can efficiently identify code and
package vulnerabilities in Lambda functions. In the Security Hub console, navigate to the bottom
section labeled Latest findings from AWS integrations. Here, you can view and analyze findings
sourced from various integrated AWS services.

To see details, choose the See findings link in the second column. This displays a list of findings
filtered by product, such as Amazon Inspector. To limit your search to Lambda functions, set
ResourceType to AwsLambdaFunction. This displays findings from Amazon Inspector related to
Lambda functions.

Observability 1776

AWS Lambda Developer Guide

For GuardDuty, you can identify suspicious network traffic patterns. Such anomalies might suggest
the existence of potentially malicious code within your Lambda function.

With IAM Access Analyzer, you can check policies, especially those with condition statements that
grant function access to external entities. Moreover, IAM Access Analyzer evaluates permissions set
when using the AddPermission operation in the Lambda API alongside an EventSourceToken.

Addressing the observability findings

Given the wide-ranging configurations possible for Lambda functions and their distinct
requirements, a standardized automation solution for remediation might not suit every situation.
Additionally, changes are implemented differently across various environments. If you encounter
any configuration that seems non-compliant, consider the following guidelines:

1. Tagging strategy

We recommend implementing a comprehensive tagging strategy. Each Lambda function
should be tagged with key information such as:

• Owner: The person or team responsible for the function.

• Environment: Production, staging, development, or sandbox.

• Application: The broader context to which this function belongs, if applicable.

2. Owner outreach

Observability 1777

https://docs.aws.amazon.com/lambda/latest/api/API_AddPermission.html

AWS Lambda Developer Guide

Instead of automating the breaking changes (like VPC configuration adjustment), proactively
contact the owners of non-compliant functions (identified by the owner tag) providing them
sufficient time to either:

• Adjust non-compliant configurations on Lambda functions.

• Provide an explanation and request an exception, or refine the compliance standards.

3. Maintain a configuration management database (CMDB)

While tags can provide immediate context, maintaining a centralized CMDB can provide deeper
insights. It can hold more granular information about each Lambda function, its dependencies,
and other critical metadata. A CMDB is an invaluable resource for auditing, compliance checks,
and identifying function owners.

As the landscape of serverless infrastructure continually evolves, it's essential to adopt a proactive
stance towards monitoring. With tools like AWS Config, Security Hub, and Amazon Inspector,
potential anomalies or non-compliant configurations can be swiftly identified. However, tools
alone cannot ensure total compliance or optimal configurations. It's crucial to pair these tools with
well-documented processes and best practices.

• Feedback loop: Once remediation steps are undertaken, ensure there's a feedback loop. This
means periodically revisiting non-compliant resources to confirm if they've been updated or are
still running with the same issues.

• Documentation: Always document the observations, actions taken, and any exceptions granted.
Proper documentation not only helps during audits but also aids in enhancing the process for
better compliance and security in the future.

• Training and awareness: Ensure that all stakeholders, especially Lambda function owners, are
regularly trained and made aware of best practices, organizational policies, and compliance
mandates. Regular workshops, webinars, or training sessions can go a long way in ensuring
everyone is on the same page when it comes to security and compliance.

In conclusion, while tools and technologies provide robust capabilities to detect and flag potential
issues, the human element—understanding, communication, training, and documentation—
remains pivotal. Together, they form a potent combination to ensure that your Lambda functions
and broader infrastructure remain compliant, secure, and optimized for your business needs.

Observability 1778

AWS Lambda Developer Guide

Compliance validation for AWS Lambda

Third-party auditors assess the security and compliance of AWS Lambda as part of multiple AWS
compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS services in scope by
compliance program. For general information, see AWS compliance programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading reports in AWS artifact.

Your compliance responsibility when using Lambda is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. You can implement
governance controls to ensure that your company's Lambda functions meet your compliance
requirements. For more information, see Create a governance strategy for Lambda functions and
layers.

Resilience in AWS Lambda

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

In addition to the AWS global infrastructure, Lambda offers several features to help support your
data resiliency and backup needs.

• Versioning – You can use versioning in Lambda to save your function's code and configuration as
you develop it. Together with aliases, you can use versioning to perform blue/green and rolling
deployments. For details, see Manage Lambda function versions.

• Scaling – When your function receives a request while it's processing a previous request, Lambda
launches another instance of your function to handle the increased load. Lambda automatically
scales to handle 1,000 concurrent executions per Region, a quota that can be increased if
needed. For details, see Understanding Lambda function scaling.

Compliance validation 1779

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/about-aws/global-infrastructure/

AWS Lambda Developer Guide

• High availability – Lambda runs your function in multiple Availability Zones to ensure that it is
available to process events in case of a service interruption in a single zone. If you configure your
function to connect to a virtual private cloud (VPC) in your account, specify subnets in multiple
Availability Zones to ensure high availability. For details, see Giving Lambda functions access to
resources in an Amazon VPC.

• Reserved concurrency – To make sure that your function can always scale to handle additional
requests, you can reserve concurrency for it. Setting reserved concurrency for a function ensures
that it can scale to, but not exceed, a specified number of concurrent invocations. This ensures
that you don't lose requests due to other functions consuming all of the available concurrency.
For details, see Configuring reserved concurrency for a function.

• Retries – For asynchronous invocations and a subset of invocations triggered by other services,
Lambda automatically retries on error with delays between retries. Other clients and AWS
services that invoke functions synchronously are responsible for performing retries. For details,
see Understanding retry behavior in Lambda.

• Dead-letter queue – For asynchronous invocations, you can configure Lambda to send requests
to a dead-letter queue if all retries fail. A dead-letter queue is an Amazon SNS topic or Amazon
SQS queue that receives events for troubleshooting or reprocessing. For details, see Adding a
dead-letter queue.

Infrastructure security in AWS Lambda

As a managed service, AWS Lambda is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To
design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Lambda through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Infrastructure security 1780

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS Lambda Developer Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Securing workloads with public endpoints

For workloads that are accessible publicly, AWS provides a number of features and services that
can help mitigate certain risks. This section covers authentication and authorization of application
users and protecting API endpoints.

Authentication and authorization

Authentication relates to identity and authorization refers to actions. Use authentication to control
who can invoke a Lambda function, and then use authorization to control what they can do. For
many applications, IAM is sufficient for managing both control mechanisms.

For applications with external users, such as web or mobile applications, it is common to use
JSON Web Tokens (JWTs) to manage authentication and authorization. Unlike traditional, server-
based password management, JWTs are passed from the client on every request. They are a
cryptographically secure way to verify identity and claims using data passed from the client. For
Lambda-based applications, this allows you to secure every call to each API endpoint without
relying on a central server for authentication.

You can implement JWTs with Amazon Cognito, a user directory service that can handle
registration, authentication, account recovery, and other common account management
operations. Amplify Framework provides libraries to simplify integrating this service into your
frontend application. You can also consider third-party partner services like Auth0.

Given the critical security role of an identity provider service, it’s important to use professional
tooling to safeguard your application. It’s not recommended that you write your own services to
handle authentication or authorization. Any vulnerabilities in custom libraries may have significant
implications for the security of your workload and its data.

Protecting API endpoints

For serverless applications, the preferred way to serve a backend application publicly is to use
Amazon API Gateway. This can help you protect an API from malicious users or spikes in traffic.

API Gateway offers two endpoint types for serverless developers: REST APIs and HTTP APIs. Both
support authorization using AWS Lambda, IAM, or Amazon Cognito. When using IAM or Amazon

Securing workloads with public endpoints 1781

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://jwt.io/introduction/
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.amplify.aws/start/getting-started/auth/q/integration/react
https://auth0.com/
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

AWS Lambda Developer Guide

Cognito, incoming requests are evaluated and if they are missing a required token or contain
invalid authentication, the request is rejected. You are not charged for these requests and they do
not count towards any throttling quotas.

Unauthenticated API routes may be accessed by anyone on the public internet so it’s recommended
that you limit the use of unauthenticated APIs. If you must use unauthenticated APIs, it’s important
to protect these against common risks, such as denial-of-service (DoS) attacks. Applying AWS WAF
to these APIs can help protect your application from SQL injection and cross-site scripting (XSS)
attacks. API Gateway also implements throttling at the AWS account-level and per-client level
when API keys are used.

In many cases, the functionality provided by unauthenticated API can be achieved with an
alternative approach. For example, a web application may provide a list of customer retail stores
from a DynamoDB table to users who are not logged in. This request may originate from a
frontend web application or from any other source that calls the URL endpoint. This diagram
compares three solutions:

1. This unauthenticated API can be called by anyone on the internet. In a denial of service attack,
it’s possible to exhaust API throttling limits, Lambda concurrency, or DynamoDB provisioned
read capacity on an underlying table.

2. A CloudFront distribution in front of the API endpoint with an appropriate time-to-live (TTL)
configuration would absorb most of the traffic in a DoS attack, without changing the underlying
solution for fetching the data.

Protecting API endpoints 1782

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Expiration.html

AWS Lambda Developer Guide

3. Alternatively, for static data that rarely changes, the CloudFront distribution could serve the
data' from an Amazon S3 bucket.

Using code signing to verify code integrity with Lambda

Code signing helps ensure that only trusted code is deployed to your Lambda functions. Using
AWS Signer, you can create digitally signed code packages for your functions. When you add a code
signing configuration to a function, Lambda verifies that all new code deployments are signed by a
trusted source. Because code signing validation checks run at deployment time, there is no impact
on function execution.

Important

Code signing configurations only prevent new deployments of unsigned code. If you add a
code signing configuration to an existing function that has unsigned code, that code keeps
running until you deploy a new code package.

When you enable code signing for a function, any layers that you add to the function must also be
signed by an allowed signing profile.

There is no additional charge for using AWS Signer or code signing for AWS Lambda.

Signature validation

Lambda performs the following validation checks when you deploy a signed code package to your
function:

1. Integrity: Validates that the code package has not been modified since it was signed. Lambda
compares the hash of the package with the hash from the signature.

2. Expiry: Validates that the signature of the code package has not expired.

3. Mismatch: Validates that the code package is signed with an allowed signing profile

4. Revocation: Validates that the signature of the code package has not been revoked.

When you create a code signing configuration, you can use the UntrustedArtifactOnDeployment
parameter to specify how Lambda should respond if the expiry, mismatch, or revocation checks
fail. You can choose one of these actions:

Code signing 1783

https://docs.aws.amazon.com/lambda/latest/api/API_CodeSigningPolicies.html#lambda-Type-CodeSigningPolicies-UntrustedArtifactOnDeployment

AWS Lambda Developer Guide

• Warn: This is the default setting. Lambda allows the deployment of the code package, but issues
a warning. Lambda issues a new Amazon CloudWatch metric (SignatureValidationErrors)
and also stores the warning in the CloudTrail log.

• Enforce Lambda issues a warning (the same as for the Warn action) and blocks the deployment
of the code package.

Topics

• Creating code signing configurations for Lambda

• Configuring IAM policies for Lambda code signing configurations

• Using tags on code signing configurations

Creating code signing configurations for Lambda

To enable code signing for a function, you create a code signing configuration and attach it to the
function. A code signing configuration defines a list of allowed signing profiles and the policy
action to take if any of the validation checks fail.

Note

Functions defined as container images do not support code signing.

Sections

• Configuration prerequisites

• Creating code signing configurations

• Enabling code signing for a function

Configuration prerequisites

Before you can configure code signing for a Lambda function, use AWS Signer to do the following:

• Create one or more signing profiles.

• Use a signing profile to create a signed code package for your function.

Create configuration 1784

https://docs.aws.amazon.com/signer/latest/developerguide/signing-profiles.html
https://docs.aws.amazon.com/signer/latest/developerguide/lambda-workflow.html

AWS Lambda Developer Guide

Creating code signing configurations

A code signing configuration defines a list of allowed signing profiles and the signature validation
policy.

To create a code signing configuration (console)

1. Open the Code signing configurations page of the Lambda console.

2. Choose Create configuration.

3. For Description, enter a descriptive name for the configuration.

4. Under Signing profiles, add up to 20 signing profiles to the configuration.

a. For Signing profile version ARN, choose a profile version's Amazon Resource Name (ARN),
or enter the ARN.

b. To add an additional signing profile, choose Add signing profiles.

5. Under Signature validation policy, choose Warn or Enforce.

6. Choose Create configuration.

Enabling code signing for a function

To enable code signing for a function, add a code signing configuration to the function.

Important

Code signing configurations only prevent new deployments of unsigned code. If you add a
code signing configuration to an existing function that has unsigned code, that code keeps
running until you deploy a new code package.

To associate a code signing configuration with a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function for which you want to enable code signing.

3. Open the Configuration tab.

4. Scroll down and choose Code signing.

5. Choose Edit.

Create configuration 1785

https://console.aws.amazon.com/lambda/home#/code-signing-configurations
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

6. In Edit code signing, choose a code signing configuration for this function.

7. Choose Save.

Configuring IAM policies for Lambda code signing configurations

To grant permission for a user to access Lambda code signing API operations, attach one or more
policy statements to the user policy. For more information about user policies, see Identity-based
IAM policies for Lambda.

The following example policy statement grants permission to create, update, and retrieve code
signing configurations.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateCodeSigningConfig",
 "lambda:UpdateCodeSigningConfig",
 "lambda:GetCodeSigningConfig"
],
 "Resource": "*"
 }
]
}

Administrators can use the CodeSigningConfigArn condition key to specify the code signing
configurations that developers must use to create or update your functions.

The following example policy statement grants permission to create a function. The policy
statement includes a lambda:CodeSigningConfigArn condition to specify the allowed code
signing configuration. Lambda blocks CreateFunction API requests if the CodeSigningConfigArn
parameter is missing or does not match the value in the condition.

Permissions 1786

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-CodeSigningConfigArn

AWS Lambda Developer Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowReferencingCodeSigningConfig",
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lambda:CodeSigningConfigArn": "arn:aws:lambda:us-
east-1:111122223333:code-signing-config:csc-0d4518bd353a0a7c6"
 }
 }
 }
]
}

Using tags on code signing configurations

You can tag code signing configurations to organize and manage your resources. Tags are free-form
key-value pairs associated with your resources that are supported across AWS services. For more
information about use cases for tags, see Common tagging strategies in the Tagging AWS Resources
and Tag Editor Guide.

You can use the AWS Lambda API to view and update tags. You can also view and update tags
while managing a specific code signing configuration in the Lambda console.

Sections

• Permissions required for working with tags

• Using tags with the Lambda console

• Using tags with the AWS CLI

Code signing configuration tags 1787

https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

AWS Lambda Developer Guide

Permissions required for working with tags

To allow an AWS Identity and Access Management (IAM) identity (user, group, or role) to read or set
tags on a resource, grant it the corresponding permissions:

• lambda:ListTags–When a resource has tags, grant this permission to anyone who needs to call
ListTags on it. For tagged functions, this permission is also necessary for GetFunction.

• lambda:TagResource–Grant this permission to anyone who needs to call TagResource or
perform a tag on create.

Optionally, consider granting the lambda:UntagResource permission as well to allow
UntagResource calls to the resource.

For more information, see Identity-based IAM policies for Lambda.

Using tags with the Lambda console

You can use the Lambda console to create code signing configurations that have tags, add tags to
existing code signing configurations, and filter code signing configurations by tag.

To add a tag when you create a code signing configuration

1. Open Code signing configurations in the Lambda console.

2. From the header of the content pane, Choose Create configuration.

3. In the section at the top of the content pane, set up your code signing configuration. For
more information about configuring code signing configurations, see the section called “Code
signing”.

4. In the Tags section, choose Add new tag.

5. In the Key field, enter your tag key. For information about tagging restrictions, see Tag naming
limits and requirements in the Tagging AWS Resources and Tag Editor Guide.

6. Choose Create configuration.

To add a tag to an existing code signing configuration

1. Open Code signing configurations in the Lambda console.

2. Choose the name of your code signing configuration.

Code signing configuration tags 1788

https://console.aws.amazon.com/lambda/home#/code-signing-configurations
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://console.aws.amazon.com/lambda/home#/code-signing-configurations

AWS Lambda Developer Guide

3. In the tabs below the Detail pane, choose Tags.

4. Choose Manage tags.

5. Choose Add new tag.

6. In the Key field, enter your tag key. For information about tagging restrictions, see Tag naming
limits and requirements in the Tagging AWS Resources and Tag Editor Guide.

7. Choose Save.

To filter code signing configurations by tag

1. Open Code signing configurations in the Lambda console.

2. Choose the search box.

3. From the dropdown list, select your tag from below the Tags subheading.

4. Select Use: "tag-name" to see all code signing configurations tagged with this key, or choose
an Operator to further filter by value.

5. Select your tag value to filter by a combination of tag key and value.

The search box also supports searching for tag keys. Enter the name of a key to find it in the list.

Using tags with the AWS CLI

You can add and remove tags on existing Lambda resources, including code signing configurations,
with the Lambda API. You can also add tags when creating an code signing configuration, which
allows you to keep a resource tagged through its entire lifecycle.

Updating tags with the Lambda tag APIs

You can add and remove tags for supported Lambda resources through the TagResource and
UntagResource API operations.

You can call these operations using the AWS CLI. To add tags to an existing resource, use the tag-
resource command. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda tag-resource \
--resource arn:aws:lambda:us-east-2:123456789012:resource-type:my-resource \
--tags Department=Marketing,CostCenter=1234ABCD

Code signing configuration tags 1789

https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://console.aws.amazon.com/lambda/home#/code-signing-configurations
https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html

AWS Lambda Developer Guide

To remove tags, use the untag-resource command. This example removes the tag with the key
Department.

aws lambda untag-resource --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier \
--tag-keys Department

Adding tags when creating a code signing configuration

To create a new Lambda code signing configuration with tags, use the CreateCodeSigningConfig
API operation. Specify the Tags parameter. You can call this operation with the create-code-
signing-config AWS CLI command and the --tags option. For more information about the CLI
command, see create-code-signing-config in the AWS CLI Command Reference.

Before using the Tags parameter with CreateCodeSigningConfig, ensure that your role
has permission to tag resources alongside the usual permissions needed for this operation. For
more information about permissions for tagging, see the section called “Permissions required for
working with tags”.

Viewing tags with the Lambda tag APIs

To view the tags that are applied to a specific Lambda resource, use the ListTags API operation.
For more information, see ListTags.

You can call this operation with the list-tags AWS CLI command by providing an ARN (Amazon
Resource Name).

aws lambda list-tags --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier

Filtering resources by tag

You can use the AWS Resource Groups Tagging API GetResources API operation to filter your
resources by tags. The GetResources operation receives up to 10 filters, with each filter
containing a tag key and up to 10 tag values. You provide GetResources with a ResourceType
to filter by specific resource types.

You can call this operation using the get-resources AWS CLI command. For examples of using
get-resources, see get-resources in the AWS CLI Command Reference.

Code signing configuration tags 1790

https://docs.aws.amazon.com/lambda/latest/api/API_CreateCodeSigningConfig.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-code-signing-config.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListTags.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/resourcegroupstaggingapi/get-resources.html#examples

AWS Lambda Developer Guide

Monitoring, debugging, and troubleshooting Lambda
functions

AWS Lambda integrates with other AWS services to help you monitor and troubleshoot your
Lambda functions. Lambda automatically monitors Lambda functions on your behalf and reports
metrics through Amazon CloudWatch. To help you monitor your code when it runs, Lambda
automatically tracks the number of requests, the invocation duration per request, and the number
of requests that result in an error.

You can use other AWS services to troubleshoot your Lambda functions. This section describes how
to use these AWS services to monitor, trace, debug, and troubleshoot your Lambda functions and
applications. For details about function logging and errors in each runtime, see individual runtime
sections.

Sections

• Pricing

• Using CloudWatch metrics with Lambda

• Working with Lambda function logs

• Logging AWS Lambda API calls using AWS CloudTrail

• Visualize Lambda function invocations using AWS X-Ray

• Monitor function performance with Amazon CloudWatch Lambda Insights

• Monitoring Lambda applications

• Monitor application performance with Amazon CloudWatch Application Signals

• Remotely debug Lambda functions with Visual Studio Code

Pricing

CloudWatch has a perpetual free tier. Beyond the free tier threshold, CloudWatch charges for
metrics, dashboards, alarms, logs, and insights. For more information, see Amazon CloudWatch
pricing.

Pricing 1791

https://aws.amazon.com/cloudwatch/pricing/#Vended_Logs
https://aws.amazon.com/cloudwatch/pricing/#Vended_Logs

AWS Lambda Developer Guide

Using CloudWatch metrics with Lambda

When your AWS Lambda function finishes processing an event, Lambda automatically sends
metrics about the invocation to Amazon CloudWatch. You don't need to grant any additional
permissions to your execution role to receive function metrics, and there's no additional charge for
these metrics.

There are many types of metrics associated with Lambda functions. These include invocation
metrics, performance metrics, concurrency metrics, asynchronous invocation metrics, and event
source mapping metrics. For more information, see the section called “Metric types”.

In the CloudWatch console, you can view these metrics and build graphs and dashboards with
them. You can also set alarms to respond to changes in utilization, performance, or error rates.
Lambda sends metric data to CloudWatch in 1-minute intervals. For more immediate insight into
your Lambda function, you can create high-resolution custom metrics. Charges apply for custom
metrics and CloudWatch alarms. For more information, see Amazon CloudWatch Pricing.

Viewing metrics for Lambda functions

Use the CloudWatch console to view metrics for your Lambda functions. In the console, you can
filter and sort function metrics by function name, alias, version, or event source mapping UUID.

To view metrics on the CloudWatch console

1. Open the Metrics page (AWS/Lambda namespace) of the CloudWatch console.

2. On the Browse tab, under Metrics, choose any of the following dimensions:

• By Function Name (FunctionName) – View aggregate metrics for all versions and aliases of
a function.

• By Resource (Resource) – View metrics for a version or alias of a function.

• By Executed Version (ExecutedVersion) – View metrics for a combination of alias and
version. Use the ExecutedVersion dimension to compare error rates for two versions of a
function that are both targets of a weighted alias.

• By Event Source Mapping UUID (EventSourceMappingUUID) – View metrics for an event
source mapping.

• Across All Functions (none) – View aggregate metrics for all functions in the current AWS
Region.

Function metrics 1792

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/publishingMetrics.html
https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#metricsV2:graph=~();namespace=~'AWS*2fLambda

AWS Lambda Developer Guide

3. Choose a metric. The metric should automatically appear in the visual graph, as well as under
the Graphed metrics tab.

By default, graphs use the Sum statistic for all metrics. To choose a different statistic and customize
the graph, use the options on the Graphed metrics tab.

Note

The timestamp on a metric reflects when the function was invoked. Depending on the
duration of the invocation, this can be several minutes before the metric is emitted. For
example, if your function has a 10-minute timeout, then look more than 10 minutes in the
past for accurate metrics.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

Types of metrics for Lambda functions

This section describes the types of Lambda metrics available in the CloudWatch console.

Topics

• Invocation metrics

• Performance metrics

• Concurrency metrics

• Asynchronous invocation metrics

• Event source mapping metrics

Invocation metrics

Invocation metrics are binary indicators of the outcome of a Lambda function invocation. View
these metrics with the Sum statistic. For example, if the function returns an error, then Lambda
sends the Errors metric with a value of 1. To get a count of the number of function errors that
occurred each minute, view the Sum of the Errors metric with a period of 1 minute.

• Invocations – The number of times that your function code is invoked, including successful
invocations and invocations that result in a function error. Invocations aren't recorded if

Metric types 1793

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

AWS Lambda Developer Guide

the invocation request is throttled or otherwise results in an invocation error. The value of
Invocations equals the number of requests billed.

• Errors – The number of invocations that result in a function error. Function errors include
exceptions that your code throws and exceptions that the Lambda runtime throws. The runtime
returns errors for issues such as timeouts and configuration errors. To calculate the error rate,
divide the value of Errors by the value of Invocations. Note that the timestamp on an error
metric reflects when the function was invoked, not when the error occurred.

• DeadLetterErrors – For asynchronous invocation, the number of times that Lambda attempts
to send an event to a dead-letter queue (DLQ) but fails. Dead-letter errors can occur due to
incorrectly set resources or size limits.

• DestinationDeliveryFailures – For asynchronous invocation and supported event source
mappings, the number of times that Lambda attempts to send an event to a destination but
fails. For event source mappings, Lambda supports destinations for stream sources (DynamoDB
and Kinesis). Delivery errors can occur due to permissions errors, incorrectly configured resources,
or size limits. Errors can also occur if the destination you have configured is an unsupported type
such as an Amazon SQS FIFO queue or an Amazon SNS FIFO topic.

• Throttles – The number of invocation requests that are throttled. When all function instances
are processing requests and no concurrency is available to scale up, Lambda rejects additional
requests with a TooManyRequestsException error. Throttled requests and other invocation
errors don't count as either Invocations or Errors.

• OversizedRecordCount – For Amazon DocumentDB event sources, the number of events your
function receives from your change stream that are over 6 MB in size. Lambda drops the message
and emits this metric.

• ProvisionedConcurrencyInvocations – The number of times that your function code is
invoked using provisioned concurrency.

• ProvisionedConcurrencySpilloverInvocations – The number of times that your
function code is invoked using standard concurrency when all provisioned concurrency is in use.

• RecursiveInvocationsDropped – The number of times that Lambda has stopped invocation
of your function because it has detected that your function is part of an infinite recursive
loop. Recursive loop detection monitors how many times a function is invoked as part of a
chain of requests by tracking metadata added by supported AWS SDKs. By default, if your
function is invoked as part of a chain of requests approximately 16 times, Lambda drops the
next invocation. If you disable recursive loop detection, this metric is not emitted. For more
information about this feature, see Use Lambda recursive loop detection to prevent infinite
loops.

Metric types 1794

https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html

AWS Lambda Developer Guide

Performance metrics

Performance metrics provide performance details about a single function invocation. For example,
the Duration metric indicates the amount of time in milliseconds that your function spends
processing an event. To get a sense of how fast your function processes events, view these metrics
with the Average or Max statistic.

• Duration – The amount of time that your function code spends processing an event. The billed
duration for an invocation is the value of Duration rounded up to the nearest millisecond.
Duration does not include cold start time.

• PostRuntimeExtensionsDuration – The cumulative amount of time that the runtime spends
running code for extensions after the function code has completed.

• IteratorAge – For DynamoDB, Kinesis, and Amazon DocumentDB event sources, the age of the
last record in the event in milliseconds. This metric measures the time between when a stream
receives the record and when the event source mapping sends the event to the function.

• OffsetLag – For self-managed Apache Kafka and Amazon Managed Streaming for Apache
Kafka (Amazon MSK) event sources, the difference in offset between the last record written to a
topic and the last record that your function's consumer group processed. Though a Kafka topic
can have multiple partitions, this metric measures the offset lag at the topic level.

Duration also supports percentile (p) statistics. Use percentiles to exclude outlier values that skew
Average and Maximum statistics. For example, the p95 statistic shows the maximum duration of
95 percent of invocations, excluding the slowest 5 percent. For more information, see Percentiles in
the Amazon CloudWatch User Guide.

Concurrency metrics

Lambda reports concurrency metrics as an aggregate count of the number of instances processing
events across a function, version, alias, or AWS Region. To see how close you are to hitting
concurrency limits, view these metrics with the Max statistic.

• ConcurrentExecutions – The number of function instances that are processing events. If this
number reaches your concurrent executions quota for the Region, or the reserved concurrency
limit on the function, then Lambda throttles additional invocation requests.

• ProvisionedConcurrentExecutions – The number of function instances that are processing
events using provisioned concurrency. For each invocation of an alias or version with provisioned

Metric types 1795

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles

AWS Lambda Developer Guide

concurrency, Lambda emits the current count. If your function is inactive or not receiving
requests, Lambda doesn't emit this metric.

• ProvisionedConcurrencyUtilization – For a version or alias, the value of
ProvisionedConcurrentExecutions divided by the total amount of provisioned
concurrency configured. For example, if you configure a provisioned concurrency of 10
for your function, and your ProvisionedConcurrentExecutions is 7, then your
ProvisionedConcurrencyUtilization is 0.7.

If your function is inactive or not receiving requests, Lambda doesn't emit this metric
because it is based on ProvisionedConcurrentExecutions. Keep this in mind if you use
ProvisionedConcurrencyUtilization as the basis for CloudWatch alarms.

• UnreservedConcurrentExecutions – For a Region, the number of events that functions
without reserved concurrency are processing.

• ClaimedAccountConcurrency – For a Region, the amount of concurrency that is
unavailable for on-demand invocations. ClaimedAccountConcurrency is equal to
UnreservedConcurrentExecutions plus the amount of allocated concurrency (i.e. the total
reserved concurrency plus total provisioned concurrency). For more information, see Working
with the ClaimedAccountConcurrency metric.

Asynchronous invocation metrics

Asynchronous invocation metrics provide details about asynchronous invocations from event
sources and direct invocations. You can set thresholds and alarms to notify you of certain changes.
For example, when there's an undesired increase in the number of events queued for processing
(AsyncEventsReceived). Or, when an event has been waiting a long time to be processed
(AsyncEventAge).

• AsyncEventsReceived – The number of events that Lambda successfully queues for
processing. This metric provides insight into the number of events that a Lambda function
receives. Monitor this metric and set alarms for thresholds to check for issues. For example, to
detect an undesirable number of events sent to Lambda, and to quickly diagnose issues resulting
from incorrect trigger or function configurations. Mismatches between AsyncEventsReceived
and Invocations can indicate a disparity in processing, events being dropped, or a potential
queue backlog.

• AsyncEventAge – The time between when Lambda successfully queues the event and when
the function is invoked. The value of this metric increases when events are being retried due to

Metric types 1796

AWS Lambda Developer Guide

invocation failures or throttling. Monitor this metric and set alarms for thresholds on different
statistics for when a queue buildup occurs. To troubleshoot an increase in this metric, look at the
Errors metric to identify function errors and the Throttles metric to identify concurrency
issues.

• AsyncEventsDropped – The number of events that are dropped without successfully executing
the function. If you configure a dead-letter queue (DLQ) or OnFailure destination, then events
are sent there before they're dropped. Events are dropped for various reasons. For example,
events can exceed the maximum event age or exhaust the maximum retry attempts, or reserved
concurrency might be set to 0. To troubleshoot why events are dropped, look at the Errors
metric to identify function errors and the Throttles metric to identify concurrency issues.

Event source mapping metrics

Event source mapping metrics provide insights into the processing behavior of your event source
mapping. These metrics help you monitor the flow and status of events, including events that your
event source mapping successfully processed, filtered, or dropped.

You must opt-in to receive metrics related to counts (PolledEventCount,
FilteredOutEventCount, InvokedEventCount, FailedInvokeEventCount,
DroppedEventCount, OnFailureDestinationDeliveredEventCount, and
DeletedEventCount). To opt-in, you can use the console or the Lambda API.

To enable metrics or an event source mapping (console)

1. Open the Functions page of the Lambda console.

2. Choose the function you want to enable metrics for.

3. Choose Configuration, then choose Triggers.

4. Choose the event source mapping that you want to enable metrics for, then choose Edit.

5. Under Event source mapping configuration, choose Enable metrics.

6. Choose Save.

Alternatively, you can enable metrics for your event source mapping programmatically using the
EventSourceMappingMetricsConfig object in your EventSourceMappingConfiguration. For example,
the following UpdateEventSourceMapping CLI command enables metrics for an event source
mapping:

Metric types 1797

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_EventSourceMappingMetricsConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_EventSourceMappingMetricsConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_EventSourceMappingConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

aws lambda update-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --metrics-config Metrics=EventCount

View metrics related to event counts with the Sum statistic.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. Because of this, events may be counted multiple times in metrics that
involve event counts.

• PolledEventCount – The number of events that Lambda reads successfully from the event
source. If Lambda polls for events but receives an empty poll (no new records), Lambda emits a
0 value for this metric. Use this metric to detect whether your event source mapping is correctly
polling for new events.

• FilteredOutEventCount – For event source mapping with a filter criteria, the number of
events filtered out by that filter criteria. Use this metric to detect whether your event source
mapping is properly filtering out events. For events that match the filter criteria, Lambda emits a
0 metric.

• InvokedEventCount – The number of events that invoked your Lambda function. Use this
metric to verify that events are properly invoking your function. If an event results in a function
error or throttling, InvokedEventCount may count multiple times for the same polled event
due to automatic retries.

• FailedInvokeEventCount – The number of events that Lambda tried to invoke your function
with, but failed. Invocations can fail due to reasons such as network configuration issues,
incorrect permissions, or a deleted Lambda function, version, or alias. If your event source
mapping has partial batch responses enabled, FailedInvokeEventCount includes any event
with a non-empty BatchItemFailures in the response.

Note

The timestamp for the FailedInvokeEventCount metric represents the end of the
function invocation. This behavior differs from other Lambda invocation error metrics,
which are timestamped at the start of the function invocation.

Metric types 1798

AWS Lambda Developer Guide

• DroppedEventCount – The number of events that Lambda dropped due to expiry or retry
exhaustion. Specifically, this is the number of records that exceed your configured values for
MaximumRecordAgeInSeconds or MaximumRetryAttempts. Importantly, this doesn't include
the number of records that expire due to exceeding your event source's retention settings.
Dropped events also excludes events that you send to an on-failure destination. Use this metric
to detect an increasing backlog of events.

• OnFailureDestinationDeliveredEventCount – For event source mappings with an on-
failure destination configured, the number of events sent to that destination. Use this metric
to monitor for function errors related to invocations from this event source. If delivery to the
destination fails, Lambda handles metrics as follows:

• Lambda doesn't emit the OnFailureDestinationDeliveredEventCount metric.

• For the DestinationDeliveryFailures metric, Lambda emits a 1.

• For the DroppedEventCount metric, Lambda emits a number equal to the number of events
that failed delivery.

• DeletedEventCount – The number of events that Lambda successfully deletes after
processing. If Lambda tries to delete an event but fails, Lambda emits a 0 metric. Use this metric
to ensure that successfully processed events are deleted from your event source.

If your event source mapping is disabled, you won't receive event source mapping metrics. You may
also see missing metrics if CloudWatch or Lambda is experiencing degraded availability.

Not every event source mapping metric is available for each event source. Currently, event source
mapping metrics are available for Amazon SQS, Kinesis, and DynamoDB streams event sources. The
following availability matrix summarizes the supported metrics for each type of event source.

Event source mapping metric Support for Amazon SQS Support for Kinesis and
DynamoDB streams

PolledEventCount Yes Yes

FilteredOutEventCo
unt

Yes Yes

InvokedEventCount Yes Yes

Metric types 1799

AWS Lambda Developer Guide

Event source mapping metric Support for Amazon SQS Support for Kinesis and
DynamoDB streams

FailedInvokeEventC
ount

Yes Yes

DroppedEventCount No Yes

OnFailureDestinati
onDeliveredEventCo
unt

No Yes

DeletedEventCount Yes No

In addition, if your event source mapping is in provisioned mode, Lambda provides the following
metric:

• ProvisionedPollers – For event source mappings in provisioned mode, the number of event
pollers that are actively running. View this metric using the MAX metric.

Metric types 1800

AWS Lambda Developer Guide

Working with Lambda function logs

To help you troubleshoot failures, AWS Lambda automatically monitors Lambda functions on
your behalf. You can view logs for Lambda functions using the Lambda console, the CloudWatch
console, the AWS Command Line Interface (AWS CLI), the CloudWatch API. You can also configure
Lambda to send logs to Amazon S3 and Firehose.

As long as your function's execution role has the necessary permissions, Lambda captures logs for
all requests handled by your function and sends them to Amazon CloudWatch Logs, which is the
default destination. You can also use the Lambda console to configure Amazon S3 or Firehose as
logging destinations.

• CloudWatch Logs is the default logging destination for Lambda functions. CloudWatch Logs
provides real-time log viewing and analysis capabilities, with support for creating metrics and
alarms based on your log data.

• Amazon S3 is economical for long-term storage, and services like Athena can be used to analyze
logs. Latency is typically higher.

• Firehose offers managed streaming of logs to various destinations. If you need to send logs
to other AWS services (for example, OpenSearch Service or Redshift Data API) or third-party
platforms (like Datadog, New Relic, or Splunk), Firehose simplifies that process by providing pre-
built integrations. You can also stream to custom HTTP endpoints without setting up additional
infrastructure.

Choosing a service destination to send logs to

Consider the following key factors when choosing a service a destination for function logs:

• Cost management varies by service. Amazon S3 typically provides the most economical option
for long-term storage, while CloudWatch Logs allows you to view logs, process logs, and set up
alerts in real time. Firehose costs include both the streaming service and cost associated with
what you configure it to stream to.

• Analysis capabilities differ across services. CloudWatch Logs excels at real-time monitoring and
integrates natively with other CloudWatch features, such as Logs Insights and Live Tail. Amazon
S3 works well with analysis tools like Athena and can integrate with various services, though
it may require additional setup. Firehose simplifies direct streaming to specific AWS services
(like OpenSearch Service and Redshift Data API) and supported third-party platforms (such as

Function logs 1801

AWS Lambda Developer Guide

Datadog and Splunk) by providing pre-built integrations, potentially reducing configuration
work.

• Setup and ease of use vary by service. CloudWatch Logs is the default log destination - it works
immediately with no additional configuration and provides straightforward log viewing and
analysis through the CloudWatch console. If you need logs sent to Amazon S3, you'll need to
do some initial setup in the Lambda console and configure bucket permissions. If you need logs
sent directly to services like OpenSearch Service or third-party analytics platforms, Firehose can
simplify that process.

Configuring log destinations

AWS Lambda supports multiple destinations for your function logs. This guide explains the
available logging destinations and helps you choose the right option for your needs. Regardless of
your chosen destination, Lambda provides options to control log format, filtering, and delivery.

Lambda supports both JSON and plain text formats for your function's logs. JSON structured
logs provide enhanced searchability and enable automated analysis, while plain text logs offer
simplicity and potentially reduced storage costs. You can control which logs Lambda sends to your
chosen destination by configuring log levels for both system and application logs. Filtering helps
you manage storage costs and makes it easier to find relevant log entries during debugging.

For detailed setup instructions for each destination, refer to the following sections:

• Sending Lambda function logs to CloudWatch Logs

• Sending Lambda function logs to Firehose

• Sending Lambda function logs to Amazon S3

Configuring advanced logging controls for Lambda functions

To give you more control over how your function logs are captured, processed, and consumed,
Lambda offers the following logging configuration options:

• Log format - select between plain text and structured JSON format for your function’s logs.

• Log level - for JSON structured logs, choose the detail level of the logs Lambda sends to
CloudWatch, such as FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

• Log group - choose the CloudWatch log group your function sends logs to.

Configuring log destinations 1802

AWS Lambda Developer Guide

To learn more about configuring advanced logging controls, refer to the following sections:

• Configuring JSON and plain text log formats

• Log-level filtering

• Configuring CloudWatch log groups

Configuring JSON and plain text log formats

Capturing your log outputs as JSON key value pairs makes it easier to search and filter when
debugging your functions. With JSON formatted logs, you can also add tags and contextual
information to your logs. This can help you to perform automated analysis of large volumes of log
data. Unless your development workflow relies on existing tooling that consumes Lambda logs in
plain text, we recommend that you select JSON for your log format.

For all Lambda managed runtimes, you can choose whether your function's system logs are sent to
CloudWatch Logs in unstructured plain text or JSON format. System logs are the logs that Lambda
generates and are sometimes known as platform event logs.

For supported runtimes, when you use one of the supported built-in logging methods, Lambda can
also output your function's application logs (the logs your function code generates) in structured
JSON format. When you configure your function's log format for these runtimes, the configuration
you choose applies to both system and application logs.

For supported runtimes, if your function uses a supported logging library or method, you don't
need to make any changes to your existing code for Lambda to capture logs in structured JSON.

Note

Using JSON log formatting adds additional metadata and encodes log messages as JSON
objects containing a series of key value pairs. Because of this, the size of your function's log
messages can increase.

Supported runtimes and logging methods

Lambda currently supports the option to output JSON structured application logs for the following
runtimes.

Log formats 1803

AWS Lambda Developer Guide

Runtime Supported versions

Java All Java runtimes except Java 8 on Amazon
Linux 1

.NET .NET 8

Node.js Node.js 16 and later

Python Python 3.8 and later

For Lambda to send your function's application logs to CloudWatch in structured JSON format,
your function must use the following built-in logging tools to output logs:

• Java - the LambdaLogger logger or Log4j2.

• .NET - the ILambdaLogger instance on the context object.

• Node.js - The console methods console.trace, console.debug, console.log,
console.info, console.error, and console.warn

• Python - the standard Python logging library

For more information about using advanced logging controls with supported runtimes, see the
section called “Logging”, the section called “Logging”, and the section called “Logging”.

For other managed Lambda runtimes, Lambda currently only natively supports capturing system
logs in structured JSON format. However, you can still capture application logs in structured JSON
format in any runtime by using logging tools such as Powertools for AWS Lambda that output
JSON formatted log outputs.

Default log formats

Currently, the default log format for all Lambda runtimes is plain text.

If you’re already using logging libraries like Powertools for AWS Lambda to generate your function
logs in JSON structured format, you don’t need to change your code if you select JSON log
formatting. Lambda doesn’t double-encode any logs that are already JSON encoded, so your
function’s application logs will continue to be captured as before.

Log formats 1804

AWS Lambda Developer Guide

JSON format for system logs

When you configure your function's log format as JSON, each system log item (platform event) is
captured as a JSON object that contains key value pairs with the following keys:

• "time" - the time the log message was generated

• "type" - the type of event being logged

• "record" - the contents of the log output

The format of the "record" value varies according to the type of event being logged. For more
information see the section called “Telemetry API Event object types”. For more information
about the log levels assigned to system log events, see the section called “System log level event
mapping”.

For comparison, the following two examples show the same log output in both plain text and
structured JSON formats. Note that in most cases, system log events contain more information
when output in JSON format than when output in plain text.

Example plain text:

2024-03-13 18:56:24.046000 fbe8c1 INIT_START Runtime Version:
 python:3.12.v18 Runtime Version ARN: arn:aws:lambda:eu-
west-1::runtime:edb5a058bfa782cb9cedc6d534ac8b8c193bc28e9a9879d9f5ebaaf619cd0fc0

Example structured JSON:

{
 "time": "2024-03-13T18:56:24.046Z",
 "type": "platform.initStart",
 "record": {
 "initializationType": "on-demand",
 "phase": "init",
 "runtimeVersion": "python:3.12.v18",
 "runtimeVersionArn": "arn:aws:lambda:eu-
west-1::runtime:edb5a058bfa782cb9cedc6d534ac8b8c193bc28e9a9879d9f5ebaaf619cd0fc0"
 }
}

Log formats 1805

AWS Lambda Developer Guide

Note

The the section called “Telemetry API” always emits platform events such as START and
REPORT in JSON format. Configuring the format of the system logs Lambda sends to
CloudWatch doesn’t affect Lambda Telemetry API behavior.

JSON format for application logs

When you configure your function's log format as JSON, application log outputs written using
supported logging libraries and methods are captured as a JSON object that contains key value
pairs with the following keys.

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "requestId" (Python, .NET, and Node.js) or "AWSrequestId" (Java) - the unique request ID
for the function invocation

Depending on the runtime and logging method that your function uses, this JSON object may also
contain additional key pairs. For example, in Node.js, if your function uses console methods to log
error objects using multiple arguments, The JSON object will contain extra key value pairs with the
keys errorMessage, errorType, and stackTrace. To learn more about JSON formatted logs in
different Lambda runtimes, see the section called “Logging”, the section called “Logging”, and the
section called “Logging”.

Note

The key Lambda uses for the timestamp value is different for system logs and application
logs. For system logs, Lambda uses the key "time" to maintain consistency with Telemetry
API. For application logs, Lambda follows the conventions of the supported runtimes and
uses "timestamp".

For comparison, the following two examples show the same log output in both plain text and
structured JSON formats.

Log formats 1806

AWS Lambda Developer Guide

Example plain text:

2024-10-27T19:17:45.586Z 79b4f56e-95b1-4643-9700-2807f4e68189 INFO some log message

Example structured JSON:

{
 "timestamp":"2024-10-27T19:17:45.586Z",
 "level":"INFO",
 "message":"some log message",
 "requestId":"79b4f56e-95b1-4643-9700-2807f4e68189"
}

Setting your function's log format

To configure the log format for your function, you can use the Lambda console or the AWS
Command Line Interface (AWS CLI). You can also configure a function’s log format using the
CreateFunction and UpdateFunctionConfiguration Lambda API commands, the AWS Serverless
Application Model (AWS SAM) AWS::Serverless::Function resource, and the AWS CloudFormation
AWS::Lambda::Function resource.

Changing your function’s log format doesn’t affect existing logs stored in CloudWatch Logs. Only
new logs will use the updated format.

If you change your function's log format to JSON and do not set log level, then Lambda
automatically sets your function's application log level and system log level to INFO. This means
that Lambda sends only log outputs of level INFO and lower to CloudWatch Logs. To learn more
about application and system log-level filtering see the section called “Log-level filtering”

Note

For Python runtimes, when your function's log format is set to plain text, the default log-
level setting is WARN. This means that Lambda only sends log outputs of level WARN and
lower to CloudWatch Logs. Changing your function's log format to JSON changes this
default behavior. To learn more about logging in Python, see the section called “Logging”.

For Node.js functions that emit embedded metric format (EMF) logs, changing your function's log
format to JSON could result in CloudWatch being unable to recognize your metrics.

Log formats 1807

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

AWS Lambda Developer Guide

Important

If your function uses Powertools for AWS Lambda (TypeScript) or the open-sourced EMF
client libraries to emit EMF logs, update your Powertools and EMF libraries to the latest
versions to ensure that CloudWatch can continue to parse your logs correctly. If you
switch to the JSON log format, we also recommend that you carry out testing to ensure
compatibility with your function's embedded metrics. For further advice about node.js
functions that emit EMF logs, see the section called “Using embedded metric format (EMF)
client libraries with structured JSON logs”.

To configure a function’s log format (console)

1. Open the Functions page of the Lambda console.

2. Choose a function

3. On the function configuration page, choose Monitoring and operations tools.

4. In the Logging configuration pane, choose Edit.

5. Under Log content, for Log format select either Text or JSON.

6. Choose Save.

To change the log format of an existing function (AWS CLI)

• To change the log format of an existing function, use the update-function-configuration
command. Set the LogFormat option in LoggingConfig to either JSON or Text.

aws lambda update-function-configuration \
 --function-name myFunction \
 --logging-config LogFormat=JSON

To set log format when you create a function (AWS CLI)

• To configure log format when you create a new function, use the --logging-config option
in the create-function command. Set LogFormat to either JSON or Text. The following
example command creates a Node.js function that outputs logs in structured JSON.

Log formats 1808

https://github.com/aws-powertools/powertools-lambda-typescript
https://www.npmjs.com/package/aws-embedded-metrics
https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

AWS Lambda Developer Guide

If you don’t specify a log format when you create a function, Lambda will use the default log
format for the runtime version you select. For information about default logging formats, see
the section called “Default log formats”.

aws lambda create-function \
 --function-name myFunction \
 --runtime nodejs22.x \
 --handler index.handler \
 --zip-file fileb://function.zip \
 --role arn:aws:iam::123456789012:role/LambdaRole \
 --logging-config LogFormat=JSON

Log-level filtering

Lambda can filter your function's logs so that only logs of a certain detail level or lower are sent to
CloudWatch Logs. You can configure log-level filtering separately for your function's system logs
(the logs that Lambda generates) and application logs (the logs that your function code generates).

For the section called “Supported runtimes and logging methods”, you don't need to make any
changes to your function code for Lambda to filter your function's application logs.

For all other runtimes and logging methods , your function code must output log events to stdout
or stderr as JSON formatted objects that contain a key value pair with the key "level". For
example, Lambda interprets the following output to stdout as a DEBUG level log.

print('{"level": "debug", "msg": "my debug log", "timestamp":
 "2024-11-02T16:51:31.587199Z"}')

If the "level" value field is invalid or missing, Lambda will assign the log output the level INFO.
For Lambda to use the timestamp field, you must specify the time in valid RFC 3339 timestamp
format. If you don't supply a valid timestamp, Lambda will assign the log the level INFO and add a
timestamp for you.

When naming the timestamp key, follow the conventions of the runtime you are using. Lambda
supports most common naming conventions used by the managed runtimes.

Log-level filtering 1809

https://www.ietf.org/rfc/rfc3339.txt

AWS Lambda Developer Guide

Note

To use log-level filtering, your function must be configured to use the JSON log format.
The default log format for all Lambda managed runtimes is currently plain text. To learn
how to configure your function's log format to JSON, see the section called “Setting your
function's log format”.

For application logs (the logs generated by your function code), you can choose between the
following log levels.

Log level Standard usage

TRACE (most detail) The most fine-grained information used to
trace the path of your code's execution

DEBUG Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN Messages about potential errors that may lead
to unexpected behavior if unaddressed

ERROR Messages about problems that prevent the
code from performing as expected

FATAL (least detail) Messages about serious errors that cause the
application to stop functioning

When you select a log level, Lambda sends logs at that level and lower to CloudWatch Logs. For
example, if you set a function’s application log level to WARN, Lambda doesn’t send log outputs at
the INFO and DEBUG levels. The default application log level for log filtering is INFO.

When Lambda filters your function’s application logs, log messages with no level will be assigned
the log level INFO.

For system logs (the logs generated by the Lambda service), you can choose between the following
log levels.

Log-level filtering 1810

AWS Lambda Developer Guide

Log level Usage

DEBUG (most detail) Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN (least detail) Messages about potential errors that may lead
to unexpected behavior if unaddressed

When you select a log level, Lambda sends logs at that level and lower. For example, if you set a
function’s system log level to INFO, Lambda doesn’t send log outputs at the DEBUG level.

By default, Lambda sets the system log level to INFO. With this setting, Lambda automatically
sends "start" and "report" log messages to CloudWatch. To receive more or less detailed
system logs, change the log level to DEBUG or WARN. To see a list of the log levels that Lambda
maps different system log events to, see the section called “System log level event mapping”.

Configuring log-level filtering

To configure application and system log-level filtering for your function, you can use the Lambda
console or the AWS Command Line Interface (AWS CLI). You can also configure a function’s log
level using the CreateFunction and UpdateFunctionConfiguration Lambda API commands, the
AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource, and the AWS
CloudFormation AWS::Lambda::Function resource.

Note that if you set your function's log level in your code, this setting takes precedence over any
other log level settings you configure. For example, if you use the Python logging setLevel()
method to set your function's logging level to INFO, this setting takes precedence over a setting of
WARN that you configure using the Lambda console.

To configure an existing function’s application or system log level (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. On the function configuration page, choose Monitoring and operations tools.

4. In the Logging configuration pane, choose Edit.

Log-level filtering 1811

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. Under Log content, for Log format ensure JSON is selected.

6. Using the radio buttons, select your desired Application log level and System log level for
your function.

7. Choose Save.

To configure an existing function’s application or system log level (AWS CLI)

• To change the application or system log level of an existing function, use the update-function-
configuration command. Use --logging-config to set SystemLogLevel to one of DEBUG,
INFO, or WARN. Set ApplicationLogLevel to one of DEBUG, INFO, WARN, ERROR, or FATAL.

aws lambda update-function-configuration \
 --function-name myFunction \
 --logging-config LogFormat=JSON,ApplicationLogLevel=ERROR,SystemLogLevel=WARN

To configure log-level filtering when you create a function

• To configure log-level filtering when you create a new function, use --logging-config to
set the SystemLogLevel and ApplicationLogLevel keys in the create-function command.
Set SystemLogLevel to one of DEBUG, INFO, or WARN. Set ApplicationLogLevel to one of
DEBUG, INFO, WARN, ERROR, or FATAL.

aws lambda create-function \
 --function-name myFunction \
 --runtime nodejs22.x \
 --handler index.handler \
 --zip-file fileb://function.zip \
 --role arn:aws:iam::123456789012:role/LambdaRole \
 --logging-config LogFormat=JSON,ApplicationLogLevel=ERROR,SystemLogLevel=WARN

System log level event mapping

For system level log events generated by Lambda, the following table defines the log level
assigned to each event. To learn more about the events listed in the table, see the section called
“Event schema reference”

Log-level filtering 1812

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

AWS Lambda Developer Guide

Event name Condition Assigned log level

initStart runtimeVersion is set INFO

initStart runtimeVersion is not set DEBUG

initRuntimeDone status=success DEBUG

initRuntimeDone status!=success WARN

initReport initializationType!=on-dema
nd

INFO

initReport initializationType=on-demand DEBUG

initReport status!=success WARN

restoreStart runtimeVersion is set INFO

restoreStart runtimeVersion is not set DEBUG

restoreRuntimeDone status=success DEBUG

restoreRuntimeDone status!=success WARN

restoreReport status=success INFO

restoreReport status!=success WARN

start - INFO

runtimeDone status=success DEBUG

runtimeDone status!=success WARN

report status=success INFO

report status!=success WARN

extension state=success INFO

extension state!=success WARN

Log-level filtering 1813

AWS Lambda Developer Guide

Event name Condition Assigned log level

logSubscription - INFO

telemetrySubscription - INFO

logsDropped - WARN

Note

The the section called “Telemetry API” always emits the complete set of platform events.
Configuring the level of the system logs Lambda sends to CloudWatch doesn’t affect
Lambda Telemetry API behavior.

Application log-level filtering with custom runtimes

When you configure application log-level filtering for your function, behind the scenes Lambda
sets the application log level in the runtime using the AWS_LAMBDA_LOG_LEVEL environment
variable. Lambda also sets your function's log format using the AWS_LAMBDA_LOG_FORMAT
environment variable. You can use these variables to integrate Lambda advanced logging controls
into a custom runtime.

For the ability to configure logging settings for a function using a custom runtime with the Lambda
console, AWS CLI, and Lambda APIs, configure your custom runtime to check the value of these
environment variables. You can then configure your runtime's loggers in accordance with the log
format and log levels you select.

Sending Lambda function logs to CloudWatch Logs

By default, Lambda automatically captures logs for all function invocations and sends them
to CloudWatch Logs, provided your function's execution role has the necessary permissions.
These logs are, by default, stored in a log group named /aws/lambda/<function-name>. To
enhance debugging, you can insert custom logging statements into your code, which Lambda will
seamlessly integrate with CloudWatch Logs. If needed, you can configure your function to send
logs to a different group using the Lambda console, AWS CLI, or Lambda API. See the section called
“Configure CloudWatch function logs” to learn more.

Log with CloudWatch Logs 1814

AWS Lambda Developer Guide

You can view logs for Lambda functions using the Lambda console, the CloudWatch console, the
AWS Command Line Interface (AWS CLI), or the CloudWatch API. For more information, see to
Viewing CloudWatch logs for Lambda functions.

Note

It may take 5 to 10 minutes for logs to show up after a function invocation.

Required IAM permissions

Your execution role needs the following permissions to upload logs to CloudWatch Logs:

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

To learn more, see Using identity-based policies (IAM policies) for CloudWatch Logs in the Amazon
CloudWatch User Guide.

You can add these CloudWatch Logs permissions using the AWSLambdaBasicExecutionRole
AWS managed policy provided by Lambda. To add this policy to your role, run the following
command:

aws iam attach-role-policy --role-name your-role --policy-arn arn:aws:iam::aws:policy/
service-role/AWSLambdaBasicExecutionRole

For more information, see the section called “AWS managed policies”.

Pricing

There is no additional charge for using Lambda logs; however, standard CloudWatch Logs charges
apply. For more information, see CloudWatch pricing.

Configuring CloudWatch log groups

By default, CloudWatch automatically creates a log group named /aws/lambda/<function
name> for your function when it's first invoked. To configure your function to send logs to an

Log with CloudWatch Logs 1815

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html
https://aws.amazon.com/cloudwatch/pricing/

AWS Lambda Developer Guide

existing log group, or to create a new log group for your function, you can use the Lambda
console or the AWS CLI. You can also configure custom log groups using the CreateFunction and
UpdateFunctionConfiguration Lambda API commands and the AWS Serverless Application Model
(AWS SAM) AWS::Serverless::Function resource.

You can configure multiple Lambda functions to send logs to the same CloudWatch log group.
For example, you could use a single log group to store logs for all of the Lambda functions that
make up a particular application. When you use a custom log group for a Lambda function, the
log streams Lambda creates include the function name and function version. This ensures that the
mapping between log messages and functions is preserved, even if you use the same log group for
multiple functions.

The log stream naming format for custom log groups follows this convention:

YYYY/MM/DD/<function_name>[<function_version>][<execution_environment_GUID>]

Note that when configuring a custom log group, the name you select for your log group must
follow the CloudWatch Logs naming rules. Additionally, custom log group names mustn't begin
with the string aws/. If you create a custom log group beginning with aws/, Lambda won't be able
to create the log group. As a result of this, your function's logs won't be sent to CloudWatch.

To change a function’s log group (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. On the function configuration page, choose Monitoring and operations tools.

4. In the Logging configuration pane, choose Edit.

5. In the Logging group pane, for CloudWatch log group, choose Custom.

6. Under Custom log group, enter the name of the CloudWatch log group you want your
function to send logs to. If you enter the name of an existing log group, then your function will
use that group. If no log group exists with the name that you enter, then Lambda will create a
new log group for your function with that name.

To change a function's log group (AWS CLI)

• To change the log group of an existing function, use the update-function-configuration
command.

Log with CloudWatch Logs 1816

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

aws lambda update-function-configuration \
 --function-name myFunction \
 --logging-config LogGroup=myLogGroup

To specify a custom log group when you create a function (AWS CLI)

• To specify a custom log group when you create a new Lambda function using the AWS CLI, use
the --logging-config option. The following example command creates a Node.js Lambda
function that sends logs to a log group named myLogGroup.

aws lambda create-function \
 --function-name myFunction \
 --runtime nodejs22.x \
 --handler index.handler \
 --zip-file fileb://function.zip \
 --role arn:aws:iam::123456789012:role/LambdaRole \
 --logging-config LogGroup=myLogGroup

Execution role permissions

For your function to send logs to CloudWatch Logs, it must have the logs:PutLogEvents permission.
When you configure your function's log group using the Lambda console, Lambda will add this
permission to the role under the following conditions:

• The service destination is set to CloudWatch Logs

• Your function's execution role doesn't have permissions to upload logs to CloudWatch Logs (the
default destination)

Note

Lambda does not add any Put permission for Amazon S3 or Firehose log destinations.

When Lambda adds this permission, it gives the function permission to send logs to any
CloudWatch Logs log group.

Log with CloudWatch Logs 1817

https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html

AWS Lambda Developer Guide

To prevent Lambda from automatically updating the function's execution role and edit it manually
instead, expand Permissions and uncheck Add required permissions.

When you configure your function's log group using the AWS CLI, Lambda won't automatically add
the logs:PutLogEvents permission. Add the permission to your function's execution role if it
doesn't already have it. This permission is included in the AWSLambdaBasicExecutionRole managed
policy.

Viewing CloudWatch logs for Lambda functions

You can view Amazon CloudWatch logs for your Lambda function using the Lambda console, the
CloudWatch console, or the AWS Command Line Interface (AWS CLI). Follow the instructions in the
following sections to access your function's logs.

Stream function logs with CloudWatch Logs Live Tail

Amazon CloudWatch Logs Live Tail helps you quickly troubleshoot your functions by displaying a
streaming list of new log events directly in the Lambda console. You can view and filter ingested
logs from your Lambda functions in real time, helping you to detect and resolve issues quickly.

Note

Live Tail sessions incur costs by session usage time, per minute. For more information about
pricing, see Amazon CloudWatch Pricing.

Comparing Live Tail and --log-type Tail

There are several differences between CloudWatch Logs Live Tail and the LogType: Tail option in
the Lambda API (--log-type Tail in the AWS CLI):

• --log-type Tail returns only the first 4 KB of the invocation logs. Live Tail does not share this
limit, and can receive up to 500 log events per second.

• --log-type Tail captures and sends the logs with the response, which can impact the
function's response latency. Live Tail does not affect function response latency.

• --log-type Tail supports synchronous invocations only. Live Tail works for both synchronous
and asynchronous invocations.

Log with CloudWatch Logs 1818

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole$jsonEditor
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html#lambda-Invoke-request-LogType

AWS Lambda Developer Guide

Permissions

The following permissions are required to start and stop CloudWatch Logs Live Tail sessions:

• logs:DescribeLogGroups

• logs:StartLiveTail

• logs:StopLiveTail

Start a Live Tail session in the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the name of the function.

3. Choose the Test tab.

4. In the Test event pane, choose CloudWatch Logs Live Tail.

5. For Select log groups, the function's log group is selected by default. You can select up to five
log groups at a time.

6. (Optional) To display only log events that contain certain words or other strings, enter the
word or string in the Add filter pattern box. The filters field is case-sensitive. You can include
multiple terms and pattern operators in this field, including regular expressions (regex). For
more information about pattern syntax, see Filter pattern syntax. in the Amazon CloudWatch
Logs User Guide.

7. Choose Start. Matching log events begin appearing in the window.

8. To stop the Live Tail session, choose Stop.

Note

The Live Tail session automatically stops after 15 minutes of inactivity or when the
Lambda console session times out.

Access function logs using the console

1. Open the Functions page of the Lambda console.

2. Select a function.

3. Choose the Monitor tab.

Log with CloudWatch Logs 1819

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Choose View CloudWatch logs to open the CloudWatch console.

5. Scroll down and choose the Log stream for the function invocations you want to look at.

Each instance of a Lambda function has a dedicated log stream. If a function scales up, each
concurrent instance has its own log stream. Each time a new execution environment is created in
response to an invocation, this generates a new log stream. The naming convention for log streams
is:

YYYY/MM/DD[Function version][Execution environment GUID]

A single execution environment writes to the same log stream during its lifetime. The log stream
contains messages from that execution environment and also any output from your Lambda
function’s code. Every message is timestamped, including your custom logs. Even if your function
does not log any output from your code, there are three minimal log statements generated per
invocation (START, END and REPORT):

These logs show:

Log with CloudWatch Logs 1820

AWS Lambda Developer Guide

• RequestId – this is a unique ID generated per request. If the Lambda function retries a request,
this ID does not change and appears in the logs for each subsequent retry.

• Start/End – these bookmark a single invocation, so every log line between these belongs to the
same invocation.

• Duration – the total invocation time for the handler function, excluding INIT code.

• Billed Duration – applies rounding logic for billing purposes.

• Memory Size – the amount of memory allocated to the function.

• Max Memory Used – the maximum amount of memory used during the invocation.

• Init Duration – the time taken to run the INIT section of code, outside of the main handler.

Access logs with the AWS CLI

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

You can use the AWS CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Log with CloudWatch Logs 1821

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

AWS Lambda Developer Guide

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more

Log with CloudWatch Logs 1822

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Lambda Developer Guide

information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,

Log with CloudWatch Logs 1823

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Parsing logs and structured logging

With CloudWatch Logs Insights, you can search and analyze log data using a specialized query
syntax. It performs queries over multiple log groups and provides powerful filtering using glob and
regular expressions pattern matching.

You can take advantage of these capabilities by implementing structured logging in your Lambda
functions. Structured logging organizes your logs into a pre-defined format, making it easier to
query for. Using log levels is an important first step in generating filter-friendly logs that separate
informational messages from warnings or errors. For example, consider the following Node.js code:

exports.handler = async (event) => {
 console.log("console.log - Application is fine")
 console.info("console.info - This is the same as console.log")
 console.warn("console.warn - Application provides a warning")

Log with CloudWatch Logs 1824

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Regular_expression

AWS Lambda Developer Guide

 console.error("console.error - An error occurred")
}

The resulting CloudWatch log file contains a separate field specifying the log level:

A CloudWatch Logs Insights query can then filter on log level. For example, to query for errors only,
you can use the following query:

fields @timestamp, @message
| filter @message like /ERROR/
| sort @timestamp desc

JSON structured logging

JSON is commonly used to provide structure for application logs. In the following example, the
logs have been converted to JSON to output three distinct values:

The CloudWatch Logs Insights feature automatically discovers values in JSON output and parses
the messages as fields, without the need for custom glob or regular expression. By using the JSON-
structured logs, the following query finds invocations where the uploaded file was larger than 1
MB, the upload time was more than 1 second, and the invocation was not a cold start:

fields @message
| filter @message like /INFO/
| filter uploadedBytes > 1000000
| filter uploadTimeMS > 1000
| filter invocation != 1

This query might produce the following result:

Log with CloudWatch Logs 1825

AWS Lambda Developer Guide

The discovered fields in JSON are automatically populated in the Discovered fields menu on the
right side. Standard fields emitted by the Lambda service are prefixed with '@', and you can query
on these fields in the same way. Lambda logs always include the fields @timestamp, @logStream,
@message, @requestId, @duration, @billedDuration, @type, @maxMemoryUsed, @memorySize.
If X-Ray is enabled for a function, logs also include @xrayTraceId and @xraySegmentId.

When an AWS event source such as Amazon S3, Amazon SQS, or Amazon EventBridge invokes your
function, the entire event is provided to the function as a JSON object input. By logging this event
in the first line of the function, you can then query on any of the nested fields using CloudWatch
Logs Insights.

Useful Insights queries

The following table shows example Insights queries that can be useful for monitoring Lambda
functions.

Description Example query syntax

The last 100 errors fields Timestamp, LogLevel, Message
 | filter LogLevel == "ERR"
 | sort @timestamp desc
 | limit 100

The top 100 highest billed invocations filter @type = "REPORT"

Log with CloudWatch Logs 1826

AWS Lambda Developer Guide

Description Example query syntax

| fields @requestId, @billedDuration
| sort by @billedDuration desc
| limit 100

Percentage of cold starts in total invocations filter @type = "REPORT"
| stats sum(strcontains(@message,
 "Init Duration"))/count(*) * 100 as
 coldStartPct, avg(@duration)
 by bin(5m)

Percentile report of Lambda duration filter @type = "REPORT"
| stats
 avg(@billedDuration) as Average,
 percentile(@billedDuration, 99)
 as NinetyNinth,
 percentile(@billedDuration, 95)
 as NinetyFifth,
 percentile(@billedDuration, 90)
 as Ninetieth
 by bin(30m)

Percentile report of Lambda memory usage filter @type="REPORT"
| stats avg(@maxMemoryUsed/1024/102
4) as mean_MemoryUsed,
 min(@maxMemoryUsed/1024/1024) as
 min_MemoryUsed,
 max(@maxMemoryUsed/1024/1024) as
 max_MemoryUsed,
 percentile(@maxMemoryUsed/1
024/1024, 95) as Percentile95

Invocations using 100% of assigned memory filter @type = "REPORT" and @maxMemor
yUsed=@memorySize
| stats
 count_distinct(@requestId)
 by bin(30m)

Log with CloudWatch Logs 1827

AWS Lambda Developer Guide

Description Example query syntax

Average memory used across invocations avgMemoryUsedPERC,
 avg(@billedDuration) as avgDurati
onMS
 by bin(5m)

Visualization of memory statistics filter @type = "REPORT"
| stats
 max(@maxMemoryUsed / 1024 / 1024)
 as maxMemMB,
 avg(@maxMemoryUsed / 1024 / 1024)
 as avgMemMB,
 min(@maxMemoryUsed / 1024 / 1024)
 as minMemMB,
 (avg(@maxMemoryUsed / 1024 /
 1024) / max(@memorySize / 1024 /
 1024)) * 100 as avgMemUsedPct,
 avg(@billedDuration) as avgDurati
onMS
 by bin(30m)

Invocations where Lambda exited filter @message like /Process exited/
| stats count() by bin(30m)

Invocations that timed out filter @message like /Task timed out/
| stats count() by bin(30m)

Latency report filter @type = "REPORT"
| stats avg(@duration), max(@dura
tion), min(@duration)
 by bin(5m)

Log with CloudWatch Logs 1828

AWS Lambda Developer Guide

Description Example query syntax

Over-provisioned memory filter @type = "REPORT"
| stats max(@memorySize / 1024 /
 1024) as provisonedMemMB,
 min(@maxMemoryUsed / 1024 /
 1024) as smallestMemReqMB,
 avg(@maxMemoryUsed / 1024 /
 1024) as avgMemUsedMB,
 max(@maxMemoryUsed / 1024 /
 1024) as maxMemUsedMB,
 provisonedMemMB - maxMemUse
dMB as overProvisionedMB

Log visualization and dashboards

For any CloudWatch Logs Insights query, you can export the results to markdown or CSV format.
In some cases, it might be more useful to create visualizations from queries, providing there is
at least one aggregation function. The stats function allows you to define aggregations and
grouping.

The previous logInsightsJSON example filtered on upload size and upload time and excluded first
invocations. This resulted in a table of data. For monitoring a production system, it may be more
useful to visualize minimum, maximum, and average file sizes to find outliers. To do this, apply the
stats function with the required aggregates, and group on a time value such as every minute:

For example, consider the following query. This is the same example query from the the section
called “JSON structured logging” section, but with additional aggregation functions:

fields @message
| filter @message like /INFO/
| filter uploadedBytes > 1000000
| filter uploadTimeMS > 1000
| filter invocation != 1
| stats min(uploadedBytes), avg(uploadedBytes), max(uploadedBytes) by bin (1m)

We included these aggregates because it may be more useful to visualize minimum, maximum, and
average file sizes to find outliers. You can view the results in the Visualization tab:

Log with CloudWatch Logs 1829

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_Insights-Visualizing-Log-Data.html

AWS Lambda Developer Guide

After you have finished building the visualization, you can optionally add the graph to a
CloudWatch dashboard. To do this, choose Add to dashboard above the visualization. This adds
the query as a widget and enables you to select automatic refresh intervals, making it easier to
continuously monitor the results:

Log with CloudWatch Logs 1830

AWS Lambda Developer Guide

Sending Lambda function logs to Firehose

The Lambda console now offers the option to send function logs to Firehose. This enables real-
time streaming of your logs to various destinations supported by Firehose, including third-party
analytics tools and custom endpoints.

Note

You can configure Lambda function logs to be sent to Firehose using the Lambda console,
AWS CLI, AWS CloudFormation, and all AWS SDKs.

Pricing

For details on pricing, see Amazon CloudWatch pricing.

Required permissions for Firehose log destination

When using the Lambda console to configure Firehose as your function's log destination, you need:

1. The required IAM permissions to use CloudWatch Logs with Lambda.

2. To set up subscription filters with Firehose. This filter defines which log events are delivered to
your Firehose stream.

Log with Firehose 1831

https://aws.amazon.com/cloudwatch/pricing/#Vended_Logs
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html#monitoring-cloudwatchlogs-prereqs
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#FirehoseExample

AWS Lambda Developer Guide

Sending Lambda function logs to Firehose

In the Lambda console, you can send function logs directly to Firehose after creating a new
function. To do this, complete these steps:

1. Sign in to the AWS Management Console and open the Lambda console.

2. Choose your function's name.

3. Choose the Configuration tab.

4. Choose the Monitoring and operations tools tab.

5. In the "Logging configuration" section, choose Edit.

6. In the "Log content" section, select a log format.

7. In the "Log destination" section, complete the following steps:

a. Select a destination service.

b. Choose to Create a new log group or use an Existing log group.

Note

If choosing an existing log group for a Firehose destination, ensure the log group you
choose is a Delivery log group type.

c. Choose a Firehose stream.

d. The CloudWatch Delivery log group will appear.

8. Choose Save.

Note

If the IAM role provided in the console doesn't have the required permission, then the
destination setup will fail. To fix this, refer to Required permissions for Firehose log
destination to provide the required permissions.

Cross-Account Logging

You can configure Lambda to send logs to Firehose delivery stream in a different AWS account. This
requires setting up a destination and configuring appropriate permissions in both accounts.

Log with Firehose 1832

AWS Lambda Developer Guide

For detailed instructions on setting up cross-account logging, including required IAM roles and
policies, see Setting up a new cross-account subscription in the CloudWatch Logs documentation.

Sending Lambda function logs to Amazon S3

You can configure your Lambda function to send logs directly to Amazon S3 using the Lambda
console. This feature provides a cost-effective solution for long-term log storage and enables
powerful analysis options using services like Athena.

Note

You can configure Lambda function logs to be sent to Amazon S3 using the Lambda
console, AWS CLI, AWS CloudFormation, and all AWS SDKs.

Pricing

For details on pricing, see Amazon CloudWatch pricing.

Required permissions for Amazon S3 log destination

When using the Lambda console to configure Amazon S3 as your function's log destination, you
need:

1. The required IAM permissions to use CloudWatch Logs with Lambda.

2. To Set up a CloudWatch Logs subscriptions filter to send Lambda function logs to Amazon S3.
This filter defines which log events are delivered to your Amazon S3 bucket.

Set up a CloudWatch Logs subscriptions filter to send Lambda function logs to
Amazon S3

To send logs from CloudWatch Logs to Amazon S3, you need to create a subscription filter. This
filter defines which log events are delivered to your Amazon S3 bucket. Your Amazon S3 bucket
must be in the same Region as your log group.

Log with Amazon S3 1833

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CrossAccountSubscriptions.html
https://aws.amazon.com/cloudwatch/pricing/#Vended_Logs
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html#monitoring-cloudwatchlogs-prereqs

AWS Lambda Developer Guide

To create a subscription filter for Amazon S3

1. Create an Amazon Simple Storage Service (Amazon S3) bucket. We recommend that you use
a bucket that was created specifically for CloudWatch Logs. However, if you want to use an
existing bucket, skip to step 2.

Run the following command, replacing the placeholder Region with the Region you want to use:

aws s3api create-bucket --bucket amzn-s3-demo-bucket2 --create-bucket-configuration
 LocationConstraint=region

Note

amzn-s3-demo-bucket2 is an example Amazon S3 bucket name. It is reserved. For this
procedure to work, you must to replace it with your unique Amazon S3 bucket name.

The following is example output:

{
 "Location": "/amzn-s3-demo-bucket2"
}

2. Create the IAM role that grants CloudWatch Logs permission to put data into your Amazon S3
bucket. This policy includes a aws:SourceArn global condition context key to help prevent the
confused deputy security issue. For more information, see Confused deputy prevention.

a. Use a text editor to create a trust policy in a file ~/TrustPolicyForCWL.json as follows:

{
 "Statement": {
 "Effect": "Allow",
 "Principal": { "Service": "logs.amazonaws.com" },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:logs:region:123456789012:*"
 }
 },
 "Action": "sts:AssumeRole"
 }

Log with Amazon S3 1834

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions-confused-deputy.html

AWS Lambda Developer Guide

}

b. Use the create-role command to create the IAM role, specifying the trust policy file. Note of
the returned Role.Arn value, as you will need it in a later step:

aws iam create-role \
 --role-name CWLtoS3Role \
 --assume-role-policy-document file://~/TrustPolicyForCWL.json
{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Statement": {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.amazonaws.com"
 },
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:logs:region:123456789012:*"
 }
 }
 }
 },
 "RoleId": "AAOIIAH450GAB4HC5F431",
 "CreateDate": "2015-05-29T13:46:29.431Z",
 "RoleName": "CWLtoS3Role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/CWLtoS3Role"
 }
}

3. Create a permissions policy to define what actions CloudWatch Logs can do on your account.
First, use a text editor to create a permissions policy in a file ~/PermissionsForCWL.json:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:PutObject"],
 "Resource": ["arn:aws:s3:::amzn-s3-demo-bucket2/*"]
 }
]

Log with Amazon S3 1835

AWS Lambda Developer Guide

}

Associate the permissions policy with the role using the following put-role-policy
command:

aws iam put-role-policy --role-name CWLtoS3Role --policy-name Permissions-Policy-For-
S3 --policy-document file://~/PermissionsForCWL.json

4. Create a Delivery log group or use a existing Delivery log group.

aws logs create-log-group --log-group-name my-logs --log-group-class DELIVERY --
region REGION_NAME

5. PutSubscriptionFilter to set up destination

aws logs put-subscription-filter
--log-group-name my-logs
--filter-name my-lambda-delivery
--filter-pattern ""
--destination-arn arn:aws:s3:::amzn-s3-demo-bucket2
--role-arn arn:aws:iam::123456789012:role/CWLtoS3Role
--region REGION_NAME

Sending Lambda function logs to Amazon S3

In the Lambda console, you can send function logs directly to Amazon S3 after creating a new
function. To do this, complete these steps:

1. Sign in to the AWS Management Console and open the Lambda console.

2. Choose your function's name.

3. Choose the Configuration tab.

4. Choose the Monitoring and operations tools tab.

5. In the "Logging configuration" section, choose Edit.

6. In the "Log content" section, select a log format.

7. In the "Log destination" section, complete the following steps:

a. Select a destination service.

b. Choose to Create a new log group or use an Existing log group.

Log with Amazon S3 1836

AWS Lambda Developer Guide

Note

If choosing an existing log group for an Amazon S3 destination, ensure the log group
you choose is a Delivery log group type.

c. Choose an Amazon S3 bucket to be the destination for your function logs.

d. The CloudWatch Delivery log group will appear.

8. Choose Save.

Note

If the IAM role provided in the console doesn't have the required permissions, then the
destination setup will fail. To fix this, refer to Required permissions for Amazon S3 log
destination.

Cross-Account Logging

You can configure Lambda to send logs to an Amazon S3 bucket in a different AWS account. This
requires setting up a destination and configuring appropriate permissions in both accounts.

For detailed instructions on setting up cross-account logging, including required IAM roles and
policies, see Setting up a new cross-account subscription in the CloudWatch Logs documentation.

Log with Amazon S3 1837

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CrossAccountSubscriptions.html

AWS Lambda Developer Guide

Logging AWS Lambda API calls using AWS CloudTrail

AWS Lambda is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service. CloudTrail captures API calls for Lambda as events. The calls
captured include calls from the Lambda console and code calls to the Lambda API operations.
Using the information collected by CloudTrail, you can determine the request that was made to
Lambda, the IP address from which the request was made, when it was made, and additional
details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For

CloudTrail logs 1838

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html

AWS Lambda Developer Guide

more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

Lambda data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource
(for example, reading or writing to an Amazon S3 object). These are also known as data plane
operations. Data events are often high-volume activities. By default, CloudTrail doesn’t log most
data events, and the CloudTrail Event history doesn't record them.

One CloudTrail data event that is logged by default for supported services is
LambdaESMDisabled. To learn more about using this event to help troubleshoot issues with
Lambda event source mappings, see the section called “Using CloudTrail to troubleshoot disabled
Lambda event sources”.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the AWS::Lambda::Function resource type by using the CloudTrail
console, AWS CLI, or CloudTrail API operations. For more information about how to log data events,
see Logging data events with the AWS Management Console and Logging data events with the
AWS Command Line Interface in the AWS CloudTrail User Guide.

Lambda data events in CloudTrail 1839

https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI

AWS Lambda Developer Guide

The following table lists the Lambda resource type for which you can log data events. The Data
event type (console) column shows the value to choose from the Data event type list on the
CloudTrail console. The resources.type value column shows the resources.type value, which
you would specify when configuring advanced event selectors using the AWS CLI or CloudTrail
APIs. The Data APIs logged to CloudTrail column shows the API calls logged to CloudTrail for the
resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

Lambda AWS::Lambda::Funct
ion

Invoke

You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. The following example
is the JSON view of a data event configuration that logs events for a specific function only.
For more information about these fields, see AdvancedFieldSelector in the AWS CloudTrail API
Reference.

[
 {
 "name": "function-invokes",
 "fieldSelectors": [
 {
 "field": "eventCategory",
 "equals": [
 "Data"
]
 },
 {
 "field": "resources.type",
 "equals": [
 "AWS::Lambda::Function"
]
 },
 {
 "field": "resources.ARN",
 "equals": [
 "arn:aws:lambda:us-east-1:111122223333:function:hello-world"

Lambda data events in CloudTrail 1840

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

AWS Lambda Developer Guide

]
 }
]
 }
]

Lambda management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

Lambda supports logging the following actions as management events in CloudTrail log files.

Note

In the CloudTrail log file, the eventName might include date and version information, but
it is still referring to the same public API action. For example the, GetFunction action
appears as GetFunction20150331v2. The following list specifies when the event name
differs from the API action name.

• AddLayerVersionPermission

• AddPermission (event name: AddPermission20150331v2)

• CreateAlias (event name: CreateAlias20150331)

• CreateEventSourceMapping (event name: CreateEventSourceMapping20150331)

• CreateFunction (event name: CreateFunction20150331)

(The Environment and ZipFile parameters are omitted from the CloudTrail logs for
CreateFunction.)

• CreateFunctionUrlConfig

• DeleteAlias (event name: DeleteAlias20150331)

• DeleteCodeSigningConfig

• DeleteEventSourceMapping (event name: DeleteEventSourceMapping20150331)

• DeleteFunction (event name: DeleteFunction20150331)

• DeleteFunctionConcurrency (event name: DeleteFunctionConcurrency20171031)

Lambda management events in CloudTrail 1841

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/lambda/latest/api/API_AddLayerVersionPermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteCodeSigningConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionConcurrency.html

AWS Lambda Developer Guide

• DeleteFunctionUrlConfig

• DeleteProvisionedConcurrencyConfig

• GetAlias (event name: GetAlias20150331)

• GetEventSourceMapping

• GetFunction

• GetFunctionUrlConfig

• GetFunctionConfiguration

• GetLayerVersionPolicy

• GetPolicy

• ListEventSourceMappings

• ListFunctions

• ListFunctionUrlConfigs

• PublishLayerVersion (event name: PublishLayerVersion20181031)

(The ZipFile parameter is omitted from the CloudTrail logs for PublishLayerVersion.)

• PublishVersion (event name: PublishVersion20150331)

• PutFunctionConcurrency (event name: PutFunctionConcurrency20171031)

• PutFunctionCodeSigningConfig

• PutFunctionEventInvokeConfig

• PutProvisionedConcurrencyConfig

• PutRuntimeManagementConfig

• RemovePermission (event name: RemovePermission20150331v2)

• TagResource (event name: TagResource20170331v2)

• UntagResource (event name: UntagResource20170331v2)

• UpdateAlias (event name: UpdateAlias20150331)

• UpdateCodeSigningConfig

• UpdateEventSourceMapping (event name: UpdateEventSourceMapping20150331)

• UpdateFunctionCode (event name: UpdateFunctionCode20150331v2)

(The ZipFile parameter is omitted from the CloudTrail logs for UpdateFunctionCode.)

• UpdateFunctionConfiguration (event name: UpdateFunctionConfiguration20150331v2)

Lambda management events in CloudTrail 1842

https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetLayerVersionPolicy.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetPolicy.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctionUrlConfigs.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishLayerVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionCodeSigningConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionEventInvokeConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_RemovePermission.html
https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateCodeSigningConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

(The Environment parameter is omitted from the CloudTrail logs for
UpdateFunctionConfiguration.)

• UpdateFunctionEventInvokeConfig

• UpdateFunctionUrlConfig

Using CloudTrail to troubleshoot disabled Lambda event sources

When you change the state of an event source mapping using the UpdateEventSourceMapping API
action, the API call is logged as a management event in CloudTrail. Event source mappings can also
transition directly to the Disabled state due to errors.

For the following services, Lambda publishes the LambdaESMDisabled data event to CloudTrail
when your event source transitions to the Disabled state:

• Amazon Simple Queue Service (Amazon SQS)

• Amazon DynamoDB

• Amazon Kinesis

Lambda doesn't support this event for any other event source mapping types.

To receive alerts when event source mappings for supported services transition to the Disabled
state, set up an alarm in Amazon CloudWatch using the LambdaESMDisabled CloudTrail event. To
learn more about setting up a CloudWatch alarm, see Creating CloudWatch alarms for CloudTrail
events: examples.

The serviceEventDetails entity in the LambdaESMDisabled event message contains one of
the following error codes.

RESOURCE_NOT_FOUND

The resource specified in the request does not exist.

FUNCTION_NOT_FOUND

The function attached to the event source does not exist.

REGION_NAME_NOT_VALID

A Region name provided to the event source or function is invalid.

Using CloudTrail to troubleshoot disabled Lambda event sources 1843

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionEventInvokeConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html

AWS Lambda Developer Guide

AUTHORIZATION_ERROR

Permissions have not been set, or are misconfigured.

FUNCTION_IN_FAILED_STATE

The function code does not compile, has encountered an unrecoverable exception, or a bad
deployment has occurred.

Lambda event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following example shows CloudTrail log entries for the GetFunction and DeleteFunction
actions.

Note

The eventName might include date and version information, such as
"GetFunction20150331", but it is still referring to the same public API.

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:03:36Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "GetFunction",
 "awsRegion": "us-east-1",

Lambda event examples 1844

AWS Lambda Developer Guide

 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "errorCode": "AccessDenied",
 "errorMessage": "User: arn:aws:iam::111122223333:user/myUserName is not
 authorized to perform: lambda:GetFunction on resource: arn:aws:lambda:us-
west-2:111122223333:function:other-acct-function",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "7aebcd0f-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "e92a3e85-8ecd-4d23-8074-843aabfe89bf",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:04:42Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "DeleteFunction20150331",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "requestParameters": {
 "functionName": "basic-node-task"
 },
 "responseElements": null,
 "requestID": "a2198ecc-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "20b84ce5-730f-482e-b2b2-e8fcc87ceb22",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

For information about CloudTrail record contents, see CloudTrail record contents in the AWS
CloudTrail User Guide.

Lambda event examples 1845

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

AWS Lambda Developer Guide

Visualize Lambda function invocations using AWS X-Ray

You can use AWS X-Ray to visualize the components of your application, identify performance
bottlenecks, and troubleshoot requests that resulted in an error. Your Lambda functions send
trace data to X-Ray, and X-Ray processes the data to generate a service map and searchable trace
summaries.

Lambda supports two tracing modes for X-Ray: Active and PassThrough. With Active tracing,
Lambda automatically creates trace segments for function invocations and sends them to X-Ray.
PassThrough mode, on the other hand, simply propagates the tracing context to downstream
services. If you've enabled Active tracing for your function, Lambda automatically sends traces
to X-Ray for sampled requests. Typically, an upstream service, such as Amazon API Gateway or
an application hosted on Amazon EC2 that is instrumented with the X-Ray SDK, decides whether
incoming requests should be traced, then adds that sampling decision as a tracing header. Lambda
uses that header to decide to send traces or not. Traces from upstream message producers, such
as Amazon SQS, are automatically linked to traces from downstream Lambda functions, creating
an end-to-end view of the entire application. For more information, see Tracing event-driven
applications in the AWS X-Ray Developer Guide.

Note

X-Ray tracing is currently not supported for Lambda functions with Amazon Managed
Streaming for Apache Kafka (Amazon MSK), self-managed Apache Kafka, Amazon MQ with
ActiveMQ and RabbitMQ, or Amazon DocumentDB event source mappings.

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Under Additional monitoring tools, choose Edit.

5. Under CloudWatch Application Signals and AWS X-Ray, choose Enable for Lambda service
traces.

6. Choose Save.

AWS X-Ray 1846

https://docs.aws.amazon.com/xray/latest/devguide/xray-tracelinking.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-tracelinking.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests. You can't configure the X-Ray
sampling rate for your functions.

Understanding X-Ray traces

In X-Ray, a trace records information about a request that is processed by one or more services.
Lambda records 2 segments per trace, which creates two nodes on the service graph. The following
image highlights these two nodes:

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function.

The segment recorded for the Lambda service, AWS::Lambda, covers all the steps required to
prepare the Lambda execution environment. This includes scheduling the MicroVM, creating
or unfreezing an execution environment with the resources you have configured, as well as
downloading your function code and all layers.

The AWS::Lambda::Function segment is for the work done by the function.

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.

Understanding X-Ray traces 1847

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess

AWS Lambda Developer Guide

This change affects the subsegments of the function segment. The following paragraphs
describe both the old and new formats for these subsegments.
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

Old-style AWS X-Ray Lambda segment structure

The old-style X-Ray structure for the AWS::Lambda segment looks like the following:

In this format, the function segment has subsegments for Initialization, Invocation, and
Overhead. For Lambda SnapStart only, there is also a Restore subsegment (not shown on this
diagram).

The Initialization subsegment represents the init phase of the Lambda execution
environment lifecycle. During this phase, Lambda initializes extensions, initializes the runtime, and
runs the function's initialization code.

The Invocation subsegment represents the invoke phase where Lambda invokes the function
handler. This begins with runtime and extension registration and it ends when the runtime is ready
to send the response.

Understanding X-Ray traces 1848

AWS Lambda Developer Guide

(Lambda SnapStart only) The Restore subsegment shows the time it takes for Lambda to restore
a snapshot, load the runtime, and run any after-restore runtime hooks. The process of restoring
snapshots can include time spent on activities outside the MicroVM. This time is reported in the
Restore subsegment. You aren't charged for the time spent outside the microVM to restore a
snapshot.

The Overhead subsegment represents the phase that occurs between the time when the runtime
sends the response and the signal for the next invoke. During this time, the runtime finishes all
tasks related to an invoke and prepares to freeze the sandbox.

Important

You can use the X-Ray SDK to extend the Invocation subsegment with additional
subsegments for downstream calls, annotations, and metadata. You can't access the
function segment directly or record work done outside of the handler invocation scope.

For more information about Lambda execution environment phases, see the section called
“Execution environment”.

An example trace using the old-style X-Ray structure is shown in the following diagram.

Note the two segments in the example. Both are named my-function, but one has an origin of
AWS::Lambda and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda
segment shows an error, the Lambda service had an issue. If the AWS::Lambda::Function
segment shows an error, your function had an issue.

Understanding X-Ray traces 1849

AWS Lambda Developer Guide

Note

Occasionally, you may notice a large gap between the function initialization and invocation
phases in your X-Ray traces. For functions using provisioned concurrency, this is because
Lambda initializes your function instances well in advance of invocation. For functions
using unreserved (on-demand) concurrency, Lambda may proactively initialize a function
instance, even if there's no invocation. Visually, both of these cases show up as a time gap
between the initialization and invocation phases.

New-style AWS X-Ray Lambda segment structure

The new-style X-Ray structure for the AWS::Lambda segment looks like the following:

In this new format, The Init subsegment represents the init phase of the Lambda execution
environment lifecycle as before.

There is no invocation segment in the new format. Instead, customer subsegments are attached
directly to the AWS::Lambda::Function segment. This segment contains the following metrics
as annotations:

• aws.responseLatency - the time taken for the function to run

• aws.responseDuration - the time taken to transfer the response to the customer

• aws.runtimeOverhead - the amount of additional time the runtime needed to finish

• aws.extensionOverhead - the amount of additional time the extensions needed to finish

Understanding X-Ray traces 1850

AWS Lambda Developer Guide

An example trace using the new-style X-Ray structure is shown in the following diagram.

Note the two segments in the example. Both are named my-function, but one has an origin of
AWS::Lambda and the other has an origin of AWS::Lambda::Function. If the AWS::Lambda
segment shows an error, the Lambda service had an issue. If the AWS::Lambda::Function
segment shows an error, your function had an issue.

See the following topics for a language-specific introduction to tracing in Lambda:

• Instrumenting Node.js code in AWS Lambda

• Instrumenting Python code in AWS Lambda

• Instrumenting Ruby code in AWS Lambda

• Instrumenting Java code in AWS Lambda

• Instrumenting Go code in AWS Lambda

• Instrumenting C# code in AWS Lambda

For a full list of services that support active instrumentation, see Supported AWS services in the
AWS X-Ray Developer Guide.

Default tracing behavior in Lambda

If you do not have Active tracing turned on, Lambda defaults to PassThrough tracing mode.

In PassThrough mode, Lambda forwards the X-Ray tracing header to downstream services, but
does not send traces automatically. This is true even if the tracing header contains a decision to
sample the request. If the upstream service does not provide an X-Ray tracing header, Lambda

Default tracing behavior in Lambda 1851

https://docs.aws.amazon.com/xray/latest/devguide/xray-usage.html#xray-usage-codechanges

AWS Lambda Developer Guide

generates a header and makes the decision not to sample. However, you can send your own traces
by calling tracing libraries from your function code.

Note

Previously, Lambda would send traces automatically when upstream services, such as
Amazon API Gateway, added a tracing header. By not sending traces automatically, Lambda
gives you the control to trace the functions that are important to you. If your solution
depends on this passive tracing behavior, switch to Active tracing.

Execution role permissions

Lambda needs the following permissions to send trace data to X-Ray. Add them to your function's
execution role.

• xray:PutTraceSegments

• xray:PutTelemetryRecords

These permissions are included in the AWSXRayDaemonWriteAccess managed policy.

Enabling Active tracing with the Lambda API

To manage tracing configuration with the AWS CLI or AWS SDK, use the following API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example AWS CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Execution role permissions 1852

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_PutTelemetryRecords.html
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

Enabling Active tracing with AWS CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an AWS CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an AWS Serverless Application Model (AWS SAM) AWS::Serverless::Function resource,
use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Enabling Active tracing with AWS CloudFormation 1853

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

Monitor function performance with Amazon CloudWatch
Lambda Insights

Amazon CloudWatch Lambda Insights collects and aggregates Lambda function runtime
performance metrics and logs for your serverless applications. This page describes how to enable
and use Lambda Insights to diagnose issues with your Lambda functions.

Sections

• How Lambda Insights monitors serverless applications

• Pricing

• Supported runtimes

• Enabling Lambda Insights in the Lambda console

• Enabling Lambda Insights programmatically

• Using the Lambda Insights dashboard

• Example workflow to detect function anomalies

• Example workflow using queries to troubleshoot a function

• What's next?

How Lambda Insights monitors serverless applications

CloudWatch Lambda Insights is a monitoring and troubleshooting solution for serverless
applications running on AWS Lambda. The solution collects, aggregates, and summarizes system-
level metrics including CPU time, memory, disk and network usage. It also collects, aggregates, and
summarizes diagnostic information such as cold starts and Lambda worker shutdowns to help you
isolate issues with your Lambda functions and resolve them quickly.

Lambda Insights uses a new CloudWatch Lambda Insights extension, which is provided as a
Lambda layer. When you enable this extension on a Lambda function for a supported runtime, it
collects system-level metrics and emits a single performance log event for every invocation of that
Lambda function. CloudWatch uses embedded metric formatting to extract metrics from the log
events. For more information, see Using AWS Lambda extensions.

The Lambda Insights layer extends the CreateLogStream and PutLogEvents for the /aws/
lambda-insights/ log group.

Function insights 1854

https://docs.aws.amazon.com/lambda/latest/dg/lambda-extensions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-extensions.html

AWS Lambda Developer Guide

Pricing

When you enable Lambda Insights for your Lambda function, Lambda Insights reports 8 metrics
per function and every function invocation sends about 1KB of log data to CloudWatch. You only
pay for the metrics and logs reported for your function by Lambda Insights. There are no minimum
fees or mandatory service usage policies. You do not pay for Lambda Insights if the function is not
invoked. For a pricing example, see Amazon CloudWatch pricing.

Supported runtimes

You can use Lambda Insights with any of the runtimes that support Lambda extensions.

Enabling Lambda Insights in the Lambda console

You can enable Lambda Insights enhanced monitoring on new and existing Lambda functions.
When you enable Lambda Insights on a function in the Lambda console for a supported runtime,
Lambda adds the Lambda Insights extension as a layer to your function, and verifies or attempts
to attach the CloudWatchLambdaInsightsExecutionRolePolicy policy to your function’s
execution role.

To enable Lambda Insights in the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose your function.

3. Choose the Configuration tab.

4. On the left menu, choose Monitoring and operations tools.

5. On the Additional monitoring tools pane, choose Edit.

6. Under CloudWatch Lambda Insights, turn on Enhanced monitoring.

7. Choose Save.

Enabling Lambda Insights programmatically

You can also enable Lambda Insights using the AWS Command Line Interface (AWS CLI), AWS
Serverless Application Model (SAM) CLI, AWS CloudFormation, or the AWS Cloud Development Kit
(AWS CDK). When you enable Lambda Insights programmatically on a function for a supported
runtime, CloudWatch attaches the CloudWatchLambdaInsightsExecutionRolePolicy policy
to your function’s execution role.

Pricing 1855

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-extensions.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy$jsonEditor
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy$jsonEditor
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Lambda Developer Guide

For more information, see Getting started with Lambda Insights in the Amazon CloudWatch User
Guide.

Using the Lambda Insights dashboard

The Lambda Insights dashboard has two views in the CloudWatch console: the multi-function
overview and the single-function view. The multi-function overview aggregates the runtime
metrics for the Lambda functions in the current AWS account and Region. The single-function view
shows the available runtime metrics for a single Lambda function.

You can use the Lambda Insights dashboard multi-function overview in the CloudWatch console to
identify over- and under-utilized Lambda functions. You can use the Lambda Insights dashboard
single-function view in the CloudWatch console to troubleshoot individual requests.

To view the runtime metrics for all functions

1. Open the Multi-function page in the CloudWatch console.

2. Choose from the predefined time ranges, or choose a custom time range.

3. (Optional) Choose Add to dashboard to add the widgets to your CloudWatch dashboard.

Using the Lambda Insights dashboard 1856

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights-Getting-Started.html
https://console.aws.amazon.com/cloudwatch/home#lambda-insights:performance

AWS Lambda Developer Guide

To view the runtime metrics of a single function

1. Open the Single-function page in the CloudWatch console.

2. Choose from the predefined time ranges, or choose a custom time range.

3. (Optional) Choose Add to dashboard to add the widgets to your CloudWatch dashboard.

For more information, see Creating and working with widgets on CloudWatch dashboards.

Example workflow to detect function anomalies

You can use the multi-function overview on the Lambda Insights dashboard to identify and detect
compute memory anomalies with your function. For example, if the multi-function overview
indicates that a function is using a large amount of memory, you can view detailed memory
utilization metrics in the Memory Usage pane. You can then go to the Metrics dashboard to enable
anomaly detection or create an alarm.

To enable anomaly detection for a function

1. Open the Multi-function page in the CloudWatch console.

2. Under Function summary, choose your function's name.

Detecting function anomalies 1857

https://console.aws.amazon.com/cloudwatch/home#lambda-insights:functions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-and-work-with-widgets.html
https://console.aws.amazon.com/cloudwatch/home#lambda-insights:performance

AWS Lambda Developer Guide

The single-function view opens with the function runtime metrics.

3. On the Memory Usage pane, choose the three vertical dots, and then choose View in metrics
to open the Metrics dashboard.

4. On the Graphed metrics tab, in the Actions column, choose the first icon to enable anomaly
detection for the function.

Detecting function anomalies 1858

AWS Lambda Developer Guide

For more information, see Using CloudWatch Anomaly Detection.

Example workflow using queries to troubleshoot a function

You can use the single-function view on the Lambda Insights dashboard to identify the root
cause of a spike in function duration. For example, if the multi-function overview indicates a large
increase in function duration, you can pause on or choose each function in the Duration pane to
determine which function is causing the increase. You can then go to the single-function view and
review the Application logs to determine the root cause.

To run queries on a function

1. Open the Multi-function page in the CloudWatch console.

2. In the Duration pane, choose your function to filter the duration metrics.

3. Open the Single-function page.

4. Choose the Filter metrics by function name dropdown list, and then choose your function.

5. To view the Most recent 1000 application logs, choose the Application logs tab.

Troubleshooting a function 1859

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://console.aws.amazon.com/cloudwatch/home#lambda-insights:performance
https://console.aws.amazon.com/cloudwatch/home#lambda-insights:functions

AWS Lambda Developer Guide

6. Review the Timestamp and Message to identify the invocation request that you want to
troubleshoot.

7. To show the Most recent 1000 invocations, choose the Invocations tab.

8. Select the Timestamp or Message for the invocation request that you want to troubleshoot.

9. Choose the View logs dropdown list, and then choose View performance logs.

An autogenerated query for your function opens in the Logs Insights dashboard.

10. Choose Run query to generate a Logs message for the invocation request.

Troubleshooting a function 1860

AWS Lambda Developer Guide

What's next?

• Learn how to create a CloudWatch Logs dashboard in Create a Dashboard in the Amazon
CloudWatch User Guide.

• Learn how to add queries to a CloudWatch Logs dashboard in Add Query to Dashboard or Export
Query Results in the Amazon CloudWatch User Guide.

What's next? 1861

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create_dashboard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ExportQueryResults.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ExportQueryResults.html

AWS Lambda Developer Guide

Monitoring Lambda applications

The Applications section of the Lambda console includes a Monitoring tab where you can review
an Amazon CloudWatch dashboard with aggregate metrics for the resources in your application.

To monitor a Lambda application

1. Open the Lambda console Applications page.

2. Choose Monitoring.

3. To see more details about the metrics in any graph, choose View in metrics from the drop-
down menu.

The graph appears in a new tab, with the relevant metrics listed below the graph. You can
customize your view of this graph, changing the metrics and resources shown, the statistic, the
period, and other factors to get a better understanding of the current situation.

By default, the Lambda console shows a basic dashboard. You can customize this page by
adding one or more Amazon CloudWatch dashboards to your application template with
the AWS::CloudWatch::Dashboard resource type. When your template includes one or more
dashboards, the page shows your dashboards instead of the default dashboard. You can switch
between dashboards with the drop-down menu on the top right of the page. The following
example creates a dashboard with a single widget that graphs the number of invocations of a
function named my-function.

Example function dashboard template

Resources:
 MyDashboard:

View application metrics 1862

https://console.aws.amazon.com/lambda/home#/applications
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-dashboard.html

AWS Lambda Developer Guide

 Type: AWS::CloudWatch::Dashboard
 Properties:
 DashboardName: my-dashboard
 DashboardBody: |
 {
 "widgets": [
 {
 "type": "metric",
 "width": 12,
 "height": 6,
 "properties": {
 "metrics": [
 [
 "AWS/Lambda",
 "Invocations",
 "FunctionName",
 "my-function",
 {
 "stat": "Sum",
 "label": "MyFunction"
 }
],
 [
 {
 "expression": "SUM(METRICS())",
 "label": "Total Invocations"
 }
]
],
 "region": "us-east-1",
 "title": "Invocations",
 "view": "timeSeries",
 "stacked": false
 }
 }
]
 }

For more information about authoring CloudWatch dashboards and widgets, see Dashboard body
structure and syntax in the Amazon CloudWatch API Reference.

View application metrics 1863

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/CloudWatch-Dashboard-Body-Structure.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/CloudWatch-Dashboard-Body-Structure.html

AWS Lambda Developer Guide

Monitor application performance with Amazon CloudWatch
Application Signals

Amazon CloudWatch Application Signals is an application performance monitoring (APM) solution
that enables developers and operators to monitor the health and performance of their serverless
applications built using Lambda. You can enable Application Signals in one-click from the Lambda
console, and you don't need to add any instrumentation code or external dependencies to your
Lambda function. After you enable Application Signals, you can view all collected metrics and
traces in the CloudWatch console. This page describes how to enable and view Application Signals
telemetry data for your applications.

Topics

• How Application Signals integrates with Lambda

• Pricing

• Supported runtimes

• Enabling Application Signals in the Lambda console

• Using the Application Signals dashboard

How Application Signals integrates with Lambda

Application Signals automatically instruments your Lambda functions using enhanced AWS Distro
for OpenTelemetry (ADOT) libraries, provided via a Lambda layer. Application Signals reads
data collected by the layer and generates dashboards with key performance metrics for your
applications.

You can attach this layer in one-click by enabling Application Signals in the Lambda console. When
you enable Application Signals from the console, Lambda does the following on your behalf:

• Updates your function's execution role to include the
CloudWatchLambdaApplicationSignalsExecutionRolePolicy. This policy provides
write access to AWS X-Ray and CloudWatch log groups used for Application Signals.

• Adds a layer to your function which automatically instruments the function to capture telemetry
data such as requests, availability, latency, errors, and faults. To ensure that Application Signals
works properly, remove any existing X-Ray SDK instrumentation code from your function.
Custom X-Ray SDK instrumentation code can interfere with the layer-provided instrumentation.

Application Signals 1864

https://aws-otel.github.io/
https://aws-otel.github.io/
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/CloudWatchLambdaApplicationSignalsExecutionRolePolicy.html

AWS Lambda Developer Guide

• Adds the AWS_LAMBDA_EXEC_WRAPPER environment variable to your function, and sets its
value to /opt/otel-instrument. This environment variable modifies your function's startup
behavior to utilize the Application Signals layer, and is required for proper instrumentation. If
this environment variable already exists, ensure that it's set to the required value.

Pricing

Using Application Signals for your Lambda functions incurs costs. For pricing information, see
Amazon CloudWatch pricing.

Supported runtimes

The Application Signals integration with Lambda works with the following runtimes:

• .NET 8

• Java 11

• Java 17

• Java 21

• Python 3.10

• Python 3.11

• Python 3.12

• Python 3.13

• Node.js 18.x

• Node.js 20.x

• Node.js 22.x

Enabling Application Signals in the Lambda console

You can enable Application Signals on any existing Lambda function using a supported runtime.
The following steps describe how to enable Application Signals in one-click in the Lambda console.

To enable Application Signals in the Lambda console

1. Open the Functions page of the Lambda console.

Pricing 1865

https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose your function.

3. Choose the Configuration tab.

4. On the left menu, choose Monitoring and operations tools.

5. On the Additional monitoring tools pane, choose Edit.

6. Under CloudWatch Application Signals and AWS X-Ray, and under Application Signals,
choose Enable.

7. Choose Save.

If this is your first time enabling Application Signals for your function, you must also do a one-
time service discovery setup for Application Signals in the CloudWatch console. After you complete
this one-time service discovery setup, Application Signals automatically discovers any additional
Lambda functions that you enable Application Signals for, across all Regions.

Note

After you invoke your updated function, it can take up to 10 minutes for service data to
start appearing in the Application Signals dashboard in the CloudWatch console.

Using the Application Signals dashboard

After you enable Application Signals for your function, you can visualize your application metrics in
the CloudWatch console. You can quickly view the associated Application Signals dashboard from
the Lambda console with the following steps:

To view the Application Signals dashboard for your function

1. Open the Functions page of the Lambda console.

2. Choose your function.

3. Choose the Monitor tab.

4. Choose the View Application Signals button. This takes you directly to the Application Signals
overview for your service in the CloudWatch console.

For example, the following screenshot shows metrics for latency, number of requests, availability,
fault rate, and error rate for a function across a 10 minute time window.

Using the Application Signals dashboard 1866

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To make the most out of your integration with Application Signals, you can create service-level
objectives (SLOs) for your aplication. For example, you can create latency SLOs to ensure your
application responds quickly to user requests, and availability SLOs to track uptime. SLOs can
help you detect performance degradation or outages before they impact your users. For more
information, see Service level objectives (SLOs) in the Amazon CloudWatch User Guide.

Using the Application Signals dashboard 1867

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-ServiceLevelObjectives.html

AWS Lambda Developer Guide

Remotely debug Lambda functions with Visual Studio Code

With the remote debugging feature in the AWS Toolkit for Visual Studio Code, you can debug your
Lambda functions running directly in the AWS cloud. This is useful when investigating issues that
are difficult to replicate locally or diagnose only with logs.

With remote debugging, you can:

• Set breakpoints in your Lambda function code.

• Step through code execution in real-time.

• Inspect variables and state during runtime.

• Debug Lambda functions deployed to AWS, including those in VPCs or with specific IAM
permissions.

Supported runtimes

Remote debugging is supported for the following runtimes:

• Python (AL2023)

• Java

• JavaScript/Node.js (AL2023)

Note

Remote debugging is supported for both x86_64 and arm64 architectures.

Security and remote debugging

Remote debugging operates within existing Lambda security boundaries. Users can attach layers to
a function using the UpdateFunctionConfiguration permission, which already has the ability
to access function environment variables and configuration. Remote debugging doesn't extend
beyond these existing permissions. Instead, it adds extra security controls through secure tunneling
and automatic session management. Additionally, remote debugging is entirely a customer-
controlled feature that requires explicit permissions and actions:

Debug with VS Code 1868

https://aws.amazon.com/visualstudiocode/

AWS Lambda Developer Guide

• IoT Secure Tunnel Creation: The AWS Toolkit must create an IoT secure tunnel, which only
occurs with the user's explicit permission using iot:OpenTunnel.

• Debug Layer Attachment and Token Management: The debugging process maintains security
through these controls:

• The debugging layer must be attached to the Lambda function and this process
requires the following permissions: lambda:UpdateFunctionConfiguration and
lambda:GetLayerVersion.

• A security token (generated via iot:OpenTunnel) must be updated in the
function environment variable before each debug session, which also requires
lambda:UpdateFunctionConfiguration.

• For security, this token is automatically rotated and the debug layer is automatically removed
at the end of each debug session and cannot be reused.

Note

Remote debugging is supported for both x86_64 and arm64 architectures.

Prerequisites

Before you begin remote debugging, ensure you have the following:

1. A Lambda function deployed to your AWS account.

2. AWS Toolkit for Visual Studio Code. See Setting up the AWS Toolkit for Visual Studio Code for
installation instructions.

3. The version of the AWS Toolkit you have installed is 3.69.0 or later.

4. AWS credentials configured in AWS Toolkit for Visual Studio Code. For more information, see
Authentication and access control.

Remotely debug Lambda functions

Follow these steps to start a remote debugging session:

1. Open the AWS Explorer in VS Code by selecting the AWS icon in the left sidebar.

2. Expand the Lambda section to see your functions.

Prerequisites 1869

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html

AWS Lambda Developer Guide

3. Right-click on the function you want to debug.

4. From the context menu, select Remotely invoke.

5. In the invoke window that opens, check the box for Enable debugging.

6. Click Invoke to start the remote debugging session.

Note

Lambda functions have a 250MB combined limit for function code and all attached layers.
The remote debugging layer adds approximately 40MB to your function's size.

A remote debugging session ends when you:

• Choose Remove Debug Setup from the Remote invoke configuration screen.

• Select the disconnect icon in the VS Code debugging controls.

• Select the handler file in the VS Code editor.

Note

The debug layer is automatically removed after 60 seconds of inactivity following your last
invoke.

Disable remote debugging

There are three ways to disable this feature:

• Deny Function Updates: Set lambda:UpdateFunctionConfiguration to deny.

• Restrict IoT Permissions: Deny IoT-related permissions

• Block Debug Layers: Deny lambda:GetLayerVersion for the following ARNs:

• arn:aws:lambda:*:*:layer:LDKLayerX86:*

• arn:aws:lambda:*:*:layer:LDKLayerArm64:*

Disable remote debugging 1870

AWS Lambda Developer Guide

Note

Disabling this feature prevents the debugging layer from being added during function
configuration updates.

Additional information

For more information on using Lambda in VS Code, refer to Developing Lambda functions locally
with VS Code.

For detailed instructions on troubleshooting, advanced use cases, and region availability, see
Remote debugging Lambda functions in the AWS Toolkit for Visual Studio Code User Guide.

Additional information 1871

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/lambda-remote-debug.html

AWS Lambda Developer Guide

Managing Lambda dependencies with layers

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

There are multiple reasons why you might consider using layers:

• To reduce the size of your deployment packages. Instead of including all of your function
dependencies along with your function code in your deployment package, put them in a layer.
This keeps deployment packages small and organized.

• To separate core function logic from dependencies. With layers, you can update your function
dependencies independent of your function code, and vice versa. This promotes separation of
concerns and helps you focus on your function logic.

• To share dependencies across multiple functions. After you create a layer, you can apply
it to any number of functions in your account. Without layers, you need to include the same
dependencies in each individual deployment package.

• To use the Lambda console code editor. The code editor is a useful tool for testing minor
function code updates quickly. However, you can’t use the editor if your deployment package size
is too large. Using layers reduces your package size and can unlock usage of the code editor.

• To lock an embedded SDK version.The embedded SDKs may change without notice as AWS
releases new services and features. You can lock a version of the SDK by creating a Lambda layer
with the specific version needed. The function then always uses the version in the layer, even if
the version embedded in the service changes.

If you're working with Lambda functions in Go or Rust, we recommend against using layers. For Go
and Rust functions, you provide your function code as an executable, which includes your compiled
function code along with all of its dependencies. Putting your dependencies in a layer forces your
function to manually load additional assemblies during the initialization phase, which can increase
cold start times. For optimal performance for Go and Rust functions, include your dependencies
along with your deployment package.

The following diagram illustrates the high-level architectural differences between two functions
that share dependencies. One uses Lambda layers, and the other does not.

1872

AWS Lambda Developer Guide

When you add a layer to a function, Lambda extracts the layer contents into the /opt directory in
your function’s execution environment. All natively supported Lambda runtimes include paths to
specific directories within the /opt directory. This gives your function access to your layer content.
For more information about these specific paths and how to properly package your layers, see the
section called “Packaging layers”.

You can include up to five layers per function. Also, you can use layers only with Lambda functions
deployed as a .zip file archive. For functions defined as a container image, package your preferred

1873

AWS Lambda Developer Guide

runtime and all code dependencies when you create the container image. For more information,
see Working with Lambda layers and extensions in container images on the AWS Compute Blog.

Topics

• How to use layers

• Layers and layer versions

• Packaging your layer content

• Creating and deleting layers in Lambda

• Adding layers to functions

• Using AWS CloudFormation with layers

• Using AWS SAM with layers

How to use layers

To create a layer, package your dependencies into a .zip file, similar to how you create a normal
deployment package. More specifically, the general process of creating and using layers involves
these three steps:

• First, package your layer content. This means creating a .zip file archive. For more information,
see the section called “Packaging layers”.

• Next, create the layer in Lambda. For more information, see the section called “Creating and
deleting layers”.

• Add the layer to your function(s). For more information, see the section called “Adding layers”.

Layers and layer versions

A layer version is an immutable snapshot of a specific version of a layer. When you create a new
layer, Lambda creates a new layer version with a version number of 1. Each time you publish an
update to the layer, Lambda increments the version number and creates a new layer version.

Every layer version is identified by a unique Amazon Resource Name (ARN). When adding a
layer to the function, you must specify the exact layer version you want to use (for example,
arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1).

How to use layers 1874

http://aws.amazon.com/blogs/compute/working-with-lambda-layers-and-extensions-in-container-images/

AWS Lambda Developer Guide

Packaging your layer content

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

This section explains how to properly package your layer content. For more conceptual information
about layers and why you might consider using them, see Lambda layers.

The first step to creating a layer is to bundle all of your layer content into a .zip file archive.
Because Lambda functions run on Amazon Linux, your layer content must be able to compile and
build in a Linux environment.

To ensure that your layer content works properly in a Linux environment, we recommend creating
your layer content using a tool like Docker.

Topics

• Layer paths for each Lambda runtime

Layer paths for each Lambda runtime

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that Lambda picks up your layer content, your
layer .zip file should have its dependencies in one of the following folder paths:

Runtime Path

nodejs/node_modules

nodejs/node18/node_modules (NODE_PATH)

nodejs/node20/node_modules (NODE_PATH)

Node.js

nodejs/node22/node_modules (NODE_PATH)

pythonPython

python/lib/ python3.x /site-packages
(site directories)

Packaging layers 1875

https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

Runtime Path

Java java/lib (CLASSPATH)

ruby/gems/3.4.0 (GEM_PATH)Ruby

ruby/lib (RUBYLIB)

bin (PATH)All runtimes

lib (LD_LIBRARY_PATH)

The following examples show how you can structure the folders in your layer .zip archive.

Node.js

Example file structure for the AWS X-Ray SDK for Node.js

xray-sdk.zip
nodejs/node_modules/aws-xray-sdk

Python

Example

python/ # Required top-level directory
requests/
boto3/
numpy/
(dependencies of the other packages)

Ruby

Example file structure for the JSON gem

json.zip
ruby/gems/3.4.0/
 | build_info
 | cache
 | doc

Layer paths for each Lambda runtime 1876

AWS Lambda Developer Guide

 | extensions
 | gems
 | # json-2.1.0
 # specifications
 # json-2.1.0.gemspec

Java

Example file structure for the Jackson JAR file

layer_content.zip
java
 # lib
 # jackson-core-2.17.0.jar
 # <other potential dependencies>
 # ...

All

Example file structure for the jq library

jq.zip
bin/jq

For language-specific instructions on packaging, creating, and adding a layer, refer to the following
pages:

• Node.js – the section called “Layers”

• Python – the section called “Layers”

• Ruby – the section called “Layers”

• Java – the section called “Layers”

We recommend against using layers to manage dependencies for Lambda functions written in
Go and Rust. This is because Lambda functions written in these languages compile into a single
executable, which you provide to Lambda when you deploy your function. This executable contains
your compiled function code, along with all of its dependencies. Using layers not only complicates
this process, but also leads to increased cold start times because your functions need to manually
load extra assemblies into memory during the init phase.

Layer paths for each Lambda runtime 1877

AWS Lambda Developer Guide

To use external dependencies with Go and Rust Lambda functions, include them directly in your
deployment package.

Layer paths for each Lambda runtime 1878

AWS Lambda Developer Guide

Creating and deleting layers in Lambda

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

This section explains how to create and delete layers in Lambda. For more conceptual information
about layers and why you might consider using them, see Lambda layers.

After you’ve packaged your layer content, the next step is to create the layer in Lambda. This
section demonstrates how to create and delete layers using the Lambda console or the Lambda
API only. To create a layer using AWS CloudFormation, see the section called “Layers with AWS
CloudFormation”. To create a layer using the AWS Serverless Application Model (AWS SAM), see the
section called “Layers with AWS SAM”.

Topics

• Creating a layer

• Deleting a layer version

Creating a layer

To create a layer, you can either upload the .zip file archive from your local machine or from
Amazon Simple Storage Service (Amazon S3). Lambda extracts the layer contents into the /opt
directory when setting up the execution environment for the function.

Layers can have one or more layer versions. When you create a layer, Lambda sets the layer version
to version 1. You can change the permissions on an existing layer version at any time. However, to
update the code or make other configuration changes, you must create a new version of the layer.

To create a layer (console)

1. Open the Layers page of the Lambda console.

2. Choose Create layer.

3. Under Layer configuration, for Name, enter a name for your layer.

4. (Optional) For Description, enter a description for your layer.

5. To upload your layer code, do one of the following:

• To upload a .zip file from your computer, choose Upload a .zip file. Then, choose Upload
to select your local .zip file.

Creating and deleting layers 1879

https://console.aws.amazon.com/lambda/home#/layers

AWS Lambda Developer Guide

• To upload a file from Amazon S3, choose Upload a file from Amazon S3. Then, for
Amazon S3 link URL, enter a link to the file.

6. (Optional) For Compatible architectures, choose one value or both values. For more
information, see the section called “Instruction sets (ARM/x86)”.

7. (Optional) For Compatible runtimes, choose the runtimes that your layer is compatible with.

8. (Optional) For License, enter any necessary license information.

9. Choose Create.

Alternatively, you can run the publish-layer-version AWS Command Line Interface (CLI) command.
Example:

aws lambda publish-layer-version --layer-name my-layer --zip-file fileb://layer.zip --
compatible-runtimes python3.13

Each time that you run publish-layer-version, Lambda creates a new version of the layer.

Deleting a layer version

To delete a layer version, use the DeleteLayerVersion API operation. For example, run the delete-
layer-version AWS CLI command with the layer name and layer version specified.

aws lambda delete-layer-version --layer-name my-layer --version-number 1

When you delete a layer version, you can no longer configure a Lambda function to use it. However,
any function that already uses the version continues to have access to it. Also, Lambda never reuses
version numbers for a layer name.

When calculating quotas, deleting a layer version means it's no longer counted as part of the
default 75 GB quota for storage of functions and layers. However, for functions that consume a
deleted layer version, the layer content still counts towards the function's deployment package size
quota (i.e. 250MB for .zip file archives).

Deleting a layer version 1880

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteLayerVersion.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-layer-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-layer-version.html

AWS Lambda Developer Guide

Adding layers to functions

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

This section explains how to add a layer to a Lambda function. For more conceptual information
about layers and why you might consider using them, see Lambda layers.

Before you can configure a Lambda function to use a layer, you must:

• Package your layer content

• Create a layer in Lambda

• Make sure that you have permission to call the GetLayerVersion API on the layer version. For
functions in your AWS account, you must have this permission in your user policy. To use a layer
in another account, the owner of that account must grant your account permission in a resource-
based policy. For examples, see the section called “Layer access for other accounts”.

You can add up to five layers to a Lambda function. The total unzipped size of the function and
all layers cannot exceed the unzipped deployment package size quota of 250 MB. For more
information, see Lambda quotas.

Your functions can continue to use any layer version that you’ve already added, even after that
layer version has been deleted, or after your permission to access the layer is revoked. However,
you cannot create a new function that uses a deleted layer version.

To add a layer to a function

1. Open the Functions page of the Lambda console.

2. Choose the function.

3. Scroll down to the Layers section, and then choose Add a layer.

4. Under Choose a layer, choose a layer source:

a. AWS layers: Choose from the list of AWS-managed extensions.

b. Custom layers: Choose a layer created in your AWS account.

c. Specify an ARN: To use a layer from a different AWS account, such as a third-party
extension, enter the Amazon Resource Name (ARN).

5. Choose Add.

Adding layers 1881

https://docs.aws.amazon.com/lambda/latest/api/API_GetLayerVersion.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

The order in which you add the layers is the order in which Lambda merges the layer content into
the execution environment. You can change the layer merge order using the console.

To update layer merge order for your function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function to configure.

3. Under Layers, choose Edit

4. Choose one of the layers.

5. Choose Merge earlier or Merge later to adjust the order of the layers.

6. Choose Save.

Layers are versioned. The content of each layer version is immutable. The owner of a layer can
release new layer versions to provide updated content. You can use the console to update the layer
version attached to your functions.

To update layer versions for your function (console)

1. Open the Layers page of the Lambda console.

2. Choose the layer you want to update the version for.

3. Choose the Functions using this version tab.

4. Choose the functions you want to modify, then choose Edit.

5. For Layer version, choose the layer version to change to.

6. Choose Update functions.

You cannot update function layer versions across AWS accounts.

Finding layer information

To find layers in your account that are compatible with your function’s runtime, use the ListLayers
API. For example, you can use the following list-layers AWS Command Line Interface (CLI)
command:

aws lambda list-layers --compatible-runtime python3.13

You should see output similar to the following:

Finding layer information 1882

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/layers
https://docs.aws.amazon.com/lambda/latest/api/API_ListLayers.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/list-layers.html

AWS Lambda Developer Guide

{
 "Layers": [
 {
 "LayerName": "my-layer",
 "LayerArn": "arn:aws:lambda:us-east-2:123456789012:layer:my-layer",
 "LatestMatchingVersion": {
 "LayerVersionArn": "arn:aws:lambda:us-east-2:123456789012:layer:my-
layer:2",
 "Version": 2,
 "Description": "My layer",
 "CreatedDate": "2025-04-15T00:37:46.592+0000",
 "CompatibleRuntimes": [
 "python3.13"
]
 }
 }
]
}

To list all layers in your account, omit the --compatible-runtime option. The response details
show the latest version of each layer.

You can also get the latest version of a layer using the ListLayerVersions API. For example, you can
use the following list-layer-versions CLI command:

aws lambda list-layer-versions --layer-name my-layer

You should see output similar to the following:

{
 "LayerVersions": [
 {
 "LayerVersionArn": "arn:aws:lambda:us-east-2:123456789012:layer:my-
layer:2",
 "Version": 2,
 "Description": "My layer",
 "CreatedDate": "2023-11-15T00:37:46.592+0000",
 "CompatibleRuntimes": [
 "java11"
]
 },
 {

Finding layer information 1883

https://docs.aws.amazon.com/lambda/latest/api/API_ListLayerVersions.html

AWS Lambda Developer Guide

 "LayerVersionArn": "arn:aws:lambda:us-east-2:123456789012:layer:my-
layer:1",
 "Version": 1,
 "Description": "My layer",
 "CreatedDate": "2023-11-15T00:27:46.592+0000",
 "CompatibleRuntimes": [
 "java11"
]
 }
]
}

Finding layer information 1884

AWS Lambda Developer Guide

Using AWS CloudFormation with layers

You can use AWS CloudFormation to create a layer and associate the layer with your Lambda
function. The following example template creates a layer named my-lambda-layer and attaches
the layer to the Lambda function using the Layers property.

In this example, the template specifies the Amazon Resource Name (ARN) of an existing
IAM execution role. You can also create a new execution role in the template using the AWS
CloudFormation AWS::IAM::Role resource.

Your function doesn't need any special permissions to use layers.

Description: CloudFormation Template for Lambda Function with Lambda Layer
Resources:
 MyLambdaLayer:
 Type: AWS::Lambda::LayerVersion
 Properties:
 LayerName: my-lambda-layer
 Description: My Lambda Layer
 Content:
 S3Bucket: amzn-s3-demo-bucket
 S3Key: my-layer.zip
 CompatibleRuntimes:
 - python3.9
 - python3.10
 - python3.11

 MyLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 FunctionName: my-lambda-function
 Runtime: python3.9
 Handler: index.handler
 Timeout: 10
 Role: arn:aws:iam::111122223333:role/my_lambda_role
 Layers:
 - !Ref MyLambdaLayer

Layers with AWS CloudFormation 1885

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html

AWS Lambda Developer Guide

Using AWS SAM with layers

You can use the AWS Serverless Application Model (AWS SAM) to automate the creation of layers in
your application. The AWS::Serverless::LayerVersion resource type creates a layer version
that you can reference from your Lambda function configuration.

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: AWS SAM Template for Lambda Function with Lambda Layer

Resources:
 MyLambdaLayer:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: my-lambda-layer
 Description: My Lambda Layer
 ContentUri: s3://amzn-s3-demo-bucket/my-layer.zip
 CompatibleRuntimes:
 - python3.9
 - python3.10
 - python3.11

 MyLambdaFunction:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: MyLambdaFunction
 Runtime: python3.9
 Handler: app.handler
 CodeUri: s3://amzn-s3-demo-bucket/my-function
 Layers:
 - !Ref MyLambdaLayer

Layers with AWS SAM 1886

AWS Lambda Developer Guide

Augment Lambda functions using Lambda extensions

You can use Lambda extensions to augment your Lambda functions. For example, use Lambda
extensions to integrate functions with your preferred monitoring, observability, security, and
governance tools. You can choose from a broad set of tools that AWS Lambda Partners provides, or
you can create your own Lambda extensions.

Lambda supports external and internal extensions. An external extension runs as an independent
process in the execution environment and continues to run after the function invocation is fully
processed. Because extensions run as separate processes, you can write them in a different
language than the function. All Lambda runtimes support extensions.

An internal extension runs as part of the runtime process. Your function accesses internal
extensions by using wrapper scripts or in-process mechanisms such as JAVA_TOOL_OPTIONS. For
more information, see Modifying the runtime environment.

You can add extensions to a function using the Lambda console, the AWS Command Line Interface
(AWS CLI), or infrastructure as code (IaC) services and tools such as AWS CloudFormation, AWS
Serverless Application Model (AWS SAM), and Terraform.

You are charged for the execution time that the extension consumes (in 1 ms increments). There
is no cost to install your own extensions. For more pricing information for extensions, see AWS
Lambda Pricing. For pricing information for partner extensions, see those partners' websites. See
the section called “Extensions partners” for a list of official partner extensions.

For a tutorial on extensions and how to use them with your Lambda functions, see the AWS
Lambda Extensions Workshop.

Topics

• Execution environment

• Impact on performance and resources

• Permissions

• Configuring Lambda extensions

• AWS Lambda extensions partners

• Using the Lambda Extensions API to create extensions

• Accessing real-time telemetry data for extensions using the Telemetry API

1887

https://aws.amazon.com/lambda/partners/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://catalog.workshops.aws/lambdaextensions/en-US
https://catalog.workshops.aws/lambdaextensions/en-US

AWS Lambda Developer Guide

Execution environment

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function and provides lifecycle support for the function's runtime and extensions.

The lifecycle of the execution environment includes the following phases:

• Init: In this phase, Lambda creates or unfreezes an execution environment with the configured
resources, downloads the code for the function and all layers, initializes any extensions, initializes
the runtime, and then runs the function’s initialization code (the code outside the main handler).
The Init phase happens either during the first invocation, or in advance of function invocations
if you have enabled provisioned concurrency.

The Init phase is split into three sub-phases: Extension init, Runtime init, and
Function init. These sub-phases ensure that all extensions and the runtime complete their
setup tasks before the function code runs.

When Lambda SnapStart is activated, the Init phase happens when you publish a function
version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
before-checkpoint runtime hook, then the code runs at the end of Init phase.

• Restore (SnapStart only): When you first invoke a SnapStart function and as the function
scales up, Lambda resumes new execution environments from the persisted snapshot instead of
initializing the function from scratch. If you have an after-restore runtime hook, the code runs at
the end of the Restore phase. You are charged for the duration of after-restore runtime hooks.
The runtime must load and after-restore runtime hooks must complete within the timeout limit
(10 seconds). Otherwise, you'll get a SnapStartTimeoutException. When the Restore phase
completes, Lambda invokes the function handler (the Invoke phase).

• Invoke: In this phase, Lambda invokes the function handler. After the function runs to
completion, Lambda prepares to handle another function invocation.

• Shutdown: This phase is triggered if the Lambda function does not receive any invocations for a
period of time. In the Shutdown phase, Lambda shuts down the runtime, alerts the extensions to
let them stop cleanly, and then removes the environment. Lambda sends a Shutdown event to
each extension, which tells the extension that the environment is about to be shut down.

Execution environment 1888

AWS Lambda Developer Guide

During the Init phase, Lambda extracts layers containing extensions into the /opt directory in
the execution environment. Lambda looks for extensions in the /opt/extensions/ directory,
interprets each file as an executable bootstrap for launching the extension, and starts all
extensions in parallel.

Impact on performance and resources

The size of your function's extensions counts towards the deployment package size limit. For a .zip
file archive, the total unzipped size of the function and all extensions cannot exceed the unzipped
deployment package size limit of 250 MB.

Extensions can impact the performance of your function because they share function resources
such as CPU, memory, and storage. For example, if an extension performs compute-intensive
operations, you may see your function's execution duration increase.

Each extension must complete its initialization before Lambda invokes the function. Therefore,
an extension that consumes significant initialization time can increase the latency of the function
invocation.

To measure the extra time that the extension takes after the function execution, you can use the
PostRuntimeExtensionsDuration function metric. To measure the increase in memory used,
you can use the MaxMemoryUsed metric. To understand the impact of a specific extension, you can
run different versions of your functions side by side.

Note

MaxMemoryUsed metric is one of the Metrics collected by Lambda Insights and not a
Lambda native metric.

Permissions

Extensions have access to the same resources as functions. Because extensions are executed within
the same environment as the function, permissions are shared between the function and the
extension.

For a .zip file archive, you can create an AWS CloudFormation template to simplify the task of
attaching the same extension configuration—including AWS Identity and Access Management
(IAM) permissions—to multiple functions.

Impact on performance and resources 1889

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights-metrics.html

AWS Lambda Developer Guide

Configuring Lambda extensions

Configuring extensions (.zip file archive)

You can add an extension to your function as a Lambda layer. Using layers enables you to share
extensions across your organization or to the entire community of Lambda developers. You can add
one or more extensions to a layer. You can register up to 10 extensions for a function.

You add the extension to your function using the same method as you would for any layer. For
more information, see Lambda layers.

Add an extension to your function (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Code tab if it is not already selected.

4. Under Layers, choose Edit.

5. For Choose a layer, choose Specify an ARN.

6. For Specify an ARN, enter the Amazon Resource Name (ARN) of an extension layer.

7. Choose Add.

Using extensions in container images

You can add extensions to your container image. The ENTRYPOINT container image setting
specifies the main process for the function. Configure the ENTRYPOINT setting in the Dockerfile, or
as an override in the function configuration.

You can run multiple processes within a container. Lambda manages the lifecycle of the main
process and any additional processes. Lambda uses the Extensions API to manage the extension
lifecycle.

Example: Adding an external extension

An external extension runs in a separate process from the Lambda function. Lambda starts a
process for each extension in the /opt/extensions/ directory. Lambda uses the Extensions
API to manage the extension lifecycle. After the function has run to completion, Lambda sends a
Shutdown event to each external extension.

Configuring extensions 1890

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Example of adding an external extension to a Python base image

FROM public.ecr.aws/lambda/python:3.11

Copy and install the app
COPY /app /app
WORKDIR /app
RUN pip install -r requirements.txt

Add an extension from the local directory into /opt/extensions
ADD my-extension.zip /opt/extensions
CMD python ./my-function.py

Next steps

To learn more about extensions, we recommend the following resources:

• For a basic working example, see Building Extensions for AWS Lambda on the AWS Compute
Blog.

• For information about extensions that AWS Lambda Partners provides, see Introducing AWS
Lambda Extensions on the AWS Compute Blog.

• To view available example extensions and wrapper scripts, see AWS Lambda Extensions on the
AWS Samples GitHub repository.

Next steps 1891

https://aws.amazon.com/blogs/compute/building-extensions-for-aws-lambda-in-preview/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-extensions-in-preview/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-extensions-in-preview/
https://github.com/aws-samples/aws-lambda-extensions

AWS Lambda Developer Guide

AWS Lambda extensions partners

AWS Lambda has partnered with several third party entities to provide extensions to integrate with
your Lambda functions. The following list details third party extensions that are ready for you to
use at any time.

• AppDynamics – Provides automatic instrumentation of Node.js or Python Lambda functions,
providing visibility and alerting on function performance.

• Axiom – Provides dashboards for monitoring Lambda function performance and aggregate
system-level metrics.

• Datadog – Provides comprehensive, real-time visibility to your serverless applications through
the use of metrics, traces, and logs.

• Dynatrace – Provides visibility into traces and metrics, and leverages AI for automated error
detection and root cause analysis across the entire application stack.

• Elastic – Provides Application Performance Monitoring (APM) to identify and resolve root cause
issues using correlated traces, metrics, and logs.

• Epsagon – Listens to invocation events, stores traces, and sends them in parallel to Lambda
function executions.

• Fastly– Protects your Lambda functions from suspicious activity, such as injection-style attacks,
account takeover via credential stuffing, malicious bots, and API abuse.

• HashiCorp Vault – Manages secrets and makes them available for developers to use within
function code, without making functions Vault aware.

• Honeycomb – Observability tool for debugging your app stack.

• Lumigo – Profiles Lambda function invocations and collects metrics for troubleshooting issues in
serverless and microservice environments.

• New Relic – Runs alongside Lambda functions, automatically collecting, enhancing, and
transporting telemetry to New Relic's unified observability platform.

• Sedai – An autonomous cloud management platform, powered by AI/ML, that delivers
continuous optimization for cloud operations teams to maximize cloud cost savings,
performance, and availability at scale.

• Sentry – Diagnose, fix, and optimize performance of Lambda functions.

• Site24x7 – Achieve real-time observability into your Lambda environments

• Splunk – Collects high-resolution, low-latency metrics for efficient and effective monitoring of
Lambda functions.

Extensions partners 1892

https://docs.appdynamics.com/display/PRO20X/Use+the+AppDynamics+AWS+Lambda+Extension+to+Instrument+Serverless+APM+at+Runtime
https://axiom.co/docs/apps/lambda
https://docs.datadoghq.com/serverless/datadog_lambda_library/extension/
https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-services/integrations/deploy-oneagent-as-lambda-extension/
https://www.elastic.co/guide/en/apm/agent/nodejs/current/lambda.html
https://docs.epsagon.com/docs/environment-monitoring/lambda/intro
https://docs.fastly.com/signalsciences/install-guides/paas/aws-lambda/
https://learn.hashicorp.com/tutorials/vault/aws-lambda
https://docs.honeycomb.io/getting-data-in/integrations/aws/aws-lambda/
https://docs.lumigo.io/docs/lambda-extensions
https://docs.newrelic.com/docs/serverless-function-monitoring/aws-lambda-monitoring/get-started/monitoring-aws-lambda-serverless-monitoring
https://docs.sedai.io/get-started/platform/optimization/aws/lambda
https://docs.sentry.io/platforms/javascript/guides/aws-lambda/
https://www.site24x7.com/help/aws/lambda-execution-logs.html
https://github.com/signalfx/splunk-otel-lambda

AWS Lambda Developer Guide

• Sumo Logic – Provides visibility into the health and performance of serverless applications.

• Salt Security – Simplifies API posture governance and API security for Lambda functions through
automated setup and support for diverse runtimes.

AWS managed extensions

AWS provides its own managed extensions, including:

• AWS AppConfig – Use feature flags and dynamic data to update your Lambda functions. You can
also use this extension to update other dynamic configuration, such as ops throttling and tuning.

• Amazon CodeGuru Profiler – Improves application performance and reduces cost by pinpointing
an application's most expensive line of code and providing recommendations for improving code.

• CloudWatch Lambda Insights – Monitor, troubleshoot, and optimize the performance of your
Lambda functions through automated dashboards.

• AWS Distro for OpenTelemetry (ADOT) – Enables functions to send trace data to AWS
monitoring services such as AWS X-Ray, and to destinations that support OpenTelemetry such as
Honeycomb and Lightstep.

• AWS Parameters and Secrets – Securely retrieve parameters from AWS Systems Manager
Parameter Store and secrets from AWS Secrets Manager in Lambda functions.

For additional extensions samples and demo projects, see AWS Lambda Extensions.

AWS managed extensions 1893

https://help.sumologic.com/03Send-Data/Collect-from-Other-Data-Sources/Collect_AWS_Lambda_Logs_using_an_Extension
https://salt.security/press-releases/salt-security-becomes-the-first-and-only-api-security-vendor-to-join-aws-lambda-ready-program?
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html#appconfig-integration-lambda-extensions-enabling
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/python-lambda-layers.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html
https://aws.amazon.com/otel
https://github.com/aws-samples/aws-lambda-extensions

AWS Lambda Developer Guide

Using the Lambda Extensions API to create extensions

Lambda function authors use extensions to integrate Lambda with their preferred tools for
monitoring, observability, security, and governance. Function authors can use extensions from
AWS, AWS Partners, and open-source projects. For more information on using extensions, see
Introducing AWS Lambda Extensions on the AWS Compute Blog. This section describes how to
use the Lambda Extensions API, the Lambda execution environment lifecycle, and the Lambda
Extensions API reference.

As an extension author, you can use the Lambda Extensions API to integrate deeply into
the Lambda execution environment. Your extension can register for function and execution
environment lifecycle events. In response to these events, you can start new processes, run logic,
and control and participate in all phases of the Lambda lifecycle: initialization, invocation, and
shutdown. In addition, you can use the Runtime Logs API to receive a stream of logs.

An extension runs as an independent process in the execution environment and can continue to run
after the function invocation is fully processed. Because extensions run as processes, you can write
them in a different language than the function. We recommend that you implement extensions
using a compiled language. In this case, the extension is a self-contained binary that is compatible
with supported runtimes. All Lambda runtimes support extensions. If you use a non-compiled
language, ensure that you include a compatible runtime in the extension.

Lambda also supports internal extensions. An internal extension runs as a separate thread in
the runtime process. The runtime starts and stops the internal extension. An alternative way to
integrate with the Lambda environment is to use language-specific environment variables and
wrapper scripts. You can use these to configure the runtime environment and modify the startup
behavior of the runtime process.

Extensions API 1894

https://aws.amazon.com/blogs/aws/getting-started-with-using-your-favorite-operational-tools-on-aws-lambda-extensions-are-now-generally-available/

AWS Lambda Developer Guide

You can add extensions to a function in two ways. For a function deployed as a .zip file archive,
you deploy your extension as a layer. For a function defined as a container image, you add the
extensions to your container image.

Note

For example extensions and wrapper scripts, see AWS Lambda Extensions on the AWS
Samples GitHub repository.

Topics

• Lambda execution environment lifecycle

• Extensions API reference

Lambda execution environment lifecycle

The lifecycle of the execution environment includes the following phases:

• Init: In this phase, Lambda creates or unfreezes an execution environment with the configured
resources, downloads the code for the function and all layers, initializes any extensions, initializes
the runtime, and then runs the function’s initialization code (the code outside the main handler).
The Init phase happens either during the first invocation, or in advance of function invocations
if you have enabled provisioned concurrency.

The Init phase is split into three sub-phases: Extension init, Runtime init, and
Function init. These sub-phases ensure that all extensions and the runtime complete their
setup tasks before the function code runs.

• Invoke: In this phase, Lambda invokes the function handler. After the function runs to
completion, Lambda prepares to handle another function invocation.

• Shutdown: This phase is triggered if the Lambda function does not receive any invocations for a
period of time. In the Shutdown phase, Lambda shuts down the runtime, alerts the extensions to
let them stop cleanly, and then removes the environment. Lambda sends a Shutdown event to
each extension, which tells the extension that the environment is about to be shut down.

Lambda execution environment lifecycle 1895

https://github.com/aws-samples/aws-lambda-extensions

AWS Lambda Developer Guide

Each phase starts with an event from Lambda to the runtime and to all registered extensions. The
runtime and each extension signal completion by sending a Next API request. Lambda freezes the
execution environment when each process has completed and there are no pending events.

Topics

• Init phase

• Invoke phase

• Shutdown phase

• Permissions and configuration

• Failure handling

• Troubleshooting extensions

Lambda execution environment lifecycle 1896

AWS Lambda Developer Guide

Init phase

During the Extension init phase, each extension needs to register with Lambda to receive
events. Lambda uses the full file name of the extension to validate that the extension has
completed the bootstrap sequence. Therefore, each Register API call must include the Lambda-
Extension-Name header with the full file name of the extension.

You can register up to 10 extensions for a function. This limit is enforced through the Register
API call.

After each extension registers, Lambda starts the Runtime init phase. The runtime process calls
functionInit to start the Function init phase.

The Init phase completes after the runtime and each registered extension indicate completion by
sending a Next API request.

Note

Extensions can complete their initialization at any point in the Init phase.

Lambda execution environment lifecycle 1897

AWS Lambda Developer Guide

Invoke phase

When a Lambda function is invoked in response to a Next API request, Lambda sends an Invoke
event to the runtime and to each extension that is registered for the Invoke event.

During the invocation, external extensions run in parallel with the function. They also continue
running after the function has completed. This enables you to capture diagnostic information or to
send logs, metrics, and traces to a location of your choice.

After receiving the function response from the runtime, Lambda returns the response to the client,
even if extensions are still running.

The Invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Lambda execution environment lifecycle 1898

AWS Lambda Developer Guide

Event payload: The event sent to the runtime (and the Lambda function) carries the entire request,
headers (such as RequestId), and payload. The event sent to each extension contains metadata
that describes the event content. This lifecycle event includes the type of the event, the time that
the function times out (deadlineMs), the requestId, the invoked function's Amazon Resource
Name (ARN), and tracing headers.

Extensions that want to access the function event body can use an in-runtime SDK that
communicates with the extension. Function developers use the in-runtime SDK to send the payload
to the extension when the function is invoked.

Here is an example payload:

{
 "eventType": "INVOKE",
 "deadlineMs": 676051,
 "requestId": "3da1f2dc-3222-475e-9205-e2e6c6318895",
 "invokedFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:ExtensionTest",
 "tracing": {
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-5f35ae12-0c0fec141ab77a00bc047aa2;Parent=2be948a625588e32;Sampled=1"
 }
 }

Lambda execution environment lifecycle 1899

AWS Lambda Developer Guide

Duration limit: The function's timeout setting limits the duration of the entire Invoke phase. For
example, if you set the function timeout as 360 seconds, the function and all extensions need to
complete within 360 seconds. Note that there is no independent post-invoke phase. The duration is
the total time it takes for your runtime and all your extensions' invocations to complete and is not
calculated until the function and all extensions have finished running.

Performance impact and extension overhead: Extensions can impact function performance. As an
extension author, you have control over the performance impact of your extension. For example, if
your extension performs compute-intensive operations, the function's duration increases because
the extension and the function code share the same CPU resources. In addition, if your extension
performs extensive operations after the function invocation completes, the function duration
increases because the Invoke phase continues until all extensions signal that they are completed.

Note

Lambda allocates CPU power in proportion to the function's memory setting. You might
see increased execution and initialization duration at lower memory settings because the
function and extension processes are competing for the same CPU resources. To reduce the
execution and initialization duration, try increasing the memory setting.

To help identify the performance impact introduced by extensions on the Invoke phase, Lambda
outputs the PostRuntimeExtensionsDuration metric. This metric measures the cumulative
time spent between the runtime Next API request and the last extension Next API request. To
measure the increase in memory used, use the MaxMemoryUsed metric. For more information
about function metrics, see Using CloudWatch metrics with Lambda.

Function developers can run different versions of their functions side by side to understand the
impact of a specific extension. We recommend that extension authors publish expected resource
consumption to make it easier for function developers to choose a suitable extension.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown to each registered external
extension. Extensions can use this time for final cleanup tasks. The Shutdown event is sent in
response to a Next API request.

Duration limit: The maximum duration of the Shutdown phase depends on the configuration of
registered extensions:

Lambda execution environment lifecycle 1900

AWS Lambda Developer Guide

• 0 ms – A function with no registered extensions

• 500 ms – A function with a registered internal extension

• 2,000 ms – A function with one or more registered external extensions

If the runtime or an extension does not respond to the Shutdown event within the limit, Lambda
ends the process using a SIGKILL signal.

Event payload: The Shutdown event contains the reason for the shutdown and the time remaining
in milliseconds.

The shutdownReason includes the following values:

• SPINDOWN – Normal shutdown

• TIMEOUT – Duration limit timed out

• FAILURE – Error condition, such as an out-of-memory event

Lambda execution environment lifecycle 1901

AWS Lambda Developer Guide

{
 "eventType": "SHUTDOWN",
 "shutdownReason": "reason for shutdown",
 "deadlineMs": "the time and date that the function times out in Unix time
 milliseconds"
}

Permissions and configuration

Extensions run in the same execution environment as the Lambda function. Extensions also share
resources with the function, such as CPU, memory, and /tmp disk storage. In addition, extensions
use the same AWS Identity and Access Management (IAM) role and security context as the function.

File system and network access permissions: Extensions run in the same file system and network
name namespace as the function runtime. This means that extensions need to be compatible with
the associated operating system. If an extension requires any additional outbound network traffic
rules, you must apply these rules to the function configuration.

Note

Because the function code directory is read-only, extensions cannot modify the function
code.

Environment variables: Extensions can access the function's environment variables, except for the
following variables that are specific to the runtime process:

• AWS_EXECUTION_ENV

• AWS_LAMBDA_LOG_GROUP_NAME

• AWS_LAMBDA_LOG_STREAM_NAME

• AWS_XRAY_CONTEXT_MISSING

• AWS_XRAY_DAEMON_ADDRESS

• LAMBDA_RUNTIME_DIR

• LAMBDA_TASK_ROOT

• _AWS_XRAY_DAEMON_ADDRESS

Lambda execution environment lifecycle 1902

AWS Lambda Developer Guide

• _AWS_XRAY_DAEMON_PORT

• _HANDLER

Failure handling

Initialization failures: If an extension fails, Lambda restarts the execution environment to enforce
consistent behavior and to encourage fail fast for extensions. Also, for some customers, the
extensions must meet mission-critical needs such as logging, security, governance, and telemetry
collection.

Invoke failures (such as out of memory, function timeout): Because extensions share resources
with the runtime, memory exhaustion affects them. When the runtime fails, all extensions and
the runtime itself participate in the Shutdown phase. In addition, the runtime is restarted—either
automatically as part of the current invocation, or via a deferred re-initialization mechanism.

If there is a failure (such as a function timeout or runtime error) during Invoke, the Lambda
service performs a reset. The reset behaves like a Shutdown event. First, Lambda shuts down the
runtime, then it sends a Shutdown event to each registered external extension. The event includes
the reason for the shutdown. If this environment is used for a new invocation, the extension and
runtime are re-initialized as part of the next invocation.

For a more detailed explanation of the previous diagram, see Failures during the invoke phase.

Extension logs: Lambda sends the log output of extensions to CloudWatch Logs. Lambda also
generates an additional log event for each extension during Init. The log event records the name
and registration preference (event, config) on success, or the failure reason on failure.

Troubleshooting extensions

• If a Register request fails, make sure that the Lambda-Extension-Name header in the
Register API call contains the full file name of the extension.

• If the Register request fails for an internal extension, make sure that the request does not
register for the Shutdown event.

Lambda execution environment lifecycle 1903

AWS Lambda Developer Guide

Extensions API reference

The OpenAPI specification for the extensions API version 2020-01-01 is available here: extensions-
api.zip

You can retrieve the value of the API endpoint from the AWS_LAMBDA_RUNTIME_API environment
variable. To send a Register request, use the prefix 2020-01-01/ before each API path. For
example:

http://${AWS_LAMBDA_RUNTIME_API}/2020-01-01/extension/register

API methods

• Register

• Next

• Init error

• Exit error

Register

During Extension init, all extensions need to register with Lambda to receive events. Lambda
uses the full file name of the extension to validate that the extension has completed the bootstrap
sequence. Therefore, each Register API call must include the Lambda-Extension-Name header
with the full file name of the extension.

Internal extensions are started and stopped by the runtime process, so they are not permitted to
register for the Shutdown event.

Path – /extension/register

Method – POST

Request headers

• Lambda-Extension-Name – The full file name of the extension. Required: yes. Type: string.

• Lambda-Extension-Accept-Feature – Use this to specify optional Extensions features
during registration. Required: no. Type: comma separated string. Features available to specify
using this setting:

Extensions API reference 1904

samples/extensions-api.zip
samples/extensions-api.zip

AWS Lambda Developer Guide

• accountId – If specified, the Extension registration response will contain the account ID
associated with the Lambda function that you're registering the Extension for.

Request body parameters

• events – Array of the events to register for. Required: no. Type: array of strings. Valid strings:
INVOKE, SHUTDOWN.

Response headers

• Lambda-Extension-Identifier – Generated unique agent identifier (UUID string) that is
required for all subsequent requests.

Response codes

• 200 – Response body contains the function name, function version, and handler name.

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Example Example request body

{
 'events': ['INVOKE', 'SHUTDOWN']
}

Example Example response body

{
 "functionName": "helloWorld",
 "functionVersion": "$LATEST",
 "handler": "lambda_function.lambda_handler"
}

Example Example response body with optional accountId feature

{

Extensions API reference 1905

AWS Lambda Developer Guide

 "functionName": "helloWorld",
 "functionVersion": "$LATEST",
 "handler": "lambda_function.lambda_handler",
 "accountId": "123456789012"
}

Next

Extensions send a Next API request to receive the next event, which can be an Invoke event
or a Shutdown event. The response body contains the payload, which is a JSON document that
contains event data.

The extension sends a Next API request to signal that it is ready to receive new events. This is a
blocking call.

Do not set a timeout on the GET call, as the extension can be suspended for a period of time until
there is an event to return.

Path – /extension/event/next

Method – GET

Request headers

• Lambda-Extension-Identifier – Unique identifier for extension (UUID string). Required: yes.
Type: UUID string.

Response headers

• Lambda-Extension-Event-Identifier – Unique identifier for the event (UUID string).

Response codes

• 200 – Response contains information about the next event (EventInvoke or EventShutdown).

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Extensions API reference 1906

AWS Lambda Developer Guide

Init error

The extension uses this method to report an initialization error to Lambda. Call it when the
extension fails to initialize after it has registered. After Lambda receives the error, no further API
calls succeed. The extension should exit after it receives the response from Lambda.

Path – /extension/init/error

Method – POST

Request headers

• Lambda-Extension-Identifier – Unique identifier for extension. Required: yes. Type: UUID
string.

• Lambda-Extension-Function-Error-Type – Error type that the extension encountered.
Required: yes. This header consists of a string value. Lambda accepts any string, but we
recommend a format of <category.reason>. For example:

• Extension.NoSuchHandler

• Extension.APIKeyNotFound

• Extension.ConfigInvalid

• Extension.UnknownReason

Request body parameters

• ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Extensions API reference 1907

AWS Lambda Developer Guide

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response codes

• 202 – Accepted

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Exit error

The extension uses this method to report an error to Lambda before exiting. Call it when you
encounter an unexpected failure. After Lambda receives the error, no further API calls succeed. The
extension should exit after it receives the response from Lambda.

Path – /extension/exit/error

Method – POST

Request headers

• Lambda-Extension-Identifier – Unique identifier for extension. Required: yes. Type: UUID
string.

• Lambda-Extension-Function-Error-Type – Error type that the extension encountered.
Required: yes. This header consists of a string value. Lambda accepts any string, but we
recommend a format of <category.reason>. For example:

• Extension.NoSuchHandler

• Extension.APIKeyNotFound

• Extension.ConfigInvalid

• Extension.UnknownReason

Extensions API reference 1908

AWS Lambda Developer Guide

Request body parameters

• ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response codes

• 202 – Accepted

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Extensions API reference 1909

AWS Lambda Developer Guide

Accessing real-time telemetry data for extensions using the
Telemetry API

The Telemetry API enables your extensions to receive telemetry data directly from Lambda.
During function initialization and invocation, Lambda automatically captures telemetry, including
logs, platform metrics, and platform traces. The Telemetry API enables extensions to access this
telemetry data directly from Lambda in near real time.

Within the Lambda execution environment, you can subscribe your Lambda extensions to
telemetry streams. After subscribing, Lambda automatically sends all telemetry data to your
extensions. You then have the flexibility to process, filter, and dispatch the data to your preferred
destination, such as an Amazon Simple Storage Service (Amazon S3) bucket or a third-party
observability tools provider.

The following diagram shows how the Extensions API and Telemetry API link extensions to Lambda
from within the execution environment. Additionally, the Runtime API connects your runtime and
function to Lambda.

Important

The Lambda Telemetry API supersedes the Lambda Logs API. While the Logs API remains
fully functional, we recommend using only the Telemetry API going forward. You can
subscribe your extension to a telemetry stream using either the Telemetry API or the Logs
API. After subscribing using one of these APIs, any attempt to subscribe using the other API
returns an error.

Extensions can use the Telemetry API to subscribe to three different telemetry streams:

Telemetry API 1910

AWS Lambda Developer Guide

• Platform telemetry – Logs, metrics, and traces, which describe events and errors related to the
execution environment runtime lifecycle, extension lifecycle, and function invocations.

• Function logs – Custom logs that the Lambda function code generates.

• Extension logs – Custom logs that the Lambda extension code generates.

Note

Lambda sends logs and metrics to CloudWatch, and traces to X-Ray (if you've activated
tracing), even if an extension subscribes to telemetry streams.

Sections

• Creating extensions using the Telemetry API

• Registering your extension

• Creating a telemetry listener

• Specifying a destination protocol

• Configuring memory usage and buffering

• Sending a subscription request to the Telemetry API

• Inbound Telemetry API messages

• Lambda Telemetry API reference

• Lambda Telemetry API Event schema reference

• Converting Lambda Telemetry API Event objects to OpenTelemetry Spans

• Using the Lambda Logs API

Creating extensions using the Telemetry API

Lambda extensions run as independent processes in the execution environment. Extensions can
continue to run after function invocation completes. Because extensions are separate processes,
you can write them in a language different from the function code. We recommend writing
extensions using a compiled language such as Golang or Rust. This way, the extension is a self-
contained binary that can be compatible with any supported runtime.

The following diagram illustrates a four-step process to create an extension that receives and
processes telemetry data using the Telemetry API.

Creating extensions using the Telemetry API 1911

AWS Lambda Developer Guide

Here is each step in more detail:

1. Register your extension using the the section called “Extensions API”. This provides you with
a Lambda-Extension-Identifier, which you'll need in the following steps. For more
information about how to register your extension, see the section called “Registering your
extension”.

2. Create a telemetry listener. This can be a basic HTTP or TCP server. Lambda uses the URI of
the telemetry listener to send telemetry data to your extension. For more information, see the
section called “Creating a telemetry listener”.

3. Using the Subscribe API in the Telemetry API, subscribe your extension to the desired telemetry
streams. You'll need the URI of your telemetry listener for this step. For more information, see
the section called “Sending a subscription request to the Telemetry API”.

4. Get telemetry data from Lambda via the telemetry listener. You can do any custom processing
of this data, such as dispatching the data to Amazon S3 or to an external observability service.

Creating extensions using the Telemetry API 1912

AWS Lambda Developer Guide

Note

A Lambda function's execution environment can start and stop multiple times as part of its
lifecycle. In general, your extension code runs during function invocations, and also up to 2
seconds during the shutdown phase. We recommend batching the telemetry as it arrives to
your listener. Then, use the Invoke and Shutdown lifecycle events to send each batch to
their desired destinations.

Registering your extension

Before you can subscribe to telemetry data, you must register your Lambda extension. Registration
occurs during the extension initialization phase. The following example shows an HTTP request to
register an extension.

POST http://${AWS_LAMBDA_RUNTIME_API}/2020-01-01/extension/register
 Lambda-Extension-Name: lambda_extension_name
{
 'events': ['INVOKE', 'SHUTDOWN']
}

If the request succeeds, the subscriber receives an HTTP 200 success response. The response header
contains the Lambda-Extension-Identifier. The response body contains other properties of
the function.

HTTP/1.1 200 OK
Lambda-Extension-Identifier: a1b2c3d4-5678-90ab-cdef-EXAMPLE11111
{
 "functionName": "lambda_function",
 "functionVersion": "$LATEST",
 "handler": "lambda_handler",
 "accountId": "123456789012"
}

For more information, see the the section called “Extensions API reference”.

Creating a telemetry listener

Your Lambda extension must have a listener that handles incoming requests from the Telemetry
API. The following code shows an example telemetry listener implementation in Golang:

Registering your extension 1913

AWS Lambda Developer Guide

// Starts the server in a goroutine where the log events will be sent
func (s *TelemetryApiListener) Start() (string, error) {
 address := listenOnAddress()
 l.Info("[listener:Start] Starting on address", address)
 s.httpServer = &http.Server{Addr: address}
 http.HandleFunc("/", s.http_handler)
 go func() {
 err := s.httpServer.ListenAndServe()
 if err != http.ErrServerClosed {
 l.Error("[listener:goroutine] Unexpected stop on Http Server:", err)
 s.Shutdown()
 } else {
 l.Info("[listener:goroutine] Http Server closed:", err)
 }
 }()
 return fmt.Sprintf("http://%s/", address), nil
}

// http_handler handles the requests coming from the Telemetry API.
// Everytime Telemetry API sends log events, this function will read them from the
 response body
// and put into a synchronous queue to be dispatched later.
// Logging or printing besides the error cases below is not recommended if you have
 subscribed to
// receive extension logs. Otherwise, logging here will cause Telemetry API to send new
 logs for
// the printed lines which may create an infinite loop.
func (s *TelemetryApiListener) http_handler(w http.ResponseWriter, r *http.Request) {
 body, err := ioutil.ReadAll(r.Body)
 if err != nil {
 l.Error("[listener:http_handler] Error reading body:", err)
 return
 }

 // Parse and put the log messages into the queue
 var slice []interface{}
 _ = json.Unmarshal(body, &slice)

 for _, el := range slice {
 s.LogEventsQueue.Put(el)
 }

Creating a telemetry listener 1914

AWS Lambda Developer Guide

 l.Info("[listener:http_handler] logEvents received:", len(slice), " LogEventsQueue
 length:", s.LogEventsQueue.Len())
 slice = nil
}

Specifying a destination protocol

When you subscribe to receive telemetry using the Telemetry API, you can specify a destination
protocol in addition to the destination URI:

{
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
 }
}

Lambda accepts two protocols for receiving telemetry:

• HTTP (recommended) – Lambda delivers telemetry to a local HTTP endpoint (http://
sandbox.localdomain:${PORT}/${PATH}) as an array of records in JSON format. The $PATH
parameter is optional. Lambda supports only HTTP, not HTTPS. Lambda delivers telemetry
through POST requests.

• TCP – Lambda delivers telemetry to a TCP port in Newline delimited JSON (NDJSON) format.

Note

We strongly recommend using HTTP rather than TCP. With TCP, the Lambda platform
cannot acknowledge when it delivers telemetry to the application layer. Therefore, if your
extension crashes, you might lose telemetry. HTTP does not have this limitation.

Before subscribing to receive telemetry, establish the local HTTP listener or TCP port. During setup,
note the following:

• Lambda sends telemetry only to destinations that are inside the execution environment.

Specifying a destination protocol 1915

https://github.com/ndjson/ndjson-spec

AWS Lambda Developer Guide

• Lambda retries to send telemetry (with backoff) in the absence of a listener, or if the POST
request encounters an error. If the telemetry listener crashes, it resumes receiving telemetry
after Lambda restarts the execution environment.

• Lambda reserves port 9001. There are no other port number restrictions or recommendations.

Configuring memory usage and buffering

Memory usage in an execution environment grows linearly with the number of subscribers.
Subscriptions consume memory resources because each one opens a new memory buffer to store
telemetry data. Buffer memory usage contributes to the overall memory consumption in the
execution environment.

When subscribing to receive telemetry through the Telemetry API, you have the option to buffer
telemetry data and deliver it to subscribers in batches. To optimize memory usage, you can specify
a buffering configuration:

{
 "buffering": {
 "maxBytes": 256*1024,
 "maxItems": 1000,
 "timeoutMs": 100
 }
}

Parameter Description Defaults and limits

maxBytes The maximum volume of
telemetry (in bytes) to buffer
in memory.

Default: 262,144

Minimum: 262,144

Maximum: 1,048,576

maxItems The maximum number of
events to buffer in memory.

Default: 10,000

Minimum: 1,000

Maximum: 10,000

Configuring memory usage and buffering 1916

AWS Lambda Developer Guide

Parameter Description Defaults and limits

timeoutMs The maximum time (in
milliseconds) to buffer a
batch.

Default: 1,000

Minimum: 25

Maximum: 30,000

When setting up buffering, keep these points in mind:

• If any of the input streams are closed, Lambda flushes the logs. For example, this can occur if the
runtime crashes.

• Each subscriber can customize their buffering configuration in their subscription request.

• When determining the buffer size for reading the data, anticipate receiving payloads as large as
2 * maxBytes + metadataBytes, where maxBytes is a component of your buffering setup.
To gauge the amount of metadataBytes to consider, review the following metadata. Lambda
appends metadata similar to this to each record:

{
 "time": "2022-08-20T12:31:32.123Z",
 "type": "function",
 "record": "Hello World"
}

• If the subscriber cannot process incoming telemetry fast enough, or if your function code
generates very high log volume, Lambda might drop records to keep memory utilization
bounded. When this occurs, Lambda sends a platform.logsDropped event.

Sending a subscription request to the Telemetry API

Lambda extensions can subscribe to receive telemetry data by sending a subscription request
to the Telemetry API. The subscription request should contain information about the types of
events that you want the extension to subscribe to. In addition, the request can contain delivery
destination information and a buffering configuration.

Before sending a subscription request, you must have an extension ID (Lambda-Extension-
Identifier). When you register your extension with the Extensions API, you obtain an extension
ID from the API response.

Sending a subscription request to the Telemetry API 1917

AWS Lambda Developer Guide

Subscription occurs during the extension initialization phase. The following example shows an
HTTP request to subscribe to all three telemetry streams: platform telemetry, function logs, and
extension logs.

PUT http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry HTTP/1.1
{
 "schemaVersion": "2022-12-13",
 "types": [
 "platform",
 "function",
 "extension"
],
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 256*1024,
 "timeoutMs": 100
 },
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
 }
}

If the request succeeds, then the subscriber receives an HTTP 200 success response.

HTTP/1.1 200 OK
"OK"

Inbound Telemetry API messages

After subscribing using the Telemetry API, an extension automatically starts to receive telemetry
from Lambda via POST requests. Each POST request body contains an array of Event objects. Each
Event has the following schema:

{
 time: String,
 type: String,
 record: Object
}

Inbound Telemetry API messages 1918

AWS Lambda Developer Guide

• The time property defines when the Lambda platform generated the event. This is different
from when the event actually occurred. The string value of time is a timestamp in ISO 8601
format.

• The type property defines the event type. The following table describes all possible values.

• The record property defines a JSON object that contains the telemetry data. The schema of this
JSON object depends on the type.

The following table summarizes all types of Event objects, and links to the Telemetry API Event
schema reference for each event type.

Category Event type Description Event record schema

Platform event platform.
initStart

Function initialization
started.

the section called
“platform.
initStart ”
schema

Platform event platform.
initRunti
meDone

Function initialization
completed.

the section called
“platform.
initRunti
meDone ” schema

Platform event platform.
initReport

A report of function
initialization.

the section called
“platform.
initReport ”
schema

Platform event platform.start Function invocation
started.

the section called
“platform.start ”
schema

Platform event platform.
runtimeDone

The runtime finished
processing an event
with either success or
failure.

the section called
“platform.
runtimeDone ”
schema

Inbound Telemetry API messages 1919

AWS Lambda Developer Guide

Category Event type Description Event record schema

Platform event platform.report A report of function
invocation.

the section called
“platform.
report ” schema

Platform event platform.
restoreStart

Runtime restore
started.

the section called
“platform.
restoreStart ”
schema

Platform event platform.
restoreRu
ntimeDone

Runtime restore
completed.

the section called
“platform.
restoreRu
ntimeDone ”
schema

Platform event platform.
restoreReport

Report of runtime
restore.

the section called
“platform.
restoreReport ”
schema

Platform event platform.
telemetry
Subscription

The extension
subscribed to the
Telemetry API.

the section called
“platform.
telemetry
Subscription ”
schema

Platform event platform.
logsDropped

Lambda dropped log
entries.

the section called
“platform.
logsDropped ”
schema

Function logs function A log line from
function code.

the section called
“function” schema

Inbound Telemetry API messages 1920

AWS Lambda Developer Guide

Category Event type Description Event record schema

Extension logs extension A log line from
extension code.

the section called
“extension ”
schema

Inbound Telemetry API messages 1921

AWS Lambda Developer Guide

Lambda Telemetry API reference

Use the Lambda Telemetry API endpoint to subscribe extensions to telemetry streams. You can
retrieve the Telemetry API endpoint from the AWS_LAMBDA_RUNTIME_API environment variable.
To send an API request, append the API version (2022-07-01/) and telemetry/. For example:

http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry/

For the OpenAPI Specification (OAS) definition of the subscription responses version 2022-12-13,
see the following:

• HTTP – telemetry-api-http-schema.zip

• TCP – telemetry-api-tcp-schema.zip

API operations

• Subscribe

Subscribe

To subscribe to a telemetry stream, a Lambda extension can send a Subscribe API request.

• Path – /telemetry

• Method – PUT

• Headers

• Content-Type: application/json

• Request body parameters

• schemaVersion

• Required: Yes

• Type: String

• Valid values: "2022-12-13" or "2022-07-01"

• destination – The configuration settings that define the telemetry event destination and the
protocol for event delivery.

• Required: Yes

• Type: Object

API reference 1922

samples/events_http_schema_v2022_12_13.zip
samples/events_tcp_schema_v2022_12_13.zip

AWS Lambda Developer Guide

{
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
}

• protocol – The protocol that Lambda uses to send telemetry data.

• Required: Yes

• Type: String

• Valid values: "HTTP"|"TCP"

• URI – The URI to send telemetry data to.

• Required: Yes

• Type: String

• For more information, see the section called “Specifying a destination protocol”.

• types – The types of telemetry that you want the extension to subscribe to.

• Required: Yes

• Type: Array of strings

• Valid values: "platform"|"function"|"extension"

• buffering – The configuration settings for event buffering.

• Required: No

• Type: Object

{
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 256*1024,
 "timeoutMs": 100
 }
}

• maxItems – The maximum number of events to buffer in memory.

• Required: No

• Type: Integer

• Default: 1,000

• Minimum: 1,000
API reference 1923

AWS Lambda Developer Guide

• Maximum: 10,000

• maxBytes – The maximum volume of telemetry (in bytes) to buffer in memory.

• Required: No

• Type: Integer

• Default: 262,144

• Minimum: 262,144

• Maximum: 1,048,576

• timeoutMs – The maximum time (in milliseconds) to buffer a batch.

• Required: No

• Type: Integer

• Default: 1,000

• Minimum: 25

• Maximum: 30,000

• For more information, see the section called “Configuring memory usage and buffering”.

Example Subscribe API request

PUT http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry HTTP/1.1
{
 "schemaVersion": "2022-12-13",
 "types": [
 "platform",
 "function",
 "extension"
],
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 256*1024,
 "timeoutMs": 100
 },
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
 }
}

API reference 1924

AWS Lambda Developer Guide

If the Subscribe request succeeds, the extension receives an HTTP 200 success response:

HTTP/1.1 200 OK
"OK"

If the Subscribe request fails, the extension receives an error response. For example:

HTTP/1.1 400 OK
{
 "errorType": "ValidationError",
 "errorMessage": "URI port is not provided; types should not be empty"
}

Here are some additional response codes that the extension can receive:

• 200 – Request completed successfully

• 202 – Request accepted. Subscription request response in local testing environment

• 400 – Bad request

• 500 – Service error

API reference 1925

AWS Lambda Developer Guide

Lambda Telemetry API Event schema reference

Use the Lambda Telemetry API endpoint to subscribe extensions to telemetry streams. You can
retrieve the Telemetry API endpoint from the AWS_LAMBDA_RUNTIME_API environment variable.
To send an API request, append the API version (2022-07-01/) and telemetry/. For example:

http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry/

For the OpenAPI Specification (OAS) definition of the subscription responses version 2022-12-13,
see the following:

• HTTP – telemetry-api-http-schema.zip

• TCP – telemetry-api-tcp-schema.zip

The following table is a summary of all the types of Event objects that the Telemetry API
supports.

Category Event type Description Event record schema

Platform event platform.
initStart

Function initialization
started.

the section called
“platform.
initStart ”
schema

Platform event platform.
initRunti
meDone

Function initialization
completed.

the section called
“platform.
initRunti
meDone ” schema

Platform event platform.
initReport

A report of function
initialization.

the section called
“platform.
initReport ”
schema

Platform event platform.start Function invocation
started.

the section called
“platform.start ”
schema

Event schema reference 1926

samples/events_http_schema_v2022_12_13.zip
samples/events_tcp_schema_v2022_12_13.zip

AWS Lambda Developer Guide

Category Event type Description Event record schema

Platform event platform.
runtimeDone

The runtime finished
processing an event
with either success or
failure.

the section called
“platform.
runtimeDone ”
schema

Platform event platform.report A report of function
invocation.

the section called
“platform.
report ” schema

Platform event platform.
restoreStart

Runtime restore
started.

the section called
“platform.
restoreStart ”
schema

Platform event platform.
restoreRu
ntimeDone

Runtime restore
completed.

the section called
“platform.
restoreRu
ntimeDone ”
schema

Platform event platform.
restoreReport

Report of runtime
restore.

the section called
“platform.
restoreReport ”
schema

Platform event platform.
telemetry
Subscription

The extension
subscribed to the
Telemetry API.

the section called
“platform.
telemetry
Subscription ”
schema

Platform event platform.
logsDropped

Lambda dropped log
entries.

the section called
“platform.
logsDropped ”
schema

Event schema reference 1927

AWS Lambda Developer Guide

Category Event type Description Event record schema

Function logs function A log line from
function code.

the section called
“function” schema

Extension logs extension A log line from
extension code.

the section called
“extension ”
schema

Contents

• Telemetry API Event object types

• platform.initStart

• platform.initRuntimeDone

• platform.initReport

• platform.start

• platform.runtimeDone

• platform.report

• platform.restoreStart

• platform.restoreRuntimeDone

• platform.restoreReport

• platform.extension

• platform.telemetrySubscription

• platform.logsDropped

• function

• extension

• Shared object types

• InitPhase

• InitReportMetrics

• InitType

• ReportMetrics

• RestoreReportMetrics

• RuntimeDoneMetrics
Event schema reference 1928

AWS Lambda Developer Guide

• Span

• Status

• TraceContext

• TracingType

Telemetry API Event object types

This section details the types of Event objects that the Lambda Telemetry API supports. In the
event descriptions, a question mark (?) indicates that the attribute may not be present in the
object.

platform.initStart

A platform.initStart event indicates that the function initialization phase has started. A
platform.initStart Event object has the following shape:

Event: Object
- time: String
- type: String = platform.initStart
- record: PlatformInitStart

The PlatformInitStart object has the following attributes:

• functionName – String

• functionVersion – String

• initializationType – the section called “InitType” object

• instanceId? – String

• instanceMaxMemory? – Integer

• phase – the section called “InitPhase” object

• runtimeVersion? – String

• runtimeVersionArn? – String

The following is an example Event of type platform.initStart:

{
 "time": "2022-10-12T00:00:15.064Z",

Event schema reference 1929

AWS Lambda Developer Guide

 "type": "platform.initStart",
 "record": {
 "initializationType": "on-demand",
 "phase": "init",
 "runtimeVersion": "nodejs-14.v3",
 "runtimeVersionArn": "arn",
 "functionName": "myFunction",
 "functionVersion": "$LATEST",
 "instanceId": "82561ce0-53dd-47d1-90e0-c8f5e063e62e",
 "instanceMaxMemory": 256
 }
}

platform.initRuntimeDone

A platform.initRuntimeDone event indicates that the function initialization phase has
completed. A platform.initRuntimeDone Event object has the following shape:

Event: Object
- time: String
- type: String = platform.initRuntimeDone
- record: PlatformInitRuntimeDone

The PlatformInitRuntimeDone object has the following attributes:

• initializationType – the section called “InitType” object

• phase – the section called “InitPhase” object

• status – the section called “Status” object

• spans? – List of the section called “Span” objects

The following is an example Event of type platform.initRuntimeDone:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.initRuntimeDone",
 "record": {
 "initializationType": "on-demand"
 "status": "success",
 "spans": [
 {

Event schema reference 1930

AWS Lambda Developer Guide

 "name": "someTimeSpan",
 "start": "2022-06-02T12:02:33.913Z",
 "durationMs": 70.5
 }
]
 }
}

platform.initReport

A platform.initReport event contains an overall report of the function initialization phase. A
platform.initReport Event object has the following shape:

Event: Object
- time: String
- type: String = platform.initReport
- record: PlatformInitReport

The PlatformInitReport object has the following attributes:

• errorType? – string

• initializationType – the section called “InitType” object

• phase – the section called “InitPhase” object

• metrics – the section called “InitReportMetrics” object

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

The following is an example Event of type platform.initReport:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.initReport",
 "record": {
 "initializationType": "on-demand",
 "status": "success",
 "phase": "init",
 "metrics": {
 "durationMs": 125.33
 },

Event schema reference 1931

AWS Lambda Developer Guide

 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-06-02T12:02:33.913Z",
 "durationMs": 90.1
 }
]
 }
}

platform.start

A platform.start event indicates that the function invocation phase has started. A
platform.start Event object has the following shape:

Event: Object
- time: String
- type: String = platform.start
- record: PlatformStart

The PlatformStart object has the following attributes:

• requestId – String

• version? – String

• tracing? – the section called “TraceContext”

The following is an example Event of type platform.start:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.start",
 "record": {
 "requestId": "6d68ca91-49c9-448d-89b8-7ca3e6dc66aa",
 "version": "$LATEST",
 "tracing": {
 "spanId": "54565fb41ac79632",
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
 }
 }

Event schema reference 1932

AWS Lambda Developer Guide

}

platform.runtimeDone

A platform.runtimeDone event indicates that the function invocation phase has completed. A
platform.runtimeDone Event object has the following shape:

Event: Object
- time: String
- type: String = platform.runtimeDone
- record: PlatformRuntimeDone

The PlatformRuntimeDone object has the following attributes:

• errorType? – String

• metrics? – the section called “RuntimeDoneMetrics” object

• requestId – String

• status – the section called “Status” object

• spans? – List of the section called “Span” objects

• tracing? – the section called “TraceContext” object

The following is an example Event of type platform.runtimeDone:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId": "6d68ca91-49c9-448d-89b8-7ca3e6dc66aa",
 "status": "success",
 "tracing": {
 "spanId": "54565fb41ac79632",
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
 },
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-08-02T12:01:23:521Z",
 "durationMs": 80.0

Event schema reference 1933

AWS Lambda Developer Guide

 }
],
 "metrics": {
 "durationMs": 140.0,
 "producedBytes": 16
 }
 }
}

platform.report

A platform.report event contains an overall report of the function invoke phase. A
platform.report Event object has the following shape:

Event: Object
- time: String
- type: String = platform.report
- record: PlatformReport

The PlatformReport object has the following attributes:

• metrics – the section called “ReportMetrics” object

• requestId – String

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

• tracing? – the section called “TraceContext” object

The following is an example Event of type platform.report:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.report",
 "record": {
 "metrics": {
 "billedDurationMs": 694,
 "durationMs": 693.92,
 "initDurationMs": 397.68,
 "maxMemoryUsedMB": 84,
 "memorySizeMB": 128
 },

Event schema reference 1934

AWS Lambda Developer Guide

 "requestId": "6d68ca91-49c9-448d-89b8-7ca3e6dc66aa",
 }
}

platform.restoreStart

A platform.restoreStart event indicates that a function environment restoration event
started. In an environment restoration event, Lambda creates the environment from a cached
snapshot rather than initializing it from scratch. For more information, see Lambda SnapStart. A
platform.restoreStart Event object has the following shape:

Event: Object
- time: String
- type: String = platform.restoreStart
- record: PlatformRestoreStart

The PlatformRestoreStart object has the following attributes:

• functionName – String

• functionVersion – String

• instanceId? – String

• instanceMaxMemory? – String

• runtimeVersion? – String

• runtimeVersionArn? – String

The following is an example Event of type platform.restoreStart:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.restoreStart",
 "record": {
 "runtimeVersion": "nodejs-14.v3",
 "runtimeVersionArn": "arn",
 "functionName": "myFunction",
 "functionVersion": "$LATEST",
 "instanceId": "82561ce0-53dd-47d1-90e0-c8f5e063e62e",
 "instanceMaxMemory": 256
 }
}

Event schema reference 1935

AWS Lambda Developer Guide

platform.restoreRuntimeDone

A platform.restoreRuntimeDone event indicates that a function environment restoration
event completed. In an environment restoration event, Lambda creates the environment from
a cached snapshot rather than initializing it from scratch. For more information, see Lambda
SnapStart. A platform.restoreRuntimeDone Event object has the following shape:

Event: Object
- time: String
- type: String = platform.restoreRuntimeDone
- record: PlatformRestoreRuntimeDone

The PlatformRestoreRuntimeDone object has the following attributes:

• errorType? – String

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

The following is an example Event of type platform.restoreRuntimeDone:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.restoreRuntimeDone",
 "record": {
 "status": "success",
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-08-02T12:01:23:521Z",
 "durationMs": 80.0
 }
]
 }
}

platform.restoreReport

A platform.restoreReport event contains an overall report of a function restoration event. A
platform.restoreReport Event object has the following shape:

Event schema reference 1936

AWS Lambda Developer Guide

Event: Object
- time: String
- type: String = platform.restoreReport
- record: PlatformRestoreReport

The PlatformRestoreReport object has the following attributes:

• errorType? – string

• metrics? – the section called “RestoreReportMetrics” object

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

The following is an example Event of type platform.restoreReport:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.restoreReport",
 "record": {
 "status": "success",
 "metrics": {
 "durationMs": 15.19
 },
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-08-02T12:01:23:521Z",
 "durationMs": 30.0
 }
]
 }
}

platform.extension

An extension event contains logs from the extension code. An extension Event object has the
following shape:

Event: Object
- time: String
- type: String = extension

Event schema reference 1937

AWS Lambda Developer Guide

- record: {}

The PlatformExtension object has the following attributes:

• events – List of String

• name – String

• state – String

The following is an example Event of type platform.extension:

{
 "time": "2022-10-12T00:02:15.000Z",
 "type": "platform.extension",
 "record": {
 "events": ["INVOKE", "SHUTDOWN"],
 "name": "my-telemetry-extension",
 "state": "Ready"
 }
}

platform.telemetrySubscription

A platform.telemetrySubscription event contains information about an extension
subscription. A platform.telemetrySubscription Event object has the following shape:

Event: Object
- time: String
- type: String = platform.telemetrySubscription
- record: PlatformTelemetrySubscription

The PlatformTelemetrySubscription object has the following attributes:

• name – String

• state – String

• types – List of String

The following is an example Event of type platform.telemetrySubscription:

{

Event schema reference 1938

AWS Lambda Developer Guide

 "time": "2022-10-12T00:02:35.000Z",
 "type": "platform.telemetrySubscription",
 "record": {
 "name": "my-telemetry-extension",
 "state": "Subscribed",
 "types": ["platform", "function"]
 }
}

platform.logsDropped

A platform.logsDropped event contains information about dropped events. Lambda emits
the platform.logsDropped event when a function outputs logs at too high a rate for Lambda
to process them. When Lambda can't send logs to CloudWatch or to the extension subscribed
to Telemetry API at the rate the function produces them, it drops logs to prevent the function's
execution from slowing down. A platform.logsDropped Event object has the following shape:

Event: Object
- time: String
- type: String = platform.logsDropped
- record: PlatformLogsDropped

The PlatformLogsDropped object has the following attributes:

• droppedBytes – Integer

• droppedRecords – Integer

• reason – String

The following is an example Event of type platform.logsDropped:

{
 "time": "2022-10-12T00:02:35.000Z",
 "type": "platform.logsDropped",
 "record": {
 "droppedBytes": 12345,
 "droppedRecords": 123,
 "reason": "Some logs were dropped because the downstream consumer is slower
 than the logs production rate"
 }
}

Event schema reference 1939

AWS Lambda Developer Guide

function

A function event contains logs from the function code. A function Event object has the
following shape:

Event: Object
- time: String
- type: String = function
- record: {}

The format of the record field depends on whether your function's logs are formatted in plain
text or JSON format. to learn more about log format configuration options, see the section called
“Log formats”

The following is an example Event of type function where the log format is plain text:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "function",
 "record": "[INFO] Hello world, I am a function!"
}

The following is an example Event of type function where the log format is JSON:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "function",
 "record": {
 "timestamp": "2022-10-12T00:03:50.000Z",
 "level": "INFO",
 "requestId": "79b4f56e-95b1-4643-9700-2807f4e68189",
 "message": "Hello world, I am a function!"
 }
}

Note

If the schema version you're using is older than the 2022-12-13 version, then the
"record" is always rendered as a string even when your function's logging format is
configured as JSON.

Event schema reference 1940

AWS Lambda Developer Guide

extension

A extension event contains logs from the extension code. A extension Event object has the
following shape:

Event: Object
- time: String
- type: String = extension
- record: {}

The format of the record field depends on whether your function's logs are formatted in plain
text or JSON format. to learn more about log format configuration options, see the section called
“Log formats”

The following is an example Event of type extension where the log format is plain text:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "extension",
 "record": "[INFO] Hello world, I am an extension!"
}

The following is an example Event of type extension where the log format is JSON:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "extension",
 "record": {
 "timestamp": "2022-10-12T00:03:50.000Z",
 "level": "INFO",
 "requestId": "79b4f56e-95b1-4643-9700-2807f4e68189",
 "message": "Hello world, I am an extension!"
 }
}

Note

If the schema version you're using is older than the 2022-12-13 version, then the
"record" is always rendered as a string even when your function's logging format is
configured as JSON.

Event schema reference 1941

AWS Lambda Developer Guide

Shared object types

This section details the types of shared objects that the Lambda Telemetry API supports.

InitPhase

A string enum that describes the phase when the initialization step occurs. In most cases, Lambda
runs the function initialization code during the init phase. However, in some error cases, Lambda
may re-run the function initialization code during the invoke phase. (This is called a suppressed
init.)

• Type – String

• Valid values – init|invoke|snap-start

InitReportMetrics

An object that contains metrics about an initialization phase.

• Type – Object

An InitReportMetrics object has the following shape:

InitReportMetrics: Object
- durationMs: Double

The following is an example InitReportMetrics object:

{
 "durationMs": 247.88
}

InitType

A string enum that describes how Lambda initialized the environment.

• Type – String

• Valid values – on-demand|provisioned-concurrency

Event schema reference 1942

AWS Lambda Developer Guide

ReportMetrics

An object that contains metrics about a completed phase.

• Type – Object

A ReportMetrics object has the following shape:

ReportMetrics: Object
- billedDurationMs: Integer
- durationMs: Double
- initDurationMs?: Double
- maxMemoryUsedMB: Integer
- memorySizeMB: Integer
- restoreDurationMs?: Double

The following is an example ReportMetrics object:

{
 "billedDurationMs": 694,
 "durationMs": 693.92,
 "initDurationMs": 397.68,
 "maxMemoryUsedMB": 84,
 "memorySizeMB": 128
}

RestoreReportMetrics

An object that contains metrics about a completed restoration phase.

• Type – Object

A RestoreReportMetrics object has the following shape:

RestoreReportMetrics: Object
- durationMs: Double

The following is an example RestoreReportMetrics object:

{

Event schema reference 1943

AWS Lambda Developer Guide

 "durationMs": 15.19
}

RuntimeDoneMetrics

An object that contains metrics about an invocation phase.

• Type – Object

A RuntimeDoneMetrics object has the following shape:

RuntimeDoneMetrics: Object
- durationMs: Double
- producedBytes?: Integer

The following is an example RuntimeDoneMetrics object:

{
 "durationMs": 200.0,
 "producedBytes": 15
}

Span

An object that contains details about a span. A span represents a unit of work or operation in a
trace. For more information about spans, see Span on the Tracing API page of the OpenTelemetry
Docs website.

Lambda supports the following spans for the platform.RuntimeDone event:

• The responseLatency span describes how long it took your Lambda function to start sending
the response.

• The responseDuration span describes how long it took your Lambda function to finish
sending the entire response.

• The runtimeOverhead span describes how long it took the Lambda runtime to signal that it
is ready to process the next function invoke. This is how long the runtime took to call the next
invocation API to get the next event after returning your function response.

The following is an example responseLatency span object:

Event schema reference 1944

https://opentelemetry.io/docs/reference/specification/trace/api/#span

AWS Lambda Developer Guide

{
 "name": "responseLatency",
 "start": "2022-08-02T12:01:23.521Z",
 "durationMs": 23.02
 }

Status

An object that describes the status of an initialization or invocation phase. If the status is either
failure or error, then the Status object also contains an errorType field describing the error.

• Type – Object

• Valid status values – success|failure|error|timeout

TraceContext

An object that describes the properties of a trace.

• Type – Object

A TraceContext object has the following shape:

TraceContext: Object
- spanId?: String
- type: TracingType enum
- value: String

The following is an example TraceContext object:

{
 "spanId": "073a49012f3c312e",
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
}

TracingType

A string enum that describes the type of tracing in a the section called “TraceContext”
object.

Event schema reference 1945

AWS Lambda Developer Guide

• Type – String

• Valid values – X-Amzn-Trace-Id

Event schema reference 1946

AWS Lambda Developer Guide

Converting Lambda Telemetry API Event objects to OpenTelemetry
Spans

The AWS Lambda Telemetry API schema is semantically compatible with OpenTelemetry
(OTel). This means that you can convert your AWS Lambda Telemetry API Event objects to
OpenTelemetry (OTel) Spans. When converting, you shouldn't map a single Event object to a
single OTel Span. Instead, you should present all three events related to a lifecycle phase in a single
OTel Span. For example, the start, runtimeDone, and runtimeReport events represent a single
function invocation. Present all three of these events as a single OTel Span.

You can convert your events using Span Events or Child (nested) Spans. The tables on this page
describe the mappings between Telemetry API schema properties and OTel Span properties for
both approaches. For more information about OTel Spans, see Span on the Tracing API page of the
OpenTelemetry Docs website.

Sections

• Map to OTel Spans with Span Events

• Map to OTel Spans with Child Spans

Map to OTel Spans with Span Events

In the following tables, e represents the event coming from the telemetry source.

Mapping the *Start events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates this value based on
the type field.

Span.StartTime Use e.time.

Span.EndTime N/A, because the event hasn't completed yet.

Span.Kind Set to Server.

Span.Status Set to Unset.

Converting events to OTel Spans 1947

https://opentelemetry.io/docs/reference/specification/trace/api/#span

AWS Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Span.TraceId Parse the AWS X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use e.tracing.spanId if available.
Otherwise, generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

Mapping the *RuntimeDone events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates the value based on
the type field.

Span.StartTime Use e.time from the matching *Start event.

Alternatively, use e.time - e.metrics
.durationMs .

Span.EndTime N/A, because the event hasn't completed yet.

Span.Kind Set to Server.

Span.Status If e.status doesn't equal success, then set
to Error.

Converting events to OTel Spans 1948

AWS Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Otherwise, set to Ok.

Span.Events[] Use e.spans[] .

Span.Events[i].Name Use e.spans[i].name .

Span.Events[i].Time Use e.spans[i].start .

Span.TraceId Parse the AWS X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use the same SpanId from the *Start event.
If unavailable, then use e.tracing.spanId ,
or generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

Mapping the *Report events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates the value based on
the type field.

Span.StartTime Use e.time from the matching *Start event.

Converting events to OTel Spans 1949

AWS Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Alternatively, use e.time - e.metrics
.durationMs .

Span.EndTime Use e.time.

Span.Kind Set to Server.

Span.Status Use the same value as the *RuntimeDone
event.

Span.TraceId Parse the AWS X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use the same SpanId from the *Start event.
If unavailable, then use e.tracing.spanId ,
or generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

Map to OTel Spans with Child Spans

The following table describes how to convert Lambda Telemetry API events into OTel Spans with
Child (nested) Spans for *RuntimeDone Spans. For *Start and *Report mappings, refer to the
tables in the section called “Map to OTel Spans with Span Events”, as they're the same for Child
Spans. In this table, e represents the event coming from the telemetry source.

Mapping the *RuntimeDone events

Converting events to OTel Spans 1950

AWS Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates the value based on
the type field.

Span.StartTime Use e.time from the matching *Start event.

Alternatively, use e.time - e.metrics
.durationMs .

Span.EndTime N/A, because the event hasn't completed yet.

Span.Kind Set to Server.

Span.Status If e.status doesn't equal success, then set
to Error.

Otherwise, set to Ok.

Span.TraceId Parse the AWS X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use the same SpanId from the *Start event.
If unavailable, then use e.tracing.spanId ,
or generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

ChildSpan[i].Name Use e.spans[i].name .

Converting events to OTel Spans 1951

AWS Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

ChildSpan[i].StartTime Use e.spans[i].start .

ChildSpan[i].EndTime Use e.spans[i].start + e.spans[i
].durations .

ChildSpan[i].Kind Same as parent Span.Kind .

ChildSpan[i].Status Same as parent Span.Status .

ChildSpan[i].TraceId Same as parent Span.TraceId .

ChildSpan[i].ParentId Use parent Span.SpanId .

ChildSpan[i].SpanId Generate a new SpanId.

ChildSpan[i].SpanContext.Tr
aceState

N/A for an X-Ray trace context.

ChildSpan[i].SpanContext.Tr
aceFlags

Same as parent Span.SpanContext.T
raceFlags .

Converting events to OTel Spans 1952

AWS Lambda Developer Guide

Using the Lambda Logs API

Important

The Lambda Telemetry API supersedes the Lambda Logs API. While the Logs API remains
fully functional, we recommend using only the Telemetry API going forward. You can
subscribe your extension to a telemetry stream using either the Telemetry API or the Logs
API. After subscribing using one of these APIs, any attempt to subscribe using the other API
returns an error.

Lambda automatically captures runtime logs and streams them to Amazon CloudWatch. This log
stream contains the logs that your function code and extensions generate, and also the logs that
Lambda generates as part of the function invocation.

Lambda extensions can use the Lambda Runtime Logs API to subscribe to log streams directly from
within the Lambda execution environment. Lambda streams the logs to the extension, and the
extension can then process, filter, and send the logs to any preferred destination.

The Logs API allows extensions to subscribe to three different logs streams:

• Function logs that the Lambda function generates and writes to stdout or stderr.

• Extension logs that extension code generates.

• Lambda platform logs, which record events and errors related to invocations and extensions.

Logs API 1953

AWS Lambda Developer Guide

Note

Lambda sends all logs to CloudWatch, even when an extension subscribes to one or more
of the log streams.

Topics

• Subscribing to receive logs

• Memory usage

• Destination protocols

• Buffering configuration

• Example subscription

• Sample code for Logs API

• Logs API reference

• Log messages

Subscribing to receive logs

A Lambda extension can subscribe to receive logs by sending a subscription request to the Logs
API.

To subscribe to receive logs, you need the extension identifier (Lambda-Extension-
Identifier). First register the extension to receive the extension identifier. Then subscribe to the
Logs API during initialization. After the initialization phase completes, Lambda does not process
subscription requests.

Note

Logs API subscription is idempotent. Duplicate subscribe requests do not result in duplicate
subscriptions.

Memory usage

Memory usage increases linearly as the number of subscribers increases. Subscriptions consume
memory resources because each subscription opens a new memory buffer to store the logs. To help

Logs API 1954

AWS Lambda Developer Guide

optimize memory usage, you can adjust the buffering configuration. Buffer memory usage counts
towards overall memory consumption in the execution environment.

Destination protocols

You can choose one of the following protocols to receive the logs:

1. HTTP (recommended) – Lambda delivers logs to a local HTTP endpoint (http://
sandbox.localdomain:${PORT}/${PATH}) as an array of records in JSON format. The
$PATH parameter is optional. Note that only HTTP is supported, not HTTPS. You can choose to
receive logs through PUT or POST.

2. TCP – Lambda delivers logs to a TCP port in Newline delimited JSON (NDJSON) format.

We recommend using HTTP rather than TCP. With TCP, the Lambda platform cannot acknowledge
when it delivers logs to the application layer. Therefore, you might lose logs if your extension
crashes. HTTP does not share this limitation.

We also recommend setting up the local HTTP listener or the TCP port before subscribing to
receive logs. During setup, note the following:

• Lambda sends logs only to destinations that are inside the execution environment.

• Lambda retries the attempt to send the logs (with backoff) if there is no listener, or if the POST
or PUT request results in an error. If the log subscriber crashes, it continues to receive logs after
Lambda restarts the execution environment.

• Lambda reserves port 9001. There are no other port number restrictions or recommendations.

Buffering configuration

Lambda can buffer logs and deliver them to the subscriber. You can configure this behavior in the
subscription request by specifying the following optional fields. Note that Lambda uses the default
value for any field that you do not specify.

• timeoutMs – The maximum time (in milliseconds) to buffer a batch. Default: 1,000. Minimum: 25.
Maximum: 30,000.

• maxBytes – The maximum size (in bytes) of the logs to buffer in memory. Default: 262,144.
Minimum: 262,144. Maximum: 1,048,576.

Logs API 1955

https://github.com/ndjson/ndjson-spec

AWS Lambda Developer Guide

• maxItems – The maximum number of events to buffer in memory. Default: 10,000. Minimum:
1,000. Maximum: 10,000.

During buffering configuration, note the following points:

• Lambda flushes the logs if any of the input streams are closed, for example, if the runtime
crashes.

• Each subscriber can specify a different buffering configuration in their subscription request.

• Consider the buffer size that you need for reading the data. Expect to receive payloads as
large as 2*maxBytes+metadata, where maxBytes is configured in the subscribe request. For
example, Lambda adds the following metadata bytes to each record:

{
"time": "2020-08-20T12:31:32.123Z",
"type": "function",
"record": "Hello World"
}

• If the subscriber cannot process incoming logs quickly enough, Lambda might drop logs to
keep memory utilization bounded. To indicate the number of dropped records, Lambda sends a
platform.logsDropped log. For more information, see the section called “Lambda: Not all of
my function's logs appear”.

Example subscription

The following example shows a request to subscribe to the platform and function logs.

PUT http://${AWS_LAMBDA_RUNTIME_API}/2020-08-15/logs HTTP/1.1
{ "schemaVersion": "2020-08-15",
 "types": [
 "platform",
 "function"
],
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 262144,
 "timeoutMs": 100
 },
 "destination": {

Logs API 1956

AWS Lambda Developer Guide

 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080/lambda_logs"
 }
}

If the request succeeds, the subscriber receives an HTTP 200 success response.

HTTP/1.1 200 OK
"OK"

Sample code for Logs API

For sample code showing how to send logs to a custom destination, see Using AWS Lambda
extensions to send logs to custom destinations on the AWS Compute Blog.

For Python and Go code examples showing how to develop a basic Lambda extension and
subscribe to the Logs API, see AWS Lambda Extensions on the AWS Samples GitHub repository. For
more information about building a Lambda extension, see the section called “Extensions API”.

Logs API reference

You can retrieve the Logs API endpoint from the AWS_LAMBDA_RUNTIME_API environment
variable. To send an API request, use the prefix 2020-08-15/ before the API path. For example:

http://${AWS_LAMBDA_RUNTIME_API}/2020-08-15/logs

The OpenAPI specification for the Logs API version 2020-08-15 is available here: logs-api-
request.zip

Subscribe

To subscribe to one or more of the log streams available in the Lambda execution environment,
extensions send a Subscribe API request.

Path – /logs

Method – PUT

Body parameters

destination – See the section called “Destination protocols”. Required: yes. Type: strings.

Logs API 1957

https://aws.amazon.com/blogs/compute/using-aws-lambda-extensions-to-send-logs-to-custom-destinations/
https://aws.amazon.com/blogs/compute/using-aws-lambda-extensions-to-send-logs-to-custom-destinations/
https://github.com/aws-samples/aws-lambda-extensions
samples/logs-api-request.zip
samples/logs-api-request.zip

AWS Lambda Developer Guide

buffering – See the section called “Buffering configuration”. Required: no. Type: strings.

types – An array of the types of logs to receive. Required: yes. Type: array of strings. Valid values:
"platform", "function", "extension".

schemaVersion – Required: no. Default value: "2020-08-15". Set to "2021-03-18" for the
extension to receive platform.runtimeDone messages.

Response parameters

The OpenAPI specifications for the subscription responses version 2020-08-15 are available for the
HTTP and TCP protocols:

• HTTP: logs-api-http-response.zip

• TCP: logs-api-tcp-response.zip

Response codes

• 200 – Request completed successfully

• 202 – Request accepted. Response to a subscription request during local testing.

• 4XX – Bad Request

• 500 – Service error

If the request succeeds, the subscriber receives an HTTP 200 success response.

HTTP/1.1 200 OK
"OK"

If the request fails, the subscriber receives an error response. For example:

HTTP/1.1 400 OK
{
 "errorType": "Logs.ValidationError",
 "errorMessage": URI port is not provided; types should not be empty"
}

Log messages

The Logs API allows extensions to subscribe to three different logs streams:

Logs API 1958

samples/logs-api-http-response.zip
samples/logs-api-tcp-response.zip

AWS Lambda Developer Guide

• Function – Logs that the Lambda function generates and writes to stdout or stderr.

• Extension – Logs that extension code generates.

• Platform – Logs that the runtime platform generates, which record events and errors related to
invocations and extensions.

Topics

• Function logs

• Extension logs

• Platform logs

Function logs

The Lambda function and internal extensions generate function logs and write them to stdout or
stderr.

The following example shows the format of a function log message. { "time":
"2020-08-20T12:31:32.123Z", "type": "function", "record": "ERROR encountered. Stack trace:\n\my-
function (line 10)\n" }

Extension logs

Extensions can generate extension logs. The log format is the same as for a function log.

Platform logs

Lambda generates log messages for platform events such as platform.start, platform.end,
and platform.fault.

Optionally, you can subscribe to the 2021-03-18 version of the Logs API schema, which includes
the platform.runtimeDone log message.

Example platform log messages

The following example shows the platform start and platform end logs. These logs indicate the
invocation start time and invocation end time for the invocation that the requestId specifies.

{
 "time": "2020-08-20T12:31:32.123Z",

Logs API 1959

AWS Lambda Developer Guide

 "type": "platform.start",
 "record": {"requestId": "6f7f0961f83442118a7af6fe80b88d56"}
}
{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.end",
 "record": {"requestId": "6f7f0961f83442118a7af6fe80b88d56"}
}

The platform.initRuntimeDone log message shows the status of the Runtime init sub-phase,
which is part of the Init lifecyle phase. When Runtime init is successful, the runtime sends a /
next runtime API request (for the on-demand and provisioned-concurrency initialization
types) or restore/next (for the snap-start initialization type). The following example shows a
successful platform.initRuntimeDone log message for the snap-start initialization type.

{
 "time":"2022-07-17T18:41:57.083Z",
 "type":"platform.initRuntimeDone",
 "record":{
 "initializationType":"snap-start",
 "status":"success"
 }
}

The platform.initReport log message shows how long the Init phase lasted and how many
milliseconds you were billed for during this phase. When the initialization type is provisioned-
concurrency, Lambda sends this message during invocation. When the initialization type is
snap-start, Lambda sends this message after restoring the snapshot. The following example
shows a platform.initReport log message for the snap-start initialization type.

{
 "time":"2022-07-17T18:41:57.083Z",
 "type":"platform.initReport",
 "record":{
 "initializationType":"snap-start",
 "metrics":{
 "durationMs":731.79,
 "billedDurationMs":732
 }
 }
}

Logs API 1960

AWS Lambda Developer Guide

The platform report log includes metrics about the invocation that the requestId specifies. The
initDurationMs field is included in the log only if the invocation included a cold start. If AWS
X-Ray tracing is active, the log includes X-Ray metadata. The following example shows a platform
report log for an invocation that included a cold start.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.report",
 "record": {"requestId": "6f7f0961f83442118a7af6fe80b88d56",
 "metrics": {"durationMs": 101.51,
 "billedDurationMs": 300,
 "memorySizeMB": 512,
 "maxMemoryUsedMB": 33,
 "initDurationMs": 116.67
 }
 }
}

The platform fault log captures runtime or execution environment errors. The following example
shows a platform fault log message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.fault",
 "record": "RequestId: d783b35e-a91d-4251-af17-035953428a2c Process exited before
 completing request"
}

Note

AWS is currently implementing changes to the Lambda service. Due to these changes, you
may see minor differences between the structure and content of system log messages and
trace segments emitted by different Lambda functions in your AWS account.
One of the log outputs affected by this change is the platform fault log "record" field.
The following examples show illustrative "record" fields in the old and new formats. The
new style of fault log contains a more concise message
These changes will be implemented during the coming weeks, and all functions in all AWS
Regions except the China and GovCloud regions will transition to use the new-format log
messages and trace segments.

Logs API 1961

AWS Lambda Developer Guide

Example platform fault log record (old style)

"record":"RequestId: ...\tError: Runtime exited with error: exit status
 255\nRuntime.ExitError"

Example platform fault log record (new style)

"record":"RequestId: ... Status: error\tErrorType: Runtime.ExitError"

Lambda generates a platform extension log when an extension registers with the extensions API.
The following example shows a platform extension message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.extension",
 "record": {"name": "Foo.bar",
 "state": "Ready",
 "events": ["INVOKE", "SHUTDOWN"]
 }
}

Lambda generates a platform logs subscription log when an extension subscribes to the logs API.
The following example shows a logs subscription message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.logsSubscription",
 "record": {"name": "Foo.bar",
 "state": "Subscribed",
 "types": ["function", "platform"],
 }
}

Lambda generates a platform logs dropped log when an extension is not able to process the
number of logs that it is receiving. The following example shows a platform.logsDropped log
message.

{
 "time": "2020-08-20T12:31:32.123Z",

Logs API 1962

AWS Lambda Developer Guide

 "type": "platform.logsDropped",
 "record": {"reason": "Consumer seems to have fallen behind as it has not
 acknowledged receipt of logs.",
 "droppedRecords": 123,
 "droppedBytes" 12345
 }
}

The platform.restoreStart log message shows the time that the Restore phase started (snap-
start initialization type only). Example:

{
 "time":"2022-07-17T18:43:44.782Z",
 "type":"platform.restoreStart",
 "record":{}
}

The platform.restoreReport log message shows how long the Restore phase lasted and how
many milliseconds you were billed for during this phase (snap-start initialization type only).
Example:

{
 "time":"2022-07-17T18:43:45.936Z",
 "type":"platform.restoreReport",
 "record":{
 "metrics":{
 "durationMs":70.87,
 "billedDurationMs":13
 }
 }
}

Platform runtimeDone messages

If you set the schema version to "2021-03-18" in the subscribe request, Lambda sends a
platform.runtimeDone message after the function invocation completes either successfully
or with an error. The extension can use this message to stop all the telemetry collection for this
function invocation.

The OpenAPI specification for the Log event type in schema version 2021-03-18 is available here:
schema-2021-03-18.zip

Logs API 1963

samples/schema-2021-03-18.zip

AWS Lambda Developer Guide

Lambda generates the platform.runtimeDone log message when the runtime sends a Next or
Error runtime API request. The platform.runtimeDone log informs consumers of the Logs API
that the function invocation completes. Extensions can use this information to decide when to send
all the telemetry collected during that invocation.

Examples

Lambda sends the platform.runtimeDone message after the runtime sends the NEXT request
when the function invocation completes. The following examples show messages for each of the
status values: success, failure, and timeout.

Example Example success message

{
 "time": "2021-02-04T20:00:05.123Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId":"6f7f0961f83442118a7af6fe80b88",
 "status": "success"
 }
}

Example Example failure message

{
 "time": "2021-02-04T20:00:05.123Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId":"6f7f0961f83442118a7af6fe80b88",
 "status": "failure"
 }
}

Example Example timeout message

{
 "time": "2021-02-04T20:00:05.123Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId":"6f7f0961f83442118a7af6fe80b88",
 "status": "timeout"

Logs API 1964

AWS Lambda Developer Guide

 }
}

Example Example platform.restoreRuntimeDone message (snap-start initialization type
only)

The platform.restoreRuntimeDone log message shows whether or not the Restore phase was
successful. Lambda sends this message when the runtime sends a restore/next runtime API
request. There are three possible statuses: success, failure, and timeout. The following example
shows a successful platform.restoreRuntimeDone log message.

{
 "time":"2022-07-17T18:43:45.936Z",
 "type":"platform.restoreRuntimeDone",
 "record":{
 "status":"success"
 }
}

Logs API 1965

AWS Lambda Developer Guide

Troubleshooting issues in Lambda

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the Lambda API, console, or tools. If you find an issue that is not listed here, you can
use the Feedback button on this page to report it.

For more troubleshooting advice and answers to common support questions, visit the AWS
Knowledge Center.

For more information about debugging and troubleshooting Lambda applications, see Debugging
in Serverless Land.

Topics

• Troubleshoot configuration issues in Lambda

• Troubleshoot deployment issues in Lambda

• Troubleshoot invocation issues in Lambda

• Troubleshoot execution issues in Lambda

• Troubleshoot event source mapping issues in Lambda

• Troubleshoot networking issues in Lambda

Troubleshoot configuration issues in Lambda

Your function configuration settings can have an impact on the overall performance and behavior
of your Lambda function. These may not cause actual function errors, but can cause unexpected
timeouts and results.

The following topics provide troubleshooting advice for common issues that you might encounter
related to Lambda function configuration settings.

Topics

• Memory configurations

• CPU-bound configurations

• Timeouts

• Memory leakage between invocations

• Asynchronous results returned to a later invocation

Configuration 1966

https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Lambda
https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Lambda
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/debugging-ops

AWS Lambda Developer Guide

Memory configurations

You can configure a Lambda function to use between 128 MB and 10,240 MB of memory. By
default, any function created in the console is assigned the smallest amount of memory. Many
Lambda functions are performant at this lowest setting. However, if you are importing large code
libraries or completing memory intensive tasks, 128 MB is not sufficient.

If your functions are running much slower than expected, the first step is to increase the memory
setting. For memory-bound functions, this will resolve the bottleneck and may improve the
performance of your function.

CPU-bound configurations

For compute-intensive operations, if your function experiences slower-than-expected performance,
this may be due to your function being CPU-bound. In this case, the computational capacity of the
function cannot keep pace with the work.

While Lambda doesn't allow you to modify CPU configuration directly, CPU is indirectly controlled
via the memory settings. The Lambda service proportionally allocates more virtual CPU as you
allocate more memory. At 1.8 GB memory, a Lambda function has an entire vCPU allocated, and
above this level it has access to more than one vCPU core. At 10,240MB, it has 6 vCPUs available.
In other words, you can improve performance by increasing the memory allocation, even if the
function doesn’t use all of the memory.

Timeouts

Timeouts for Lambda functions can be set between 1 and 900 seconds (15 minutes). By default,
the Lambda console sets this to 3 seconds. The timeout value is a safety valve that ensures
functions do not run indefinitely. After the timeout value is reached, Lambda stops the function
invocation.

If a timeout value is set close to the average duration of a function, this increases the risk that the
function will time out unexpectedly. The duration of a function can vary based on the amount of
data transfer and processing, and the latency of any services the function interacts with. Common
causes of timeout include:

• When downloading data from S3 buckets or other data stores, the download is larger or takes
longer than average.

Memory configurations 1967

https://docs.aws.amazon.com/lambda/latest/dg/configuration-console.html

AWS Lambda Developer Guide

• A function makes a request to another service, which takes longer to respond.

• The parameters provided to a function require more computational complexity in the function,
which causes the invocation to take longer.

When testing your application, ensure that your tests accurately reflect the size and quantity of
data, and realistic parameter values. Importantly, use datasets at the upper bounds of what is
reasonably expected for your workload.

Additionally, implement upper-bound limits in your workload wherever practical. In this
example, the application could use a maximum size limit for each file type. You can then test
the performance of your application for a range of expected file sizes, up to and including the
maximum limits.

Memory leakage between invocations

Global variables and objects stored in the INIT phase of a Lambda invocation retain their state
between warm invocations. They are completely reset only when the execution environment is run
for the first time (also known as a “cold start”). Any variables stored in the handler are destroyed
when the handler exits. It’s best practice to use the INIT phase to set up database connections, load
libraries, create caches, and load immutable assets.

When you use third-party libraries across multiple invocations in the same execution environment,
check their documentation for usage in a serverless compute environment. Some database
connection and logging libraries may save intermediate invocation results and other data. This
causes the memory usage of these libraries to grow with subsequent warm invocations. If this
is the case, you may find the Lambda function runs out of memory, even if your custom code is
disposing of variables correctly.

This issue affects invocations occurring in warm execution environments. For example, the
following code creates a memory leak between invocations. The Lambda function consumes
additional memory with each invocation by increasing the size of a global array:

let a = []

exports.handler = async (event) => {
 a.push(Array(100000).fill(1))
}

Memory leakage between invocations 1968

AWS Lambda Developer Guide

Configured with 128 MB of memory, after invoking this function 1000 times, the Monitoring tab of
the Lambda function shows the typical changes in invocations, duration, and error counts when a
memory leak occurs:

1. Invocations – A steady transaction rate is interrupted periodically as the invocations take longer
to complete. During the steady state, the memory leak is not consuming all of the function’s
allocated memory. As performance degrades, the operating system is paging local storage to
accommodate the growing memory required by the function, which results in fewer transactions
being completed.

2. Duration – Before the function runs out of memory, it finishes invocations at a steady double-
digit millisecond rate. As paging occurs, the duration takes an order of magnitude longer.

3. Error count – As the memory leak exceeds allocated memory, eventually the function errors due
to the computation exceeding the timeout, or the execution environment stops the function.

After the error, Lambda restarts the execution environment, which explains why all three graphs
show a return to the original state. Expanding the CloudWatch metrics for duration provides more
detail for the minimum, maximum and average duration statistics:

Memory leakage between invocations 1969

AWS Lambda Developer Guide

To find the errors generated across the 1000 invocations, you can use the CloudWatch Insights
query language. The following query excludes informational logs to report only the errors:

fields @timestamp, @message
| sort @timestamp desc
| filter @message not like 'EXTENSION'
| filter @message not like 'Lambda Insights'
| filter @message not like 'INFO'
| filter @message not like 'REPORT'
| filter @message not like 'END'
| filter @message not like 'START'

When run against the log group for this function, this shows that timeouts were responsible for the
periodic errors:

Memory leakage between invocations 1970

AWS Lambda Developer Guide

Asynchronous results returned to a later invocation

For function code that uses asynchronous patterns, it’s possible for the callback results from one
invocation to be returned in a future invocation. This example uses Node.js, but the same logic can
apply to other runtimes using asynchronous patterns. The function uses the traditional callback
syntax in JavaScript. It calls an asynchronous function with an incremental counter that tracks the
number of invocations:

let seqId = 0

exports.handler = async (event, context) => {
 console.log(`Starting: sequence Id=${++seqId}`)
 doWork(seqId, function(id) {
 console.log(`Work done: sequence Id=${id}`)
 })
}

function doWork(id, callback) {
 setTimeout(() => callback(id), 3000)

Asynchronous results returned to a later invocation 1971

AWS Lambda Developer Guide

}

When invoked several times in succession, the results of the callbacks occur in subsequent
invocations:

1. The code calls the doWork function, providing a callback function as the last parameter.

2. The doWork function takes some period of time to complete before invoking the callback.

3. The function’s logging indicates that the invocation is ending before the doWork function
finishes execution. Additionally, after starting an iteration, callbacks from previous iterations are
being processed, as shown in the logs.

In JavaScript, asynchronous callbacks are handled with an event loop. Other runtimes use different
mechanisms to handle concurrency. When the function’s execution environment ends, Lambda
freezes the environment until the next invocation. After it resumes, JavaScript continues processing
the event loop, which in this case includes an asynchronous callback from a previous invocation.
Without this context, it can appear that the function is running code for no reason, and returning
arbitrary data. In fact, it is really an artifact of how runtime concurrency and the execution
environments interact.

This creates the potential for private data from a previous invocation to appear in a subsequent
invocation. There are two ways to prevent or detect this behavior. First, JavaScript provides the

Asynchronous results returned to a later invocation 1972

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

AWS Lambda Developer Guide

async and await keywords to simplify asynchronous development and also force code execution to
wait for an asynchronous call to complete. The function above can be rewritten using this approach
as follows:

let seqId = 0
exports.handler = async (event) => {
 console.log(`Starting: sequence Id=${++seqId}`)
 const result = await doWork(seqId)
 console.log(`Work done: sequence Id=${result}`)
}

function doWork(id) {
 return new Promise(resolve => {
 setTimeout(() => resolve(id), 4000)
 })
}

Using this syntax prevents the handler from exiting before the asynchronous function is finished. In
this case, if the callback takes longer than the Lambda function’s timeout, the function will throw
an error, instead of returning the callback result in a later invocation:

1. The code calls the asynchronous doWork function using the await keyword in the handler.

Asynchronous results returned to a later invocation 1973

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

AWS Lambda Developer Guide

2. The doWork function takes some period of time to complete before resolving the promise.

3. The function times out because doWork takes longer than the timeout limit allows and the
callback result is not returned in a later invocation.

Generally, you should make sure any background processes or callbacks in the code are complete
before the code exits. If this is not possible in your use case, you can use an identifier to ensure that
the callback belongs to the current invocation. To do this, you can use the awsRequestId provided
by the context object. By passing this value to the asynchronous callback, you can compare the
passed value with the current value to detect if the callback originated from another invocation:

let currentContext

exports.handler = async (event, context) => {
 console.log(`Starting: request id=$\{context.awsRequestId}`)
 currentContext = context

 doWork(context.awsRequestId, function(id) {
 if (id != currentContext.awsRequestId) {
 console.info(`This callback is from another invocation.`)
 }
 })

}

function doWork(id, callback) {
 setTimeout(() => callback(id), 3000)

}

Asynchronous results returned to a later invocation 1974

AWS Lambda Developer Guide

1. The Lambda function handler takes the context parameter, which provides access to a unique
invocation request ID.

2. The awsRequestId is passed to the doWork function. In the callback, the ID is compared with
the awsRequestId of the current invocation. If these values are different, the code can take
action accordingly.

Troubleshoot deployment issues in Lambda

When you update your function, Lambda deploys the change by launching new instances of the
function with the updated code or settings. Deployment errors prevent the new version from being
used and can arise from issues with your deployment package, code, permissions, or tools.

When you deploy updates to your function directly with the Lambda API or with a client such as
the AWS CLI, you can see errors from Lambda directly in the output. If you use services like AWS
CloudFormation, AWS CodeDeploy, or AWS CodePipeline, look for the response from Lambda in
the logs or event stream for that service.

Deployment 1975

AWS Lambda Developer Guide

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the Lambda API, console, or tools. If you find an issue that is not listed here, you can
use the Feedback button on this page to report it.

For more troubleshooting advice and answers to common support questions, visit the AWS
Knowledge Center.

For more information about debugging and troubleshooting Lambda applications, see Debugging
in Serverless Land.

Topics

• General: Permission is denied / Cannot load such file

• General: Error occurs when calling the UpdateFunctionCode

• Amazon S3: Error Code PermanentRedirect.

• General: Cannot find, cannot load, unable to import, class not found, no such file or directory

• General: Undefined method handler

• General: Lambda code storage limit exceeded

• Lambda: Layer conversion failed

• Lambda: InvalidParameterValueException or RequestEntityTooLargeException

• Lambda: InvalidParameterValueException

• Lambda: Concurrency and memory quotas

• Lambda: Invalid alias configuration for provisioned concurrency

General: Permission is denied / Cannot load such file

Error: EACCES: permission denied, open '/var/task/index.js'

Error: cannot load such file -- function

Error: [Errno 13] Permission denied: '/var/task/function.py'

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

General: Permission is denied / Cannot load such file 1976

https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Lambda
https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Lambda
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/debugging-ops

AWS Lambda Developer Guide

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give a non-executable file the correct permissions, run
the following command.

chmod 644 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Note

If you don't grant Lambda the permissions it needs to access directories in your deployment
package, Lambda sets the permissions for those directories to 755 (rwxr-xr-x).

General: Error occurs when calling the UpdateFunctionCode

Error: An error occurred (RequestEntityTooLargeException) when calling the UpdateFunctionCode
operation

When you upload a deployment package or layer archive directly to Lambda, the size of the ZIP file
is limited to 50 MB. To upload a larger file, store it in Amazon S3 and use the S3Bucket and S3Key
parameters.

Note

When you upload a file directly with the AWS CLI, AWS SDK, or otherwise, the binary ZIP
file is converted to base64, which increases its size by about 30%. To allow for this, and the
size of other parameters in the request, the actual request size limit that Lambda applies is
larger. Due to this, the 50 MB limit is approximate.

Amazon S3: Error Code PermanentRedirect.

Error: Error occurred while GetObject. S3 Error Code: PermanentRedirect. S3 Error Message: The
bucket is in this region: us-east-2. Please use this region to retry the request

When you upload a function's deployment package from an Amazon S3 bucket, the bucket must be
in the same Region as the function. This issue can occur when you specify an Amazon S3 object in a

General: Error occurs when calling the UpdateFunctionCode 1977

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)

AWS Lambda Developer Guide

call to UpdateFunctionCode, or use the package and deploy commands in the AWS CLI or AWS SAM
CLI. Create a deployment artifact bucket for each Region where you develop applications.

General: Cannot find, cannot load, unable to import, class not found,
no such file or directory

Error: Cannot find module 'function'

Error: cannot load such file -- function

Error: Unable to import module 'function'

Error: Class not found: function.Handler

Error: fork/exec /var/task/function: no such file or directory

Error: Unable to load type 'Function.Handler' from assembly 'Function'.

The name of the file or class in your function's handler configuration doesn't match your code. See
the following section for more information.

General: Undefined method handler

Error: index.handler is undefined or not exported

Error: Handler 'handler' missing on module 'function'

Error: undefined method `handler' for #<LambdaHandler:0x000055b76ccebf98>

Error: No public method named handleRequest with appropriate method signature found on class
function.Handler

Error: Unable to find method 'handleRequest' in type 'Function.Handler' from assembly 'Function'

The name of the handler method in your function's handler configuration doesn't match your code.
Each runtime defines a naming convention for handlers, such as filename.methodname. The
handler is the method in your function's code that the runtime runs when your function is invoked.

For some languages, Lambda provides a library with an interface that expects a handler method to
have a specific name. For details about handler naming for each language, see the following topics.

• Building Lambda functions with Node.js

General: Cannot find, cannot load, unable to import, class not found, no such file or directory 1978

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html

AWS Lambda Developer Guide

• Building Lambda functions with Python

• Building Lambda functions with Ruby

• Building Lambda functions with Java

• Building Lambda functions with Go

• Building Lambda functions with C#

• Building Lambda functions with PowerShell

General: Lambda code storage limit exceeded

Error: Code storage limit exceeded.

Lambda stores your function code in an internal S3 bucket that's private to your account.
Each AWS account is allocated 75 GB of storage in each Region. Code storage includes the
total storage used by both Lambda functions and layers. If you reach the quota, you receive a
CodeStorageExceededException when you attempt to deploy new functions.

Manage the storage space available by cleaning up old versions of functions, removing unused
code, or using Lambda layers. In addition, it's good practice to use separate AWS accounts for
separate workloads to help manage storage quotas.

You can view your total storage usage in the Lambda console, under the Dashboard submenu:

Lambda: Layer conversion failed

Error: Lambda layer conversion failed. For advice on resolving this issue, see the Troubleshoot
deployment issues in Lambda page in the Lambda User Guide.

When you configure a Lambda function with a layer, Lambda merges the layer with your function
code. If this process fails to complete, Lambda returns this error. If you encounter this error, take
the following steps:

General: Lambda code storage limit exceeded 1979

AWS Lambda Developer Guide

• Delete any unused files from your layer

• Delete any symbolic links in your layer

• Rename any files that have the same name as a directory in any of your function's layers

Lambda: InvalidParameterValueException or
RequestEntityTooLargeException

Error: InvalidParameterValueException: Lambda was unable to configure your environment variables
because the environment variables you have provided exceeded the 4KB limit. String measured:
{"A1":"uSFeY5cyPiPn7AtnX5BsM...

Error: RequestEntityTooLargeException: Request must be smaller than 5120 bytes for the
UpdateFunctionConfiguration operation

The maximum size of the variables object that is stored in the function's configuration must not
exceed 4096 bytes. This includes key names, values, quotes, commas, and brackets. The total size
of the HTTP request body is also limited.

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function",
 "Runtime": "nodejs22.x",
 "Role": "arn:aws:iam::123456789012:role/lambda-role",
 "Environment": {
 "Variables": {
 "BUCKET": "amzn-s3-demo-bucket",
 "KEY": "file.txt"
 }
 },
 ...
}

In this example, the object is 39 characters and takes up 39 bytes when it's stored (without white
space) as the string {"BUCKET":"amzn-s3-demo-bucket","KEY":"file.txt"}. Standard
ASCII characters in environment variable values use one byte each. Extended ASCII and Unicode
characters can use between 2 bytes and 4 bytes per character.

Lambda: InvalidParameterValueException or RequestEntityTooLargeException 1980

AWS Lambda Developer Guide

Lambda: InvalidParameterValueException

Error: InvalidParameterValueException: Lambda was unable to configure your environment variables
because the environment variables you have provided contains reserved keys that are currently not
supported for modification.

Lambda reserves some environment variable keys for internal use. For example, AWS_REGION is
used by the runtime to determine the current Region and cannot be overridden. Other variables,
like PATH, are used by the runtime but can be extended in your function configuration. For a full
list, see Defined runtime environment variables.

Lambda: Concurrency and memory quotas

Error: Specified ConcurrentExecutions for function decreases account's
UnreservedConcurrentExecution below its minimum value

Error: 'MemorySize' value failed to satisfy constraint: Member must have value less than or equal to
3008

These errors occur when you exceed the concurrency or memory quotas for your account. New AWS
accounts have reduced concurrency and memory quotas. To resolve errors related to concurrency,
you can request a quota increase. You cannot request memory quota increases.

• Concurrency: You might get an error if you try to create a function using reserved or provisioned
concurrency, or if your per-function concurrency request (PutFunctionConcurrency) exceeds your
account's concurrency quota.

• Memory: Errors occur if the amount of memory allocated to the function exceeds your account's
memory quota.

Lambda: Invalid alias configuration for provisioned concurrency

Error: Invalid alias configuration for provisioned concurrency

This error occurs when you try to update a Lambda function's code or configuration while an
alias with provisioned concurrency is pointing to a version that has issues. Lambda pre-initializes
execution environments for provisioned concurrency, and if these environments can't be properly
initialized due to code errors, resource constraints, or affected stack and alias, the deployment fails.
If you encounter this issue, take the following steps:

Lambda: InvalidParameterValueException 1981

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionConcurrency.html

AWS Lambda Developer Guide

1. Roll back the alias: Temporarily update the alias to point to the previously working version.

 aws lambda update-alias \
 --function-name <function-name> \
 --name <alias-name> \
 --function-version <known-good-version>

2. Fix Lambda initialization code: Ensure the initialization code that runs outside the handler
doesn't have any uncaught exceptions and initialize the clients and connections.

3. Redeploy safety: Deploy fixed code and publish a new version. Then, update alias to point to
the fixed version. Optionally, re-enable provisioned concurrency, if necessary.

If using AWS CloudFormation, update stack definition FunctionVersion:!GetAtt
version.Version so that the alias points to the working version:

alias:
 Type: AWS::Lambda::Alias
 Properties:
 FunctionName: !Ref function
FunctionVersion: !GetAtt version.Version
 Name: BLUE
 ProvisionedConcurrencyConfig:
 ProvisionedConcurrentExecutions: 1

Troubleshoot invocation issues in Lambda

When you invoke a Lambda function, Lambda validates the request and checks for scaling capacity
before sending the event to your function or, for asynchronous invocation, to the event queue.
Invocation errors can be caused by issues with request parameters, event structure, function
settings, user permissions, resource permissions, or limits.

If you invoke your function directly, you see any invocation errors in the response from Lambda. If
you invoke your function asynchronously with an event source mapping or through another service,
you might find errors in logs, a dead-letter queue, or a failed-event destination. Error handling
options and retry behavior vary depending on how you invoke your function and on the type of
error.

For a list of error types that the Invoke operation can return, see Invoke.

Invocation 1982

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

Topics

• Lambda: Function times out during Init phase (Sandbox.Timedout)

• IAM: lambda:InvokeFunction not authorized

• Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint)

• Lambda: Operation cannot be performed ResourceConflictException

• Lambda: Function is stuck in Pending

• Lambda: One function is using all concurrency

• General: Cannot invoke function with other accounts or services

• General: Function invocation is looping

• Lambda: Alias routing with provisioned concurrency

• Lambda: Cold starts with provisioned concurrency

• Lambda: Cold starts with new versions

• EFS: Function could not mount the EFS file system

• EFS: Function could not connect to the EFS file system

• EFS: Function could not mount the EFS file system due to timeout

• Lambda: Lambda detected an IO process that was taking too long

• Container: CodeArtifactUserException errors

• Container: InvalidEntrypoint errors

Lambda: Function times out during Init phase (Sandbox.Timedout)

Error: Task timed out after 3.00 seconds

When the Init phase times out, Lambda initializes the execution environment again by re-running
the Init phase when the next invoke request arrives. This is called a suppressed init. However,
if your function is configured with a short timeout duration (generally around 3 seconds), the
suppressed init might not complete during the allocated timeout duration, causing the Init phase
to time out again. Alternatively, the suppressed init completes but does not leave enough time for
the Invoke phase to complete, causing the Invoke phase to time out.

To reduce timeout errors, use one or more of the following strategies:

• Increase the function timeout duration: Extend the timeout to give the Init and Invoke
phases time to complete successfully.

Lambda: Function times out during Init phase (Sandbox.Timedout) 1983

AWS Lambda Developer Guide

• Increase the function memory allocation: More memory also means more proportional CPU
allocation, which can speed up both the Init and Invoke phases.

• Optimize the function initialization code: Reduce the time needed for initialization to ensure
that the the Init and Invoke phase can complete within the configured timeout.

IAM: lambda:InvokeFunction not authorized

Error: User: arn:aws:iam::123456789012:user/developer is not authorized to perform:
lambda:InvokeFunction on resource: my-function

Your user, or the role that you assume, must have permission to invoke a function. This
requirement also applies to Lambda functions and other compute resources that invoke functions.
Add the AWS managed policy AWSLambdaRole to your user, or add a custom policy that allows
the lambda:InvokeFunction action on the target function.

Note

The name of the IAM action (lambda:InvokeFunction) refers to the Invoke Lambda API
operation.

For more information, see Managing permissions in AWS Lambda .

Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint)

Error: Couldn't find valid bootstrap(s): [/var/task/bootstrap /opt/bootstrap]

This error typically occurs when the root of your deployment package doesn't contain an
executable file named bootstrap. For example, if you're deploying a provided.al2023 function
with a .zip file, the bootstrap file must be at the root of the .zip file, not in a directory.

Lambda: Operation cannot be performed ResourceConflictException

Error: ResourceConflictException: The operation cannot be performed at this time. The function is
currently in the following state: Pending

When you connect a function to a virtual private cloud (VPC) at the time of creation, the function
enters a Pending state while Lambda creates elastic network interfaces. During this time, you

IAM: lambda:InvokeFunction not authorized 1984

AWS Lambda Developer Guide

can't invoke or modify your function. If you connect your function to a VPC after creation, you can
invoke it while the update is pending, but you can't modify its code or configuration.

For more information, see Lambda function states .

Lambda: Function is stuck in Pending

Error: A function is stuck in the Pending state for several minutes.

If a function is stuck in the Pending state for more than six minutes, call one of the following API
operations to unblock it:

• UpdateFunctionCode

• UpdateFunctionConfiguration

• PublishVersion

Lambda cancels the pending operation and puts the function into the Failed state. You can then
attempt another update.

Lambda: One function is using all concurrency

Issue: One function is using all of the available concurrency, causing other functions to be throttled.

To divide your AWS account's available concurrency in an AWS Region into pools, use reserved
concurrency. Reserved concurrency ensures that a function can always scale to its assigned
concurrency, and that it doesn't scale beyond its assigned concurrency.

General: Cannot invoke function with other accounts or services

Issue: You can invoke your function directly, but it doesn't run when another service or account
invokes it.

You grant other services and accounts permission to invoke a function in the function's resource-
based policy. If the invoker is in another account, that user must also have permission to invoke
functions.

General: Function invocation is looping

Issue: Function is invoked continuously in a loop.

Lambda: Function is stuck in Pending 1985

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html

AWS Lambda Developer Guide

This typically occurs when your function manages resources in the same AWS service that triggers
it. For example, it's possible to create a function that stores an object in an Amazon Simple Storage
Service (Amazon S3) bucket that's configured with a notification that invokes the function again.
To stop the function from running, reduce the available concurrency to zero, which throttles all
future invocations. Then, identify the code path or configuration error that caused the recursive
invocation. Lambda automatically detects and stops recursive loops for some AWS services and
SDKs. For more information, see the section called “Recursive loop detection”.

Lambda: Alias routing with provisioned concurrency

Issue: Provisioned concurrency spillover invocations during alias routing.

Lambda uses a simple probabilistic model to distribute the traffic between the two function
versions. At low traffic levels, you might see a high variance between the configured and actual
percentage of traffic on each version. If your function uses provisioned concurrency, you can avoid
spillover invocations by configuring a higher number of provisioned concurrency instances during
the time that alias routing is active.

Lambda: Cold starts with provisioned concurrency

Issue: You see cold starts after enabling provisioned concurrency.

When the number of concurrent executions on a function is less than or equal to the configured
level of provisioned concurrency, there shouldn't be any cold starts. To help you confirm if
provisioned concurrency is operating normally, do the following:

• Check that provisioned concurrency is enabled on the function version or alias.

Note

Provisioned concurrency is not configurable on the unpublished version of the function
($LATEST).

• Ensure that your triggers invoke the correct function version or alias. For example, if you're
using Amazon API Gateway, check that API Gateway invokes the function version or alias with
provisioned concurrency, not $LATEST. To confirm that provisioned concurrency is being used,
you can check the ProvisionedConcurrencyInvocations Amazon CloudWatch metric. A non-zero
value indicates that the function is processing invocations on initialized execution environments.

Lambda: Alias routing with provisioned concurrency 1986

AWS Lambda Developer Guide

• Determine whether your function concurrency exceeds the configured level of provisioned
concurrency by checking the ProvisionedConcurrencySpilloverInvocations CloudWatch metric. A
non-zero value indicates that all provisioned concurrency is in use and some invocation occurred
with a cold start.

• Check your invocation frequency (requests per second). Functions with provisioned concurrency
have a maximum rate of 10 requests per second per provisioned concurrency. For example, a
function configured with 100 provisioned concurrency can handle 1,000 requests per second. If
the invocation rate exceeds 1,000 requests per second, some cold starts can occur.

Lambda: Cold starts with new versions

Issue: You see cold starts while deploying new versions of your function.

When you update a function alias, Lambda automatically shifts provisioned concurrency to the new
version based on the weights configured on the alias.

Error: KMSDisabledException: Lambda was unable to decrypt the environment variables because the
KMS key used is disabled. Please check the function's KMS key settings.

This error can occur if your AWS Key Management Service (AWS KMS) key is disabled, or if the grant
that allows Lambda to use the key is revoked. If the grant is missing, configure the function to use
a different key. Then, reassign the custom key to recreate the grant.

EFS: Function could not mount the EFS file system

Error: EFSMountFailureException: The function could not mount the EFS file system with access point
arn:aws:elasticfilesystem:us-east-2:123456789012:access-point/fsap-015cxmplb72b405fd.

The mount request to the function's file system was rejected. Check the function's permissions, and
confirm that its file system and access point exist and are ready for use.

EFS: Function could not connect to the EFS file system

Error: EFSMountConnectivityException: The function couldn't connect to the Amazon EFS file
system with access point arn:aws:elasticfilesystem:us-east-2:123456789012:access-point/
fsap-015cxmplb72b405fd. Check your network configuration and try again.

The function couldn't establish a connection to the function's file system with the NFS protocol
(TCP port 2049). Check the security group and routing configuration for the VPC's subnets.

Lambda: Cold starts with new versions 1987

https://docs.aws.amazon.com/efs/latest/ug/network-access.html

AWS Lambda Developer Guide

If you get these errors after updating your function's VPC configuration settings, try unmounting
and remounting the file system.

EFS: Function could not mount the EFS file system due to timeout

Error: EFSMountTimeoutException: The function could not mount the EFS file system with access
point {arn:aws:elasticfilesystem:us-east-2:123456789012:access-point/fsap-015cxmplb72b405fd}
due to mount time out.

The function could connect to the function's file system, but the mount operation timed out. Try
again after a short time and consider limiting the function's concurrency to reduce load on the file
system.

Lambda: Lambda detected an IO process that was taking too long

EFSIOException: This function instance was stopped because Lambda detected an IO process that was
taking too long.

A previous invocation timed out and Lambda couldn't terminate the function handler. This issue
can occur when an attached file system runs out of burst credits and the baseline throughput is
insufficient. To increase throughput, you can increase the size of the file system or use provisioned
throughput.

Container: CodeArtifactUserException errors

Error: CodeArtifactUserPendingException error message

The CodeArtifact is pending optimization. The function transitions to the Active state when
Lambda completes the optimization. HTTP response code 409.

Error: CodeArtifactUserDeletedException error message

The CodeArtifact is scheduled to be deleted. HTTP response code 409.

Error: CodeArtifactUserFailedException error message

Lambda failed to optimize the code. You need to correct the code and upload it again. HTTP
response code 409.

Container: InvalidEntrypoint errors

Error: Runtime.ExitError or "errorType": "Runtime.InvalidEntrypoint"

EFS: Function could not mount the EFS file system due to timeout 1988

AWS Lambda Developer Guide

Verify that the ENTRYPOINT to your container image includes the absolute path as the location.
Also verify that the image does not contain a symlink as the ENTRYPOINT.

Error: You are using an AWS CloudFormation template, and your container ENTRYPOINT is being
overridden with a null or empty value.

Review the ImageConfig resource in the AWS CloudFormation template. If you declare an
ImageConfig resource in your template, you must provide non-empty values for all three of the
properties.

Troubleshoot execution issues in Lambda

When the Lambda runtime runs your function code, the event might be processed on an instance
of the function that's been processing events for some time, or it might require a new instance to
be initialized. Errors can occur during function initialization, when your handler code processes the
event, or when your function returns (or fails to return) a response.

Function execution errors can be caused by issues with your code, function configuration,
downstream resources, or permissions. If you invoke your function directly, you see function errors
in the response from Lambda. If you invoke your function asynchronously, with an event source
mapping, or through another service, you might find errors in logs, a dead-letter queue, or an on-
failure destination. Error handling options and retry behavior vary depending on how you invoke
your function and on the type of error.

When your function code or the Lambda runtime return an error, the status code in the response
from Lambda is 200 OK. The presence of an error in the response is indicated by a header named
X-Amz-Function-Error. 400 and 500-series status codes are reserved for invocation errors.

Topics

• Lambda: Remote debugging with Visual Studio Code

• Lambda: Execution takes too long

• Lambda: Unexpected event payload

• Lambda: Unexpectedly large payload sizes

• Lambda: JSON encoding and decoding errors

• Lambda: Logs or traces don't appear

• Lambda: Not all of my function's logs appear

• Lambda: The function returns before execution finishes

Execution 1989

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-properties-lambda-function-imageconfig.html

AWS Lambda Developer Guide

• Lambda: Running an unintended function version or alias

• Lambda: Detecting infinite loops

• General: Downstream service unavailability

• AWS SDK: Versions and updates

• Python: Libraries load incorrectly

• Java: Your function takes longer to process events after updating to Java 17 from Java 11

Lambda: Remote debugging with Visual Studio Code

Issue: Difficulty troubleshooting complex Lambda function behavior in the actual AWS environment

Lambda provides a remote debugging feature through the AWS Toolkit for Visual Studio Code. For
set up and general instructions, see Remotely debug Lambda functions with Visual Studio Code.

For detailed instructions on troubleshooting, advanced use cases, and region availability, see
Remote debugging Lambda functions in the AWS Toolkit for Visual Studio Code User Guide.

Lambda: Execution takes too long

Issue: Function execution takes too long.

If your code takes much longer to run in Lambda than on your local machine, it may be constrained
by the memory or processing power available to the function. Configure the function with
additional memory to increase both memory and CPU.

Lambda: Unexpected event payload

Issue: Function errors related to malformed JSON or inadequate data validation.

All Lambda functions receive an event payload in the first parameter of the handler. The event
payload is a JSON structure that may contain arrays and nested elements.

Malformed JSON can occur when provided by upstream services that do not use a robust process
for checking JSON structures. This occurs when services concatenate text strings or embed user
input that has not been sanitized. JSON is also frequently serialized for passing between services.
Always parse JSON structures both as the producer and consumer of JSON to ensure that the
structure is valid.

Lambda: Remote debugging with Visual Studio Code 1990

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/lambda-remote-debug.html

AWS Lambda Developer Guide

Similarly, failing to check for ranges of values in the event payload can result in errors. This
example shows a function that calculates a tax withholding:

exports.handler = async (event) => {
 let pct = event.taxPct
 let salary = event.salary

 // Calculate % of paycheck for taxes
 return (salary * pct)
}

This function uses a salary and tax rate from the event payload to perform the calculation.
However, the code fails to check if the attributes are present. It also fails to check data types, or
ensure boundaries, such as ensuring that the tax percentage is between 0 and 1. As a result, values
outside of these bounds produce nonsensical results. An incorrect type or missing attribute causes
a runtime error.

Create tests to ensure that your function handles larger payload sizes. The maximum size for a
Lambda event payload is 256 KB. Depending upon the content, larger payloads may mean more
items passed to the function or more binary data embedded in a JSON attribute. In both cases, this
can result in more processing for a Lambda function.

Larger payloads can also cause timeouts. For example, a Lambda function processes one record
per 100 ms and has a timeout of 3 seconds. Processing is successful for 0-29 items in the payload.
However, once the payload contains more than 30 items, the function times out and throws an
error. To avoid this, ensure that timeouts are set to handle the additional processing time for the
maximum number of items expected.

Lambda: Unexpectedly large payload sizes

Issue: Functions are timing out or causing errors due to large payloads.

Larger payloads can cause timeouts and errors. We recommend creating tests to ensure that your
function handles your largest expected payloads, and ensuring the function timeout is properly set.

In addition, certain event payloads can contain pointers to other resources. For example, a Lambda
function with 128 MB of memory may perform image processing on a JPG file stored as an object
in S3. The function works as expected with smaller image files. However, when a larger JPG file is
provided as input, the Lambda function throws an error due to running out of memory. To avoid

Lambda: Unexpectedly large payload sizes 1991

AWS Lambda Developer Guide

this, the test cases should include examples from the upper bounds of expected data sizes. The
code should also validate payload sizes.

Lambda: JSON encoding and decoding errors

Issue: NoSuchKey exception when parsing JSON inputs.

Check to ensure you are processing JSON attributes correctly. For example, for events generated
by S3, the s3.object.key attribute contains a URL encoded object key name. Many functions
process this attribute as text to load the referenced S3 object:

Example

const originalText = await s3.getObject({
 Bucket: event.Records[0].s3.bucket.name,
 Key: event.Records[0].s3.object.key
}).promise()

This code works with the key name james.jpg but throws a NoSuchKey error when the name is
james beswick.jpg. Since URL encoding converts spaces and other characters in a key name,
you must ensure that functions decode keys before using this data:

Example

const originalText = await s3.getObject({
 Bucket: event.Records[0].s3.bucket.name,
 Key: decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, " "))
}).promise()

Lambda: Logs or traces don't appear

Issue: Logs don't appear in CloudWatch Logs.

Issue: Traces don't appear in AWS X-Ray.

Your function needs permission to call CloudWatch Logs and X-Ray. Update its execution role to
grant it permission. Add the following managed policies to enable logs and tracing.

• AWSLambdaBasicExecutionRole

• AWSXRayDaemonWriteAccess

Lambda: JSON encoding and decoding errors 1992

AWS Lambda Developer Guide

When you add permissions to your function, perform a trivial update to its code or configuration as
well. This forces running instances of your function, which have outdated credentials, to stop and
be replaced.

Note

It may take 5 to 10 minutes for logs to show up after a function invocation.

Lambda: Not all of my function's logs appear

Issue: Function logs are missing in CloudWatch Logs, even though my permissions are correct

If your AWS account reaches its CloudWatch Logs quota limits, CloudWatch throttles function
logging. When this happens, some of the logs output by your functions may not appear in
CloudWatch Logs.

If your function outputs logs at too high a rate for Lambda to process them, this can also cause
log outputs not to appear in CloudWatch Logs. When Lambda can't send logs to CloudWatch at
the rate your function produces them, it drops logs to prevent the execution of your function from
slowing down. Expect to consistently observe dropped logs when your log throughput exceeds 2
MB/s for a single log stream.

If your function is configured to use JSON formatted logs, Lambda tries to send a logsDropped
event to CloudWatch Logs when it drops logs. However, when CloudWatch throttles your function's
logging, this event might not reach CloudWatch Logs, so you won't always see a record when
Lambda drops logs.

To check if your AWS account has reached its CloudWatch Logs quota limits, do the following:

1. Open the Service Quotas console.

2. In the navigation pane, choose AWS services.

3. From the AWS services list, search for Amazon CloudWatch Logs.

4. In the Service quotas list, choose the CreateLogGroup throttle limit in
transactions per second, CreateLogStream throttle limit in transactions
per second and PutLogEvents throttle limit in transactions per second
quotas to view your utilization.

Lambda: Not all of my function's logs appear 1993

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://console.aws.amazon.com/servicequotas

AWS Lambda Developer Guide

You can also set CloudWatch alarms to alert you when your account utilization exceeds a limit you
specify for these quotas. See Create a CloudWatch alarm based on a static threshold to learn more.

If the default quota limits for CloudWatch Logs aren't enough for your use case, you can request a
quota increase.

Lambda: The function returns before execution finishes

Issue: (Node.js) Function returns before code finishes executing

Many libraries, including the AWS SDK, operate asynchronously. When you make a network call or
perform another operation that requires waiting for a response, libraries return an object called a
promise that tracks the progress of the operation in the background.

To wait for the promise to resolve into a response, use the await keyword. This blocks your
handler code from executing until the promise is resolved into an object that contains the
response. If you don't need to use the data from the response in your code, you can return the
promise directly to the runtime.

Some libraries don't return promises but can be wrapped in code that does. For more information,
see Define Lambda function handler in Node.js.

Lambda: Running an unintended function version or alias

Issue: Function version or alias not invoked

When you publish new Lambda functions in the console or using AWS SAM, the latest code
version is represented by $LATEST. By default, invocations that don't specify a version or alias
automatically targets the $LATEST version of your function code.

If you use specific function versions or aliases, these are immutable published versions of a
function in addition to $LATEST. When troubleshooting these functions, first determine that the
caller has invoked the intended version or alias. You can do this by checking your function logs. The
version of the function that was invoked is always shown in the START log line:

Lambda: The function returns before execution finishes 1994

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS Lambda Developer Guide

Lambda: Detecting infinite loops

Issue: Infinite loop patterns related to Lambda functions

There are two types of infinite loops in Lambda functions. The first is within the function itself,
caused by a loop that never exits. The invocation ends only when the function times out. You can
identify these by monitoring timeouts, and then fixing the looping behavior.

The second type of loop is between Lambda functions and other AWS resources. These occur when
an event from a resource like an S3 bucket invokes a Lambda function, which then interacts with
the same source resource to trigger another event. This invokes the function again, which creates
another interaction with the same S3 bucket, and so on. These types of loops can be caused by a
number of different AWS event sources, including Amazon SQS queues and DynamoDB tables. You
can use recursive loop detection to identify these patterns.

You can avoid these loops by ensuring that Lambda functions write to resources that are not the
same as the consuming resource. If you must publish data back to the consuming resource, ensure
that the new data doesn't trigger the same event. Alternatively, use event filtering. For example,
here are two proposed solutions to infinite loops with S3 and DynamoDB resources:

Lambda: Detecting infinite loops 1995

AWS Lambda Developer Guide

• If you write back to the same S3 bucket, use a different prefix or suffix from the event trigger.

• If you write items to the same DynamoDB table, include an attribute that a consuming Lambda
function can filter on. If Lambda finds the attribute, it will not result in another invocation.

General: Downstream service unavailability

Issue: Downstream services that your Lambda function relies on are unavailable

For Lambda functions that call out to third-party endpoints or other downstream resources,
ensure that they can handle service errors and timeouts. These downstream resources can have
variable response times, or become unavailable due to service disruptions. Depending upon the
implementation, these downstream errors may appear as Lambda timeouts or exceptions if the
service’s error response is not handled within the function code.

Anytime a function depends on a downstream service, such as an API call, implement appropriate
error handling and retry logic. For critical services, the Lambda function should publish metrics or
logs to CloudWatch. For example, if a third-party payment API becomes unavailable, your Lambda
function can log this information. You can then set up CloudWatch alarms to send notifications
related to these errors.

Since Lambda can scale quickly, non-serverless downstream services may struggle to handle spikes
in traffic. There are three common approaches to handling this:

• Caching – Consider caching the result of values returned by third-party services if they don't
change frequently. You can store these values in global variable in your function, or another
service. For example, the results for a product list query from an Amazon RDS instance could be
saved for a period of time within the function to prevent redundant queries.

• Queuing – When saving or updating data, add an Amazon SQS queue between the Lambda
function and the resource. The queue durably persists data while the downstream service
processes messages.

• Proxies – Where long-lived connections are typically used, such as for Amazon RDS instances, use
a proxy layer to pool and reuse those connections. For relational databases, Amazon RDS Proxy
is a service designed to help improve scalability and resiliency in Lambda-based applications.

AWS SDK: Versions and updates

Issue: The AWS SDK included on the runtime is not the latest version

General: Downstream service unavailability 1996

https://github.com/aws-samples/s3-to-lambda-patterns/tree/master/docrepository

AWS Lambda Developer Guide

Issue: The AWS SDK included on the runtime updates automatically

Runtimes for interpreted languages include a version of the AWS SDK. Lambda periodically
updates these runtimes to use the latest SDK version. To find the version of the SDK that's included
in your runtime, see the following sections:

• Runtime included SDK versions (Node.js)

• Runtime included SDK versions (Python)

• Runtime included SDK versions (Ruby)

To use a newer version of the AWS SDK, or to lock your functions to a specific version, you can
bundle the library with your function code, or create a Lambda layer. For details on creating a
deployment package with dependencies, see the following topics:

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Deploy Ruby Lambda functions with .zip file archives

Java

Deploy Java Lambda functions with .zip or JAR file archives

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Python: Libraries load incorrectly

Issue: (Python) Some libraries don't load correctly from the deployment package

Python: Libraries load incorrectly 1997

AWS Lambda Developer Guide

Libraries with extension modules written in C or C++ must be compiled in an environment with
the same processor architecture as Lambda (Amazon Linux). For more information, see Working
with .zip file archives for Python Lambda functions.

Java: Your function takes longer to process events after updating to
Java 17 from Java 11

Issue: (Java) Your function takes longer to process events after updating to Java 17 from Java 11

Tune your compiler using the JAVA_TOOL_OPTIONS parameter. Lambda runtimes for Java 17 and
later Java versions change the default compiler options. The change improves cold start times
for short-lived functions, but the previous behavior is better suited to computationally intensive,
longer-running functions. Set JAVA_TOOL_OPTIONS to -XX:-TieredCompilation to revert to
the Java 11 behavior. For more information about the JAVA_TOOL_OPTIONS parameter, see the
section called “Understanding the JAVA_TOOL_OPTIONS environment variable”.

Troubleshoot event source mapping issues in Lambda

Issues in Lambda that relate to an event source mapping can be more complex because they
involve debugging across multiple services. Moreover, event source behavior can differ based on
the exact event source used. This section lists common issues that involve event source mappings,
and provides guidance on how to identify and troubleshoot them.

Note

This section uses an Amazon SQS event source for illustration, but the principles apply to
other event source mappings that queue messages for Lambda functions.

Identifying and managing throttling

In Lambda, throttling occurs when you reach your function's or account's concurrency limit.
Consider the following example, where there is a Lambda function that reads messages from an
Amazon SQS queue. This Lambda function simulates 30 second invocations, and has a batch size of
1. This means that the function processes only 1 message every 30 seconds:

const doWork = (ms) => new Promise(resolve => setTimeout(resolve, ms))

Java: Your function takes longer to process events after updating to Java 17 from Java 11 1998

AWS Lambda Developer Guide

exports.handler = async (event) => {
 await doWork(30000)

}

With such a long invocation time, messages begin arriving in the queue more rapidly than they are
processed. If your account's unreserved concurrency is 100, Lambda scales up to 100 concurrent
executions, and then throttling occurs. You can see this pattern in the CloudWatch metrics for the
function:

CloudWatch metrics for the function show no errors, but the Concurrent executions chart shows
that the maximum concurrency of 100 is reached. As a result, the Throttles chart shows the
throttling in place.

You can detect throttling with CloudWatch alarms, and setting an alarm anytime the throttling
metric for a function is greater than 0. After you've identified the throttling issue, you have a few
options for resolution:

Identifying and managing throttling 1999

AWS Lambda Developer Guide

• Request a concurrency increase from AWS Support in this Region.

• Identify performance issues in the function to improve the speed of processing and therefore
improve throughput.

• Increase the batch size of the function, so more messages are processed by each invocation.

Errors in the processing function

If the processing function throws errors, Lambda returns the messages to the SQS queue. Lambda
prevents your function from scaling to prevent errors at scale. The following SQS metrics in
CloudWatch indicate an issue with queue processing:

In particular, both the age of the oldest message and the number of messages visible are
increasing, while no messages are deleted. The queue continues to grow but messages are not
being processed. The CloudWatch metrics for the processing Lambda function also indicate that
there is a problem:

Errors in the processing function 2000

AWS Lambda Developer Guide

The Error count metric is non-zero and growing, while Concurrent executions have reduced and
throttling has stopped. This shows that Lambda has stopped scaling up your function due to errors.
The CloudWatch logs for the function provide details of the type of error.

You can resolve this issue by identifying the function causing the error, then finding and resolving
the error. After you fix the error and deploy the new function code, the CloudWatch metrics should
show the processing recover:

Errors in the processing function 2001

AWS Lambda Developer Guide

Here, the Error count metric drops to zero and the Success rate metric returns to 100%. Lambda
starts scaling up the function again, as shown in the Concurrent executions graph.

Identifying and handling backpressure

If an event producer consistently generates messages for an SQS queue faster than a Lambda
function can process them, backpressure occurs. In this case, SQS monitoring should show the age
of the oldest message growing linearly, along with the approximate number of messages visible.
You can detect backpressure in queues using CloudWatch alarms.

The steps to resolve backpressure depend on your workload. If the primary goal is to increase
processing capability and throughput by the Lambda function, you have a few options:

Identifying and handling backpressure 2002

AWS Lambda Developer Guide

• Request a concurrency increase in the specific Region from AWS Support.

• Increase the batch size of the function, so more messages are processed by each invocation.

Troubleshoot networking issues in Lambda

By default, Lambda runs your functions in an internal virtual private cloud (VPC) with connectivity
to AWS services and the internet. To access local network resources, you can configure your
function to connect to a VPC in your account. When you use this feature, you manage the
function's internet access and network connectivity with Amazon Virtual Private Cloud (Amazon
VPC) resources.

Network connectivity errors can result from issues with your VPC's routing configuration, security
group rules, AWS Identity and Access Management (IAM) role permissions, or network address
translation (NAT), or from the availability of resources such as IP addresses or network interfaces.
Depending on the issue, you might see a specific error or timeout if a request can't reach its
destination.

Topics

• VPC: Function loses internet access or times out

• VPC: TCP or UDP connection intermittently fails

• VPC: Function needs access to AWS services without using the internet

• VPC: Elastic network interface limit reached

• EC2: Elastic network interface with type of "lambda"

• DNS: Fail to connect to hosts with UNKNOWNHOSTEXCEPTION

VPC: Function loses internet access or times out

Issue: Your Lambda function loses internet access after connecting to a VPC.

Error: Error: connect ETIMEDOUT 176.32.98.189:443

Error: Error: Task timed out after 10.00 seconds

Error: ReadTimeoutError: Read timed out. (read timeout=15)

When you connect a function to a VPC, all outbound requests go through the VPC. To connect
to the internet, configure your VPC to send outbound traffic from the function's subnet to a NAT

Networking 2003

AWS Lambda Developer Guide

gateway in a public subnet. For more information and sample VPC configurations, see the section
called “Internet access for VPC functions”.

If some of your TCP connections are timing out, see the section called “VPC: TCP or UDP
connection intermittently fails” if your subnet is using a network access control list (NACL).
Otherwise, this is likely due to packet fragmentation. Lambda functions cannot handle incoming
fragmented TCP requests, since Lambda does not support IP fragmentation for TCP or ICMP.

VPC: TCP or UDP connection intermittently fails

Note

This issue applies only if your subnet uses a network access control list (ACL). Network ACLs
aren't required for Lambda to connect to your subnets.

Issue: Lambda intermittently loses connection to your VPC subnets, which you have configured a
network access control list (ACL) for.

For VPC-enabled Lambda functions, AWS creates hyperplane ENIs in the customer's account, and
uses ephemeral ports 1024 to 65535 to connect Lambda to the customer's VPC. If you use network
ACLs in the target subnet, you must allow the port range 1024 to 65535 for both TCP and UDP.
Not allowing this full port range can cause intermittent connection failures.

VPC: Function needs access to AWS services without using the internet

Issue: Your Lambda function needs access to AWS services without using the internet.

To connect a function to AWS services from a private subnet with no internet access, use VPC
endpoints.

VPC: Elastic network interface limit reached

Error: ENILimitReachedException: The elastic network interface limit was reached for the function's
VPC.

When you connect a Lambda function to a VPC, Lambda creates an elastic network interface for
each combination of subnet and security group attached to the function. The default service quota
is 250 network interfaces per VPC. To request a quota increase, use the Service Quotas console.

VPC: TCP or UDP connection intermittently fails 2004

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html#nacl-basics
https://console.aws.amazon.com/servicequotas/home/services/lambda/quotas/L-9FEE3D26

AWS Lambda Developer Guide

EC2: Elastic network interface with type of "lambda"

Error Code: Client.OperationNotPermitted

Error message: The security group can not be modified for this type of interface

You will receive this error if you attempt to modify an elastic network interface (ENI) that is
managed by Lambda. The ModifyNetworkInterfaceAttribute is not included in the Lambda
API for update operations on elastic network interfaces created by Lambda.

DNS: Fail to connect to hosts with UNKNOWNHOSTEXCEPTION

Error Message: UNKNOWNHOSTEXCEPTION

Lambda functions support a maximum of 20 concurrent TCP connections for DNS resolution.
Your function may be exhausting that limit. Most common DNS requests are done over UDP. If
your function is only making UDP DNS connections, this is unlikely to be your issue. This error is
commonly thrown due to misconfiguration or degraded infrastructure, so before examining your
DNS traffic in depth, confirm that your DNS infrastructure is properly configured and healthy and
that your Lambda function is referring to a host specified in DNS.

If you diagnose your issue as related to the TCP connection maximum, note that you cannot
request an increase to this limit. If your Lambda function is falling back to TCP DNS because of
large DNS payloads, confirm that your solution is using libraries that support EDNS. For more
information about EDNS, see the RFC 6891 standard. If your DNS payloads consistently exceed
EDNS max sizes, your solution may still exhaust the TCP DNS limit.

EC2: Elastic network interface with type of "lambda" 2005

https://datatracker.ietf.org/doc/html/rfc6891

AWS Lambda Developer Guide

Lambda sample applications

The GitHub repository for this guide includes sample applications that demonstrate the use of
various languages and AWS services. Each sample application includes scripts for easy deployment
and cleanup and supporting resources.

Node.js

Sample Lambda applications in Node.js

• blank-nodejs – A Node.js function that shows the use of logging, environment variables, AWS
X-Ray tracing, layers, unit tests and the AWS SDK.

• nodejs-apig – A function with a public API endpoint that processes an event from API
Gateway and returns an HTTP response.

Python

Sample Lambda applications in Python

• blank-python – A Python function that shows the use of logging, environment variables, AWS
X-Ray tracing, layers, unit tests and the AWS SDK.

Ruby

Sample Lambda applications in Ruby

• blank-ruby – A Ruby function that shows the use of logging, environment variables, AWS X-
Ray tracing, layers, unit tests and the AWS SDK.

• Ruby Code Samples for AWS Lambda – Code samples written in Ruby that demonstrate how
to interact with AWS Lambda.

Java

Sample Lambda applications in Java

• example-java – A Java function that demonstrates how you can use Lambda to process
orders. This function illustrates how to define and deserialize a custom input event object, use
the AWS SDK, and output logging.

2006

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby
https://docs.aws.amazon.com/code-samples/latest/catalog/code-catalog-ruby-example_code-lambda.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/example-java

AWS Lambda Developer Guide

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle
events from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis.
These functions use the latest version of the aws-lambda-java-events library (3.0.0 and
newer). These examples do not require the AWS SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the
Java Class Library (JCL) to create thumbnails from uploaded image files.

• layer-java – A Java function that illustrates how to use a Lambda layer to package
dependencies separate from your core function code.

Running popular Java frameworks on Lambda

• spring-cloud-function-samples – An example from Spring that shows how to use the Spring
Cloud Function framework to create AWS Lambda functions.

• Serverless Spring Boot Application Demo – An example that shows how to set up a typical
Spring Boot application in a managed Java runtime with and without SnapStart, or as a
GraalVM native image with a custom runtime.

• Serverless Micronaut Application Demo – An example that shows how to use Micronaut in
a managed Java runtime with and without SnapStart, or as a GraalVM native image with a
custom runtime. Learn more in the Micronaut/Lambda guides.

• Serverless Quarkus Application Demo – An example that shows how to use Quarkus in a
managed Java runtime with and without SnapStart, or as a GraalVM native image with a
custom runtime. Learn more in the Quarkus/Lambda guide and Quarkus/SnapStart guide.

Go

Lambda provides the following sample applications for the Go runtime:

Sample Lambda applications in Go

• go-al2 – A hello world function that returns the public IP address. This app uses the
provided.al2 custom runtime.

• blank-go – A Go function that shows the use of Lambda's Go libraries, logging, environment
variables, and the AWS SDK. This app uses the go1.x runtime.

2007

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-java
https://github.com/spring-cloud/spring-cloud-function/tree/3.2.x/spring-cloud-function-samples/function-sample-aws
https://spring.io/projects/spring-cloud-function
https://spring.io/projects/spring-cloud-function
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/springboot
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/micronaut
https://guides.micronaut.io/latest/tag-lambda.html
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/quarkus
https://quarkus.io/guides/aws-lambda
https://quarkus.io/guides/aws-lambda-snapstart
https://github.com/aws-samples/sessions-with-aws-sam/tree/master/go-al2
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go

AWS Lambda Developer Guide

C#

Sample Lambda applications in C#

• blank-csharp – A C# function that shows the use of Lambda's .NET libraries, logging,
environment variables, AWS X-Ray tracing, unit tests, and the AWS SDK.

• blank-csharp-with-layer – A C# function that uses the .NET CLI to create a layer that packages
the function's dependencies.

• ec2-spot – A function that manages spot instance requests in Amazon EC2.

PowerShell

Lambda provides the following sample applications for PowerShell:

• blank-powershell – A PowerShell function that shows the use of logging, environment
variables, and the AWS SDK.

To deploy a sample application, follow the instructions in its README file.

2008

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp-with-layer
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/ec2-spot
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell

AWS Lambda Developer Guide

Using Lambda with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell AWS Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to Lambda, see Code examples for Lambda using AWS SDKs.

2009

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_5_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

AWS Lambda Developer Guide

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

2010

AWS Lambda Developer Guide

Code examples for Lambda using AWS SDKs

The following code examples show how to use Lambda with an AWS software development kit
(SDK).

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

AWS community contributions are examples that were created and are maintained by multiple
teams across AWS. To provide feedback, use the mechanism provided in the linked repositories.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello Lambda

The following code examples show how to get started using Lambda.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace LambdaActions;

using Amazon.Lambda;

2011

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS Lambda Developer Guide

public class HelloLambda
{
 static async Task Main(string[] args)
 {
 var lambdaClient = new AmazonLambdaClient();

 Console.WriteLine("Hello AWS Lambda");
 Console.WriteLine("Let's get started with AWS Lambda by listing your
 existing Lambda functions:");

 var response = await lambdaClient.ListFunctionsAsync();
 response.Functions.ForEach(function =>
 {

 Console.WriteLine($"{function.FunctionName}\t{function.Description}");
 });
 }
}

• For API details, see ListFunctions in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS lambda)

Set this project's name.

2012

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda/hello_lambda#code-examples

AWS Lambda Developer Guide

project("hello_lambda")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # if you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_lambda.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_lambda.cpp source file.

#include <aws/core/Aws.h>
#include <aws/lambda/LambdaClient.h>

2013

AWS Lambda Developer Guide

#include <aws/lambda/model/ListFunctionsRequest.h>
#include <iostream>

/*
 * A "Hello Lambda" starter application which initializes an AWS Lambda (Lambda)
 client and lists the Lambda functions.
 *
 * main function
 *
 * Usage: 'hello_lambda'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient lambdaClient(clientConfig);
 std::vector<Aws::String> functions;
 Aws::String marker; // Used for pagination.

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome =
 lambdaClient.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult
 &listFunctionsResult = outcome.GetResult();
 std::cout << listFunctionsResult.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

2014

AWS Lambda Developer Guide

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: listFunctionsResult.GetFunctions()) {
 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() <<
 std::endl;
 std::cout << " "
 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;
 }
 marker = listFunctionsResult.GetNextMarker();
 } else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = 1;
 break;
 }
 } while (!marker.empty());
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see ListFunctions in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

2015

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
)

// main uses the AWS SDK for Go (v2) to create an AWS Lambda client and list up
 to 10
// functions in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 lambdaClient := lambda.NewFromConfig(sdkConfig)

 maxItems := 10
 fmt.Printf("Let's list up to %v functions for your account.\n", maxItems)
 result, err := lambdaClient.ListFunctions(ctx, &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })
 if err != nil {
 fmt.Printf("Couldn't list functions for your account. Here's why: %v\n", err)
 return
 }
 if len(result.Functions) == 0 {
 fmt.Println("You don't have any functions!")
 } else {
 for _, function := range result.Functions {
 fmt.Printf("\t%v\n", *function.FunctionName)
 }

2016

AWS Lambda Developer Guide

 }
}

• For API details, see ListFunctions in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Lists the AWS Lambda functions associated with the current AWS account.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which is
 used to interact with the AWS Lambda service
 *
 * @throws LambdaException if an error occurs while interacting with the AWS
 Lambda service
 */
 public static void listFunctions(LambdaClient awsLambda) {
 try {
 ListFunctionsResponse functionResult = awsLambda.listFunctions();
 List<FunctionConfiguration> list = functionResult.functions();
 for (FunctionConfiguration config : list) {
 System.out.println("The function name is " +
 config.functionName());
 }

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

2017

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

• For API details, see ListFunctions in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { LambdaClient, paginateListFunctions } from "@aws-sdk/client-lambda";

const client = new LambdaClient({});

export const helloLambda = async () => {
 const paginator = paginateListFunctions({ client }, {});
 const functions = [];

 for await (const page of paginator) {
 const funcNames = page.Functions.map((f) => f.FunctionName);
 functions.push(...funcNames);
 }

 console.log("Functions:");
 console.log(functions.join("\n"));
 return functions;
};

• For API details, see ListFunctions in AWS SDK for JavaScript API Reference.

2018

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import boto3

def main():
 """
 List the Lambda functions in your AWS account.
 """
 # Create the Lambda client
 lambda_client = boto3.client("lambda")

 # Use the paginator to list the functions
 paginator = lambda_client.get_paginator("list_functions")
 response_iterator = paginator.paginate()

 print("Here are the Lambda functions in your account:")
 for page in response_iterator:
 for function in page["Functions"]:
 print(f" {function['FunctionName']}")

if __name__ == "__main__":
 main()

• For API details, see ListFunctions in AWS SDK for Python (Boto3) API Reference.

2019

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/ListFunctions

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-lambda'

Creates an AWS Lambda client using the default credentials and configuration
def lambda_client
 Aws::Lambda::Client.new
end

Lists the Lambda functions in your AWS account, paginating the results if
 necessary
def list_lambda_functions
 lambda = lambda_client

 # Use a pagination iterator to list all functions
 functions = []
 lambda.list_functions.each_page do |page|
 functions.concat(page.functions)
 end

 # Print the name and ARN of each function
 functions.each do |function|
 puts "Function name: #{function.function_name}"
 puts "Function ARN: #{function.function_arn}"
 puts
 end

 puts "Total functions: #{functions.count}"
end

list_lambda_functions if __FILE__ == $PROGRAM_NAME

2020

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

• For API details, see ListFunctions in AWS SDK for Ruby API Reference.

Code examples

• Basic examples for Lambda using AWS SDKs

• Hello Lambda

• Learn the basics of Lambda with an AWS SDK

• Actions for Lambda using AWS SDKs

• Use CreateAlias with a CLI

• Use CreateFunction with an AWS SDK or CLI

• Use DeleteAlias with a CLI

• Use DeleteFunction with an AWS SDK or CLI

• Use DeleteFunctionConcurrency with a CLI

• Use DeleteProvisionedConcurrencyConfig with a CLI

• Use GetAccountSettings with a CLI

• Use GetAlias with a CLI

• Use GetFunction with an AWS SDK or CLI

• Use GetFunctionConcurrency with a CLI

• Use GetFunctionConfiguration with a CLI

• Use GetPolicy with a CLI

• Use GetProvisionedConcurrencyConfig with a CLI

• Use Invoke with an AWS SDK or CLI

• Use ListFunctions with an AWS SDK or CLI

• Use ListProvisionedConcurrencyConfigs with a CLI

• Use ListTags with a CLI

• Use ListVersionsByFunction with a CLI

• Use PublishVersion with a CLI

• Use PutFunctionConcurrency with a CLI

• Use PutProvisionedConcurrencyConfig with a CLI

• Use RemovePermission with a CLI

• Use TagResource with a CLI

• Use UntagResource with a CLI
2021

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions

AWS Lambda Developer Guide

• Use UpdateAlias with a CLI

• Use UpdateFunctionCode with an AWS SDK or CLI

• Use UpdateFunctionConfiguration with an AWS SDK or CLI

• Scenarios for Lambda using AWS SDKs

• Automatically confirm known Amazon Cognito users with a Lambda function using an AWS
SDK

• Automatically migrate known Amazon Cognito users with a Lambda function using an AWS
SDK

• Create an API Gateway REST API to track COVID-19 data

• Create a lending library REST API

• Create a messenger application with Step Functions

• Create a photo asset management application that lets users manage photos using labels

• Create a websocket chat application with API Gateway

• Create an application that analyzes customer feedback and synthesizes audio

• Invoke a Lambda function from a browser

• Transform data for your application with S3 Object Lambda

• Use API Gateway to invoke a Lambda function

• Use Step Functions to invoke Lambda functions

• Use scheduled events to invoke a Lambda function

• Use the Amazon Neptune API to develop a Lambda function that queries graph data

• Write custom activity data with a Lambda function after Amazon Cognito user authentication
using an AWS SDK

• Serverless examples for Lambda

• Connecting to an Amazon RDS database in a Lambda function

• Invoke a Lambda function from a Kinesis trigger

• Invoke a Lambda function from a DynamoDB trigger

• Invoke a Lambda function from a Amazon DocumentDB trigger

• Invoke a Lambda function from an Amazon MSK trigger

• Invoke a Lambda function from an Amazon S3 trigger

• Invoke a Lambda function from an Amazon SNS trigger

• Invoke a Lambda function from an Amazon SQS trigger

2022

AWS Lambda Developer Guide

• Reporting batch item failures for Lambda functions with a Kinesis trigger

• Reporting batch item failures for Lambda functions with a DynamoDB trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

• AWS community contributions for Lambda

• Build and test a serverless application

Basic examples for Lambda using AWS SDKs

The following code examples show how to use the basics of AWS Lambda with AWS SDKs.

Examples

• Hello Lambda

• Learn the basics of Lambda with an AWS SDK

• Actions for Lambda using AWS SDKs

• Use CreateAlias with a CLI

• Use CreateFunction with an AWS SDK or CLI

• Use DeleteAlias with a CLI

• Use DeleteFunction with an AWS SDK or CLI

• Use DeleteFunctionConcurrency with a CLI

• Use DeleteProvisionedConcurrencyConfig with a CLI

• Use GetAccountSettings with a CLI

• Use GetAlias with a CLI

• Use GetFunction with an AWS SDK or CLI

• Use GetFunctionConcurrency with a CLI

• Use GetFunctionConfiguration with a CLI

• Use GetPolicy with a CLI

• Use GetProvisionedConcurrencyConfig with a CLI

• Use Invoke with an AWS SDK or CLI

• Use ListFunctions with an AWS SDK or CLI

• Use ListProvisionedConcurrencyConfigs with a CLI

• Use ListTags with a CLI
Basics 2023

AWS Lambda Developer Guide

• Use ListVersionsByFunction with a CLI

• Use PublishVersion with a CLI

• Use PutFunctionConcurrency with a CLI

• Use PutProvisionedConcurrencyConfig with a CLI

• Use RemovePermission with a CLI

• Use TagResource with a CLI

• Use UntagResource with a CLI

• Use UpdateAlias with a CLI

• Use UpdateFunctionCode with an AWS SDK or CLI

• Use UpdateFunctionConfiguration with an AWS SDK or CLI

Hello Lambda

The following code examples show how to get started using Lambda.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace LambdaActions;

using Amazon.Lambda;

public class HelloLambda
{
 static async Task Main(string[] args)
 {
 var lambdaClient = new AmazonLambdaClient();

 Console.WriteLine("Hello AWS Lambda");

Hello Lambda 2024

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS Lambda Developer Guide

 Console.WriteLine("Let's get started with AWS Lambda by listing your
 existing Lambda functions:");

 var response = await lambdaClient.ListFunctionsAsync();
 response.Functions.ForEach(function =>
 {

 Console.WriteLine($"{function.FunctionName}\t{function.Description}");
 });
 }
}

• For API details, see ListFunctions in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS lambda)

Set this project's name.
project("hello_lambda")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.

Hello Lambda 2025

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda/hello_lambda#code-examples

AWS Lambda Developer Guide

set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # if you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_lambda.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_lambda.cpp source file.

#include <aws/core/Aws.h>
#include <aws/lambda/LambdaClient.h>
#include <aws/lambda/model/ListFunctionsRequest.h>
#include <iostream>

/*
 * A "Hello Lambda" starter application which initializes an AWS Lambda (Lambda)
 client and lists the Lambda functions.
 *

Hello Lambda 2026

AWS Lambda Developer Guide

 * main function
 *
 * Usage: 'hello_lambda'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient lambdaClient(clientConfig);
 std::vector<Aws::String> functions;
 Aws::String marker; // Used for pagination.

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome =
 lambdaClient.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult
 &listFunctionsResult = outcome.GetResult();
 std::cout << listFunctionsResult.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: listFunctionsResult.GetFunctions()) {
 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() <<
 std::endl;
 std::cout << " "

Hello Lambda 2027

AWS Lambda Developer Guide

 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;
 }
 marker = listFunctionsResult.GetNextMarker();
 } else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = 1;
 break;
 }
 } while (!marker.empty());
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see ListFunctions in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"
 "fmt"

Hello Lambda 2028

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
)

// main uses the AWS SDK for Go (v2) to create an AWS Lambda client and list up
 to 10
// functions in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 lambdaClient := lambda.NewFromConfig(sdkConfig)

 maxItems := 10
 fmt.Printf("Let's list up to %v functions for your account.\n", maxItems)
 result, err := lambdaClient.ListFunctions(ctx, &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })
 if err != nil {
 fmt.Printf("Couldn't list functions for your account. Here's why: %v\n", err)
 return
 }
 if len(result.Functions) == 0 {
 fmt.Println("You don't have any functions!")
 } else {
 for _, function := range result.Functions {
 fmt.Printf("\t%v\n", *function.FunctionName)
 }
 }
}

• For API details, see ListFunctions in AWS SDK for Go API Reference.

Hello Lambda 2029

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Lists the AWS Lambda functions associated with the current AWS account.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which is
 used to interact with the AWS Lambda service
 *
 * @throws LambdaException if an error occurs while interacting with the AWS
 Lambda service
 */
 public static void listFunctions(LambdaClient awsLambda) {
 try {
 ListFunctionsResponse functionResult = awsLambda.listFunctions();
 List<FunctionConfiguration> list = functionResult.functions();
 for (FunctionConfiguration config : list) {
 System.out.println("The function name is " +
 config.functionName());
 }

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see ListFunctions in AWS SDK for Java 2.x API Reference.

Hello Lambda 2030

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/ListFunctions

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { LambdaClient, paginateListFunctions } from "@aws-sdk/client-lambda";

const client = new LambdaClient({});

export const helloLambda = async () => {
 const paginator = paginateListFunctions({ client }, {});
 const functions = [];

 for await (const page of paginator) {
 const funcNames = page.Functions.map((f) => f.FunctionName);
 functions.push(...funcNames);
 }

 console.log("Functions:");
 console.log(functions.join("\n"));
 return functions;
};

• For API details, see ListFunctions in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Hello Lambda 2031

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

import boto3

def main():
 """
 List the Lambda functions in your AWS account.
 """
 # Create the Lambda client
 lambda_client = boto3.client("lambda")

 # Use the paginator to list the functions
 paginator = lambda_client.get_paginator("list_functions")
 response_iterator = paginator.paginate()

 print("Here are the Lambda functions in your account:")
 for page in response_iterator:
 for function in page["Functions"]:
 print(f" {function['FunctionName']}")

if __name__ == "__main__":
 main()

• For API details, see ListFunctions in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-lambda'

Hello Lambda 2032

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

Creates an AWS Lambda client using the default credentials and configuration
def lambda_client
 Aws::Lambda::Client.new
end

Lists the Lambda functions in your AWS account, paginating the results if
 necessary
def list_lambda_functions
 lambda = lambda_client

 # Use a pagination iterator to list all functions
 functions = []
 lambda.list_functions.each_page do |page|
 functions.concat(page.functions)
 end

 # Print the name and ARN of each function
 functions.each do |function|
 puts "Function name: #{function.function_name}"
 puts "Function ARN: #{function.function_arn}"
 puts
 end

 puts "Total functions: #{functions.count}"
end

list_lambda_functions if __FILE__ == $PROGRAM_NAME

• For API details, see ListFunctions in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Learn the basics of Lambda with an AWS SDK

The following code examples show how to:

• Create an IAM role and Lambda function, then upload handler code.

• Invoke the function with a single parameter and get results.

Learn the basics 2033

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions

AWS Lambda Developer Guide

• Update the function code and configure with an environment variable.

• Invoke the function with new parameters and get results. Display the returned execution log.

• List the functions for your account, then clean up resources.

For more information, see Create a Lambda function with the console.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create methods that perform Lambda actions.

namespace LambdaActions;

using Amazon.Lambda;
using Amazon.Lambda.Model;

/// <summary>
/// A class that implements AWS Lambda methods.
/// </summary>
public class LambdaWrapper
{
 private readonly IAmazonLambda _lambdaService;

 /// <summary>
 /// Constructor for the LambdaWrapper class.
 /// </summary>
 /// <param name="lambdaService">An initialized Lambda service client.</param>
 public LambdaWrapper(IAmazonLambda lambdaService)
 {
 _lambdaService = lambdaService;
 }

 /// <summary>
 /// Creates a new Lambda function.

Learn the basics 2034

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS Lambda Developer Guide

 /// </summary>
 /// <param name="functionName">The name of the function.</param>
 /// <param name="s3Bucket">The Amazon Simple Storage Service (Amazon S3)
 /// bucket where the zip file containing the code is located.</param>
 /// <param name="s3Key">The Amazon S3 key of the zip file.</param>
 /// <param name="role">The Amazon Resource Name (ARN) of a role with the
 /// appropriate Lambda permissions.</param>
 /// <param name="handler">The name of the handler function.</param>
 /// <returns>The Amazon Resource Name (ARN) of the newly created
 /// Lambda function.</returns>
 public async Task<string> CreateLambdaFunctionAsync(
 string functionName,
 string s3Bucket,
 string s3Key,
 string role,
 string handler)
 {
 // Defines the location for the function code.
 // S3Bucket - The S3 bucket where the file containing
 // the source code is stored.
 // S3Key - The name of the file containing the code.
 var functionCode = new FunctionCode
 {
 S3Bucket = s3Bucket,
 S3Key = s3Key,
 };

 var createFunctionRequest = new CreateFunctionRequest
 {
 FunctionName = functionName,
 Description = "Created by the Lambda .NET API",
 Code = functionCode,
 Handler = handler,
 Runtime = Runtime.Dotnet6,
 Role = role,
 };

 var reponse = await
 _lambdaService.CreateFunctionAsync(createFunctionRequest);
 return reponse.FunctionArn;
 }

 /// <summary>

Learn the basics 2035

AWS Lambda Developer Guide

 /// Delete an AWS Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// delete.</param>
 /// <returns>A Boolean value that indicates the success of the action.</
returns>
 public async Task<bool> DeleteFunctionAsync(string functionName)
 {
 var request = new DeleteFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.DeleteFunctionAsync(request);

 // A return value of NoContent means that the request was processed.
 // In this case, the function was deleted, and the return value
 // is intentionally blank.
 return response.HttpStatusCode == System.Net.HttpStatusCode.NoContent;
 }

 /// <summary>
 /// Gets information about a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function for
 /// which to retrieve information.</param>
 /// <returns>Async Task.</returns>
 public async Task<FunctionConfiguration> GetFunctionAsync(string
 functionName)
 {
 var functionRequest = new GetFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.GetFunctionAsync(functionRequest);
 return response.Configuration;
 }

 /// <summary>
 /// Invoke a Lambda function.
 /// </summary>

Learn the basics 2036

AWS Lambda Developer Guide

 /// <param name="functionName">The name of the Lambda function to
 /// invoke.</param
 /// <param name="parameters">The parameter values that will be passed to the
 function.</param>
 /// <returns>A System Threading Task.</returns>
 public async Task<string> InvokeFunctionAsync(
 string functionName,
 string parameters)
 {
 var payload = parameters;
 var request = new InvokeRequest
 {
 FunctionName = functionName,
 Payload = payload,
 };

 var response = await _lambdaService.InvokeAsync(request);
 MemoryStream stream = response.Payload;
 string returnValue =
 System.Text.Encoding.UTF8.GetString(stream.ToArray());
 return returnValue;
 }

 /// <summary>
 /// Get a list of Lambda functions.
 /// </summary>
 /// <returns>A list of FunctionConfiguration objects.</returns>
 public async Task<List<FunctionConfiguration>> ListFunctionsAsync()
 {
 var functionList = new List<FunctionConfiguration>();

 var functionPaginator =
 _lambdaService.Paginators.ListFunctions(new ListFunctionsRequest());
 await foreach (var function in functionPaginator.Functions)
 {
 functionList.Add(function);
 }

 return functionList;
 }

 /// <summary>

Learn the basics 2037

AWS Lambda Developer Guide

 /// Update an existing Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to update.</
param>
 /// <param name="bucketName">The bucket where the zip file containing
 /// the Lambda function code is stored.</param>
 /// <param name="key">The key name of the source code file.</param>
 /// <returns>Async Task.</returns>
 public async Task UpdateFunctionCodeAsync(
 string functionName,
 string bucketName,
 string key)
 {
 var functionCodeRequest = new UpdateFunctionCodeRequest
 {
 FunctionName = functionName,
 Publish = true,
 S3Bucket = bucketName,
 S3Key = key,
 };

 var response = await
 _lambdaService.UpdateFunctionCodeAsync(functionCodeRequest);
 Console.WriteLine($"The Function was last modified at
 {response.LastModified}.");
 }

 /// <summary>
 /// Update the code of a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function to update.</param>
 /// <param name="functionHandler">The code that performs the function's
 actions.</param>
 /// <param name="environmentVariables">A dictionary of environment
 variables.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateFunctionConfigurationAsync(
 string functionName,
 string functionHandler,
 Dictionary<string, string> environmentVariables)
 {
 var request = new UpdateFunctionConfigurationRequest
 {

Learn the basics 2038

AWS Lambda Developer Guide

 Handler = functionHandler,
 FunctionName = functionName,
 Environment = new Amazon.Lambda.Model.Environment { Variables =
 environmentVariables },
 };

 var response = await
 _lambdaService.UpdateFunctionConfigurationAsync(request);

 Console.WriteLine(response.LastModified);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

}

Create a function that runs the scenario.

global using System.Threading.Tasks;
global using Amazon.IdentityManagement;
global using Amazon.Lambda;
global using LambdaActions;
global using LambdaScenarioCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;
global using Microsoft.Extensions.Logging.Debug;

using Amazon.Lambda.Model;
using Microsoft.Extensions.Configuration;

namespace LambdaBasics;

public class LambdaBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)

Learn the basics 2039

AWS Lambda Developer Guide

 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonLambda>()
 .AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<LambdaWrapper>()
 .AddTransient<LambdaRoleWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<LambdaBasics>();

 var lambdaWrapper = host.Services.GetRequiredService<LambdaWrapper>();
 var lambdaRoleWrapper =
 host.Services.GetRequiredService<LambdaRoleWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 string functionName = configuration["FunctionName"]!;
 string roleName = configuration["RoleName"]!;
 string policyDocument = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Principal\": {" +
 " \"Service\": \"lambda.amazonaws.com\" " +
 " }," +

Learn the basics 2040

AWS Lambda Developer Guide

 " \"Action\": \"sts:AssumeRole\" " +
 " }" +
 "]" +
 "}";

 var incrementHandler = configuration["IncrementHandler"];
 var calculatorHandler = configuration["CalculatorHandler"];
 var bucketName = configuration["BucketName"];
 var incrementKey = configuration["IncrementKey"];
 var calculatorKey = configuration["CalculatorKey"];
 var policyArn = configuration["PolicyArn"];

 uiWrapper.DisplayLambdaBasicsOverview();

 // Create the policy to use with the AWS Lambda functions and then attach
 the
 // policy to a new role.
 var roleArn = await lambdaRoleWrapper.CreateLambdaRoleAsync(roleName,
 policyDocument);

 Console.WriteLine("Waiting for role to become active.");
 uiWrapper.WaitABit(15, "Wait until the role is active before trying to
 use it.");

 // Attach the appropriate AWS Identity and Access Management (IAM) role
 policy to the new role.
 var success = await
 lambdaRoleWrapper.AttachLambdaRolePolicyAsync(policyArn, roleName);
 uiWrapper.WaitABit(10, "Allow time for the IAM policy to be attached to
 the role.");

 // Create the Lambda function using a zip file stored in an Amazon Simple
 Storage Service
 // (Amazon S3) bucket.
 uiWrapper.DisplayTitle("Create Lambda Function");
 Console.WriteLine($"Creating the AWS Lambda function: {functionName}.");
 var lambdaArn = await lambdaWrapper.CreateLambdaFunctionAsync(
 functionName,
 bucketName,
 incrementKey,
 roleArn,
 incrementHandler);

 Console.WriteLine("Waiting for the new function to be available.");

Learn the basics 2041

AWS Lambda Developer Guide

 Console.WriteLine($"The AWS Lambda ARN is {lambdaArn}");

 // Get the Lambda function.
 Console.WriteLine($"Getting the {functionName} AWS Lambda function.");
 FunctionConfiguration config;
 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.State != State.Active);

 Console.WriteLine($"\nThe function, {functionName} has been created.");
 Console.WriteLine($"The runtime of this Lambda function is
 {config.Runtime}.");

 uiWrapper.PressEnter();

 // List the Lambda functions.
 uiWrapper.DisplayTitle("Listing all Lambda functions.");
 var functions = await lambdaWrapper.ListFunctionsAsync();
 DisplayFunctionList(functions);

 uiWrapper.DisplayTitle("Invoke increment function");
 Console.WriteLine("Now that it has been created, invoke the Lambda
 increment function.");
 string? value;
 do
 {
 Console.Write("Enter a value to increment: ");
 value = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(value));

 string functionParameters = "{" +
 "\"action\": \"increment\", " +
 "\"x\": \"" + value + "\"" +
 "}";
 var answer = await lambdaWrapper.InvokeFunctionAsync(functionName,
 functionParameters);
 Console.WriteLine($"{value} + 1 = {answer}.");

 uiWrapper.DisplayTitle("Update function");
 Console.WriteLine("Now update the Lambda function code.");

Learn the basics 2042

AWS Lambda Developer Guide

 await lambdaWrapper.UpdateFunctionCodeAsync(functionName, bucketName,
 calculatorKey);

 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.LastUpdateStatus == LastUpdateStatus.InProgress);

 await lambdaWrapper.UpdateFunctionConfigurationAsync(
 functionName,
 calculatorHandler,
 new Dictionary<string, string> { { "LOG_LEVEL", "DEBUG" } });

 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.LastUpdateStatus == LastUpdateStatus.InProgress);

 uiWrapper.DisplayTitle("Call updated function");
 Console.WriteLine("Now call the updated function...");

 bool done = false;

 do
 {
 string? opSelected;

 Console.WriteLine("Select the operation to perform:");
 Console.WriteLine("\t1. add");
 Console.WriteLine("\t2. subtract");
 Console.WriteLine("\t3. multiply");
 Console.WriteLine("\t4. divide");
 Console.WriteLine("\tOr enter \"q\" to quit.");
 Console.WriteLine("Enter the number (1, 2, 3, 4, or q) of the
 operation you want to perform: ");
 do
 {
 Console.Write("Your choice? ");
 opSelected = Console.ReadLine();
 }

Learn the basics 2043

AWS Lambda Developer Guide

 while (opSelected == string.Empty);

 var operation = (opSelected) switch
 {
 "1" => "add",
 "2" => "subtract",
 "3" => "multiply",
 "4" => "divide",
 "q" => "quit",
 _ => "add",
 };

 if (operation == "quit")
 {
 done = true;
 }
 else
 {
 // Get two numbers and an action from the user.
 value = string.Empty;
 do
 {
 Console.Write("Enter the first value: ");
 value = Console.ReadLine();
 }
 while (value == string.Empty);

 string? value2;
 do
 {
 Console.Write("Enter a second value: ");
 value2 = Console.ReadLine();
 }
 while (value2 == string.Empty);

 functionParameters = "{" +
 "\"action\": \"" + operation + "\", " +
 "\"x\": \"" + value + "\"," +
 "\"y\": \"" + value2 + "\"" +
 "}";

 answer = await lambdaWrapper.InvokeFunctionAsync(functionName,
 functionParameters);

Learn the basics 2044

AWS Lambda Developer Guide

 Console.WriteLine($"The answer when we {operation} the two
 numbers is: {answer}.");
 }

 uiWrapper.PressEnter();
 } while (!done);

 // Delete the function created earlier.

 uiWrapper.DisplayTitle("Clean up resources");
 // Detach the IAM policy from the IAM role.
 Console.WriteLine("First detach the IAM policy from the role.");
 success = await lambdaRoleWrapper.DetachLambdaRolePolicyAsync(policyArn,
 roleName);
 uiWrapper.WaitABit(15, "Let's wait for the policy to be fully detached
 from the role.");

 Console.WriteLine("Delete the AWS Lambda function.");
 success = await lambdaWrapper.DeleteFunctionAsync(functionName);
 if (success)
 {
 Console.WriteLine($"The {functionName} function was deleted.");
 }
 else
 {
 Console.WriteLine($"Could not remove the function {functionName}");
 }

 // Now delete the IAM role created for use with the functions
 // created by the application.
 Console.WriteLine("Now we can delete the role that we created.");
 success = await lambdaRoleWrapper.DeleteLambdaRoleAsync(roleName);
 if (success)
 {
 Console.WriteLine("The role has been successfully removed.");
 }
 else
 {
 Console.WriteLine("Couldn't delete the role.");
 }

 Console.WriteLine("The Lambda Scenario is now complete.");
 uiWrapper.PressEnter();

Learn the basics 2045

AWS Lambda Developer Guide

 // Displays a formatted list of existing functions returned by the
 // LambdaMethods.ListFunctions.
 void DisplayFunctionList(List<FunctionConfiguration> functions)
 {
 functions.ForEach(functionConfig =>
 {

 Console.WriteLine($"{functionConfig.FunctionName}\t{functionConfig.Description}");
 });
 }
 }
}

namespace LambdaActions;

using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;

public class LambdaRoleWrapper
{
 private readonly IAmazonIdentityManagementService _lambdaRoleService;

 public LambdaRoleWrapper(IAmazonIdentityManagementService lambdaRoleService)
 {
 _lambdaRoleService = lambdaRoleService;
 }

 /// <summary>
 /// Attach an AWS Identity and Access Management (IAM) role policy to the
 /// IAM role to be assumed by the AWS Lambda functions created for the
 scenario.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM
 policy.</param>
 /// <param name="roleName">The name of the IAM role to attach the IAM policy
 to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachLambdaRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _lambdaRoleService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest { PolicyArn = policyArn, RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;

Learn the basics 2046

AWS Lambda Developer Guide

 }

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to create.</param>
 /// <param name="policyDocument">The policy document for the new IAM role.</
param>
 /// <returns>A string representing the ARN for newly created role.</returns>
 public async Task<string> CreateLambdaRoleAsync(string roleName, string
 policyDocument)
 {
 var request = new CreateRoleRequest
 {
 AssumeRolePolicyDocument = policyDocument,
 RoleName = roleName,
 };

 var response = await _lambdaRoleService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Deletes an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> DeleteLambdaRoleAsync(string roleName)
 {
 var request = new DeleteRoleRequest
 {
 RoleName = roleName,
 };

 var response = await _lambdaRoleService.DeleteRoleAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 public async Task<bool> DetachLambdaRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _lambdaRoleService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest { PolicyArn = policyArn, RoleName = roleName });

Learn the basics 2047

AWS Lambda Developer Guide

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
}

namespace LambdaScenarioCommon;
public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the AWS Lambda Basics scenario.
 /// </summary>
 public void DisplayLambdaBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to AWS Lambda Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an AWS Identity and Access Management
 (IAM) role that will be assumed by the functions we create.");
 Console.WriteLine("\t2. Attaches an IAM role policy that has Lambda
 permissions.");
 Console.WriteLine("\t3. Creates a Lambda function that increments the
 value passed to it.");
 Console.WriteLine("\t4. Calls the increment function and passes a
 value.");
 Console.WriteLine("\t5. Updates the code so that the function is a simple
 calculator.");
 Console.WriteLine("\t6. Calls the calculator function with the values
 entered.");
 Console.WriteLine("\t7. Deletes the Lambda function.");
 Console.WriteLine("\t7. Detaches the IAM role policy.");
 Console.WriteLine("\t8. Deletes the IAM role.");
 PressEnter();
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();

Learn the basics 2048

AWS Lambda Developer Guide

 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.
 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }

Learn the basics 2049

AWS Lambda Developer Guide

}

Define a Lambda handler that increments a number.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaIncrement;

public class Function
{

 /// <summary>
 /// A simple function increments the integer parameter.
 /// </summary>
 /// <param name="input">A JSON string containing an action, which must be
 /// "increment" and a string representing the value to increment.</param>
 /// <param name="context">The context object passed by Lambda containing
 /// information about invocation, function, and execution environment.</
param>
 /// <returns>A string representing the incremented value of the parameter.</
returns>
 public int FunctionHandler(Dictionary<string, string> input, ILambdaContext
 context)
 {
 if (input["action"] == "increment")
 {
 int inputValue = Convert.ToInt32(input["x"]);
 return inputValue + 1;
 }
 else
 {
 return 0;
 }
 }
}

Learn the basics 2050

AWS Lambda Developer Guide

Define a second Lambda handler that performs arithmetic operations.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaCalculator;

public class Function
{

 /// <summary>
 /// A simple function that takes two number in string format and performs
 /// the requested arithmetic function.
 /// </summary>
 /// <param name="input">JSON data containing an action, and x and y values.
 /// Valid actions include: add, subtract, multiply, and divide.</param>
 /// <param name="context">The context object passed by Lambda containing
 /// information about invocation, function, and execution environment.</
param>
 /// <returns>A string representing the results of the calculation.</returns>
 public int FunctionHandler(Dictionary<string, string> input, ILambdaContext
 context)
 {
 var action = input["action"];
 int x = Convert.ToInt32(input["x"]);
 int y = Convert.ToInt32(input["y"]);
 int result;
 switch (action)
 {
 case "add":
 result = x + y;
 break;
 case "subtract":
 result = x - y;
 break;
 case "multiply":
 result = x * y;

Learn the basics 2051

AWS Lambda Developer Guide

 break;
 case "divide":
 if (y == 0)
 {
 Console.Error.WriteLine("Divide by zero error.");
 result = 0;
 }
 else
 result = x / y;
 break;
 default:
 Console.Error.WriteLine($"{action} is not a valid operation.");
 result = 0;
 break;
 }
 return result;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Learn the basics 2052

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

//! Get started with functions scenario.
/*!
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Lambda::getStartedWithFunctionsScenario(
 const Aws::Client::ClientConfiguration &clientConfig) {

 Aws::Lambda::LambdaClient client(clientConfig);

 // 1. Create an AWS Identity and Access Management (IAM) role for Lambda
 function.
 Aws::String roleArn;
 if (!getIamRoleArn(roleArn, clientConfig)) {
 return false;
 }

 // 2. Create a Lambda function.
 int seconds = 0;
 do {
 Aws::Lambda::Model::CreateFunctionRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetDescription(LAMBDA_DESCRIPTION); // Optional.
#if USE_CPP_LAMBDA_FUNCTION
 request.SetRuntime(Aws::Lambda::Model::Runtime::provided_al2);
 request.SetTimeout(15);
 request.SetMemorySize(128);

 // Assume the AWS Lambda function was built in Docker with same
 architecture
 // as this code.
#if defined(__x86_64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::x86_64});
#elif defined(__aarch64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::arm64});
#else
#error "Unimplemented architecture"
#endif // defined(architecture)
#else
 request.SetRuntime(Aws::Lambda::Model::Runtime::python3_9);
#endif
 request.SetRole(roleArn);
 request.SetHandler(LAMBDA_HANDLER_NAME);

Learn the basics 2053

AWS Lambda Developer Guide

 request.SetPublish(true);
 Aws::Lambda::Model::FunctionCode code;
 std::ifstream ifstream(INCREMENT_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();

 code.SetZipFile(Aws::Utils::ByteBuffer((unsigned char *)
 buffer.str().c_str(),
 buffer.str().length()));
 request.SetCode(code);

 Aws::Lambda::Model::CreateFunctionOutcome outcome =
 client.CreateFunction(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda function was successfully created. " <<
 seconds
 << " seconds elapsed." << std::endl;
 break;
 }
 else if (outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::INVALID_PARAMETER_VALUE &&
 outcome.GetError().GetMessage().find("role") >= 0) {
 if ((seconds % 5) == 0) { // Log status every 10 seconds.
 std::cout
 << "Waiting for the IAM role to become available as a
 CreateFunction parameter. "
 << seconds

Learn the basics 2054

AWS Lambda Developer Guide

 << " seconds elapsed." << std::endl;

 std::cout << outcome.GetError().GetMessage() << std::endl;
 }
 }
 else {
 std::cerr << "Error with CreateFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 deleteIamRole(clientConfig);
 return false;
 }
 ++seconds;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 } while (60 > seconds);

 std::cout << "The current Lambda function increments 1 by an input." <<
 std::endl;

 // 3. Invoke the Lambda function.
 {
 int increment = askQuestionForInt("Enter an increment integer: ");

 Aws::Lambda::Model::InvokeResult invokeResult;
 Aws::Utils::Json::JsonValue jsonPayload;
 jsonPayload.WithString("action", "increment");
 jsonPayload.WithInteger("number", increment);
 if (invokeLambdaFunction(jsonPayload, Aws::Lambda::Model::LogType::Tail,
 invokeResult, client)) {
 Aws::Utils::Json::JsonValue jsonValue(invokeResult.GetPayload());
 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> values =
 jsonValue.View().GetAllObjects();
 auto iter = values.find("result");
 if (iter != values.end() && iter->second.IsIntegerType()) {
 {
 std::cout << INCREMENT_RESUlT_PREFIX
 << iter->second.AsInteger() << std::endl;
 }
 }
 else {
 std::cout << "There was an error in execution. Here is the log."
 << std::endl;
 Aws::Utils::ByteBuffer buffer =
 Aws::Utils::HashingUtils::Base64Decode(

Learn the basics 2055

AWS Lambda Developer Guide

 invokeResult.GetLogResult());
 std::cout << "With log " << buffer.GetUnderlyingData() <<
 std::endl;
 }
 }
 }

 std::cout
 << "The Lambda function will now be updated with new code. Press
 return to continue, ";
 Aws::String answer;
 std::getline(std::cin, answer);

 // 4. Update the Lambda function code.
 {
 Aws::Lambda::Model::UpdateFunctionCodeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 std::ifstream ifstream(CALCULATOR_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteLambdaFunction(client);
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();
 request.SetZipFile(
 Aws::Utils::ByteBuffer((unsigned char *) buffer.str().c_str(),
 buffer.str().length()));
 request.SetPublish(true);

 Aws::Lambda::Model::UpdateFunctionCodeOutcome outcome =
 client.UpdateFunctionCode(
 request);

Learn the basics 2056

AWS Lambda Developer Guide

 if (outcome.IsSuccess()) {
 std::cout << "The lambda code was successfully updated." <<
 std::endl;
 }
 else {
 std::cerr << "Error with Lambda::UpdateFunctionCode. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 std::cout
 << "This function uses an environment variable to control the logging
 level."
 << std::endl;
 std::cout
 << "UpdateFunctionConfiguration will be used to set the LOG_LEVEL to
 DEBUG."
 << std::endl;
 seconds = 0;

 // 5. Update the Lambda function configuration.
 do {
 ++seconds;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 Aws::Lambda::Model::UpdateFunctionConfigurationRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 Aws::Lambda::Model::Environment environment;
 environment.AddVariables("LOG_LEVEL", "DEBUG");
 request.SetEnvironment(environment);

 Aws::Lambda::Model::UpdateFunctionConfigurationOutcome outcome =
 client.UpdateFunctionConfiguration(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda configuration was successfully updated."
 << std::endl;
 break;
 }

 // RESOURCE_IN_USE: function code update not completed.
 else if (outcome.GetError().GetErrorType() !=

Learn the basics 2057

AWS Lambda Developer Guide

 Aws::Lambda::LambdaErrors::RESOURCE_IN_USE) {
 if ((seconds % 10) == 0) { // Log status every 10 seconds.
 std::cout << "Lambda function update in progress . After " <<
 seconds
 << " seconds elapsed." << std::endl;
 }
 }
 else {
 std::cerr << "Error with Lambda::UpdateFunctionConfiguration. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 } while (0 < seconds);

 if (0 > seconds) {
 std::cerr << "Function failed to become active." << std::endl;
 }
 else {
 std::cout << "Updated function active after " << seconds << " seconds."
 << std::endl;
 }

 std::cout
 << "\nThe new code applies an arithmetic operator to two variables, x
 an y."
 << std::endl;
 std::vector<Aws::String> operators = {"plus", "minus", "times", "divided-
by"};
 for (size_t i = 0; i < operators.size(); ++i) {
 std::cout << " " << i + 1 << " " << operators[i] << std::endl;
 }

 // 6. Invoke the updated Lambda function.
 do {
 int operatorIndex = askQuestionForIntRange("Select an operator index 1 -
 4 ", 1,
 4);
 int x = askQuestionForInt("Enter an integer for the x value ");
 int y = askQuestionForInt("Enter an integer for the y value ");

 Aws::Utils::Json::JsonValue calculateJsonPayload;
 calculateJsonPayload.WithString("action", operators[operatorIndex - 1]);
 calculateJsonPayload.WithInteger("x", x);

Learn the basics 2058

AWS Lambda Developer Guide

 calculateJsonPayload.WithInteger("y", y);
 Aws::Lambda::Model::InvokeResult calculatedResult;
 if (invokeLambdaFunction(calculateJsonPayload,
 Aws::Lambda::Model::LogType::Tail,
 calculatedResult, client)) {
 Aws::Utils::Json::JsonValue jsonValue(calculatedResult.GetPayload());
 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> values =
 jsonValue.View().GetAllObjects();
 auto iter = values.find("result");
 if (iter != values.end() && iter->second.IsIntegerType()) {
 std::cout << ARITHMETIC_RESUlT_PREFIX << x << " "
 << operators[operatorIndex - 1] << " "
 << y << " is " << iter->second.AsInteger() <<
 std::endl;
 }
 else if (iter != values.end() && iter->second.IsFloatingPointType())
 {
 std::cout << ARITHMETIC_RESUlT_PREFIX << x << " "
 << operators[operatorIndex - 1] << " "
 << y << " is " << iter->second.AsDouble() << std::endl;
 }
 else {
 std::cout << "There was an error in execution. Here is the log."
 << std::endl;
 Aws::Utils::ByteBuffer buffer =
 Aws::Utils::HashingUtils::Base64Decode(
 calculatedResult.GetLogResult());
 std::cout << "With log " << buffer.GetUnderlyingData() <<
 std::endl;
 }
 }

 answer = askQuestion("Would you like to try another operation? (y/n) ");
 } while (answer == "y");

 std::cout
 << "A list of the lambda functions will be retrieved. Press return to
 continue, ";
 std::getline(std::cin, answer);

 // 7. List the Lambda functions.

 std::vector<Aws::String> functions;
 Aws::String marker;

Learn the basics 2059

AWS Lambda Developer Guide

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome = client.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult &result =
 outcome.GetResult();
 std::cout << result.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: result.GetFunctions()) {
 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() << std::endl;
 std::cout << " "
 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;
 }
 marker = result.GetNextMarker();
 }
 else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!marker.empty());

 // 8. Get a Lambda function.
 if (!functions.empty()) {
 std::stringstream question;
 question << "Choose a function to retrieve between 1 and " <<
 functions.size()
 << " ";
 int functionIndex = askQuestionForIntRange(question.str(), 1,

Learn the basics 2060

AWS Lambda Developer Guide

 static_cast<int>(functions.size()));

 Aws::String functionName = functions[functionIndex - 1];

 Aws::Lambda::Model::GetFunctionRequest request;
 request.SetFunctionName(functionName);

 Aws::Lambda::Model::GetFunctionOutcome outcome =
 client.GetFunction(request);

 if (outcome.IsSuccess()) {
 std::cout << "Function retrieve.\n" <<

 outcome.GetResult().GetConfiguration().Jsonize().View().WriteReadable()
 << std::endl;
 }
 else {
 std::cerr << "Error with Lambda::GetFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 std::cout << "The resources will be deleted. Press return to continue, ";
 std::getline(std::cin, answer);

 // 9. Delete the Lambda function.
 bool result = deleteLambdaFunction(client);

 // 10. Delete the IAM role.
 return result && deleteIamRole(clientConfig);
}

//! Routine which invokes a Lambda function and returns the result.
/*!
 \param jsonPayload: Payload for invoke function.
 \param logType: Log type setting for invoke function.
 \param invokeResult: InvokeResult object to receive the result.
 \param client: Lambda client.
 \return bool: Successful completion.
 */
bool

Learn the basics 2061

AWS Lambda Developer Guide

AwsDoc::Lambda::invokeLambdaFunction(const Aws::Utils::Json::JsonValue
 &jsonPayload,
 Aws::Lambda::Model::LogType logType,
 Aws::Lambda::Model::InvokeResult
 &invokeResult,
 const Aws::Lambda::LambdaClient &client) {
 int seconds = 0;
 bool result = false;
 /*
 * In this example, the Invoke function can be called before recently created
 resources are
 * available. The Invoke function is called repeatedly until the resources
 are
 * available.
 */
 do {
 Aws::Lambda::Model::InvokeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetLogType(logType);
 std::shared_ptr<Aws::IOStream> payload =
 Aws::MakeShared<Aws::StringStream>(
 "FunctionTest");
 *payload << jsonPayload.View().WriteReadable();
 request.SetBody(payload);
 request.SetContentType("application/json");
 Aws::Lambda::Model::InvokeOutcome outcome = client.Invoke(request);

 if (outcome.IsSuccess()) {
 invokeResult = std::move(outcome.GetResult());
 result = true;
 break;
 }

 // ACCESS_DENIED: because the role is not available yet.
 // RESOURCE_CONFLICT: because the Lambda function is being created or
 updated.
 else if ((outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::ACCESS_DENIED) ||
 (outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::RESOURCE_CONFLICT)) {
 if ((seconds % 5) == 0) { // Log status every 10 seconds.
 std::cout << "Waiting for the invoke api to be available, status
 " <<
 ((outcome.GetError().GetErrorType() ==

Learn the basics 2062

AWS Lambda Developer Guide

 Aws::Lambda::LambdaErrors::ACCESS_DENIED ?
 "ACCESS_DENIED" : "RESOURCE_CONFLICT")) << ". " <<
 seconds
 << " seconds elapsed." << std::endl;
 }
 }
 else {
 std::cerr << "Error with Lambda::InvokeRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 ++seconds;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 } while (seconds < 60);

 return result;
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Learn the basics 2063

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionCode
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

Create an interactive scenario that shows you how to get started with Lambda functions.

import (
 "archive/zip"
 "bytes"
 "context"
 "encoding/base64"
 "encoding/json"
 "errors"
 "fmt"
 "log"
 "os"
 "strings"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/iam"
 iamtypes "github.com/aws/aws-sdk-go-v2/service/iam/types"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/lambda/actions"
)

// GetStartedFunctionsScenario shows you how to use AWS Lambda to perform the
 following
// actions:
//
// 1. Create an AWS Identity and Access Management (IAM) role and Lambda
 function, then upload handler code.
// 2. Invoke the function with a single parameter and get results.
// 3. Update the function code and configure with an environment variable.
// 4. Invoke the function with new parameters and get results. Display the
 returned execution log.
// 5. List the functions for your account, then clean up resources.
type GetStartedFunctionsScenario struct {
 sdkConfig aws.Config
 functionWrapper actions.FunctionWrapper
 questioner demotools.IQuestioner
 helper IScenarioHelper
 isTestRun bool
}

Learn the basics 2064

AWS Lambda Developer Guide

// NewGetStartedFunctionsScenario constructs a GetStartedFunctionsScenario
 instance from a configuration.
// It uses the specified config to get a Lambda client and create wrappers for
 the actions
// used in the scenario.
func NewGetStartedFunctionsScenario(sdkConfig aws.Config, questioner
 demotools.IQuestioner,
 helper IScenarioHelper) GetStartedFunctionsScenario {
 lambdaClient := lambda.NewFromConfig(sdkConfig)
 return GetStartedFunctionsScenario{
 sdkConfig: sdkConfig,
 functionWrapper: actions.FunctionWrapper{LambdaClient: lambdaClient},
 questioner: questioner,
 helper: helper,
 }
}

// Run runs the interactive scenario.
func (scenario GetStartedFunctionsScenario) Run(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong with the demo.\n")
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the AWS Lambda get started with functions demo.")
 log.Println(strings.Repeat("-", 88))

 role := scenario.GetOrCreateRole(ctx)
 funcName := scenario.CreateFunction(ctx, role)
 scenario.InvokeIncrement(ctx, funcName)
 scenario.UpdateFunction(ctx, funcName)
 scenario.InvokeCalculator(ctx, funcName)
 scenario.ListFunctions(ctx)
 scenario.Cleanup(ctx, role, funcName)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

// GetOrCreateRole checks whether the specified role exists and returns it if it
 does.

Learn the basics 2065

AWS Lambda Developer Guide

// Otherwise, a role is created that specifies Lambda as a trusted principal.
// The AWSLambdaBasicExecutionRole managed policy is attached to the role and the
 role
// is returned.
func (scenario GetStartedFunctionsScenario) GetOrCreateRole(ctx context.Context)
 *iamtypes.Role {
 var role *iamtypes.Role
 iamClient := iam.NewFromConfig(scenario.sdkConfig)
 log.Println("First, we need an IAM role that Lambda can assume.")
 roleName := scenario.questioner.Ask("Enter a name for the role:",
 demotools.NotEmpty{})
 getOutput, err := iamClient.GetRole(ctx, &iam.GetRoleInput{
 RoleName: aws.String(roleName)})
 if err != nil {
 var noSuch *iamtypes.NoSuchEntityException
 if errors.As(err, &noSuch) {
 log.Printf("Role %v doesn't exist. Creating it....\n", roleName)
 } else {
 log.Panicf("Couldn't check whether role %v exists. Here's why: %v\n",
 roleName, err)
 }
 } else {
 role = getOutput.Role
 log.Printf("Found role %v.\n", *role.RoleName)
 }
 if role == nil {
 trustPolicy := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Principal: map[string]string{"Service": "lambda.amazonaws.com"},
 Action: []string{"sts:AssumeRole"},
 }},
 }
 policyArn := "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
 createOutput, err := iamClient.CreateRole(ctx, &iam.CreateRoleInput{
 AssumeRolePolicyDocument: aws.String(trustPolicy.String()),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Panicf("Couldn't create role %v. Here's why: %v\n", roleName, err)
 }
 role = createOutput.Role
 _, err = iamClient.AttachRolePolicy(ctx, &iam.AttachRolePolicyInput{

Learn the basics 2066

AWS Lambda Developer Guide

 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Panicf("Couldn't attach a policy to role %v. Here's why: %v\n", roleName,
 err)
 }
 log.Printf("Created role %v.\n", *role.RoleName)
 log.Println("Let's give AWS a few seconds to propagate resources...")
 scenario.helper.Pause(10)
 }
 log.Println(strings.Repeat("-", 88))
 return role
}

// CreateFunction creates a Lambda function and uploads a handler written in
 Python.
// The code for the Python handler is packaged as a []byte in .zip format.
func (scenario GetStartedFunctionsScenario) CreateFunction(ctx context.Context,
 role *iamtypes.Role) string {
 log.Println("Let's create a function that increments a number.\n" +
 "The function uses the 'lambda_handler_basic.py' script found in the \n" +
 "'handlers' directory of this project.")
 funcName := scenario.questioner.Ask("Enter a name for the Lambda function:",
 demotools.NotEmpty{})
 zipPackage := scenario.helper.CreateDeploymentPackage("lambda_handler_basic.py",
 fmt.Sprintf("%v.py", funcName))
 log.Printf("Creating function %v and waiting for it to be ready.", funcName)
 funcState := scenario.functionWrapper.CreateFunction(ctx, funcName,
 fmt.Sprintf("%v.lambda_handler", funcName),
 role.Arn, zipPackage)
 log.Printf("Your function is %v.", funcState)
 log.Println(strings.Repeat("-", 88))
 return funcName
}

// InvokeIncrement invokes a Lambda function that increments a number. The
 function
// parameters are contained in a Go struct that is used to serialize the
 parameters to
// a JSON payload that is passed to the function.
// The result payload is deserialized into a Go struct that contains an int
 value.

Learn the basics 2067

AWS Lambda Developer Guide

func (scenario GetStartedFunctionsScenario) InvokeIncrement(ctx context.Context,
 funcName string) {
 parameters := actions.IncrementParameters{Action: "increment"}
 log.Println("Let's invoke our function. This function increments a number.")
 parameters.Number = scenario.questioner.AskInt("Enter a number to increment:",
 demotools.NotEmpty{})
 log.Printf("Invoking %v with %v...\n", funcName, parameters.Number)
 invokeOutput := scenario.functionWrapper.Invoke(ctx, funcName, parameters,
 false)
 var payload actions.LambdaResultInt
 err := json.Unmarshal(invokeOutput.Payload, &payload)
 if err != nil {
 log.Panicf("Couldn't unmarshal payload from invoking %v. Here's why: %v\n",
 funcName, err)
 }
 log.Printf("Invoking %v with %v returned %v.\n", funcName, parameters.Number,
 payload)
 log.Println(strings.Repeat("-", 88))
}

// UpdateFunction updates the code for a Lambda function by uploading a simple
 arithmetic
// calculator written in Python. The code for the Python handler is packaged as a
// []byte in .zip format.
// After the code is updated, the configuration is also updated with a new log
// level that instructs the handler to log additional information.
func (scenario GetStartedFunctionsScenario) UpdateFunction(ctx context.Context,
 funcName string) {
 log.Println("Let's update the function to an arithmetic calculator.\n" +
 "The function uses the 'lambda_handler_calculator.py' script found in the \n" +
 "'handlers' directory of this project.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 log.Println("Creating deployment package...")
 zipPackage :=
 scenario.helper.CreateDeploymentPackage("lambda_handler_calculator.py",
 fmt.Sprintf("%v.py", funcName))
 log.Println("...and updating the Lambda function and waiting for it to be
 ready.")
 funcState := scenario.functionWrapper.UpdateFunctionCode(ctx, funcName,
 zipPackage)
 log.Printf("Updated function %v. Its current state is %v.", funcName, funcState)
 log.Println("This function uses an environment variable to control logging
 level.")
 log.Println("Let's set it to DEBUG to get the most logging.")

Learn the basics 2068

AWS Lambda Developer Guide

 scenario.functionWrapper.UpdateFunctionConfiguration(ctx, funcName,
 map[string]string{"LOG_LEVEL": "DEBUG"})
 log.Println(strings.Repeat("-", 88))
}

// InvokeCalculator invokes the Lambda calculator function. The parameters are
 stored in a
// Go struct that is used to serialize the parameters to a JSON payload. That
 payload is then passed
// to the function.
// The result payload is deserialized to a Go struct that stores the result as
 either an
// int or float32, depending on the kind of operation that was specified.
func (scenario GetStartedFunctionsScenario) InvokeCalculator(ctx context.Context,
 funcName string) {
 wantInvoke := true
 choices := []string{"plus", "minus", "times", "divided-by"}
 for wantInvoke {
 choice := scenario.questioner.AskChoice("Select an arithmetic operation:\n",
 choices)
 x := scenario.questioner.AskInt("Enter a value for x:", demotools.NotEmpty{})
 y := scenario.questioner.AskInt("Enter a value for y:", demotools.NotEmpty{})
 log.Printf("Invoking %v %v %v...", x, choices[choice], y)
 calcParameters := actions.CalculatorParameters{
 Action: choices[choice],
 X: x,
 Y: y,
 }
 invokeOutput := scenario.functionWrapper.Invoke(ctx, funcName, calcParameters,
 true)
 var payload any
 if choice == 3 { // divide-by results in a float.
 payload = actions.LambdaResultFloat{}
 } else {
 payload = actions.LambdaResultInt{}
 }
 err := json.Unmarshal(invokeOutput.Payload, &payload)
 if err != nil {
 log.Panicf("Couldn't unmarshal payload from invoking %v. Here's why: %v\n",
 funcName, err)
 }
 log.Printf("Invoking %v with %v %v %v returned %v.\n", funcName,
 calcParameters.X, calcParameters.Action, calcParameters.Y, payload)
 scenario.questioner.Ask("Press Enter to see the logs from the call.")

Learn the basics 2069

AWS Lambda Developer Guide

 logRes, err := base64.StdEncoding.DecodeString(*invokeOutput.LogResult)
 if err != nil {
 log.Panicf("Couldn't decode log result. Here's why: %v\n", err)
 }
 log.Println(string(logRes))
 wantInvoke = scenario.questioner.AskBool("Do you want to calculate again? (y/
n)", "y")
 }
 log.Println(strings.Repeat("-", 88))
}

// ListFunctions lists up to the specified number of functions for your account.
func (scenario GetStartedFunctionsScenario) ListFunctions(ctx context.Context) {
 count := scenario.questioner.AskInt(
 "Let's list functions for your account. How many do you want to see?",
 demotools.NotEmpty{})
 functions := scenario.functionWrapper.ListFunctions(ctx, count)
 log.Printf("Found %v functions:", len(functions))
 for _, function := range functions {
 log.Printf("\t%v", *function.FunctionName)
 }
 log.Println(strings.Repeat("-", 88))
}

// Cleanup removes the IAM and Lambda resources created by the example.
func (scenario GetStartedFunctionsScenario) Cleanup(ctx context.Context, role
 *iamtypes.Role, funcName string) {
 if scenario.questioner.AskBool("Do you want to clean up resources created for
 this example? (y/n)",
 "y") {
 iamClient := iam.NewFromConfig(scenario.sdkConfig)
 policiesOutput, err := iamClient.ListAttachedRolePolicies(ctx,
 &iam.ListAttachedRolePoliciesInput{RoleName: role.RoleName})
 if err != nil {
 log.Panicf("Couldn't get policies attached to role %v. Here's why: %v\n",
 *role.RoleName, err)
 }
 for _, policy := range policiesOutput.AttachedPolicies {
 _, err = iamClient.DetachRolePolicy(ctx, &iam.DetachRolePolicyInput{
 PolicyArn: policy.PolicyArn, RoleName: role.RoleName,
 })
 if err != nil {
 log.Panicf("Couldn't detach policy %v from role %v. Here's why: %v\n",
 *policy.PolicyArn, *role.RoleName, err)

Learn the basics 2070

AWS Lambda Developer Guide

 }
 }
 _, err = iamClient.DeleteRole(ctx, &iam.DeleteRoleInput{RoleName:
 role.RoleName})
 if err != nil {
 log.Panicf("Couldn't delete role %v. Here's why: %v\n", *role.RoleName, err)
 }
 log.Printf("Deleted role %v.\n", *role.RoleName)

 scenario.functionWrapper.DeleteFunction(ctx, funcName)
 log.Printf("Deleted function %v.\n", funcName)
 } else {
 log.Println("Okay. Don't forget to delete the resources when you're done with
 them.")
 }
}

// IScenarioHelper abstracts I/O and wait functions from a scenario so that they
// can be mocked for unit testing.
type IScenarioHelper interface {
 Pause(secs int)
 CreateDeploymentPackage(sourceFile string, destinationFile string) *bytes.Buffer
}

// ScenarioHelper lets the caller specify the path to Lambda handler functions.
type ScenarioHelper struct {
 HandlerPath string
}

// Pause waits for the specified number of seconds.
func (helper *ScenarioHelper) Pause(secs int) {
 time.Sleep(time.Duration(secs) * time.Second)
}

// CreateDeploymentPackage creates an AWS Lambda deployment package from a source
 file. The
// deployment package is stored in .zip format in a bytes.Buffer. The buffer can
 be
// used to pass a []byte to Lambda when creating the function.
// The specified destinationFile is the name to give the file when it's deployed
 to Lambda.
func (helper *ScenarioHelper) CreateDeploymentPackage(sourceFile string,
 destinationFile string) *bytes.Buffer {
 var err error

Learn the basics 2071

AWS Lambda Developer Guide

 buffer := &bytes.Buffer{}
 writer := zip.NewWriter(buffer)
 zFile, err := writer.Create(destinationFile)
 if err != nil {
 log.Panicf("Couldn't create destination archive %v. Here's why: %v\n",
 destinationFile, err)
 }
 sourceBody, err := os.ReadFile(fmt.Sprintf("%v/%v", helper.HandlerPath,
 sourceFile))
 if err != nil {
 log.Panicf("Couldn't read handler source file %v. Here's why: %v\n",
 sourceFile, err)
 } else {
 _, err = zFile.Write(sourceBody)
 if err != nil {
 log.Panicf("Couldn't write handler %v to zip archive. Here's why: %v\n",
 sourceFile, err)
 }
 }
 err = writer.Close()
 if err != nil {
 log.Panicf("Couldn't close zip writer. Here's why: %v\n", err)
 }
 return buffer
}

Create a struct that wraps individual Lambda actions.

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

Learn the basics 2072

AWS Lambda Developer Guide

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// GetFunction gets data about the Lambda function specified by functionName.
func (wrapper FunctionWrapper) GetFunction(ctx context.Context, functionName
 string) types.State {
 var state types.State
 funcOutput, err := wrapper.LambdaClient.GetFunction(ctx,
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't get function %v. Here's why: %v\n", functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 return state
}

// CreateFunction creates a new Lambda function from code contained in the
 zipPackage
// buffer. The specified handlerName must match the name of the file and function
// contained in the uploaded code. The role specified by iamRoleArn is assumed by
// Lambda and grants specific permissions.
// When the function already exists, types.StateActive is returned.
// When the function is created, a lambda.FunctionActiveV2Waiter is used to wait
 until the
// function is active.
func (wrapper FunctionWrapper) CreateFunction(ctx context.Context, functionName
 string, handlerName string,
 iamRoleArn *string, zipPackage *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.CreateFunction(ctx, &lambda.CreateFunctionInput{
 Code: &types.FunctionCode{ZipFile: zipPackage.Bytes()},
 FunctionName: aws.String(functionName),
 Role: iamRoleArn,
 Handler: aws.String(handlerName),

Learn the basics 2073

AWS Lambda Developer Guide

 Publish: true,
 Runtime: types.RuntimePython39,
 })
 if err != nil {
 var resConflict *types.ResourceConflictException
 if errors.As(err, &resConflict) {
 log.Printf("Function %v already exists.\n", functionName)
 state = types.StateActive
 } else {
 log.Panicf("Couldn't create function %v. Here's why: %v\n", functionName, err)
 }
 } else {
 waiter := lambda.NewFunctionActiveV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(ctx, &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

// UpdateFunctionCode updates the code for the Lambda function specified by
 functionName.
// The existing code for the Lambda function is entirely replaced by the code in
 the
// zipPackage buffer. After the update action is called, a
 lambda.FunctionUpdatedV2Waiter
// is used to wait until the update is successful.
func (wrapper FunctionWrapper) UpdateFunctionCode(ctx context.Context,
 functionName string, zipPackage *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.UpdateFunctionCode(ctx,
 &lambda.UpdateFunctionCodeInput{
 FunctionName: aws.String(functionName), ZipFile: zipPackage.Bytes(),
 })
 if err != nil {
 log.Panicf("Couldn't update code for function %v. Here's why: %v\n",
 functionName, err)

Learn the basics 2074

AWS Lambda Developer Guide

 } else {
 waiter := lambda.NewFunctionUpdatedV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(ctx, &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

// UpdateFunctionConfiguration updates a map of environment variables configured
 for
// the Lambda function specified by functionName.
func (wrapper FunctionWrapper) UpdateFunctionConfiguration(ctx context.Context,
 functionName string, envVars map[string]string) {
 _, err := wrapper.LambdaClient.UpdateFunctionConfiguration(ctx,
 &lambda.UpdateFunctionConfigurationInput{
 FunctionName: aws.String(functionName),
 Environment: &types.Environment{Variables: envVars},
 })
 if err != nil {
 log.Panicf("Couldn't update configuration for %v. Here's why: %v",
 functionName, err)
 }
}

// ListFunctions lists up to maxItems functions for the account. This function
 uses a
// lambda.ListFunctionsPaginator to paginate the results.
func (wrapper FunctionWrapper) ListFunctions(ctx context.Context, maxItems int)
 []types.FunctionConfiguration {
 var functions []types.FunctionConfiguration
 paginator := lambda.NewListFunctionsPaginator(wrapper.LambdaClient,
 &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })

Learn the basics 2075

AWS Lambda Developer Guide

 for paginator.HasMorePages() && len(functions) < maxItems {
 pageOutput, err := paginator.NextPage(ctx)
 if err != nil {
 log.Panicf("Couldn't list functions for your account. Here's why: %v\n", err)
 }
 functions = append(functions, pageOutput.Functions...)
 }
 return functions
}

// DeleteFunction deletes the Lambda function specified by functionName.
func (wrapper FunctionWrapper) DeleteFunction(ctx context.Context, functionName
 string) {
 _, err := wrapper.LambdaClient.DeleteFunction(ctx, &lambda.DeleteFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't delete function %v. Here's why: %v\n", functionName, err)
 }
}

// Invoke invokes the Lambda function specified by functionName, passing the
 parameters
// as a JSON payload. When getLog is true, types.LogTypeTail is specified, which
 tells
// Lambda to include the last few log lines in the returned result.
func (wrapper FunctionWrapper) Invoke(ctx context.Context, functionName string,
 parameters any, getLog bool) *lambda.InvokeOutput {
 logType := types.LogTypeNone
 if getLog {
 logType = types.LogTypeTail
 }
 payload, err := json.Marshal(parameters)
 if err != nil {
 log.Panicf("Couldn't marshal parameters to JSON. Here's why %v\n", err)
 }
 invokeOutput, err := wrapper.LambdaClient.Invoke(ctx, &lambda.InvokeInput{
 FunctionName: aws.String(functionName),
 LogType: logType,
 Payload: payload,

Learn the basics 2076

AWS Lambda Developer Guide

 })
 if err != nil {
 log.Panicf("Couldn't invoke function %v. Here's why: %v\n", functionName, err)
 }
 return invokeOutput
}

// IncrementParameters is used to serialize parameters to the increment Lambda
 handler.
type IncrementParameters struct {
 Action string `json:"action"`
 Number int `json:"number"`
}

// CalculatorParameters is used to serialize parameters to the calculator Lambda
 handler.
type CalculatorParameters struct {
 Action string `json:"action"`
 X int `json:"x"`
 Y int `json:"y"`
}

// LambdaResultInt is used to deserialize an int result from a Lambda handler.
type LambdaResultInt struct {
 Result int `json:"result"`
}

// LambdaResultFloat is used to deserialize a float32 result from a Lambda
 handler.
type LambdaResultFloat struct {
 Result float32 `json:"result"`
}

Define a Lambda handler that increments a number.

import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

Learn the basics 2077

AWS Lambda Developer Guide

def lambda_handler(event, context):
 """
 Accepts an action and a single number, performs the specified action on the
 number,
 and returns the result. The only allowable action is 'increment'.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the action.
 """
 result = None
 action = event.get("action")
 if action == "increment":
 result = event.get("number", 0) + 1
 logger.info("Calculated result of %s", result)
 else:
 logger.error("%s is not a valid action.", action)

 response = {"result": result}
 return response

Define a second Lambda handler that performs arithmetic operations.

import logging
import os

logger = logging.getLogger()

Define a list of Python lambda functions that are called by this AWS Lambda
 function.
ACTIONS = {
 "plus": lambda x, y: x + y,
 "minus": lambda x, y: x - y,
 "times": lambda x, y: x * y,
 "divided-by": lambda x, y: x / y,

Learn the basics 2078

AWS Lambda Developer Guide

}

def lambda_handler(event, context):
 """
 Accepts an action and two numbers, performs the specified action on the
 numbers,
 and returns the result.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the specified action.
 """
 # Set the log level based on a variable configured in the Lambda environment.
 logger.setLevel(os.environ.get("LOG_LEVEL", logging.INFO))
 logger.debug("Event: %s", event)

 action = event.get("action")
 func = ACTIONS.get(action)
 x = event.get("x")
 y = event.get("y")
 result = None
 try:
 if func is not None and x is not None and y is not None:
 result = func(x, y)
 logger.info("%s %s %s is %s", x, action, y, result)
 else:
 logger.error("I can't calculate %s %s %s.", x, action, y)
 except ZeroDivisionError:
 logger.warning("I can't divide %s by 0!", x)

 response = {"result": result}
 return response

• For API details, see the following topics in AWS SDK for Go API Reference.

• CreateFunction

• DeleteFunction

Learn the basics 2079

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.CreateFunction
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.DeleteFunction

AWS Lambda Developer Guide

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/*
 * Lambda function names appear as:
 *
 * arn:aws:lambda:us-west-2:335556666777:function:HelloFunction
 *
 * To find this value, look at the function in the AWS Management Console.
 *
 * Before running this Java code example, set up your development environment,
 including your credentials.
 *
 * For more information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This example performs the following tasks:
 *
 * 1. Creates an AWS Lambda function.
 * 2. Gets a specific AWS Lambda function.
 * 3. Lists all Lambda functions.
 * 4. Invokes a Lambda function.
 * 5. Updates the Lambda function code and invokes it again.
 * 6. Updates a Lambda function's configuration value.
 * 7. Deletes a Lambda function.

Learn the basics 2080

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.GetFunction
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.Invoke
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionCode
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

 */

public class LambdaScenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws InterruptedException {
 final String usage = """

 Usage:
 <functionName> <role> <handler> <bucketName> <key>\s

 Where:
 functionName - The name of the Lambda function.\s
 role - The AWS Identity and Access Management (IAM) service role
 that has Lambda permissions.\s
 handler - The fully qualified method name (for example,
 example.Handler::handleRequest).\s
 bucketName - The Amazon Simple Storage Service (Amazon S3) bucket
 name that contains the .zip or .jar used to update the Lambda function's code.\s
 key - The Amazon S3 key name that represents the .zip or .jar
 (for example, LambdaHello-1.0-SNAPSHOT.jar).
 """;

 if (args.length != 5) {
 System.out.println(usage);
 return;
 }

 String functionName = args[0];
 String role = args[1];
 String handler = args[2];
 String bucketName = args[3];
 String key = args[4];
 LambdaClient awsLambda = LambdaClient.builder()
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the AWS Lambda Basics scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Create an AWS Lambda function.");

Learn the basics 2081

AWS Lambda Developer Guide

 String funArn = createLambdaFunction(awsLambda, functionName, key,
 bucketName, role, handler);
 System.out.println("The AWS Lambda ARN is " + funArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Get the " + functionName + " AWS Lambda
 function.");
 getFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. List all AWS Lambda functions.");
 listFunctions(awsLambda);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Invoke the Lambda function.");
 System.out.println("*** Sleep for 1 min to get Lambda function ready.");
 Thread.sleep(60000);
 invokeFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Update the Lambda function code and invoke it
 again.");
 updateFunctionCode(awsLambda, functionName, bucketName, key);
 System.out.println("*** Sleep for 1 min to get Lambda function ready.");
 Thread.sleep(60000);
 invokeFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Update a Lambda function's configuration value.");
 updateFunctionConfiguration(awsLambda, functionName, handler);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Delete the AWS Lambda function.");
 LambdaScenario.deleteLambdaFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The AWS Lambda scenario completed successfully");

Learn the basics 2082

AWS Lambda Developer Guide

 System.out.println(DASHES);
 awsLambda.close();
 }

 /**
 * Creates a new Lambda function in AWS using the AWS Lambda Java API.
 *
 * @param awsLambda the AWS Lambda client used to interact with the AWS
 Lambda service
 * @param functionName the name of the Lambda function to create
 * @param key the S3 key of the function code
 * @param bucketName the name of the S3 bucket containing the function code
 * @param role the IAM role to assign to the Lambda function
 * @param handler the fully qualified class name of the function handler
 * @return the Amazon Resource Name (ARN) of the created Lambda function
 */
 public static String createLambdaFunction(LambdaClient awsLambda,
 String functionName,
 String key,
 String bucketName,
 String role,
 String handler) {

 try {
 LambdaWaiter waiter = awsLambda.waiter();
 FunctionCode code = FunctionCode.builder()
 .s3Key(key)
 .s3Bucket(bucketName)
 .build();

 CreateFunctionRequest functionRequest =
 CreateFunctionRequest.builder()
 .functionName(functionName)
 .description("Created by the Lambda Java API")
 .code(code)
 .handler(handler)
 .runtime(Runtime.JAVA17)
 .role(role)
 .build();

 // Create a Lambda function using a waiter
 CreateFunctionResponse functionResponse =
 awsLambda.createFunction(functionRequest);
 GetFunctionRequest getFunctionRequest = GetFunctionRequest.builder()

Learn the basics 2083

AWS Lambda Developer Guide

 .functionName(functionName)
 .build();
 WaiterResponse<GetFunctionResponse> waiterResponse =
 waiter.waitUntilFunctionExists(getFunctionRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 return functionResponse.functionArn();

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }

 /**
 * Retrieves information about an AWS Lambda function.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which
 is used to interact with the AWS Lambda service
 * @param functionName the name of the AWS Lambda function to retrieve
 information about
 */
 public static void getFunction(LambdaClient awsLambda, String functionName) {
 try {
 GetFunctionRequest functionRequest = GetFunctionRequest.builder()
 .functionName(functionName)
 .build();

 GetFunctionResponse response =
 awsLambda.getFunction(functionRequest);
 System.out.println("The runtime of this Lambda function is " +
 response.configuration().runtime());

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Lists the AWS Lambda functions associated with the current AWS account.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which is
 used to interact with the AWS Lambda service

Learn the basics 2084

AWS Lambda Developer Guide

 *
 * @throws LambdaException if an error occurs while interacting with the AWS
 Lambda service
 */
 public static void listFunctions(LambdaClient awsLambda) {
 try {
 ListFunctionsResponse functionResult = awsLambda.listFunctions();
 List<FunctionConfiguration> list = functionResult.functions();
 for (FunctionConfiguration config : list) {
 System.out.println("The function name is " +
 config.functionName());
 }

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Invokes a specific AWS Lambda function.
 *
 * @param awsLambda an instance of {@link LambdaClient} to interact with
 the AWS Lambda service
 * @param functionName the name of the AWS Lambda function to be invoked
 */
 public static void invokeFunction(LambdaClient awsLambda, String
 functionName) {
 InvokeResponse res;
 try {
 // Need a SdkBytes instance for the payload.
 JSONObject jsonObj = new JSONObject();
 jsonObj.put("inputValue", "2000");
 String json = jsonObj.toString();
 SdkBytes payload = SdkBytes.fromUtf8String(json);

 InvokeRequest request = InvokeRequest.builder()
 .functionName(functionName)
 .payload(payload)
 .build();

 res = awsLambda.invoke(request);
 String value = res.payload().asUtf8String();
 System.out.println(value);

Learn the basics 2085

AWS Lambda Developer Guide

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Updates the code for an AWS Lambda function.
 *
 * @param awsLambda the AWS Lambda client
 * @param functionName the name of the Lambda function to update
 * @param bucketName the name of the S3 bucket where the function code is
 located
 * @param key the key (file name) of the function code in the S3 bucket
 * @throws LambdaException if there is an error updating the function code
 */
 public static void updateFunctionCode(LambdaClient awsLambda, String
 functionName, String bucketName, String key) {
 try {
 LambdaWaiter waiter = awsLambda.waiter();
 UpdateFunctionCodeRequest functionCodeRequest =
 UpdateFunctionCodeRequest.builder()
 .functionName(functionName)
 .publish(true)
 .s3Bucket(bucketName)
 .s3Key(key)
 .build();

 UpdateFunctionCodeResponse response =
 awsLambda.updateFunctionCode(functionCodeRequest);
 GetFunctionConfigurationRequest getFunctionConfigRequest =
 GetFunctionConfigurationRequest.builder()
 .functionName(functionName)
 .build();

 WaiterResponse<GetFunctionConfigurationResponse> waiterResponse =
 waiter
 .waitUntilFunctionUpdated(getFunctionConfigRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println("The last modified value is " +
 response.lastModified());

 } catch (LambdaException e) {

Learn the basics 2086

AWS Lambda Developer Guide

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Updates the configuration of an AWS Lambda function.
 *
 * @param awsLambda the {@link LambdaClient} instance to use for the AWS
 Lambda operation
 * @param functionName the name of the AWS Lambda function to update
 * @param handler the new handler for the AWS Lambda function
 *
 * @throws LambdaException if there is an error while updating the function
 configuration
 */
 public static void updateFunctionConfiguration(LambdaClient awsLambda, String
 functionName, String handler) {
 try {
 UpdateFunctionConfigurationRequest configurationRequest =
 UpdateFunctionConfigurationRequest.builder()
 .functionName(functionName)
 .handler(handler)
 .runtime(Runtime.JAVA17)
 .build();

 awsLambda.updateFunctionConfiguration(configurationRequest);

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Deletes an AWS Lambda function.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which
 is used to interact with the AWS Lambda service
 * @param functionName the name of the Lambda function to be deleted
 *
 * @throws LambdaException if an error occurs while deleting the Lambda
 function
 */

Learn the basics 2087

AWS Lambda Developer Guide

 public static void deleteLambdaFunction(LambdaClient awsLambda, String
 functionName) {
 try {
 DeleteFunctionRequest request = DeleteFunctionRequest.builder()
 .functionName(functionName)
 .build();

 awsLambda.deleteFunction(request);
 System.out.println("The " + functionName + " function was deleted");

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an AWS Identity and Access Management (IAM) role that grants Lambda permission
to write to logs.

Learn the basics 2088

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/UpdateFunctionCode
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda/scenarios/basic#code-examples

AWS Lambda Developer Guide

 logger.log(`Creating role (${NAME_ROLE_LAMBDA})...`);
 const response = await createRole(NAME_ROLE_LAMBDA);

import { AttachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */
export const attachRolePolicy = (policyArn, roleName) => {
 const command = new AttachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

 return client.send(command);
};

Create a Lambda function and upload handler code.

const createFunction = async (funcName, roleArn) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${funcName}.zip`);

 const command = new CreateFunctionCommand({
 Code: { ZipFile: code },
 FunctionName: funcName,
 Role: roleArn,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

Learn the basics 2089

AWS Lambda Developer Guide

Invoke the function with a single parameter and get results.

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),
 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

Update the function code and configure its Lambda environment with an environment
variable.

const updateFunctionCode = async (funcName, newFunc) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${newFunc}.zip`);
 const command = new UpdateFunctionCodeCommand({
 ZipFile: code,
 FunctionName: funcName,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

const updateFunctionConfiguration = (funcName) => {
 const client = new LambdaClient({});
 const config = readFileSync(`${dirname}../functions/config.json`).toString();
 const command = new UpdateFunctionConfigurationCommand({
 ...JSON.parse(config),
 FunctionName: funcName,
 });
 const result = client.send(command);

Learn the basics 2090

AWS Lambda Developer Guide

 waitForFunctionUpdated({ FunctionName: funcName });
 return result;
};

List the functions for your account.

const listFunctions = () => {
 const client = new LambdaClient({});
 const command = new ListFunctionsCommand({});

 return client.send(command);
};

Delete the IAM role and the Lambda function.

import { DeleteRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} roleName
 */
export const deleteRole = (roleName) => {
 const command = new DeleteRoleCommand({ RoleName: roleName });
 return client.send(command);
};

/**
 * @param {string} funcName
 */
const deleteFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new DeleteFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• CreateFunction

Learn the basics 2091

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/CreateFunctionCommand

AWS Lambda Developer Guide

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun main(args: Array<String>) {
 val usage = """
 Usage:
 <functionName> <role> <handler> <bucketName> <updatedBucketName>
 <key>

 Where:
 functionName - The name of the AWS Lambda function.
 role - The AWS Identity and Access Management (IAM) service role that
 has AWS Lambda permissions.
 handler - The fully qualified method name (for example,
 example.Handler::handleRequest).
 bucketName - The Amazon Simple Storage Service (Amazon S3) bucket
 name that contains the ZIP or JAR used for the Lambda function's code.
 updatedBucketName - The Amazon S3 bucket name that contains the .zip
 or .jar used to update the Lambda function's code.
 key - The Amazon S3 key name that represents the .zip or .jar file
 (for example, LambdaHello-1.0-SNAPSHOT.jar).
 """

 if (args.size != 6) {
 println(usage)

Learn the basics 2092

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/DeleteFunctionCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/GetFunctionCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/InvokeCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionCodeCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionConfigurationCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples

AWS Lambda Developer Guide

 exitProcess(1)
 }

 val functionName = args[0]
 val role = args[1]
 val handler = args[2]
 val bucketName = args[3]
 val updatedBucketName = args[4]
 val key = args[5]

 println("Creating a Lambda function named $functionName.")
 val funArn = createScFunction(functionName, bucketName, key, handler, role)
 println("The AWS Lambda ARN is $funArn")

 // Get a specific Lambda function.
 println("Getting the $functionName AWS Lambda function.")
 getFunction(functionName)

 // List the Lambda functions.
 println("Listing all AWS Lambda functions.")
 listFunctionsSc()

 // Invoke the Lambda function.
 println("*** Invoke the Lambda function.")
 invokeFunctionSc(functionName)

 // Update the AWS Lambda function code.
 println("*** Update the Lambda function code.")
 updateFunctionCode(functionName, updatedBucketName, key)

 // println("*** Invoke the function again after updating the code.")
 invokeFunctionSc(functionName)

 // Update the AWS Lambda function configuration.
 println("Update the run time of the function.")
 updateFunctionConfiguration(functionName, handler)

 // Delete the AWS Lambda function.
 println("Delete the AWS Lambda function.")
 delFunction(functionName)
}

suspend fun createScFunction(
 myFunctionName: String,

Learn the basics 2093

AWS Lambda Developer Guide

 s3BucketName: String,
 myS3Key: String,
 myHandler: String,
 myRole: String,
): String {
 val functionCode =
 FunctionCode {
 s3Bucket = s3BucketName
 s3Key = myS3Key
 }

 val request =
 CreateFunctionRequest {
 functionName = myFunctionName
 code = functionCode
 description = "Created by the Lambda Kotlin API"
 handler = myHandler
 role = myRole
 runtime = Runtime.Java17
 }

 // Create a Lambda function using a waiter
 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 val functionResponse = awsLambda.createFunction(request)
 awsLambda.waitUntilFunctionActive {
 functionName = myFunctionName
 }
 return functionResponse.functionArn.toString()
 }
}

suspend fun getFunction(functionNameVal: String) {
 val functionRequest =
 GetFunctionRequest {
 functionName = functionNameVal
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 val response = awsLambda.getFunction(functionRequest)
 println("The runtime of this Lambda function is
 ${response.configuration?.runtime}")
 }
}

Learn the basics 2094

AWS Lambda Developer Guide

suspend fun listFunctionsSc() {
 val request =
 ListFunctionsRequest {
 maxItems = 10
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 val response = awsLambda.listFunctions(request)
 response.functions?.forEach { function ->
 println("The function name is ${function.functionName}")
 }
 }
}

suspend fun invokeFunctionSc(functionNameVal: String) {
 val json = """{"inputValue":"1000"}"""
 val byteArray = json.trimIndent().encodeToByteArray()
 val request =
 InvokeRequest {
 functionName = functionNameVal
 payload = byteArray
 logType = LogType.Tail
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 val res = awsLambda.invoke(request)
 println("The function payload is
 ${res.payload?.toString(Charsets.UTF_8)}")
 }
}

suspend fun updateFunctionCode(
 functionNameVal: String?,
 bucketName: String?,
 key: String?,
) {
 val functionCodeRequest =
 UpdateFunctionCodeRequest {
 functionName = functionNameVal
 publish = true
 s3Bucket = bucketName
 s3Key = key
 }

Learn the basics 2095

AWS Lambda Developer Guide

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 val response = awsLambda.updateFunctionCode(functionCodeRequest)
 awsLambda.waitUntilFunctionUpdated {
 functionName = functionNameVal
 }
 println("The last modified value is " + response.lastModified)
 }
}

suspend fun updateFunctionConfiguration(
 functionNameVal: String?,
 handlerVal: String?,
) {
 val configurationRequest =
 UpdateFunctionConfigurationRequest {
 functionName = functionNameVal
 handler = handlerVal
 runtime = Runtime.Java17
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 awsLambda.updateFunctionConfiguration(configurationRequest)
 }
}

suspend fun delFunction(myFunctionName: String) {
 val request =
 DeleteFunctionRequest {
 functionName = myFunctionName
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 awsLambda.deleteFunction(request)
 println("$myFunctionName was deleted")
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• CreateFunction

• DeleteFunction

• GetFunction

Learn the basics 2096

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS Lambda Developer Guide

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace Lambda;

use Aws\S3\S3Client;
use GuzzleHttp\Psr7\Stream;
use Iam\IAMService;

class GettingStartedWithLambda
{
 public function run()
 {
 echo("\n");
 echo("--------------------------------------\n");
 print("Welcome to the AWS Lambda getting started demo using PHP!\n");
 echo("--------------------------------------\n");

 $clientArgs = [
 'region' => 'us-west-2',
 'version' => 'latest',
 'profile' => 'default',
];
 $uniqid = uniqid();

 $iamService = new IAMService();
 $s3client = new S3Client($clientArgs);
 $lambdaService = new LambdaService();

Learn the basics 2097

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples

AWS Lambda Developer Guide

 echo "First, let's create a role to run our Lambda code.\n";
 $roleName = "test-lambda-role-$uniqid";
 $rolePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Principal\": {
 \"Service\": \"lambda.amazonaws.com\"
 },
 \"Action\": \"sts:AssumeRole\"
 }
]
 }";
 $role = $iamService->createRole($roleName, $rolePolicyDocument);
 echo "Created role {$role['RoleName']}.\n";

 $iamService->attachRolePolicy(
 $role['RoleName'],
 "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
);
 echo "Attached the AWSLambdaBasicExecutionRole to {$role['RoleName']}.
\n";

 echo "\nNow let's create an S3 bucket and upload our Lambda code there.
\n";
 $bucketName = "test-example-bucket-$uniqid";
 $s3client->createBucket([
 'Bucket' => $bucketName,
]);
 echo "Created bucket $bucketName.\n";

 $functionName = "doc_example_lambda_$uniqid";
 $codeBasic = __DIR__ . "/lambda_handler_basic.zip";
 $handler = "lambda_handler_basic";
 $file = file_get_contents($codeBasic);
 $s3client->putObject([
 'Bucket' => $bucketName,
 'Key' => $functionName,
 'Body' => $file,
]);
 echo "Uploaded the Lambda code.\n";

Learn the basics 2098

AWS Lambda Developer Guide

 $createLambdaFunction = $lambdaService->createFunction($functionName,
 $role, $bucketName, $handler);
 // Wait until the function has finished being created.
 do {
 $getLambdaFunction = $lambdaService-
>getFunction($createLambdaFunction['FunctionName']);
 } while ($getLambdaFunction['Configuration']['State'] == "Pending");
 echo "Created Lambda function {$getLambdaFunction['Configuration']
['FunctionName']}.\n";

 sleep(1);

 echo "\nOk, let's invoke that Lambda code.\n";
 $basicParams = [
 'action' => 'increment',
 'number' => 3,
];
 /** @var Stream $invokeFunction */
 $invokeFunction = $lambdaService->invoke($functionName, $basicParams)
['Payload'];
 $result = json_decode($invokeFunction->getContents())->result;
 echo "After invoking the Lambda code with the input of
 {$basicParams['number']} we received $result.\n";

 echo "\nSince that's working, let's update the Lambda code.\n";
 $codeCalculator = "lambda_handler_calculator.zip";
 $handlerCalculator = "lambda_handler_calculator";
 echo "First, put the new code into the S3 bucket.\n";
 $file = file_get_contents($codeCalculator);
 $s3client->putObject([
 'Bucket' => $bucketName,
 'Key' => $functionName,
 'Body' => $file,
]);
 echo "New code uploaded.\n";

 $lambdaService->updateFunctionCode($functionName, $bucketName,
 $functionName);
 // Wait for the Lambda code to finish updating.
 do {
 $getLambdaFunction = $lambdaService-
>getFunction($createLambdaFunction['FunctionName']);
 } while ($getLambdaFunction['Configuration']['LastUpdateStatus'] !==
 "Successful");

Learn the basics 2099

AWS Lambda Developer Guide

 echo "New Lambda code uploaded.\n";

 $environment = [
 'Variable' => ['Variables' => ['LOG_LEVEL' => 'DEBUG']],
];
 $lambdaService->updateFunctionConfiguration($functionName,
 $handlerCalculator, $environment);
 do {
 $getLambdaFunction = $lambdaService-
>getFunction($createLambdaFunction['FunctionName']);
 } while ($getLambdaFunction['Configuration']['LastUpdateStatus'] !==
 "Successful");
 echo "Lambda code updated with new handler and a LOG_LEVEL of DEBUG for
 more information.\n";

 echo "Invoke the new code with some new data.\n";
 $calculatorParams = [
 'action' => 'plus',
 'x' => 5,
 'y' => 4,
];
 $invokeFunction = $lambdaService->invoke($functionName,
 $calculatorParams, "Tail");
 $result = json_decode($invokeFunction['Payload']->getContents())->result;
 echo "Indeed, {$calculatorParams['x']} + {$calculatorParams['y']} does
 equal $result.\n";
 echo "Here's the extra debug info: ";
 echo base64_decode($invokeFunction['LogResult']) . "\n";

 echo "\nBut what happens if you try to divide by zero?\n";
 $divZeroParams = [
 'action' => 'divide',
 'x' => 5,
 'y' => 0,
];
 $invokeFunction = $lambdaService->invoke($functionName, $divZeroParams,
 "Tail");
 $result = json_decode($invokeFunction['Payload']->getContents())->result;
 echo "You get a |$result| result.\n";
 echo "And an error message: ";
 echo base64_decode($invokeFunction['LogResult']) . "\n";

 echo "\nHere's all the Lambda functions you have in this Region:\n";
 $listLambdaFunctions = $lambdaService->listFunctions(5);

Learn the basics 2100

AWS Lambda Developer Guide

 $allLambdaFunctions = $listLambdaFunctions['Functions'];
 $next = $listLambdaFunctions->get('NextMarker');
 while ($next != false) {
 $listLambdaFunctions = $lambdaService->listFunctions(5, $next);
 $next = $listLambdaFunctions->get('NextMarker');
 $allLambdaFunctions = array_merge($allLambdaFunctions,
 $listLambdaFunctions['Functions']);
 }
 foreach ($allLambdaFunctions as $function) {
 echo "{$function['FunctionName']}\n";
 }

 echo "\n\nAnd don't forget to clean up your data!\n";

 $lambdaService->deleteFunction($functionName);
 echo "Deleted Lambda function.\n";
 $iamService->deleteRole($role['RoleName']);
 echo "Deleted Role.\n";
 $deleteObjects = $s3client->listObjectsV2([
 'Bucket' => $bucketName,
]);
 $deleteObjects = $s3client->deleteObjects([
 'Bucket' => $bucketName,
 'Delete' => [
 'Objects' => $deleteObjects['Contents'],
]
]);
 echo "Deleted all objects from the S3 bucket.\n";
 $s3client->deleteBucket(['Bucket' => $bucketName]);
 echo "Deleted the bucket.\n";
 }
}

• For API details, see the following topics in AWS SDK for PHP API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

Learn the basics 2101

https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionCode

AWS Lambda Developer Guide

• UpdateFunctionConfiguration

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Define a Lambda handler that increments a number.

import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
 """
 Accepts an action and a single number, performs the specified action on the
 number,
 and returns the result. The only allowable action is 'increment'.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the action.
 """
 result = None
 action = event.get("action")
 if action == "increment":
 result = event.get("number", 0) + 1
 logger.info("Calculated result of %s", result)
 else:
 logger.error("%s is not a valid action.", action)

 response = {"result": result}
 return response

Learn the basics 2102

https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

Define a second Lambda handler that performs arithmetic operations.

import logging
import os

logger = logging.getLogger()

Define a list of Python lambda functions that are called by this AWS Lambda
 function.
ACTIONS = {
 "plus": lambda x, y: x + y,
 "minus": lambda x, y: x - y,
 "times": lambda x, y: x * y,
 "divided-by": lambda x, y: x / y,
}

def lambda_handler(event, context):
 """
 Accepts an action and two numbers, performs the specified action on the
 numbers,
 and returns the result.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the specified action.
 """
 # Set the log level based on a variable configured in the Lambda environment.
 logger.setLevel(os.environ.get("LOG_LEVEL", logging.INFO))
 logger.debug("Event: %s", event)

 action = event.get("action")
 func = ACTIONS.get(action)
 x = event.get("x")
 y = event.get("y")
 result = None

Learn the basics 2103

AWS Lambda Developer Guide

 try:
 if func is not None and x is not None and y is not None:
 result = func(x, y)
 logger.info("%s %s %s is %s", x, action, y, result)
 else:
 logger.error("I can't calculate %s %s %s.", x, action, y)
 except ZeroDivisionError:
 logger.warning("I can't divide %s by 0!", x)

 response = {"result": result}
 return response

Create functions that wrap Lambda actions.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 @staticmethod
 def create_deployment_package(source_file, destination_file):
 """
 Creates a Lambda deployment package in .zip format in an in-memory
 buffer. This
 buffer can be passed directly to Lambda when creating the function.

 :param source_file: The name of the file that contains the Lambda handler
 function.
 :param destination_file: The name to give the file when it's deployed to
 Lambda.
 :return: The deployment package.
 """
 buffer = io.BytesIO()
 with zipfile.ZipFile(buffer, "w") as zipped:
 zipped.write(source_file, destination_file)
 buffer.seek(0)
 return buffer.read()

 def get_iam_role(self, iam_role_name):

Learn the basics 2104

AWS Lambda Developer Guide

 """
 Get an AWS Identity and Access Management (IAM) role.

 :param iam_role_name: The name of the role to retrieve.
 :return: The IAM role.
 """
 role = None
 try:
 temp_role = self.iam_resource.Role(iam_role_name)
 temp_role.load()
 role = temp_role
 logger.info("Got IAM role %s", role.name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "NoSuchEntity":
 logger.info("IAM role %s does not exist.", iam_role_name)
 else:
 logger.error(
 "Couldn't get IAM role %s. Here's why: %s: %s",
 iam_role_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return role

 def create_iam_role_for_lambda(self, iam_role_name):
 """
 Creates an IAM role that grants the Lambda function basic permissions. If
 a
 role with the specified name already exists, it is used for the demo.

 :param iam_role_name: The name of the role to create.
 :return: The role and a value that indicates whether the role is newly
 created.
 """
 role = self.get_iam_role(iam_role_name)
 if role is not None:
 return role, False

 lambda_assume_role_policy = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Learn the basics 2105

AWS Lambda Developer Guide

 "Principal": {"Service": "lambda.amazonaws.com"},
 "Action": "sts:AssumeRole",
 }
],
 }
 policy_arn = "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"

 try:
 role = self.iam_resource.create_role(
 RoleName=iam_role_name,
 AssumeRolePolicyDocument=json.dumps(lambda_assume_role_policy),
)
 logger.info("Created role %s.", role.name)
 role.attach_policy(PolicyArn=policy_arn)
 logger.info("Attached basic execution policy to role %s.", role.name)
 except ClientError as error:
 if error.response["Error"]["Code"] == "EntityAlreadyExists":
 role = self.iam_resource.Role(iam_role_name)
 logger.warning("The role %s already exists. Using it.",
 iam_role_name)
 else:
 logger.exception(
 "Couldn't create role %s or attach policy %s.",
 iam_role_name,
 policy_arn,
)
 raise

 return role, True

 def get_function(self, function_name):
 """
 Gets data about a Lambda function.

 :param function_name: The name of the function.
 :return: The function data.
 """
 response = None
 try:
 response =
 self.lambda_client.get_function(FunctionName=function_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":

Learn the basics 2106

AWS Lambda Developer Guide

 logger.info("Function %s does not exist.", function_name)
 else:
 logger.error(
 "Couldn't get function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return response

 def create_function(
 self, function_name, handler_name, iam_role, deployment_package
):
 """
 Deploys a Lambda function.

 :param function_name: The name of the Lambda function.
 :param handler_name: The fully qualified name of the handler function.
 This
 must include the file name and the function name.
 :param iam_role: The IAM role to use for the function.
 :param deployment_package: The deployment package that contains the
 function
 code in .zip format.
 :return: The Amazon Resource Name (ARN) of the newly created function.
 """
 try:
 response = self.lambda_client.create_function(
 FunctionName=function_name,
 Description="AWS Lambda doc example",
 Runtime="python3.9",
 Role=iam_role.arn,
 Handler=handler_name,
 Code={"ZipFile": deployment_package},
 Publish=True,
)
 function_arn = response["FunctionArn"]
 waiter = self.lambda_client.get_waiter("function_active_v2")
 waiter.wait(FunctionName=function_name)
 logger.info(
 "Created function '%s' with ARN: '%s'.",
 function_name,

Learn the basics 2107

AWS Lambda Developer Guide

 response["FunctionArn"],
)
 except ClientError:
 logger.error("Couldn't create function %s.", function_name)
 raise
 else:
 return function_arn

 def delete_function(self, function_name):
 """
 Deletes a Lambda function.

 :param function_name: The name of the function to delete.
 """
 try:
 self.lambda_client.delete_function(FunctionName=function_name)
 except ClientError:
 logger.exception("Couldn't delete function %s.", function_name)
 raise

 def invoke_function(self, function_name, function_params, get_log=False):
 """
 Invokes a Lambda function.

 :param function_name: The name of the function to invoke.
 :param function_params: The parameters of the function as a dict. This
 dict
 is serialized to JSON before it is sent to
 Lambda.
 :param get_log: When true, the last 4 KB of the execution log are
 included in
 the response.
 :return: The response from the function invocation.
 """
 try:
 response = self.lambda_client.invoke(
 FunctionName=function_name,
 Payload=json.dumps(function_params),
 LogType="Tail" if get_log else "None",
)
 logger.info("Invoked function %s.", function_name)
 except ClientError:

Learn the basics 2108

AWS Lambda Developer Guide

 logger.exception("Couldn't invoke function %s.", function_name)
 raise
 return response

 def update_function_code(self, function_name, deployment_package):
 """
 Updates the code for a Lambda function by submitting a .zip archive that
 contains
 the code for the function.

 :param function_name: The name of the function to update.
 :param deployment_package: The function code to update, packaged as bytes
 in
 .zip format.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_code(
 FunctionName=function_name, ZipFile=deployment_package
)
 except ClientError as err:
 logger.error(
 "Couldn't update function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def update_function_configuration(self, function_name, env_vars):
 """
 Updates the environment variables for a Lambda function.

 :param function_name: The name of the function to update.
 :param env_vars: A dict of environment variables to update.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_configuration(
 FunctionName=function_name, Environment={"Variables": env_vars}

Learn the basics 2109

AWS Lambda Developer Guide

)
 except ClientError as err:
 logger.error(
 "Couldn't update function configuration %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def list_functions(self):
 """
 Lists the Lambda functions for the current account.
 """
 try:
 func_paginator = self.lambda_client.get_paginator("list_functions")
 for func_page in func_paginator.paginate():
 for func in func_page["Functions"]:
 print(func["FunctionName"])
 desc = func.get("Description")
 if desc:
 print(f"\t{desc}")
 print(f"\t{func['Runtime']}: {func['Handler']}")
 except ClientError as err:
 logger.error(
 "Couldn't list functions. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Create a function that runs the scenario.

class UpdateFunctionWaiter(CustomWaiter):
 """A custom waiter that waits until a function is successfully updated."""

Learn the basics 2110

AWS Lambda Developer Guide

 def __init__(self, client):
 super().__init__(
 "UpdateSuccess",
 "GetFunction",
 "Configuration.LastUpdateStatus",
 {"Successful": WaitState.SUCCESS, "Failed": WaitState.FAILURE},
 client,
)

 def wait(self, function_name):
 self._wait(FunctionName=function_name)

def run_scenario(lambda_client, iam_resource, basic_file, calculator_file,
 lambda_name):
 """
 Runs the scenario.

 :param lambda_client: A Boto3 Lambda client.
 :param iam_resource: A Boto3 IAM resource.
 :param basic_file: The name of the file that contains the basic Lambda
 handler.
 :param calculator_file: The name of the file that contains the calculator
 Lambda handler.
 :param lambda_name: The name to give resources created for the scenario, such
 as the
 IAM role and the Lambda function.
 """
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print("Welcome to the AWS Lambda getting started with functions demo.")
 print("-" * 88)

 wrapper = LambdaWrapper(lambda_client, iam_resource)

 print("Checking for IAM role for Lambda...")
 iam_role, should_wait = wrapper.create_iam_role_for_lambda(lambda_name)
 if should_wait:
 logger.info("Giving AWS time to create resources...")
 wait(10)

 print(f"Looking for function {lambda_name}...")
 function = wrapper.get_function(lambda_name)

Learn the basics 2111

AWS Lambda Developer Guide

 if function is None:
 print("Zipping the Python script into a deployment package...")
 deployment_package = wrapper.create_deployment_package(
 basic_file, f"{lambda_name}.py"
)
 print(f"...and creating the {lambda_name} Lambda function.")
 wrapper.create_function(
 lambda_name, f"{lambda_name}.lambda_handler", iam_role,
 deployment_package
)
 else:
 print(f"Function {lambda_name} already exists.")
 print("-" * 88)

 print(f"Let's invoke {lambda_name}. This function increments a number.")
 action_params = {
 "action": "increment",
 "number": q.ask("Give me a number to increment: ", q.is_int),
 }
 print(f"Invoking {lambda_name}...")
 response = wrapper.invoke_function(lambda_name, action_params)
 print(
 f"Incrementing {action_params['number']} resulted in "
 f"{json.load(response['Payload'])}"
)
 print("-" * 88)

 print(f"Let's update the function to an arithmetic calculator.")
 q.ask("Press Enter when you're ready.")
 print("Creating a new deployment package...")
 deployment_package = wrapper.create_deployment_package(
 calculator_file, f"{lambda_name}.py"
)
 print(f"...and updating the {lambda_name} Lambda function.")
 update_waiter = UpdateFunctionWaiter(lambda_client)
 wrapper.update_function_code(lambda_name, deployment_package)
 update_waiter.wait(lambda_name)
 print(f"This function uses an environment variable to control logging
 level.")
 print(f"Let's set it to DEBUG to get the most logging.")
 wrapper.update_function_configuration(
 lambda_name, {"LOG_LEVEL": logging.getLevelName(logging.DEBUG)}
)

Learn the basics 2112

AWS Lambda Developer Guide

 actions = ["plus", "minus", "times", "divided-by"]
 want_invoke = True
 while want_invoke:
 print(f"Let's invoke {lambda_name}. You can invoke these actions:")
 for index, action in enumerate(actions):
 print(f"{index + 1}: {action}")
 action_params = {}
 action_index = q.ask(
 "Enter the number of the action you want to take: ",
 q.is_int,
 q.in_range(1, len(actions)),
)
 action_params["action"] = actions[action_index - 1]
 print(f"You've chosen to invoke 'x {action_params['action']} y'.")
 action_params["x"] = q.ask("Enter a value for x: ", q.is_int)
 action_params["y"] = q.ask("Enter a value for y: ", q.is_int)
 print(f"Invoking {lambda_name}...")
 response = wrapper.invoke_function(lambda_name, action_params, True)
 print(
 f"Calculating {action_params['x']} {action_params['action']}
 {action_params['y']} "
 f"resulted in {json.load(response['Payload'])}"
)
 q.ask("Press Enter to see the logs from the call.")
 print(base64.b64decode(response["LogResult"]).decode())
 want_invoke = q.ask("That was fun. Shall we do it again? (y/n) ",
 q.is_yesno)
 print("-" * 88)

 if q.ask(
 "Do you want to list all of the functions in your account? (y/n) ",
 q.is_yesno
):
 wrapper.list_functions()
 print("-" * 88)

 if q.ask("Ready to delete the function and role? (y/n) ", q.is_yesno):
 for policy in iam_role.attached_policies.all():
 policy.detach_role(RoleName=iam_role.name)
 iam_role.delete()
 print(f"Deleted role {lambda_name}.")
 wrapper.delete_function(lambda_name)
 print(f"Deleted function {lambda_name}.")

Learn the basics 2113

AWS Lambda Developer Guide

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 try:
 run_scenario(
 boto3.client("lambda"),
 boto3.resource("iam"),
 "lambda_handler_basic.py",
 "lambda_handler_calculator.py",
 "doc_example_lambda_calculator",
)
 except Exception:
 logging.exception("Something went wrong with the demo!")

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Set up pre-requisite IAM permissions for a Lambda function capable of writing logs.

 # Get an AWS Identity and Access Management (IAM) role.

Learn the basics 2114

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/UpdateFunctionCode
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

 #
 # @param iam_role_name: The name of the role to retrieve.
 # @param action: Whether to create or destroy the IAM apparatus.
 # @return: The IAM role.
 def manage_iam(iam_role_name, action)
 case action
 when 'create'
 create_iam_role(iam_role_name)
 when 'destroy'
 destroy_iam_role(iam_role_name)
 else
 raise "Incorrect action provided. Must provide 'create' or 'destroy'"
 end
 end

 private

 def create_iam_role(iam_role_name)
 role_policy = {
 'Version': '2012-10-17',
 'Statement': [
 {
 'Effect': 'Allow',
 'Principal': { 'Service': 'lambda.amazonaws.com' },
 'Action': 'sts:AssumeRole'
 }
]
 }
 role = @iam_client.create_role(
 role_name: iam_role_name,
 assume_role_policy_document: role_policy.to_json
)
 @iam_client.attach_role_policy(
 {
 policy_arn: 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole',
 role_name: iam_role_name
 }
)
 wait_for_role_to_exist(iam_role_name)
 @logger.debug("Successfully created IAM role: #{role['role']['arn']}")
 sleep(10)
 [role, role_policy.to_json]
 end

Learn the basics 2115

AWS Lambda Developer Guide

 def destroy_iam_role(iam_role_name)
 @iam_client.detach_role_policy(
 {
 policy_arn: 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole',
 role_name: iam_role_name
 }
)
 @iam_client.delete_role(role_name: iam_role_name)
 @logger.debug("Detached policy & deleted IAM role: #{iam_role_name}")
 end

 def wait_for_role_to_exist(iam_role_name)
 @iam_client.wait_until(:role_exists, { role_name: iam_role_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 end

Define a Lambda handler that increments a number provided as an invocation parameter.

require 'logger'

A function that increments a whole number by one (1) and logs the result.
Requires a manually-provided runtime parameter, 'number', which must be Int
#
@param event [Hash] Parameters sent when the function is invoked
@param context [Hash] Methods and properties that provide information
about the invocation, function, and execution environment.
@return incremented_number [String] The incremented number.
def lambda_handler(event:, context:)
 logger = Logger.new($stdout)
 log_level = ENV['LOG_LEVEL']
 logger.level = case log_level
 when 'debug'
 Logger::DEBUG
 when 'info'
 Logger::INFO
 else
 Logger::ERROR
 end

Learn the basics 2116

AWS Lambda Developer Guide

 logger.debug('This is a debug log message.')
 logger.info('This is an info log message. Code executed successfully!')
 number = event['number'].to_i
 incremented_number = number + 1
 logger.info("You provided #{number.round} and it was incremented to
 #{incremented_number.round}")
 incremented_number.round.to_s
end

Zip your Lambda function into a deployment package.

 # Creates a Lambda deployment package in .zip format.
 #
 # @param source_file: The name of the object, without suffix, for the Lambda
 file and zip.
 # @return: The deployment package.
 def create_deployment_package(source_file)
 Dir.chdir(File.dirname(__FILE__))
 if File.exist?('lambda_function.zip')
 File.delete('lambda_function.zip')
 @logger.debug('Deleting old zip: lambda_function.zip')
 end
 Zip::File.open('lambda_function.zip', create: true) do |zipfile|
 zipfile.add('lambda_function.rb', "#{source_file}.rb")
 end
 @logger.debug("Zipping #{source_file}.rb into: lambda_function.zip.")
 File.read('lambda_function.zip').to_s
 rescue StandardError => e
 @logger.error("There was an error creating deployment package:\n
 #{e.message}")
 end

Create a new Lambda function.

 # Deploys a Lambda function.
 #
 # @param function_name: The name of the Lambda function.
 # @param handler_name: The fully qualified name of the handler function.
 # @param role_arn: The IAM role to use for the function.
 # @param deployment_package: The deployment package that contains the function
 code in .zip format.

Learn the basics 2117

AWS Lambda Developer Guide

 # @return: The Amazon Resource Name (ARN) of the newly created function.
 def create_function(function_name, handler_name, role_arn, deployment_package)
 response = @lambda_client.create_function({
 role: role_arn.to_s,
 function_name: function_name,
 handler: handler_name,
 runtime: 'ruby2.7',
 code: {
 zip_file: deployment_package
 },
 environment: {
 variables: {
 'LOG_LEVEL' => 'info'
 }
 }
 })
 @lambda_client.wait_until(:function_active_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 response
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

Invoke your Lambda function with optional runtime parameters.

 # Invokes a Lambda function.
 # @param function_name [String] The name of the function to invoke.
 # @param payload [nil] Payload containing runtime parameters.
 # @return [Object] The response from the function invocation.
 def invoke_function(function_name, payload = nil)
 params = { function_name: function_name }
 params[:payload] = payload unless payload.nil?
 @lambda_client.invoke(params)
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n
 #{e.message}")

Learn the basics 2118

AWS Lambda Developer Guide

 end

Update your Lambda function's configuration to inject a new environment variable.

 # Updates the environment variables for a Lambda function.
 # @param function_name: The name of the function to update.
 # @param log_level: The log level of the function.
 # @return: Data about the update, including the status.
 def update_function_configuration(function_name, log_level)
 @lambda_client.update_function_configuration({
 function_name: function_name,
 environment: {
 variables: {
 'LOG_LEVEL' => log_level
 }
 }
 })
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating configurations for
 #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

Update your Lambda function's code with a different deployment package containing
different code.

 # Updates the code for a Lambda function by submitting a .zip archive that
 contains
 # the code for the function.
 #
 # @param function_name: The name of the function to update.
 # @param deployment_package: The function code to update, packaged as bytes in
 # .zip format.
 # @return: Data about the update, including the status.

Learn the basics 2119

AWS Lambda Developer Guide

 def update_function_code(function_name, deployment_package)
 @lambda_client.update_function_code(
 function_name: function_name,
 zip_file: deployment_package
)
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating function code for:
 #{function_name}:\n #{e.message}")
 nil
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to update:\n
 #{e.message}")
 end

List all existing Lambda functions using the built-in paginator.

 # Lists the Lambda functions for the current account.
 def list_functions
 functions = []
 @lambda_client.list_functions.each do |response|
 response['functions'].each do |function|
 functions.append(function['function_name'])
 end
 end
 functions
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error listing functions:\n #{e.message}")
 end

Delete a specific Lambda function.

 # Deletes a Lambda function.
 # @param function_name: The name of the function to delete.
 def delete_function(function_name)
 print "Deleting function: #{function_name}..."
 @lambda_client.delete_function(

Learn the basics 2120

AWS Lambda Developer Guide

 function_name: function_name
)
 print 'Done!'.green
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error deleting #{function_name}:\n #{e.message}")
 end

• For API details, see the following topics in AWS SDK for Ruby API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

The Cargo.toml with dependencies used in this scenario.

[package]
name = "lambda-code-examples"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/
reference/manifest.html

[dependencies]
aws-config = { version = "1.0.1", features = ["behavior-version-latest"] }

Learn the basics 2121

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/CreateFunction
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/GetFunction
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

AWS Lambda Developer Guide

aws-sdk-ec2 = { version = "1.3.0" }
aws-sdk-iam = { version = "1.3.0" }
aws-sdk-lambda = { version = "1.3.0" }
aws-sdk-s3 = { version = "1.4.0" }
aws-smithy-types = { version = "1.0.1" }
aws-types = { version = "1.0.1" }
clap = { version = "4.4", features = ["derive"] }
tokio = { version = "1.20.1", features = ["full"] }
tracing-subscriber = { version = "0.3.15", features = ["env-filter"] }
tracing = "0.1.37"
serde_json = "1.0.94"
anyhow = "1.0.71"
uuid = { version = "1.3.3", features = ["v4"] }
lambda_runtime = "0.8.0"
serde = "1.0.164"

A collection of utilities that streamline calling Lambda for this scenario. This file is src/
ations.rs in the crate.

use anyhow::anyhow;
use aws_sdk_iam::operation::{create_role::CreateRoleError,
 delete_role::DeleteRoleOutput};
use aws_sdk_lambda::{
 operation::{
 delete_function::DeleteFunctionOutput, get_function::GetFunctionOutput,
 invoke::InvokeOutput, list_functions::ListFunctionsOutput,
 update_function_code::UpdateFunctionCodeOutput,
 update_function_configuration::UpdateFunctionConfigurationOutput,
 },
 primitives::ByteStream,
 types::{Environment, FunctionCode, LastUpdateStatus, State},
};
use aws_sdk_s3::{
 error::ErrorMetadata,
 operation::{delete_bucket::DeleteBucketOutput,
 delete_object::DeleteObjectOutput},
 types::CreateBucketConfiguration,
};
use aws_smithy_types::Blob;
use serde::{ser::SerializeMap, Serialize};
use std::{fmt::Display, path::PathBuf, str::FromStr, time::Duration};

Learn the basics 2122

AWS Lambda Developer Guide

use tracing::{debug, info, warn};

/* Operation describes */
#[derive(Clone, Copy, Debug, Serialize)]
pub enum Operation {
 #[serde(rename = "plus")]
 Plus,
 #[serde(rename = "minus")]
 Minus,
 #[serde(rename = "times")]
 Times,
 #[serde(rename = "divided-by")]
 DividedBy,
}

impl FromStr for Operation {
 type Err = anyhow::Error;

 fn from_str(s: &str) -> Result<Self, Self::Err> {
 match s {
 "plus" => Ok(Operation::Plus),
 "minus" => Ok(Operation::Minus),
 "times" => Ok(Operation::Times),
 "divided-by" => Ok(Operation::DividedBy),
 _ => Err(anyhow!("Unknown operation {s}")),
 }
 }
}

impl Display for Operation {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 match self {
 Operation::Plus => write!(f, "plus"),
 Operation::Minus => write!(f, "minus"),
 Operation::Times => write!(f, "times"),
 Operation::DividedBy => write!(f, "divided-by"),
 }
 }
}

/**
 * InvokeArgs will be serialized as JSON and sent to the AWS Lambda handler.
 */
#[derive(Debug)]

Learn the basics 2123

AWS Lambda Developer Guide

pub enum InvokeArgs {
 Increment(i32),
 Arithmetic(Operation, i32, i32),
}

impl Serialize for InvokeArgs {
 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 where
 S: serde::Serializer,
 {
 match self {
 InvokeArgs::Increment(i) => serializer.serialize_i32(*i),
 InvokeArgs::Arithmetic(o, i, j) => {
 let mut map: S::SerializeMap =
 serializer.serialize_map(Some(3))?;
 map.serialize_key(&"op".to_string())?;
 map.serialize_value(&o.to_string())?;
 map.serialize_key(&"i".to_string())?;
 map.serialize_value(&i)?;
 map.serialize_key(&"j".to_string())?;
 map.serialize_value(&j)?;
 map.end()
 }
 }
 }
}

/** A policy document allowing Lambda to execute this function on the account's
 behalf. */
const ROLE_POLICY_DOCUMENT: &str = r#"{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "lambda.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
]
}"#;

/**
 * A LambdaManager gathers all the resources necessary to run the Lambda example
 scenario.
 * This includes instantiated aws_sdk clients and details of resource names.

Learn the basics 2124

AWS Lambda Developer Guide

 */
pub struct LambdaManager {
 iam_client: aws_sdk_iam::Client,
 lambda_client: aws_sdk_lambda::Client,
 s3_client: aws_sdk_s3::Client,
 lambda_name: String,
 role_name: String,
 bucket: String,
 own_bucket: bool,
}

// These unit type structs provide nominal typing on top of String parameters for
 LambdaManager::new
pub struct LambdaName(pub String);
pub struct RoleName(pub String);
pub struct Bucket(pub String);
pub struct OwnBucket(pub bool);

impl LambdaManager {
 pub fn new(
 iam_client: aws_sdk_iam::Client,
 lambda_client: aws_sdk_lambda::Client,
 s3_client: aws_sdk_s3::Client,
 lambda_name: LambdaName,
 role_name: RoleName,
 bucket: Bucket,
 own_bucket: OwnBucket,
) -> Self {
 Self {
 iam_client,
 lambda_client,
 s3_client,
 lambda_name: lambda_name.0,
 role_name: role_name.0,
 bucket: bucket.0,
 own_bucket: own_bucket.0,
 }
 }

 /**
 * Load the AWS configuration from the environment.
 * Look up lambda_name and bucket if none are given, or generate a random
 name if not present in the environment.

Learn the basics 2125

AWS Lambda Developer Guide

 * If the bucket name is provided, the caller needs to have created the
 bucket.
 * If the bucket name is generated, it will be created.
 */
 pub async fn load_from_env(lambda_name: Option<String>, bucket:
 Option<String>) -> Self {
 let sdk_config = aws_config::load_from_env().await;
 let lambda_name = LambdaName(lambda_name.unwrap_or_else(|| {
 std::env::var("LAMBDA_NAME").unwrap_or_else(|_|
 "rust_lambda_example".to_string())
 }));
 let role_name = RoleName(format!("{}_role", lambda_name.0));
 let (bucket, own_bucket) =
 match bucket {
 Some(bucket) => (Bucket(bucket), false),
 None => (
 Bucket(std::env::var("LAMBDA_BUCKET").unwrap_or_else(|_| {
 format!("rust-lambda-example-{}", uuid::Uuid::new_v4())
 })),
 true,
),
 };

 let s3_client = aws_sdk_s3::Client::new(&sdk_config);

 if own_bucket {
 info!("Creating bucket for demo: {}", bucket.0);
 s3_client
 .create_bucket()
 .bucket(bucket.0.clone())
 .create_bucket_configuration(
 CreateBucketConfiguration::builder()

 .location_constraint(aws_sdk_s3::types::BucketLocationConstraint::from(
 sdk_config.region().unwrap().as_ref(),
))
 .build(),
)
 .send()
 .await
 .unwrap();
 }

 Self::new(

Learn the basics 2126

AWS Lambda Developer Guide

 aws_sdk_iam::Client::new(&sdk_config),
 aws_sdk_lambda::Client::new(&sdk_config),
 s3_client,
 lambda_name,
 role_name,
 bucket,
 OwnBucket(own_bucket),
)
 }

 /**
 * Upload function code from a path to a zip file.
 * The zip file must have an AL2 Linux-compatible binary called `bootstrap`.
 * The easiest way to create such a zip is to use `cargo lambda build --
output-format Zip`.
 */
 async fn prepare_function(
 &self,
 zip_file: PathBuf,
 key: Option<String>,
) -> Result<FunctionCode, anyhow::Error> {
 let body = ByteStream::from_path(zip_file).await?;

 let key = key.unwrap_or_else(|| format!("{}_code", self.lambda_name));

 info!("Uploading function code to s3://{}/{}", self.bucket, key);
 let _ = self
 .s3_client
 .put_object()
 .bucket(self.bucket.clone())
 .key(key.clone())
 .body(body)
 .send()
 .await?;

 Ok(FunctionCode::builder()
 .s3_bucket(self.bucket.clone())
 .s3_key(key)
 .build())
 }

 /**
 * Create a function, uploading from a zip file.
 */

Learn the basics 2127

AWS Lambda Developer Guide

 pub async fn create_function(&self, zip_file: PathBuf) -> Result<String,
 anyhow::Error> {
 let code = self.prepare_function(zip_file, None).await?;

 let key = code.s3_key().unwrap().to_string();

 let role = self.create_role().await.map_err(|e| anyhow!(e))?;

 info!("Created iam role, waiting 15s for it to become active");
 tokio::time::sleep(Duration::from_secs(15)).await;

 info!("Creating lambda function {}", self.lambda_name);
 let _ = self
 .lambda_client
 .create_function()
 .function_name(self.lambda_name.clone())
 .code(code)
 .role(role.arn())
 .runtime(aws_sdk_lambda::types::Runtime::Providedal2)
 .handler("_unused")
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 self.lambda_client
 .publish_version()
 .function_name(self.lambda_name.clone())
 .send()
 .await?;

 Ok(key)
 }

 /**
 * Create an IAM execution role for the managed Lambda function.
 * If the role already exists, use that instead.
 */
 async fn create_role(&self) -> Result<aws_sdk_iam::types::Role,
 CreateRoleError> {
 info!("Creating execution role for function");
 let get_role = self
 .iam_client

Learn the basics 2128

AWS Lambda Developer Guide

 .get_role()
 .role_name(self.role_name.clone())
 .send()
 .await;
 if let Ok(get_role) = get_role {
 if let Some(role) = get_role.role {
 return Ok(role);
 }
 }

 let create_role = self
 .iam_client
 .create_role()
 .role_name(self.role_name.clone())
 .assume_role_policy_document(ROLE_POLICY_DOCUMENT)
 .send()
 .await;

 match create_role {
 Ok(create_role) => match create_role.role {
 Some(role) => Ok(role),
 None => Err(CreateRoleError::generic(
 ErrorMetadata::builder()
 .message("CreateRole returned empty success")
 .build(),
)),
 },
 Err(err) => Err(err.into_service_error()),
 }
 }

 /**
 * Poll `is_function_ready` with a 1-second delay. It returns when the
 function is ready or when there's an error checking the function's state.
 */
 pub async fn wait_for_function_ready(&self) -> Result<(), anyhow::Error> {
 info!("Waiting for function");
 while !self.is_function_ready(None).await? {
 info!("Function is not ready, sleeping 1s");
 tokio::time::sleep(Duration::from_secs(1)).await;
 }
 Ok(())
 }

Learn the basics 2129

AWS Lambda Developer Guide

 /**
 * Check if a Lambda function is ready to be invoked.
 * A Lambda function is ready for this scenario when its state is active and
 its LastUpdateStatus is Successful.
 * Additionally, if a sha256 is provided, the function must have that as its
 current code hash.
 * Any missing properties or failed requests will be reported as an Err.
 */
 async fn is_function_ready(
 &self,
 expected_code_sha256: Option<&str>,
) -> Result<bool, anyhow::Error> {
 match self.get_function().await {
 Ok(func) => {
 if let Some(config) = func.configuration() {
 if let Some(state) = config.state() {
 info!(?state, "Checking if function is active");
 if !matches!(state, State::Active) {
 return Ok(false);
 }
 }
 match config.last_update_status() {
 Some(last_update_status) => {
 info!(?last_update_status, "Checking if function is
 ready");
 match last_update_status {
 LastUpdateStatus::Successful => {
 // continue
 }
 LastUpdateStatus::Failed |
 LastUpdateStatus::InProgress => {
 return Ok(false);
 }
 unknown => {
 warn!(
 status_variant = unknown.as_str(),
 "LastUpdateStatus unknown"
);
 return Err(anyhow!(
 "Unknown LastUpdateStatus, fn config is
 {config:?}"
));
 }
 }

Learn the basics 2130

AWS Lambda Developer Guide

 }
 None => {
 warn!("Missing last update status");
 return Ok(false);
 }
 };
 if expected_code_sha256.is_none() {
 return Ok(true);
 }
 if let Some(code_sha256) = config.code_sha256() {
 return Ok(code_sha256 ==
 expected_code_sha256.unwrap_or_default());
 }
 }
 }
 Err(e) => {
 warn!(?e, "Could not get function while waiting");
 }
 }
 Ok(false)
 }

 /** Get the Lambda function with this Manager's name. */
 pub async fn get_function(&self) -> Result<GetFunctionOutput, anyhow::Error>
 {
 info!("Getting lambda function");
 self.lambda_client
 .get_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

 /** List all Lambda functions in the current Region. */
 pub async fn list_functions(&self) -> Result<ListFunctionsOutput,
 anyhow::Error> {
 info!("Listing lambda functions");
 self.lambda_client
 .list_functions()
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

Learn the basics 2131

AWS Lambda Developer Guide

 /** Invoke the lambda function using calculator InvokeArgs. */
 pub async fn invoke(&self, args: InvokeArgs) -> Result<InvokeOutput,
 anyhow::Error> {
 info!(?args, "Invoking {}", self.lambda_name);
 let payload = serde_json::to_string(&args)?;
 debug!(?payload, "Sending payload");
 self.lambda_client
 .invoke()
 .function_name(self.lambda_name.clone())
 .payload(Blob::new(payload))
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

 /** Given a Path to a zip file, update the function's code and wait for the
 update to finish. */
 pub async fn update_function_code(
 &self,
 zip_file: PathBuf,
 key: String,
) -> Result<UpdateFunctionCodeOutput, anyhow::Error> {
 let function_code = self.prepare_function(zip_file, Some(key)).await?;

 info!("Updating code for {}", self.lambda_name);
 let update = self
 .lambda_client
 .update_function_code()
 .function_name(self.lambda_name.clone())
 .s3_bucket(self.bucket.clone())
 .s3_key(function_code.s3_key().unwrap().to_string())
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(update)
 }

 /** Update the environment for a function. */
 pub async fn update_function_configuration(
 &self,

Learn the basics 2132

AWS Lambda Developer Guide

 environment: Environment,
) -> Result<UpdateFunctionConfigurationOutput, anyhow::Error> {
 info!(
 ?environment,
 "Updating environment for {}", self.lambda_name
);
 let updated = self
 .lambda_client
 .update_function_configuration()
 .function_name(self.lambda_name.clone())
 .environment(environment)
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(updated)
 }

 /** Delete a function and its role, and if possible or necessary, its
 associated code object and bucket. */
 pub async fn delete_function(
 &self,
 location: Option<String>,
) -> (
 Result<DeleteFunctionOutput, anyhow::Error>,
 Result<DeleteRoleOutput, anyhow::Error>,
 Option<Result<DeleteObjectOutput, anyhow::Error>>,
) {
 info!("Deleting lambda function {}", self.lambda_name);
 let delete_function = self
 .lambda_client
 .delete_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from);

 info!("Deleting iam role {}", self.role_name);
 let delete_role = self
 .iam_client
 .delete_role()
 .role_name(self.role_name.clone())

Learn the basics 2133

AWS Lambda Developer Guide

 .send()
 .await
 .map_err(anyhow::Error::from);

 let delete_object: Option<Result<DeleteObjectOutput, anyhow::Error>> =
 if let Some(location) = location {
 info!("Deleting object {location}");
 Some(
 self.s3_client
 .delete_object()
 .bucket(self.bucket.clone())
 .key(location)
 .send()
 .await
 .map_err(anyhow::Error::from),
)
 } else {
 info!(?location, "Skipping delete object");
 None
 };

 (delete_function, delete_role, delete_object)
 }

 pub async fn cleanup(
 &self,
 location: Option<String>,
) -> (
 (
 Result<DeleteFunctionOutput, anyhow::Error>,
 Result<DeleteRoleOutput, anyhow::Error>,
 Option<Result<DeleteObjectOutput, anyhow::Error>>,
),
 Option<Result<DeleteBucketOutput, anyhow::Error>>,
) {
 let delete_function = self.delete_function(location).await;

 let delete_bucket = if self.own_bucket {
 info!("Deleting bucket {}", self.bucket);
 if delete_function.2.is_none() ||
 delete_function.2.as_ref().unwrap().is_ok() {
 Some(
 self.s3_client
 .delete_bucket()

Learn the basics 2134

AWS Lambda Developer Guide

 .bucket(self.bucket.clone())
 .send()
 .await
 .map_err(anyhow::Error::from),
)
 } else {
 None
 }
 } else {
 info!("No bucket to clean up");
 None
 };

 (delete_function, delete_bucket)
 }
}

/**
 * Testing occurs primarily as an integration test running the `scenario` bin
 successfully.
 * Each action relies deeply on the internal workings and state of Amazon Simple
 Storage Service (Amazon S3), Lambda, and IAM working together.
 * It is therefore infeasible to mock the clients to test the individual actions.
 */
#[cfg(test)]
mod test {
 use super::{InvokeArgs, Operation};
 use serde_json::json;

 /** Make sure that the JSON output of serializing InvokeArgs is what's
 expected by the calculator. */
 #[test]
 fn test_serialize() {
 assert_eq!(json!(InvokeArgs::Increment(5)), 5);
 assert_eq!(
 json!(InvokeArgs::Arithmetic(Operation::Plus, 5, 7)).to_string(),
 r#"{"op":"plus","i":5,"j":7}"#.to_string(),
);
 }
}

Learn the basics 2135

AWS Lambda Developer Guide

A binary to run the scenario from front to end, using command line flags to control some
behavior. This file is src/bin/scenario.rs in the crate.

/*
Service actions

Service actions wrap the SDK call, taking a client and any specific parameters
 necessary for the call.

* CreateFunction
* GetFunction
* ListFunctions
* Invoke
* UpdateFunctionCode
* UpdateFunctionConfiguration
* DeleteFunction

Scenario
A scenario runs at a command prompt and prints output to the user on the result
 of each service action. A scenario can run in one of two ways: straight through,
 printing out progress as it goes, or as an interactive question/answer script.

Getting started with functions

Use an SDK to manage AWS Lambda functions: create a function, invoke it, update
 its code, invoke it again, view its output and logs, and delete it.

This scenario uses two Lambda handlers:
Note: Handlers don't use AWS SDK API calls.

The increment handler is straightforward:

1. It accepts a number, increments it, and returns the new value.
2. It performs simple logging of the result.

The arithmetic handler is more complex:
1. It accepts a set of actions ['plus', 'minus', 'times', 'divided-by'] and two
 numbers, and returns the result of the calculation.
2. It uses an environment variable to control log level (such as DEBUG, INFO,
 WARNING, ERROR).
It logs a few things at different levels, such as:
 * DEBUG: Full event data.

Learn the basics 2136

AWS Lambda Developer Guide

 * INFO: The calculation result.
 * WARN~ING~: When a divide by zero error occurs.
 * This will be the typical `RUST_LOG` variable.

The steps of the scenario are:

1. Create an AWS Identity and Access Management (IAM) role that meets the
 following requirements:
 * Has an assume_role policy that grants 'lambda.amazonaws.com' the
 'sts:AssumeRole' action.
 * Attaches the 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole' managed role.
 * _You must wait for ~10 seconds after the role is created before you can use
 it!_
2. Create a function (CreateFunction) for the increment handler by packaging it
 as a zip and doing one of the following:
 * Adding it with CreateFunction Code.ZipFile.
 * --or--
 * Uploading it to Amazon Simple Storage Service (Amazon S3) and adding it
 with CreateFunction Code.S3Bucket/S3Key.
 * _Note: Zipping the file does not have to be done in code._
 * If you have a waiter, use it to wait until the function is active.
 Otherwise, call GetFunction until State is Active.
3. Invoke the function with a number and print the result.
4. Update the function (UpdateFunctionCode) to the arithmetic handler by
 packaging it as a zip and doing one of the following:
 * Adding it with UpdateFunctionCode ZipFile.
 * --or--
 * Uploading it to Amazon S3 and adding it with UpdateFunctionCode S3Bucket/
S3Key.
5. Call GetFunction until Configuration.LastUpdateStatus is 'Successful' (or
 'Failed').
6. Update the environment variable by calling UpdateFunctionConfiguration and
 pass it a log level, such as:
 * Environment={'Variables': {'RUST_LOG': 'TRACE'}}
7. Invoke the function with an action from the list and a couple of values.
 Include LogType='Tail' to get logs in the result. Print the result of the
 calculation and the log.
8. [Optional] Invoke the function to provoke a divide-by-zero error and show the
 log result.
9. List all functions for the account, using pagination (ListFunctions).
10. Delete the function (DeleteFunction).
11. Delete the role.

Learn the basics 2137

AWS Lambda Developer Guide

Each step should use the function created in Service Actions to abstract calling
 the SDK.
 */

use aws_sdk_lambda::{operation::invoke::InvokeOutput, types::Environment};
use clap::Parser;
use std::{collections::HashMap, path::PathBuf};
use tracing::{debug, info, warn};
use tracing_subscriber::EnvFilter;

use lambda_code_examples::actions::{
 InvokeArgs::{Arithmetic, Increment},
 LambdaManager, Operation,
};

#[derive(Debug, Parser)]
pub struct Opt {
 /// The AWS Region.
 #[structopt(short, long)]
 pub region: Option<String>,

 // The bucket to use for the FunctionCode.
 #[structopt(short, long)]
 pub bucket: Option<String>,

 // The name of the Lambda function.
 #[structopt(short, long)]
 pub lambda_name: Option<String>,

 // The number to increment.
 #[structopt(short, long, default_value = "12")]
 pub inc: i32,

 // The left operand.
 #[structopt(long, default_value = "19")]
 pub num_a: i32,

 // The right operand.
 #[structopt(long, default_value = "23")]
 pub num_b: i32,

 // The arithmetic operation.
 #[structopt(short, long, default_value = "plus")]

Learn the basics 2138

AWS Lambda Developer Guide

 pub operation: Operation,

 #[structopt(long)]
 pub cleanup: Option<bool>,

 #[structopt(long)]
 pub no_cleanup: Option<bool>,
}

fn code_path(lambda: &str) -> PathBuf {
 PathBuf::from(format!("../target/lambda/{lambda}/bootstrap.zip"))
}

fn log_invoke_output(invoke: &InvokeOutput, message: &str) {
 if let Some(payload) = invoke.payload().cloned() {
 let payload = String::from_utf8(payload.into_inner());
 info!(?payload, message);
 } else {
 info!("Could not extract payload")
 }
 if let Some(logs) = invoke.log_result() {
 debug!(?logs, "Invoked function logs")
 } else {
 debug!("Invoked function had no logs")
 }
}

async fn main_block(
 opt: &Opt,
 manager: &LambdaManager,
 code_location: String,
) -> Result<(), anyhow::Error> {
 let invoke = manager.invoke(Increment(opt.inc)).await?;
 log_invoke_output(&invoke, "Invoked function configured as increment");

 let update_code = manager
 .update_function_code(code_path("arithmetic"), code_location.clone())
 .await?;

 let code_sha256 = update_code.code_sha256().unwrap_or("Unknown SHA");
 info!(?code_sha256, "Updated function code with arithmetic.zip");

 let arithmetic_args = Arithmetic(opt.operation, opt.num_a, opt.num_b);
 let invoke = manager.invoke(arithmetic_args).await?;

Learn the basics 2139

AWS Lambda Developer Guide

 log_invoke_output(&invoke, "Invoked function configured as arithmetic");

 let update = manager
 .update_function_configuration(
 Environment::builder()
 .set_variables(Some(HashMap::from([(
 "RUST_LOG".to_string(),
 "trace".to_string(),
)])))
 .build(),
)
 .await?;
 let updated_environment = update.environment();
 info!(?updated_environment, "Updated function configuration");

 let invoke = manager
 .invoke(Arithmetic(opt.operation, opt.num_a, opt.num_b))
 .await?;
 log_invoke_output(
 &invoke,
 "Invoked function configured as arithmetic with increased logging",
);

 let invoke = manager
 .invoke(Arithmetic(Operation::DividedBy, opt.num_a, 0))
 .await?;
 log_invoke_output(
 &invoke,
 "Invoked function configured as arithmetic with divide by zero",
);

 Ok::<(), anyhow::Error>(())
}

#[tokio::main]
async fn main() {
 tracing_subscriber::fmt()
 .without_time()
 .with_file(true)
 .with_line_number(true)
 .with_env_filter(EnvFilter::from_default_env())
 .init();

 let opt = Opt::parse();

Learn the basics 2140

AWS Lambda Developer Guide

 let manager = LambdaManager::load_from_env(opt.lambda_name.clone(),
 opt.bucket.clone()).await;

 let key = match manager.create_function(code_path("increment")).await {
 Ok(init) => {
 info!(?init, "Created function, initially with increment.zip");
 let run_block = main_block(&opt, &manager, init.clone()).await;
 info!(?run_block, "Finished running example, cleaning up");
 Some(init)
 }
 Err(err) => {
 warn!(?err, "Error happened when initializing function");
 None
 }
 };

 if Some(false) == opt.cleanup || Some(true) == opt.no_cleanup {
 info!("Skipping cleanup")
 } else {
 let delete = manager.cleanup(key).await;
 info!(?delete, "Deleted function & cleaned up resources");
 }
}

• For API details, see the following topics in AWS SDK for Rust API reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Learn the basics 2141

https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.create_function
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.delete_function
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.get_function
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.invoke
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.list_functions
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.update_function_code
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.update_function_configuration

AWS Lambda Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 "Create an AWS Identity and Access Management (IAM) role that grants AWS
 Lambda permission to write to logs."
 DATA(lv_policy_document) = `{` &&
 `"Version":"2012-10-17",` &&
 `"Statement": [` &&
 `{` &&
 `"Effect": "Allow",` &&
 `"Action": [` &&
 `"sts:AssumeRole"` &&
 `],` &&
 `"Principal": {` &&
 `"Service": [` &&
 `"lambda.amazonaws.com"` &&
 `]` &&
 `}` &&
 `}` &&
 `]` &&
 `}`.
 TRY.
 DATA(lo_create_role_output) = lo_iam->createrole(
 iv_rolename = iv_role_name
 iv_assumerolepolicydocument = lv_policy_document
 iv_description = 'Grant lambda permission to write to
 logs').
 DATA(lv_role_arn) = lo_create_role_output->get_role()->get_arn().
 MESSAGE 'IAM role created.' TYPE 'I'.
 WAIT UP TO 10 SECONDS. " Make sure that the IAM role is
 ready for use. "
 CATCH /aws1/cx_iamentityalrdyexex.
 DATA(lo_role) = lo_iam->getrole(iv_rolename = iv_role_name).

Learn the basics 2142

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 lv_role_arn = lo_role->get_role()->get_arn().
 CATCH /aws1/cx_iaminvalidinputex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_iammalformedplydocex.
 MESSAGE 'Policy document in the request is malformed.' TYPE 'E'.
 ENDTRY.

 TRY.
 lo_iam->attachrolepolicy(
 iv_rolename = iv_role_name
 iv_policyarn = 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole').
 MESSAGE 'Attached policy to the IAM role.' TYPE 'I'.
 CATCH /aws1/cx_iaminvalidinputex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_iamnosuchentityex.
 MESSAGE 'The requested resource entity does not exist.' TYPE 'E'.
 CATCH /aws1/cx_iamplynotattachableex.
 MESSAGE 'Service role policies can only be attached to the service-
linked role for their service.' TYPE 'E'.
 CATCH /aws1/cx_iamunmodableentityex.
 MESSAGE 'Service that depends on the service-linked role is not
 modifiable.' TYPE 'E'.
 ENDTRY.

 " Create a Lambda function and upload handler code. "
 " Lambda function performs 'increment' action on a number. "
 TRY.
 lo_lmd->createfunction(
 iv_functionname = iv_function_name
 iv_runtime = `python3.9`
 iv_role = lv_role_arn
 iv_handler = iv_handler
 io_code = io_initial_zip_file
 iv_description = 'AWS Lambda code example').
 MESSAGE 'Lambda function created.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

Learn the basics 2143

AWS Lambda Developer Guide

 " Verify the function is in Active state "
 WHILE lo_lmd->getfunction(iv_functionname = iv_function_name)-
>get_configuration()->ask_state() <> 'Active'.
 IF sy-index = 10.
 EXIT. " Maximum 10 seconds. "
 ENDIF.
 WAIT UP TO 1 SECONDS.
 ENDWHILE.

 "Invoke the function with a single parameter and get results."
 TRY.
 DATA(lv_json) = /aws1/cl_rt_util=>string_to_xstring(
 `{` &&
 `"action": "increment",` &&
 `"number": 10` &&
 `}`).
 DATA(lo_initial_invoke_output) = lo_lmd->invoke(
 iv_functionname = iv_function_name
 iv_payload = lv_json).
 ov_initial_invoke_payload = lo_initial_invoke_output->get_payload().
 " ov_initial_invoke_payload is returned for testing purposes. "
 DATA(lo_writer_json) = cl_sxml_string_writer=>create(type =
 if_sxml=>co_xt_json).
 CALL TRANSFORMATION id SOURCE XML ov_initial_invoke_payload RESULT
 XML lo_writer_json.
 DATA(lv_result) = cl_abap_codepage=>convert_from(lo_writer_json-
>get_output()).
 MESSAGE 'Lambda function invoked.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvrequestcontex.
 MESSAGE 'Unable to parse request body as JSON.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdunsuppedmediatyp00.
 MESSAGE 'Invoke request body does not have JSON as its content type.'
 TYPE 'E'.
 ENDTRY.

 " Update the function code and configure its Lambda environment with an
 environment variable. "
 " Lambda function is updated to perform 'decrement' action also. "
 TRY.
 lo_lmd->updatefunctioncode(

Learn the basics 2144

AWS Lambda Developer Guide

 iv_functionname = iv_function_name
 iv_zipfile = io_updated_zip_file).
 WAIT UP TO 10 SECONDS. " Make sure that the update is
 completed. "
 MESSAGE 'Lambda function code updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

 TRY.
 DATA lt_variables TYPE /aws1/
cl_lmdenvironmentvaria00=>tt_environmentvariables.
 DATA ls_variable LIKE LINE OF lt_variables.
 ls_variable-key = 'LOG_LEVEL'.
 ls_variable-value = NEW /aws1/cl_lmdenvironmentvaria00(iv_value =
 'info').
 INSERT ls_variable INTO TABLE lt_variables.

 lo_lmd->updatefunctionconfiguration(
 iv_functionname = iv_function_name
 io_environment = NEW /aws1/cl_lmdenvironment(it_variables =
 lt_variables)).
 WAIT UP TO 10 SECONDS. " Make sure that the update is
 completed. "
 MESSAGE 'Lambda function configuration/settings updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in
 progress.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

 "Invoke the function with new parameters and get results. Display the
 execution log that's returned from the invocation."
 TRY.
 lv_json = /aws1/cl_rt_util=>string_to_xstring(
 `{` &&
 `"action": "decrement",` &&

Learn the basics 2145

AWS Lambda Developer Guide

 `"number": 10` &&
 `}`).
 DATA(lo_updated_invoke_output) = lo_lmd->invoke(
 iv_functionname = iv_function_name
 iv_payload = lv_json).
 ov_updated_invoke_payload = lo_updated_invoke_output->get_payload().
 " ov_updated_invoke_payload is returned for testing purposes. "
 lo_writer_json = cl_sxml_string_writer=>create(type =
 if_sxml=>co_xt_json).
 CALL TRANSFORMATION id SOURCE XML ov_updated_invoke_payload RESULT
 XML lo_writer_json.
 lv_result = cl_abap_codepage=>convert_from(lo_writer_json-
>get_output()).
 MESSAGE 'Lambda function invoked.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvrequestcontex.
 MESSAGE 'Unable to parse request body as JSON.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdunsuppedmediatyp00.
 MESSAGE 'Invoke request body does not have JSON as its content type.'
 TYPE 'E'.
 ENDTRY.

 " List the functions for your account. "
 TRY.
 DATA(lo_list_output) = lo_lmd->listfunctions().
 DATA(lt_functions) = lo_list_output->get_functions().
 MESSAGE 'Retrieved list of Lambda functions.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 ENDTRY.

 " Delete the Lambda function. "
 TRY.
 lo_lmd->deletefunction(iv_functionname = iv_function_name).
 MESSAGE 'Lambda function deleted.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'W'.
 ENDTRY.

Learn the basics 2146

AWS Lambda Developer Guide

 " Detach role policy. "
 TRY.
 lo_iam->detachrolepolicy(
 iv_rolename = iv_role_name
 iv_policyarn = 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole').
 MESSAGE 'Detached policy from the IAM role.' TYPE 'I'.
 CATCH /aws1/cx_iaminvalidinputex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_iamnosuchentityex.
 MESSAGE 'The requested resource entity does not exist.' TYPE 'W'.
 CATCH /aws1/cx_iamplynotattachableex.
 MESSAGE 'Service role policies can only be attached to the service-
linked role for their service.' TYPE 'E'.
 CATCH /aws1/cx_iamunmodableentityex.
 MESSAGE 'Service that depends on the service-linked role is not
 modifiable.' TYPE 'E'.
 ENDTRY.

 " Delete the IAM role. "
 TRY.
 lo_iam->deleterole(iv_rolename = iv_role_name).
 MESSAGE 'IAM role deleted.' TYPE 'I'.
 CATCH /aws1/cx_iamnosuchentityex.
 MESSAGE 'The requested resource entity does not exist.' TYPE 'W'.
 CATCH /aws1/cx_iamunmodableentityex.
 MESSAGE 'Service that depends on the service-linked role is not
 modifiable.' TYPE 'E'.
 ENDTRY.

 CATCH /aws1/cx_rt_service_generic INTO lo_exception.
 DATA(lv_error) = lo_exception->get_longtext().
 MESSAGE lv_error TYPE 'E'.
 ENDTRY.

• For API details, see the following topics in AWS SDK for SAP ABAP API reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

Learn the basics 2147

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

AWS Lambda Developer Guide

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Define the first Lambda function, which simply increments the specified value.

// swift-tools-version: 5.9
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// The swift-tools-version declares the minimum version of Swift required to
// build this package.

import PackageDescription

let package = Package(
 name: "increment",
 // Let Xcode know the minimum Apple platforms supported.
 platforms: [
 .macOS(.v13)
],
 dependencies: [
 // Dependencies declare other packages that this package depends on.
 .package(
 url: "https://github.com/swift-server/swift-aws-lambda-runtime.git",
 branch: "main"),
],
 targets: [
 // Targets are the basic building blocks of a package, defining a module
 or a test suite.
 // Targets can depend on other targets in this package and products

Learn the basics 2148

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 // from dependencies.
 .executableTarget(
 name: "increment",
 dependencies: [
 .product(name: "AWSLambdaRuntime", package: "swift-aws-lambda-
runtime"),
],
 path: "Sources"
)
]
)

import Foundation
import AWSLambdaRuntime

/// Represents the contents of the requests being received from the client.
/// This structure must be `Decodable` to indicate that its initializer
/// converts an external representation into this type.
struct Request: Decodable, Sendable {
 /// The action to perform.
 let action: String
 /// The number to act upon.
 let number: Int
}

/// The contents of the response sent back to the client. This must be
/// `Encodable`.
struct Response: Encodable, Sendable {
 /// The resulting value after performing the action.
 let answer: Int?
}

/// The Lambda function body.
///
/// - Parameters:
/// - event: The `Request` describing the request made by the
/// client.
/// - context: A `LambdaContext` describing the context in
/// which the lambda function is running.
///
/// - Returns: A `Response` object that will be encoded to JSON and sent
/// to the client by the Lambda runtime.
let incrementLambdaRuntime = LambdaRuntime {

Learn the basics 2149

AWS Lambda Developer Guide

 (event: Request, context: LambdaContext) -> Response in
 let action = event.action
 var answer: Int?

 if action != "increment" {
 context.logger.error("Unrecognized operation: \"\(action)\". The only
 supported action is \"increment\".")
 } else {
 answer = event.number + 1
 context.logger.info("The calculated answer is \(answer!).")
 }

 let response = Response(answer: answer)
 return response
}

// Run the Lambda runtime code.

try await incrementLambdaRuntime.run()

Define the second Lambda function, which performs an arithmetic operation on two
numbers.

// swift-tools-version: 5.9
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// The swift-tools-version declares the minimum version of Swift required to
// build this package.

import PackageDescription

let package = Package(
 name: "calculator",
 // Let Xcode know the minimum Apple platforms supported.
 platforms: [
 .macOS(.v13)
],
 dependencies: [
 // Dependencies declare other packages that this package depends on.
 .package(
 url: "https://github.com/swift-server/swift-aws-lambda-runtime.git",

Learn the basics 2150

AWS Lambda Developer Guide

 branch: "main"),
],
 targets: [
 // Targets are the basic building blocks of a package, defining a module
 or a test suite.
 // Targets can depend on other targets in this package and products
 // from dependencies.
 .executableTarget(
 name: "calculator",
 dependencies: [
 .product(name: "AWSLambdaRuntime", package: "swift-aws-lambda-
runtime"),
],
 path: "Sources"
)
]
)

import Foundation
import AWSLambdaRuntime

/// Represents the contents of the requests being received from the client.
/// This structure must be `Decodable` to indicate that its initializer
/// converts an external representation into this type.
struct Request: Decodable, Sendable {
 /// The action to perform.
 let action: String
 /// The first number to act upon.
 let x: Int
 /// The second number to act upon.
 let y: Int
}

/// A dictionary mapping operation names to closures that perform that
/// operation and return the result.
let actions = [
 "plus": { (x: Int, y: Int) -> Int in
 return x + y
 },
 "minus": { (x: Int, y: Int) -> Int in
 return x - y
 },
 "times": { (x: Int, y: Int) -> Int in
 return x * y

Learn the basics 2151

AWS Lambda Developer Guide

 },
 "divided-by": { (x: Int, y: Int) -> Int in
 return x / y
 }
]

/// The contents of the response sent back to the client. This must be
/// `Encodable`.
struct Response: Encodable, Sendable {
 /// The resulting value after performing the action.
 let answer: Int?
}

/// The Lambda function's entry point. Called by the Lambda runtime.
///
/// - Parameters:
/// - event: The `Request` describing the request made by the
/// client.
/// - context: A `LambdaContext` describing the context in
/// which the lambda function is running.
///
/// - Returns: A `Response` object that will be encoded to JSON and sent
/// to the client by the Lambda runtime.
let calculatorLambdaRuntime = LambdaRuntime {
 (_ event: Request, context: LambdaContext) -> Response in
 let action = event.action
 var answer: Int?
 var actionFunc: ((Int, Int) -> Int)?

 // Get the closure to run to perform the calculation.

 actionFunc = await actions[action]

 guard let actionFunc else {
 context.logger.error("Unrecognized operation '\(action)\'")
 return Response(answer: nil)
 }

 // Perform the calculation and return the answer.

 answer = actionFunc(event.x, event.y)

 guard let answer else {

Learn the basics 2152

AWS Lambda Developer Guide

 context.logger.error("Error computing \(event.x) \(action) \(event.y)")
 }
 context.logger.info("\(event.x) \(action) \(event.y) = \(answer)")

 return Response(answer: answer)
}

try await calculatorLambdaRuntime.run()

Define the main program that will invoke the two Lambda functions.

// swift-tools-version: 5.9
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// The swift-tools-version declares the minimum version of Swift required to
// build this package.

import PackageDescription

let package = Package(
 name: "lambda-basics",
 // Let Xcode know the minimum Apple platforms supported.
 platforms: [
 .macOS(.v13)
],
 dependencies: [
 // Dependencies declare other packages that this package depends on.
 .package(
 url: "https://github.com/awslabs/aws-sdk-swift",
 from: "1.0.0"),
 .package(
 url: "https://github.com/apple/swift-argument-parser.git",
 branch: "main"
)
],
 targets: [
 // Targets are the basic building blocks of a package, defining a module
 or a test suite.
 // Targets can depend on other targets in this package and products
 // from dependencies.
 .executableTarget(

Learn the basics 2153

AWS Lambda Developer Guide

 name: "lambda-basics",
 dependencies: [
 .product(name: "AWSLambda", package: "aws-sdk-swift"),
 .product(name: "AWSIAM", package: "aws-sdk-swift"),
 .product(name: "ArgumentParser", package: "swift-argument-
parser")
],
 path: "Sources"
)
]
)

//
/// An example demonstrating a variety of important AWS Lambda functions.

import ArgumentParser
import AWSIAM
import SmithyWaitersAPI
import AWSClientRuntime
import AWSLambda
import Foundation

/// Represents the contents of the requests being received from the client.
/// This structure must be `Decodable` to indicate that its initializer
/// converts an external representation into this type.
struct IncrementRequest: Encodable, Decodable, Sendable {
 /// The action to perform.
 let action: String
 /// The number to act upon.
 let number: Int
}

struct Response: Encodable, Decodable, Sendable {
 /// The resulting value after performing the action.
 let answer: Int?
}

struct CalculatorRequest: Encodable, Decodable, Sendable {
 /// The action to perform.
 let action: String
 /// The first number to act upon.
 let x: Int
 /// The second number to act upon.
 let y: Int

Learn the basics 2154

AWS Lambda Developer Guide

}

let exampleName = "SwiftLambdaRoleExample"
let basicsFunctionName = "lambda-basics-function"

/// The ARN of the standard IAM policy for execution of Lambda functions.
let policyARN = "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"

struct ExampleCommand: ParsableCommand {
 // -MARK: Command arguments
 @Option(help: "Name of the IAM Role to use for the Lambda functions")
 var role = exampleName
 @Option(help: "Zip archive containing the 'increment' lambda function")
 var incpath: String
 @Option(help: "Zip archive containing the 'calculator' lambda function")
 var calcpath: String
 @Option(help: "Name of the Amazon S3 Region to use (default: us-east-1)")
 var region = "us-east-1"

 static var configuration = CommandConfiguration(
 commandName: "lambda-basics",
 abstract: """
 This example demonstrates several common operations using AWS Lambda.
 """,
 discussion: """
 """
)

 /// Returns the specified IAM role object.
 ///
 /// - Parameters:
 /// - iamClient: `IAMClient` to use when looking for the role.
 /// - roleName: The name of the role to check.
 ///
 /// - Returns: The `IAMClientTypes.Role` representing the specified role.
 func getRole(iamClient: IAMClient, roleName: String) async throws
 -> IAMClientTypes.Role {
 do {
 let roleOutput = try await iamClient.getRole(
 input: GetRoleInput(
 roleName: roleName
)
)

Learn the basics 2155

AWS Lambda Developer Guide

 guard let role = roleOutput.role else {
 throw ExampleError.roleNotFound
 }
 return role
 } catch {
 throw ExampleError.roleNotFound
 }
 }

 /// Create the AWS IAM role that will be used to access AWS Lambda.
 ///
 /// - Parameters:
 /// - iamClient: The AWS `IAMClient` to use.
 /// - roleName: The name of the AWS IAM role to use for Lambda.
 ///
 /// - Throws: `ExampleError.roleCreateError`
 ///
 /// - Returns: The `IAMClientTypes.Role` struct that describes the new role.
 func createRoleForLambda(iamClient: IAMClient, roleName: String) async throws
 -> IAMClientTypes.Role {
 let output = try await iamClient.createRole(
 input: CreateRoleInput(
 assumeRolePolicyDocument:
 """
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": "lambda.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
 }
 """,
 roleName: roleName
)
)

 guard let role = output.role else {
 throw ExampleError.roleCreateError
 }

Learn the basics 2156

AWS Lambda Developer Guide

 // Wait for the role to be ready for use.

 _ = try await iamClient.waitUntilRoleExists(
 options: WaiterOptions(
 maxWaitTime: 20,
 minDelay: 0.5,
 maxDelay: 2
),
 input: GetRoleInput(roleName: roleName)
)

 return role
 }

 /// Detect whether or not the AWS Lambda function with the specified name
 /// exists, by requesting its function information.
 ///
 /// - Parameters:
 /// - lambdaClient: The `LambdaClient` to use.
 /// - name: The name of the AWS Lambda function to find.
 ///
 /// - Returns: `true` if the Lambda function exists. Otherwise `false`.
 func doesLambdaFunctionExist(lambdaClient: LambdaClient, name: String) async
 -> Bool {
 do {
 _ = try await lambdaClient.getFunction(
 input: GetFunctionInput(functionName: name)
)
 } catch {
 return false
 }

 return true
 }

 /// Create the specified AWS Lambda function.
 ///
 /// - Parameters:
 /// - lambdaClient: The `LambdaClient` to use.
 /// - functionName: The name of the AWS Lambda function to create.
 /// - roleArn: The ARN of the role to apply to the function.
 /// - path: The path of the Zip archive containing the function.
 ///
 /// - Returns: `true` if the AWS Lambda was successfully created; `false`

Learn the basics 2157

AWS Lambda Developer Guide

 /// if it wasn't.
 func createFunction(lambdaClient: LambdaClient, functionName: String,
 roleArn: String?, path: String) async throws ->
 Bool {
 do {
 // Read the Zip archive containing the AWS Lambda function.

 let zipUrl = URL(fileURLWithPath: path)
 let zipData = try Data(contentsOf: zipUrl)

 // Create the AWS Lambda function that runs the specified code,
 // using the name given on the command line. The Lambda function
 // will run using the Amazon Linux 2 runtime.

 _ = try await lambdaClient.createFunction(
 input: CreateFunctionInput(
 code: LambdaClientTypes.FunctionCode(zipFile: zipData),
 functionName: functionName,
 handler: "handle",
 role: roleArn,
 runtime: .providedal2
)
)
 } catch {
 print("*** Error creating Lambda function:")
 dump(error)
 return false
 }

 // Wait for a while to be sure the function is done being created.

 let output = try await lambdaClient.waitUntilFunctionActiveV2(
 options: WaiterOptions(
 maxWaitTime: 20,
 minDelay: 0.5,
 maxDelay: 2
),
 input: GetFunctionInput(functionName: functionName)
)

 switch output.result {
 case .success:
 return true
 case .failure:

Learn the basics 2158

AWS Lambda Developer Guide

 return false
 }
 }

 /// Update the AWS Lambda function with new code to run when the function
 /// is invoked.
 ///
 /// - Parameters:
 /// - lambdaClient: The `LambdaClient` to use.
 /// - functionName: The name of the AWS Lambda function to update.
 /// - path: The pathname of the Zip file containing the packaged Lambda
 /// function.
 /// - Throws: `ExampleError.zipFileReadError`
 /// - Returns: `true` if the function's code is updated successfully.
 /// Otherwise, returns `false`.
 func updateFunctionCode(lambdaClient: LambdaClient, functionName: String,
 path: String) async throws -> Bool {
 let zipUrl = URL(fileURLWithPath: path)
 let zipData: Data

 // Read the function's Zip file.

 do {
 zipData = try Data(contentsOf: zipUrl)
 } catch {
 throw ExampleError.zipFileReadError
 }

 // Update the function's code and wait for the updated version to be
 // ready for use.

 do {
 _ = try await lambdaClient.updateFunctionCode(
 input: UpdateFunctionCodeInput(
 functionName: functionName,
 zipFile: zipData
)
)
 } catch {
 return false
 }

 let output = try await lambdaClient.waitUntilFunctionUpdatedV2(
 options: WaiterOptions(

Learn the basics 2159

AWS Lambda Developer Guide

 maxWaitTime: 20,
 minDelay: 0.5,
 maxDelay: 2
),
 input: GetFunctionInput(
 functionName: functionName
)
)

 switch output.result {
 case .success:
 return true
 case .failure:
 return false
 }
 }

 /// Tell the server-side component to log debug output by setting its
 /// environment's `LOG_LEVEL` to `DEBUG`.
 ///
 /// - Parameters:
 /// - lambdaClient: The `LambdaClient` to use.
 /// - functionName: The name of the AWS Lambda function to enable debug
 /// logging for.
 ///
 /// - Throws: `ExampleError.environmentResponseMissingError`,
 /// `ExampleError.updateFunctionConfigurationError`,
 /// `ExampleError.environmentVariablesMissingError`,
 /// `ExampleError.logLevelIncorrectError`,
 /// `ExampleError.updateFunctionConfigurationError`
 func enableDebugLogging(lambdaClient: LambdaClient, functionName: String)
 async throws {
 let envVariables = [
 "LOG_LEVEL": "DEBUG"
]
 let environment = LambdaClientTypes.Environment(variables: envVariables)

 do {
 let output = try await lambdaClient.updateFunctionConfiguration(
 input: UpdateFunctionConfigurationInput(
 environment: environment,
 functionName: functionName
)
)

Learn the basics 2160

AWS Lambda Developer Guide

 guard let response = output.environment else {
 throw ExampleError.environmentResponseMissingError
 }

 if response.error != nil {
 throw ExampleError.updateFunctionConfigurationError
 }

 guard let retVariables = response.variables else {
 throw ExampleError.environmentVariablesMissingError
 }

 for envVar in retVariables {
 if envVar.key == "LOG_LEVEL" && envVar.value != "DEBUG" {
 print("*** Log level is not set to DEBUG!")
 throw ExampleError.logLevelIncorrectError
 }
 }
 } catch {
 throw ExampleError.updateFunctionConfigurationError
 }
 }

 /// Returns an array containing the names of all AWS Lambda functions
 /// available to the user.
 ///
 /// - Parameter lambdaClient: The `IAMClient` to use.
 ///
 /// - Throws: `ExampleError.listFunctionsError`
 ///
 /// - Returns: An array of lambda function name strings.
 func getFunctionNames(lambdaClient: LambdaClient) async throws -> [String] {
 let pages = lambdaClient.listFunctionsPaginated(
 input: ListFunctionsInput()
)

 var functionNames: [String] = []

 for try await page in pages {
 guard let functions = page.functions else {
 throw ExampleError.listFunctionsError
 }

Learn the basics 2161

AWS Lambda Developer Guide

 for function in functions {
 functionNames.append(function.functionName ?? "<unknown>")
 }
 }

 return functionNames
 }

 /// Invoke the Lambda function to increment a value.
 ///
 /// - Parameters:
 /// - lambdaClient: The `IAMClient` to use.
 /// - number: The number to increment.
 ///
 /// - Throws: `ExampleError.noAnswerReceived`, `ExampleError.invokeError`
 ///
 /// - Returns: An integer number containing the incremented value.
 func invokeIncrement(lambdaClient: LambdaClient, number: Int) async throws ->
 Int {
 do {
 let incRequest = IncrementRequest(action: "increment", number:
 number)
 let incData = try! JSONEncoder().encode(incRequest)

 // Invoke the lambda function.

 let invokeOutput = try await lambdaClient.invoke(
 input: InvokeInput(
 functionName: "lambda-basics-function",
 payload: incData
)
)

 let response = try! JSONDecoder().decode(Response.self,
 from:invokeOutput.payload!)

 guard let answer = response.answer else {
 throw ExampleError.noAnswerReceived
 }
 return answer

 } catch {
 throw ExampleError.invokeError
 }

Learn the basics 2162

AWS Lambda Developer Guide

 }

 /// Invoke the calculator Lambda function.
 ///
 /// - Parameters:
 /// - lambdaClient: The `IAMClient` to use.
 /// - action: Which arithmetic operation to perform: "plus", "minus",
 /// "times", or "divided-by".
 /// - x: The first number to use in the computation.
 /// - y: The second number to use in the computation.
 ///
 /// - Throws: `ExampleError.noAnswerReceived`, `ExampleError.invokeError`
 ///
 /// - Returns: The computed answer as an `Int`.
 func invokeCalculator(lambdaClient: LambdaClient, action: String, x: Int, y:
 Int) async throws -> Int {
 do {
 let calcRequest = CalculatorRequest(action: action, x: x, y: y)
 let calcData = try! JSONEncoder().encode(calcRequest)

 // Invoke the lambda function.

 let invokeOutput = try await lambdaClient.invoke(
 input: InvokeInput(
 functionName: "lambda-basics-function",
 payload: calcData
)
)

 let response = try! JSONDecoder().decode(Response.self,
 from:invokeOutput.payload!)

 guard let answer = response.answer else {
 throw ExampleError.noAnswerReceived
 }
 return answer

 } catch {
 throw ExampleError.invokeError
 }

 }

 /// Perform the example's tasks.

Learn the basics 2163

AWS Lambda Developer Guide

 func basics() async throws {
 let iamClient = try await IAMClient(
 config: IAMClient.IAMClientConfiguration(region: region)
)

 let lambdaClient = try await LambdaClient(
 config: LambdaClient.LambdaClientConfiguration(region: region)
)

 /// The IAM role to use for the example.
 var iamRole: IAMClientTypes.Role

 // Look for the specified role. If it already exists, use it. If not,
 // create it and attach the desired policy to it.

 do {
 iamRole = try await getRole(iamClient: iamClient, roleName: role)
 } catch ExampleError.roleNotFound {
 // The role wasn't found, so create it and attach the needed
 // policy.

 iamRole = try await createRoleForLambda(iamClient: iamClient,
 roleName: role)

 do {
 _ = try await iamClient.attachRolePolicy(
 input: AttachRolePolicyInput(policyArn: policyARN, roleName:
 role)
)
 } catch {
 throw ExampleError.policyError
 }
 }

 // Give the policy time to attach to the role.

 sleep(5)

 // Look to see if the function already exists. If it does, throw an
 // error.

 if await doesLambdaFunctionExist(lambdaClient: lambdaClient, name:
 basicsFunctionName) {
 throw ExampleError.functionAlreadyExists

Learn the basics 2164

AWS Lambda Developer Guide

 }

 // Create, then invoke, the "increment" version of the calculator
 // function.

 print("Creating the increment Lambda function...")
 if try await createFunction(lambdaClient: lambdaClient, functionName:
 basicsFunctionName,
 roleArn: iamRole.arn, path: incpath) {
 print("Running increment function calls...")
 for number in 0...4 {
 do {
 let answer = try await invokeIncrement(lambdaClient:
 lambdaClient, number: number)
 print("Increment \(number) = \(answer)")
 } catch {
 print("Error incrementing \(number): ",
 error.localizedDescription)
 }
 }
 } else {
 print("*** Failed to create the increment function.")
 }

 // Enable debug logging.

 print("\nEnabling debug logging...")
 try await enableDebugLogging(lambdaClient: lambdaClient, functionName:
 basicsFunctionName)

 // Change it to a basic arithmetic calculator. Then invoke it a few
 // times.

 print("\nReplacing the Lambda function with a calculator...")

 if try await updateFunctionCode(lambdaClient: lambdaClient, functionName:
 basicsFunctionName,
 path: calcpath) {
 print("Running calculator function calls...")
 for x in [6, 10] {
 for y in [2, 4] {
 for action in ["plus", "minus", "times", "divided-by"] {
 do {

Learn the basics 2165

AWS Lambda Developer Guide

 let answer = try await invokeCalculator(lambdaClient:
 lambdaClient, action: action, x: x, y: y)
 print("\(x) \(action) \(y) = \(answer)")
 } catch {
 print("Error calculating \(x) \(action) \(y): ",
 error.localizedDescription)
 }
 }
 }
 }
 }

 // List all lambda functions.

 let functionNames = try await getFunctionNames(lambdaClient:
 lambdaClient)

 if functionNames.count > 0 {
 print("\nAWS Lambda functions available on your account:")
 for name in functionNames {
 print(" \(name)")
 }
 }

 // Delete the lambda function.

 print("Deleting lambda function...")

 do {
 _ = try await lambdaClient.deleteFunction(
 input: DeleteFunctionInput(
 functionName: "lambda-basics-function"
)
)
 } catch {
 print("Error: Unable to delete the function.")
 }

 // Detach the role from the policy, then delete the role.

 print("Deleting the AWS IAM role...")

 do {
 _ = try await iamClient.detachRolePolicy(

Learn the basics 2166

AWS Lambda Developer Guide

 input: DetachRolePolicyInput(
 policyArn: policyARN,
 roleName: role
)
)
 _ = try await iamClient.deleteRole(
 input: DeleteRoleInput(
 roleName: role
)
)
 } catch {
 throw ExampleError.deleteRoleError
 }
 }
}

// -MARK: - Entry point

/// The program's asynchronous entry point.
@main
struct Main {
 static func main() async {
 let args = Array(CommandLine.arguments.dropFirst())

 do {
 let command = try ExampleCommand.parse(args)
 try await command.basics()
 } catch {
 ExampleCommand.exit(withError: error)
 }
 }
}

/// Errors thrown by the example's functions.
enum ExampleError: Error {
 /// An AWS Lambda function with the specified name already exists.
 case functionAlreadyExists
 /// The specified role doesn't exist.
 case roleNotFound
 /// Unable to create the role.
 case roleCreateError
 /// Unable to delete the role.
 case deleteRoleError

Learn the basics 2167

AWS Lambda Developer Guide

 /// Unable to attach a policy to the role.
 case policyError
 /// Unable to get the executable directory.
 case executableNotFound
 /// An error occurred creating a lambda function.
 case createLambdaError
 /// An error occurred invoking the lambda function.
 case invokeError
 /// No answer received from the invocation.
 case noAnswerReceived
 /// Unable to list the AWS Lambda functions.
 case listFunctionsError
 /// Unable to update the AWS Lambda function.
 case updateFunctionError
 /// Unable to update the function configuration.
 case updateFunctionConfigurationError
 /// The environment response is missing after an
 /// UpdateEnvironmentConfiguration attempt.
 case environmentResponseMissingError
 /// The environment variables are missing from the EnvironmentResponse and
 /// no errors occurred.
 case environmentVariablesMissingError
 /// The log level is incorrect after attempting to set it.
 case logLevelIncorrectError
 /// Unable to load the AWS Lambda function's Zip file.
 case zipFileReadError

 var errorDescription: String? {
 switch self {
 case .functionAlreadyExists:
 return "An AWS Lambda function with that name already exists."
 case .roleNotFound:
 return "The specified role doesn't exist."
 case .deleteRoleError:
 return "Unable to delete the AWS IAM role."
 case .roleCreateError:
 return "Unable to create the specified role."
 case .policyError:
 return "An error occurred attaching the policy to the role."
 case .executableNotFound:
 return "Unable to find the executable program directory."
 case .createLambdaError:
 return "An error occurred creating a lambda function."
 case .invokeError:

Learn the basics 2168

AWS Lambda Developer Guide

 return "An error occurred invoking a lambda function."
 case .noAnswerReceived:
 return "No answer received from the lambda function."
 case .listFunctionsError:
 return "Unable to list the AWS Lambda functions."
 case .updateFunctionError:
 return "Unable to update the AWS lambda function."
 case .updateFunctionConfigurationError:
 return "Unable to update the AWS lambda function configuration."
 case .environmentResponseMissingError:
 return "The environment is missing from the response after updating
 the function configuration."
 case .environmentVariablesMissingError:
 return "While no error occurred, no environment variables were
 returned following function configuration."
 case .logLevelIncorrectError:
 return "The log level is incorrect after attempting to set it to
 DEBUG."
 case .zipFileReadError:
 return "Unable to read the AWS Lambda function."
 }
 }
}

• For API details, see the following topics in AWS SDK for Swift API reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Learn the basics 2169

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/createfunction(input:)
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/deletefunction(input:)
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/getfunction(input:)
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/invoke(input:)
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/listfunctions(input:)
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/updatefunctioncode(input:)
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/updatefunctionconfiguration(input:)

AWS Lambda Developer Guide

Actions for Lambda using AWS SDKs

The following code examples demonstrate how to perform individual Lambda actions with AWS
SDKs. Each example includes a link to GitHub, where you can find instructions for setting up and
running the code.

These excerpts call the Lambda API and are code excerpts from larger programs that must be run in
context. You can see actions in context in Scenarios for Lambda using AWS SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
AWS Lambda API Reference.

Examples

• Use CreateAlias with a CLI

• Use CreateFunction with an AWS SDK or CLI

• Use DeleteAlias with a CLI

• Use DeleteFunction with an AWS SDK or CLI

• Use DeleteFunctionConcurrency with a CLI

• Use DeleteProvisionedConcurrencyConfig with a CLI

• Use GetAccountSettings with a CLI

• Use GetAlias with a CLI

• Use GetFunction with an AWS SDK or CLI

• Use GetFunctionConcurrency with a CLI

• Use GetFunctionConfiguration with a CLI

• Use GetPolicy with a CLI

• Use GetProvisionedConcurrencyConfig with a CLI

• Use Invoke with an AWS SDK or CLI

• Use ListFunctions with an AWS SDK or CLI

• Use ListProvisionedConcurrencyConfigs with a CLI

• Use ListTags with a CLI

• Use ListVersionsByFunction with a CLI

• Use PublishVersion with a CLI

Actions 2170

https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html

AWS Lambda Developer Guide

• Use PutFunctionConcurrency with a CLI

• Use PutProvisionedConcurrencyConfig with a CLI

• Use RemovePermission with a CLI

• Use TagResource with a CLI

• Use UntagResource with a CLI

• Use UpdateAlias with a CLI

• Use UpdateFunctionCode with an AWS SDK or CLI

• Use UpdateFunctionConfiguration with an AWS SDK or CLI

Use CreateAlias with a CLI

The following code examples show how to use CreateAlias.

CLI

AWS CLI

To create an alias for a Lambda function

The following create-alias example creates an alias named LIVE that points to version 1
of the my-function Lambda function.

aws lambda create-alias \
 --function-name my-function \
 --description "alias for live version of function" \
 --function-version 1 \
 --name LIVE

Output:

{
 "FunctionVersion": "1",
 "Name": "LIVE",
 "AliasArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:LIVE",
 "RevisionId": "873282ed-4cd3-4dc8-a069-d0c647e470c6",
 "Description": "alias for live version of function"

Actions 2171

AWS Lambda Developer Guide

}

For more information, see Configuring AWS Lambda Function Aliases in the AWS Lambda
Developer Guide.

• For API details, see CreateAlias in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example creates a New Lambda Alias for specified version and routing
configuration to specify the percentage of invocation requests that it receives.

New-LMAlias -FunctionName "MylambdaFunction123" -
RoutingConfig_AdditionalVersionWeight @{Name="1";Value="0.6} -Description "Alias
 for version 4" -FunctionVersion 4 -Name "PowershellAlias"

• For API details, see CreateAlias in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example creates a New Lambda Alias for specified version and routing
configuration to specify the percentage of invocation requests that it receives.

New-LMAlias -FunctionName "MylambdaFunction123" -
RoutingConfig_AdditionalVersionWeight @{Name="1";Value="0.6} -Description "Alias
 for version 4" -FunctionVersion 4 -Name "PowershellAlias"

• For API details, see CreateAlias in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateFunction with an AWS SDK or CLI

The following code examples show how to use CreateFunction.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions 2172

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-alias.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Creates a new Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function.</param>
 /// <param name="s3Bucket">The Amazon Simple Storage Service (Amazon S3)
 /// bucket where the zip file containing the code is located.</param>
 /// <param name="s3Key">The Amazon S3 key of the zip file.</param>
 /// <param name="role">The Amazon Resource Name (ARN) of a role with the
 /// appropriate Lambda permissions.</param>
 /// <param name="handler">The name of the handler function.</param>
 /// <returns>The Amazon Resource Name (ARN) of the newly created
 /// Lambda function.</returns>
 public async Task<string> CreateLambdaFunctionAsync(
 string functionName,
 string s3Bucket,
 string s3Key,
 string role,
 string handler)
 {
 // Defines the location for the function code.
 // S3Bucket - The S3 bucket where the file containing
 // the source code is stored.
 // S3Key - The name of the file containing the code.
 var functionCode = new FunctionCode
 {
 S3Bucket = s3Bucket,
 S3Key = s3Key,
 };

 var createFunctionRequest = new CreateFunctionRequest

Actions 2173

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS Lambda Developer Guide

 {
 FunctionName = functionName,
 Description = "Created by the Lambda .NET API",
 Code = functionCode,
 Handler = handler,
 Runtime = Runtime.Dotnet6,
 Role = role,
 };

 var reponse = await
 _lambdaService.CreateFunctionAsync(createFunctionRequest);
 return reponse.FunctionArn;
 }

• For API details, see CreateFunction in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::CreateFunctionRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetDescription(LAMBDA_DESCRIPTION); // Optional.
#if USE_CPP_LAMBDA_FUNCTION
 request.SetRuntime(Aws::Lambda::Model::Runtime::provided_al2);
 request.SetTimeout(15);
 request.SetMemorySize(128);

Actions 2174

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/CreateFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

 // Assume the AWS Lambda function was built in Docker with same
 architecture
 // as this code.
#if defined(__x86_64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::x86_64});
#elif defined(__aarch64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::arm64});
#else
#error "Unimplemented architecture"
#endif // defined(architecture)
#else
 request.SetRuntime(Aws::Lambda::Model::Runtime::python3_9);
#endif
 request.SetRole(roleArn);
 request.SetHandler(LAMBDA_HANDLER_NAME);
 request.SetPublish(true);
 Aws::Lambda::Model::FunctionCode code;
 std::ifstream ifstream(INCREMENT_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();

 code.SetZipFile(Aws::Utils::ByteBuffer((unsigned char *)
 buffer.str().c_str(),
 buffer.str().length()));
 request.SetCode(code);

 Aws::Lambda::Model::CreateFunctionOutcome outcome =
 client.CreateFunction(

Actions 2175

AWS Lambda Developer Guide

 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda function was successfully created. " <<
 seconds
 << " seconds elapsed." << std::endl;
 break;
 }

 else {
 std::cerr << "Error with CreateFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 deleteIamRole(clientConfig);
 return false;
 }

• For API details, see CreateFunction in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create a Lambda function

The following create-function example creates a Lambda function named my-
function.

aws lambda create-function \
 --function-name my-function \
 --runtime nodejs18.x \
 --zip-file fileb://my-function.zip \
 --handler my-function.handler \
 --role arn:aws:iam::123456789012:role/service-role/MyTestFunction-role-
tges6bf4

Contents of my-function.zip:

This file is a deployment package that contains your function code and any
 dependencies.

Actions 2176

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/CreateFunction

AWS Lambda Developer Guide

Output:

{
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "PFn4S+er27qk+UuZSTKEQfNKG/XNn7QJs90mJgq6oH8=",
 "FunctionName": "my-function",
 "CodeSize": 308,
 "RevisionId": "873282ed-4cd3-4dc8-a069-d0c647e470c6",
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "Version": "$LATEST",
 "Role": "arn:aws:iam::123456789012:role/service-role/MyTestFunction-role-
zgur6bf4",
 "Timeout": 3,
 "LastModified": "2023-10-14T22:26:11.234+0000",
 "Handler": "my-function.handler",
 "Runtime": "nodejs18.x",
 "Description": ""
}

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

• For API details, see CreateFunction in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "bytes"
 "context"
 "encoding/json"

Actions 2177

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// CreateFunction creates a new Lambda function from code contained in the
 zipPackage
// buffer. The specified handlerName must match the name of the file and function
// contained in the uploaded code. The role specified by iamRoleArn is assumed by
// Lambda and grants specific permissions.
// When the function already exists, types.StateActive is returned.
// When the function is created, a lambda.FunctionActiveV2Waiter is used to wait
 until the
// function is active.
func (wrapper FunctionWrapper) CreateFunction(ctx context.Context, functionName
 string, handlerName string,
 iamRoleArn *string, zipPackage *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.CreateFunction(ctx, &lambda.CreateFunctionInput{
 Code: &types.FunctionCode{ZipFile: zipPackage.Bytes()},
 FunctionName: aws.String(functionName),
 Role: iamRoleArn,
 Handler: aws.String(handlerName),
 Publish: true,
 Runtime: types.RuntimePython39,
 })
 if err != nil {
 var resConflict *types.ResourceConflictException
 if errors.As(err, &resConflict) {
 log.Printf("Function %v already exists.\n", functionName)
 state = types.StateActive
 } else {

Actions 2178

AWS Lambda Developer Guide

 log.Panicf("Couldn't create function %v. Here's why: %v\n", functionName, err)
 }
 } else {
 waiter := lambda.NewFunctionActiveV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(ctx, &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

• For API details, see CreateFunction in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Creates a new Lambda function in AWS using the AWS Lambda Java API.
 *
 * @param awsLambda the AWS Lambda client used to interact with the AWS
 Lambda service
 * @param functionName the name of the Lambda function to create
 * @param key the S3 key of the function code
 * @param bucketName the name of the S3 bucket containing the function code
 * @param role the IAM role to assign to the Lambda function
 * @param handler the fully qualified class name of the function handler
 * @return the Amazon Resource Name (ARN) of the created Lambda function
 */

Actions 2179

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.CreateFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

 public static String createLambdaFunction(LambdaClient awsLambda,
 String functionName,
 String key,
 String bucketName,
 String role,
 String handler) {

 try {
 LambdaWaiter waiter = awsLambda.waiter();
 FunctionCode code = FunctionCode.builder()
 .s3Key(key)
 .s3Bucket(bucketName)
 .build();

 CreateFunctionRequest functionRequest =
 CreateFunctionRequest.builder()
 .functionName(functionName)
 .description("Created by the Lambda Java API")
 .code(code)
 .handler(handler)
 .runtime(Runtime.JAVA17)
 .role(role)
 .build();

 // Create a Lambda function using a waiter
 CreateFunctionResponse functionResponse =
 awsLambda.createFunction(functionRequest);
 GetFunctionRequest getFunctionRequest = GetFunctionRequest.builder()
 .functionName(functionName)
 .build();
 WaiterResponse<GetFunctionResponse> waiterResponse =
 waiter.waitUntilFunctionExists(getFunctionRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 return functionResponse.functionArn();

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }

• For API details, see CreateFunction in AWS SDK for Java 2.x API Reference.

Actions 2180

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/CreateFunction

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const createFunction = async (funcName, roleArn) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${funcName}.zip`);

 const command = new CreateFunctionCommand({
 Code: { ZipFile: code },
 FunctionName: funcName,
 Role: roleArn,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

• For API details, see CreateFunction in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2181

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/CreateFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples

AWS Lambda Developer Guide

suspend fun createNewFunction(
 myFunctionName: String,
 s3BucketName: String,
 myS3Key: String,
 myHandler: String,
 myRole: String,
): String? {
 val functionCode =
 FunctionCode {
 s3Bucket = s3BucketName
 s3Key = myS3Key
 }

 val request =
 CreateFunctionRequest {
 functionName = myFunctionName
 code = functionCode
 description = "Created by the Lambda Kotlin API"
 handler = myHandler
 role = myRole
 runtime = Runtime.Java17
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 val functionResponse = awsLambda.createFunction(request)
 awsLambda.waitUntilFunctionActive {
 functionName = myFunctionName
 }
 return functionResponse.functionArn
 }
}

• For API details, see CreateFunction in AWS SDK for Kotlin API reference.

Actions 2182

https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function createFunction($functionName, $role, $bucketName, $handler)
 {
 //This assumes the Lambda function is in an S3 bucket.
 return $this->customWaiter(function () use ($functionName, $role,
 $bucketName, $handler) {
 return $this->lambdaClient->createFunction([
 'Code' => [
 'S3Bucket' => $bucketName,
 'S3Key' => $functionName,
],
 'FunctionName' => $functionName,
 'Role' => $role['Arn'],
 'Runtime' => 'python3.9',
 'Handler' => "$handler.lambda_handler",
]);
 });
 }

• For API details, see CreateFunction in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example creates a new C# (dotnetcore1.0 runtime) function named
MyFunction in AWS Lambda, providing the compiled binaries for the function
from a zip file on the local file system (relative or absolute paths may be used).
C# Lambda functions specify the handler for the function using the designation
AssemblyName::Namespace.ClassName::MethodName. You should replace the assembly
name (without .dll suffix), namespace, class name and method name parts of the handler

Actions 2183

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/CreateFunction

AWS Lambda Developer Guide

spec appropriately. The new function will have environment variables 'envvar1' and
'envvar2' set up from the provided values.

Publish-LMFunction -Description "My C# Lambda Function" `
 -FunctionName MyFunction `
 -ZipFilename .\MyFunctionBinaries.zip `
 -Handler "AssemblyName::Namespace.ClassName::MethodName" `
 -Role "arn:aws:iam::123456789012:role/LambdaFullExecRole" `
 -Runtime dotnetcore1.0 `
 -Environment_Variable @{ "envvar1"="value";"envvar2"="value" }

Output:

CodeSha256 : /NgBMd...gq71I=
CodeSize : 214784
DeadLetterConfig :
Description : My C# Lambda Function
Environment : Amazon.Lambda.Model.EnvironmentResponse
FunctionArn : arn:aws:lambda:us-west-2:123456789012:function:ToUpper
FunctionName : MyFunction
Handler : AssemblyName::Namespace.ClassName::MethodName
KMSKeyArn :
LastModified : 2016-12-29T23:50:14.207+0000
MemorySize : 128
Role : arn:aws:iam::123456789012:role/LambdaFullExecRole
Runtime : dotnetcore1.0
Timeout : 3
Version : $LATEST
VpcConfig :

Example 2: This example is similar to the previous one except the function binaries
are first uploaded to an Amazon S3 bucket (which must be in the same region as the
intended Lambda function) and the resulting S3 object is then referenced when creating
the function.

Write-S3Object -BucketName amzn-s3-demo-bucket -Key MyFunctionBinaries.zip -
File .\MyFunctionBinaries.zip
Publish-LMFunction -Description "My C# Lambda Function" `
 -FunctionName MyFunction `
 -BucketName amzn-s3-demo-bucket `
 -Key MyFunctionBinaries.zip `
 -Handler "AssemblyName::Namespace.ClassName::MethodName" `

Actions 2184

AWS Lambda Developer Guide

 -Role "arn:aws:iam::123456789012:role/LambdaFullExecRole" `
 -Runtime dotnetcore1.0 `
 -Environment_Variable @{ "envvar1"="value";"envvar2"="value" }

• For API details, see CreateFunction in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example creates a new C# (dotnetcore1.0 runtime) function named
MyFunction in AWS Lambda, providing the compiled binaries for the function
from a zip file on the local file system (relative or absolute paths may be used).
C# Lambda functions specify the handler for the function using the designation
AssemblyName::Namespace.ClassName::MethodName. You should replace the assembly
name (without .dll suffix), namespace, class name and method name parts of the handler
spec appropriately. The new function will have environment variables 'envvar1' and
'envvar2' set up from the provided values.

Publish-LMFunction -Description "My C# Lambda Function" `
 -FunctionName MyFunction `
 -ZipFilename .\MyFunctionBinaries.zip `
 -Handler "AssemblyName::Namespace.ClassName::MethodName" `
 -Role "arn:aws:iam::123456789012:role/LambdaFullExecRole" `
 -Runtime dotnetcore1.0 `
 -Environment_Variable @{ "envvar1"="value";"envvar2"="value" }

Output:

CodeSha256 : /NgBMd...gq71I=
CodeSize : 214784
DeadLetterConfig :
Description : My C# Lambda Function
Environment : Amazon.Lambda.Model.EnvironmentResponse
FunctionArn : arn:aws:lambda:us-west-2:123456789012:function:ToUpper
FunctionName : MyFunction
Handler : AssemblyName::Namespace.ClassName::MethodName
KMSKeyArn :
LastModified : 2016-12-29T23:50:14.207+0000
MemorySize : 128
Role : arn:aws:iam::123456789012:role/LambdaFullExecRole
Runtime : dotnetcore1.0
Timeout : 3
Version : $LATEST

Actions 2185

https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

VpcConfig :

Example 2: This example is similar to the previous one except the function binaries
are first uploaded to an Amazon S3 bucket (which must be in the same region as the
intended Lambda function) and the resulting S3 object is then referenced when creating
the function.

Write-S3Object -BucketName amzn-s3-demo-bucket -Key MyFunctionBinaries.zip -
File .\MyFunctionBinaries.zip
Publish-LMFunction -Description "My C# Lambda Function" `
 -FunctionName MyFunction `
 -BucketName amzn-s3-demo-bucket `
 -Key MyFunctionBinaries.zip `
 -Handler "AssemblyName::Namespace.ClassName::MethodName" `
 -Role "arn:aws:iam::123456789012:role/LambdaFullExecRole" `
 -Runtime dotnetcore1.0 `
 -Environment_Variable @{ "envvar1"="value";"envvar2"="value" }

• For API details, see CreateFunction in AWS Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def create_function(
 self, function_name, handler_name, iam_role, deployment_package
):
 """

Actions 2186

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

 Deploys a Lambda function.

 :param function_name: The name of the Lambda function.
 :param handler_name: The fully qualified name of the handler function.
 This
 must include the file name and the function name.
 :param iam_role: The IAM role to use for the function.
 :param deployment_package: The deployment package that contains the
 function
 code in .zip format.
 :return: The Amazon Resource Name (ARN) of the newly created function.
 """
 try:
 response = self.lambda_client.create_function(
 FunctionName=function_name,
 Description="AWS Lambda doc example",
 Runtime="python3.9",
 Role=iam_role.arn,
 Handler=handler_name,
 Code={"ZipFile": deployment_package},
 Publish=True,
)
 function_arn = response["FunctionArn"]
 waiter = self.lambda_client.get_waiter("function_active_v2")
 waiter.wait(FunctionName=function_name)
 logger.info(
 "Created function '%s' with ARN: '%s'.",
 function_name,
 response["FunctionArn"],
)
 except ClientError:
 logger.error("Couldn't create function %s.", function_name)
 raise
 else:
 return function_arn

• For API details, see CreateFunction in AWS SDK for Python (Boto3) API Reference.

Actions 2187

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/CreateFunction

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Deploys a Lambda function.
 #
 # @param function_name: The name of the Lambda function.
 # @param handler_name: The fully qualified name of the handler function.
 # @param role_arn: The IAM role to use for the function.
 # @param deployment_package: The deployment package that contains the function
 code in .zip format.
 # @return: The Amazon Resource Name (ARN) of the newly created function.
 def create_function(function_name, handler_name, role_arn, deployment_package)
 response = @lambda_client.create_function({
 role: role_arn.to_s,
 function_name: function_name,
 handler: handler_name,
 runtime: 'ruby2.7',
 code: {
 zip_file: deployment_package
 },
 environment: {
 variables: {
 'LOG_LEVEL' => 'info'
 }

Actions 2188

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

 }
 })
 @lambda_client.wait_until(:function_active_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 response
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

• For API details, see CreateFunction in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Create a function, uploading from a zip file.
 */
 pub async fn create_function(&self, zip_file: PathBuf) -> Result<String,
 anyhow::Error> {
 let code = self.prepare_function(zip_file, None).await?;

 let key = code.s3_key().unwrap().to_string();

 let role = self.create_role().await.map_err(|e| anyhow!(e))?;

 info!("Created iam role, waiting 15s for it to become active");
 tokio::time::sleep(Duration::from_secs(15)).await;

Actions 2189

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/CreateFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

AWS Lambda Developer Guide

 info!("Creating lambda function {}", self.lambda_name);
 let _ = self
 .lambda_client
 .create_function()
 .function_name(self.lambda_name.clone())
 .code(code)
 .role(role.arn())
 .runtime(aws_sdk_lambda::types::Runtime::Providedal2)
 .handler("_unused")
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 self.lambda_client
 .publish_version()
 .function_name(self.lambda_name.clone())
 .send()
 .await?;

 Ok(key)
 }

 /**
 * Upload function code from a path to a zip file.
 * The zip file must have an AL2 Linux-compatible binary called `bootstrap`.
 * The easiest way to create such a zip is to use `cargo lambda build --
output-format Zip`.
 */
 async fn prepare_function(
 &self,
 zip_file: PathBuf,
 key: Option<String>,
) -> Result<FunctionCode, anyhow::Error> {
 let body = ByteStream::from_path(zip_file).await?;

 let key = key.unwrap_or_else(|| format!("{}_code", self.lambda_name));

 info!("Uploading function code to s3://{}/{}", self.bucket, key);
 let _ = self
 .s3_client
 .put_object()
 .bucket(self.bucket.clone())

Actions 2190

AWS Lambda Developer Guide

 .key(key.clone())
 .body(body)
 .send()
 .await?;

 Ok(FunctionCode::builder()
 .s3_bucket(self.bucket.clone())
 .s3_key(key)
 .build())
 }

• For API details, see CreateFunction in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_lmd->createfunction(
 iv_functionname = iv_function_name
 iv_runtime = `python3.9`
 iv_role = iv_role_arn
 iv_handler = iv_handler
 io_code = io_zip_file
 iv_description = 'AWS Lambda code example').
 MESSAGE 'Lambda function created.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodesigningcfgno00.
 MESSAGE 'Code signing configuration does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodeverification00.
 MESSAGE 'Code signature failed one or more validation checks for
 signature mismatch or expiration.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidcodesigex.
 MESSAGE 'Code signature failed the integrity check.' TYPE 'E'.

Actions 2191

https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.create_function
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see CreateFunction in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

 do {
 // Read the Zip archive containing the AWS Lambda function.

 let zipUrl = URL(fileURLWithPath: path)
 let zipData = try Data(contentsOf: zipUrl)

 // Create the AWS Lambda function that runs the specified code,
 // using the name given on the command line. The Lambda function
 // will run using the Amazon Linux 2 runtime.

 _ = try await lambdaClient.createFunction(

Actions 2192

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 input: CreateFunctionInput(
 code: LambdaClientTypes.FunctionCode(zipFile: zipData),
 functionName: functionName,
 handler: "handle",
 role: roleArn,
 runtime: .providedal2
)
)
 } catch {
 print("*** Error creating Lambda function:")
 dump(error)
 return false
 }

• For API details, see CreateFunction in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteAlias with a CLI

The following code examples show how to use DeleteAlias.

CLI

AWS CLI

To delete an alias of a Lambda function

The following delete-alias example deletes the alias named LIVE from the my-
function Lambda function.

aws lambda delete-alias \
 --function-name my-function \
 --name LIVE

This command produces no output.

For more information, see Configuring AWS Lambda Function Aliases in the AWS Lambda
Developer Guide.

Actions 2193

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/createfunction(input:)
https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html

AWS Lambda Developer Guide

• For API details, see DeleteAlias in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example deletes the Lambda function Alias mentioned in the command.

Remove-LMAlias -FunctionName "MylambdaFunction123" -Name "NewAlias"

• For API details, see DeleteAlias in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example deletes the Lambda function Alias mentioned in the command.

Remove-LMAlias -FunctionName "MylambdaFunction123" -Name "NewAlias"

• For API details, see DeleteAlias in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteFunction with an AWS SDK or CLI

The following code examples show how to use DeleteFunction.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 2194

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-alias.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete an AWS Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// delete.</param>
 /// <returns>A Boolean value that indicates the success of the action.</
returns>
 public async Task<bool> DeleteFunctionAsync(string functionName)
 {
 var request = new DeleteFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.DeleteFunctionAsync(request);

 // A return value of NoContent means that the request was processed.
 // In this case, the function was deleted, and the return value
 // is intentionally blank.
 return response.HttpStatusCode == System.Net.HttpStatusCode.NoContent;
 }

• For API details, see DeleteFunction in AWS SDK for .NET API Reference.

Actions 2195

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/DeleteFunction

AWS Lambda Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::DeleteFunctionRequest request;
 request.SetFunctionName(LAMBDA_NAME);

 Aws::Lambda::Model::DeleteFunctionOutcome outcome = client.DeleteFunction(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda function was successfully deleted." <<
 std::endl;
 }
 else {
 std::cerr << "Error with Lambda::DeleteFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see DeleteFunction in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To delete a Lambda function by function name

Actions 2196

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/DeleteFunction

AWS Lambda Developer Guide

The following delete-function example deletes the Lambda function named my-
function by specifying the function's name.

aws lambda delete-function \
 --function-name my-function

This command produces no output.

Example 2: To delete a Lambda function by function ARN

The following delete-function example deletes the Lambda function named my-
function by specifying the function's ARN.

aws lambda delete-function \
 --function-name arn:aws:lambda:us-west-2:123456789012:function:my-function

This command produces no output.

Example 3: To delete a Lambda function by partial function ARN

The following delete-function example deletes the Lambda function named my-
function by specifying the function's partial ARN.

aws lambda delete-function \
 --function-name 123456789012:function:my-function

This command produces no output.

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

• For API details, see DeleteFunction in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2197

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// DeleteFunction deletes the Lambda function specified by functionName.
func (wrapper FunctionWrapper) DeleteFunction(ctx context.Context, functionName
 string) {
 _, err := wrapper.LambdaClient.DeleteFunction(ctx, &lambda.DeleteFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't delete function %v. Here's why: %v\n", functionName, err)
 }
}

• For API details, see DeleteFunction in AWS SDK for Go API Reference.

Actions 2198

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.DeleteFunction

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Deletes an AWS Lambda function.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which
 is used to interact with the AWS Lambda service
 * @param functionName the name of the Lambda function to be deleted
 *
 * @throws LambdaException if an error occurs while deleting the Lambda
 function
 */
 public static void deleteLambdaFunction(LambdaClient awsLambda, String
 functionName) {
 try {
 DeleteFunctionRequest request = DeleteFunctionRequest.builder()
 .functionName(functionName)
 .build();

 awsLambda.deleteFunction(request);
 System.out.println("The " + functionName + " function was deleted");

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteFunction in AWS SDK for Java 2.x API Reference.

Actions 2199

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/DeleteFunction

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 * @param {string} funcName
 */
const deleteFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new DeleteFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• For API details, see DeleteFunction in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun delLambdaFunction(myFunctionName: String) {
 val request =
 DeleteFunctionRequest {
 functionName = myFunctionName
 }

 LambdaClient { region = "us-east-1" }.use { awsLambda ->
 awsLambda.deleteFunction(request)

Actions 2200

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/DeleteFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples

AWS Lambda Developer Guide

 println("$myFunctionName was deleted")
 }
}

• For API details, see DeleteFunction in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function deleteFunction($functionName)
 {
 return $this->lambdaClient->deleteFunction([
 'FunctionName' => $functionName,
]);
 }

• For API details, see DeleteFunction in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example deletes a specific version of a Lambda function

Remove-LMFunction -FunctionName "MylambdaFunction123" -Qualifier '3'

• For API details, see DeleteFunction in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example deletes a specific version of a Lambda function

Actions 2201

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

Remove-LMFunction -FunctionName "MylambdaFunction123" -Qualifier '3'

• For API details, see DeleteFunction in AWS Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def delete_function(self, function_name):
 """
 Deletes a Lambda function.

 :param function_name: The name of the function to delete.
 """
 try:
 self.lambda_client.delete_function(FunctionName=function_name)
 except ClientError:
 logger.exception("Couldn't delete function %s.", function_name)
 raise

• For API details, see DeleteFunction in AWS SDK for Python (Boto3) API Reference.

Actions 2202

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/DeleteFunction

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Deletes a Lambda function.
 # @param function_name: The name of the function to delete.
 def delete_function(function_name)
 print "Deleting function: #{function_name}..."
 @lambda_client.delete_function(
 function_name: function_name
)
 print 'Done!'.green
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error deleting #{function_name}:\n #{e.message}")
 end

• For API details, see DeleteFunction in AWS SDK for Ruby API Reference.

Actions 2203

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/DeleteFunction

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /** Delete a function and its role, and if possible or necessary, its
 associated code object and bucket. */
 pub async fn delete_function(
 &self,
 location: Option<String>,
) -> (
 Result<DeleteFunctionOutput, anyhow::Error>,
 Result<DeleteRoleOutput, anyhow::Error>,
 Option<Result<DeleteObjectOutput, anyhow::Error>>,
) {
 info!("Deleting lambda function {}", self.lambda_name);
 let delete_function = self
 .lambda_client
 .delete_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from);

 info!("Deleting iam role {}", self.role_name);
 let delete_role = self
 .iam_client
 .delete_role()
 .role_name(self.role_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from);

 let delete_object: Option<Result<DeleteObjectOutput, anyhow::Error>> =
 if let Some(location) = location {
 info!("Deleting object {location}");
 Some(

Actions 2204

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

AWS Lambda Developer Guide

 self.s3_client
 .delete_object()
 .bucket(self.bucket.clone())
 .key(location)
 .send()
 .await
 .map_err(anyhow::Error::from),
)
 } else {
 info!(?location, "Skipping delete object");
 None
 };

 (delete_function, delete_role, delete_object)
 }

• For API details, see DeleteFunction in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_lmd->deletefunction(iv_functionname = iv_function_name).
 MESSAGE 'Lambda function deleted.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.

Actions 2205

https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.delete_function
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see DeleteFunction in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

 do {
 _ = try await lambdaClient.deleteFunction(
 input: DeleteFunctionInput(
 functionName: "lambda-basics-function"
)
)
 } catch {
 print("Error: Unable to delete the function.")
 }

• For API details, see DeleteFunction in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 2206

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples
https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/deletefunction(input:)

AWS Lambda Developer Guide

Use DeleteFunctionConcurrency with a CLI

The following code examples show how to use DeleteFunctionConcurrency.

CLI

AWS CLI

To remove the reserved concurrent execution limit from a function

The following delete-function-concurrency example deletes the reserved concurrent
execution limit from the my-function function.

aws lambda delete-function-concurrency \
 --function-name my-function

This command produces no output.

For more information, see Reserving Concurrency for a Lambda Function in the AWS Lambda
Developer Guide.

• For API details, see DeleteFunctionConcurrency in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This examples removes the Function Concurrency of the Lambda Function.

Remove-LMFunctionConcurrency -FunctionName "MylambdaFunction123"

• For API details, see DeleteFunctionConcurrency in AWS Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This examples removes the Function Concurrency of the Lambda Function.

Remove-LMFunctionConcurrency -FunctionName "MylambdaFunction123"

• For API details, see DeleteFunctionConcurrency in AWS Tools for PowerShell Cmdlet
Reference (V5).

Actions 2207

https://docs.aws.amazon.com/lambda/latest/dg/per-function-concurrency.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function-concurrency.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteProvisionedConcurrencyConfig with a CLI

The following code examples show how to use DeleteProvisionedConcurrencyConfig.

CLI

AWS CLI

To delete a provisioned concurrency configuration

The following delete-provisioned-concurrency-config example deletes the
provisioned concurrency configuration for the GREEN alias of the specified function.

aws lambda delete-provisioned-concurrency-config \
 --function-name my-function \
 --qualifier GREEN

• For API details, see DeleteProvisionedConcurrencyConfig in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example removes the Provisioned Concurrency Configuration for a
specific Alias.

Remove-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
Qualifier "NewAlias1"

• For API details, see DeleteProvisionedConcurrencyConfig in AWS Tools for PowerShell
Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example removes the Provisioned Concurrency Configuration for a
specific Alias.

Actions 2208

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-provisioned-concurrency-config.html
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

Remove-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
Qualifier "NewAlias1"

• For API details, see DeleteProvisionedConcurrencyConfig in AWS Tools for PowerShell
Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetAccountSettings with a CLI

The following code examples show how to use GetAccountSettings.

CLI

AWS CLI

To retrieve details about your account in an AWS Region

The following get-account-settings example displays the Lambda limits and usage
information for your account.

aws lambda get-account-settings

Output:

{
 "AccountLimit": {
 "CodeSizeUnzipped": 262144000,
 "UnreservedConcurrentExecutions": 1000,
 "ConcurrentExecutions": 1000,
 "CodeSizeZipped": 52428800,
 "TotalCodeSize": 80530636800
 },
 "AccountUsage": {
 "FunctionCount": 4,
 "TotalCodeSize": 9426
 }
}

Actions 2209

https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

For more information, see AWS Lambda Limits in the AWS Lambda Developer Guide.

• For API details, see GetAccountSettings in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This sample displays to compare the Account Limit and Account Usage

Get-LMAccountSetting | Select-Object
 @{Name="TotalCodeSizeLimit";Expression={$_.AccountLimit.TotalCodeSize}},
 @{Name="TotalCodeSizeUsed";Expression={$_.AccountUsage.TotalCodeSize}}

Output:

TotalCodeSizeLimit TotalCodeSizeUsed
------------------ -----------------
 80530636800 15078795

• For API details, see GetAccountSettings in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This sample displays to compare the Account Limit and Account Usage

Get-LMAccountSetting | Select-Object
 @{Name="TotalCodeSizeLimit";Expression={$_.AccountLimit.TotalCodeSize}},
 @{Name="TotalCodeSizeUsed";Expression={$_.AccountUsage.TotalCodeSize}}

Output:

TotalCodeSizeLimit TotalCodeSizeUsed
------------------ -----------------
 80530636800 15078795

• For API details, see GetAccountSettings in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 2210

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-account-settings.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

Use GetAlias with a CLI

The following code examples show how to use GetAlias.

CLI

AWS CLI

To retrieve details about a function alias

The following get-alias example displays details for the alias named LIVE on the my-
function Lambda function.

aws lambda get-alias \
 --function-name my-function \
 --name LIVE

Output:

{
 "FunctionVersion": "3",
 "Name": "LIVE",
 "AliasArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:LIVE",
 "RevisionId": "594f41fb-b85f-4c20-95c7-6ca5f2a92c93",
 "Description": "alias for live version of function"
}

For more information, see Configuring AWS Lambda Function Aliases in the AWS Lambda
Developer Guide.

• For API details, see GetAlias in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example retrieves the Routing Config weights for a specific Lambda
Function Alias.

Get-LMAlias -FunctionName "MylambdaFunction123" -Name "newlabel1" -Select
 RoutingConfig

Actions 2211

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-alias.html

AWS Lambda Developer Guide

Output:

AdditionalVersionWeights

{[1, 0.6]}

• For API details, see GetAlias in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example retrieves the Routing Config weights for a specific Lambda
Function Alias.

Get-LMAlias -FunctionName "MylambdaFunction123" -Name "newlabel1" -Select
 RoutingConfig

Output:

AdditionalVersionWeights

{[1, 0.6]}

• For API details, see GetAlias in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetFunction with an AWS SDK or CLI

The following code examples show how to use GetFunction.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 2212

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Gets information about a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function for
 /// which to retrieve information.</param>
 /// <returns>Async Task.</returns>
 public async Task<FunctionConfiguration> GetFunctionAsync(string
 functionName)
 {
 var functionRequest = new GetFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.GetFunctionAsync(functionRequest);
 return response.Configuration;
 }

• For API details, see GetFunction in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2213

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::GetFunctionRequest request;
 request.SetFunctionName(functionName);

 Aws::Lambda::Model::GetFunctionOutcome outcome =
 client.GetFunction(request);

 if (outcome.IsSuccess()) {
 std::cout << "Function retrieve.\n" <<

 outcome.GetResult().GetConfiguration().Jsonize().View().WriteReadable()
 << std::endl;
 }
 else {
 std::cerr << "Error with Lambda::GetFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see GetFunction in AWS SDK for C++ API Reference.

CLI

AWS CLI

To retrieve information about a function

The following get-function example displays information about the my-function
function.

aws lambda get-function \
 --function-name my-function

Output:

Actions 2214

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/GetFunction

AWS Lambda Developer Guide

{
 "Concurrency": {
 "ReservedConcurrentExecutions": 100
 },
 "Code": {
 "RepositoryType": "S3",
 "Location": "https://awslambda-us-west-2-tasks.s3.us-
west-2.amazonaws.com/snapshots/123456789012/my-function..."
 },
 "Configuration": {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "5tT2qgzYUHoqwR616pZ2dpkn/0J1FrzJmlKidWaaCgk=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 128,
 "RevisionId": "28f0fb31-5c5c-43d3-8955-03e76c5c1075",
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/helloWorldPython-
role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-09-24T18:20:35.054+0000",
 "Runtime": "nodejs10.x",
 "Description": ""
 }
}

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

• For API details, see GetFunction in AWS CLI Command Reference.

Actions 2215

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function.html

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// GetFunction gets data about the Lambda function specified by functionName.
func (wrapper FunctionWrapper) GetFunction(ctx context.Context, functionName
 string) types.State {
 var state types.State
 funcOutput, err := wrapper.LambdaClient.GetFunction(ctx,
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't get function %v. Here's why: %v\n", functionName, err)

Actions 2216

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

 } else {
 state = funcOutput.Configuration.State
 }
 return state
}

• For API details, see GetFunction in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Retrieves information about an AWS Lambda function.
 *
 * @param awsLambda an instance of the {@link LambdaClient} class, which
 is used to interact with the AWS Lambda service
 * @param functionName the name of the AWS Lambda function to retrieve
 information about
 */
 public static void getFunction(LambdaClient awsLambda, String functionName) {
 try {
 GetFunctionRequest functionRequest = GetFunctionRequest.builder()
 .functionName(functionName)
 .build();

 GetFunctionResponse response =
 awsLambda.getFunction(functionRequest);
 System.out.println("The runtime of this Lambda function is " +
 response.configuration().runtime());

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Actions 2217

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

 }
 }

• For API details, see GetFunction in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const getFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new GetFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• For API details, see GetFunction in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function getFunction($functionName)
 {
 return $this->lambdaClient->getFunction([

Actions 2218

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/GetFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples

AWS Lambda Developer Guide

 'FunctionName' => $functionName,
]);
 }

• For API details, see GetFunction in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def get_function(self, function_name):
 """
 Gets data about a Lambda function.

 :param function_name: The name of the function.
 :return: The function data.
 """
 response = None
 try:
 response =
 self.lambda_client.get_function(FunctionName=function_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Function %s does not exist.", function_name)
 else:
 logger.error(
 "Couldn't get function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],

Actions 2219

https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

 err.response["Error"]["Message"],
)
 raise
 return response

• For API details, see GetFunction in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Gets data about a Lambda function.
 #
 # @param function_name: The name of the function.
 # @return response: The function data, or nil if no such function exists.
 def get_function(function_name)
 @lambda_client.get_function(
 {
 function_name: function_name
 }
)
 rescue Aws::Lambda::Errors::ResourceNotFoundException => e
 @logger.debug("Could not find function: #{function_name}:\n #{e.message}")

Actions 2220

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

 nil
 end

• For API details, see GetFunction in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /** Get the Lambda function with this Manager's name. */
 pub async fn get_function(&self) -> Result<GetFunctionOutput, anyhow::Error>
 {
 info!("Getting lambda function");
 self.lambda_client
 .get_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

• For API details, see GetFunction in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2221

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.get_function
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 TRY.
 oo_result = lo_lmd->getfunction(iv_functionname = iv_function_name).
 " oo_result is returned for testing purposes. "
 MESSAGE 'Lambda function information retrieved.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see GetFunction in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

 /// Detect whether or not the AWS Lambda function with the specified name
 /// exists, by requesting its function information.
 ///
 /// - Parameters:
 /// - lambdaClient: The `LambdaClient` to use.
 /// - name: The name of the AWS Lambda function to find.
 ///
 /// - Returns: `true` if the Lambda function exists. Otherwise `false`.
 func doesLambdaFunctionExist(lambdaClient: LambdaClient, name: String) async
 -> Bool {
 do {

Actions 2222

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 _ = try await lambdaClient.getFunction(
 input: GetFunctionInput(functionName: name)
)
 } catch {
 return false
 }

 return true
 }

• For API details, see GetFunction in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetFunctionConcurrency with a CLI

The following code examples show how to use GetFunctionConcurrency.

CLI

AWS CLI

To view the reserved concurrency setting for a function

The following get-function-concurrency example retrieves the reserved concurrency
setting for the specified function.

aws lambda get-function-concurrency \
 --function-name my-function

Output:

{
 "ReservedConcurrentExecutions": 250
}

• For API details, see GetFunctionConcurrency in AWS CLI Command Reference.

Actions 2223

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/getfunction(input:)
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-concurrency.html

AWS Lambda Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This examples gets the Reserved concurrency for the Lambda Function

Get-LMFunctionConcurrency -FunctionName "MylambdaFunction123" -Select *

Output:

ReservedConcurrentExecutions

100

• For API details, see GetFunctionConcurrency in AWS Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: This examples gets the Reserved concurrency for the Lambda Function

Get-LMFunctionConcurrency -FunctionName "MylambdaFunction123" -Select *

Output:

ReservedConcurrentExecutions

100

• For API details, see GetFunctionConcurrency in AWS Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetFunctionConfiguration with a CLI

The following code examples show how to use GetFunctionConfiguration.

Actions 2224

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

CLI

AWS CLI

To retrieve the version-specific settings of a Lambda function

The following get-function-configuration example displays the settings for version 2
of the my-function function.

aws lambda get-function-configuration \
 --function-name my-function:2

Output:

{
 "FunctionName": "my-function",
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "RevisionId": "e52502d4-9320-4688-9cd6-152a6ab7490d",
 "MemorySize": 256,
 "Version": "2",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-function-role-
uy3l9qyq",
 "Timeout": 3,
 "Runtime": "nodejs10.x",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "5tT2qgzYUHaqwR716pZ2dpkn/0J1FrzJmlKidWoaCgk=",
 "Description": "",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:2",
 "Handler": "index.handler"
}

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

Actions 2225

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

AWS Lambda Developer Guide

• For API details, see GetFunctionConfiguration in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example returns the version specific configuration of a Lambda Function.

Get-LMFunctionConfiguration -FunctionName "MylambdaFunction123" -Qualifier
 "PowershellAlias"

Output:

CodeSha256 : uWOW0R7z+f0VyLuUg7+/D08hkMFsq0SF4seuyUZJ/R8=
CodeSize : 1426
DeadLetterConfig : Amazon.Lambda.Model.DeadLetterConfig
Description : Verson 3 to test Aliases
Environment : Amazon.Lambda.Model.EnvironmentResponse
FunctionArn : arn:aws:lambda:us-
east-1:123456789012:function:MylambdaFunction123
 :PowershellAlias
FunctionName : MylambdaFunction123
Handler : lambda_function.launch_instance
KMSKeyArn :
LastModified : 2019-12-25T09:52:59.872+0000
LastUpdateStatus : Successful
LastUpdateStatusReason :
LastUpdateStatusReasonCode :
Layers : {}
MasterArn :
MemorySize : 128
RevisionId : 5d7de38b-87f2-4260-8f8a-e87280e10c33
Role : arn:aws:iam::123456789012:role/service-role/lambda
Runtime : python3.8
State : Active
StateReason :
StateReasonCode :
Timeout : 600
TracingConfig : Amazon.Lambda.Model.TracingConfigResponse
Version : 4
VpcConfig : Amazon.Lambda.Model.VpcConfigDetail

Actions 2226

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html

AWS Lambda Developer Guide

• For API details, see GetFunctionConfiguration in AWS Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This example returns the version specific configuration of a Lambda Function.

Get-LMFunctionConfiguration -FunctionName "MylambdaFunction123" -Qualifier
 "PowershellAlias"

Output:

CodeSha256 : uWOW0R7z+f0VyLuUg7+/D08hkMFsq0SF4seuyUZJ/R8=
CodeSize : 1426
DeadLetterConfig : Amazon.Lambda.Model.DeadLetterConfig
Description : Verson 3 to test Aliases
Environment : Amazon.Lambda.Model.EnvironmentResponse
FunctionArn : arn:aws:lambda:us-
east-1:123456789012:function:MylambdaFunction123
 :PowershellAlias
FunctionName : MylambdaFunction123
Handler : lambda_function.launch_instance
KMSKeyArn :
LastModified : 2019-12-25T09:52:59.872+0000
LastUpdateStatus : Successful
LastUpdateStatusReason :
LastUpdateStatusReasonCode :
Layers : {}
MasterArn :
MemorySize : 128
RevisionId : 5d7de38b-87f2-4260-8f8a-e87280e10c33
Role : arn:aws:iam::123456789012:role/service-role/lambda
Runtime : python3.8
State : Active
StateReason :
StateReasonCode :
Timeout : 600
TracingConfig : Amazon.Lambda.Model.TracingConfigResponse
Version : 4
VpcConfig : Amazon.Lambda.Model.VpcConfigDetail

• For API details, see GetFunctionConfiguration in AWS Tools for PowerShell Cmdlet
Reference (V5).

Actions 2227

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetPolicy with a CLI

The following code examples show how to use GetPolicy.

CLI

AWS CLI

To retrieve the resource-based IAM policy for a function, version, or alias

The following get-policy example displays policy information about the my-function
Lambda function.

aws lambda get-policy \
 --function-name my-function

Output:

{
 "Policy": {
 "Version":"2012-10-17",
 "Id":"default",
 "Statement":
 [
 {
 "Sid":"iot-events",
 "Effect":"Allow",
 "Principal": {"Service":"iotevents.amazonaws.com"},
 "Action":"lambda:InvokeFunction",
 "Resource":"arn:aws:lambda:us-west-2:123456789012:function:my-
function"
 }
]
 },
 "RevisionId": "93017fc9-59cb-41dc-901b-4845ce4bf668"
}

Actions 2228

AWS Lambda Developer Guide

For more information, see Using Resource-based Policies for AWS Lambda in the AWS
Lambda Developer Guide.

• For API details, see GetPolicy in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This sample displays the Function policy of the Lambda function

Get-LMPolicy -FunctionName test -Select Policy

Output:

{"Version":"2012-10-17","Id":"default","Statement":
[{"Sid":"xxxx","Effect":"Allow","Principal":
{"Service":"sns.amazonaws.com"},"Action":"lambda:InvokeFunction","Resource":"arn:aws:lambda:us-
east-1:123456789102:function:test"}]}

• For API details, see GetPolicy in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This sample displays the Function policy of the Lambda function

Get-LMPolicy -FunctionName test -Select Policy

Output:

{"Version":"2012-10-17","Id":"default","Statement":
[{"Sid":"xxxx","Effect":"Allow","Principal":
{"Service":"sns.amazonaws.com"},"Action":"lambda:InvokeFunction","Resource":"arn:aws:lambda:us-
east-1:123456789102:function:test"}]}

• For API details, see GetPolicy in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 2229

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-policy.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

Use GetProvisionedConcurrencyConfig with a CLI

The following code examples show how to use GetProvisionedConcurrencyConfig.

CLI

AWS CLI

To view a provisioned concurrency configuration

The following get-provisioned-concurrency-config example displays details for the
provisioned concurrency configuration for the BLUE alias of the specified function.

aws lambda get-provisioned-concurrency-config \
 --function-name my-function \
 --qualifier BLUE

Output:

{
 "RequestedProvisionedConcurrentExecutions": 100,
 "AvailableProvisionedConcurrentExecutions": 100,
 "AllocatedProvisionedConcurrentExecutions": 100,
 "Status": "READY",
 "LastModified": "2019-12-31T20:28:49+0000"
}

• For API details, see GetProvisionedConcurrencyConfig in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example gets the provisioned Concurrency Configuration for the
specified Alias of the Lambda Function.

C:\>Get-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
Qualifier "NewAlias1"

Output:

Actions 2230

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-provisioned-concurrency-config.html

AWS Lambda Developer Guide

AllocatedProvisionedConcurrentExecutions : 0
AvailableProvisionedConcurrentExecutions : 0
LastModified : 2020-01-15T03:21:26+0000
RequestedProvisionedConcurrentExecutions : 70
Status : IN_PROGRESS
StatusReason :

• For API details, see GetProvisionedConcurrencyConfig in AWS Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This example gets the provisioned Concurrency Configuration for the
specified Alias of the Lambda Function.

C:\>Get-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
Qualifier "NewAlias1"

Output:

AllocatedProvisionedConcurrentExecutions : 0
AvailableProvisionedConcurrentExecutions : 0
LastModified : 2020-01-15T03:21:26+0000
RequestedProvisionedConcurrentExecutions : 70
Status : IN_PROGRESS
StatusReason :

• For API details, see GetProvisionedConcurrencyConfig in AWS Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Invoke with an AWS SDK or CLI

The following code examples show how to use Invoke.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions 2231

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

• Learn the basics

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Invoke a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// invoke.</param
 /// <param name="parameters">The parameter values that will be passed to the
 function.</param>
 /// <returns>A System Threading Task.</returns>
 public async Task<string> InvokeFunctionAsync(
 string functionName,
 string parameters)
 {
 var payload = parameters;
 var request = new InvokeRequest
 {
 FunctionName = functionName,
 Payload = payload,
 };

 var response = await _lambdaService.InvokeAsync(request);
 MemoryStream stream = response.Payload;
 string returnValue =
 System.Text.Encoding.UTF8.GetString(stream.ToArray());
 return returnValue;
 }

• For API details, see Invoke in AWS SDK for .NET API Reference.

Actions 2232

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/Invoke

AWS Lambda Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::InvokeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetLogType(logType);
 std::shared_ptr<Aws::IOStream> payload =
 Aws::MakeShared<Aws::StringStream>(
 "FunctionTest");
 *payload << jsonPayload.View().WriteReadable();
 request.SetBody(payload);
 request.SetContentType("application/json");
 Aws::Lambda::Model::InvokeOutcome outcome = client.Invoke(request);

 if (outcome.IsSuccess()) {
 invokeResult = std::move(outcome.GetResult());
 result = true;
 break;
 }

 else {
 std::cerr << "Error with Lambda::InvokeRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }

Actions 2233

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

• For API details, see Invoke in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To invoke a Lambda function synchronously

The following invoke example invokes the my-function function synchronously. The
cli-binary-format option is required if you're using AWS CLI version 2. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide.

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "name": "Bob" }' \
 response.json

Output:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

For more information, see Invoke a Lambda function synchronously in the AWS Lambda
Developer Guide.

Example 2: To invoke a Lambda function asynchronously

The following invoke example invokes the my-function function asynchronously. The
cli-binary-format option is required if you're using AWS CLI version 2. For more
information, see AWS CLI supported global command line options in the AWS Command Line
Interface User Guide.

aws lambda invoke \
 --function-name my-function \
 --invocation-type Event \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "name": "Bob" }' \

Actions 2234

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.aws.amazon.com/lambda/latest/dg/invocation-sync.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

 response.json

Output:

{
 "StatusCode": 202
}

For more information, see Invoking a Lambda function asynchronously in the AWS Lambda
Developer Guide.

• For API details, see Invoke in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client

Actions 2235

https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

}

// Invoke invokes the Lambda function specified by functionName, passing the
 parameters
// as a JSON payload. When getLog is true, types.LogTypeTail is specified, which
 tells
// Lambda to include the last few log lines in the returned result.
func (wrapper FunctionWrapper) Invoke(ctx context.Context, functionName string,
 parameters any, getLog bool) *lambda.InvokeOutput {
 logType := types.LogTypeNone
 if getLog {
 logType = types.LogTypeTail
 }
 payload, err := json.Marshal(parameters)
 if err != nil {
 log.Panicf("Couldn't marshal parameters to JSON. Here's why %v\n", err)
 }
 invokeOutput, err := wrapper.LambdaClient.Invoke(ctx, &lambda.InvokeInput{
 FunctionName: aws.String(functionName),
 LogType: logType,
 Payload: payload,
 })
 if err != nil {
 log.Panicf("Couldn't invoke function %v. Here's why: %v\n", functionName, err)
 }
 return invokeOutput
}

• For API details, see Invoke in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2236

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

 /**
 * Invokes a specific AWS Lambda function.
 *
 * @param awsLambda an instance of {@link LambdaClient} to interact with
 the AWS Lambda service
 * @param functionName the name of the AWS Lambda function to be invoked
 */
 public static void invokeFunction(LambdaClient awsLambda, String
 functionName) {
 InvokeResponse res;
 try {
 // Need a SdkBytes instance for the payload.
 JSONObject jsonObj = new JSONObject();
 jsonObj.put("inputValue", "2000");
 String json = jsonObj.toString();
 SdkBytes payload = SdkBytes.fromUtf8String(json);

 InvokeRequest request = InvokeRequest.builder()
 .functionName(functionName)
 .payload(payload)
 .build();

 res = awsLambda.invoke(request);
 String value = res.payload().asUtf8String();
 System.out.println(value);

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see Invoke in AWS SDK for Java 2.x API Reference.

Actions 2237

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/Invoke

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),
 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

• For API details, see Invoke in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun invokeFunction(functionNameVal: String) {
 val json = """{"inputValue":"1000"}"""
 val byteArray = json.trimIndent().encodeToByteArray()

Actions 2238

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/InvokeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples

AWS Lambda Developer Guide

 val request =
 InvokeRequest {
 functionName = functionNameVal
 logType = LogType.Tail
 payload = byteArray
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val res = awsLambda.invoke(request)
 println("${res.payload?.toString(Charsets.UTF_8)}")
 println("The log result is ${res.logResult}")
 }
}

• For API details, see Invoke in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function invoke($functionName, $params, $logType = 'None')
 {
 return $this->lambdaClient->invoke([
 'FunctionName' => $functionName,
 'Payload' => json_encode($params),
 'LogType' => $logType,
]);
 }

• For API details, see Invoke in AWS SDK for PHP API Reference.

Actions 2239

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/Invoke

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def invoke_function(self, function_name, function_params, get_log=False):
 """
 Invokes a Lambda function.

 :param function_name: The name of the function to invoke.
 :param function_params: The parameters of the function as a dict. This
 dict
 is serialized to JSON before it is sent to
 Lambda.
 :param get_log: When true, the last 4 KB of the execution log are
 included in
 the response.
 :return: The response from the function invocation.
 """
 try:
 response = self.lambda_client.invoke(
 FunctionName=function_name,
 Payload=json.dumps(function_params),
 LogType="Tail" if get_log else "None",
)
 logger.info("Invoked function %s.", function_name)
 except ClientError:
 logger.exception("Couldn't invoke function %s.", function_name)
 raise
 return response

Actions 2240

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

• For API details, see Invoke in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Invokes a Lambda function.
 # @param function_name [String] The name of the function to invoke.
 # @param payload [nil] Payload containing runtime parameters.
 # @return [Object] The response from the function invocation.
 def invoke_function(function_name, payload = nil)
 params = { function_name: function_name }
 params[:payload] = payload unless payload.nil?
 @lambda_client.invoke(params)
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n
 #{e.message}")
 end

• For API details, see Invoke in AWS SDK for Ruby API Reference.

Actions 2241

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/Invoke

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /** Invoke the lambda function using calculator InvokeArgs. */
 pub async fn invoke(&self, args: InvokeArgs) -> Result<InvokeOutput,
 anyhow::Error> {
 info!(?args, "Invoking {}", self.lambda_name);
 let payload = serde_json::to_string(&args)?;
 debug!(?payload, "Sending payload");
 self.lambda_client
 .invoke()
 .function_name(self.lambda_name.clone())
 .payload(Blob::new(payload))
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

fn log_invoke_output(invoke: &InvokeOutput, message: &str) {
 if let Some(payload) = invoke.payload().cloned() {
 let payload = String::from_utf8(payload.into_inner());
 info!(?payload, message);
 } else {
 info!("Could not extract payload")
 }
 if let Some(logs) = invoke.log_result() {
 debug!(?logs, "Invoked function logs")
 } else {
 debug!("Invoked function had no logs")
 }
}

• For API details, see Invoke in AWS SDK for Rust API reference.

Actions 2242

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.invoke

AWS Lambda Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 DATA(lv_json) = /aws1/cl_rt_util=>string_to_xstring(
 `{` &&
 `"action": "increment",` &&
 `"number": 10` &&
 `}`).
 oo_result = lo_lmd->invoke(" oo_result is returned for
 testing purposes. "
 iv_functionname = iv_function_name
 iv_payload = lv_json).
 MESSAGE 'Lambda function invoked.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvrequestcontex.
 MESSAGE 'Unable to parse request body as JSON.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidzipfileex.
 MESSAGE 'The deployment package could not be unzipped.' TYPE 'E'.
 CATCH /aws1/cx_lmdrequesttoolargeex.
 MESSAGE 'Invoke request body JSON input limit was exceeded by the request
 payload.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 CATCH /aws1/cx_lmdunsuppedmediatyp00.

Actions 2243

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 MESSAGE 'Invoke request body does not have JSON as its content type.'
 TYPE 'E'.
 ENDTRY.

• For API details, see Invoke in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

 /// Invoke the Lambda function to increment a value.
 ///
 /// - Parameters:
 /// - lambdaClient: The `IAMClient` to use.
 /// - number: The number to increment.
 ///
 /// - Throws: `ExampleError.noAnswerReceived`, `ExampleError.invokeError`
 ///
 /// - Returns: An integer number containing the incremented value.
 func invokeIncrement(lambdaClient: LambdaClient, number: Int) async throws ->
 Int {
 do {
 let incRequest = IncrementRequest(action: "increment", number:
 number)
 let incData = try! JSONEncoder().encode(incRequest)

 // Invoke the lambda function.

 let invokeOutput = try await lambdaClient.invoke(
 input: InvokeInput(
 functionName: "lambda-basics-function",

Actions 2244

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 payload: incData
)
)

 let response = try! JSONDecoder().decode(Response.self,
 from:invokeOutput.payload!)

 guard let answer = response.answer else {
 throw ExampleError.noAnswerReceived
 }
 return answer

 } catch {
 throw ExampleError.invokeError
 }
 }

• For API details, see Invoke in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListFunctions with an AWS SDK or CLI

The following code examples show how to use ListFunctions.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 2245

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/invoke(input:)

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get a list of Lambda functions.
 /// </summary>
 /// <returns>A list of FunctionConfiguration objects.</returns>
 public async Task<List<FunctionConfiguration>> ListFunctionsAsync()
 {
 var functionList = new List<FunctionConfiguration>();

 var functionPaginator =
 _lambdaService.Paginators.ListFunctions(new ListFunctionsRequest());
 await foreach (var function in functionPaginator.Functions)
 {
 functionList.Add(function);
 }

 return functionList;
 }

• For API details, see ListFunctions in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2246

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 std::vector<Aws::String> functions;
 Aws::String marker;

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome = client.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult &result =
 outcome.GetResult();
 std::cout << result.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: result.GetFunctions()) {
 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() << std::endl;
 std::cout << " "
 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;
 }
 marker = result.GetNextMarker();
 }
 else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;

Actions 2247

AWS Lambda Developer Guide

 }
 } while (!marker.empty());

• For API details, see ListFunctions in AWS SDK for C++ API Reference.

CLI

AWS CLI

To retrieve a list of Lambda functions

The following list-functions example displays a list of all of the functions for the
current user.

aws lambda list-functions

Output:

{
 "Functions": [
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "dBG9m8SGdmlEjw/JYXlhhvCrAv5TxvXsbL/RMr0fT/I=",
 "FunctionName": "helloworld",
 "MemorySize": 128,
 "RevisionId": "1718e831-badf-4253-9518-d0644210af7b",
 "CodeSize": 294,
 "FunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:helloworld",
 "Handler": "helloworld.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/MyTestFunction-
role-zgur6bf4",
 "Timeout": 3,
 "LastModified": "2023-09-23T18:32:33.857+0000",
 "Runtime": "nodejs18.x",
 "Description": ""
 },
 {

Actions 2248

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/ListFunctions

AWS Lambda Developer Guide

 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "sU0cJ2/hOZevwV/lTxCuQqK3gDZP3i8gUoqUUVRmY6E=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "93017fc9-59cb-41dc-901b-4845ce4bf668",
 "CodeSize": 266,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2023-10-01T16:47:28.490+0000",
 "Runtime": "nodejs18.x",
 "Description": ""
 },
 {
 "Layers": [
 {
 "CodeSize": 41784542,
 "Arn": "arn:aws:lambda:us-
west-2:420165488524:layer:AWSLambda-Python37-SciPy1x:2"
 },
 {
 "CodeSize": 4121,
 "Arn": "arn:aws:lambda:us-
west-2:123456789012:layer:pythonLayer:1"
 }
],
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "ZQukCqxtkqFgyF2cU41Avj99TKQ/hNihPtDtRcc08mI=",
 "FunctionName": "my-python-function",
 "VpcConfig": {

Actions 2249

AWS Lambda Developer Guide

 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 128,
 "RevisionId": "80b4eabc-acf7-4ea8-919a-e874c213707d",
 "CodeSize": 299,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
python-function",
 "Handler": "lambda_function.lambda_handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-python-
function-role-z5g7dr6n",
 "Timeout": 3,
 "LastModified": "2023-10-01T19:40:41.643+0000",
 "Runtime": "python3.11",
 "Description": ""
 }
]
}

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

• For API details, see ListFunctions in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"

Actions 2250

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-functions.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// ListFunctions lists up to maxItems functions for the account. This function
 uses a
// lambda.ListFunctionsPaginator to paginate the results.
func (wrapper FunctionWrapper) ListFunctions(ctx context.Context, maxItems int)
 []types.FunctionConfiguration {
 var functions []types.FunctionConfiguration
 paginator := lambda.NewListFunctionsPaginator(wrapper.LambdaClient,
 &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })
 for paginator.HasMorePages() && len(functions) < maxItems {
 pageOutput, err := paginator.NextPage(ctx)
 if err != nil {
 log.Panicf("Couldn't list functions for your account. Here's why: %v\n", err)
 }
 functions = append(functions, pageOutput.Functions...)
 }
 return functions
}

• For API details, see ListFunctions in AWS SDK for Go API Reference.

Actions 2251

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const listFunctions = () => {
 const client = new LambdaClient({});
 const command = new ListFunctionsCommand({});

 return client.send(command);
};

• For API details, see ListFunctions in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function listFunctions($maxItems = 50, $marker = null)
 {
 if (is_null($marker)) {
 return $this->lambdaClient->listFunctions([
 'MaxItems' => $maxItems,
]);
 }

 return $this->lambdaClient->listFunctions([
 'Marker' => $marker,

Actions 2252

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples

AWS Lambda Developer Guide

 'MaxItems' => $maxItems,
]);
 }

• For API details, see ListFunctions in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This sample displays all the Lambda functions with sorted code size

Get-LMFunctionList | Sort-Object -Property CodeSize | Select-Object FunctionName,
 RunTime, Timeout, CodeSize

Output:

FunctionName Runtime Timeout
 CodeSize
------------ ------- -------

test python2.7 3
 243
MylambdaFunction123 python3.8 600
 659
myfuncpython1 python3.8 303
 675

• For API details, see ListFunctions in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This sample displays all the Lambda functions with sorted code size

Get-LMFunctionList | Sort-Object -Property CodeSize | Select-Object FunctionName,
 RunTime, Timeout, CodeSize

Output:

FunctionName Runtime Timeout
 CodeSize

Actions 2253

https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/ListFunctions
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

------------ ------- -------

test python2.7 3
 243
MylambdaFunction123 python3.8 600
 659
myfuncpython1 python3.8 303
 675

• For API details, see ListFunctions in AWS Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def list_functions(self):
 """
 Lists the Lambda functions for the current account.
 """
 try:
 func_paginator = self.lambda_client.get_paginator("list_functions")
 for func_page in func_paginator.paginate():
 for func in func_page["Functions"]:
 print(func["FunctionName"])
 desc = func.get("Description")
 if desc:
 print(f"\t{desc}")
 print(f"\t{func['Runtime']}: {func['Handler']}")
 except ClientError as err:
 logger.error(

Actions 2254

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

 "Couldn't list functions. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListFunctions in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Lists the Lambda functions for the current account.
 def list_functions
 functions = []
 @lambda_client.list_functions.each do |response|
 response['functions'].each do |function|
 functions.append(function['function_name'])
 end
 end
 functions
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error listing functions:\n #{e.message}")

Actions 2255

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

 end

• For API details, see ListFunctions in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /** List all Lambda functions in the current Region. */
 pub async fn list_functions(&self) -> Result<ListFunctionsOutput,
 anyhow::Error> {
 info!("Listing lambda functions");
 self.lambda_client
 .list_functions()
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

• For API details, see ListFunctions in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 2256

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples
https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.list_functions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 TRY.
 oo_result = lo_lmd->listfunctions(). " oo_result is returned for
 testing purposes. "
 DATA(lt_functions) = oo_result->get_functions().
 MESSAGE 'Retrieved list of Lambda functions.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see ListFunctions in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

 /// Returns an array containing the names of all AWS Lambda functions
 /// available to the user.
 ///
 /// - Parameter lambdaClient: The `IAMClient` to use.
 ///
 /// - Throws: `ExampleError.listFunctionsError`
 ///
 /// - Returns: An array of lambda function name strings.
 func getFunctionNames(lambdaClient: LambdaClient) async throws -> [String] {
 let pages = lambdaClient.listFunctionsPaginated(

Actions 2257

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 input: ListFunctionsInput()
)

 var functionNames: [String] = []

 for try await page in pages {
 guard let functions = page.functions else {
 throw ExampleError.listFunctionsError
 }

 for function in functions {
 functionNames.append(function.functionName ?? "<unknown>")
 }
 }

 return functionNames
 }

• For API details, see ListFunctions in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListProvisionedConcurrencyConfigs with a CLI

The following code examples show how to use ListProvisionedConcurrencyConfigs.

CLI

AWS CLI

To get a list of provisioned concurrency configurations

The following list-provisioned-concurrency-configs example lists the provisioned
concurrency configurations for the specified function.

aws lambda list-provisioned-concurrency-configs \
 --function-name my-function

Output:

Actions 2258

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/listfunctions(input:)

AWS Lambda Developer Guide

{
 "ProvisionedConcurrencyConfigs": [
 {
 "FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-
function:GREEN",
 "RequestedProvisionedConcurrentExecutions": 100,
 "AvailableProvisionedConcurrentExecutions": 100,
 "AllocatedProvisionedConcurrentExecutions": 100,
 "Status": "READY",
 "LastModified": "2019-12-31T20:29:00+0000"
 },
 {
 "FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-
function:BLUE",
 "RequestedProvisionedConcurrentExecutions": 100,
 "AvailableProvisionedConcurrentExecutions": 100,
 "AllocatedProvisionedConcurrentExecutions": 100,
 "Status": "READY",
 "LastModified": "2019-12-31T20:28:49+0000"
 }
]
}

• For API details, see ListProvisionedConcurrencyConfigs in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example retrieves the list of provisioned concurrency configurations for
a Lambda function.

Get-LMProvisionedConcurrencyConfigList -FunctionName "MylambdaFunction123"

• For API details, see ListProvisionedConcurrencyConfigs in AWS Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This example retrieves the list of provisioned concurrency configurations for
a Lambda function.

Actions 2259

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-provisioned-concurrency-configs.html
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

Get-LMProvisionedConcurrencyConfigList -FunctionName "MylambdaFunction123"

• For API details, see ListProvisionedConcurrencyConfigs in AWS Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListTags with a CLI

The following code examples show how to use ListTags.

CLI

AWS CLI

To retrieve the list of tags for a Lambda function

The following list-tags example displays the tags attached to the my-function Lambda
function.

aws lambda list-tags \
 --resource arn:aws:lambda:us-west-2:123456789012:function:my-function

Output:

{
 "Tags": {
 "Category": "Web Tools",
 "Department": "Sales"
 }
}

For more information, see Tagging Lambda Functions in the AWS Lambda Developer Guide.

• For API details, see ListTags in AWS CLI Command Reference.

Actions 2260

https://docs.aws.amazon.com/powershell/v5/reference
https://docs.aws.amazon.com/lambda/latest/dg/tagging.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-tags.html

AWS Lambda Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: Retrieves the tags and their values currently set on the specified function.

Get-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction"

Output:

Key Value
--- -----
California Sacramento
Oregon Salem
Washington Olympia

• For API details, see ListTags in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Retrieves the tags and their values currently set on the specified function.

Get-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction"

Output:

Key Value
--- -----
California Sacramento
Oregon Salem
Washington Olympia

• For API details, see ListTags in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 2261

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

Use ListVersionsByFunction with a CLI

The following code examples show how to use ListVersionsByFunction.

CLI

AWS CLI

To retrieve a list of versions of a function

The following list-versions-by-function example displays the list of versions for the
my-function Lambda function.

aws lambda list-versions-by-function \
 --function-name my-function

Output:

{
 "Versions": [
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "sU0cJ2/hOZevwV/lTxCuQqK3gDZP3i8gUoqUUVRmY6E=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "93017fc9-59cb-41dc-901b-4845ce4bf668",
 "CodeSize": 266,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:$LATEST",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-10-01T16:47:28.490+0000",
 "Runtime": "nodejs10.x",

Actions 2262

AWS Lambda Developer Guide

 "Description": ""
 },
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "1",
 "CodeSha256": "5tT2qgzYUHoqwR616pZ2dpkn/0J1FrzJmlKidWaaCgk=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "949c8914-012e-4795-998c-e467121951b1",
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:1",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "Runtime": "nodejs10.x",
 "Description": "new version"
 },
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "2",
 "CodeSha256": "sU0cJ2/hOZevwV/lTxCuQqK3gDZP3i8gUoqUUVRmY6E=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "cd669f21-0f3d-4e1c-9566-948837f2e2ea",
 "CodeSize": 266,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:2",

Actions 2263

AWS Lambda Developer Guide

 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-10-01T16:47:28.490+0000",
 "Runtime": "nodejs10.x",
 "Description": "newer version"
 }
]
}

For more information, see Configuring AWS Lambda Function Aliases in the AWS Lambda
Developer Guide.

• For API details, see ListVersionsByFunction in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example returns the list of version specific configurations for each
version of the Lambda Function.

Get-LMVersionsByFunction -FunctionName "MylambdaFunction123"

Output:

FunctionName Runtime MemorySize Timeout CodeSize LastModified
 RoleName
------------ ------- ---------- ------- -------- ------------

MylambdaFunction123 python3.8 128 600 659
 2020-01-10T03:20:56.390+0000 lambda
MylambdaFunction123 python3.8 128 5 1426
 2019-12-25T09:19:02.238+0000 lambda
MylambdaFunction123 python3.8 128 5 1426
 2019-12-25T09:39:36.779+0000 lambda
MylambdaFunction123 python3.8 128 600 1426
 2019-12-25T09:52:59.872+0000 lambda

• For API details, see ListVersionsByFunction in AWS Tools for PowerShell Cmdlet Reference
(V4).

Actions 2264

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-versions-by-function.html
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

Tools for PowerShell V5

Example 1: This example returns the list of version specific configurations for each
version of the Lambda Function.

Get-LMVersionsByFunction -FunctionName "MylambdaFunction123"

Output:

FunctionName Runtime MemorySize Timeout CodeSize LastModified
 RoleName
------------ ------- ---------- ------- -------- ------------

MylambdaFunction123 python3.8 128 600 659
 2020-01-10T03:20:56.390+0000 lambda
MylambdaFunction123 python3.8 128 5 1426
 2019-12-25T09:19:02.238+0000 lambda
MylambdaFunction123 python3.8 128 5 1426
 2019-12-25T09:39:36.779+0000 lambda
MylambdaFunction123 python3.8 128 600 1426
 2019-12-25T09:52:59.872+0000 lambda

• For API details, see ListVersionsByFunction in AWS Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PublishVersion with a CLI

The following code examples show how to use PublishVersion.

CLI

AWS CLI

To publish a new version of a function

The following publish-version example publishes a new version of the my-function
Lambda function.

Actions 2265

https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

aws lambda publish-version \
 --function-name my-function

Output:

{
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "dBG9m8SGdmlEjw/JYXlhhvCrAv5TxvXsbL/RMr0fT/I=",
 "FunctionName": "my-function",
 "CodeSize": 294,
 "RevisionId": "f31d3d39-cc63-4520-97d4-43cd44c94c20",
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:3",
 "Version": "2",
 "Role": "arn:aws:iam::123456789012:role/service-role/MyTestFunction-role-
zgur6bf4",
 "Timeout": 3,
 "LastModified": "2019-09-23T18:32:33.857+0000",
 "Handler": "my-function.handler",
 "Runtime": "nodejs10.x",
 "Description": ""
}

For more information, see Configuring AWS Lambda Function Aliases in the AWS Lambda
Developer Guide.

• For API details, see PublishVersion in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example creates a version for the existing snapshot of Lambda Function
Code

Publish-LMVersion -FunctionName "MylambdaFunction123" -Description "Publishing
 Existing Snapshot of function code as a new version through Powershell"

• For API details, see PublishVersion in AWS Tools for PowerShell Cmdlet Reference (V4).

Actions 2266

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-version.html
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

Tools for PowerShell V5

Example 1: This example creates a version for the existing snapshot of Lambda Function
Code

Publish-LMVersion -FunctionName "MylambdaFunction123" -Description "Publishing
 Existing Snapshot of function code as a new version through Powershell"

• For API details, see PublishVersion in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PutFunctionConcurrency with a CLI

The following code examples show how to use PutFunctionConcurrency.

CLI

AWS CLI

To configure a reserved concurrency limit for a function

The following put-function-concurrency example configures 100 reserved concurrent
executions for the my-function function.

aws lambda put-function-concurrency \
 --function-name my-function \
 --reserved-concurrent-executions 100

Output:

{
 "ReservedConcurrentExecutions": 100
}

For more information, see Reserving Concurrency for a Lambda Function in the AWS Lambda
Developer Guide.

• For API details, see PutFunctionConcurrency in AWS CLI Command Reference.

Actions 2267

https://docs.aws.amazon.com/powershell/v5/reference
https://docs.aws.amazon.com/lambda/latest/dg/per-function-concurrency.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-concurrency.html

AWS Lambda Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example applies the concurrency settings for the Function as a whole.

Write-LMFunctionConcurrency -FunctionName "MylambdaFunction123" -
ReservedConcurrentExecution 100

• For API details, see PutFunctionConcurrency in AWS Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: This example applies the concurrency settings for the Function as a whole.

Write-LMFunctionConcurrency -FunctionName "MylambdaFunction123" -
ReservedConcurrentExecution 100

• For API details, see PutFunctionConcurrency in AWS Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PutProvisionedConcurrencyConfig with a CLI

The following code examples show how to use PutProvisionedConcurrencyConfig.

CLI

AWS CLI

To allocate provisioned concurrency

The following put-provisioned-concurrency-config example allocates 100
provisioned concurrency for the BLUE alias of the specified function.

aws lambda put-provisioned-concurrency-config \
 --function-name my-function \
 --qualifier BLUE \

Actions 2268

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

 --provisioned-concurrent-executions 100

Output:

{
 "Requested ProvisionedConcurrentExecutions": 100,
 "Allocated ProvisionedConcurrentExecutions": 0,
 "Status": "IN_PROGRESS",
 "LastModified": "2019-11-21T19:32:12+0000"
}

• For API details, see PutProvisionedConcurrencyConfig in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example adds a provisioned concurrency configuration to a Function's
Alias

Write-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
ProvisionedConcurrentExecution 20 -Qualifier "NewAlias1"

• For API details, see PutProvisionedConcurrencyConfig in AWS Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This example adds a provisioned concurrency configuration to a Function's
Alias

Write-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
ProvisionedConcurrentExecution 20 -Qualifier "NewAlias1"

• For API details, see PutProvisionedConcurrencyConfig in AWS Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 2269

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-provisioned-concurrency-config.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

Use RemovePermission with a CLI

The following code examples show how to use RemovePermission.

CLI

AWS CLI

To remove permissions from an existing Lambda function

The following remove-permission example removes permission to invoke a function
named my-function.

aws lambda remove-permission \
 --function-name my-function \
 --statement-id sns

This command produces no output.

For more information, see Using Resource-based Policies for AWS Lambda in the AWS
Lambda Developer Guide.

• For API details, see RemovePermission in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example removes the function policy for the specified StatementId of a
Lambda Function.

$policy = Get-LMPolicy -FunctionName "MylambdaFunction123" -Select Policy |
 ConvertFrom-Json| Select-Object -ExpandProperty Statement
Remove-LMPermission -FunctionName "MylambdaFunction123" -StatementId
 $policy[0].Sid

• For API details, see RemovePermission in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example removes the function policy for the specified StatementId of a
Lambda Function.

Actions 2270

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/remove-permission.html
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

$policy = Get-LMPolicy -FunctionName "MylambdaFunction123" -Select Policy |
 ConvertFrom-Json| Select-Object -ExpandProperty Statement
Remove-LMPermission -FunctionName "MylambdaFunction123" -StatementId
 $policy[0].Sid

• For API details, see RemovePermission in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use TagResource with a CLI

The following code examples show how to use TagResource.

CLI

AWS CLI

To add tags to an existing Lambda function

The following tag-resource example adds a tag with the key name DEPARTMENT and a
value of Department A to the specified Lambda function.

aws lambda tag-resource \
 --resource arn:aws:lambda:us-west-2:123456789012:function:my-function \
 --tags "DEPARTMENT=Department A"

This command produces no output.

For more information, see Tagging Lambda Functions in the AWS Lambda Developer Guide.

• For API details, see TagResource in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Adds the three tags (Washington, Oregon and California) and their associated
values to the specified function identified by its ARN.

Actions 2271

https://docs.aws.amazon.com/powershell/v5/reference
https://docs.aws.amazon.com/lambda/latest/dg/tagging.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/tag-resource.html

AWS Lambda Developer Guide

Add-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction" -Tag @{ "Washington" = "Olympia";
 "Oregon" = "Salem"; "California" = "Sacramento" }

• For API details, see TagResource in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Adds the three tags (Washington, Oregon and California) and their associated
values to the specified function identified by its ARN.

Add-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction" -Tag @{ "Washington" = "Olympia";
 "Oregon" = "Salem"; "California" = "Sacramento" }

• For API details, see TagResource in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UntagResource with a CLI

The following code examples show how to use UntagResource.

CLI

AWS CLI

To remove tags from an existing Lambda function

The following untag-resource example removes the tag with the key name DEPARTMENT
tag from the my-function Lambda function.

aws lambda untag-resource \
 --resource arn:aws:lambda:us-west-2:123456789012:function:my-function \
 --tag-keys DEPARTMENT

This command produces no output.

For more information, see Tagging Lambda Functions in the AWS Lambda Developer Guide.

Actions 2272

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://docs.aws.amazon.com/lambda/latest/dg/tagging.html

AWS Lambda Developer Guide

• For API details, see UntagResource in AWS CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Removes the supplied tags from a function. The cmdlet will prompt for
confirmation before proceeding unless the -Force switch is specified. A single call is made
to the service to remove the tags.

Remove-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction" -TagKey
 "Washington","Oregon","California"

Example 2: Removes the supplied tags from a function. The cmdlet will prompt for
confirmation before proceeding unless the -Force switch is specified. Once call to the
service is made per supplied tag.

"Washington","Oregon","California" | Remove-LMResourceTag -Resource
 "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"

• For API details, see UntagResource in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Removes the supplied tags from a function. The cmdlet will prompt for
confirmation before proceeding unless the -Force switch is specified. A single call is made
to the service to remove the tags.

Remove-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction" -TagKey
 "Washington","Oregon","California"

Example 2: Removes the supplied tags from a function. The cmdlet will prompt for
confirmation before proceeding unless the -Force switch is specified. Once call to the
service is made per supplied tag.

"Washington","Oregon","California" | Remove-LMResourceTag -Resource
 "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"

Actions 2273

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/untag-resource.html
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

• For API details, see UntagResource in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateAlias with a CLI

The following code examples show how to use UpdateAlias.

CLI

AWS CLI

To update a function alias

The following update-alias example updates the alias named LIVE to point to version 3
of the my-function Lambda function.

aws lambda update-alias \
 --function-name my-function \
 --function-version 3 \
 --name LIVE

Output:

{
 "FunctionVersion": "3",
 "Name": "LIVE",
 "AliasArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:LIVE",
 "RevisionId": "594f41fb-b85f-4c20-95c7-6ca5f2a92c93",
 "Description": "alias for live version of function"
}

For more information, see Configuring AWS Lambda Function Aliases in the AWS Lambda
Developer Guide.

• For API details, see UpdateAlias in AWS CLI Command Reference.

Actions 2274

https://docs.aws.amazon.com/powershell/v5/reference
https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-alias.html

AWS Lambda Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example updates the Configuration of an existing Lambda function Alias.
It updates the RoutingConfiguration value to shift 60% (0.6) of traffic to version 1

Update-LMAlias -FunctionName "MylambdaFunction123" -Description
 " Alias for version 2" -FunctionVersion 2 -Name "newlabel1" -
RoutingConfig_AdditionalVersionWeight @{Name="1";Value="0.6}

• For API details, see UpdateAlias in AWS Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example updates the Configuration of an existing Lambda function Alias.
It updates the RoutingConfiguration value to shift 60% (0.6) of traffic to version 1

Update-LMAlias -FunctionName "MylambdaFunction123" -Description
 " Alias for version 2" -FunctionVersion 2 -Name "newlabel1" -
RoutingConfig_AdditionalVersionWeight @{Name="1";Value="0.6}

• For API details, see UpdateAlias in AWS Tools for PowerShell Cmdlet Reference (V5).

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateFunctionCode with an AWS SDK or CLI

The following code examples show how to use UpdateFunctionCode.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 2275

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Update an existing Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to update.</
param>
 /// <param name="bucketName">The bucket where the zip file containing
 /// the Lambda function code is stored.</param>
 /// <param name="key">The key name of the source code file.</param>
 /// <returns>Async Task.</returns>
 public async Task UpdateFunctionCodeAsync(
 string functionName,
 string bucketName,
 string key)
 {
 var functionCodeRequest = new UpdateFunctionCodeRequest
 {
 FunctionName = functionName,
 Publish = true,
 S3Bucket = bucketName,
 S3Key = key,
 };

 var response = await
 _lambdaService.UpdateFunctionCodeAsync(functionCodeRequest);
 Console.WriteLine($"The Function was last modified at
 {response.LastModified}.");
 }

• For API details, see UpdateFunctionCode in AWS SDK for .NET API Reference.

Actions 2276

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionCode

AWS Lambda Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::UpdateFunctionCodeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 std::ifstream ifstream(CALCULATOR_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteLambdaFunction(client);
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();
 request.SetZipFile(
 Aws::Utils::ByteBuffer((unsigned char *) buffer.str().c_str(),
 buffer.str().length()));
 request.SetPublish(true);

Actions 2277

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

 Aws::Lambda::Model::UpdateFunctionCodeOutcome outcome =
 client.UpdateFunctionCode(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda code was successfully updated." <<
 std::endl;
 }
 else {
 std::cerr << "Error with Lambda::UpdateFunctionCode. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see UpdateFunctionCode in AWS SDK for C++ API Reference.

CLI

AWS CLI

To update the code of a Lambda function

The following update-function-code example replaces the code of the unpublished
($LATEST) version of the my-function function with the contents of the specified zip file.

aws lambda update-function-code \
 --function-name my-function \
 --zip-file fileb://my-function.zip

Output:

{
 "FunctionName": "my-function",
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "RevisionId": "e52502d4-9320-4688-9cd6-152a6ab7490d",
 "MemorySize": 256,
 "Version": "$LATEST",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-function-role-
uy3l9qyq",
 "Timeout": 3,

Actions 2278

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionCode

AWS Lambda Developer Guide

 "Runtime": "nodejs10.x",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "5tT2qgzYUHaqwR716pZ2dpkn/0J1FrzJmlKidWoaCgk=",
 "Description": "",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "Handler": "index.handler"
}

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

• For API details, see UpdateFunctionCode in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"

Actions 2279

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// UpdateFunctionCode updates the code for the Lambda function specified by
 functionName.
// The existing code for the Lambda function is entirely replaced by the code in
 the
// zipPackage buffer. After the update action is called, a
 lambda.FunctionUpdatedV2Waiter
// is used to wait until the update is successful.
func (wrapper FunctionWrapper) UpdateFunctionCode(ctx context.Context,
 functionName string, zipPackage *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.UpdateFunctionCode(ctx,
 &lambda.UpdateFunctionCodeInput{
 FunctionName: aws.String(functionName), ZipFile: zipPackage.Bytes(),
 })
 if err != nil {
 log.Panicf("Couldn't update code for function %v. Here's why: %v\n",
 functionName, err)
 } else {
 waiter := lambda.NewFunctionUpdatedV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(ctx, &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

Actions 2280

AWS Lambda Developer Guide

• For API details, see UpdateFunctionCode in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Updates the code for an AWS Lambda function.
 *
 * @param awsLambda the AWS Lambda client
 * @param functionName the name of the Lambda function to update
 * @param bucketName the name of the S3 bucket where the function code is
 located
 * @param key the key (file name) of the function code in the S3 bucket
 * @throws LambdaException if there is an error updating the function code
 */
 public static void updateFunctionCode(LambdaClient awsLambda, String
 functionName, String bucketName, String key) {
 try {
 LambdaWaiter waiter = awsLambda.waiter();
 UpdateFunctionCodeRequest functionCodeRequest =
 UpdateFunctionCodeRequest.builder()
 .functionName(functionName)
 .publish(true)
 .s3Bucket(bucketName)
 .s3Key(key)
 .build();

 UpdateFunctionCodeResponse response =
 awsLambda.updateFunctionCode(functionCodeRequest);
 GetFunctionConfigurationRequest getFunctionConfigRequest =
 GetFunctionConfigurationRequest.builder()
 .functionName(functionName)
 .build();

Actions 2281

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

 WaiterResponse<GetFunctionConfigurationResponse> waiterResponse =
 waiter
 .waitUntilFunctionUpdated(getFunctionConfigRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println("The last modified value is " +
 response.lastModified());

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see UpdateFunctionCode in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const updateFunctionCode = async (funcName, newFunc) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${newFunc}.zip`);
 const command = new UpdateFunctionCodeCommand({
 ZipFile: code,
 FunctionName: funcName,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

Actions 2282

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

AWS Lambda Developer Guide

• For API details, see UpdateFunctionCode in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function updateFunctionCode($functionName, $s3Bucket, $s3Key)
 {
 return $this->lambdaClient->updateFunctionCode([
 'FunctionName' => $functionName,
 'S3Bucket' => $s3Bucket,
 'S3Key' => $s3Key,
]);
 }

• For API details, see UpdateFunctionCode in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Updates the function named 'MyFunction' with new content contained in
the specified zip file. For a C# .NET Core Lambda function the zip file should contain the
compiled assembly.

Update-LMFunctionCode -FunctionName MyFunction -ZipFilename .\UpdatedCode.zip

Example 2: This example is similar to the previous one but uses an Amazon S3 object
containing the updated code to update the function.

Update-LMFunctionCode -FunctionName MyFunction -BucketName amzn-s3-demo-bucket -
Key UpdatedCode.zip

Actions 2283

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionCodeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionCode

AWS Lambda Developer Guide

• For API details, see UpdateFunctionCode in AWS Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Updates the function named 'MyFunction' with new content contained in
the specified zip file. For a C# .NET Core Lambda function the zip file should contain the
compiled assembly.

Update-LMFunctionCode -FunctionName MyFunction -ZipFilename .\UpdatedCode.zip

Example 2: This example is similar to the previous one but uses an Amazon S3 object
containing the updated code to update the function.

Update-LMFunctionCode -FunctionName MyFunction -BucketName amzn-s3-demo-bucket -
Key UpdatedCode.zip

• For API details, see UpdateFunctionCode in AWS Tools for PowerShell Cmdlet Reference
(V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def update_function_code(self, function_name, deployment_package):
 """
 Updates the code for a Lambda function by submitting a .zip archive that
 contains

Actions 2284

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

 the code for the function.

 :param function_name: The name of the function to update.
 :param deployment_package: The function code to update, packaged as bytes
 in
 .zip format.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_code(
 FunctionName=function_name, ZipFile=deployment_package
)
 except ClientError as err:
 logger.error(
 "Couldn't update function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see UpdateFunctionCode in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new

Actions 2285

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Updates the code for a Lambda function by submitting a .zip archive that
 contains
 # the code for the function.
 #
 # @param function_name: The name of the function to update.
 # @param deployment_package: The function code to update, packaged as bytes in
 # .zip format.
 # @return: Data about the update, including the status.
 def update_function_code(function_name, deployment_package)
 @lambda_client.update_function_code(
 function_name: function_name,
 zip_file: deployment_package
)
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating function code for:
 #{function_name}:\n #{e.message}")
 nil
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to update:\n
 #{e.message}")
 end

• For API details, see UpdateFunctionCode in AWS SDK for Ruby API Reference.

Actions 2286

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionCode

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /** Given a Path to a zip file, update the function's code and wait for the
 update to finish. */
 pub async fn update_function_code(
 &self,
 zip_file: PathBuf,
 key: String,
) -> Result<UpdateFunctionCodeOutput, anyhow::Error> {
 let function_code = self.prepare_function(zip_file, Some(key)).await?;

 info!("Updating code for {}", self.lambda_name);
 let update = self
 .lambda_client
 .update_function_code()
 .function_name(self.lambda_name.clone())
 .s3_bucket(self.bucket.clone())
 .s3_key(function_code.s3_key().unwrap().to_string())
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(update)
 }

 /**
 * Upload function code from a path to a zip file.
 * The zip file must have an AL2 Linux-compatible binary called `bootstrap`.
 * The easiest way to create such a zip is to use `cargo lambda build --
output-format Zip`.
 */
 async fn prepare_function(

Actions 2287

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

AWS Lambda Developer Guide

 &self,
 zip_file: PathBuf,
 key: Option<String>,
) -> Result<FunctionCode, anyhow::Error> {
 let body = ByteStream::from_path(zip_file).await?;

 let key = key.unwrap_or_else(|| format!("{}_code", self.lambda_name));

 info!("Uploading function code to s3://{}/{}", self.bucket, key);
 let _ = self
 .s3_client
 .put_object()
 .bucket(self.bucket.clone())
 .key(key.clone())
 .body(body)
 .send()
 .await?;

 Ok(FunctionCode::builder()
 .s3_bucket(self.bucket.clone())
 .s3_key(key)
 .build())
 }

• For API details, see UpdateFunctionCode in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_lmd->updatefunctioncode(" oo_result is returned for
 testing purposes. "
 iv_functionname = iv_function_name
 iv_zipfile = io_zip_file).

Actions 2288

https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.update_function_code
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 MESSAGE 'Lambda function code updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodesigningcfgno00.
 MESSAGE 'Code signing configuration does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodeverification00.
 MESSAGE 'Code signature failed one or more validation checks for
 signature mismatch or expiration.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidcodesigex.
 MESSAGE 'Code signature failed the integrity check.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see UpdateFunctionCode in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

Actions 2289

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 let zipUrl = URL(fileURLWithPath: path)
 let zipData: Data

 // Read the function's Zip file.

 do {
 zipData = try Data(contentsOf: zipUrl)
 } catch {
 throw ExampleError.zipFileReadError
 }

 // Update the function's code and wait for the updated version to be
 // ready for use.

 do {
 _ = try await lambdaClient.updateFunctionCode(
 input: UpdateFunctionCodeInput(
 functionName: functionName,
 zipFile: zipData
)
)
 } catch {
 return false
 }

• For API details, see UpdateFunctionCode in AWS SDK for Swift API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateFunctionConfiguration with an AWS SDK or CLI

The following code examples show how to use UpdateFunctionConfiguration.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 2290

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/updatefunctioncode(input:)

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Update the code of a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function to update.</param>
 /// <param name="functionHandler">The code that performs the function's
 actions.</param>
 /// <param name="environmentVariables">A dictionary of environment
 variables.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateFunctionConfigurationAsync(
 string functionName,
 string functionHandler,
 Dictionary<string, string> environmentVariables)
 {
 var request = new UpdateFunctionConfigurationRequest
 {
 Handler = functionHandler,
 FunctionName = functionName,
 Environment = new Amazon.Lambda.Model.Environment { Variables =
 environmentVariables },
 };

 var response = await
 _lambdaService.UpdateFunctionConfigurationAsync(request);

 Console.WriteLine(response.LastModified);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Actions 2291

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

AWS Lambda Developer Guide

• For API details, see UpdateFunctionConfiguration in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::UpdateFunctionConfigurationRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 Aws::Lambda::Model::Environment environment;
 environment.AddVariables("LOG_LEVEL", "DEBUG");
 request.SetEnvironment(environment);

 Aws::Lambda::Model::UpdateFunctionConfigurationOutcome outcome =
 client.UpdateFunctionConfiguration(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda configuration was successfully updated."
 << std::endl;
 break;
 }

 else {
 std::cerr << "Error with Lambda::UpdateFunctionConfiguration. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

Actions 2292

https://docs.aws.amazon.com/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

AWS Lambda Developer Guide

• For API details, see UpdateFunctionConfiguration in AWS SDK for C++ API Reference.

CLI

AWS CLI

To modify the configuration of a function

The following update-function-configuration example modifies the memory size to
be 256 MB for the unpublished ($LATEST) version of the my-function function.

aws lambda update-function-configuration \
 --function-name my-function \
 --memory-size 256

Output:

{
 "FunctionName": "my-function",
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "RevisionId": "e52502d4-9320-4688-9cd6-152a6ab7490d",
 "MemorySize": 256,
 "Version": "$LATEST",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-function-role-
uy3l9qyq",
 "Timeout": 3,
 "Runtime": "nodejs10.x",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "5tT2qgzYUHaqwR716pZ2dpkn/0J1FrzJmlKidWoaCgk=",
 "Description": "",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "Handler": "index.handler"
}

Actions 2293

https://docs.aws.amazon.com/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionConfiguration

AWS Lambda Developer Guide

For more information, see AWS Lambda Function Configuration in the AWS Lambda
Developer Guide.

• For API details, see UpdateFunctionConfiguration in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "bytes"
 "context"
 "encoding/json"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
 "github.com/aws/aws-sdk-go-v2/service/lambda/types"
)

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// UpdateFunctionConfiguration updates a map of environment variables configured
 for
// the Lambda function specified by functionName.
func (wrapper FunctionWrapper) UpdateFunctionConfiguration(ctx context.Context,
 functionName string, envVars map[string]string) {

Actions 2294

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

AWS Lambda Developer Guide

 _, err := wrapper.LambdaClient.UpdateFunctionConfiguration(ctx,
 &lambda.UpdateFunctionConfigurationInput{
 FunctionName: aws.String(functionName),
 Environment: &types.Environment{Variables: envVars},
 })
 if err != nil {
 log.Panicf("Couldn't update configuration for %v. Here's why: %v",
 functionName, err)
 }
}

• For API details, see UpdateFunctionConfiguration in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Updates the configuration of an AWS Lambda function.
 *
 * @param awsLambda the {@link LambdaClient} instance to use for the AWS
 Lambda operation
 * @param functionName the name of the AWS Lambda function to update
 * @param handler the new handler for the AWS Lambda function
 *
 * @throws LambdaException if there is an error while updating the function
 configuration
 */
 public static void updateFunctionConfiguration(LambdaClient awsLambda, String
 functionName, String handler) {
 try {
 UpdateFunctionConfigurationRequest configurationRequest =
 UpdateFunctionConfigurationRequest.builder()
 .functionName(functionName)

Actions 2295

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#code-examples

AWS Lambda Developer Guide

 .handler(handler)
 .runtime(Runtime.JAVA17)
 .build();

 awsLambda.updateFunctionConfiguration(configurationRequest);

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see UpdateFunctionConfiguration in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

const updateFunctionConfiguration = (funcName) => {
 const client = new LambdaClient({});
 const config = readFileSync(`${dirname}../functions/config.json`).toString();
 const command = new UpdateFunctionConfigurationCommand({
 ...JSON.parse(config),
 FunctionName: funcName,
 });
 const result = client.send(command);
 waitForFunctionUpdated({ FunctionName: funcName });
 return result;
};

• For API details, see UpdateFunctionConfiguration in AWS SDK for JavaScript API Reference.

Actions 2296

https://docs.aws.amazon.com/goto/SdkForJavaV2/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionConfigurationCommand

AWS Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public function updateFunctionConfiguration($functionName, $handler,
 $environment = '')
 {
 return $this->lambdaClient->updateFunctionConfiguration([
 'FunctionName' => $functionName,
 'Handler' => "$handler.lambda_handler",
 'Environment' => $environment,
]);
 }

• For API details, see UpdateFunctionConfiguration in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example updates the existing Lambda Function Configuration

Update-LMFunctionConfiguration -FunctionName "MylambdaFunction123" -Handler
 "lambda_function.launch_instance" -Timeout 600 -Environment_Variable
 @{ "envvar1"="value";"envvar2"="value" } -Role arn:aws:iam::123456789101:role/
service-role/lambda -DeadLetterConfig_TargetArn arn:aws:sns:us-east-1:
 123456789101:MyfirstTopic

• For API details, see UpdateFunctionConfiguration in AWS Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This example updates the existing Lambda Function Configuration

Actions 2297

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://docs.aws.amazon.com/powershell/v4/reference

AWS Lambda Developer Guide

Update-LMFunctionConfiguration -FunctionName "MylambdaFunction123" -Handler
 "lambda_function.launch_instance" -Timeout 600 -Environment_Variable
 @{ "envvar1"="value";"envvar2"="value" } -Role arn:aws:iam::123456789101:role/
service-role/lambda -DeadLetterConfig_TargetArn arn:aws:sns:us-east-1:
 123456789101:MyfirstTopic

• For API details, see UpdateFunctionConfiguration in AWS Tools for PowerShell Cmdlet
Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def update_function_configuration(self, function_name, env_vars):
 """
 Updates the environment variables for a Lambda function.

 :param function_name: The name of the function to update.
 :param env_vars: A dict of environment variables to update.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_configuration(
 FunctionName=function_name, Environment={"Variables": env_vars}
)
 except ClientError as err:
 logger.error(
 "Couldn't update function configuration %s. Here's why: %s: %s",
 function_name,

Actions 2298

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

AWS Lambda Developer Guide

 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see UpdateFunctionConfiguration in AWS SDK for Python (Boto3) API
Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client, :cloudwatch_client, :iam_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @cloudwatch_client = Aws::CloudWatchLogs::Client.new(region: 'us-east-1')
 @iam_client = Aws::IAM::Client.new(region: 'us-east-1')
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Updates the environment variables for a Lambda function.
 # @param function_name: The name of the function to update.
 # @param log_level: The log level of the function.
 # @return: Data about the update, including the status.
 def update_function_configuration(function_name, log_level)
 @lambda_client.update_function_configuration({
 function_name: function_name,
 environment: {

Actions 2299

https://docs.aws.amazon.com/goto/boto3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

AWS Lambda Developer Guide

 variables: {
 'LOG_LEVEL' => log_level
 }
 }
 })
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating configurations for
 #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

• For API details, see UpdateFunctionConfiguration in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /** Update the environment for a function. */
 pub async fn update_function_configuration(
 &self,
 environment: Environment,
) -> Result<UpdateFunctionConfigurationOutput, anyhow::Error> {
 info!(
 ?environment,
 "Updating environment for {}", self.lambda_name
);
 let updated = self
 .lambda_client

Actions 2300

https://docs.aws.amazon.com/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

AWS Lambda Developer Guide

 .update_function_configuration()
 .function_name(self.lambda_name.clone())
 .environment(environment)
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(updated)
 }

• For API details, see UpdateFunctionConfiguration in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_lmd->updatefunctionconfiguration(" oo_result is
 returned for testing purposes. "
 iv_functionname = iv_function_name
 iv_runtime = iv_runtime
 iv_description = 'Updated Lambda function'
 iv_memorysize = iv_memory_size).

 MESSAGE 'Lambda function configuration/settings updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodesigningcfgno00.
 MESSAGE 'Code signing configuration does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodeverification00.
 MESSAGE 'Code signature failed one or more validation checks for
 signature mismatch or expiration.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidcodesigex.
 MESSAGE 'Code signature failed the integrity check.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.

Actions 2301

https://docs.rs/aws-sdk-lambda/latest/aws_sdk_lambda/client/struct.Client.html#method.update_function_configuration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

AWS Lambda Developer Guide

 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see UpdateFunctionConfiguration in AWS SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import AWSClientRuntime
import AWSLambda
import Foundation

 /// Tell the server-side component to log debug output by setting its
 /// environment's `LOG_LEVEL` to `DEBUG`.
 ///
 /// - Parameters:
 /// - lambdaClient: The `LambdaClient` to use.
 /// - functionName: The name of the AWS Lambda function to enable debug
 /// logging for.
 ///
 /// - Throws: `ExampleError.environmentResponseMissingError`,
 /// `ExampleError.updateFunctionConfigurationError`,
 /// `ExampleError.environmentVariablesMissingError`,
 /// `ExampleError.logLevelIncorrectError`,

Actions 2302

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/lambda/basics#code-examples

AWS Lambda Developer Guide

 /// `ExampleError.updateFunctionConfigurationError`
 func enableDebugLogging(lambdaClient: LambdaClient, functionName: String)
 async throws {
 let envVariables = [
 "LOG_LEVEL": "DEBUG"
]
 let environment = LambdaClientTypes.Environment(variables: envVariables)

 do {
 let output = try await lambdaClient.updateFunctionConfiguration(
 input: UpdateFunctionConfigurationInput(
 environment: environment,
 functionName: functionName
)
)

 guard let response = output.environment else {
 throw ExampleError.environmentResponseMissingError
 }

 if response.error != nil {
 throw ExampleError.updateFunctionConfigurationError
 }

 guard let retVariables = response.variables else {
 throw ExampleError.environmentVariablesMissingError
 }

 for envVar in retVariables {
 if envVar.key == "LOG_LEVEL" && envVar.value != "DEBUG" {
 print("*** Log level is not set to DEBUG!")
 throw ExampleError.logLevelIncorrectError
 }
 }
 } catch {
 throw ExampleError.updateFunctionConfigurationError
 }
 }

• For API details, see UpdateFunctionConfiguration in AWS SDK for Swift API reference.

Actions 2303

https://sdk.amazonaws.com/swift/api/awslambda/latest/documentation/awslambda/lambdaclient/updatefunctionconfiguration(input:)

AWS Lambda Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Lambda using AWS SDKs

The following code examples show you how to implement common scenarios in Lambda with AWS
SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Lambda or combined with other AWS services. Each scenario includes a link to the complete
source code, where you can find instructions on how to set up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Automatically confirm known Amazon Cognito users with a Lambda function using an AWS SDK

• Automatically migrate known Amazon Cognito users with a Lambda function using an AWS SDK

• Create an API Gateway REST API to track COVID-19 data

• Create a lending library REST API

• Create a messenger application with Step Functions

• Create a photo asset management application that lets users manage photos using labels

• Create a websocket chat application with API Gateway

• Create an application that analyzes customer feedback and synthesizes audio

• Invoke a Lambda function from a browser

• Transform data for your application with S3 Object Lambda

• Use API Gateway to invoke a Lambda function

• Use Step Functions to invoke Lambda functions

• Use scheduled events to invoke a Lambda function

• Use the Amazon Neptune API to develop a Lambda function that queries graph data

• Write custom activity data with a Lambda function after Amazon Cognito user authentication
using an AWS SDK

Scenarios 2304

AWS Lambda Developer Guide

Automatically confirm known Amazon Cognito users with a Lambda
function using an AWS SDK

The following code examples show how to automatically confirm known Amazon Cognito users
with a Lambda function.

• Configure a user pool to call a Lambda function for the PreSignUp trigger.

• Sign up a user with Amazon Cognito.

• The Lambda function scans a DynamoDB table and automatically confirms known users.

• Sign in as the new user, then clean up resources.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

import (
 "context"
 "errors"
 "log"
 "strings"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// AutoConfirm separates the steps of this scenario into individual functions so
 that
// they are simpler to read and understand.

Automatically confirm known users with a Lambda function 2305

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/user_pools_and_lambda_triggers#code-examples

AWS Lambda Developer Guide

type AutoConfirm struct {
 helper IScenarioHelper
 questioner demotools.IQuestioner
 resources Resources
 cognitoActor *actions.CognitoActions
}

// NewAutoConfirm constructs a new auto confirm runner.
func NewAutoConfirm(sdkConfig aws.Config, questioner demotools.IQuestioner,
 helper IScenarioHelper) AutoConfirm {
 scenario := AutoConfirm{
 helper: helper,
 questioner: questioner,
 resources: Resources{},
 cognitoActor: &actions.CognitoActions{CognitoClient:
 cognitoidentityprovider.NewFromConfig(sdkConfig)},
 }
 scenario.resources.init(scenario.cognitoActor, questioner)
 return scenario
}

// AddPreSignUpTrigger adds a Lambda handler as an invocation target for the
 PreSignUp trigger.
func (runner *AutoConfirm) AddPreSignUpTrigger(ctx context.Context, userPoolId
 string, functionArn string) {
 log.Printf("Let's add a Lambda function to handle the PreSignUp trigger from
 Cognito.\n" +
 "This trigger happens when a user signs up, and lets your function take action
 before the main Cognito\n" +
 "sign up processing occurs.\n")
 err := runner.cognitoActor.UpdateTriggers(
 ctx, userPoolId,
 actions.TriggerInfo{Trigger: actions.PreSignUp, HandlerArn:
 aws.String(functionArn)})
 if err != nil {
 panic(err)
 }
 log.Printf("Lambda function %v added to user pool %v to handle the PreSignUp
 trigger.\n",
 functionArn, userPoolId)
}

// SignUpUser signs up a user from the known user table with a password you
 specify.

Automatically confirm known users with a Lambda function 2306

AWS Lambda Developer Guide

func (runner *AutoConfirm) SignUpUser(ctx context.Context, clientId string,
 usersTable string) (string, string) {
 log.Println("Let's sign up a user to your Cognito user pool. When the user's
 email matches an email in the\n" +
 "DynamoDB known users table, it is automatically verified and the user is
 confirmed.")

 knownUsers, err := runner.helper.GetKnownUsers(ctx, usersTable)
 if err != nil {
 panic(err)
 }
 userChoice := runner.questioner.AskChoice("Which user do you want to use?\n",
 knownUsers.UserNameList())
 user := knownUsers.Users[userChoice]

 var signedUp bool
 var userConfirmed bool
 password := runner.questioner.AskPassword("Enter a password that has at least
 eight characters, uppercase, lowercase, numbers and symbols.\n"+
 "(the password will not display as you type):", 8)
 for !signedUp {
 log.Printf("Signing up user '%v' with email '%v' to Cognito.\n", user.UserName,
 user.UserEmail)
 userConfirmed, err = runner.cognitoActor.SignUp(ctx, clientId, user.UserName,
 password, user.UserEmail)
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 password = runner.questioner.AskPassword("Enter another password:", 8)
 } else {
 panic(err)
 }
 } else {
 signedUp = true
 }
 }
 log.Printf("User %v signed up, confirmed = %v.\n", user.UserName, userConfirmed)

 log.Println(strings.Repeat("-", 88))

 return user.UserName, password
}

// SignInUser signs in a user.

Automatically confirm known users with a Lambda function 2307

AWS Lambda Developer Guide

func (runner *AutoConfirm) SignInUser(ctx context.Context, clientId string,
 userName string, password string) string {
 runner.questioner.Ask("Press Enter when you're ready to continue.")
 log.Printf("Let's sign in as %v...\n", userName)
 authResult, err := runner.cognitoActor.SignIn(ctx, clientId, userName, password)
 if err != nil {
 panic(err)
 }
 log.Printf("Successfully signed in. Your access token starts with: %v...\n",
 (*authResult.AccessToken)[:10])
 log.Println(strings.Repeat("-", 88))
 return *authResult.AccessToken
}

// Run runs the scenario.
func (runner *AutoConfirm) Run(ctx context.Context, stackName string) {
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 runner.resources.Cleanup(ctx)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome\n")

 log.Println(strings.Repeat("-", 88))

 stackOutputs, err := runner.helper.GetStackOutputs(ctx, stackName)
 if err != nil {
 panic(err)
 }
 runner.resources.userPoolId = stackOutputs["UserPoolId"]
 runner.helper.PopulateUserTable(ctx, stackOutputs["TableName"])

 runner.AddPreSignUpTrigger(ctx, stackOutputs["UserPoolId"],
 stackOutputs["AutoConfirmFunctionArn"])
 runner.resources.triggers = append(runner.resources.triggers, actions.PreSignUp)
 userName, password := runner.SignUpUser(ctx, stackOutputs["UserPoolClientId"],
 stackOutputs["TableName"])
 runner.helper.ListRecentLogEvents(ctx, stackOutputs["AutoConfirmFunction"])
 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 runner.SignInUser(ctx, stackOutputs["UserPoolClientId"], userName, password))

Automatically confirm known users with a Lambda function 2308

AWS Lambda Developer Guide

 runner.resources.Cleanup(ctx)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Handle the PreSignUp trigger with a Lambda function.

import (
 "context"
 "log"
 "os"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 dynamodbtypes "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

const TABLE_NAME = "TABLE_NAME"

// UserInfo defines structured user data that can be marshalled to a DynamoDB
 format.
type UserInfo struct {
 UserName string `dynamodbav:"UserName"`
 UserEmail string `dynamodbav:"UserEmail"`
}

// GetKey marshals the user email value to a DynamoDB key format.
func (user UserInfo) GetKey() map[string]dynamodbtypes.AttributeValue {
 userEmail, err := attributevalue.Marshal(user.UserEmail)
 if err != nil {
 panic(err)
 }
 return map[string]dynamodbtypes.AttributeValue{"UserEmail": userEmail}
}

Automatically confirm known users with a Lambda function 2309

AWS Lambda Developer Guide

type handler struct {
 dynamoClient *dynamodb.Client
}

// HandleRequest handles the PreSignUp event by looking up a user in an Amazon
 DynamoDB table and
// specifying whether they should be confirmed and verified.
func (h *handler) HandleRequest(ctx context.Context, event
 events.CognitoEventUserPoolsPreSignup) (events.CognitoEventUserPoolsPreSignup,
 error) {
 log.Printf("Received presignup from %v for user '%v'", event.TriggerSource,
 event.UserName)
 if event.TriggerSource != "PreSignUp_SignUp" {
 // Other trigger sources, such as PreSignUp_AdminInitiateAuth, ignore the
 response from this handler.
 return event, nil
 }
 tableName := os.Getenv(TABLE_NAME)
 user := UserInfo{
 UserEmail: event.Request.UserAttributes["email"],
 }
 log.Printf("Looking up email %v in table %v.\n", user.UserEmail, tableName)
 output, err := h.dynamoClient.GetItem(ctx, &dynamodb.GetItemInput{
 Key: user.GetKey(),
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Error looking up email %v.\n", user.UserEmail)
 return event, err
 }
 if output.Item == nil {
 log.Printf("Email %v not found. Email verification is required.\n",
 user.UserEmail)
 return event, err
 }

 err = attributevalue.UnmarshalMap(output.Item, &user)
 if err != nil {
 log.Printf("Couldn't unmarshal DynamoDB item. Here's why: %v\n", err)
 return event, err
 }

 if user.UserName != event.UserName {

Automatically confirm known users with a Lambda function 2310

AWS Lambda Developer Guide

 log.Printf("UserEmail %v found, but stored UserName '%v' does not match
 supplied UserName '%v'. Verification is required.\n",
 user.UserEmail, user.UserName, event.UserName)
 } else {
 log.Printf("UserEmail %v found with matching UserName %v. User is confirmed.
\n", user.UserEmail, user.UserName)
 event.Response.AutoConfirmUser = true
 event.Response.AutoVerifyEmail = true
 }

 return event, err
}

func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Panicln(err)
 }
 h := handler{
 dynamoClient: dynamodb.NewFromConfig(sdkConfig),
 }
 lambda.Start(h.HandleRequest)
}

Create a struct that performs common tasks.

import (
 "context"
 "log"
 "strings"
 "time"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

Automatically confirm known users with a Lambda function 2311

AWS Lambda Developer Guide

// IScenarioHelper defines common functions used by the workflows in this
 example.
type IScenarioHelper interface {
 Pause(secs int)
 GetStackOutputs(ctx context.Context, stackName string) (actions.StackOutputs,
 error)
 PopulateUserTable(ctx context.Context, tableName string)
 GetKnownUsers(ctx context.Context, tableName string) (actions.UserList, error)
 AddKnownUser(ctx context.Context, tableName string, user actions.User)
 ListRecentLogEvents(ctx context.Context, functionName string)
}

// ScenarioHelper contains AWS wrapper structs used by the workflows in this
 example.
type ScenarioHelper struct {
 questioner demotools.IQuestioner
 dynamoActor *actions.DynamoActions
 cfnActor *actions.CloudFormationActions
 cwlActor *actions.CloudWatchLogsActions
 isTestRun bool
}

// NewScenarioHelper constructs a new scenario helper.
func NewScenarioHelper(sdkConfig aws.Config, questioner demotools.IQuestioner)
 ScenarioHelper {
 scenario := ScenarioHelper{
 questioner: questioner,
 dynamoActor: &actions.DynamoActions{DynamoClient:
 dynamodb.NewFromConfig(sdkConfig)},
 cfnActor: &actions.CloudFormationActions{CfnClient:
 cloudformation.NewFromConfig(sdkConfig)},
 cwlActor: &actions.CloudWatchLogsActions{CwlClient:
 cloudwatchlogs.NewFromConfig(sdkConfig)},
 }
 return scenario
}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 if !helper.isTestRun {
 time.Sleep(time.Duration(secs) * time.Second)
 }
}

Automatically confirm known users with a Lambda function 2312

AWS Lambda Developer Guide

// GetStackOutputs gets the outputs from the specified CloudFormation stack in a
 structured format.
func (helper ScenarioHelper) GetStackOutputs(ctx context.Context, stackName
 string) (actions.StackOutputs, error) {
 return helper.cfnActor.GetOutputs(ctx, stackName), nil
}

// PopulateUserTable fills the known user table with example data.
func (helper ScenarioHelper) PopulateUserTable(ctx context.Context, tableName
 string) {
 log.Printf("First, let's add some users to the DynamoDB %v table we'll use for
 this example.\n", tableName)
 err := helper.dynamoActor.PopulateTable(ctx, tableName)
 if err != nil {
 panic(err)
 }
}

// GetKnownUsers gets the users from the known users table in a structured
 format.
func (helper ScenarioHelper) GetKnownUsers(ctx context.Context, tableName string)
 (actions.UserList, error) {
 knownUsers, err := helper.dynamoActor.Scan(ctx, tableName)
 if err != nil {
 log.Printf("Couldn't get known users from table %v. Here's why: %v\n",
 tableName, err)
 }
 return knownUsers, err
}

// AddKnownUser adds a user to the known users table.
func (helper ScenarioHelper) AddKnownUser(ctx context.Context, tableName string,
 user actions.User) {
 log.Printf("Adding user '%v' with email '%v' to the DynamoDB known users
 table...\n",
 user.UserName, user.UserEmail)
 err := helper.dynamoActor.AddUser(ctx, tableName, user)
 if err != nil {
 panic(err)
 }
}

Automatically confirm known users with a Lambda function 2313

AWS Lambda Developer Guide

// ListRecentLogEvents gets the most recent log stream and events for the
 specified Lambda function and displays them.
func (helper ScenarioHelper) ListRecentLogEvents(ctx context.Context,
 functionName string) {
 log.Println("Waiting a few seconds to let Lambda write to CloudWatch Logs...")
 helper.Pause(10)
 log.Println("Okay, let's check the logs to find what's happened recently with
 your Lambda function.")
 logStream, err := helper.cwlActor.GetLatestLogStream(ctx, functionName)
 if err != nil {
 panic(err)
 }
 log.Printf("Getting some recent events from log stream %v\n",
 *logStream.LogStreamName)
 events, err := helper.cwlActor.GetLogEvents(ctx, functionName,
 *logStream.LogStreamName, 10)
 if err != nil {
 panic(err)
 }
 for _, event := range events {
 log.Printf("\t%v", *event.Message)
 }
 log.Println(strings.Repeat("-", 88))
}

Create a struct that wraps Amazon Cognito actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

Automatically confirm known users with a Lambda function 2314

AWS Lambda Developer Guide

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {
 Trigger Trigger
 HandlerArn *string
}

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }

Automatically confirm known users with a Lambda function 2315

AWS Lambda Developer Guide

 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

// SignUp signs up a user with Amazon Cognito.
func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false
 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{
 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.

Automatically confirm known users with a Lambda function 2316

AWS Lambda Developer Guide

func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType
 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)
 }
 } else {
 authResult = output.AuthenticationResult
 }
 return authResult, err
}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err
}

Automatically confirm known users with a Lambda function 2317

AWS Lambda Developer Guide

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {
 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }
 return err
}

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {

Automatically confirm known users with a Lambda function 2318

AWS Lambda Developer Guide

 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }
 }
 return err
}

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err

Automatically confirm known users with a Lambda function 2319

AWS Lambda Developer Guide

}

Create a struct that wraps DynamoDB actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// DynamoActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type DynamoActions struct {
 DynamoClient *dynamodb.Client
}

// User defines structured user data.
type User struct {
 UserName string
 UserEmail string
 LastLogin *LoginInfo `dynamodbav:",omitempty"`
}

// LoginInfo defines structured custom login data.
type LoginInfo struct {
 UserPoolId string
 ClientId string
 Time string
}

// UserList defines a list of users.
type UserList struct {
 Users []User
}

Automatically confirm known users with a Lambda function 2320

AWS Lambda Developer Guide

// UserNameList returns the usernames contained in a UserList as a list of
 strings.
func (users *UserList) UserNameList() []string {
 names := make([]string, len(users.Users))
 for i := 0; i < len(users.Users); i++ {
 names[i] = users.Users[i].UserName
 }
 return names
}

// PopulateTable adds a set of test users to the table.
func (actor DynamoActions) PopulateTable(ctx context.Context, tableName string)
 error {
 var err error
 var item map[string]types.AttributeValue
 var writeReqs []types.WriteRequest
 for i := 1; i < 4; i++ {
 item, err = attributevalue.MarshalMap(User{UserName: fmt.Sprintf("test_user_
%v", i), UserEmail: fmt.Sprintf("test_email_%v@example.com", i)})
 if err != nil {
 log.Printf("Couldn't marshall user into DynamoDB format. Here's why: %v\n",
 err)
 return err
 }
 writeReqs = append(writeReqs, types.WriteRequest{PutRequest:
 &types.PutRequest{Item: item}})
 }
 _, err = actor.DynamoClient.BatchWriteItem(ctx, &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{tableName: writeReqs},
 })
 if err != nil {
 log.Printf("Couldn't populate table %v with users. Here's why: %v\n",
 tableName, err)
 }
 return err
}

// Scan scans the table for all items.
func (actor DynamoActions) Scan(ctx context.Context, tableName string) (UserList,
 error) {
 var userList UserList
 output, err := actor.DynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),

Automatically confirm known users with a Lambda function 2321

AWS Lambda Developer Guide

 })
 if err != nil {
 log.Printf("Couldn't scan table %v for items. Here's why: %v\n", tableName,
 err)
 } else {
 err = attributevalue.UnmarshalListOfMaps(output.Items, &userList.Users)
 if err != nil {
 log.Printf("Couldn't unmarshal items into users. Here's why: %v\n", err)
 }
 }
 return userList, err
}

// AddUser adds a user item to a table.
func (actor DynamoActions) AddUser(ctx context.Context, tableName string, user
 User) error {
 userItem, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshall user to item. Here's why: %v\n", err)
 }
 _, err = actor.DynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userItem,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't put item in table %v. Here's why: %v", tableName, err)
 }
 return err
}

Create a struct that wraps CloudWatch Logs actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"

Automatically confirm known users with a Lambda function 2322

AWS Lambda Developer Guide

)

type CloudWatchLogsActions struct {
 CwlClient *cloudwatchlogs.Client
}

// GetLatestLogStream gets the most recent log stream for a Lambda function.
func (actor CloudWatchLogsActions) GetLatestLogStream(ctx context.Context,
 functionName string) (types.LogStream, error) {
 var logStream types.LogStream
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.DescribeLogStreams(ctx,
 &cloudwatchlogs.DescribeLogStreamsInput{
 Descending: aws.Bool(true),
 Limit: aws.Int32(1),
 LogGroupName: aws.String(logGroupName),
 OrderBy: types.OrderByLastEventTime,
 })
 if err != nil {
 log.Printf("Couldn't get log streams for log group %v. Here's why: %v\n",
 logGroupName, err)
 } else {
 logStream = output.LogStreams[0]
 }
 return logStream, err
}

// GetLogEvents gets the most recent eventCount events from the specified log
 stream.
func (actor CloudWatchLogsActions) GetLogEvents(ctx context.Context, functionName
 string, logStreamName string, eventCount int32) (
 []types.OutputLogEvent, error) {
 var events []types.OutputLogEvent
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.GetLogEvents(ctx,
 &cloudwatchlogs.GetLogEventsInput{
 LogStreamName: aws.String(logStreamName),
 Limit: aws.Int32(eventCount),
 LogGroupName: aws.String(logGroupName),
 })
 if err != nil {
 log.Printf("Couldn't get log event for log stream %v. Here's why: %v\n",
 logStreamName, err)
 } else {

Automatically confirm known users with a Lambda function 2323

AWS Lambda Developer Guide

 events = output.Events
 }
 return events, err
}

Create a struct that wraps AWS CloudFormation actions.

import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
)

// StackOutputs defines a map of outputs from a specific stack.
type StackOutputs map[string]string

type CloudFormationActions struct {
 CfnClient *cloudformation.Client
}

// GetOutputs gets the outputs from a CloudFormation stack and puts them into a
 structured format.
func (actor CloudFormationActions) GetOutputs(ctx context.Context, stackName
 string) StackOutputs {
 output, err := actor.CfnClient.DescribeStacks(ctx,
 &cloudformation.DescribeStacksInput{
 StackName: aws.String(stackName),
 })
 if err != nil || len(output.Stacks) == 0 {
 log.Panicf("Couldn't find a CloudFormation stack named %v. Here's why: %v\n",
 stackName, err)
 }
 stackOutputs := StackOutputs{}
 for _, out := range output.Stacks[0].Outputs {
 stackOutputs[*out.OutputKey] = *out.OutputValue
 }
 return stackOutputs
}

Automatically confirm known users with a Lambda function 2324

AWS Lambda Developer Guide

Clean up resources.

import (
 "context"
 "log"
 "user_pools_and_lambda_triggers/actions"

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct {
 userPoolId string
 userAccessTokens []string
 triggers []actions.Trigger

 cognitoActor *actions.CognitoActions
 questioner demotools.IQuestioner
}

func (resources *Resources) init(cognitoActor *actions.CognitoActions, questioner
 demotools.IQuestioner) {
 resources.userAccessTokens = []string{}
 resources.triggers = []actions.Trigger{}
 resources.cognitoActor = cognitoActor
 resources.questioner = questioner
}

// Cleanup deletes all AWS resources created during an example.
func (resources *Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong during cleanup.\n%v\n", r)
 log.Println("Use the AWS Management Console to remove any remaining resources
 \n" +
 "that were created for this scenario.")
 }
 }()

Automatically confirm known users with a Lambda function 2325

AWS Lambda Developer Guide

 wantDelete := resources.questioner.AskBool("Do you want to remove all of the AWS
 resources that were created "+
 "during this demo (y/n)?", "y")
 if wantDelete {
 for _, accessToken := range resources.userAccessTokens {
 err := resources.cognitoActor.DeleteUser(ctx, accessToken)
 if err != nil {
 log.Println("Couldn't delete user during cleanup.")
 panic(err)
 }
 log.Println("Deleted user.")
 }
 triggerList := make([]actions.TriggerInfo, len(resources.triggers))
 for i := 0; i < len(resources.triggers); i++ {
 triggerList[i] = actions.TriggerInfo{Trigger: resources.triggers[i],
 HandlerArn: nil}
 }
 err := resources.cognitoActor.UpdateTriggers(ctx, resources.userPoolId,
 triggerList...)
 if err != nil {
 log.Println("Couldn't update Cognito triggers during cleanup.")
 panic(err)
 }
 log.Println("Removed Cognito triggers from user pool.")
 } else {
 log.Println("Be sure to remove resources when you're done with them to avoid
 unexpected charges!")
 }
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• DeleteUser

• InitiateAuth

• SignUp

• UpdateUserPool

Automatically confirm known users with a Lambda function 2326

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.SignUp
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Configure an interactive "Scenario" run. The JavaScript (v3) examples share a Scenario
runner to streamline complex examples. The complete source code is on GitHub.

import { AutoConfirm } from "./scenario-auto-confirm.js";

/**
 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {
 errors: [],
 users: [
 {
 UserName: "test_user_1",
 UserEmail: "test_email_1@example.com",
 },
 {
 UserName: "test_user_2",
 UserEmail: "test_email_2@example.com",
 },
 {
 UserName: "test_user_3",
 UserEmail: "test_email_3@example.com",
 },
],
};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */

Automatically confirm known users with a Lambda function 2327

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples

AWS Lambda Developer Guide

export const scenarios = {
 // Demonstrate automatically confirming known users in a database.
 "auto-confirm": AutoConfirm(context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";
import { parseScenarioArgs } from "@aws-doc-sdk-examples/lib/scenario/index.js";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Cognito user pools and triggers",
 description:
 "Demonstrate how to use the AWS SDKs to customize Amazon Cognito
 authentication behavior.",
 });
}

This Scenario demonstrates auto-confirming a known user. It orchestrates the example
steps.

import { wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";

import {
 getStackOutputs,
 logCleanUpReminder,
 promptForStackName,
 promptForStackRegion,
 skipWhenErrors,
} from "./steps-common.js";
import { populateTable } from "./actions/dynamodb-actions.js";
import {
 addPreSignUpHandler,
 deleteUser,
 getUser,
 signIn,

Automatically confirm known users with a Lambda function 2328

AWS Lambda Developer Guide

 signUpUser,
} from "./actions/cognito-actions.js";
import {
 getLatestLogStreamForLambda,
 getLogEvents,
} from "./actions/cloudwatch-logs-actions.js";

/**
 * @typedef {{
 * errors: Error[],
 * password: string,
 * users: { UserName: string, UserEmail: string }[],
 * selectedUser?: string,
 * stackName?: string,
 * stackRegion?: string,
 * token?: string,
 * confirmDeleteSignedInUser?: boolean,
 * TableName?: string,
 * UserPoolClientId?: string,
 * UserPoolId?: string,
 * UserPoolArn?: string,
 * AutoConfirmHandlerArn?: string,
 * AutoConfirmHandlerName?: string
 * }} State
 */

const greeting = new ScenarioOutput(
 "greeting",
 (/** @type {State} */ state) => `This demo will populate some users into the \
database created as part of the "${state.stackName}" stack. \
Then the AutoConfirmHandler will be linked to the PreSignUp \
trigger from Cognito. Finally, you will choose a user to sign up.`,
 { skipWhen: skipWhenErrors },
);

const logPopulatingUsers = new ScenarioOutput(
 "logPopulatingUsers",
 "Populating the DynamoDB table with some users.",
 { skipWhenErrors: skipWhenErrors },
);

const logPopulatingUsersComplete = new ScenarioOutput(
 "logPopulatingUsersComplete",
 "Done populating users.",

Automatically confirm known users with a Lambda function 2329

AWS Lambda Developer Guide

 { skipWhen: skipWhenErrors },
);

const populateUsers = new ScenarioAction(
 "populateUsers",
 async (/** @type {State} */ state) => {
 const [_, err] = await populateTable({
 region: state.stackRegion,
 tableName: state.TableName,
 items: state.users,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTrigger = new ScenarioOutput(
 "logSetupSignUpTrigger",
 "Setting up the PreSignUp trigger for the Cognito User Pool.",
 { skipWhen: skipWhenErrors },
);

const setupSignUpTrigger = new ScenarioAction(
 "setupSignUpTrigger",
 async (/** @type {State} */ state) => {
 const [_, err] = await addPreSignUpHandler({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 handlerArn: state.AutoConfirmHandlerArn,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTriggerComplete = new ScenarioOutput(

Automatically confirm known users with a Lambda function 2330

AWS Lambda Developer Guide

 "logSetupSignUpTriggerComplete",
 (
 /** @type {State} */ state,
) => `The lambda function "${state.AutoConfirmHandlerName}" \
has been configured as the PreSignUp trigger handler for the user pool
 "${state.UserPoolId}".`,
 { skipWhen: skipWhenErrors },
);

const selectUser = new ScenarioInput(
 "selectedUser",
 "Select a user to sign up.",
 {
 type: "select",
 choices: (/** @type {State} */ state) => state.users.map((u) => u.UserName),
 skipWhen: skipWhenErrors,
 default: (/** @type {State} */ state) => state.users[0].UserName,
 },
);

const checkIfUserAlreadyExists = new ScenarioAction(
 "checkIfUserAlreadyExists",
 async (/** @type {State} */ state) => {
 const [user, err] = await getUser({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 username: state.selectedUser,
 });

 if (err?.name === "UserNotFoundException") {
 // Do nothing. We're not expecting the user to exist before
 // sign up is complete.
 return;
 }

 if (err) {
 state.errors.push(err);
 return;
 }

 if (user) {
 state.errors.push(
 new Error(

Automatically confirm known users with a Lambda function 2331

AWS Lambda Developer Guide

 `The user "${state.selectedUser}" already exists in the user pool
 "${state.UserPoolId}".`,
),
);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const createPassword = new ScenarioInput(
 "password",
 "Enter a password that has at least eight characters, uppercase, lowercase,
 numbers and symbols.",
 { type: "password", skipWhen: skipWhenErrors, default: "Abcd1234!" },
);

const logSignUpExistingUser = new ScenarioOutput(
 "logSignUpExistingUser",
 (/** @type {State} */ state) => `Signing up user "${state.selectedUser}".`,
 { skipWhen: skipWhenErrors },
);

const signUpExistingUser = new ScenarioAction(
 "signUpExistingUser",
 async (/** @type {State} */ state) => {
 const signUp = (password) =>
 signUpUser({
 region: state.stackRegion,
 userPoolClientId: state.UserPoolClientId,
 username: state.selectedUser,
 email: state.users.find((u) => u.UserName === state.selectedUser)
 .UserEmail,
 password,
 });

 let [_, err] = await signUp(state.password);

 while (err?.name === "InvalidPasswordException") {
 console.warn("The password you entered was invalid.");
 await createPassword.handle(state);
 [_, err] = await signUp(state.password);
 }

Automatically confirm known users with a Lambda function 2332

AWS Lambda Developer Guide

 if (err) {
 state.errors.push(err);
 }
 },
 { skipWhen: skipWhenErrors },
);

const logSignUpExistingUserComplete = new ScenarioOutput(
 "logSignUpExistingUserComplete",
 (/** @type {State} */ state) =>
 `"${state.selectedUser} was signed up successfully.`,
 { skipWhen: skipWhenErrors },
);

const logLambdaLogs = new ScenarioAction(
 "logLambdaLogs",
 async (/** @type {State} */ state) => {
 console.log(
 "Waiting a few seconds to let Lambda write to CloudWatch Logs...\n",
);
 await wait(10);

 const [logStream, logStreamErr] = await getLatestLogStreamForLambda({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 });
 if (logStreamErr) {
 state.errors.push(logStreamErr);
 return;
 }

 console.log(
 `Getting some recent events from log stream "${logStream.logStreamName}"`,
);
 const [logEvents, logEventsErr] = await getLogEvents({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 eventCount: 10,
 logStreamName: logStream.logStreamName,
 });
 if (logEventsErr) {
 state.errors.push(logEventsErr);
 return;

Automatically confirm known users with a Lambda function 2333

AWS Lambda Developer Guide

 }

 console.log(logEvents.map((ev) => `\t${ev.message}`).join(""));
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUser = new ScenarioOutput(
 "logSignInUser",
 (/** @type {State} */ state) => `Let's sign in as ${state.selectedUser}`,
 { skipWhen: skipWhenErrors },
);

const signInUser = new ScenarioAction(
 "signInUser",
 async (/** @type {State} */ state) => {
 const [response, err] = await signIn({
 region: state.stackRegion,
 clientId: state.UserPoolClientId,
 username: state.selectedUser,
 password: state.password,
 });

 if (err?.name === "PasswordResetRequiredException") {
 state.errors.push(new Error("Please reset your password."));
 return;
 }

 if (err) {
 state.errors.push(err);
 return;
 }

 state.token = response?.AuthenticationResult?.AccessToken;
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUserComplete = new ScenarioOutput(
 "logSignInUserComplete",
 (/** @type {State} */ state) =>
 `Successfully signed in. Your access token starts with:
 ${state.token.slice(0, 11)}`,
 { skipWhen: skipWhenErrors },

Automatically confirm known users with a Lambda function 2334

AWS Lambda Developer Guide

);

const confirmDeleteSignedInUser = new ScenarioInput(
 "confirmDeleteSignedInUser",
 "Do you want to delete the currently signed in user?",
 { type: "confirm", skipWhen: skipWhenErrors },
);

const deleteSignedInUser = new ScenarioAction(
 "deleteSignedInUser",
 async (/** @type {State} */ state) => {
 const [_, err] = await deleteUser({
 region: state.stackRegion,
 accessToken: state.token,
 });

 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: (/** @type {State} */ state) =>
 skipWhenErrors(state) || !state.confirmDeleteSignedInUser,
 },
);

const logErrors = new ScenarioOutput(
 "logErrors",
 (/** @type {State}*/ state) => {
 const errorList = state.errors
 .map((err) => ` - ${err.name}: ${err.message}`)
 .join("\n");
 return `Scenario errors found:\n${errorList}`;
 },
 {
 // Don't log errors when there aren't any!
 skipWhen: (/** @type {State} */ state) => state.errors.length === 0,
 },
);

export const AutoConfirm = (context) =>
 new Scenario(
 "AutoConfirm",
 [

Automatically confirm known users with a Lambda function 2335

AWS Lambda Developer Guide

 promptForStackName,
 promptForStackRegion,
 getStackOutputs,
 greeting,
 logPopulatingUsers,
 populateUsers,
 logPopulatingUsersComplete,
 logSetupSignUpTrigger,
 setupSignUpTrigger,
 logSetupSignUpTriggerComplete,
 selectUser,
 checkIfUserAlreadyExists,
 createPassword,
 logSignUpExistingUser,
 signUpExistingUser,
 logSignUpExistingUserComplete,
 logLambdaLogs,
 logSignInUser,
 signInUser,
 logSignInUserComplete,
 confirmDeleteSignedInUser,
 deleteSignedInUser,
 logCleanUpReminder,
 logErrors,
],
 context,
);

These are steps that are shared with other Scenarios.

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { getCfnOutputs } from "@aws-doc-sdk-examples/lib/sdk/cfn-outputs.js";

export const skipWhenErrors = (state) => state.errors.length > 0;

export const getStackOutputs = new ScenarioAction(
 "getStackOutputs",
 async (state) => {

Automatically confirm known users with a Lambda function 2336

AWS Lambda Developer Guide

 if (!state.stackName || !state.stackRegion) {
 state.errors.push(
 new Error(
 "No stack name or region provided. The stack name and \
region are required to fetch CFN outputs relevant to this example.",
),
);
 return;
 }

 const outputs = await getCfnOutputs(state.stackName, state.stackRegion);
 Object.assign(state, outputs);
 },
);

export const promptForStackName = new ScenarioInput(
 "stackName",
 "Enter the name of the stack you deployed earlier.",
 { type: "input", default: "PoolsAndTriggersStack" },
);

export const promptForStackRegion = new ScenarioInput(
 "stackRegion",
 "Enter the region of the stack you deployed earlier.",
 { type: "input", default: "us-east-1" },
);

export const logCleanUpReminder = new ScenarioOutput(
 "logCleanUpReminder",
 "All done. Remember to run 'cdk destroy' to teardown the stack.",
 { skipWhen: skipWhenErrors },
);

A handler for the PreSignUp trigger with a Lambda function.

import type { PreSignUpTriggerEvent, Handler } from "aws-lambda";
import type { UserRepository } from "./user-repository";
import { DynamoDBUserRepository } from "./user-repository";

export class PreSignUpHandler {
 private userRepository: UserRepository;

Automatically confirm known users with a Lambda function 2337

AWS Lambda Developer Guide

 constructor(userRepository: UserRepository) {
 this.userRepository = userRepository;
 }

 private isPreSignUpTriggerSource(event: PreSignUpTriggerEvent): boolean {
 return event.triggerSource === "PreSignUp_SignUp";
 }

 private getEventUserEmail(event: PreSignUpTriggerEvent): string {
 return event.request.userAttributes.email;
 }

 async handlePreSignUpTriggerEvent(
 event: PreSignUpTriggerEvent,
): Promise<PreSignUpTriggerEvent> {
 console.log(
 `Received presignup from ${event.triggerSource} for user
 '${event.userName}'`,
);

 if (!this.isPreSignUpTriggerSource(event)) {
 return event;
 }

 const eventEmail = this.getEventUserEmail(event);
 console.log(`Looking up email ${eventEmail}.`);
 const storedUserInfo =
 await this.userRepository.getUserInfoByEmail(eventEmail);

 if (!storedUserInfo) {
 console.log(
 `Email ${eventEmail} not found. Email verification is required.`,
);
 return event;
 }

 if (storedUserInfo.UserName !== event.userName) {
 console.log(
 `UserEmail ${eventEmail} found, but stored UserName
 '${storedUserInfo.UserName}' does not match supplied UserName
 '${event.userName}'. Verification is required.`,
);
 } else {
 console.log(

Automatically confirm known users with a Lambda function 2338

AWS Lambda Developer Guide

 `UserEmail ${eventEmail} found with matching UserName
 ${storedUserInfo.UserName}. User is confirmed.`,
);
 event.response.autoConfirmUser = true;
 event.response.autoVerifyEmail = true;
 }
 return event;
 }
}

const createPreSignUpHandler = (): PreSignUpHandler => {
 const tableName = process.env.TABLE_NAME;
 if (!tableName) {
 throw new Error("TABLE_NAME environment variable is not set");
 }

 const userRepository = new DynamoDBUserRepository(tableName);
 return new PreSignUpHandler(userRepository);
};

export const handler: Handler = async (event: PreSignUpTriggerEvent) => {
 const preSignUpHandler = createPreSignUpHandler();
 return preSignUpHandler.handlePreSignUpTriggerEvent(event);
};

Module of CloudWatch Logs actions.

import {
 CloudWatchLogsClient,
 GetLogEventsCommand,
 OrderBy,
 paginateDescribeLogStreams,
} from "@aws-sdk/client-cloudwatch-logs";

/**
 * Get the latest log stream for a Lambda function.
 * @param {{ functionName: string, region: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").LogStream | null,
 unknown]>}
 */
export const getLatestLogStreamForLambda = async ({ functionName, region }) => {

Automatically confirm known users with a Lambda function 2339

AWS Lambda Developer Guide

 try {
 const logGroupName = `/aws/lambda/${functionName}`;
 const cwlClient = new CloudWatchLogsClient({ region });
 const paginator = paginateDescribeLogStreams(
 { client: cwlClient },
 {
 descending: true,
 limit: 1,
 orderBy: OrderBy.LastEventTime,
 logGroupName,
 },
);

 for await (const page of paginator) {
 return [page.logStreams[0], null];
 }
 } catch (err) {
 return [null, err];
 }
};

/**
 * Get the log events for a Lambda function's log stream.
 * @param {{
 * functionName: string,
 * logStreamName: string,
 * eventCount: number,
 * region: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").OutputLogEvent[]
 | null, unknown]>}
 */
export const getLogEvents = async ({
 functionName,
 logStreamName,
 eventCount,
 region,
}) => {
 try {
 const cwlClient = new CloudWatchLogsClient({ region });
 const logGroupName = `/aws/lambda/${functionName}`;
 const response = await cwlClient.send(
 new GetLogEventsCommand({
 logStreamName: logStreamName,

Automatically confirm known users with a Lambda function 2340

AWS Lambda Developer Guide

 limit: eventCount,
 logGroupName: logGroupName,
 }),
);

 return [response.events, null];
 } catch (err) {
 return [null, err];
 }
};

Module of Amazon Cognito actions.

import {
 AdminGetUserCommand,
 CognitoIdentityProviderClient,
 DeleteUserCommand,
 InitiateAuthCommand,
 SignUpCommand,
 UpdateUserPoolCommand,
} from "@aws-sdk/client-cognito-identity-provider";

/**
 * Connect a Lambda function to the PreSignUp trigger for a Cognito user pool
 * @param {{ region: string, userPoolId: string, handlerArn: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").UpdateUserPoolCommandOutput | null, unknown]>}
 */
export const addPreSignUpHandler = async ({
 region,
 userPoolId,
 handlerArn,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const command = new UpdateUserPoolCommand({
 UserPoolId: userPoolId,
 LambdaConfig: {

Automatically confirm known users with a Lambda function 2341

AWS Lambda Developer Guide

 PreSignUp: handlerArn,
 },
 });

 const response = await cognitoClient.send(command);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Attempt to register a user to a user pool with a given username and password.
 * @param {{
 * region: string,
 * userPoolClientId: string,
 * username: string,
 * email: string,
 * password: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").SignUpCommandOutput | null, unknown]>}
 */
export const signUpUser = async ({
 region,
 userPoolClientId,
 username,
 email,
 password,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const response = await cognitoClient.send(
 new SignUpCommand({
 ClientId: userPoolClientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 }),
);
 return [response, null];

Automatically confirm known users with a Lambda function 2342

AWS Lambda Developer Guide

 } catch (err) {
 return [null, err];
 }
};

/**
 * Sign in a user to Amazon Cognito using a username and password authentication
 flow.
 * @param {{ region: string, clientId: string, username: string, password:
 string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").InitiateAuthCommandOutput | null, unknown]>}
 */
export const signIn = async ({ region, clientId, username, password }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new InitiateAuthCommand({
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: clientId,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Retrieve an existing user from a user pool.
 * @param {{ region: string, userPoolId: string, username: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").AdminGetUserCommandOutput | null, unknown]>}
 */
export const getUser = async ({ region, userPoolId, username }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new AdminGetUserCommand({
 UserPoolId: userPoolId,
 Username: username,
 }),
);

Automatically confirm known users with a Lambda function 2343

AWS Lambda Developer Guide

 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Delete the signed-in user. Useful for allowing a user to delete their
 * own profile.
 * @param {{ region: string, accessToken: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").DeleteUserCommandOutput | null, unknown]>}
 */
export const deleteUser = async ({ region, accessToken }) => {
 try {
 const client = new CognitoIdentityProviderClient({ region });
 const response = await client.send(
 new DeleteUserCommand({ AccessToken: accessToken }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

Module of DynamoDB actions.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 BatchWriteCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

/**
 * Populate a DynamoDB table with provide items.
 * @param {{ region: string, tableName: string, items: Record<string,
 unknown>[] }} config
 * @returns {Promise<[import("@aws-sdk/lib-dynamodb").BatchWriteCommandOutput |
 null, unknown]>}
 */
export const populateTable = async ({ region, tableName, items }) => {

Automatically confirm known users with a Lambda function 2344

AWS Lambda Developer Guide

 try {
 const ddbClient = new DynamoDBClient({ region });
 const docClient = DynamoDBDocumentClient.from(ddbClient);
 const response = await docClient.send(
 new BatchWriteCommand({
 RequestItems: {
 [tableName]: items.map((item) => ({
 PutRequest: {
 Item: item,
 },
 })),
 },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• DeleteUser

• InitiateAuth

• SignUp

• UpdateUserPool

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Automatically migrate known Amazon Cognito users with a Lambda
function using an AWS SDK

The following code example shows how to automatically migrate known Amazon Cognito users
with a Lambda function.

• Configure a user pool to call a Lambda function for the MigrateUser trigger.

• Sign in to Amazon Cognito with a username and email that is not in the user pool.

Automatically migrate known users with a Lambda function 2345

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/DeleteUserCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/UpdateUserPoolCommand

AWS Lambda Developer Guide

• The Lambda function scans a DynamoDB table and automatically migrates known users to the
user pool.

• Perform the forgot password flow to reset the password for the migrated user.

• Sign in as the new user, then clean up resources.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

import (
 "context"
 "errors"
 "fmt"
 "log"
 "strings"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// MigrateUser separates the steps of this scenario into individual functions so
 that
// they are simpler to read and understand.
type MigrateUser struct {
 helper IScenarioHelper
 questioner demotools.IQuestioner
 resources Resources
 cognitoActor *actions.CognitoActions
}

Automatically migrate known users with a Lambda function 2346

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/user_pools_and_lambda_triggers#code-examples

AWS Lambda Developer Guide

// NewMigrateUser constructs a new migrate user runner.
func NewMigrateUser(sdkConfig aws.Config, questioner demotools.IQuestioner,
 helper IScenarioHelper) MigrateUser {
 scenario := MigrateUser{
 helper: helper,
 questioner: questioner,
 resources: Resources{},
 cognitoActor: &actions.CognitoActions{CognitoClient:
 cognitoidentityprovider.NewFromConfig(sdkConfig)},
 }
 scenario.resources.init(scenario.cognitoActor, questioner)
 return scenario
}

// AddMigrateUserTrigger adds a Lambda handler as an invocation target for the
 MigrateUser trigger.
func (runner *MigrateUser) AddMigrateUserTrigger(ctx context.Context, userPoolId
 string, functionArn string) {
 log.Printf("Let's add a Lambda function to handle the MigrateUser trigger from
 Cognito.\n" +
 "This trigger happens when an unknown user signs in, and lets your function
 take action before Cognito\n" +
 "rejects the user.\n\n")
 err := runner.cognitoActor.UpdateTriggers(
 ctx, userPoolId,
 actions.TriggerInfo{Trigger: actions.UserMigration, HandlerArn:
 aws.String(functionArn)})
 if err != nil {
 panic(err)
 }
 log.Printf("Lambda function %v added to user pool %v to handle the MigrateUser
 trigger.\n",
 functionArn, userPoolId)

 log.Println(strings.Repeat("-", 88))
}

// SignInUser adds a new user to the known users table and signs that user in to
 Amazon Cognito.
func (runner *MigrateUser) SignInUser(ctx context.Context, usersTable string,
 clientId string) (bool, actions.User) {
 log.Println("Let's sign in a user to your Cognito user pool. When the username
 and email matches an entry in the\n" +

Automatically migrate known users with a Lambda function 2347

AWS Lambda Developer Guide

 "DynamoDB known users table, the email is automatically verified and the user
 is migrated to the Cognito user pool.")

 user := actions.User{}
 user.UserName = runner.questioner.Ask("\nEnter a username:")
 user.UserEmail = runner.questioner.Ask("\nEnter an email that you own. This
 email will be used to confirm user migration\n" +
 "during this example:")

 runner.helper.AddKnownUser(ctx, usersTable, user)

 var err error
 var resetRequired *types.PasswordResetRequiredException
 var authResult *types.AuthenticationResultType
 signedIn := false
 for !signedIn && resetRequired == nil {
 log.Printf("Signing in to Cognito as user '%v'. The expected result is a
 PasswordResetRequiredException.\n\n", user.UserName)
 authResult, err = runner.cognitoActor.SignIn(ctx, clientId, user.UserName, "_")
 if err != nil {
 if errors.As(err, &resetRequired) {
 log.Printf("\nUser '%v' is not in the Cognito user pool but was found in the
 DynamoDB known users table.\n"+
 "User migration is started and a password reset is required.",
 user.UserName)
 } else {
 panic(err)
 }
 } else {
 log.Printf("User '%v' successfully signed in. This is unexpected and probably
 means you have not\n"+
 "cleaned up a previous run of this scenario, so the user exist in the Cognito
 user pool.\n"+
 "You can continue this example and select to clean up resources, or manually
 remove\n"+
 "the user from your user pool and try again.", user.UserName)
 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 *authResult.AccessToken)
 signedIn = true
 }
 }

 log.Println(strings.Repeat("-", 88))
 return resetRequired != nil, user

Automatically migrate known users with a Lambda function 2348

AWS Lambda Developer Guide

}

// ResetPassword starts a password recovery flow.
func (runner *MigrateUser) ResetPassword(ctx context.Context, clientId string,
 user actions.User) {
 wantCode := runner.questioner.AskBool(fmt.Sprintf("In order to migrate the user
 to Cognito, you must be able to receive a confirmation\n"+
 "code by email at %v. Do you want to send a code (y/n)?", user.UserEmail), "y")
 if !wantCode {
 log.Println("To complete this example and successfully migrate a user to
 Cognito, you must enter an email\n" +
 "you own that can receive a confirmation code.")
 return
 }
 codeDelivery, err := runner.cognitoActor.ForgotPassword(ctx, clientId,
 user.UserName)
 if err != nil {
 panic(err)
 }
 log.Printf("\nA confirmation code has been sent to %v.",
 *codeDelivery.Destination)
 code := runner.questioner.Ask("Check your email and enter it here:")

 confirmed := false
 password := runner.questioner.AskPassword("\nEnter a password that has at least
 eight characters, uppercase, lowercase, numbers and symbols.\n"+
 "(the password will not display as you type):", 8)
 for !confirmed {
 log.Printf("\nConfirming password reset for user '%v'.\n", user.UserName)
 err = runner.cognitoActor.ConfirmForgotPassword(ctx, clientId, code,
 user.UserName, password)
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 password = runner.questioner.AskPassword("\nEnter another password:", 8)
 } else {
 panic(err)
 }
 } else {
 confirmed = true
 }
 }
 log.Printf("User '%v' successfully confirmed and migrated.\n", user.UserName)
 log.Println("Signing in with your username and password...")

Automatically migrate known users with a Lambda function 2349

AWS Lambda Developer Guide

 authResult, err := runner.cognitoActor.SignIn(ctx, clientId, user.UserName,
 password)
 if err != nil {
 panic(err)
 }
 log.Printf("Successfully signed in. Your access token starts with: %v...\n",
 (*authResult.AccessToken)[:10])
 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 *authResult.AccessToken)

 log.Println(strings.Repeat("-", 88))
}

// Run runs the scenario.
func (runner *MigrateUser) Run(ctx context.Context, stackName string) {
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 runner.resources.Cleanup(ctx)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome\n")

 log.Println(strings.Repeat("-", 88))

 stackOutputs, err := runner.helper.GetStackOutputs(ctx, stackName)
 if err != nil {
 panic(err)
 }
 runner.resources.userPoolId = stackOutputs["UserPoolId"]

 runner.AddMigrateUserTrigger(ctx, stackOutputs["UserPoolId"],
 stackOutputs["MigrateUserFunctionArn"])
 runner.resources.triggers = append(runner.resources.triggers,
 actions.UserMigration)
 resetNeeded, user := runner.SignInUser(ctx, stackOutputs["TableName"],
 stackOutputs["UserPoolClientId"])
 if resetNeeded {
 runner.helper.ListRecentLogEvents(ctx, stackOutputs["MigrateUserFunction"])
 runner.ResetPassword(ctx, stackOutputs["UserPoolClientId"], user)
 }

Automatically migrate known users with a Lambda function 2350

AWS Lambda Developer Guide

 runner.resources.Cleanup(ctx)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Handle the MigrateUser trigger with a Lambda function.

import (
 "context"
 "log"
 "os"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
)

const TABLE_NAME = "TABLE_NAME"

// UserInfo defines structured user data that can be marshalled to a DynamoDB
 format.
type UserInfo struct {
 UserName string `dynamodbav:"UserName"`
 UserEmail string `dynamodbav:"UserEmail"`
}

type handler struct {
 dynamoClient *dynamodb.Client
}

// HandleRequest handles the MigrateUser event by looking up a user in an Amazon
 DynamoDB table and
// specifying whether they should be migrated to the user pool.

Automatically migrate known users with a Lambda function 2351

AWS Lambda Developer Guide

func (h *handler) HandleRequest(ctx context.Context, event
 events.CognitoEventUserPoolsMigrateUser)
 (events.CognitoEventUserPoolsMigrateUser, error) {
 log.Printf("Received migrate trigger from %v for user '%v'",
 event.TriggerSource, event.UserName)
 if event.TriggerSource != "UserMigration_Authentication" {
 return event, nil
 }
 tableName := os.Getenv(TABLE_NAME)
 user := UserInfo{
 UserName: event.UserName,
 }
 log.Printf("Looking up user '%v' in table %v.\n", user.UserName, tableName)
 filterEx := expression.Name("UserName").Equal(expression.Value(user.UserName))
 expr, err := expression.NewBuilder().WithFilter(filterEx).Build()
 if err != nil {
 log.Printf("Error building expression to query for user '%v'.\n",
 user.UserName)
 return event, err
 }
 output, err := h.dynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),
 FilterExpression: expr.Filter(),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 })
 if err != nil {
 log.Printf("Error looking up user '%v'.\n", user.UserName)
 return event, err
 }
 if len(output.Items) == 0 {
 log.Printf("User '%v' not found, not migrating user.\n", user.UserName)
 return event, err
 }

 var users []UserInfo
 err = attributevalue.UnmarshalListOfMaps(output.Items, &users)
 if err != nil {
 log.Printf("Couldn't unmarshal DynamoDB items. Here's why: %v\n", err)
 return event, err
 }

 user = users[0]

Automatically migrate known users with a Lambda function 2352

AWS Lambda Developer Guide

 log.Printf("UserName '%v' found with email %v. User is migrated and must reset
 password.\n", user.UserName, user.UserEmail)
 event.CognitoEventUserPoolsMigrateUserResponse.UserAttributes =
 map[string]string{
 "email": user.UserEmail,
 "email_verified": "true", // email_verified is required for the forgot password
 flow.
 }
 event.CognitoEventUserPoolsMigrateUserResponse.FinalUserStatus =
 "RESET_REQUIRED"
 event.CognitoEventUserPoolsMigrateUserResponse.MessageAction = "SUPPRESS"

 return event, err
}

func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Panicln(err)
 }
 h := handler{
 dynamoClient: dynamodb.NewFromConfig(sdkConfig),
 }
 lambda.Start(h.HandleRequest)
}

Create a struct that performs common tasks.

import (
 "context"
 "log"
 "strings"
 "time"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"

Automatically migrate known users with a Lambda function 2353

AWS Lambda Developer Guide

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// IScenarioHelper defines common functions used by the workflows in this
 example.
type IScenarioHelper interface {
 Pause(secs int)
 GetStackOutputs(ctx context.Context, stackName string) (actions.StackOutputs,
 error)
 PopulateUserTable(ctx context.Context, tableName string)
 GetKnownUsers(ctx context.Context, tableName string) (actions.UserList, error)
 AddKnownUser(ctx context.Context, tableName string, user actions.User)
 ListRecentLogEvents(ctx context.Context, functionName string)
}

// ScenarioHelper contains AWS wrapper structs used by the workflows in this
 example.
type ScenarioHelper struct {
 questioner demotools.IQuestioner
 dynamoActor *actions.DynamoActions
 cfnActor *actions.CloudFormationActions
 cwlActor *actions.CloudWatchLogsActions
 isTestRun bool
}

// NewScenarioHelper constructs a new scenario helper.
func NewScenarioHelper(sdkConfig aws.Config, questioner demotools.IQuestioner)
 ScenarioHelper {
 scenario := ScenarioHelper{
 questioner: questioner,
 dynamoActor: &actions.DynamoActions{DynamoClient:
 dynamodb.NewFromConfig(sdkConfig)},
 cfnActor: &actions.CloudFormationActions{CfnClient:
 cloudformation.NewFromConfig(sdkConfig)},
 cwlActor: &actions.CloudWatchLogsActions{CwlClient:
 cloudwatchlogs.NewFromConfig(sdkConfig)},
 }
 return scenario
}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 if !helper.isTestRun {
 time.Sleep(time.Duration(secs) * time.Second)

Automatically migrate known users with a Lambda function 2354

AWS Lambda Developer Guide

 }
}

// GetStackOutputs gets the outputs from the specified CloudFormation stack in a
 structured format.
func (helper ScenarioHelper) GetStackOutputs(ctx context.Context, stackName
 string) (actions.StackOutputs, error) {
 return helper.cfnActor.GetOutputs(ctx, stackName), nil
}

// PopulateUserTable fills the known user table with example data.
func (helper ScenarioHelper) PopulateUserTable(ctx context.Context, tableName
 string) {
 log.Printf("First, let's add some users to the DynamoDB %v table we'll use for
 this example.\n", tableName)
 err := helper.dynamoActor.PopulateTable(ctx, tableName)
 if err != nil {
 panic(err)
 }
}

// GetKnownUsers gets the users from the known users table in a structured
 format.
func (helper ScenarioHelper) GetKnownUsers(ctx context.Context, tableName string)
 (actions.UserList, error) {
 knownUsers, err := helper.dynamoActor.Scan(ctx, tableName)
 if err != nil {
 log.Printf("Couldn't get known users from table %v. Here's why: %v\n",
 tableName, err)
 }
 return knownUsers, err
}

// AddKnownUser adds a user to the known users table.
func (helper ScenarioHelper) AddKnownUser(ctx context.Context, tableName string,
 user actions.User) {
 log.Printf("Adding user '%v' with email '%v' to the DynamoDB known users
 table...\n",
 user.UserName, user.UserEmail)
 err := helper.dynamoActor.AddUser(ctx, tableName, user)
 if err != nil {
 panic(err)
 }
}

Automatically migrate known users with a Lambda function 2355

AWS Lambda Developer Guide

// ListRecentLogEvents gets the most recent log stream and events for the
 specified Lambda function and displays them.
func (helper ScenarioHelper) ListRecentLogEvents(ctx context.Context,
 functionName string) {
 log.Println("Waiting a few seconds to let Lambda write to CloudWatch Logs...")
 helper.Pause(10)
 log.Println("Okay, let's check the logs to find what's happened recently with
 your Lambda function.")
 logStream, err := helper.cwlActor.GetLatestLogStream(ctx, functionName)
 if err != nil {
 panic(err)
 }
 log.Printf("Getting some recent events from log stream %v\n",
 *logStream.LogStreamName)
 events, err := helper.cwlActor.GetLogEvents(ctx, functionName,
 *logStream.LogStreamName, 10)
 if err != nil {
 panic(err)
 }
 for _, event := range events {
 log.Printf("\t%v", *event.Message)
 }
 log.Println(strings.Repeat("-", 88))
}

Create a struct that wraps Amazon Cognito actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client

Automatically migrate known users with a Lambda function 2356

AWS Lambda Developer Guide

}

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {
 Trigger Trigger
 HandlerArn *string
}

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }

Automatically migrate known users with a Lambda function 2357

AWS Lambda Developer Guide

 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

// SignUp signs up a user with Amazon Cognito.
func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false
 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{
 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.

Automatically migrate known users with a Lambda function 2358

AWS Lambda Developer Guide

func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType
 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)
 }
 } else {
 authResult = output.AuthenticationResult
 }
 return authResult, err
}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err
}

Automatically migrate known users with a Lambda function 2359

AWS Lambda Developer Guide

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {
 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }
 return err
}

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {

Automatically migrate known users with a Lambda function 2360

AWS Lambda Developer Guide

 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }
 }
 return err
}

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err

Automatically migrate known users with a Lambda function 2361

AWS Lambda Developer Guide

}

Create a struct that wraps DynamoDB actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// DynamoActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type DynamoActions struct {
 DynamoClient *dynamodb.Client
}

// User defines structured user data.
type User struct {
 UserName string
 UserEmail string
 LastLogin *LoginInfo `dynamodbav:",omitempty"`
}

// LoginInfo defines structured custom login data.
type LoginInfo struct {
 UserPoolId string
 ClientId string
 Time string
}

// UserList defines a list of users.
type UserList struct {
 Users []User
}

Automatically migrate known users with a Lambda function 2362

AWS Lambda Developer Guide

// UserNameList returns the usernames contained in a UserList as a list of
 strings.
func (users *UserList) UserNameList() []string {
 names := make([]string, len(users.Users))
 for i := 0; i < len(users.Users); i++ {
 names[i] = users.Users[i].UserName
 }
 return names
}

// PopulateTable adds a set of test users to the table.
func (actor DynamoActions) PopulateTable(ctx context.Context, tableName string)
 error {
 var err error
 var item map[string]types.AttributeValue
 var writeReqs []types.WriteRequest
 for i := 1; i < 4; i++ {
 item, err = attributevalue.MarshalMap(User{UserName: fmt.Sprintf("test_user_
%v", i), UserEmail: fmt.Sprintf("test_email_%v@example.com", i)})
 if err != nil {
 log.Printf("Couldn't marshall user into DynamoDB format. Here's why: %v\n",
 err)
 return err
 }
 writeReqs = append(writeReqs, types.WriteRequest{PutRequest:
 &types.PutRequest{Item: item}})
 }
 _, err = actor.DynamoClient.BatchWriteItem(ctx, &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{tableName: writeReqs},
 })
 if err != nil {
 log.Printf("Couldn't populate table %v with users. Here's why: %v\n",
 tableName, err)
 }
 return err
}

// Scan scans the table for all items.
func (actor DynamoActions) Scan(ctx context.Context, tableName string) (UserList,
 error) {
 var userList UserList
 output, err := actor.DynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),

Automatically migrate known users with a Lambda function 2363

AWS Lambda Developer Guide

 })
 if err != nil {
 log.Printf("Couldn't scan table %v for items. Here's why: %v\n", tableName,
 err)
 } else {
 err = attributevalue.UnmarshalListOfMaps(output.Items, &userList.Users)
 if err != nil {
 log.Printf("Couldn't unmarshal items into users. Here's why: %v\n", err)
 }
 }
 return userList, err
}

// AddUser adds a user item to a table.
func (actor DynamoActions) AddUser(ctx context.Context, tableName string, user
 User) error {
 userItem, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshall user to item. Here's why: %v\n", err)
 }
 _, err = actor.DynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userItem,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't put item in table %v. Here's why: %v", tableName, err)
 }
 return err
}

Create a struct that wraps CloudWatch Logs actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"

Automatically migrate known users with a Lambda function 2364

AWS Lambda Developer Guide

)

type CloudWatchLogsActions struct {
 CwlClient *cloudwatchlogs.Client
}

// GetLatestLogStream gets the most recent log stream for a Lambda function.
func (actor CloudWatchLogsActions) GetLatestLogStream(ctx context.Context,
 functionName string) (types.LogStream, error) {
 var logStream types.LogStream
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.DescribeLogStreams(ctx,
 &cloudwatchlogs.DescribeLogStreamsInput{
 Descending: aws.Bool(true),
 Limit: aws.Int32(1),
 LogGroupName: aws.String(logGroupName),
 OrderBy: types.OrderByLastEventTime,
 })
 if err != nil {
 log.Printf("Couldn't get log streams for log group %v. Here's why: %v\n",
 logGroupName, err)
 } else {
 logStream = output.LogStreams[0]
 }
 return logStream, err
}

// GetLogEvents gets the most recent eventCount events from the specified log
 stream.
func (actor CloudWatchLogsActions) GetLogEvents(ctx context.Context, functionName
 string, logStreamName string, eventCount int32) (
 []types.OutputLogEvent, error) {
 var events []types.OutputLogEvent
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.GetLogEvents(ctx,
 &cloudwatchlogs.GetLogEventsInput{
 LogStreamName: aws.String(logStreamName),
 Limit: aws.Int32(eventCount),
 LogGroupName: aws.String(logGroupName),
 })
 if err != nil {
 log.Printf("Couldn't get log event for log stream %v. Here's why: %v\n",
 logStreamName, err)
 } else {

Automatically migrate known users with a Lambda function 2365

AWS Lambda Developer Guide

 events = output.Events
 }
 return events, err
}

Create a struct that wraps AWS CloudFormation actions.

import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
)

// StackOutputs defines a map of outputs from a specific stack.
type StackOutputs map[string]string

type CloudFormationActions struct {
 CfnClient *cloudformation.Client
}

// GetOutputs gets the outputs from a CloudFormation stack and puts them into a
 structured format.
func (actor CloudFormationActions) GetOutputs(ctx context.Context, stackName
 string) StackOutputs {
 output, err := actor.CfnClient.DescribeStacks(ctx,
 &cloudformation.DescribeStacksInput{
 StackName: aws.String(stackName),
 })
 if err != nil || len(output.Stacks) == 0 {
 log.Panicf("Couldn't find a CloudFormation stack named %v. Here's why: %v\n",
 stackName, err)
 }
 stackOutputs := StackOutputs{}
 for _, out := range output.Stacks[0].Outputs {
 stackOutputs[*out.OutputKey] = *out.OutputValue
 }
 return stackOutputs
}

Automatically migrate known users with a Lambda function 2366

AWS Lambda Developer Guide

Clean up resources.

import (
 "context"
 "log"
 "user_pools_and_lambda_triggers/actions"

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct {
 userPoolId string
 userAccessTokens []string
 triggers []actions.Trigger

 cognitoActor *actions.CognitoActions
 questioner demotools.IQuestioner
}

func (resources *Resources) init(cognitoActor *actions.CognitoActions, questioner
 demotools.IQuestioner) {
 resources.userAccessTokens = []string{}
 resources.triggers = []actions.Trigger{}
 resources.cognitoActor = cognitoActor
 resources.questioner = questioner
}

// Cleanup deletes all AWS resources created during an example.
func (resources *Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong during cleanup.\n%v\n", r)
 log.Println("Use the AWS Management Console to remove any remaining resources
 \n" +
 "that were created for this scenario.")
 }
 }()

Automatically migrate known users with a Lambda function 2367

AWS Lambda Developer Guide

 wantDelete := resources.questioner.AskBool("Do you want to remove all of the AWS
 resources that were created "+
 "during this demo (y/n)?", "y")
 if wantDelete {
 for _, accessToken := range resources.userAccessTokens {
 err := resources.cognitoActor.DeleteUser(ctx, accessToken)
 if err != nil {
 log.Println("Couldn't delete user during cleanup.")
 panic(err)
 }
 log.Println("Deleted user.")
 }
 triggerList := make([]actions.TriggerInfo, len(resources.triggers))
 for i := 0; i < len(resources.triggers); i++ {
 triggerList[i] = actions.TriggerInfo{Trigger: resources.triggers[i],
 HandlerArn: nil}
 }
 err := resources.cognitoActor.UpdateTriggers(ctx, resources.userPoolId,
 triggerList...)
 if err != nil {
 log.Println("Couldn't update Cognito triggers during cleanup.")
 panic(err)
 }
 log.Println("Removed Cognito triggers from user pool.")
 } else {
 log.Println("Be sure to remove resources when you're done with them to avoid
 unexpected charges!")
 }
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• ConfirmForgotPassword

• DeleteUser

• ForgotPassword

• InitiateAuth

• SignUp

• UpdateUserPool

Automatically migrate known users with a Lambda function 2368

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ConfirmForgotPassword
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ForgotPassword
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.SignUp
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool

AWS Lambda Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an API Gateway REST API to track COVID-19 data

The following code example shows how to create a REST API that simulates a system to track daily
cases of COVID-19 in the United States, using fictional data.

Python

SDK for Python (Boto3)

Shows how to use AWS Chalice with the AWS SDK for Python (Boto3) to create a serverless
REST API that uses Amazon API Gateway, AWS Lambda, and Amazon DynamoDB. The REST
API simulates a system that tracks daily cases of COVID-19 in the United States, using
fictional data. Learn how to:

• Use AWS Chalice to define routes in Lambda functions that are called to handle REST
requests that come through API Gateway.

• Use Lambda functions to retrieve and store data in a DynamoDB table to serve REST
requests.

• Define table structure and security role resources in an AWS CloudFormation template.

• Use AWS Chalice and CloudFormation to package and deploy all necessary resources.

• Use CloudFormation to clean up all created resources.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• AWS CloudFormation

• DynamoDB

• Lambda

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a REST API to track COVID-19 data 2369

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/apigateway_covid-19_tracker

AWS Lambda Developer Guide

Create a lending library REST API

The following code example shows how to create a lending library where patrons can borrow and
return books by using a REST API backed by an Amazon Aurora database.

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with the Amazon Relational Database
Service (Amazon RDS) API and AWS Chalice to create a REST API backed by an Amazon
Aurora database. The web service is fully serverless and represents a simple lending library
where patrons can borrow and return books. Learn how to:

• Create and manage a serverless Aurora database cluster.

• Use AWS Secrets Manager to manage database credentials.

• Implement a data storage layer that uses Amazon RDS to move data into and out of the
database.

• Use AWS Chalice to deploy a serverless REST API to Amazon API Gateway and AWS
Lambda.

• Use the Requests package to send requests to the web service.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• Aurora

• Lambda

• Secrets Manager

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a lending library REST API 2370

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_rest_lending_library

AWS Lambda Developer Guide

Create a messenger application with Step Functions

The following code example shows how to create an AWS Step Functions messenger application
that retrieves message records from a database table.

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with AWS Step Functions to create a
messenger application that retrieves message records from an Amazon DynamoDB table and
sends them with Amazon Simple Queue Service (Amazon SQS). The state machine integrates
with an AWS Lambda function to scan the database for unsent messages.

• Create a state machine that retrieves and updates message records from an Amazon
DynamoDB table.

• Update the state machine definition to also send messages to Amazon Simple Queue
Service (Amazon SQS).

• Start and stop state machine runs.

• Connect to Lambda, DynamoDB, and Amazon SQS from a state machine by using service
integrations.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SQS

• Step Functions

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a messenger application 2371

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/stepfunctions_messenger

AWS Lambda Developer Guide

Create a photo asset management application that lets users manage
photos using labels

The following code examples show how to create a serverless application that lets users manage
photos using labels.

.NET

SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

C++

SDK for C++

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Create a serverless application to manage photos 2372

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

AWS Lambda Developer Guide

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Java

SDK for Java 2.x

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Create a serverless application to manage photos 2373

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/pam_source_files
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager

AWS Lambda Developer Guide

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Kotlin

SDK for Kotlin

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

PHP

SDK for PHP

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

Create a serverless application to manage photos 2374

https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_pam
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

AWS Lambda Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Rust

SDK for Rust

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a serverless application to manage photos 2375

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/applications/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/cross_service/photo_asset_management
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

AWS Lambda Developer Guide

Create a websocket chat application with API Gateway

The following code example shows how to create a chat application that is served by a websocket
API built on Amazon API Gateway.

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with Amazon API Gateway V2 to create a
websocket API that integrates with AWS Lambda and Amazon DynamoDB.

• Create a websocket API served by API Gateway.

• Define a Lambda handler that stores connections in DynamoDB and posts messages to
other chat participants.

• Connect to the websocket chat application and send messages with the Websockets
package.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an application that analyzes customer feedback and synthesizes
audio

The following code examples show how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

Create a websocket chat application 2376

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/apigateway_websocket_chat

AWS Lambda Developer Guide

.NET

SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Java

SDK for Java 2.x

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

Create an application to analyze customer feedback 2377

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer

AWS Lambda Developer Guide

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

JavaScript

SDK for JavaScript (v3)

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub. The following excerpts show how the AWS SDK for
JavaScript is used inside of Lambda functions.

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**

Create an application to analyze customer feedback 2378

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_fsa_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

AWS Lambda Developer Guide

 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,
 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */

Create an application to analyze customer feedback 2379

AWS Lambda Developer Guide

export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },
 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",

Create an application to analyze customer feedback 2380

AWS Lambda Developer Guide

 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();
 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

Create an application to analyze customer feedback 2381

AWS Lambda Developer Guide

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Ruby

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

Create an application to analyze customer feedback 2382

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer

AWS Lambda Developer Guide

• Amazon Translate

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a browser

The following code example shows how to invoke an AWS Lambda function from a browser.

JavaScript

SDK for JavaScript (v2)

You can create a browser-based application that uses an AWS Lambda function to update an
Amazon DynamoDB table with user selections.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

SDK for JavaScript (v3)

You can create a browser-based application that uses an AWS Lambda function to update an
Amazon DynamoDB table with user selections. This app uses AWS SDK for JavaScript v3.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a browser 2383

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/lambda/lambda-for-browser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-for-browser

AWS Lambda Developer Guide

Transform data for your application with S3 Object Lambda

The following code example shows how to transform data for your application with S3 Object
Lambda.

.NET

SDK for .NET

Shows how to add custom code to standard S3 GET requests to modify the requested object
retrieved from S3 so that the object suit the needs of the requesting client or application.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Lambda

• Amazon S3

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use API Gateway to invoke a Lambda function

The following code examples show how to create an AWS Lambda function invoked by Amazon API
Gateway.

Java

SDK for Java 2.x

Shows how to create an AWS Lambda function by using the Lambda Java runtime API.
This example invokes different AWS services to perform a specific use case. This example
demonstrates how to create a Lambda function invoked by Amazon API Gateway that scans
an Amazon DynamoDB table for work anniversaries and uses Amazon Simple Notification
Service (Amazon SNS) to send a text message to your employees that congratulates them at
their one year anniversary date.

Transform data with S3 Object Lambda 2384

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/S3ObjectLambdaFunction

AWS Lambda Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an AWS Lambda function by using the Lambda JavaScript runtime API.
This example invokes different AWS services to perform a specific use case. This example
demonstrates how to create a Lambda function invoked by Amazon API Gateway that scans
an Amazon DynamoDB table for work anniversaries and uses Amazon Simple Notification
Service (Amazon SNS) to send a text message to your employees that congratulates them at
their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

Python

SDK for Python (Boto3)

This example shows how to create and use an Amazon API Gateway REST API that targets
an AWS Lambda function. The Lambda handler demonstrates how to route based on HTTP

Use API Gateway to invoke a Lambda function 2385

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lambda_apigateway
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

AWS Lambda Developer Guide

methods; how to get data from the query string, header, and body; and how to return a
JSON response.

• Deploy a Lambda function.

• Create an API Gateway REST API.

• Create a REST resource that targets the Lambda function.

• Grant permission to let API Gateway invoke the Lambda function.

• Use the Requests package to send requests to the REST API.

• Clean up all resources created during the demo.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Step Functions to invoke Lambda functions

The following code example shows how to create an AWS Step Functions state machine that
invokes AWS Lambda functions in sequence.

Java

SDK for Java 2.x

Shows how to create an AWS serverless workflow by using AWS Step Functions and the AWS
SDK for Java 2.x. Each workflow step is implemented using an AWS Lambda function.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Use Step Functions to invoke Lambda functions 2386

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_workflows_stepfunctions

AWS Lambda Developer Guide

Services used in this example

• DynamoDB

• Lambda

• Amazon SES

• Step Functions

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use scheduled events to invoke a Lambda function

The following code examples show how to create an AWS Lambda function invoked by an Amazon
EventBridge scheduled event.

Java

SDK for Java 2.x

Shows how to create an Amazon EventBridge scheduled event that invokes an AWS Lambda
function. Configure EventBridge to use a cron expression to schedule when the Lambda
function is invoked. In this example, you create a Lambda function by using the Lambda Java
runtime API. This example invokes different AWS services to perform a specific use case.
This example demonstrates how to create an app that sends a mobile text message to your
employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• CloudWatch Logs

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

Use scheduled events to invoke a Lambda function 2387

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_scheduled_events

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon EventBridge scheduled event that invokes an AWS Lambda
function. Configure EventBridge to use a cron expression to schedule when the Lambda
function is invoked. In this example, you create a Lambda function by using the Lambda
JavaScript runtime API. This example invokes different AWS services to perform a specific
use case. This example demonstrates how to create an app that sends a mobile text message
to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• CloudWatch Logs

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

Python

SDK for Python (Boto3)

This example shows how to register an AWS Lambda function as the target of a scheduled
Amazon EventBridge event. The Lambda handler writes a friendly message and the full
event data to Amazon CloudWatch Logs for later retrieval.

• Deploys a Lambda function.

• Creates an EventBridge scheduled event and makes the Lambda function the target.

• Grants permission to let EventBridge invoke the Lambda function.

• Prints the latest data from CloudWatch Logs to show the result of the scheduled
invocations.

• Cleans up all resources created during the demo.

Use scheduled events to invoke a Lambda function 2388

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html

AWS Lambda Developer Guide

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• CloudWatch Logs

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use the Amazon Neptune API to develop a Lambda function that
queries graph data

The following code example shows how to use the Neptune API to query graph data.

Java

SDK for Java 2.x

Shows how to use Amazon Neptune Java API to create a Lambda function that queries graph
data within the VPC.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Lambda

• Neptune

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use the Neptune API to query graph data 2389

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_neptune_lambda

AWS Lambda Developer Guide

Write custom activity data with a Lambda function after Amazon
Cognito user authentication using an AWS SDK

The following code example shows how to write custom activity data with a Lambda function after
Amazon Cognito user authentication.

• Use administrator functions to add a user to a user pool.

• Configure a user pool to call a Lambda function for the PostAuthentication trigger.

• Sign the new user in to Amazon Cognito.

• The Lambda function writes custom information to CloudWatch Logs and to an DynamoDB
table.

• Get and display custom data from the DynamoDB table, then clean up resources.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

import (
 "context"
 "errors"
 "log"
 "strings"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2390

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/user_pools_and_lambda_triggers#code-examples

AWS Lambda Developer Guide

// ActivityLog separates the steps of this scenario into individual functions so
 that
// they are simpler to read and understand.
type ActivityLog struct {
 helper IScenarioHelper
 questioner demotools.IQuestioner
 resources Resources
 cognitoActor *actions.CognitoActions
}

// NewActivityLog constructs a new activity log runner.
func NewActivityLog(sdkConfig aws.Config, questioner demotools.IQuestioner,
 helper IScenarioHelper) ActivityLog {
 scenario := ActivityLog{
 helper: helper,
 questioner: questioner,
 resources: Resources{},
 cognitoActor: &actions.CognitoActions{CognitoClient:
 cognitoidentityprovider.NewFromConfig(sdkConfig)},
 }
 scenario.resources.init(scenario.cognitoActor, questioner)
 return scenario
}

// AddUserToPool selects a user from the known users table and uses administrator
 credentials to add the user to the user pool.
func (runner *ActivityLog) AddUserToPool(ctx context.Context, userPoolId string,
 tableName string) (string, string) {
 log.Println("To facilitate this example, let's add a user to the user pool using
 administrator privileges.")
 users, err := runner.helper.GetKnownUsers(ctx, tableName)
 if err != nil {
 panic(err)
 }
 user := users.Users[0]
 log.Printf("Adding known user %v to the user pool.\n", user.UserName)
 err = runner.cognitoActor.AdminCreateUser(ctx, userPoolId, user.UserName,
 user.UserEmail)
 if err != nil {
 panic(err)
 }
 pwSet := false
 password := runner.questioner.AskPassword("\nEnter a password that has at least
 eight characters, uppercase, lowercase, numbers and symbols.\n"+

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2391

AWS Lambda Developer Guide

 "(the password will not display as you type):", 8)
 for !pwSet {
 log.Printf("\nSetting password for user '%v'.\n", user.UserName)
 err = runner.cognitoActor.AdminSetUserPassword(ctx, userPoolId, user.UserName,
 password)
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 password = runner.questioner.AskPassword("\nEnter another password:", 8)
 } else {
 panic(err)
 }
 } else {
 pwSet = true
 }
 }

 log.Println(strings.Repeat("-", 88))

 return user.UserName, password
}

// AddActivityLogTrigger adds a Lambda handler as an invocation target for the
 PostAuthentication trigger.
func (runner *ActivityLog) AddActivityLogTrigger(ctx context.Context, userPoolId
 string, activityLogArn string) {
 log.Println("Let's add a Lambda function to handle the PostAuthentication
 trigger from Cognito.\n" +
 "This trigger happens after a user is authenticated, and lets your function
 take action, such as logging\n" +
 "the outcome.")
 err := runner.cognitoActor.UpdateTriggers(
 ctx, userPoolId,
 actions.TriggerInfo{Trigger: actions.PostAuthentication, HandlerArn:
 aws.String(activityLogArn)})
 if err != nil {
 panic(err)
 }
 runner.resources.triggers = append(runner.resources.triggers,
 actions.PostAuthentication)
 log.Printf("Lambda function %v added to user pool %v to handle
 PostAuthentication Cognito trigger.\n",
 activityLogArn, userPoolId)

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2392

AWS Lambda Developer Guide

 log.Println(strings.Repeat("-", 88))
}

// SignInUser signs in as the specified user.
func (runner *ActivityLog) SignInUser(ctx context.Context, clientId string,
 userName string, password string) {
 log.Printf("Now we'll sign in user %v and check the results in the logs and the
 DynamoDB table.", userName)
 runner.questioner.Ask("Press Enter when you're ready.")
 authResult, err := runner.cognitoActor.SignIn(ctx, clientId, userName, password)
 if err != nil {
 panic(err)
 }
 log.Println("Sign in successful.",
 "The PostAuthentication Lambda handler writes custom information to CloudWatch
 Logs.")

 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 *authResult.AccessToken)
}

// GetKnownUserLastLogin gets the login info for a user from the Amazon DynamoDB
 table and displays it.
func (runner *ActivityLog) GetKnownUserLastLogin(ctx context.Context, tableName
 string, userName string) {
 log.Println("The PostAuthentication handler also writes login data to the
 DynamoDB table.")
 runner.questioner.Ask("Press Enter when you're ready to continue.")
 users, err := runner.helper.GetKnownUsers(ctx, tableName)
 if err != nil {
 panic(err)
 }
 for _, user := range users.Users {
 if user.UserName == userName {
 log.Println("The last login info for the user in the known users table is:")
 log.Printf("\t%+v", *user.LastLogin)
 }
 }
 log.Println(strings.Repeat("-", 88))
}

// Run runs the scenario.
func (runner *ActivityLog) Run(ctx context.Context, stackName string) {
 defer func() {

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2393

AWS Lambda Developer Guide

 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 runner.resources.Cleanup(ctx)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome\n")

 log.Println(strings.Repeat("-", 88))

 stackOutputs, err := runner.helper.GetStackOutputs(ctx, stackName)
 if err != nil {
 panic(err)
 }
 runner.resources.userPoolId = stackOutputs["UserPoolId"]
 runner.helper.PopulateUserTable(ctx, stackOutputs["TableName"])
 userName, password := runner.AddUserToPool(ctx, stackOutputs["UserPoolId"],
 stackOutputs["TableName"])

 runner.AddActivityLogTrigger(ctx, stackOutputs["UserPoolId"],
 stackOutputs["ActivityLogFunctionArn"])
 runner.SignInUser(ctx, stackOutputs["UserPoolClientId"], userName, password)
 runner.helper.ListRecentLogEvents(ctx, stackOutputs["ActivityLogFunction"])
 runner.GetKnownUserLastLogin(ctx, stackOutputs["TableName"], userName)

 runner.resources.Cleanup(ctx)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Handle the PostAuthentication trigger with a Lambda function.

import (
 "context"
 "fmt"
 "log"
 "os"

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2394

AWS Lambda Developer Guide

 "time"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 dynamodbtypes "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

const TABLE_NAME = "TABLE_NAME"

// LoginInfo defines structured login data that can be marshalled to a DynamoDB
 format.
type LoginInfo struct {
 UserPoolId string `dynamodbav:"UserPoolId"`
 ClientId string `dynamodbav:"ClientId"`
 Time string `dynamodbav:"Time"`
}

// UserInfo defines structured user data that can be marshalled to a DynamoDB
 format.
type UserInfo struct {
 UserName string `dynamodbav:"UserName"`
 UserEmail string `dynamodbav:"UserEmail"`
 LastLogin LoginInfo `dynamodbav:"LastLogin"`
}

// GetKey marshals the user email value to a DynamoDB key format.
func (user UserInfo) GetKey() map[string]dynamodbtypes.AttributeValue {
 userEmail, err := attributevalue.Marshal(user.UserEmail)
 if err != nil {
 panic(err)
 }
 return map[string]dynamodbtypes.AttributeValue{"UserEmail": userEmail}
}

type handler struct {
 dynamoClient *dynamodb.Client
}

// HandleRequest handles the PostAuthentication event by writing custom data to
 the logs and

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2395

AWS Lambda Developer Guide

// to an Amazon DynamoDB table.
func (h *handler) HandleRequest(ctx context.Context,
 event events.CognitoEventUserPoolsPostAuthentication)
 (events.CognitoEventUserPoolsPostAuthentication, error) {
 log.Printf("Received post authentication trigger from %v for user '%v'",
 event.TriggerSource, event.UserName)
 tableName := os.Getenv(TABLE_NAME)
 user := UserInfo{
 UserName: event.UserName,
 UserEmail: event.Request.UserAttributes["email"],
 LastLogin: LoginInfo{
 UserPoolId: event.UserPoolID,
 ClientId: event.CallerContext.ClientID,
 Time: time.Now().Format(time.UnixDate),
 },
 }
 // Write to CloudWatch Logs.
 fmt.Printf("%#v", user)

 // Also write to an external system. This examples uses DynamoDB to demonstrate.
 userMap, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshal to DynamoDB map. Here's why: %v\n", err)
 } else if len(userMap) == 0 {
 log.Printf("User info marshaled to an empty map.")
 } else {
 _, err := h.dynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userMap,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't write to DynamoDB. Here's why: %v\n", err)
 } else {
 log.Printf("Wrote user info to DynamoDB table %v.\n", tableName)
 }
 }

 return event, nil
}

func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2396

AWS Lambda Developer Guide

 log.Panicln(err)
 }
 h := handler{
 dynamoClient: dynamodb.NewFromConfig(sdkConfig),
 }
 lambda.Start(h.HandleRequest)
}

Create a struct that performs common tasks.

import (
 "context"
 "log"
 "strings"
 "time"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// IScenarioHelper defines common functions used by the workflows in this
 example.
type IScenarioHelper interface {
 Pause(secs int)
 GetStackOutputs(ctx context.Context, stackName string) (actions.StackOutputs,
 error)
 PopulateUserTable(ctx context.Context, tableName string)
 GetKnownUsers(ctx context.Context, tableName string) (actions.UserList, error)
 AddKnownUser(ctx context.Context, tableName string, user actions.User)
 ListRecentLogEvents(ctx context.Context, functionName string)
}

// ScenarioHelper contains AWS wrapper structs used by the workflows in this
 example.
type ScenarioHelper struct {
 questioner demotools.IQuestioner

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2397

AWS Lambda Developer Guide

 dynamoActor *actions.DynamoActions
 cfnActor *actions.CloudFormationActions
 cwlActor *actions.CloudWatchLogsActions
 isTestRun bool
}

// NewScenarioHelper constructs a new scenario helper.
func NewScenarioHelper(sdkConfig aws.Config, questioner demotools.IQuestioner)
 ScenarioHelper {
 scenario := ScenarioHelper{
 questioner: questioner,
 dynamoActor: &actions.DynamoActions{DynamoClient:
 dynamodb.NewFromConfig(sdkConfig)},
 cfnActor: &actions.CloudFormationActions{CfnClient:
 cloudformation.NewFromConfig(sdkConfig)},
 cwlActor: &actions.CloudWatchLogsActions{CwlClient:
 cloudwatchlogs.NewFromConfig(sdkConfig)},
 }
 return scenario
}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 if !helper.isTestRun {
 time.Sleep(time.Duration(secs) * time.Second)
 }
}

// GetStackOutputs gets the outputs from the specified CloudFormation stack in a
 structured format.
func (helper ScenarioHelper) GetStackOutputs(ctx context.Context, stackName
 string) (actions.StackOutputs, error) {
 return helper.cfnActor.GetOutputs(ctx, stackName), nil
}

// PopulateUserTable fills the known user table with example data.
func (helper ScenarioHelper) PopulateUserTable(ctx context.Context, tableName
 string) {
 log.Printf("First, let's add some users to the DynamoDB %v table we'll use for
 this example.\n", tableName)
 err := helper.dynamoActor.PopulateTable(ctx, tableName)
 if err != nil {
 panic(err)
 }

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2398

AWS Lambda Developer Guide

}

// GetKnownUsers gets the users from the known users table in a structured
 format.
func (helper ScenarioHelper) GetKnownUsers(ctx context.Context, tableName string)
 (actions.UserList, error) {
 knownUsers, err := helper.dynamoActor.Scan(ctx, tableName)
 if err != nil {
 log.Printf("Couldn't get known users from table %v. Here's why: %v\n",
 tableName, err)
 }
 return knownUsers, err
}

// AddKnownUser adds a user to the known users table.
func (helper ScenarioHelper) AddKnownUser(ctx context.Context, tableName string,
 user actions.User) {
 log.Printf("Adding user '%v' with email '%v' to the DynamoDB known users
 table...\n",
 user.UserName, user.UserEmail)
 err := helper.dynamoActor.AddUser(ctx, tableName, user)
 if err != nil {
 panic(err)
 }
}

// ListRecentLogEvents gets the most recent log stream and events for the
 specified Lambda function and displays them.
func (helper ScenarioHelper) ListRecentLogEvents(ctx context.Context,
 functionName string) {
 log.Println("Waiting a few seconds to let Lambda write to CloudWatch Logs...")
 helper.Pause(10)
 log.Println("Okay, let's check the logs to find what's happened recently with
 your Lambda function.")
 logStream, err := helper.cwlActor.GetLatestLogStream(ctx, functionName)
 if err != nil {
 panic(err)
 }
 log.Printf("Getting some recent events from log stream %v\n",
 *logStream.LogStreamName)
 events, err := helper.cwlActor.GetLogEvents(ctx, functionName,
 *logStream.LogStreamName, 10)
 if err != nil {
 panic(err)

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2399

AWS Lambda Developer Guide

 }
 for _, event := range events {
 log.Printf("\t%v", *event.Message)
 }
 log.Println(strings.Repeat("-", 88))
}

Create a struct that wraps Amazon Cognito actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {
 Trigger Trigger
 HandlerArn *string
}

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2400

AWS Lambda Developer Guide

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }
 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

// SignUp signs up a user with Amazon Cognito.
func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false
 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2401

AWS Lambda Developer Guide

 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.
func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType
 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)
 }
 } else {
 authResult = output.AuthenticationResult
 }
 return authResult, err

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2402

AWS Lambda Developer Guide

}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err
}

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {
 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }
 return err
}

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2403

AWS Lambda Developer Guide

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {
 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }
 }
 return err
}

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2404

AWS Lambda Developer Guide

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err
}

Create a struct that wraps DynamoDB actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// DynamoActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2405

AWS Lambda Developer Guide

// used in the examples.
type DynamoActions struct {
 DynamoClient *dynamodb.Client
}

// User defines structured user data.
type User struct {
 UserName string
 UserEmail string
 LastLogin *LoginInfo `dynamodbav:",omitempty"`
}

// LoginInfo defines structured custom login data.
type LoginInfo struct {
 UserPoolId string
 ClientId string
 Time string
}

// UserList defines a list of users.
type UserList struct {
 Users []User
}

// UserNameList returns the usernames contained in a UserList as a list of
 strings.
func (users *UserList) UserNameList() []string {
 names := make([]string, len(users.Users))
 for i := 0; i < len(users.Users); i++ {
 names[i] = users.Users[i].UserName
 }
 return names
}

// PopulateTable adds a set of test users to the table.
func (actor DynamoActions) PopulateTable(ctx context.Context, tableName string)
 error {
 var err error
 var item map[string]types.AttributeValue
 var writeReqs []types.WriteRequest
 for i := 1; i < 4; i++ {
 item, err = attributevalue.MarshalMap(User{UserName: fmt.Sprintf("test_user_
%v", i), UserEmail: fmt.Sprintf("test_email_%v@example.com", i)})
 if err != nil {

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2406

AWS Lambda Developer Guide

 log.Printf("Couldn't marshall user into DynamoDB format. Here's why: %v\n",
 err)
 return err
 }
 writeReqs = append(writeReqs, types.WriteRequest{PutRequest:
 &types.PutRequest{Item: item}})
 }
 _, err = actor.DynamoClient.BatchWriteItem(ctx, &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{tableName: writeReqs},
 })
 if err != nil {
 log.Printf("Couldn't populate table %v with users. Here's why: %v\n",
 tableName, err)
 }
 return err
}

// Scan scans the table for all items.
func (actor DynamoActions) Scan(ctx context.Context, tableName string) (UserList,
 error) {
 var userList UserList
 output, err := actor.DynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't scan table %v for items. Here's why: %v\n", tableName,
 err)
 } else {
 err = attributevalue.UnmarshalListOfMaps(output.Items, &userList.Users)
 if err != nil {
 log.Printf("Couldn't unmarshal items into users. Here's why: %v\n", err)
 }
 }
 return userList, err
}

// AddUser adds a user item to a table.
func (actor DynamoActions) AddUser(ctx context.Context, tableName string, user
 User) error {
 userItem, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshall user to item. Here's why: %v\n", err)
 }
 _, err = actor.DynamoClient.PutItem(ctx, &dynamodb.PutItemInput{

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2407

AWS Lambda Developer Guide

 Item: userItem,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't put item in table %v. Here's why: %v", tableName, err)
 }
 return err
}

Create a struct that wraps CloudWatch Logs actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"
)

type CloudWatchLogsActions struct {
 CwlClient *cloudwatchlogs.Client
}

// GetLatestLogStream gets the most recent log stream for a Lambda function.
func (actor CloudWatchLogsActions) GetLatestLogStream(ctx context.Context,
 functionName string) (types.LogStream, error) {
 var logStream types.LogStream
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.DescribeLogStreams(ctx,
 &cloudwatchlogs.DescribeLogStreamsInput{
 Descending: aws.Bool(true),
 Limit: aws.Int32(1),
 LogGroupName: aws.String(logGroupName),
 OrderBy: types.OrderByLastEventTime,
 })
 if err != nil {
 log.Printf("Couldn't get log streams for log group %v. Here's why: %v\n",
 logGroupName, err)

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2408

AWS Lambda Developer Guide

 } else {
 logStream = output.LogStreams[0]
 }
 return logStream, err
}

// GetLogEvents gets the most recent eventCount events from the specified log
 stream.
func (actor CloudWatchLogsActions) GetLogEvents(ctx context.Context, functionName
 string, logStreamName string, eventCount int32) (
 []types.OutputLogEvent, error) {
 var events []types.OutputLogEvent
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.GetLogEvents(ctx,
 &cloudwatchlogs.GetLogEventsInput{
 LogStreamName: aws.String(logStreamName),
 Limit: aws.Int32(eventCount),
 LogGroupName: aws.String(logGroupName),
 })
 if err != nil {
 log.Printf("Couldn't get log event for log stream %v. Here's why: %v\n",
 logStreamName, err)
 } else {
 events = output.Events
 }
 return events, err
}

Create a struct that wraps AWS CloudFormation actions.

import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
)

// StackOutputs defines a map of outputs from a specific stack.
type StackOutputs map[string]string

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2409

AWS Lambda Developer Guide

type CloudFormationActions struct {
 CfnClient *cloudformation.Client
}

// GetOutputs gets the outputs from a CloudFormation stack and puts them into a
 structured format.
func (actor CloudFormationActions) GetOutputs(ctx context.Context, stackName
 string) StackOutputs {
 output, err := actor.CfnClient.DescribeStacks(ctx,
 &cloudformation.DescribeStacksInput{
 StackName: aws.String(stackName),
 })
 if err != nil || len(output.Stacks) == 0 {
 log.Panicf("Couldn't find a CloudFormation stack named %v. Here's why: %v\n",
 stackName, err)
 }
 stackOutputs := StackOutputs{}
 for _, out := range output.Stacks[0].Outputs {
 stackOutputs[*out.OutputKey] = *out.OutputValue
 }
 return stackOutputs
}

Clean up resources.

import (
 "context"
 "log"
 "user_pools_and_lambda_triggers/actions"

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct {
 userPoolId string
 userAccessTokens []string
 triggers []actions.Trigger

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2410

AWS Lambda Developer Guide

 cognitoActor *actions.CognitoActions
 questioner demotools.IQuestioner
}

func (resources *Resources) init(cognitoActor *actions.CognitoActions, questioner
 demotools.IQuestioner) {
 resources.userAccessTokens = []string{}
 resources.triggers = []actions.Trigger{}
 resources.cognitoActor = cognitoActor
 resources.questioner = questioner
}

// Cleanup deletes all AWS resources created during an example.
func (resources *Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong during cleanup.\n%v\n", r)
 log.Println("Use the AWS Management Console to remove any remaining resources
 \n" +
 "that were created for this scenario.")
 }
 }()

 wantDelete := resources.questioner.AskBool("Do you want to remove all of the AWS
 resources that were created "+
 "during this demo (y/n)?", "y")
 if wantDelete {
 for _, accessToken := range resources.userAccessTokens {
 err := resources.cognitoActor.DeleteUser(ctx, accessToken)
 if err != nil {
 log.Println("Couldn't delete user during cleanup.")
 panic(err)
 }
 log.Println("Deleted user.")
 }
 triggerList := make([]actions.TriggerInfo, len(resources.triggers))
 for i := 0; i < len(resources.triggers); i++ {
 triggerList[i] = actions.TriggerInfo{Trigger: resources.triggers[i],
 HandlerArn: nil}
 }
 err := resources.cognitoActor.UpdateTriggers(ctx, resources.userPoolId,
 triggerList...)
 if err != nil {

Write custom activity data with a Lambda function after Amazon Cognito user authentication 2411

AWS Lambda Developer Guide

 log.Println("Couldn't update Cognito triggers during cleanup.")
 panic(err)
 }
 log.Println("Removed Cognito triggers from user pool.")
 } else {
 log.Println("Be sure to remove resources when you're done with them to avoid
 unexpected charges!")
 }
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• AdminCreateUser

• AdminSetUserPassword

• DeleteUser

• InitiateAuth

• UpdateUserPool

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Serverless examples for Lambda

The following code examples show how to use Lambda with AWS SDKs.

Examples

• Connecting to an Amazon RDS database in a Lambda function

• Invoke a Lambda function from a Kinesis trigger

• Invoke a Lambda function from a DynamoDB trigger

• Invoke a Lambda function from a Amazon DocumentDB trigger

• Invoke a Lambda function from an Amazon MSK trigger

• Invoke a Lambda function from an Amazon S3 trigger

• Invoke a Lambda function from an Amazon SNS trigger

• Invoke a Lambda function from an Amazon SQS trigger

Serverless examples 2412

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.AdminCreateUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.AdminSetUserPassword
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool

AWS Lambda Developer Guide

• Reporting batch item failures for Lambda functions with a Kinesis trigger

• Reporting batch item failures for Lambda functions with a DynamoDB trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

Connecting to an Amazon RDS database in a Lambda function

The following code examples show how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using .NET.

using System.Data;
using System.Text.Json;
using Amazon.Lambda.APIGatewayEvents;
using Amazon.Lambda.Core;
using MySql.Data.MySqlClient;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace aws_rds;

public class InputModel
{
 public string key1 { get; set; }
 public string key2 { get; set; }
}

public class Function

Connecting to an Amazon RDS database in a Lambda function 2413

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

{
 /// <summary>
 // Handles the Lambda function execution for connecting to RDS using IAM
 authentication.
 /// </summary>
 /// <param name="input">The input event data passed to the Lambda function</
param>
 /// <param name="context">The Lambda execution context that provides runtime
 information</param>
 /// <returns>A response object containing the execution result</returns>

 public async Task<APIGatewayProxyResponse>
 FunctionHandler(APIGatewayProxyRequest request, ILambdaContext context)
 {
 // Sample Input: {"body": "{\"key1\":\"20\", \"key2\":\"25\"}"}
 var input = JsonSerializer.Deserialize<InputModel>(request.Body);

 /// Obtain authentication token
 var authToken = RDSAuthTokenGenerator.GenerateAuthToken(
 Environment.GetEnvironmentVariable("RDS_ENDPOINT"),
 Convert.ToInt32(Environment.GetEnvironmentVariable("RDS_PORT")),
 Environment.GetEnvironmentVariable("RDS_USERNAME")
);

 /// Build the Connection String with the Token
 string connectionString =
 $"Server={Environment.GetEnvironmentVariable("RDS_ENDPOINT")};" +

 $"Port={Environment.GetEnvironmentVariable("RDS_PORT")};" +

 $"Uid={Environment.GetEnvironmentVariable("RDS_USERNAME")};" +
 $"Pwd={authToken};";

 try
 {
 await using var connection = new MySqlConnection(connectionString);
 await connection.OpenAsync();

 const string sql = "SELECT @param1 + @param2 AS Sum";

 await using var command = new MySqlCommand(sql, connection);
 command.Parameters.AddWithValue("@param1", int.Parse(input.key1 ??
 "0"));

Connecting to an Amazon RDS database in a Lambda function 2414

AWS Lambda Developer Guide

 command.Parameters.AddWithValue("@param2", int.Parse(input.key2 ??
 "0"));

 await using var reader = await command.ExecuteReaderAsync();
 if (await reader.ReadAsync())
 {
 int result = reader.GetInt32("Sum");

 //Sample Response: {"statusCode":200,"body":"{\"message\":\"The
 sum is: 45\"}","isBase64Encoded":false}
 return new APIGatewayProxyResponse
 {
 StatusCode = 200,
 Body = JsonSerializer.Serialize(new { message = $"The sum is:
 {result}" })
 };
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }

 return new APIGatewayProxyResponse
 {
 StatusCode = 500,
 Body = JsonSerializer.Serialize(new { error = "Internal server
 error" })
 };
 }
}

Connecting to an Amazon RDS database in a Lambda function 2415

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Go.

/*
Golang v2 code here.
*/

package main

import (
 "context"
 "database/sql"
 "encoding/json"
 "fmt"
 "os"

 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/rds/auth"
 _ "github.com/go-sql-driver/mysql"
)

type MyEvent struct {
 Name string `json:"name"`
}

func HandleRequest(event *MyEvent) (map[string]interface{}, error) {

 var dbName string = os.Getenv("DatabaseName")
 var dbUser string = os.Getenv("DatabaseUser")
 var dbHost string = os.Getenv("DBHost") // Add hostname without https
 var dbPort int = os.Getenv("Port") // Add port number
 var dbEndpoint string = fmt.Sprintf("%s:%d", dbHost, dbPort)
 var region string = os.Getenv("AWS_REGION")

Connecting to an Amazon RDS database in a Lambda function 2416

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 panic("configuration error: " + err.Error())
 }

 authenticationToken, err := auth.BuildAuthToken(
 context.TODO(), dbEndpoint, region, dbUser, cfg.Credentials)
 if err != nil {
 panic("failed to create authentication token: " + err.Error())
 }

 dsn := fmt.Sprintf("%s:%s@tcp(%s)/%s?tls=true&allowCleartextPasswords=true",
 dbUser, authenticationToken, dbEndpoint, dbName,
)

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 panic(err)
 }

 defer db.Close()

 var sum int
 err = db.QueryRow("SELECT ?+? AS sum", 3, 2).Scan(&sum)
 if err != nil {
 panic(err)
 }
 s := fmt.Sprint(sum)
 message := fmt.Sprintf("The selected sum is: %s", s)

 messageBytes, err := json.Marshal(message)
 if err != nil {
 return nil, err
 }

 messageString := string(messageBytes)
 return map[string]interface{}{
 "statusCode": 200,
 "headers": map[string]string{"Content-Type": "application/json"},
 "body": messageString,
 }, nil
}

Connecting to an Amazon RDS database in a Lambda function 2417

AWS Lambda Developer Guide

func main() {
 lambda.Start(HandleRequest)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyRequestEvent;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyResponseEvent;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rdsdata.RdsDataClient;
import software.amazon.awssdk.services.rdsdata.model.ExecuteStatementRequest;
import software.amazon.awssdk.services.rdsdata.model.ExecuteStatementResponse;
import software.amazon.awssdk.services.rdsdata.model.Field;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class RdsLambdaHandler implements
 RequestHandler<APIGatewayProxyRequestEvent, APIGatewayProxyResponseEvent> {

 @Override
 public APIGatewayProxyResponseEvent handleRequest(APIGatewayProxyRequestEvent
 event, Context context) {
 APIGatewayProxyResponseEvent response = new
 APIGatewayProxyResponseEvent();

Connecting to an Amazon RDS database in a Lambda function 2418

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 try {
 // Obtain auth token
 String token = createAuthToken();

 // Define connection configuration
 String connectionString = String.format("jdbc:mysql://%s:%s/%s?
useSSL=true&requireSSL=true",
 System.getenv("ProxyHostName"),
 System.getenv("Port"),
 System.getenv("DBName"));

 // Establish a connection to the database
 try (Connection connection =
 DriverManager.getConnection(connectionString, System.getenv("DBUserName"),
 token);
 PreparedStatement statement =
 connection.prepareStatement("SELECT ? + ? AS sum")) {

 statement.setInt(1, 3);
 statement.setInt(2, 2);

 try (ResultSet resultSet = statement.executeQuery()) {
 if (resultSet.next()) {
 int sum = resultSet.getInt("sum");
 response.setStatusCode(200);
 response.setBody("The selected sum is: " + sum);
 }
 }
 }

 } catch (Exception e) {
 response.setStatusCode(500);
 response.setBody("Error: " + e.getMessage());
 }

 return response;
 }

 private String createAuthToken() {
 // Create RDS Data Service client
 RdsDataClient rdsDataClient = RdsDataClient.builder()
 .region(Region.of(System.getenv("AWS_REGION")))
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

Connecting to an Amazon RDS database in a Lambda function 2419

AWS Lambda Developer Guide

 // Define authentication request
 ExecuteStatementRequest request = ExecuteStatementRequest.builder()
 .resourceArn(System.getenv("ProxyHostName"))
 .secretArn(System.getenv("DBUserName"))
 .database(System.getenv("DBName"))
 .sql("SELECT 'RDS IAM Authentication'")
 .build();

 // Execute request and obtain authentication token
 ExecuteStatementResponse response =
 rdsDataClient.executeStatement(request);
 Field tokenField = response.records().get(0).get(0);

 return tokenField.stringValue();
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
/*
Node.js code here.
*/
// ES6+ example
import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

async function createAuthToken() {
 // Define connection authentication parameters

Connecting to an Amazon RDS database in a Lambda function 2420

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 const dbinfo = {

 hostname: process.env.ProxyHostName,
 port: process.env.Port,
 username: process.env.DBUserName,
 region: process.env.AWS_REGION,

 }

 // Create RDS Signer object
 const signer = new Signer(dbinfo);

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps() {

 // Obtain auth token
 const token = await createAuthToken();
 // Define connection configuration
 let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: 'Amazon RDS'
 }
 // Create the connection to the DB
 const conn = await mysql.createConnection(connectionConfig);
 // Obtain the result of the query
 const [res,] = await conn.execute('select ?+? as sum', [3, 2]);
 return res;

}

export const handler = async (event) => {
 // Execute database flow
 const result = await dbOps();
 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify("The selected sum is: " + result[0].sum)

Connecting to an Amazon RDS database in a Lambda function 2421

AWS Lambda Developer Guide

 }
};

Connecting to an Amazon RDS database in a Lambda function using TypeScript.

import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

// RDS settings
// Using '!' (non-null assertion operator) to tell the TypeScript compiler that
 the DB settings are not null or undefined,
const proxy_host_name = process.env.PROXY_HOST_NAME!
const port = parseInt(process.env.PORT!)
const db_name = process.env.DB_NAME!
const db_user_name = process.env.DB_USER_NAME!
const aws_region = process.env.AWS_REGION!

async function createAuthToken(): Promise<string> {

 // Create RDS Signer object
 const signer = new Signer({
 hostname: proxy_host_name,
 port: port,
 region: aws_region,
 username: db_user_name
 });

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps(): Promise<mysql.QueryResult | undefined> {
 try {
 // Obtain auth token
 const token = await createAuthToken();
 const conn = await mysql.createConnection({
 host: proxy_host_name,
 user: db_user_name,
 password: token,

Connecting to an Amazon RDS database in a Lambda function 2422

AWS Lambda Developer Guide

 database: db_name,
 ssl: 'Amazon RDS' // Ensure you have the CA bundle for SSL connection
 });
 const [rows, fields] = await conn.execute('SELECT ? + ? AS sum', [3, 2]);
 console.log('result:', rows);
 return rows;
 }
 catch (err) {
 console.log(err);
 }
}

export const lambdaHandler = async (event: any): Promise<{ statusCode: number;
 body: string }> => {
 // Execute database flow
 const result = await dbOps();

 // Return error is result is undefined
 if (result == undefined)
 return {
 statusCode: 500,
 body: JSON.stringify(`Error with connection to DB host`)
 }

 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify(`The selected sum is: ${result[0].sum}`)
 };
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using PHP.

Connecting to an Amazon RDS database in a Lambda function 2423

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

<?php
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;
use Aws\Rds\AuthTokenGenerator;
use Aws\Credentials\CredentialProvider;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 private function getAuthToken(): string {
 // Define connection authentication parameters
 $dbConnection = [
 'hostname' => getenv('DB_HOSTNAME'),
 'port' => getenv('DB_PORT'),
 'username' => getenv('DB_USERNAME'),
 'region' => getenv('AWS_REGION'),
];

 // Create RDS AuthTokenGenerator object
 $generator = new
 AuthTokenGenerator(CredentialProvider::defaultProvider());

 // Request authorization token from RDS, specifying the username
 return $generator->createToken(
 $dbConnection['hostname'] . ':' . $dbConnection['port'],
 $dbConnection['region'],
 $dbConnection['username']
);
 }

Connecting to an Amazon RDS database in a Lambda function 2424

AWS Lambda Developer Guide

 private function getQueryResults() {
 // Obtain auth token
 $token = $this->getAuthToken();

 // Define connection configuration
 $connectionConfig = [
 'host' => getenv('DB_HOSTNAME'),
 'user' => getenv('DB_USERNAME'),
 'password' => $token,
 'database' => getenv('DB_NAME'),
];

 // Create the connection to the DB
 $conn = new PDO(

 "mysql:host={$connectionConfig['host']};dbname={$connectionConfig['database']}",
 $connectionConfig['user'],
 $connectionConfig['password'],
 [
 PDO::MYSQL_ATTR_SSL_CA => '/path/to/rds-ca-2019-root.pem',
 PDO::MYSQL_ATTR_SSL_VERIFY_SERVER_CERT => true,
]
);

 // Obtain the result of the query
 $stmt = $conn->prepare('SELECT ?+? AS sum');
 $stmt->execute([3, 2]);

 return $stmt->fetch(PDO::FETCH_ASSOC);
 }

 /**
 * @param mixed $event
 * @param Context $context
 * @return array
 */
 public function handle(mixed $event, Context $context): array
 {
 $this->logger->info("Processing query");

 // Execute database flow
 $result = $this->getQueryResults();

Connecting to an Amazon RDS database in a Lambda function 2425

AWS Lambda Developer Guide

 return [
 'sum' => $result['sum']
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Python.

import json
import os
import boto3
import pymysql

RDS settings
proxy_host_name = os.environ['PROXY_HOST_NAME']
port = int(os.environ['PORT'])
db_name = os.environ['DB_NAME']
db_user_name = os.environ['DB_USER_NAME']
aws_region = os.environ['AWS_REGION']

Fetch RDS Auth Token
def get_auth_token():
 client = boto3.client('rds')
 token = client.generate_db_auth_token(
 DBHostname=proxy_host_name,
 Port=port
 DBUsername=db_user_name
 Region=aws_region

Connecting to an Amazon RDS database in a Lambda function 2426

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

)
 return token

def lambda_handler(event, context):
 token = get_auth_token()
 try:
 connection = pymysql.connect(
 host=proxy_host_name,
 user=db_user_name,
 password=token,
 db=db_name,
 port=port,
 ssl={'ca': 'Amazon RDS'} # Ensure you have the CA bundle for SSL
 connection
)

 with connection.cursor() as cursor:
 cursor.execute('SELECT %s + %s AS sum', (3, 2))
 result = cursor.fetchone()

 return result

 except Exception as e:
 return (f"Error: {str(e)}") # Return an error message if an exception
 occurs

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Ruby.

Ruby code here.

require 'aws-sdk-rds'

Connecting to an Amazon RDS database in a Lambda function 2427

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

require 'json'
require 'mysql2'

def lambda_handler(event:, context:)
 endpoint = ENV['DBEndpoint'] # Add the endpoint without https"
 port = ENV['Port'] # 3306
 user = ENV['DBUser']
 region = ENV['DBRegion'] # 'us-east-1'
 db_name = ENV['DBName']

 credentials = Aws::Credentials.new(
 ENV['AWS_ACCESS_KEY_ID'],
 ENV['AWS_SECRET_ACCESS_KEY'],
 ENV['AWS_SESSION_TOKEN']
)
 rds_client = Aws::RDS::AuthTokenGenerator.new(
 region: region,
 credentials: credentials
)

 token = rds_client.auth_token(
 endpoint: endpoint+ ':' + port,
 user_name: user,
 region: region
)

 begin
 conn = Mysql2::Client.new(
 host: endpoint,
 username: user,
 password: token,
 port: port,
 database: db_name,
 sslca: '/var/task/global-bundle.pem',
 sslverify: true,
 enable_cleartext_plugin: true
)
 a = 3
 b = 2
 result = conn.query("SELECT #{a} + #{b} AS sum").first['sum']
 puts result
 conn.close
 {
 statusCode: 200,

Connecting to an Amazon RDS database in a Lambda function 2428

AWS Lambda Developer Guide

 body: result.to_json
 }
 rescue => e
 puts "Database connection failed due to #{e}"
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Connecting to an Amazon RDS database in a Lambda function using Rust.

use aws_config::BehaviorVersion;
use aws_credential_types::provider::ProvideCredentials;
use aws_sigv4::{
 http_request::{sign, SignableBody, SignableRequest, SigningSettings},
 sign::v4,
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use serde_json::{json, Value};
use sqlx::postgres::PgConnectOptions;
use std::env;
use std::time::{Duration, SystemTime};

const RDS_CERTS: &[u8] = include_bytes!("global-bundle.pem");

async fn generate_rds_iam_token(
 db_hostname: &str,
 port: u16,
 db_username: &str,
) -> Result<String, Error> {
 let config = aws_config::load_defaults(BehaviorVersion::v2024_03_28()).await;

 let credentials = config
 .credentials_provider()

Connecting to an Amazon RDS database in a Lambda function 2429

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

AWS Lambda Developer Guide

 .expect("no credentials provider found")
 .provide_credentials()
 .await
 .expect("unable to load credentials");
 let identity = credentials.into();
 let region = config.region().unwrap().to_string();

 let mut signing_settings = SigningSettings::default();
 signing_settings.expires_in = Some(Duration::from_secs(900));
 signing_settings.signature_location =
 aws_sigv4::http_request::SignatureLocation::QueryParams;

 let signing_params = v4::SigningParams::builder()
 .identity(&identity)
 .region(®ion)
 .name("rds-db")
 .time(SystemTime::now())
 .settings(signing_settings)
 .build()?;

 let url = format!(
 "https://{db_hostname}:{port}/?Action=connect&DBUser={db_user}",
 db_hostname = db_hostname,
 port = port,
 db_user = db_username
);

 let signable_request =
 SignableRequest::new("GET", &url, std::iter::empty(),
 SignableBody::Bytes(&[]))
 .expect("signable request");

 let (signing_instructions, _signature) =
 sign(signable_request, &signing_params.into())?.into_parts();

 let mut url = url::Url::parse(&url).unwrap();
 for (name, value) in signing_instructions.params() {
 url.query_pairs_mut().append_pair(name, &value);
 }

 let response = url.to_string().split_off("https://".len());

 Ok(response)
}

Connecting to an Amazon RDS database in a Lambda function 2430

AWS Lambda Developer Guide

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(handler)).await
}

async fn handler(_event: LambdaEvent<Value>) -> Result<Value, Error> {
 let db_host = env::var("DB_HOSTNAME").expect("DB_HOSTNAME must be set");
 let db_port = env::var("DB_PORT")
 .expect("DB_PORT must be set")
 .parse::<u16>()
 .expect("PORT must be a valid number");
 let db_name = env::var("DB_NAME").expect("DB_NAME must be set");
 let db_user_name = env::var("DB_USERNAME").expect("DB_USERNAME must be set");

 let token = generate_rds_iam_token(&db_host, db_port, &db_user_name).await?;

 let opts = PgConnectOptions::new()
 .host(&db_host)
 .port(db_port)
 .username(&db_user_name)
 .password(&token)
 .database(&db_name)
 .ssl_root_cert_from_pem(RDS_CERTS.to_vec())
 .ssl_mode(sqlx::postgres::PgSslMode::Require);

 let pool = sqlx::postgres::PgPoolOptions::new()
 .connect_with(opts)
 .await?;

 let result: i32 = sqlx::query_scalar("SELECT $1 + $2")
 .bind(3)
 .bind(2)
 .fetch_one(&pool)
 .await?;

 println!("Result: {:?}", result);

 Ok(json!({
 "statusCode": 200,
 "content-type": "text/plain",
 "body": format!("The selected sum is: {result}")
 }))
}

Connecting to an Amazon RDS database in a Lambda function 2431

AWS Lambda Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a Kinesis trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving records from a Kinesis stream. The function retrieves the Kinesis payload,
decodes from Base64, and logs the record contents.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegrationSampleCode;

public class Function
{
 // Powertools Logger requires an environment variables against your function

Invoke a Lambda function from a Kinesis trigger 2432

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task FunctionHandler(KinesisEvent evnt, ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return;
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 throw;
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

Invoke a Lambda function from a Kinesis trigger 2433

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent) error {
 if len(kinesisEvent.Records) == 0 {
 log.Printf("empty Kinesis event received")
 return nil
 }

 for _, record := range kinesisEvent.Records {
 log.Printf("processed Kinesis event with EventId: %v", record.EventID)
 recordDataBytes := record.Kinesis.Data
 recordDataText := string(recordDataBytes)
 log.Printf("record data: %v", recordDataText)
 // TODO: Do interesting work based on the new data
 }
 log.Printf("successfully processed %v records", len(kinesisEvent.Records))
 return nil
}

func main() {
 lambda.Start(handler)

Invoke a Lambda function from a Kinesis trigger 2434

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

public class Handler implements RequestHandler<KinesisEvent, Void> {
 @Override
 public Void handleRequest(final KinesisEvent event, final Context context) {
 LambdaLogger logger = context.getLogger();
 if (event.getRecords().isEmpty()) {
 logger.log("Empty Kinesis Event received");
 return null;
 }
 for (KinesisEvent.KinesisEventRecord record : event.getRecords()) {
 try {
 logger.log("Processed Event with EventId: "+record.getEventID());
 String data = new String(record.getKinesis().getData().array());
 logger.log("Data:"+ data);
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex) {
 logger.log("An error occurred:"+ex.getMessage());
 throw ex;

Invoke a Lambda function from a Kinesis trigger 2435

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 }
 }
 logger.log("Successfully processed:"+event.getRecords().size()+"
 records");
 return null;
 }

}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 throw err;
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work

Invoke a Lambda function from a Kinesis trigger 2436

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 return data;
}

Consuming a Kinesis event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 throw err;
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 }
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {

Invoke a Lambda function from a Kinesis trigger 2437

AWS Lambda Developer Guide

 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Kinesis\KinesisHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends KinesisHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent

Invoke a Lambda function from a Kinesis trigger 2438

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 */
 public function handleKinesis(KinesisEvent $event, Context $context): void
 {
 $this->logger->info("Processing records");
 $records = $event->getRecords();
 foreach ($records as $record) {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import base64
def lambda_handler(event, context):

 for record in event['Records']:
 try:
 print(f"Processed Kinesis Event - EventID: {record['eventID']}")

Invoke a Lambda function from a Kinesis trigger 2439

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 record_data = base64.b64decode(record['kinesis']
['data']).decode('utf-8')
 print(f"Record Data: {record_data}")
 # TODO: Do interesting work based on the new data
 except Exception as e:
 print(f"An error occurred {e}")
 raise e
 print(f"Successfully processed {len(event['Records'])} records.")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue => err
 $stderr.puts "An error occurred #{err}"
 raise err
 end
 end
 puts "Successfully processed #{event['Records'].length} records."
end

def get_record_data_async(payload)

Invoke a Lambda function from a Kinesis trigger 2440

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 data = Base64.decode64(payload['data']).force_encoding('UTF-8')
 # Placeholder for actual async work
 # You can use Ruby's asynchronous programming tools like async/await or fibers
 here.
 return data
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::kinesis::KinesisEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) -> Result<(), Error>
 {
 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 event.payload.records.iter().for_each(|record| {
 tracing::info!("EventId:
 {}",record.event_id.as_deref().unwrap_or_default());

 let record_data = std::str::from_utf8(&record.kinesis.data);

 match record_data {
 Ok(data) => {
 // log the record data
 tracing::info!("Data: {}", data);
 }

Invoke a Lambda function from a Kinesis trigger 2441

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

AWS Lambda Developer Guide

 Err(e) => {
 tracing::error!("Error: {}", e);
 }
 }
 });

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a DynamoDB trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

Invoke a Lambda function from a DynamoDB trigger 2442

AWS Lambda Developer Guide

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public void FunctionHandler(DynamoDBEvent dynamoEvent, ILambdaContext
 context)
 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");

 foreach (var record in dynamoEvent.Records)
 {
 context.Logger.LogInformation($"Event ID: {record.EventID}");
 context.Logger.LogInformation($"Event Name: {record.EventName}");

 context.Logger.LogInformation(JsonSerializer.Serialize(record));
 }

 context.Logger.LogInformation("Stream processing complete.");

Invoke a Lambda function from a DynamoDB trigger 2443

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/events"
 "fmt"
)

func HandleRequest(ctx context.Context, event events.DynamoDBEvent) (*string,
 error) {
 if len(event.Records) == 0 {
 return nil, fmt.Errorf("received empty event")
 }

 for _, record := range event.Records {
 LogDynamoDBRecord(record)
 }

 message := fmt.Sprintf("Records processed: %d", len(event.Records))
 return &message, nil
}

func main() {

Invoke a Lambda function from a DynamoDB trigger 2444

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 lambda.Start(HandleRequest)
}

func LogDynamoDBRecord(record events.DynamoDBEventRecord){
 fmt.Println(record.EventID)
 fmt.Println(record.EventName)
 fmt.Printf("%+v\n", record.Change)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import
 com.amazonaws.services.lambda.runtime.events.DynamodbEvent.DynamodbStreamRecord;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

public class example implements RequestHandler<DynamodbEvent, Void> {

 private static final Gson GSON = new
 GsonBuilder().setPrettyPrinting().create();

 @Override
 public Void handleRequest(DynamodbEvent event, Context context) {
 System.out.println(GSON.toJson(event));
 event.getRecords().forEach(this::logDynamoDBRecord);
 return null;
 }

 private void logDynamoDBRecord(DynamodbStreamRecord record) {

Invoke a Lambda function from a DynamoDB trigger 2445

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 System.out.println(record.getEventID());
 System.out.println(record.getEventName());
 System.out.println("DynamoDB Record: " +
 GSON.toJson(record.getDynamodb()));
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

Consuming a DynamoDB event with Lambda using TypeScript.

export const handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);

Invoke a Lambda function from a DynamoDB trigger 2446

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 });
}
const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using PHP.

<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\DynamoDb\DynamoDbEvent;
use Bref\Event\DynamoDb\DynamoDbHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends DynamoDbHandler
{
 private StderrLogger $logger;

 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException

Invoke a Lambda function from a DynamoDB trigger 2447

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleDynamoDb(DynamoDbEvent $event, Context $context): void
 {
 $this->logger->info("Processing DynamoDb table items");
 $records = $event->getRecords();

 foreach ($records as $record) {
 $eventName = $record->getEventName();
 $keys = $record->getKeys();
 $old = $record->getOldImage();
 $new = $record->getNewImage();

 $this->logger->info("Event Name:".$eventName."\n");
 $this->logger->info("Keys:". json_encode($keys)."\n");
 $this->logger->info("Old Image:". json_encode($old)."\n");
 $this->logger->info("New Image:". json_encode($new));

 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }

 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords items");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from a DynamoDB trigger 2448

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

Consuming a DynamoDB event with Lambda using Python.

import json

def lambda_handler(event, context):
 print(json.dumps(event, indent=2))

 for record in event['Records']:
 log_dynamodb_record(record)

def log_dynamodb_record(record):
 print(record['eventID'])
 print(record['eventName'])
 print(f"DynamoDB Record: {json.dumps(record['dynamodb'])}")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Ruby.

def lambda_handler(event:, context:)
 return 'received empty event' if event['Records'].empty?

 event['Records'].each do |record|
 log_dynamodb_record(record)
 end

 "Records processed: #{event['Records'].length}"
 end

 def log_dynamodb_record(record)

Invoke a Lambda function from a DynamoDB trigger 2449

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 puts record['eventID']
 puts record['eventName']
 puts "DynamoDB Record: #{JSON.generate(record['dynamodb'])}"
 end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Rust.

use lambda_runtime::{service_fn, tracing, Error, LambdaEvent};
use aws_lambda_events::{
 event::dynamodb::{Event, EventRecord},
 };

// Built with the following dependencies:
//lambda_runtime = "0.11.1"
//serde_json = "1.0"
//tokio = { version = "1", features = ["macros"] }
//tracing = { version = "0.1", features = ["log"] }
//tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }
//aws_lambda_events = "0.15.0"

async fn function_handler(event: LambdaEvent<Event>) ->Result<(), Error> {

 let records = &event.payload.records;
 tracing::info!("event payload: {:?}",records);
 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

Invoke a Lambda function from a DynamoDB trigger 2450

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

AWS Lambda Developer Guide

 for record in records{
 log_dynamo_dbrecord(record);
 }

 tracing::info!("Dynamo db records processed");

 // Prepare the response
 Ok(())

}

fn log_dynamo_dbrecord(record: &EventRecord)-> Result<(), Error>{
 tracing::info!("EventId: {}", record.event_id);
 tracing::info!("EventName: {}", record.event_name);
 tracing::info!("DynamoDB Record: {:?}", record.change);
 Ok(())

}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 let func = service_fn(function_handler);
 lambda_runtime::run(func).await?;
 Ok(())

}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a DynamoDB trigger 2451

AWS Lambda Developer Guide

Invoke a Lambda function from a Amazon DocumentDB trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving records from a DocumentDB change stream. The function retrieves the
DocumentDB payload and logs the record contents.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using .NET.

using Amazon.Lambda.Core;
using System.Text.Json;
using System;
using System.Collections.Generic;
using System.Text.Json.Serialization;
//Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaDocDb;

public class Function
{

 /// <summary>
 /// Lambda function entry point to process Amazon DocumentDB events.
 /// </summary>
 /// <param name="event">The Amazon DocumentDB event.</param>
 /// <param name="context">The Lambda context object.</param>
 /// <returns>A string to indicate successful processing.</returns>
 public string FunctionHandler(Event evnt, ILambdaContext context)
 {

Invoke a Lambda function from a Amazon DocumentDB trigger 2452

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

 foreach (var record in evnt.Events)
 {
 ProcessDocumentDBEvent(record, context);
 }

 return "OK";
 }

 private void ProcessDocumentDBEvent(DocumentDBEventRecord record,
 ILambdaContext context)
 {

 var eventData = record.Event;
 var operationType = eventData.OperationType;
 var databaseName = eventData.Ns.Db;
 var collectionName = eventData.Ns.Coll;
 var fullDocument = JsonSerializer.Serialize(eventData.FullDocument, new
 JsonSerializerOptions { WriteIndented = true });

 context.Logger.LogLine($"Operation type: {operationType}");
 context.Logger.LogLine($"Database: {databaseName}");
 context.Logger.LogLine($"Collection: {collectionName}");
 context.Logger.LogLine($"Full document:\n{fullDocument}");
 }

 public class Event
 {
 [JsonPropertyName("eventSourceArn")]
 public string EventSourceArn { get; set; }

 [JsonPropertyName("events")]
 public List<DocumentDBEventRecord> Events { get; set; }

 [JsonPropertyName("eventSource")]
 public string EventSource { get; set; }
 }

 public class DocumentDBEventRecord
 {
 [JsonPropertyName("event")]
 public EventData Event { get; set; }
 }

Invoke a Lambda function from a Amazon DocumentDB trigger 2453

AWS Lambda Developer Guide

 public class EventData
 {
 [JsonPropertyName("_id")]
 public IdData Id { get; set; }

 [JsonPropertyName("clusterTime")]
 public ClusterTime ClusterTime { get; set; }

 [JsonPropertyName("documentKey")]
 public DocumentKey DocumentKey { get; set; }

 [JsonPropertyName("fullDocument")]
 public Dictionary<string, object> FullDocument { get; set; }

 [JsonPropertyName("ns")]
 public Namespace Ns { get; set; }

 [JsonPropertyName("operationType")]
 public string OperationType { get; set; }
 }

 public class IdData
 {
 [JsonPropertyName("_data")]
 public string Data { get; set; }
 }

 public class ClusterTime
 {
 [JsonPropertyName("$timestamp")]
 public Timestamp Timestamp { get; set; }
 }

 public class Timestamp
 {
 [JsonPropertyName("t")]
 public long T { get; set; }

 [JsonPropertyName("i")]
 public int I { get; set; }
 }

 public class DocumentKey

Invoke a Lambda function from a Amazon DocumentDB trigger 2454

AWS Lambda Developer Guide

 {
 [JsonPropertyName("_id")]
 public Id Id { get; set; }
 }

 public class Id
 {
 [JsonPropertyName("$oid")]
 public string Oid { get; set; }
 }

 public class Namespace
 {
 [JsonPropertyName("db")]
 public string Db { get; set; }

 [JsonPropertyName("coll")]
 public string Coll { get; set; }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Go.

package main

import (
 "context"
 "encoding/json"
 "fmt"

Invoke a Lambda function from a Amazon DocumentDB trigger 2455

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

 "github.com/aws/aws-lambda-go/lambda"
)

type Event struct {
 Events []Record `json:"events"`
}

type Record struct {
 Event struct {
 OperationType string `json:"operationType"`
 NS struct {
 DB string `json:"db"`
 Coll string `json:"coll"`
 } `json:"ns"`
 FullDocument interface{} `json:"fullDocument"`
 } `json:"event"`
}

func main() {
 lambda.Start(handler)
}

func handler(ctx context.Context, event Event) (string, error) {
 fmt.Println("Loading function")
 for _, record := range event.Events {
 logDocumentDBEvent(record)
 }

 return "OK", nil
}

func logDocumentDBEvent(record Record) {
 fmt.Printf("Operation type: %s\n", record.Event.OperationType)
 fmt.Printf("db: %s\n", record.Event.NS.DB)
 fmt.Printf("collection: %s\n", record.Event.NS.Coll)
 docBytes, _ := json.MarshalIndent(record.Event.FullDocument, "", " ")
 fmt.Printf("Full document: %s\n", string(docBytes))
}

Invoke a Lambda function from a Amazon DocumentDB trigger 2456

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Java.

import java.util.List;
import java.util.Map;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class Example implements RequestHandler<Map<String, Object>, String> {

 @SuppressWarnings("unchecked")
 @Override
 public String handleRequest(Map<String, Object> event, Context context) {
 List<Map<String, Object>> events = (List<Map<String, Object>>)
 event.get("events");
 for (Map<String, Object> record : events) {
 Map<String, Object> eventData = (Map<String, Object>)
 record.get("event");
 processEventData(eventData);
 }

 return "OK";
 }

 @SuppressWarnings("unchecked")
 private void processEventData(Map<String, Object> eventData) {
 String operationType = (String) eventData.get("operationType");
 System.out.println("operationType: %s".formatted(operationType));

 Map<String, Object> ns = (Map<String, Object>) eventData.get("ns");

 String db = (String) ns.get("db");
 System.out.println("db: %s".formatted(db));

Invoke a Lambda function from a Amazon DocumentDB trigger 2457

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

 String coll = (String) ns.get("coll");
 System.out.println("coll: %s".formatted(coll));

 Map<String, Object> fullDocument = (Map<String, Object>)
 eventData.get("fullDocument");
 System.out.println("fullDocument: %s".formatted(fullDocument));
 }

}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using JavaScript.

console.log('Loading function');
exports.handler = async (event, context) => {
 event.events.forEach(record => {
 logDocumentDBEvent(record);
 });
 return 'OK';
};

const logDocumentDBEvent = (record) => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument, null,
 2));
};

Invoke a Lambda function from a Amazon DocumentDB trigger 2458

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

Consuming a Amazon DocumentDB event with Lambda using TypeScript

import { DocumentDBEventRecord, DocumentDBEventSubscriptionContext } from 'aws-
lambda';

console.log('Loading function');

export const handler = async (
 event: DocumentDBEventSubscriptionContext,
 context: any
): Promise<string> => {
 event.events.forEach((record: DocumentDBEventRecord) => {
 logDocumentDBEvent(record);
 });
 return 'OK';
};

const logDocumentDBEvent = (record: DocumentDBEventRecord): void => {
 console.log('Operation type: ' + record.event.operationType);
 console.log('db: ' + record.event.ns.db);
 console.log('collection: ' + record.event.ns.coll);
 console.log('Full document:', JSON.stringify(record.event.fullDocument, null,
 2));
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using PHP.

<?php

require __DIR__.'/vendor/autoload.php';

Invoke a Lambda function from a Amazon DocumentDB trigger 2459

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

use Bref\Context\Context;
use Bref\Event\Handler;

class DocumentDBEventHandler implements Handler
{
 public function handle($event, Context $context): string
 {

 $events = $event['events'] ?? [];
 foreach ($events as $record) {
 $this->logDocumentDBEvent($record['event']);
 }
 return 'OK';
 }

 private function logDocumentDBEvent($event): void
 {
 // Extract information from the event record

 $operationType = $event['operationType'] ?? 'Unknown';
 $db = $event['ns']['db'] ?? 'Unknown';
 $collection = $event['ns']['coll'] ?? 'Unknown';
 $fullDocument = $event['fullDocument'] ?? [];

 // Log the event details

 echo "Operation type: $operationType\n";
 echo "Database: $db\n";
 echo "Collection: $collection\n";
 echo "Full document: " . json_encode($fullDocument, JSON_PRETTY_PRINT) .
 "\n";
 }
}
return new DocumentDBEventHandler();

Invoke a Lambda function from a Amazon DocumentDB trigger 2460

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Python.

import json

def lambda_handler(event, context):
 for record in event.get('events', []):
 log_document_db_event(record)
 return 'OK'

def log_document_db_event(record):
 event_data = record.get('event', {})
 operation_type = event_data.get('operationType', 'Unknown')
 db = event_data.get('ns', {}).get('db', 'Unknown')
 collection = event_data.get('ns', {}).get('coll', 'Unknown')
 full_document = event_data.get('fullDocument', {})

 print(f"Operation type: {operation_type}")
 print(f"db: {db}")
 print(f"collection: {collection}")
 print("Full document:", json.dumps(full_document, indent=2))

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from a Amazon DocumentDB trigger 2461

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

Consuming a Amazon DocumentDB event with Lambda using Ruby.

require 'json'

def lambda_handler(event:, context:)
 event['events'].each do |record|
 log_document_db_event(record)
 end
 'OK'
end

def log_document_db_event(record)
 event_data = record['event'] || {}
 operation_type = event_data['operationType'] || 'Unknown'
 db = event_data.dig('ns', 'db') || 'Unknown'
 collection = event_data.dig('ns', 'coll') || 'Unknown'
 full_document = event_data['fullDocument'] || {}

 puts "Operation type: #{operation_type}"
 puts "db: #{db}"
 puts "collection: #{collection}"
 puts "Full document: #{JSON.pretty_generate(full_document)}"
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Amazon DocumentDB event with Lambda using Rust.

use lambda_runtime::{service_fn, tracing, Error, LambdaEvent};
use aws_lambda_events::{
 event::documentdb::{DocumentDbEvent, DocumentDbInnerEvent},
 };

Invoke a Lambda function from a Amazon DocumentDB trigger 2462

https://github.com/aws-samples/serverless-snippets/tree/main/integration-docdb-to-lambda

AWS Lambda Developer Guide

// Built with the following dependencies:
//lambda_runtime = "0.11.1"
//serde_json = "1.0"
//tokio = { version = "1", features = ["macros"] }
//tracing = { version = "0.1", features = ["log"] }
//tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }
//aws_lambda_events = "0.15.0"

async fn function_handler(event: LambdaEvent<DocumentDbEvent>) ->Result<(),
 Error> {

 tracing::info!("Event Source ARN: {:?}", event.payload.event_source_arn);
 tracing::info!("Event Source: {:?}", event.payload.event_source);

 let records = &event.payload.events;

 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 for record in records{
 log_document_db_event(record);
 }

 tracing::info!("Document db records processed");

 // Prepare the response
 Ok(())

}

fn log_document_db_event(record: &DocumentDbInnerEvent)-> Result<(), Error>{
 tracing::info!("Change Event: {:?}", record.event);

 Ok(())

}

#[tokio::main]
async fn main() -> Result<(), Error> {

Invoke a Lambda function from a Amazon DocumentDB trigger 2463

AWS Lambda Developer Guide

 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 let func = service_fn(function_handler);
 lambda_runtime::run(func).await?;
 Ok(())

}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon MSK trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving records from an Amazon MSK cluster. The function retrieves the MSK
payload and logs the record contents.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using .NET.

using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KafkaEvents;

Invoke a Lambda function from an Amazon MSK trigger 2464

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace MSKLambda;

public class Function
{

 /// <param name="input">The event for the Lambda function handler to
 process.</param>
 /// <param name="context">The ILambdaContext that provides methods for
 logging and describing the Lambda environment.</param>
 /// <returns></returns>
 public void FunctionHandler(KafkaEvent evnt, ILambdaContext context)
 {

 foreach (var record in evnt.Records)
 {
 Console.WriteLine("Key:" + record.Key);
 foreach (var eventRecord in record.Value)
 {
 var valueBytes = eventRecord.Value.ToArray();
 var valueText = Encoding.UTF8.GetString(valueBytes);

 Console.WriteLine("Message:" + valueText);
 }
 }
 }

}

Invoke a Lambda function from an Amazon MSK trigger 2465

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Go.

package main

import (
 "encoding/base64"
 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.KafkaEvent) {
 for key, records := range event.Records {
 fmt.Println("Key:", key)

 for _, record := range records {
 fmt.Println("Record:", record)

 decodedValue, _ := base64.StdEncoding.DecodeString(record.Value)
 message := string(decodedValue)
 fmt.Println("Message:", message)
 }
 }
}

func main() {
 lambda.Start(handler)
}

Invoke a Lambda function from an Amazon MSK trigger 2466

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KafkaEvent;
import com.amazonaws.services.lambda.runtime.events.KafkaEvent.KafkaEventRecord;

import java.util.Base64;
import java.util.Map;

public class Example implements RequestHandler<KafkaEvent, Void> {

 @Override
 public Void handleRequest(KafkaEvent event, Context context) {
 for (Map.Entry<String, java.util.List<KafkaEventRecord>> entry :
 event.getRecords().entrySet()) {
 String key = entry.getKey();
 System.out.println("Key: " + key);

 for (KafkaEventRecord record : entry.getValue()) {
 System.out.println("Record: " + record);

 byte[] value = Base64.getDecoder().decode(record.getValue());
 String message = new String(value);
 System.out.println("Message: " + message);
 }
 }

 return null;
 }
}

Invoke a Lambda function from an Amazon MSK trigger 2467

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using JavaScript.

exports.handler = async (event) => {
 // Iterate through keys
 for (let key in event.records) {
 console.log('Key: ', key)
 // Iterate through records
 event.records[key].map((record) => {
 console.log('Record: ', record)
 // Decode base64
 const msg = Buffer.from(record.value, 'base64').toString()
 console.log('Message:', msg)
 })
 }
}

Consuming an Amazon MSK event with Lambda using TypeScript.

import { MSKEvent, Context } from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "msk-handler-sample",
});

export const handler = async (

Invoke a Lambda function from an Amazon MSK trigger 2468

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

 event: MSKEvent,
 context: Context
): Promise<void> => {
 for (const [topic, topicRecords] of Object.entries(event.records)) {
 logger.info(`Processing key: ${topic}`);

 // Process each record in the partition
 for (const record of topicRecords) {
 try {
 // Decode the message value from base64
 const decodedMessage = Buffer.from(record.value, 'base64').toString();

 logger.info({
 message: decodedMessage
 });
 }
 catch (error) {
 logger.error('Error processing event', { error });
 throw error;
 }
 };
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using PHP.

<?php
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

// using bref/bref and bref/logger for simplicity

Invoke a Lambda function from an Amazon MSK trigger 2469

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

use Bref\Context\Context;
use Bref\Event\Kafka\KafkaEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): void
 {
 $kafkaEvent = new KafkaEvent($event);
 $this->logger->info("Processing records");
 $records = $kafkaEvent->getRecords();

 foreach ($records as $record) {
 try {
 $key = $record->getKey();
 $this->logger->info("Key: $key");

 $values = $record->getValue();
 $this->logger->info(json_encode($values));

 foreach ($values as $value) {
 $this->logger->info("Value: $value");
 }

 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

Invoke a Lambda function from an Amazon MSK trigger 2470

AWS Lambda Developer Guide

 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Python.

import base64

def lambda_handler(event, context):
 # Iterate through keys
 for key in event['records']:
 print('Key:', key)
 # Iterate through records
 for record in event['records'][key]:
 print('Record:', record)
 # Decode base64
 msg = base64.b64decode(record['value']).decode('utf-8')
 print('Message:', msg)

Invoke a Lambda function from an Amazon MSK trigger 2471

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Amazon MSK event with Lambda using Ruby.

require 'base64'

def lambda_handler(event:, context:)
 # Iterate through keys
 event['records'].each do |key, records|
 puts "Key: #{key}"

 # Iterate through records
 records.each do |record|
 puts "Record: #{record}"

 # Decode base64
 msg = Base64.decode64(record['value'])
 puts "Message: #{msg}"
 end
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon MSK trigger 2472

https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-msk-to-lambda

AWS Lambda Developer Guide

Consuming an Amazon MSK event with Lambda using Rust.

use aws_lambda_events::event::kafka::KafkaEvent;
use lambda_runtime::{run, service_fn, tracing, Error, LambdaEvent};
use base64::prelude::*;
use serde_json::{Value};
use tracing::{info};

/// Pre-Requisites:
/// 1. Install Cargo Lambda - see https://www.cargo-lambda.info/guide/getting-
started.html
/// 2. Add packages tracing, tracing-subscriber, serde_json, base64
///
/// This is the main body for the function.
/// Write your code inside it.
/// There are some code example in the following URLs:
/// - https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples
/// - https://github.com/aws-samples/serverless-rust-demo/

async fn function_handler(event: LambdaEvent<KafkaEvent>) -> Result<Value, Error>
 {

 let payload = event.payload.records;

 for (_name, records) in payload.iter() {

 for record in records {

 let record_text = record.value.as_ref().ok_or("Value is None")?;
 info!("Record: {}", &record_text);

 // perform Base64 decoding
 let record_bytes = BASE64_STANDARD.decode(record_text)?;
 let message = std::str::from_utf8(&record_bytes)?;

 info!("Message: {}", message);
 }

 }

 Ok(().into())
}

#[tokio::main]

Invoke a Lambda function from an Amazon MSK trigger 2473

AWS Lambda Developer Guide

async fn main() -> Result<(), Error> {

 // required to enable CloudWatch error logging by the runtime
 tracing::init_default_subscriber();
 info!("Setup CW subscriber!");

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon S3 trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by uploading an object to an S3 bucket. The function retrieves the S3 bucket name and
object key from the event parameter and calls the Amazon S3 API to retrieve and log the content
type of the object.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using System;
using Amazon.Lambda.S3Events;
using System.Web;

Invoke a Lambda function from an Amazon S3 trigger 2474

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace S3Integration
{
 public class Function
 {
 private static AmazonS3Client _s3Client;
 public Function() : this(null)
 {
 }

 internal Function(AmazonS3Client s3Client)
 {
 _s3Client = s3Client ?? new AmazonS3Client();
 }

 public async Task<string> Handler(S3Event evt, ILambdaContext context)
 {
 try
 {
 if (evt.Records.Count <= 0)
 {
 context.Logger.LogLine("Empty S3 Event received");
 return string.Empty;
 }

 var bucket = evt.Records[0].S3.Bucket.Name;
 var key = HttpUtility.UrlDecode(evt.Records[0].S3.Object.Key);

 context.Logger.LogLine($"Request is for {bucket} and {key}");

 var objectResult = await _s3Client.GetObjectAsync(bucket, key);

 context.Logger.LogLine($"Returning {objectResult.Key}");

 return objectResult.Key;
 }
 catch (Exception e)
 {

Invoke a Lambda function from an Amazon S3 trigger 2475

AWS Lambda Developer Guide

 context.Logger.LogLine($"Error processing request -
 {e.Message}");

 return string.Empty;
 }
 }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

func handler(ctx context.Context, s3Event events.S3Event) error {
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Printf("failed to load default config: %s", err)
 return err
 }
 s3Client := s3.NewFromConfig(sdkConfig)

Invoke a Lambda function from an Amazon S3 trigger 2476

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 for _, record := range s3Event.Records {
 bucket := record.S3.Bucket.Name
 key := record.S3.Object.URLDecodedKey
 headOutput, err := s3Client.HeadObject(ctx, &s3.HeadObjectInput{
 Bucket: &bucket,
 Key: &key,
 })
 if err != nil {
 log.Printf("error getting head of object %s/%s: %s", bucket, key, err)
 return err
 }
 log.Printf("successfully retrieved %s/%s of type %s", bucket, key,
 *headOutput.ContentType)
 }

 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import software.amazon.awssdk.services.s3.model.HeadObjectRequest;
import software.amazon.awssdk.services.s3.model.HeadObjectResponse;

Invoke a Lambda function from an Amazon S3 trigger 2477

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

import software.amazon.awssdk.services.s3.S3Client;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import
 com.amazonaws.services.lambda.runtime.events.models.s3.S3EventNotification.S3EventNotificationRecord;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Handler implements RequestHandler<S3Event, String> {
 private static final Logger logger = LoggerFactory.getLogger(Handler.class);
 @Override
 public String handleRequest(S3Event s3event, Context context) {
 try {
 S3EventNotificationRecord record = s3event.getRecords().get(0);
 String srcBucket = record.getS3().getBucket().getName();
 String srcKey = record.getS3().getObject().getUrlDecodedKey();

 S3Client s3Client = S3Client.builder().build();
 HeadObjectResponse headObject = getHeadObject(s3Client, srcBucket,
 srcKey);

 logger.info("Successfully retrieved " + srcBucket + "/" + srcKey + " of
 type " + headObject.contentType());

 return "Ok";
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private HeadObjectResponse getHeadObject(S3Client s3Client, String bucket,
 String key) {
 HeadObjectRequest headObjectRequest = HeadObjectRequest.builder()
 .bucket(bucket)
 .key(key)
 .build();
 return s3Client.headObject(headObjectRequest);
 }
}

Invoke a Lambda function from an Amazon S3 trigger 2478

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using JavaScript.

import { S3Client, HeadObjectCommand } from "@aws-sdk/client-s3";

const client = new S3Client();

export const handler = async (event, context) => {

 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g,
 ' '));

 try {
 const { ContentType } = await client.send(new HeadObjectCommand({
 Bucket: bucket,
 Key: key,
 }));

 console.log('CONTENT TYPE:', ContentType);
 return ContentType;

 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make
 sure they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

Invoke a Lambda function from an Amazon S3 trigger 2479

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

Consuming an S3 event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { S3Event } from 'aws-lambda';
import { S3Client, HeadObjectCommand } from '@aws-sdk/client-s3';

const s3 = new S3Client({ region: process.env.AWS_REGION });

export const handler = async (event: S3Event): Promise<string | undefined> => {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, '
 '));
 const params = {
 Bucket: bucket,
 Key: key,
 };
 try {
 const { ContentType } = await s3.send(new HeadObjectCommand(params));
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make sure
 they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon S3 trigger 2480

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

Consuming an S3 event with Lambda using PHP.

<?php

use Bref\Context\Context;
use Bref\Event\S3\S3Event;
use Bref\Event\S3\S3Handler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends S3Handler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 public function handleS3(S3Event $event, Context $context) : void
 {
 $this->logger->info("Processing S3 records");

 // Get the object from the event and show its content type
 $records = $event->getRecords();

 foreach ($records as $record)
 {
 $bucket = $record->getBucket()->getName();
 $key = urldecode($record->getObject()->getKey());

 try {
 $fileSize = urldecode($record->getObject()->getSize());
 echo "File Size: " . $fileSize . "\n";
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 echo $e->getMessage() . "\n";
 echo 'Error getting object ' . $key . ' from bucket ' .
 $bucket . '. Make sure they exist and your bucket is in the same region as this
 function.' . "\n";
 throw $e;
 }
 }

Invoke a Lambda function from an Amazon S3 trigger 2481

AWS Lambda Developer Guide

 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import json
import urllib.parse
import boto3

print('Loading function')

s3 = boto3.client('s3')

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']['key'],
 encoding='utf-8')
 try:
 response = s3.get_object(Bucket=bucket, Key=key)
 print("CONTENT TYPE: " + response['ContentType'])
 return response['ContentType']
 except Exception as e:

Invoke a Lambda function from an Amazon S3 trigger 2482

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

 print(e)
 print('Error getting object {} from bucket {}. Make sure they exist and
 your bucket is in the same region as this function.'.format(key, bucket))
 raise e

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Ruby.

require 'json'
require 'uri'
require 'aws-sdk'

puts 'Loading function'

def lambda_handler(event:, context:)
 s3 = Aws::S3::Client.new(region: 'region') # Your AWS region
 # puts "Received event: #{JSON.dump(event)}"

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = URI.decode_www_form_component(event['Records'][0]['s3']['object']['key'],
 Encoding::UTF_8)
 begin
 response = s3.get_object(bucket: bucket, key: key)
 puts "CONTENT TYPE: #{response.content_type}"
 return response.content_type
 rescue StandardError => e
 puts e.message
 puts "Error getting object #{key} from bucket #{bucket}. Make sure they exist
 and your bucket is in the same region as this function."
 raise e
 end

Invoke a Lambda function from an Amazon S3 trigger 2483

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::s3::S3Event;
use aws_sdk_s3::{Client};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Main function
#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 // Initialize the AWS SDK for Rust
 let config = aws_config::load_from_env().await;
 let s3_client = Client::new(&config);

 let res = run(service_fn(|request: LambdaEvent<S3Event>| {
 function_handler(&s3_client, request)
 })).await;

 res
}

Invoke a Lambda function from an Amazon S3 trigger 2484

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

AWS Lambda Developer Guide

async fn function_handler(
 s3_client: &Client,
 evt: LambdaEvent<S3Event>
) -> Result<(), Error> {
 tracing::info!(records = ?evt.payload.records.len(), "Received request from
 SQS");

 if evt.payload.records.len() == 0 {
 tracing::info!("Empty S3 event received");
 }

 let bucket = evt.payload.records[0].s3.bucket.name.as_ref().expect("Bucket
 name to exist");
 let key = evt.payload.records[0].s3.object.key.as_ref().expect("Object key to
 exist");

 tracing::info!("Request is for {} and object {}", bucket, key);

 let s3_get_object_result = s3_client
 .get_object()
 .bucket(bucket)
 .key(key)
 .send()
 .await;

 match s3_get_object_result {
 Ok(_) => tracing::info!("S3 Get Object success, the s3GetObjectResult
 contains a 'body' property of type ByteStream"),
 Err(_) => tracing::info!("Failure with S3 Get Object request")
 }

 Ok(())
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon S3 trigger 2485

AWS Lambda Developer Guide

Invoke a Lambda function from an Amazon SNS trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

public class Function
{
 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

Invoke a Lambda function from an Amazon SNS trigger 2486

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record
 {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/events"

Invoke a Lambda function from an Amazon SNS trigger 2487

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, snsEvent events.SNSEvent) {
 for _, record := range snsEvent.Records {
 processMessage(record)
 }
 fmt.Println("done")
}

func processMessage(record events.SNSEventRecord) {
 message := record.SNS.Message
 fmt.Printf("Processed message: %s\n", message)
 // TODO: Process your record here
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;
import com.amazonaws.services.lambda.runtime.events.SNSEvent.SNSRecord;

Invoke a Lambda function from an Amazon SNS trigger 2488

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

import java.util.Iterator;
import java.util.List;

public class SNSEventHandler implements RequestHandler<SNSEvent, Boolean> {
 LambdaLogger logger;

 @Override
 public Boolean handleRequest(SNSEvent event, Context context) {
 logger = context.getLogger();
 List<SNSRecord> records = event.getRecords();
 if (!records.isEmpty()) {
 Iterator<SNSRecord> recordsIter = records.iterator();
 while (recordsIter.hasNext()) {
 processRecord(recordsIter.next());
 }
 }
 return Boolean.TRUE;
 }

 public void processRecord(SNSRecord record) {
 try {
 String message = record.getSNS().getMessage();
 logger.log("message: " + message);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

Invoke a Lambda function from an Amazon SNS trigger 2489

AWS Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SNS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context

Invoke a Lambda function from an Amazon SNS trigger 2490

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

AWS Lambda Developer Guide

): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

/*
Since native PHP support for AWS Lambda is not available, we are utilizing Bref's
 PHP functions runtime for AWS Lambda.
For more information on Bref's PHP runtime for Lambda, refer to: https://bref.sh/
docs/runtimes/function

Another approach would be to create a custom runtime.

Invoke a Lambda function from an Amazon SNS trigger 2491

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

A practical example can be found here: https://aws.amazon.com/blogs/apn/aws-
lambda-custom-runtime-for-php-a-practical-example/
*/

// Additional composer packages may be required when using Bref or any other PHP
 functions runtime.
// require __DIR__ . '/vendor/autoload.php';

use Bref\Context\Context;
use Bref\Event\Sns\SnsEvent;
use Bref\Event\Sns\SnsHandler;

class Handler extends SnsHandler
{
 public function handleSns(SnsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $message = $record->getMessage();

 // TODO: Implement your custom processing logic here
 // Any exception thrown will be logged and the invocation will be
 marked as failed

 echo "Processed Message: $message" . PHP_EOL;
 }
 }
}

return new Handler();

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Python.

Invoke a Lambda function from an Amazon SNS trigger 2492

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for record in event['Records']:
 process_message(record)
 print("done")

def process_message(record):
 try:
 message = record['Sns']['Message']
 print(f"Processed message {message}")
 # TODO; Process your record here

 except Exception as e:
 print("An error occurred")
 raise e

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")

Invoke a Lambda function from an Amazon SNS trigger 2493

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

 raise
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sns::SnsEvent;
use aws_lambda_events::sns::SnsRecord;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use tracing::info;

// Built with the following dependencies:
// aws_lambda_events = { version = "0.10.0", default-features = false, features
 = ["sns"] }
// lambda_runtime = "0.8.1"
// tokio = { version = "1", features = ["macros"] }
// tracing = { version = "0.1", features = ["log"] }
// tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }

async fn function_handler(event: LambdaEvent<SnsEvent>) -> Result<(), Error> {
 for event in event.payload.records {
 process_record(&event)?;
 }

 Ok(())
}

fn process_record(record: &SnsRecord) -> Result<(), Error> {
 info!("Processing SNS Message: {}", record.sns.message);

Invoke a Lambda function from an Amazon SNS trigger 2494

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

AWS Lambda Developer Guide

 // Implement your record handling code here.

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon SQS trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

Invoke a Lambda function from an Amazon SQS trigger 2495

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

 context.Logger.LogInformation("done");
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }
}

Invoke a Lambda function from an Amazon SQS trigger 2496

AWS Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package integration_sqs_to_lambda

import (
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.SQSEvent) error {
 for _, record := range event.Records {
 err := processMessage(record)
 if err != nil {
 return err
 }
 }
 fmt.Println("done")
 return nil
}

func processMessage(record events.SQSMessage) error {
 fmt.Printf("Processed message %s\n", record.Body)
 // TODO: Do interesting work based on the new message
 return nil
}

func main() {
 lambda.Start(handler)
}

Invoke a Lambda function from an Amazon SQS trigger 2497

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Function implements RequestHandler<SQSEvent, Void> {
 @Override
 public Void handleRequest(SQSEvent sqsEvent, Context context) {
 for (SQSMessage msg : sqsEvent.getRecords()) {
 processMessage(msg, context);
 }
 context.getLogger().log("done");
 return null;
 }

 private void processMessage(SQSMessage msg, Context context) {
 try {
 context.getLogger().log("Processed message " + msg.getBody());

 // TODO: Do interesting work based on the new message

 } catch (Exception e) {
 context.getLogger().log("An error occurred");
 throw e;
 }

Invoke a Lambda function from an Amazon SQS trigger 2498

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SQS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

Invoke a Lambda function from an Amazon SQS trigger 2499

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;

Invoke a Lambda function from an Amazon SQS trigger 2500

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

use Bref\Event\InvalidLambdaEvent;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $body = $record->getBody();
 // TODO: Do interesting work based on the new message
 }
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Python.

Invoke a Lambda function from an Amazon SQS trigger 2501

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for message in event['Records']:
 process_message(message)
 print("done")

def process_message(message):
 try:
 print(f"Processed message {message['body']}")
 # TODO: Do interesting work based on the new message
 except Exception as err:
 print("An error occurred")
 raise err

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message

Invoke a Lambda function from an Amazon SQS trigger 2502

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sqs::SqsEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<SqsEvent>) -> Result<(), Error> {
 event.payload.records.iter().for_each(|record| {
 // process the record
 tracing::info!("Message body: {}",
 record.body.as_deref().unwrap_or_default())
 });

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()

Invoke a Lambda function from an Amazon SQS trigger 2503

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

AWS Lambda Developer Guide

 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with a Kinesis
trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from a Kinesis stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using System.Text.Json.Serialization;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

Reporting batch item failures for Lambda functions with a Kinesis trigger 2504

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

namespace KinesisIntegration;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task<StreamsEventResponse> FunctionHandler(KinesisEvent evnt,
 ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return new StreamsEventResponse();
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 return new StreamsEventResponse
 {
 BatchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>
 {
 new StreamsEventResponse.BatchItemFailure
 { ItemIdentifier = record.Kinesis.SequenceNumber }
 }
 };
 }

Reporting batch item failures for Lambda functions with a Kinesis trigger 2505

AWS Lambda Developer Guide

 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 return new StreamsEventResponse();
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

public class StreamsEventResponse
{
 [JsonPropertyName("batchItemFailures")]
 public IList<BatchItemFailure> BatchItemFailures { get; set; }
 public class BatchItemFailure
 {
 [JsonPropertyName("itemIdentifier")]
 public string ItemIdentifier { get; set; }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

Reporting batch item failures for Lambda functions with a Kinesis trigger 2506

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

import (
 "context"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, record := range kinesisEvent.Records {
 curRecordSequenceNumber := ""

 // Process your record
 if /* Your record processing condition here */ {
 curRecordSequenceNumber = record.Kinesis.SequenceNumber
 }

 // Add a condition to check if the record processing failed
 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": curRecordSequenceNumber})
 }
 }

 kinesisBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return kinesisBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Reporting batch item failures for Lambda functions with a Kinesis trigger 2507

AWS Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

public class ProcessKinesisRecords implements RequestHandler<KinesisEvent,
 StreamsEventResponse> {

 @Override
 public StreamsEventResponse handleRequest(KinesisEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (KinesisEvent.KinesisEventRecord kinesisEventRecord :
 input.getRecords()) {
 try {
 //Process your record
 KinesisEvent.Record kinesisRecord =
 kinesisEventRecord.getKinesis();
 curRecordSequenceNumber = kinesisRecord.getSequenceNumber();

 } catch (Exception e) {

Reporting batch item failures for Lambda functions with a Kinesis trigger 2508

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse(batchItemFailures);
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Javascript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */

Reporting batch item failures for Lambda functions with a Kinesis trigger 2509

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Reporting Kinesis batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
 KinesisStreamBatchResponse,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<KinesisStreamBatchResponse> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);

Reporting batch item failures for Lambda functions with a Kinesis trigger 2510

AWS Lambda Developer Guide

 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

Reporting batch item failures for Lambda functions with a Kinesis trigger 2511

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array
 {
 $kinesisEvent = new KinesisEvent($event);
 $this->logger->info("Processing records");
 $records = $kinesisEvent->getRecords();

 $failedRecords = [];
 foreach ($records as $record) {
 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(

Reporting batch item failures for Lambda functions with a Kinesis trigger 2512

AWS Lambda Developer Guide

 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["kinesis"]["sequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Reporting batch item failures for Lambda functions with a Kinesis trigger 2513

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 batch_item_failures = []

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue StandardError => err
 puts "An error occurred #{err}"
 # Since we are working with streams, we can return the failed item
 immediately.
 # Lambda will immediately begin to retry processing from this failed item
 onwards.
 return { batchItemFailures: [{ itemIdentifier: record['kinesis']
['sequenceNumber'] }] }
 end
 end

 puts "Successfully processed #{event['Records'].length} records."
 { batchItemFailures: batch_item_failures }
end

Reporting batch item failures for Lambda functions with a Kinesis trigger 2514

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('utf-8')
 # Placeholder for actual async work
 sleep(1)
 data
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::kinesis::KinesisEvent,
 kinesis::KinesisEventRecord,
 streams::{KinesisBatchItemFailure, KinesisEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) ->
 Result<KinesisEventResponse, Error> {
 let mut response = KinesisEventResponse {
 batch_item_failures: vec![],
 };

 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in &event.payload.records {
 tracing::info!(
 "EventId: {}",

Reporting batch item failures for Lambda functions with a Kinesis trigger 2515

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 record.event_id.as_deref().unwrap_or_default()
);

 let record_processing_result = process_record(record);

 if record_processing_result.is_err() {
 response.batch_item_failures.push(KinesisBatchItemFailure {
 item_identifier: record.kinesis.sequence_number.clone(),
 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(response)
}

fn process_record(record: &KinesisEventRecord) -> Result<(), Error> {
 let record_data = std::str::from_utf8(record.kinesis.data.as_slice());

 if let Some(err) = record_data.err() {
 tracing::error!("Error: {}", err);
 return Err(Error::from(err));
 }

 let record_data = record_data.unwrap_or_default();

 // do something interesting with the data
 tracing::info!("Data: {}", record_data);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()

Reporting batch item failures for Lambda functions with a Kinesis trigger 2516

AWS Lambda Developer Guide

 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with a DynamoDB
trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2517

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public StreamsEventResponse FunctionHandler(DynamoDBEvent dynamoEvent,
 ILambdaContext context)

 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");
 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>();
 StreamsEventResponse streamsEventResponse = new StreamsEventResponse();

 foreach (var record in dynamoEvent.Records)
 {
 try
 {
 var sequenceNumber = record.Dynamodb.SequenceNumber;
 context.Logger.LogInformation(sequenceNumber);
 }
 catch (Exception ex)
 {
 context.Logger.LogError(ex.Message);
 batchItemFailures.Add(new StreamsEventResponse.BatchItemFailure()
 { ItemIdentifier = record.Dynamodb.SequenceNumber });
 }
 }

 if (batchItemFailures.Count > 0)
 {
 streamsEventResponse.BatchItemFailures = batchItemFailures;
 }

 context.Logger.LogInformation("Stream processing complete.");
 return streamsEventResponse;
 }

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2518

AWS Lambda Developer Guide

}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

type BatchItemFailure struct {
 ItemIdentifier string `json:"ItemIdentifier"`
}

type BatchResult struct {
 BatchItemFailures []BatchItemFailure `json:"BatchItemFailures"`
}

func HandleRequest(ctx context.Context, event events.DynamoDBEvent)
 (*BatchResult, error) {
 var batchItemFailures []BatchItemFailure
 curRecordSequenceNumber := ""

 for _, record := range event.Records {
 // Process your record
 curRecordSequenceNumber = record.Change.SequenceNumber
 }

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2519

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, BatchItemFailure{ItemIdentifier:
 curRecordSequenceNumber})
 }

 batchResult := BatchResult{
 BatchItemFailures: batchItemFailures,
 }

 return &batchResult, nil
}

func main() {
 lambda.Start(HandleRequest)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;
import com.amazonaws.services.lambda.runtime.events.models.dynamodb.StreamRecord;

import java.util.ArrayList;
import java.util.List;

public class ProcessDynamodbRecords implements RequestHandler<DynamodbEvent,
 StreamsEventResponse> {

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2520

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 @Override
 public StreamsEventResponse handleRequest(DynamodbEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (DynamodbEvent.DynamodbStreamRecord dynamodbStreamRecord :
 input.getRecords()) {
 try {
 //Process your record
 StreamRecord dynamodbRecord = dynamodbStreamRecord.getDynamodb();
 curRecordSequenceNumber = dynamodbRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse();
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2521

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Reporting DynamoDB batch item failures with Lambda using JavaScript.

export const handler = async (event) => {
 const records = event.Records;
 let curRecordSequenceNumber = "";

 for (const record of records) {
 try {
 // Process your record
 curRecordSequenceNumber = record.dynamodb.SequenceNumber;
 } catch (e) {
 // Return failed record's sequence number
 return { batchItemFailures: [{ itemIdentifier:
 curRecordSequenceNumber }] };
 }
 }

 return { batchItemFailures: [] };
};

Reporting DynamoDB batch item failures with Lambda using TypeScript.

import {
 DynamoDBBatchResponse,
 DynamoDBBatchItemFailure,
 DynamoDBStreamEvent,
} from "aws-lambda";

export const handler = async (
 event: DynamoDBStreamEvent
): Promise<DynamoDBBatchResponse> => {
 const batchItemFailures: DynamoDBBatchItemFailure[] = [];
 let curRecordSequenceNumber;

 for (const record of event.Records) {
 curRecordSequenceNumber = record.dynamodb?.SequenceNumber;

 if (curRecordSequenceNumber) {
 batchItemFailures.push({
 itemIdentifier: curRecordSequenceNumber,
 });
 }

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2522

AWS Lambda Developer Guide

 }

 return { batchItemFailures: batchItemFailures };
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using PHP.

<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\DynamoDb\DynamoDbEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2523

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 {
 $dynamoDbEvent = new DynamoDbEvent($event);
 $this->logger->info("Processing records");

 $records = $dynamoDbEvent->getRecords();
 $failedRecords = [];
 foreach ($records as $record) {
 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(
 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2524

AWS Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["dynamodb"]["SequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2525

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling
https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Reporting DynamoDB batch item failures with Lambda using Ruby.

def lambda_handler(event:, context:)
 records = event["Records"]
 cur_record_sequence_number = ""

 records.each do |record|
 begin
 # Process your record
 cur_record_sequence_number = record["dynamodb"]["SequenceNumber"]
 rescue StandardError => e
 # Return failed record's sequence number
 return {"batchItemFailures" => [{"itemIdentifier" =>
 cur_record_sequence_number}]}
 end
 end

 {"batchItemFailures" => []}
 end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Rust.

use aws_lambda_events::{
 event::dynamodb::{Event, EventRecord, StreamRecord},
 streams::{DynamoDbBatchItemFailure, DynamoDbEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Process the stream record
fn process_record(record: &EventRecord) -> Result<(), Error> {
 let stream_record: &StreamRecord = &record.change;

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2526

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

 // process your stream record here...
 tracing::info!("Data: {:?}", stream_record);

 Ok(())
}

/// Main Lambda handler here...
async fn function_handler(event: LambdaEvent<Event>) ->
 Result<DynamoDbEventResponse, Error> {
 let mut response = DynamoDbEventResponse {
 batch_item_failures: vec![],
 };

 let records = &event.payload.records;

 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in records {
 tracing::info!("EventId: {}", record.event_id);

 // Couldn't find a sequence number
 if record.change.sequence_number.is_none() {
 response.batch_item_failures.push(DynamoDbBatchItemFailure {
 item_identifier: Some("".to_string()),
 });
 return Ok(response);
 }

 // Process your record here...
 if process_record(record).is_err() {
 response.batch_item_failures.push(DynamoDbBatchItemFailure {
 item_identifier: record.change.sequence_number.clone(),
 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2527

AWS Lambda Developer Guide

 tracing::info!("Successfully processed {} record(s)", records.len());

 Ok(response)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with an Amazon
SQS trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

.NET

SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2528

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)
 {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2529

AWS Lambda Developer Guide

 context.Logger.LogInformation($"Processed message {message.Body}");
 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, sqsEvent events.SQSEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, message := range sqsEvent.Records {

 if /* Your message processing condition here */ {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": message.MessageId})
 }
 }

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2530

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 sqsBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return sqsBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSBatchResponse;

import java.util.ArrayList;
import java.util.List;

public class ProcessSQSMessageBatch implements RequestHandler<SQSEvent,
 SQSBatchResponse> {
 @Override
 public SQSBatchResponse handleRequest(SQSEvent sqsEvent, Context context) {

 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<SQSBatchResponse.BatchItemFailure>();
 String messageId = "";
 for (SQSEvent.SQSMessage message : sqsEvent.getRecords()) {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2531

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 try {
 //process your message
 } catch (Exception e) {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.add(new
 SQSBatchResponse.BatchItemFailure(message.getMessageId()));
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using JavaScript.

// Node.js 20.x Lambda runtime, AWS SDK for Javascript V3
export const handler = async (event, context) => {
 const batchItemFailures = [];
 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }
 return { batchItemFailures };
};

async function processMessageAsync(record, context) {
 if (record.body && record.body.includes("error")) {
 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2532

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

}

Reporting SQS batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, SQSBatchResponse, Context, SQSBatchItemFailure, SQSRecord }
 from 'aws-lambda';

export const handler = async (event: SQSEvent, context: Context):
 Promise<SQSBatchResponse> => {
 const batchItemFailures: SQSBatchItemFailure[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return {batchItemFailures: batchItemFailures};
};

async function processMessageAsync(record: SQSRecord): Promise<void> {
 if (record.body && record.body.includes("error")) {
 throw new Error('There is an error in the SQS Message.');
 }
 console.log(`Processed message ${record.body}`);
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2533

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

Reporting SQS batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

use Bref\Context\Context;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 $this->logger->info("Processing SQS records");
 $records = $event->getRecords();

 foreach ($records as $record) {
 try {
 // Assuming the SQS message is in JSON format
 $message = json_decode($record->getBody(), true);
 $this->logger->info(json_encode($message));
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $this->markAsFailed($record);
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords SQS records");

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2534

AWS Lambda Developer Guide

 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

def lambda_handler(event, context):
 if event:
 batch_item_failures = []
 sqs_batch_response = {}

 for record in event["Records"]:
 try:
 # process message
 except Exception as e:
 batch_item_failures.append({"itemIdentifier":
 record['messageId']})

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2535

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []
 sqs_batch_response = {}

 event["Records"].each do |record|
 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response
 end
end

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2536

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

AWS Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::sqs::{SqsBatchResponse, SqsEvent},
 sqs::{BatchItemFailure, SqsMessage},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn process_record(_: &SqsMessage) -> Result<(), Error> {
 Err(Error::from("Error processing message"))
}

async fn function_handler(event: LambdaEvent<SqsEvent>) ->
 Result<SqsBatchResponse, Error> {
 let mut batch_item_failures = Vec::new();
 for record in event.payload.records {
 match process_record(&record).await {
 Ok(_) => (),
 Err(_) => batch_item_failures.push(BatchItemFailure {
 item_identifier: record.message_id.unwrap(),
 }),
 }
 }

 Ok(SqsBatchResponse {
 batch_item_failures,
 })
}

#[tokio::main]
async fn main() -> Result<(), Error> {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2537

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

AWS Lambda Developer Guide

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

AWS community contributions for Lambda

AWS community contributions are examples that were created and are maintained by multiple
teams across AWS. To provide feedback, use the mechanism provided in the linked repositories.

Examples

• Build and test a serverless application

Build and test a serverless application

The following code examples show how to build and test a serverless application using API
Gateway with Lambda and DynamoDB

.NET

SDK for .NET

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the .NET SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

AWS community contributions 2538

https://github.com/aws-samples/serverless-dotnet-demo

AWS Lambda Developer Guide

Go

SDK for Go V2

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the Go SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Java

SDK for Java 2.x

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the Java SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Rust

SDK for Rust

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the Rust SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Build and test a serverless application 2539

https://github.com/aws-samples/serverless-go-demo
https://github.com/aws-samples/serverless-java-frameworks-samples
https://github.com/aws-samples/serverless-rust-demo

AWS Lambda Developer Guide

Services used in this example

• API Gateway

• DynamoDB

• Lambda

For a complete list of AWS SDK developer guides and code examples, see Using Lambda with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Build and test a serverless application 2540

AWS Lambda Developer Guide

Lambda quotas

Important

New AWS accounts have reduced concurrency and memory quotas. AWS raises these
quotas automatically based on your usage.

AWS Lambda is designed to scale rapidly to meet demand, allowing your functions to scale up
to serve traffic in your application. Lambda is designed for short-lived compute tasks that do
not retain or rely upon state between invocations. Code can run for up to 15 minutes in a single
invocation and a single function can use up to 10,240 MB of memory.

It’s important to understand the guardrails that are put in place to protect your account and the
workloads of other customers. Service quotas exist in all AWS services and consist of hard limits,
which you cannot change, and soft limits, which you can request increases for. By default, all new
accounts are assigned a quota profile that allows exploration of AWS services.

To see the quotas that apply to your account, navigate to the Service Quotas dashboard. Here, you
can view your service quotas, request a quota increase, and view current utilization. From here, you
can drill down to a specific AWS service, such as Lambda:

2541

https://console.aws.amazon.com/servicequotas/home

AWS Lambda Developer Guide

The following sections list default quotas and limits in Lambda by category.

Topics

• Compute and storage

• Function configuration, deployment, and execution

• Lambda API requests

• Other services

Compute and storage

Lambda sets quotas for the amount of compute and storage resources that you can use to run
and store functions. Quotas for concurrent executions and storage apply per AWS Region. Elastic

Compute and storage 2542

AWS Lambda Developer Guide

network interface (ENI) quotas apply per virtual private cloud (VPC), regardless of Region. The
following quotas can be increased from their default values. For more information, see Requesting
a quota increase in the Service Quotas User Guide.

Resource Default quota Can be
increased up
to

Concurrent executions 1,000 Tens of
thousands

Storage for uploaded functions (.zip file
archives) and layers. Each function version and
layer version consumes storage.

For best practices on managing your code
storage, see Monitoring Lambda code storage
in Serverless Land.

75 GB Terabytes

Storage for functions defined as container
images. These images are stored in Amazon
ECR.

See Amazon ECR service
quotas.

Elastic network interfaces per virtual private
cloud (VPC)

Note

This quota is shared with other
services, such as Amazon Elastic File
System (Amazon EFS). See Amazon
VPC quotas.

500 Thousands

For details on concurrency and how Lambda scales your function concurrency in response to traffic,
see Understanding Lambda function scaling.

Compute and storage 2543

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/code-storage
https://docs.aws.amazon.com/AmazonECR/latest/userguide/service-quotas.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/service-quotas.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html

AWS Lambda Developer Guide

Function configuration, deployment, and execution

The following quotas apply to function configuration, deployment, and execution. Except as noted,
they can't be changed.

Note

The Lambda documentation, log messages, and console use the abbreviation MB (rather
than MiB) to refer to 1,024 KB.

Resource Quota

Function memory allocation 128 MB to 10,240 MB, in 1-MB
increments.

Note: Lambda allocates CPU power
in proportion to the amount of
memory configured. You can
increase or decrease the memory
and CPU power allocated to your
function using the Memory (MB)
setting. At 1,769 MB, a function has
the equivalent of one vCPU.

Function timeout 900 seconds (15 minutes)

Function environment variables 4 KB, for all environment variables
associated with the function, in
aggregate

Function resource-based policy 20 KB

Function layers five layers

Function concurrency scaling limit For each function, 1,000 execution
environments every 10 seconds

Function configuration, deployment, and execution 2544

AWS Lambda Developer Guide

Resource Quota

Invocation payload (request and response) 6 MB each for request and response
(synchronous)

200 MB for each streamed response
(synchronous)

256 KB (asynchronous)

1 MB for the total combined size of
request line and header values

Bandwidth for streamed responses Uncapped for the first 6 MB of your
function's response

For responses larger than 6 MB,
2MBps for the remainder of the
response

Deployment package (.zip file archive) size 50 MB (zipped, when uploaded
through the Lambda API or SDKs).
Upload larger files with Amazon S3.

50 MB (when uploaded through the
Lambda console)

250 MB The maximum size of
the contents of a deployment
package, including layers and
custom runtimes. (unzipped)

Container image settings size 16 KB

Container image code package size 10 GB (maximum uncompressed
image size, including all layers)

Test events (console editor) 10

Function configuration, deployment, and execution 2545

AWS Lambda Developer Guide

Resource Quota

/tmp directory storage Between 512 MB and 10,240 MB, in
1-MB increments

File descriptors 1,024

Execution processes/threads 1,024

Lambda API requests

The following quotas are associated with Lambda API requests.

Resource Quota

Invocation requests per function per Region (synchron
ous)

Each instance of your execution
environment can serve up to 10
requests per second. In other words,
the total invocation limit is 10
times your concurrency limit. See
Understanding Lambda function
scaling.

Invocation requests per function per Region (asynchro
nous)

Each instance of your execution
environment can serve an unlimited
number of requests. In other words,
the total invocation limit is based
only on concurrency available to
your function. See Understanding
Lambda function scaling.

Invocation requests per function version or alias
(requests per second)

10 x allocated provisioned concurren
cy

Lambda API requests 2546

AWS Lambda Developer Guide

Resource Quota

Note

This quota applies only to
functions that use provision
ed concurrency.

GetFunction API requests 100 requests per second. Cannot be
increased.

GetPolicy API requests 15 requests per second. Cannot be
increased.

Remainder of the control plane API requests (excludes
invocation, GetFunction, and GetPolicy requests)

15 requests per second across all
APIs (not 15 requests per second per
API). Cannot be increased.

Other services

Quotas for other services, such as AWS Identity and Access Management (IAM), Amazon CloudFront
(Lambda@Edge), and Amazon Virtual Private Cloud (Amazon VPC), can impact your Lambda
functions. For more information, see AWS service quotas in the Amazon Web Services General
Reference, and Invoking Lambda with events from other AWS services.

Many applications involving Lambda use multiple AWS services. Because different services have
different quotas for various features, it can be challenging to manage these quotas across your
entire application. For example, API Gateway has a default throttle limit of 10,000 requests per
second, whereas Lambda has a default concurrency limit of 1,000. Due to this mismatch, it's
possible to have more incoming requests from API Gateway that Lambda can handle. You can
resolve this by requesting a Lambda concurrency limit increase to match the expected level of
traffic.

Load testing your application allows you to monitor the performance of your application end-to-
end before deploying to production. During a load test, you can identify any quotas that may act as
a limiting factor for the traffic levels you expect and take action accordingly.

Other services 2547

https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetPolicy.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

AWS Lambda Developer Guide

Document history

The following table describes the important changes to the AWS Lambda Developer Guide since
May 2018. For notification about updates to this documentation, subscribe to the RSS feed.

Change Description Date

AWS managed policy updates Lambda updated two existing
AWS managed policies
(AWSLambda_ReadOnly
Access and AWSLambda
_FullAccess).

February 20, 2025

Node.js 22.x runtime Lambda now supports Node.js
22 as a managed runtime
and container base image
(nodejs22.x).

November 22, 2024

SnapStart support for Python
and .NET

Lambda SnapStart is now
available for Python and .NET
managed runtimes, beginning
with python3.12 and
dotnet8.

November 18, 2024

Python 3.13 runtime Lambda now supports Python
3.13 as a managed runtime
and container base image.

November 13, 2024

Customer managed encryptio
n for .zip deployment
packages

Lambda now supports AWS
KMS customer managed key
encryption for .zip deploymen
t packages.

November 8, 2024

Support for SnapStart in new
Regions

Lambda SnapStart is now
available in the following
Regions: Europe (Spain),
Europe (Zurich), Asia Pacific
(Melbourne), Asia Pacific

January 12, 2024

2548

https://docs.aws.amazon.com/lambda/latest/dg/lambda-updates.rss
https://docs.aws.amazon.com/lambda/latest/dg/security-iam-awsmanpol.html#lambda-security-iam-awsmanpol-updates
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/encrypt-zip-package.html
https://docs.aws.amazon.com/lambda/latest/dg/encrypt-zip-package.html
https://docs.aws.amazon.com/lambda/latest/dg/encrypt-zip-package.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html#snapstart-supported-regions
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html#snapstart-supported-regions
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html

AWS Lambda Developer Guide

(Hyderabad), and Middle East
(UAE).

AWS managed policy updates Lambda updated an existing
AWS managed policy
(AWSLambdaVPCAccess
ExecutionRole).

January 5, 2024

Python 3.12 runtime Lambda now supports Python
3.12 as a managed runtime
and container base image. For
more information, see Python
3.12 runtime now available
in AWS Lambda on the AWS
Compute Blog.

December 14, 2023

Java 21 runtime Lambda now supports Java
21 as a managed runtime
and container base image
(java21).

November 16, 2023

Node.js 20.x runtime Lambda now supports Node.js
20 as a managed runtime
and container base image
(nodejs20.x)). For more
information, see Node.js 20.x
runtime now available in AWS
Lambda on the AWS Compute
Blog.

November 14, 2023

2549

https://docs.aws.amazon.com/lambda/latest/dg/security-iam-awsmanpol.html#lambda-security-iam-awsmanpol-updates
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://aws.amazon.com/blogs/compute/python-3-12-runtime-now-available-in-aws-lambda/
https://aws.amazon.com/blogs/compute/python-3-12-runtime-now-available-in-aws-lambda/
https://aws.amazon.com/blogs/compute/python-3-12-runtime-now-available-in-aws-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://aws.amazon.com/blogs/compute/node-js-20-x-runtime-now-available-in-aws-lambda/
https://aws.amazon.com/blogs/compute/node-js-20-x-runtime-now-available-in-aws-lambda/
https://aws.amazon.com/blogs/compute/node-js-20-x-runtime-now-available-in-aws-lambda/

AWS Lambda Developer Guide

provided.al2023 runtime Lambda now supports
Amazon Linux 2023 as
a managed runtime and
container base image. For
more information, see
Introducing the Amazon
Linux 2023 runtime for AWS
Lambda on the AWS Compute
Blog.

November 9, 2023

IPv6 support for dual-stack
subnets

Lambda now supports
outbound IPv6 traffic to
dual-stack subnets. For more
information, see IPv6 support.

October 12, 2023

Testing serverless functions
and applications

Learn about techniques
to debug and automate
testing serverless functions
in the cloud. There is now a
testing chapter and resources
included in the Python and
Typescript language sections.
For details, see Testing
serverless functions and
applications.

June 16, 2023

Ruby 3.2 runtime Lambda now supports a
new runtime for Ruby 3.2.
For more information, see
Building Lambda functions
with Ruby.

June 7, 2023

Response streaming Lambda now supports
streaming responses from
functions. For more informati
on, see Configuring a Lambda
function to stream responses.

April 6, 2023

2550

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/foundation-networking.html?icmpid=docs_lambda_rss#foundation-nw-ipv6
https://docs.aws.amazon.com/lambda/latest/dg/foundation-networking.html?icmpid=docs_lambda_rss#foundation-nw-ipv6
https://docs.aws.amazon.com/lambda/latest/dg/foundation-networking.html?icmpid=docs_lambda_rss#foundation-nw-ipv6
https://docs.aws.amazon.com/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-response-streaming.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-response-streaming.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-response-streaming.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Asynchronous invocation
metrics

Lambda releases asynchron
ous invocation metrics.
For more information, see
Asynchronous invocation
metrics.

February 9, 2023

Runtime version controls Lambda releases new runtime
versions that include security
updates, bug fixes, and new
features. You can now control
when your functions get
updated to the new runtime
versions. For more informati
on, see Lambda runtime
updates.

January 23, 2023

Lambda SnapStart Use Lambda SnapStart to
reduce startup time for Java
functions without provision
ing additional resources
or implementing complex
performance optimizat
ions. For more informati
on, see Improving startup
performance with with
Lambda SnapStart.

November 28, 2022

Node.js 18 runtime Lambda now supports a
new runtime for Node.js 18.
Node.js 18 uses Amazon Linux
2. For details, see Building
Lambda functions with
Node.js.

November 18, 2022

2551

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

lambda:SourceFunctionArn
condition key

For an AWS resource, the
lambda:SourceFunct
ionArn condition key filters
access to the resource by the
ARN of a Lambda function.
For details, see Working with
Lambda execution environme
nt credentials.

July 1, 2022

Node.js 16 runtime Lambda now supports a
new runtime for Node.js 16.
Node.js 16 uses Amazon Linux
2. For details, see Building
Lambda functions with
Node.js.

May 11, 2022

Lambda function URLs Lambda now supports
function URLs, which are
dedicated HTTP(S) endpoints
for Lambda functions. For
details, see Lambda function
URLs.

April 6, 2022

Shared test events in the AWS
Lambda console

Lambda now supports sharing
test events with other users
in the same AWS account. For
details, see Testing Lambda
functions in the console.

March 16, 2022

PrincipalOrgId in resource-
based policies

Lambda now supports
granting permissions to
an organization in AWS
Organizations. For details, see
Using resource-based policies
for AWS Lambda.

March 11, 2022

2552

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/permissions-source-function-arn.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/permissions-source-function-arn.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/permissions-source-function-arn.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/urls-configuration.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/urls-configuration.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/urls-configuration.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

.NET 6 runtime Lambda now supports a
new runtime for .NET 6. For
details, see Lambda runtimes.

February 23, 2022

Event filtering for Kinesis,
DynamoDB, and Amazon SQS
event sources

Lambda now supports
event filtering for Kinesis,
DynamoDB, and Amazon SQS
event sources. For details, see
Lambda event filtering.

November 24, 2021

mTLS authentication for
Amazon MSK and self-mana
ged Apache Kafka event
sources

Lambda now supports mTLS
authentication for Amazon
MSK and self-managed
Apache Kafka event sources.
For details, see Using Lambda
with Amazon MSK.

November 19, 2021

Lambda on Graviton2 Lambda now supports
Graviton2 for functions using
arm64 architecture. For
details, see Lambda instructi
on set architectures.

September 29, 2021

Python 3.9 runtime Lambda now supports a new
runtime for Python 3.9. For
details, see Lambda runtimes.

August 16, 2021

New runtime versions for
Node.js, Python, and Java

New runtime versions are
available for Node.js, Python,
and Java. For details, see
Lambda runtimes.

July 21, 2021

2553

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Support for RabbitMQ as an
event source on Lambda

Lambda now supports
Amazon MQ for RabbitMQ as
an event source. Amazon MQ
is a managed message broker
service for Apache ActiveMQ
and RabbitMQ that makes it
easy to set up and operate
message brokers in the cloud.
For details, see Using Lambda
with Amazon MQ.

July 7, 2021

SASL/PLAIN authentication
for self-managed Kafka on
Lambda

SASL/PLAIN is now a
supported authentication
mechanism for self-mana
ged Kafka event sources on
Lambda Customers already
using SASL/PLAIN on their
self-managed Kafka cluster
can now easily use Lambda
to build consumer applicati
ons without having to modify
the way they authenticate.
For details, see Using Lambda
with self-managed Apache
Kafka.

June 29, 2021

Lambda Extensions API General availability for
Lambda extensions. Use
extensions to augment your
Lambda functions. You can
use extensions provided by
Lambda Partners, or you can
create your own Lambda
extensions. For details, see
Lambda Extensions API.

May 24, 2021

2554

https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

New Lambda console
experience

The Lambda console has
been redesigned to improve
performance and consistency.

March 2, 2021

Node.js 14 runtime Lambda now supports a
new runtime for Node.js 14.
Node.js 14 uses Amazon Linux
2. For details, see Building
Lambda functions with
Node.js.

January 27, 2021

Lambda container images Lambda now supports
functions defined as container
images. You can combine the
flexibility of container tooling
with the agility and operation
al simplicity of Lambda to
build applications. For details,
see Using container images
with Lambda.

December 1, 2020

Code signing for Lambda
functions

Lambda now supports code
signing. Administrators can
configure Lambda functions
to accept only signed code on
deployment. Lambda checks
the signatures to ensure
that the code is not altered
or tampered. Additionally,
Lambda ensures that the
code is signed by trusted
developers before accepting
the deployment. For details,
see Configuring code signing
for Lambda.

November 23, 2020

2555

https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Preview: Lambda Runtime
Logs API

Lambda now supports the
Runtime Logs API. Lambda
extensions can use the
Logs API to subscribe to log
streams in the execution
environment. For details, see
Lambda Runtime Logs API.

November 12, 2020

New event source to for
Amazon MQ

Lambda now supports
Amazon MQ as an event
source. Use a Lambda
function to process records
from your Amazon MQ
message broker. For details,
see Using Lambda with
Amazon MQ.

November 5, 2020

Preview: Lambda Extensions
API

Use Lambda extensions
to augment your Lambda
functions. You can use
extensions provided by
Lambda Partners, or you can
create your own Lambda
extensions. For details, see
Lambda Extensions API.

October 8, 2020

Support for Java 8 and
custom runtimes on AL2

Lambda now supports Java
8 and custom runtimes on
Amazon Linux 2. For details,
see Lambda runtimes.

August 12, 2020

2556

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-logs-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-logs-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-logs-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

New event source for Amazon
Managed Streaming for
Apache Kafka

Lambda now supports
Amazon MSK as an event
source. Use a Lambda
function with Amazon MSK
to process records in a Kafka
topic. For details, see Using
Lambda with Amazon MSK.

August 11, 2020

IAM condition keys for
Amazon VPC settings

You can now use Lambda-sp
ecific condition keys for VPC
settings. For example, you
can require that all functions
in your organization are
connected to a VPC. You
can also specify the subnets
and security groups that the
function's users can and can't
use. For details, see Configuri
ng VPC for IAM functions.

August 10, 2020

Concurrency settings for
Kinesis HTTP/2 stream
consumers

You can now use the
following concurrency
settings for Kinesis consumers
with enhanced fan-out
(HTTP/2 streams): Paralleli
zationFactor, MaximumRe
tryAttempts, MaximumRe
cordAgeInSeconds, Destinati
onConfig, and BisectBat
chOnFunctionError. For
details, see Using AWS
Lambda with Amazon Kinesis.

July 7, 2020

2557

https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Batch window for Kinesis
HTTP/2 stream consumers

You can now configure a
batch window (MaximumB
atchingWindowInSeconds)
for HTTP/2 streams. Lambda
reads records from the stream
until it has gathered a full
batch, or until the batch
window expires. For details,
see Using AWS Lambda with
Amazon Kinesis.

June 18, 2020

Support for Amazon EFS file
systems

You can now connect an
Amazon EFS file system to
your Lambda functions for
shared network file access.
For details, see Configuring
file system access for Lambda
functions.

June 16, 2020

AWS CDK sample applications
in the Lambda console

The Lambda console now
includes sample applicati
ons that use the AWS Cloud
Development Kit (AWS CDK)
for TypeScript. The AWS CDK
is a framework that enables
you to define your applicati
on resources in TypeScript,
Python, Java, or .NET.

June 1, 2020

Support for .NET Core 3.1.0
runtime in AWS Lambda

AWS Lambda now supports
the .NET Core 3.1.0 runtime.
For details, see .NET Core CLI.

March 31, 2020

2558

https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Support for API Gateway
HTTP APIs

Updated and expanded
documentation for using
Lambda with API Gateway,
including support for HTTP
APIs. Added a sample
application that creates an
API and function with AWS
CloudFormation. For details,
see Using Lambda with
Amazon API Gateway.

March 23, 2020

Ruby 2.7 A new runtime is available
for Ruby 2.7, ruby2.7, which
is the first Ruby runtime to
use Amazon Linux 2. For
details, see Building Lambda
functions with Ruby.

February 19, 2020

Concurrency metrics Lambda now reports the
ConcurrentExecutio
ns metric for all functions,
aliases, and versions. You can
view a graph for this metric
on the monitoring page for
your function. Previously,
ConcurrentExecutio
ns was only reported at
the account level and for
functions that use reserved
concurrency. For details,
see AWS Lambda function
metrics.

February 18, 2020

2559

https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Update to function states Function states are now
enforced for all functions by
default. When you connect
a function to a VPC, Lambda
creates shared elastic network
interfaces. This enables
your function to scale up
without creating additiona
l network interfaces. During
this time, you can't perform
additional operations on
the function, including
 updating its configuration
and publishing versions. In
some cases, invocation is also
impacted. Details about a
function's current state are
available from the Lambda
API.

This update is being released
in phases. For details, see
Updated Lambda states
lifecycle for VPC networking
on the AWS Compute Blog.
For more information about
states, see AWS Lambda
function states.

January 24, 2020

2560

https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://aws.amazon.com/blogs/compute/coming-soon-updated-lambda-states-lifecycle-for-vpc-networking/
https://aws.amazon.com/blogs/compute/coming-soon-updated-lambda-states-lifecycle-for-vpc-networking/
https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Updates to function configura
tion API output

Added reason codes to
StateReasonCode (InvalidS
ubnet, InvalidSecurityGro
up) and LastUpdateStatusRe
asonCode (SubnetOu
tOfIPAddresses, InvalidSu
bnet, InvalidSecurityGroup)
for functions that connect
to a VPC. For more informati
on about states, see AWS
Lambda function states.

January 20, 2020

Provisioned concurrency You can now allocate
provisioned concurrency
for a function version or
alias. Provisioned concurren
cy enables a function to
scale without fluctuations
in latency. For details, see
Managing concurrency for a
Lambda function.

December 3, 2019

Create a database proxy You can now use the Lambda
console to create a database
proxy for a Lambda function.
A database proxy enables
a function to reach high
concurrency levels without
exhausting database
connections. For details, see
Configuring database access
for a Lambda function.

December 3, 2019

Percentiles support for the
duration metric

You can now filter the
duration metric based on
percentiles. For details, see
AWS Lambda metrics.

November 26, 2019

2561

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-zip.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-zip.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-zip.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-database.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-database.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-database.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Increased concurrency for
stream event sources

A new option for DynamoDB
stream and Kinesis stream
event source mappings
enables you to process more
than one batch at a time
from each shard. When
you increase the number of
concurrent batches per shard,
your function's concurren
cy can be up to 10 times
the number of shards in
your stream. For details,
see Lambda event source
mapping.

November 25, 2019

Function states When you create or update a
function, it enters a pending
state while Lambda provision
s resources to support it. If
you connect your function
to a VPC, Lambda can create
a shared elastic network
interface right away, instead
of creating network interface
s when your function is
invoked. This results in better
performance for VPC-conne
cted functions, but might
require an update to your
automation. For details, see
AWS Lambda function states.

November 25, 2019

2562

https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Error handling options for
asynchronous invocation

New configuration options are
available for asynchronous
invocation. You can configure
Lambda to limit retries and
set a maximum event age. For
details, see Configuring error
handling for asynchronous
invocation.

November 25, 2019

Error handling for stream
event sources

New configuration options
are available for event source
mappings that read from
streams. You can configure
DynamoDB stream and
Kinesis stream event source
mappings to limit retries and
set a maximum record age.
When errors occur, you can
configure the event source
mapping to split batches
before retrying, and to send
invocation records for failed
batches to a queue or topic.
For details, see Lambda event
source mapping.

November 25, 2019

2563

https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Destinations for asynchronous
invocation

You can now configure
Lambda to send records of
asynchronous invocations
to another service. Invocatio
n records contain details
about the event, context,
and function response.
You can send invocation
records to an SQS queue,
SNS topic, Lambda function,
or EventBridge event bus.
For details, see Configuring
destinations for asynchronous
invocation.

November 25, 2019

New runtimes for Node.js,
Python, and Java

New runtimes are available
for Node.js 12, Python 3.8,
and Java 11. For details, see
Lambda runtimes.

November 18, 2019

FIFO queue support for
Amazon SQS event sources

You can now create an event
source mapping that reads
from a first-in, first-out
(FIFO) queue. Previously,
only standard queues were
supported. For details, see
Using Lambda with Amazon
SQS.

November 18, 2019

Create applications in the
Lambda console

Application creation in the
Lambda console is now
generally available. For
instructions, see Managing
applications in the Lambda
console.

October 31, 2019

2564

https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Create applications in the
Lambda console (beta)

You can now create a Lambda
application with an integrate
d continuous delivery pipeline
in the Lambda console. The
console provides sample
applications that you can use
as a starting point for your
own project. Choose between
AWS CodeCommit and GitHub
for source control. Each time
you push changes to your
repository, the included
pipeline builds and deploys
them automatically. For
instructions, see Managing
applications in the Lambda
console.

October 3, 2019

2565

https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Performance improvements
for VPC-connected functions

Lambda now uses a new type
of elastic network interface
that is shared by all functions
in a virtual private cloud
(VPC) subnet. When you
connect a function to a VPC,
Lambda creates a network
interface for each combinati
on of security group and
subnet that you choose. When
the shared network interface
s are available, the function
no longer needs to create
additional network interfaces
as it scales up. This dramatica
lly improves startup times.
For details, see Configuring
a Lambda function to access
resources in a VPC.

September 3, 2019

Stream batch settings You can now configure a
batch window for Amazon
DynamoDB and Amazon
Kinesis event source
mappings. Configure a batch
window of up to five minutes
to buffer incoming records
until a full batch is available
. This reduces the number of
times that your function is
invoked when the stream is
less active.

August 29, 2019

2566

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

CloudWatch Logs Insights
integration

The monitoring page in
the Lambda console now
includes reports from Amazon
CloudWatch Logs Insights.

June 18, 2019

Amazon Linux 2018.03 The Lambda execution
environment is being updated
to use Amazon Linux 2018.03.
For details, see Execution
 environment.

May 21, 2019

Node.js 10 A new runtime is available for
Node.js 10, nodejs10.x. This
runtime uses Node.js 10.15
and will be updated with the
latest point release of Node.js
10 periodically. Node.js 10
is also the first runtime to
use Amazon Linux 2. For
details, see Building Lambda
functions with Node.js.

May 13, 2019

GetLayerVersionByArn API Use the GetLayerVersionByA
rn API to download layer
version information with
the version ARN as input.
Compared to GetLayerV
ersion, GetLayerVersionByArn
lets you use the ARN directly
instead of parsing it to get
the layer name and version
number.

April 25, 2019

Ruby AWS Lambda now supports
Ruby 2.5 with a new runtime.
For details, see Building
Lambda functions with Ruby.

November 29, 2018

2567

https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Layers With Lambda layers, you can
package and deploy libraries
, custom runtimes, and other
dependencies separately
from your function code.
Share your layers with your
other accounts or the whole
world. For details, see Lambda
layers.

November 29, 2018

Custom runtimes Build a custom runtime to
run Lambda functions in
your favorite programming
language. For details, see
Custom Lambda runtimes.

November 29, 2018

Application Load Balancer
triggers

Elastic Load Balancing now
supports Lambda functions as
a target for Application Load
Balancers. For details, see
Using Lambda with applicati
on load balancers.

November 29, 2018

Use Kinesis HTTP/2 stream
consumers as a trigger

You can use Kinesis HTTP/2
data stream consumers to
send events to AWS Lambda.
Stream consumers have
dedicated read throughpu
t from each shard in your
data stream and use HTTP/2
to minimize latency. For
details, see Using Lambda
with Kinesis.

November 19, 2018

2568

https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Python 3.7 AWS Lambda now supports
Python 3.7 with a new
runtime. For more informati
on, see Building Lambda
functions with Python.

November 19, 2018

Payload limit increase for
asynchronous function
invocation

The maximum payload size
for asynchronous invocatio
ns increased from 128 KB to
256 KB, which matches the
maximum message size from
an Amazon SNS trigger. For
details, see Lambda quotas.

November 16, 2018

AWS GovCloud (US-East)
Region

AWS Lambda is now available
in the AWS GovCloud (US-
East) Region.

November 12, 2018

Moved AWS SAM topics to a
separate Developer Guide

A number of topics were
focused on building serverles
s applications using the AWS
Serverless Application Model
(AWS SAM). These topics have
been moved to AWS Serverles
s Application Model developer
guide.

October 25, 2018

2569

https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/

AWS Lambda Developer Guide

View Lambda applications in
the console

You can view the status of
your Lambda applications
on the Applications page in
the Lambda console. This
page shows the status of the
AWS CloudFormation stack. It
includes links to pages where
you can view more informati
on about the resources in
the stack. You can also view
aggregate metrics for the
application and create custom
monitoring dashboards.

October 11, 2018

Function execution timeout
limit

To allow for long-running
functions, the maximum
configurable execution
timeout increased from 5
minutes to 15 minutes. For
details, see Lambda limits.

October 10, 2018

Support for PowerShell Core
language in AWS Lambda

AWS Lambda now supports
the PowerShell Core
language. For more informati
on, see Programming model
for authoring Lambda
functions in PowerShell.

September 11, 2018

Support for .NET Core 2.1.0
runtime in AWS Lambda

AWS Lambda now supports
the .NET Core 2.1.0 runtime.
For more information, see
.NET Core CLI.

July 9, 2018

Updates now available over
RSS

You can now subscribe to an
RSS feed to follow releases
for this guide.

July 5, 2018

2570

https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-dotnet-coreclr-deployment-package.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-dotnet-coreclr-deployment-package.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-dotnet-coreclr-deployment-package.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/history.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/history.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Support for Amazon SQS as
event source

AWS Lambda now supports
Amazon Simple Queue
Service (Amazon SQS) as
an event source. For more
information, see Invoking
Lambda functions.

June 28, 2018

China (Ningxia) Region AWS Lambda is now available
in the China (Ningxia) Region.
For more information
about Lambda Regions and
endpoints, see Regions and
endpoints in the AWS General
Reference.

June 28, 2018

Earlier updates

The following table describes the important changes in each release of the AWS Lambda Developer
Guide before June 2018.

Change Description Date

Runtime support for
Node.js runtime 8.10

AWS Lambda now supports Node.js runtime version 8.10.
For more information, see Building Lambda functions with
Node.js.

April 2,
2018

Function and alias
revision IDs

AWS Lambda now supports revision IDs on your function
versions and aliases. You can use these IDs to track and
apply conditional updates when you are updating your
function version or alias resources.

January
25, 2018

Runtime support for
Go and .NET 2.0

AWS Lambda has added runtime support for Go and .NET
2.0. For more information, see Building Lambda functions
with Go and Building Lambda functions with C#.

January
15, 2018

Console Redesign AWS Lambda has introduced a new Lambda console to
simplify your experience and added a Cloud9 Code Editor

November
30,2017

Earlier updates 2571

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/lambda/latest/dg/history.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/general/latest/gr/rande.html?icmpid=docs_lambda_rss
https://docs.aws.amazon.com/general/latest/gr/rande.html?icmpid=docs_lambda_rss

AWS Lambda Developer Guide

Change Description Date

to enhance your ability debug and revise your function
code.

Setting Concurrency
Limits on Individual
Functions

AWS Lambda now supports setting concurrency limits on
individual functions. For more information, see Configuri
ng reserved concurrency for a function.

November
30,2017

Shifting Traffic with
Aliases

AWS Lambda now supports shifting traffic with aliases.
For more information, see Create a rolling deployment
with weighted aliases.

November
28, 2017

Gradual Code
Deployment

AWS Lambda now supports safely deploying new versions
of your Lambda function by leveraging Code Deploy. For
more information, see Gradual code deployment.

November
28, 2017

China (Beijing) Region AWS Lambda is now available in the China (Beijing)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

November
9, 2017

Introducing SAM
Local

AWS Lambda introduces SAM Local (now known as SAM
CLI), a AWS CLI tool that provides an environment for you
to develop, test, and analyze your serverless applications
locally before uploading them to the Lambda runtime. For
more information, see Testing and debugging serverless
applications.

August
11, 2017

Canada (Central)
Region

AWS Lambda is now available in the Canada (Central)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

June 22,
2017

South America (São
Paulo) Region

AWS Lambda is now available in the South America (São
Paulo) Region. For more information about Lambda
regions and endpoints, see Regions and endpoints in the
AWS General Reference.

June 6,
2017

Earlier updates 2572

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/automating-updates-to-serverless-apps.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Lambda Developer Guide

Change Description Date

AWS Lambda support
for AWS X-Ray.

Lambda introduces support for X-Ray, which allows you
to detect, analyze, and optimize performance issues with
your Lambda applications. For more information, see
Visualize Lambda function invocations using AWS X-Ray.

April 19,
2017

Asia Pacific (Mumbai)
Region

AWS Lambda is now available in the Asia Pacific (Mumbai)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

March 28,
2017

AWS Lambda now
supports Node.js
runtime v6.10

AWS Lambda added support for Node.js runtime v6.10.
For more information, see Building Lambda functions with
Node.js.

March 22,
2017

Europe (London)
Region

AWS Lambda is now available in the Europe (London)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

February
1, 2017

AWS Lambda support
for the .NET runtime,
Lambda@Edge
(Preview), Dead
Letter Queues
and automated
 deployment of
serverless applicati
ons.

AWS Lambda added support for C#. For more information,
see Building Lambda functions with C#.

Lambda@Edge allows you to run Lambda functions at
the AWS Edge locations in response to CloudFront events.
For more information, see Customize at the edge with
Lambda@Edge.

December
3, 2016

AWS Lambda adds
Amazon Lex as a
supported event
source.

Using Lambda and Amazon Lex, you can quickly build chat
bots for various services like Slack and Facebook.

November
30, 2016

Earlier updates 2573

https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html

AWS Lambda Developer Guide

Change Description Date

US West (N. Californi
a) Region

AWS Lambda is now available in the US West (N. Californi
a) Region. For more information about Lambda regions
and endpoints, see Regions and endpoints in the AWS
General Reference.

November
21, 2016

Introduced the AWS
SAM for creating and
deploying Lambda-ba
sed applications and
using environment
variables for Lambda
function configura
tion settings.

AWS SAM: You can now use the AWS SAM to define
the syntax for expressing resources within a serverless
application. In order to deploy your application, simply
specify the resources you need as part of your applicati
on, along with their associated permissions policies in a
AWS CloudFormation template file (written in either JSON
or YAML), package your deployment artifacts, and deploy
the template.

Environment variables: You can use environment
variables to specify configuration settings for your
Lambda function outside of your function code. For more
information, see Working with Lambda environment
variables.

November
18, 2016

Asia Pacific (Seoul)
Region

AWS Lambda is now available in the Asia Pacific (Seoul)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

August
29, 2016

Asia Pacific (Sydney)
Region

Lambda is now available in the Asia Pacific (Sydney)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

June 23,
2016

Updates to the
Lambda console

The Lambda console has been updated to simplify the
role-creation process.

June 23,
2016

AWS Lambda now
supports Node.js
runtime v4.3

AWS Lambda added support for Node.js runtime v4.3. For
more information, see Building Lambda functions with
Node.js.

April 07,
2016

Earlier updates 2574

https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Lambda Developer Guide

Change Description Date

Europe (Frankfurt)
region

Lambda is now available in the Europe (Frankfurt)
region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the AWS General
Reference.

March 14,
2016

VPC support You can now configure a Lambda function to access
resources in your VPC. For more information, see Giving
Lambda functions access to resources in an Amazon VPC.

February
11, 2016

Lambda runtime has
been updated.

The execution environment has been updated. November
4, 2015

Versioning support,
Python for developin
g code for Lambdafun
ctions, scheduled
events, and increase
in execution time

You can now develop your Lambda function code using
Python. For more information, see Building Lambda
functions with Python.

Versioning: You can maintain one or more versions of
your Lambda function. Versioning allows you to control
which Lambda function version is executed in different
environments (for example, development, testing, or
production). For more information, see Manage Lambda
function versions.

Scheduled events: You can also set up Lambda to invoke
your code on a regular, scheduled basis using the Lambda
console. You can specify a fixed rate (number of hours,
days, or weeks) or you can specify a cron expression. For
more information, see Invoke a Lambda function on a
schedule.

Increase in execution time: You can now set up your
Lambda functions to run for up to five minutes allowing
longer running functions such as large volume data
ingestion and processing jobs.

October
08, 2015

Earlier updates 2575

https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Lambda Developer Guide

Change Description Date

Support for
DynamoDB Streams

DynamoDB Streams is now generally available and you
can use it in all the regions where DynamoDB is available
. You can enable DynamoDB Streams for your table and
use a Lambda function as a trigger for the table. Triggers
are custom actions you take in response to updates made
to the DynamoDB table. For an example walkthrough, see
Tutorial: Using AWS Lambda with Amazon DynamoDB
streams.

July 14,
2015

Lambda now supports
invoking Lambda
functions with REST-
compatible clients.

Until now, to invoke your Lambda function from your
web, mobile, or IoT application you needed the AWS SDKs
(for example, AWS SDK for Java, AWS SDK for Android,
or AWS SDK for iOS). Now, Lambda supports invoking a
Lambda function with REST-compatible clients through
a customized API that you can create using Amazon API
Gateway. You can send requests to your Lambda function
endpoint URL. You can configure security on the endpoint
to allow open access, leverage AWS Identity and Access
Management (IAM) to authorize access, or use API keys to
meter access to your Lambda functions by others.

For an example Getting Started exercise, see Invoking a
Lambda function using an Amazon API Gateway endpoint.

July 09,
2015

The Lambda console
now provides
blueprints to easily
create Lambda
functions and test
them.

Lambda console provides a set of blueprints. Each
blueprint provides a sample event source configuration
and sample code for your Lambda function that you can
use to easily create Lambda-based applications. All of the
Lambda Getting Started exercises now use the blueprints.

July 09,
2015

Lambda now supports
Java to author your
Lambda functions.

You can now author Lambda code in Java. For more
information, see Building Lambda functions with Java.

June 15,
2015

Earlier updates 2576

AWS Lambda Developer Guide

Change Description Date

Lambda now supports
specifying an Amazon
S3 object as the
function .zip when
creating or updating a
Lambda function.

You can upload a Lambda function deployment package
(.zip file) to an Amazon S3 bucket in the same region
where you want to create a Lambda function. Then, you
can specify the bucket name and object key name when
you create or update a Lambda function.

May 28,
2015

Lambda now
generally available
with added support
for mobile backends

Lambda is now generally available for production use.
The release also introduces new features that make it
easier to build mobile, tablet, and Internet of Things (IoT)
backends using Lambda that scale automatically without
provisioning or managing infrastructure. Lambda now
supports both real-time (synchronous) and asynchronous
events. Additional features include easier event source
configuration and management. The permission model
and the programming model have been simplified by
the introduction of resource policies for your Lambda
functions.

April 9,
2015

Preview release Preview release of the AWS Lambda Developer Guide. November
13, 2014

Earlier updates 2577

	AWS Lambda
	Table of Contents
	What is AWS Lambda?
	When to use Lambda
	How Lambda works
	Key features
	
	
	

	Related information
	How Lambda works
	Lambda functions and function handlers
	Lambda execution environment and runtimes
	Events and triggers
	Lambda permissions and roles
	Permissions for functions to access other AWS resources
	Permissions for other users and resources to access your function
	Best practices for Lambda permissions

	Running code with Lambda
	The Lambda programming model
	The Lambda execution model
	Understanding the Lambda programming model
	Understanding the Lambda execution environment lifecycle
	Lambda execution environment lifecycle
	Init phase
	Failures during the Init phase
	Restore phase (Lambda SnapStart only)
	Failures during the Restore phase

	Invoke phase
	Failures during the invoke phase
	Shutdown phase

	Cold starts and latency
	Reducing cold starts with Provisioned Concurrency
	Optimizing static initialization

	Creating event-driven architectures with Lambda
	Benefits of event-driven architectures
	Replacing polling and webhooks with events
	Reducing complexity
	Improving scalability and extensibility

	Trade-offs of event-driven architectures
	Variable latency
	Eventual consistency
	Returning values to callers
	Debugging across services and functions

	Anti-patterns in Lambda-based event-driven applications
	The Lambda monolith
	Recursive patterns that cause run-away Lambda functions
	Lambda functions calling Lambda functions
	Synchronous waiting within a single Lambda function

	Designing a Lambda applications
	Use services instead of custom code
	Understand Lambda abstraction levels
	Implement statelessness in functions
	Minimize coupling
	Build for on-demand data instead of batches
	Consider AWS Step Functions for orchestration
	Implement idempotency
	Use multiple AWS accounts for managing quotas

	Create your first Lambda function
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access

	Create a Lambda function with the console
	Invoke the Lambda function using the console code editor
	Clean up
	Additional resources and next steps

	Getting started with example applications and patterns
	File Processing
	Database Integration
	Scheduled Tasks
	Additional resources
	Create a serverless file-processing app
	Create the Lambda function source code files
	Python function code
	requirements.txt manifest file

	Deploy the app
	Deploy the resources manually
	Create two S3 buckets
	Create an execution role
	Create the function deployment package
	Create the Lambda function
	Configure an Amazon S3 trigger to invoke the function

	Deploy the resources using AWS SAM

	Test the app
	Testing the app manually
	Testing the app with the automated script
	Automated test script
	Test script configuration file

	Next steps

	Create an app to perform scheduled database maintenance
	Prerequisites
	Downloading the example app files
	AWS SAM template (example DynamoDB table)
	Sample database data file
	Python script to load sample data
	Python function code
	requirements.txt manifest file
	AWS SAM template (scheduled-maintenance app)
	Test script

	Creating and populating the example DynamoDB table
	Creating the scheduled-maintenance app
	Testing the app
	Next steps

	Development, deployment, and management tools
	Local development tools
	Infrastructure as Code (IaC) tools
	Workflow and event management tools
	Developing Lambda functions locally with VS Code
	Key benefits of local development
	Prerequisites
	Authentication and access control
	Get IAM Credentials
	Configure AWS credentials using the AWS Toolkit

	Moving from console to local development
	Working with functions locally
	Convert your function to an AWS SAM template and use IaC tools
	Next steps

	Using GitHub Actions to deploy Lambda functions
	Example workflow
	Additional resources

	Using Lambda with infrastructure as code (IaC)
	IaC tools for Lambda
	Using Lambda functions in AWS SAM and Infrastructure Composer
	Prerequisites
	Create a Lambda function
	View the AWS SAM template for your function
	Use AWS Infrastructure Composer to design a serverless application
	Deploy your serverless application using AWS SAM (optional)
	Updated Python function code

	Testing your deployed application (optional)

	Deploying Lambda functions with AWS CDK
	Prerequisites
	Step 1: Set up your AWS CDK project
	Step 2: Define the AWS CDK stack
	Step 3: Create the Lambda function code
	Step 4: Deploy the AWS CDK stack
	Step 5: Test the function
	Step 6: Clean up your resources
	Next steps

	Managing Lambda workflows and events
	Orchestrating workflows with Step Functions
	Managing events with EventBridge and EventBridge Scheduler

	Lambda runtimes
	Supported runtimes
	New runtime releases
	Runtime deprecation policy
	Shared responsibility model
	Runtime use after deprecation
	Receiving runtime deprecation notifications
	Deprecated runtimes
	Understanding how Lambda manages runtime version updates
	Backward compatibility
	Runtime update modes
	Two-phase runtime version rollout
	Configuring Lambda runtime management settings
	Rolling back a Lambda runtime version
	Roll back a runtime version using Manual runtime update mode
	Roll back a runtime version using published function versions

	Identifying Lambda runtime version changes
	Understanding the shared responsibility model for Lambda runtime management
	Controlling Lambda runtime update permissions for high-compliance applications

	Retrieve data about Lambda functions that use a deprecated runtime
	Listing function versions that use a particular runtime
	Identifying most commonly and most recently invoked functions

	Modifying the runtime environment
	Language-specific environment variables
	Wrapper scripts
	Example: Create and use a wrapper script as a Lambda layer

	Using the Lambda runtime API for custom runtimes
	Next invocation
	Invocation response
	Initialization error
	Invocation error

	When to use Lambda's OS-only runtimes
	Building a custom runtime for AWS Lambda
	Requirements
	Initialization tasks
	Processing tasks
	Entrypoint

	Implementing response streaming in a custom runtime

	Tutorial: Building a custom runtime
	Prerequisites
	Create a function
	Create a layer
	Update the function
	Update the runtime
	Share the layer
	Clean up

	Open source repositories
	Runtime Interface Clients
	Event libraries
	Container base images
	Development tools
	Powertools for AWS Lambda
	Java development tools
	.NET development tools

	Sample projects

	Configuring AWS Lambda functions
	Deploying Lambda functions as .zip file archives
	Creating the function
	Using the console code editor
	Updating function code
	Changing the runtime
	Changing the architecture
	Using the Lambda API
	Downloading your function code
	AWS CloudFormation
	Encrypting Lambda .zip deployment packages
	Create a customer managed key
	Permissions

	Using a customer managed key for your .zip deployment package

	Create a Lambda function using a container image
	Requirements
	Using an AWS base image for Lambda
	Using an AWS OS-only base image
	Using a non-AWS base image
	Runtime interface clients
	Amazon ECR permissions
	Amazon ECR repository policies
	Amazon ECR cross-account permissions

	Function lifecycle

	Configure Lambda function memory
	Determining the appropriate memory setting for a Lambda function
	Configuring function memory (console)
	Configuring function memory (AWS CLI)
	Configuring function memory (AWS SAM)
	Accepting function memory recommendations (console)

	Configure ephemeral storage for Lambda functions
	Common use cases for increased ephemeral storage
	Configuring ephemeral storage (console)
	Configuring ephemeral storage (AWS CLI)
	Configuring ephemeral storage (AWS SAM)

	Selecting and configuring an instruction set architecture for your Lambda function
	Advantages of using arm64 architecture
	Requirements for migration to arm64 architecture
	Function code compatibility with arm64 architecture
	How to migrate to arm64 architecture
	Configuring the instruction set architecture

	Configure Lambda function timeout
	Determining the appropriate timeout value for a Lambda function
	Configuring timeout (console)
	Configuring timeout (AWS CLI)
	Configuring timeout (AWS SAM)

	Working with Lambda environment variables
	Creating Lambda environment variables
	Example scenario for environment variables
	Retrieving Lambda environment variables
	Defined runtime environment variables
	Securing Lambda environment variables
	Managing permissions to your server-side encryption KMS key

	Giving Lambda functions access to resources in an Amazon VPC
	Required IAM permissions
	Attaching Lambda functions to an Amazon VPC in your AWS account
	Internet access when attached to a VPC
	IPv6 support
	Best practices for using Lambda with Amazon VPCs
	Security best practices
	Performance best practices

	Understanding Hyperplane Elastic Network Interfaces (ENIs)
	Using IAM condition keys for VPC settings
	Example policies with condition keys for VPC settings
	Ensure that users deploy only VPC-connected functions
	Deny users access to specific VPCs, subnets, or security groups
	Allow users to create and update functions with specific VPC settings

	VPC tutorials

	Giving Lambda functions access to a resource in an Amazon VPC in another account
	Prerequisites
	Create an Amazon VPC in your function's account
	Grant VPC permissions to your function's execution role
	
	Create a VPC peering connection request
	Prepare your resource's account
	Update VPC configuration in your function's account
	Test your function

	Enable internet access for VPC-connected Lambda functions
	I don't have a VPC yet
	Create the VPC
	Configure the Lambda function
	Test the function

	I already have a VPC
	Verify the route table configuration
	Create a route table
	Create an internet gateway
	Create a NAT gateway
	Create an egress-only internet gateway (IPv6 only)
	Configure the Lambda function
	Test the function

	Connecting inbound interface VPC endpoints for Lambda
	Considerations for Lambda interface endpoints
	Keep-alive for persistent connections
	Billing Considerations
	VPC Peering Considerations

	Creating an interface endpoint for Lambda
	Creating an interface endpoint policy for Lambda

	Configuring file system access for Lambda functions
	Execution role and user permissions
	Configuring a file system and access point
	Connecting to a file system (console)

	Create an alias for a Lambda function
	Using Lambda aliases in event sources and permissions policies
	Resource policies

	Implement Lambda canary deployments using a weighted alias
	Create a weighted alias
	Determining which version was invoked
	Create a rolling deployment with weighted aliases
	Example AWS SAM template

	Manage Lambda function versions
	Creating function versions
	Using versions
	Granting permissions

	Using tags on Lambda functions
	Permissions required for working with tags
	Using tags with the Lambda console
	Using tags with the AWS CLI
	Updating tags with the Lambda tag APIs
	Adding tags when creating a function
	Viewing tags on a function
	Filtering resources by tag

	Response streaming for Lambda functions
	Bandwidth limits for response streaming
	VPC compatibility with response streaming
	Writing response streaming-enabled Lambda functions
	Configuring a handler function to stream responses
	Ending the stream

	Invoking a response streaming enabled function using Lambda function URLs
	Tutorial: Creating a response streaming Lambda function with a function URL
	Prerequisites
	Create an execution role
	Create a response streaming function (AWS CLI)
	Test the function URL endpoint
	Clean up your resources

	Understanding Lambda function invocation methods
	Invoke a Lambda function synchronously
	Invoking a Lambda function asynchronously
	How Lambda handles errors and retries with asynchronous invocation
	Configuring error handling settings for Lambda asynchronous invocations
	Capturing records of Lambda asynchronous invocations
	Adding a destination
	Security best practices for Amazon S3 destinations
	Example invocation record
	Tracing requests to destinations

	Adding a dead-letter queue

	How Lambda processes records from stream and queue-based event sources
	How event source mappings differ from direct triggers
	Batching behavior
	Provisioned mode
	Event source mapping API
	Using tags on event source mappings
	Permissions required for working with tags
	Using tags with the Lambda console
	Using tags with the AWS CLI
	Updating tags with the Lambda tag APIs
	Adding tags when you create an event source mapping
	Viewing tags with the Lambda tag APIs
	Filtering resources by tag

	Control which events Lambda sends to your function
	Understanding event filtering basics
	Handling records that don't meet filter criteria
	Filter rule syntax
	Attaching filter criteria to an event source mapping (console)
	Attaching filter criteria to an event source mapping (AWS CLI)
	Attaching filter criteria to an event source mapping (AWS SAM)
	Encryption of filter criteria
	Sample CloudTrail log entry for Create/Update/DeleteEventSourceMapping calls

	Using filters with different AWS services

	Testing Lambda functions in the console
	Invoking functions with test events
	Creating private test events
	Creating shareable test events
	Deleting shareable test event schemas

	Lambda function states
	Function states during updates

	Understanding retry behavior in Lambda
	Use Lambda recursive loop detection to prevent infinite loops
	Understanding recursive loop detection
	Supported AWS services and SDKs
	Supported AWS services
	Supported AWS SDKs

	Recursive loop notifications
	AWS Health Dashboard notifications
	Email alerts
	Amazon CloudWatch metrics

	Responding to recursive loop detection notifications
	Allowing a Lambda function to run in a recursive loop
	Supported regions for Lambda recursive loop detection

	Creating and managing Lambda function URLs
	Creating a function URL (console)
	To create a function URL for an existing function (console)
	To create a function URL for an existing alias (console)
	To create a new function with a function URL (console)

	Creating a function URL (AWS CLI)
	Adding a function URL to a CloudFormation template
	JSON
	YAML
	Parameters

	Cross-origin resource sharing (CORS)
	Throttling function URLs
	Deactivating function URLs
	Deleting function URLs
	Control access to Lambda function URLs
	Using the AWS_IAM auth type
	Using the NONE auth type
	Governance and access control
	Condition keys

	Invoking Lambda function URLs
	Function URL invocation basics
	Request and response payloads
	Request payload format
	Response payload format
	Cookies

	Monitoring Lambda function URLs
	Monitoring function URLs with CloudTrail
	CloudWatch metrics for function URLs

	Select a method to invoke your Lambda function using an HTTP request
	What are your choices when selecting an HTTP invoke method?
	Recommendations if you already know your requirements
	What to consider when selecting a method to invoke your Lambda function
	Authentication
	Request/response handling
	Scaling
	Monitoring
	Cost
	Other features

	Select a method to invoke your Lambda function

	Tutorial: Creating a webhook endpoint using a Lambda function URL
	Prerequisites
	Create the Lambda function
	Create the secret key
	Create the function URL endpoint
	Test the function in the console
	Test the function using an HTTP request
	Clean up your resources

	Understanding Lambda function scaling
	Understanding and visualizing concurrency
	Calculating concurrency for a function
	Test your understanding of concurrency
	Answer

	Understanding reserved concurrency and provisioned concurrency
	Reserved concurrency
	Provisioned concurrency
	How Lambda allocates provisioned concurrency
	Comparing reserved concurrency and provisioned concurrency

	Understanding concurrency and requests per second
	Test your understanding of concurrency (sub-100 ms functions)
	Answer

	Concurrency quotas
	Configuring reserved concurrency for a function
	Configuring reserved concurrency
	Accurately estimating required reserved concurrency for a function

	Configuring provisioned concurrency for a function
	Configuring provisioned concurrency
	Accurately estimating required provisioned concurrency for a function
	Optimizing function code when using provisioned concurrency
	Using environment variables to view and control provisioned concurrency behavior
	Understanding logging and billing behavior with provisioned concurrency
	Using Application Auto Scaling to automate provisioned concurrency management
	Scheduled scaling
	Target tracking

	Lambda scaling behavior
	Concurrency scaling rate

	Monitoring concurrency
	General concurrency metrics
	Provisioned concurrency metrics
	Working with the ClaimedAccountConcurrency metric
	Setting up the ClaimedAccountConcurrency metric in CloudWatch

	Building Lambda functions with Node.js
	Node.js initialization
	Designating a function handler as an ES module

	Runtime-included SDK versions
	Using keep-alive for TCP connections
	CA certificate loading
	Define Lambda function handler in Node.js
	Setting up your Node.js handler project
	Example Node.js Lambda function code
	Handler naming conventions
	Defining and accessing the input event object
	Valid handler patterns for Node.js functions
	Using async/await (recommended)
	Using callbacks

	Using the SDK for JavaScript v3 in your handler
	Accessing environment variables
	Using global state
	Code best practices for Node.js Lambda functions

	Deploy Node.js Lambda functions with .zip file archives
	Runtime dependencies in Node.js
	Creating a .zip deployment package with no dependencies
	Creating a .zip deployment package with dependencies
	Creating a Node.js layer for your dependencies
	Dependency search path and runtime-included libraries
	Creating and updating Node.js Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Updating .zip file functions using the console code editor
	Creating and updating functions with .zip files using the AWS CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using AWS SAM
	Creating and updating functions with .zip files using AWS CloudFormation

	Deploy Node.js Lambda functions with container images
	AWS base images for Node.js
	Using an AWS base image for Node.js
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Working with layers for Node.js Lambda functions
	Package your layer content
	Third-party dependencies
	Custom JavaScript modules

	Create the layer in Lambda
	Add the layer to your function
	Sample app

	Using the Lambda context object to retrieve Node.js function information
	Log and monitor Node.js Lambda functions
	Creating a function that returns logs
	Using Lambda advanced logging controls with Node.js
	Using structured JSON logs with Node.js
	Example JSON formatted log outputs

	Using embedded metric format (EMF) client libraries with structured JSON logs
	Using log-level filtering with Node.js

	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console
	Viewing logs using the AWS Command Line Interface (AWS CLI)
	Deleting logs

	Instrumenting Node.js code in AWS Lambda
	Using ADOT to instrument your Node.js functions
	Using the X-Ray SDK to instrument your Node.js functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with AWS CloudFormation
	Interpreting an X-Ray trace
	Storing runtime dependencies in a layer (X-Ray SDK)

	Building Lambda functions with TypeScript
	Setting up a TypeScript development environment
	Type definitions for Lambda
	Define Lambda function handler in TypeScript
	Setting up your TypeScript project
	Example TypeScript Lambda function code
	Handler naming conventions
	Defining and accessing the input event object
	Valid handler patterns for TypeScript functions
	Using async/await (recommended)
	Using callbacks

	Using the SDK for JavaScript v3 in your handler
	Accessing environment variables
	Using global state
	Code best practices for TypeScript Lambda functions

	Deploy transpiled TypeScript code in Lambda with .zip file archives
	Using AWS SAM to deploy TypeScript code to Lambda
	Using the AWS CDK to deploy TypeScript code to Lambda
	Using the AWS CLI and esbuild to deploy TypeScript code to Lambda

	Deploy transpiled TypeScript code in Lambda with container images
	Using a Node.js base image to build and package TypeScript function code
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using the Lambda context object to retrieve TypeScript function information
	Log and monitor TypeScript Lambda functions
	Using logging tools and libraries
	Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging
	Managing log retention

	Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured logging
	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console

	Tracing TypeScript code in AWS Lambda
	Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracing
	Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing
	Interpreting an X-Ray trace

	Building Lambda functions with Python
	Runtime-included SDK versions
	Experimental features in Python 3.13
	Response format
	Graceful shutdown for extensions
	Define Lambda function handler in Python
	Example Python Lambda function code
	Handler naming conventions
	Using the Lambda event object
	Accessing and using the Lambda context object
	Valid handler signatures for Python handlers
	Returning a value
	Using the AWS SDK for Python (Boto3) in your handler
	Accessing environment variables
	Code best practices for Python Lambda functions

	Working with .zip file archives for Python Lambda functions
	Runtime dependencies in Python
	Creating a .zip deployment package with no dependencies
	Creating a .zip deployment package with dependencies
	Dependency search path and runtime-included libraries
	Using __pycache__ folders
	Creating .zip deployment packages with native libraries
	Working with built distributions (wheels)
	Working with source distributions

	Creating and updating Python Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Updating .zip file functions using the console code editor
	Creating and updating functions with .zip files using the AWS CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using AWS SAM
	Creating and updating functions with .zip files using AWS CloudFormation

	Deploy Python Lambda functions with container images
	AWS base images for Python
	Dependency search path in the base images

	Using an AWS base image for Python
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Working with layers for Python Lambda functions
	Package your layer content
	Third-party dependencies
	Custom Python modules

	Create the layer in Lambda
	Add the layer to your function
	Sample app

	Using the Lambda context object to retrieve Python function information
	Log and monitor Python Lambda functions
	Printing to the log
	Using a logging library
	Using Lambda advanced logging controls with Python
	Using structured JSON logs with Python
	Standard JSON log outputs using Python logging library
	Logging extra parameters in JSON
	Logging exceptions in JSON
	JSON structured logs with other logging tools

	Using log-level filtering with Python

	Viewing logs in Lambda console
	Viewing logs in CloudWatch console
	Viewing logs with AWS CLI
	Deleting logs
	Using other logging tools and libraries
	Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging
	Managing log retention

	Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging

	AWS Lambda function testing in Python
	Testing your serverless applications
	Testing in the cloud
	Testing tools

	Instrumenting Python code in AWS Lambda
	Using Powertools for AWS Lambda (Python) and AWS SAM for tracing
	Using Powertools for AWS Lambda (Python) and the AWS CDK for tracing
	Using ADOT to instrument your Python functions
	Using the X-Ray SDK to instrument your Python functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with AWS CloudFormation
	Interpreting an X-Ray trace
	Storing runtime dependencies in a layer (X-Ray SDK)

	Building Lambda functions with Ruby
	Runtime-included SDK versions
	Enabling Yet Another Ruby JIT (YJIT)
	Define Lambda function handler in Ruby
	Ruby handler basics
	Code best practices for Ruby Lambda functions

	Deploy Ruby Lambda functions with .zip file archives
	Dependencies in Ruby
	Creating a .zip deployment package with no dependencies
	Creating a .zip deployment package with dependencies
	Creating a Ruby layer for your dependencies
	Creating .zip deployment packages with native libraries
	Creating and updating Ruby Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Updating .zip file functions using the console code editor
	Creating and updating functions with .zip files using the AWS CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using AWS SAM
	Creating and updating functions with .zip files using AWS CloudFormation

	Deploy Ruby Lambda functions with container images
	AWS base images for Ruby
	Using an AWS base image for Ruby
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Working with layers for Ruby Lambda functions
	Package your layer content
	Pure Ruby gems
	Gems with native extensions
	Custom Ruby modules

	Create the layer in Lambda
	Using gems from layers in a function
	Add the layer to your function
	Sample app

	Using the Lambda context object to retrieve Ruby function information
	Log and monitor Ruby Lambda functions
	Creating a function that returns logs
	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console
	Viewing logs using the AWS Command Line Interface (AWS CLI)
	Deleting logs
	Working with the Ruby logger library

	Instrumenting Ruby code in AWS Lambda
	Enabling active tracing with the Lambda API
	Enabling active tracing with AWS CloudFormation
	Storing runtime dependencies in a layer

	Building Lambda functions with Java
	Define Lambda function handler in Java
	Setting up your Java handler project
	Example Java Lambda function code
	Sample build.gradle and pom.xml file

	Valid class definitions for Java handlers
	Handler naming conventions
	Defining and accessing the input event object
	Other input event types

	Accessing and using the Lambda context object
	Using the AWS SDK for Java v2 in your handler
	Accessing environment variables
	Using global state
	Code best practices for Java Lambda functions

	Deploy Java Lambda functions with .zip or JAR file archives
	Prerequisites
	Tools and libraries
	Building a deployment package with Gradle
	Using layers for dependencies
	Building a deployment package with Maven
	Uploading a deployment package with the Lambda console
	Uploading a deployment package with the AWS CLI
	Uploading a deployment package with AWS SAM

	Deploy Java Lambda functions with container images
	AWS base images for Java
	Using an AWS base image for Java
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Working with layers for Java Lambda functions
	Package your layer content
	Create the layer in Lambda
	Add the layer to your function

	Customize serialization for Lambda Java functions
	When to use custom serialization
	Implementing custom serialization
	Testing custom serialization

	Customize Java runtime startup behavior for Lambda functions
	Understanding the JAVA_TOOL_OPTIONS environment variable
	Example: Customizing tiered compilation settings
	Example: Customizing GC behavior using JAVA_TOOL_OPTIONS

	Using the Lambda context object to retrieve Java function information
	Context in sample applications

	Log and monitor Java Lambda functions
	Creating a function that returns logs
	Using Lambda advanced logging controls with Java
	Using structured JSON log format with Java
	Using log-level filtering with Java

	Implementing advanced logging with Log4j2 and SLF4J
	Using other logging tools and libraries
	Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging
	Managing log retention

	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console
	Viewing logs using the AWS Command Line Interface (AWS CLI)
	Deleting logs
	Sample logging code

	Instrumenting Java code in AWS Lambda
	Using Powertools for AWS Lambda (Java) and AWS SAM for tracing
	Using Powertools for AWS Lambda (Java) and the AWS CDK for tracing
	Using ADOT to instrument your Java functions
	Using the X-Ray SDK to instrument your Java functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with AWS CloudFormation
	Interpreting an X-Ray trace
	Storing runtime dependencies in a layer (X-Ray SDK)
	X-Ray tracing in sample applications (X-Ray SDK)

	Java sample applications for AWS Lambda

	Building Lambda functions with Go
	Go runtime support
	Tools and libraries
	Define Lambda function handlers in Go
	Setting up your Go handler project
	Example Go Lambda function code
	Handler naming conventions
	Defining and accessing the input event object
	Accessing and using the Lambda context object
	Valid handler signatures for Go handlers
	Using the AWS SDK for Go v2 in your handler
	Accessing environment variables
	Using global state
	Code best practices for Go Lambda functions

	Using the Lambda context object to retrieve Go function information
	Supported variables, methods, and properties in the context object
	Accessing invoke context information
	Using the context in AWS SDK client initializations and calls

	Deploy Go Lambda functions with .zip file archives
	Creating a .zip file on macOS and Linux
	Using the provided runtime family

	Creating a .zip file on Windows
	Using the provided runtime family

	Creating and updating Go Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Creating and updating functions with .zip files using the AWS CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using AWS SAM
	Creating and updating functions with .zip files using AWS CloudFormation

	Deploy Go Lambda functions with container images
	AWS base images for deploying Go functions
	Go runtime interface client
	Using an AWS OS-only base image
	Prerequisites
	Creating an image from the provided.al2023 base image
	(Optional) Test the image locally
	Deploying the image

	Using a non-AWS base image
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Working with layers for Go Lambda functions
	Log and monitor Go Lambda functions
	Creating a function that returns logs
	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console
	Viewing logs using the AWS Command Line Interface (AWS CLI)
	Deleting logs

	Instrumenting Go code in AWS Lambda
	Using ADOT to instrument your Go functions
	Using the X-Ray SDK to instrument your Go functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with AWS CloudFormation
	Interpreting an X-Ray trace

	Building Lambda functions with C#
	Setting up your .NET development environment
	Installing the .NET project templates
	Installing and updating the CLI tools

	Define Lambda function handler in C#
	Setting up your C# handler project
	Example C# Lambda function code
	Add metadata information to aws-lambda-tools-defaults.json

	Class library handlers
	Executable assembly handlers
	Valid handler signatures for C# functions
	Handler naming conventions
	Serialization in C# Lambda functions
	Reflection-based serialization
	Source-generated serialization

	Accessing and using the Lambda context object
	Using the SDK for .NET v3 in your handler
	Accessing environment variables
	Using global state
	Simplify function code with the Lambda Annotations framework
	Dependency injection with Lambda Annotations framework

	Code best practices for C# Lambda functions

	Build and deploy C# Lambda functions with .zip file archives
	Using the .NET Lambda Global CLI
	Prerequisites
	Creating .NET projects using the .NET CLI
	Deploying .NET projects using the .NET CLI
	Using Lambda layers with the .NET CLI

	Deploy C# Lambda functions using AWS SAM
	Prerequisites
	Deploy a sample AWS SAM application
	Next steps

	Deploy C# Lambda functions using AWS CDK
	Prerequisites
	Deploy a sample AWS CDK application
	Next steps

	Deploy ASP.NET applications
	Prerequisites
	Deploying an ASP.NET Web API to Lambda
	Deploying ASP.NET minimal APIs to Lambda

	Working with layers for .NET Lambda functions
	Deploy .NET Lambda functions with container images
	AWS base images for .NET
	Using an AWS base image for .NET
	Prerequisites
	Creating and deploying an image using a base image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating and deploying an image using an alternative base image

	Compile .NET Lambda function code to a native runtime format
	Lambda runtime
	Prerequisites
	Getting started
	Serialization
	Trimming
	Troubleshooting

	Using the Lambda context object to retrieve C# function information
	Log and monitor C# Lambda functions
	Creating a function that returns logs
	Using Lambda advanced logging controls with .NET
	Using structured JSON log format with .NET
	Logging exceptions in JSON
	Customer-provided log parameters

	Using log-level filtering with .NET

	Additional logging tools and libraries
	Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging
	Managing log retention

	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console
	Viewing logs using the AWS Command Line Interface (AWS CLI)
	Deleting logs

	Instrumenting C# code in AWS Lambda
	Using Powertools for AWS Lambda (.NET) and AWS SAM for tracing
	Using the X-Ray SDK to instrument your .NET functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with AWS CloudFormation
	Interpreting an X-Ray trace

	AWS Lambda function testing in C#
	Testing your serverless applications
	Testing in the cloud
	Testing tools

	Building Lambda functions with PowerShell
	Setting Up a PowerShell Development Environment
	Deploy PowerShell Lambda functions with .zip file archives
	Creating the Lambda function

	Define Lambda function handler in PowerShell
	Returning data

	Using the Lambda context object to retrieve PowerShell function information
	Log and monitor Powershell Lambda functions
	Creating a function that returns logs
	Viewing logs in the Lambda console
	Viewing logs in the CloudWatch console
	Viewing logs using the AWS Command Line Interface (AWS CLI)
	Deleting logs

	Building Lambda functions with Rust
	Define Lambda function handlers in Rust
	Setting up your Rust handler project
	Example Rust Lambda function code
	Sample Cargo.toml file

	Valid class definitions for Rust handlers
	Handler naming conventions
	Defining and accessing the input event object
	Pre-defined input event types

	Accessing and using the Lambda context object
	Using the AWS SDK for Rust in your handler
	Accessing environment variables
	Using shared state
	Code best practices for Rust Lambda functions

	Using the Lambda context object to retrieve Rust function information
	Accessing invoke context information

	Processing HTTP events with Rust
	Deploy Rust Lambda functions with .zip file archives
	Prerequisites
	Building Rust functions on macOS, Windows, or Linux
	Deploying the Rust function binary with Cargo Lambda
	Deploying your Rust function binary with the AWS CLI
	Deploying your Rust function binary with the AWS SAM CLI

	Invoking your Rust function with Cargo Lambda
	Invoking your Rust function with the AWS CLI

	Working with layers for Rust Lambda functions
	Log and monitor Rust Lambda functions
	Creating a function that writes logs
	Implementing advanced logging with the Tracing crate

	Best practices for working with AWS Lambda functions
	Function code
	Function configuration
	Function scalability
	Metrics and alarms
	Working with streams
	Security best practices

	How to test serverless functions and applications
	Targeted business outcomes
	What to test
	How to test serverless
	Testing techniques
	Testing in the cloud
	Testing with mocks
	Testing with emulation

	Best practices
	Prioritize testing in the cloud
	Structure your code for testability
	Accelerate development feedback loops
	Focus on integration tests
	Create isolated test environments
	Use mocks for isolated business logic
	Use emulators sparingly

	Challenges testing locally
	Example: Lambda function creates an S3 bucket
	Example: Lambda function processes messages from an Amazon SQS queue

	FAQ
	Next steps and resources

	Improving startup performance with Lambda SnapStart
	When to use SnapStart
	Supported features and limitations
	Supported Regions
	Compatibility considerations
	SnapStart pricing
	Activating and managing Lambda SnapStart
	Activating SnapStart (console)
	Activating SnapStart (AWS CLI)
	Activating SnapStart (API)
	Lambda SnapStart and function states
	Updating a snapshot
	Using SnapStart with AWS SDKs
	Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDK
	Deleting snapshots

	Handling uniqueness with Lambda SnapStart
	Avoid saving state that depends on uniqueness during initialization
	Use cryptographically secure pseudorandom number generators (CSPRNGs)
	SnapStart scanning tool (Java only)

	Implement code before or after Lambda function snapshots
	Lambda SnapStart runtime hooks for Java
	Runtime hook registration and execution
	Step 1: Update the build configuration
	Step 2: Update the Lambda handler

	Lambda SnapStart runtime hooks for Python
	Runtime hook registration and execution
	Example

	Lambda SnapStart runtime hooks for .NET
	Runtime hook registration and execution
	Example

	Monitoring for Lambda SnapStart
	Understanding logging and billing behavior with SnapStart
	X-Ray active tracing for SnapStart
	Telemetry API events for SnapStart
	Amazon API Gateway and function URL metrics

	Security model for Lambda SnapStart
	Maximize Lambda SnapStart performance
	Performance tuning
	Java
	Python
	.NET

	Networking best practices

	Troubleshooting SnapStart errors for Lambda functions
	SnapStartNotReadyException
	Common causes
	Resolution

	SnapStartTimeoutException
	Common cause
	Resolution

	500 Internal Service Error
	Common cause
	Resolution

	401 Unauthorized
	Common cause
	Resolution

	UnknownHostException (Java)
	Common cause
	Resolution

	Snapshot creation failures
	Resolution

	Snapshot creation latency
	Common cause
	Resolution

	Invoking Lambda with events from other AWS services
	Creating a trigger
	Services that can invoke Lambda functions
	Using Lambda with Apache Kafka
	Using Lambda with Amazon MSK
	Example event
	Configuring your Amazon MSK cluster and Amazon VPC network for Lambda
	Overview of network configuration requirements for Lambda and MSK integrations
	Configuring a NAT gateway for an MSK event source
	Configuring AWS PrivateLink endpoints for an MSK event source

	Configuring Amazon MSK event sources for Lambda
	Using an Amazon MSK cluster as an event source
	Creating a Lambda event source mapping for an Amazon MSK event source
	Configuring cluster authentication methods in Lambda
	Unauthenticated access
	SASL/SCRAM authentication
	Mutual TLS authentication
	Configuring the mTLS secret

	IAM authentication
	How Lambda chooses a bootstrap broker

	Customizable consumer group ID in Lambda
	Polling and stream starting positions in Lambda
	Event poller scaling modes in Lambda
	On-demand mode (default)
	Provisioned mode
	Best practices and considerations when using provisioned mode

	Creating cross-account event source mappings in Lambda
	All Amazon MSK event source configuration parameters in Lambda

	Configuring Lambda execution role permissions
	Basic permissions
	Cluster access permissions
	VPC permissions
	Optional permissions
	Troubleshooting common authentication and authorization errors
	Cluster failed to authorize Lambda
	SASL authentication failed
	Server failed to authenticate Lambda
	Provided certificate or private key is invalid

	Using event filtering with an Amazon MSK event source
	Amazon MSK event filtering basics

	Capturing discarded batches for an Amazon MSK event source
	Configuring on-failure destinations for an Amazon MSK event source mapping
	Security best practices for Amazon S3 destinations
	SNS and SQS example invocation record
	S3 destination example invocation record

	Tutorial: Using an Amazon MSK event source mapping to invoke a Lambda function
	Prerequisites
	Install the AWS Command Line Interface

	Configure network connectivity for Lambda to communicate with Amazon MSK
	Create an IAM role for Lambda to read from your Amazon MSK topic
	Create a Lambda function to read from your Amazon MSK topic
	Create an event source mapping to your Lambda function
	Update your Lambda function to read your streaming data
	Test your Lambda function to verify it is connected to your Amazon MSK topic

	Using Lambda with self-managed Apache Kafka
	Example event
	Configuring self-managed Apache Kafka event sources for Lambda
	Kafka cluster authentication
	SASL/SCRAM authentication
	Mutual TLS authentication
	Configuring the client certificate secret
	Configuring the server root CA certificate secret

	API access and Lambda function permissions
	Required Lambda function permissions
	Optional Lambda function permissions
	Secrets Manager and AWS KMS permissions
	VPC permissions

	Adding permissions to your execution role
	Granting users access with an IAM policy

	Configure network security

	Processing self-managed Apache Kafka messages with Lambda
	Adding a Kafka cluster as an event source
	Prerequisites
	Customizable consumer group ID
	Adding a self-managed Kafka cluster (console)
	Adding a self-managed Kafka cluster (AWS CLI)
	Using SASL/SCRAM
	Using a VPC
	Viewing the status using the AWS CLI

	Self-managed Apache Kafka configuration parameters
	Using a Kafka cluster as an event source
	Polling and stream starting positions
	Message throughput scaling behavior for self-managed Apache Kafka event source mappings
	Default (on-demand) mode
	Configuring provisioned mode
	Best practices and considerations when using provisioned mode

	Amazon CloudWatch metrics

	Using event filtering with a self-managed Apache Kafka event source
	Self-managed Apache Kafka event filtering basics

	Capturing discarded batches for a self-managed Apache Kafka event source
	Configuring on-failure destinations for an self-managed Apache Kafka event source mapping
	Security best practices for Amazon S3 destinations
	SNS and SQS example invocation record
	S3 destination example invocation record

	Troubleshooting self-managed Apache Kafka event source mapping errors
	Authentication and authorization errors
	Cluster failed to authorize Lambda
	SASL authentication failed
	Server failed to authenticate Lambda
	Lambda failed to authenticate server
	Provided certificate or private key is invalid

	Event source mapping errors

	Using schema registries with Kafka event sources in Lambda
	Schema registry options
	How Lambda performs schema validation for Kafka messages
	Configuring a Kafka schema registry
	Filtering for Avro and Protobuf
	Payload formats and deserialization behavior
	JSON format
	Source format

	Working with deserialized data in Lambda functions
	Authentication methods for your schema registry
	Error handling and troubleshooting for schema registry issues
	Configuration errors
	Access and permission errors
	Connection errors

	Low latency processing for Kafka event sources
	Enable low latency processing
	Fine-tuning your low latency Kafka ESM
	Provisioned mode configuration
	Additional considerations

	Invoking a Lambda function using an Amazon API Gateway endpoint
	Choosing an API type
	Adding an endpoint to your Lambda function
	Proxy integration
	Event format
	Response format
	Permissions
	Sample application
	Tutorial: Using Lambda with API Gateway
	Create a permissions policy
	Create an execution role
	Create the Lambda function
	Test the function
	Create a REST API using API Gateway
	Create a resource on your REST API
	Create an HTTP POST method
	Create a DynamoDB table
	Test the integration of API Gateway, Lambda, and DynamoDB
	Deploy the API
	Use curl to invoke your function using HTTP requests
	Clean up your resources (optional)

	Handling Lambda errors with an API Gateway API
	Select a method to invoke your Lambda function using an HTTP request
	What are your choices when selecting an HTTP invoke method?
	Recommendations if you already know your requirements
	What to consider when selecting a method to invoke your Lambda function
	Authentication
	Request/response handling
	Scaling
	Monitoring
	Cost
	Other features

	Select a method to invoke your Lambda function

	Using AWS Lambda with AWS Infrastructure Composer
	Exporting a Lambda function to Infrastructure Composer
	Amazon S3 transfer bucket configuration
	Required permissions

	Other resources

	Using AWS Lambda with AWS CloudFormation
	Process Amazon DocumentDB events with Lambda
	Example Amazon DocumentDB event
	Prerequisites and permissions
	Configure network security
	Creating an Amazon DocumentDB event source mapping (console)
	Creating an Amazon DocumentDB event source mapping (SDK or CLI)
	Polling and stream starting positions
	Monitoring your Amazon DocumentDB event source
	Tutorial: Using AWS Lambda with Amazon DocumentDB Streams
	Create the Amazon DocumentDB cluster
	Create the secret in Secrets Manager
	Connect to the cluster
	Activate change streams
	Create interface VPC endpoints
	Create the execution role
	Create the Lambda function
	Create the Lambda event source mapping
	Test your function
	Insert a record
	Update a record
	Delete a record

	Troubleshooting
	Clean up your resources

	Using AWS Lambda with Amazon DynamoDB
	Polling and batching streams
	Polling and stream starting positions
	Simultaneous readers of a shard in DynamoDB Streams
	Example event
	Process DynamoDB records with Lambda
	Configuring partial batch response with DynamoDB and Lambda
	Report syntax
	Success and failure conditions
	Bisecting a batch

	Retain discarded records for a DynamoDB event source in Lambda
	Configuring destinations for failed invocations
	Security best practices for Amazon S3 destinations
	Example Amazon SNS and Amazon SQS invocation record
	Example Amazon S3 invocation record

	Implementing stateful DynamoDB stream processing in Lambda
	Aggregation and processing
	Configuration

	Lambda parameters for Amazon DynamoDB event source mappings
	Using event filtering with a DynamoDB event source
	DynamoDB event
	Filtering with table keys

	Filtering with table attributes
	Filtering with Boolean expressions
	Using the Exists operator
	JSON format for DynamoDB filtering

	Tutorial: Using AWS Lambda with Amazon DynamoDB streams
	Prerequisites
	Install the AWS Command Line Interface

	Create the execution role
	Create the function
	Test the Lambda function
	Create a DynamoDB table with a stream enabled
	Add an event source in AWS Lambda
	Test the setup
	Clean up your resources

	Process Amazon EC2 lifecycle events with a Lambda function
	Granting permissions to EventBridge (CloudWatch Events)

	Process Application Load Balancer requests with Lambda
	Invoke a Lambda function on a schedule
	Set up the execution role
	Create a schedule
	Related resources

	Using AWS Lambda with AWS IoT
	How Lambda processes records from Amazon Kinesis Data Streams
	Polling and batching streams
	Example event
	Process Amazon Kinesis Data Streams records with Lambda
	Configuring your data stream and function
	Create an event source mapping to invoke a Lambda function
	Polling and stream starting position
	Creating a cross-account event source mapping

	Configuring partial batch response with Kinesis Data Streams and Lambda
	Report syntax
	Success and failure conditions
	Bisecting a batch

	Retain discarded batch records for a Kinesis Data Streams event source in Lambda
	Configuring destinations for failed invocations
	Security best practices for Amazon S3 destinations
	Example Amazon SNS and Amazon SQS invocation record
	Example Amazon S3 invocation record

	Implementing stateful Kinesis Data Streams processing in Lambda
	Aggregation and processing
	Configuration

	Lambda parameters for Amazon Kinesis Data Streams event source mappings
	Using event filtering with a Kinesis event source
	Kinesis event filtering basics
	Filtering Kinesis aggregated records

	Tutorial: Using Lambda with Kinesis Data Streams
	Prerequisites
	Install the AWS Command Line Interface

	Create the execution role
	Create the function
	Test the Lambda function
	Create a Kinesis stream
	Add an event source in AWS Lambda
	Test the setup
	Clean up your resources

	Using Lambda with Kubernetes
	AWS Controllers for Kubernetes (ACK)
	Crossplane

	Using Lambda with Amazon MQ
	Understanding the Lambda consumer group for Amazon MQ
	Configuring Amazon MQ event source for Lambda
	Configure network security
	Create the event source mapping

	Event source mapping parameters
	Filter events from an Amazon MQ event source
	Amazon MQ event filtering basics

	Troubleshoot Amazon MQ event source mapping errors

	Using AWS Lambda with Amazon RDS
	Configuring your function to work with RDS resources
	Example permissions policy
	SSL/TLS requirements for Amazon RDS connections

	Connecting to an Amazon RDS database in a Lambda function
	Processing event notifications from Amazon RDS
	Complete Lambda and Amazon RDS tutorial
	Select a database service for your Lambda-based applications
	What are your choices when selecting a database service with Lambda?
	Recommendations if you already know your requirements
	What to consider when selecting a database service
	Connection management and cold starts
	Data access patterns
	Query complexity
	Data consistency requirements
	Scaling characteristics
	Cost model

	Getting started with your chosen database service

	Process Amazon S3 event notifications with Lambda
	Tutorial: Using an Amazon S3 trigger to invoke a Lambda function
	Create an Amazon S3 bucket
	Upload a test object to your bucket
	Create a permissions policy
	Create an execution role
	Create the Lambda function
	Deploy the function code
	Create the Amazon S3 trigger
	Test your Lambda function with a dummy event
	Test the Lambda function with the Amazon S3 trigger

	Clean up your resources
	Next steps

	Tutorial: Using an Amazon S3 trigger to create thumbnail images
	Prerequisites
	Install the AWS Command Line Interface

	Create two Amazon S3 buckets
	Upload a test image to your source bucket
	Create a permissions policy
	Create an execution role
	Create the function deployment package
	Create the Lambda function
	Configure Amazon S3 to invoke the function
	Test your Lambda function with a dummy event
	Test your function using the Amazon S3 trigger
	Clean up your resources

	Use Secrets Manager secrets in Lambda functions
	When to use Secrets Manager with Lambda
	Use Secrets Manager in a Lambda function
	Create the deployment package
	Create the function
	Add the extension
	Add permissions
	Test the function

	Environment variables
	Working with secret rotation

	Using Lambda with Amazon SQS
	Understanding polling and batching behavior for Amazon SQS event source mappings
	Example standard queue message event
	Example FIFO queue message event
	Creating and configuring an Amazon SQS event source mapping
	Configuring a queue to use with Lambda
	Setting up Lambda execution role permissions
	Creating an SQS event source mapping

	Configuring scaling behavior for SQS event source mappings
	Configuring maximum concurrency for Amazon SQS event sources

	Handling errors for an SQS event source in Lambda
	Backoff strategy for failed invocations
	Implementing partial batch responses
	Success and failure conditions
	CloudWatch metrics

	Lambda parameters for Amazon SQS event source mappings
	Using event filtering with an Amazon SQS event source
	Amazon SQS event filtering basics

	Tutorial: Using Lambda with Amazon SQS
	Prerequisites
	Install the AWS Command Line Interface

	Create the execution role
	Create the function
	Test the function
	Create an Amazon SQS queue
	Configure the event source
	Send a test message
	Check the CloudWatch logs
	Clean up your resources

	Tutorial: Using a cross-account Amazon SQS queue as an event source
	Prerequisites
	Install the AWS Command Line Interface

	Create the execution role (Account A)
	Create the function (Account A)
	Test the function (Account A)
	Create an Amazon SQS queue (Account B)
	Configure the event source (Account A)
	Test the setup
	Clean up your resources

	Orchestrating Lambda functions with Step Functions
	When to use Step Functions with Lambda
	Sequential processing
	Anti-pattern example
	Recommended approach

	Complex error handling
	Anti-pattern example
	Recommended approach

	Conditional workflows and human approvals
	Anti-pattern example
	Recommended approach

	Parallel processing
	Anti-pattern example
	Recommended approach

	When not to use Step Functions with Lambda
	Simple applications
	Complex data processing
	CPU-intensive workloads

	Invoke a Lambda function with Amazon S3 batch events
	Invoking Lambda functions from Amazon S3 batch operations

	Invoking Lambda functions with Amazon SNS notifications
	Adding an Amazon SNS topic trigger for a Lambda function using the console
	Manually adding an Amazon SNS topic trigger for a Lambda function
	Sample SNS event shape
	Tutorial: Using AWS Lambda with Amazon Simple Notification Service
	Prerequisites
	Install the AWS Command Line Interface

	Create an Amazon SNS topic (account A)
	Create a function execution role (account B)
	Create a Lambda function (account B)
	Add permissions to function (account B)
	Grant cross-account permission for Amazon SNS subscription (account A)
	Create a subscription (account B)
	Publish messages to topic (account A and account B)
	Clean up your resources

	Managing permissions in AWS Lambda
	Defining Lambda function permissions with an execution role
	Creating an execution role in the IAM console
	Creating and managing roles with the AWS CLI
	Grant least privilege access to your Lambda execution role
	Viewing and updating permissions in the execution role
	Viewing a function's execution role
	Updating a function's execution role

	Working with AWS managed policies in the execution role
	Using source function ARN to control function access behavior

	Granting other AWS entities access to your Lambda functions
	Identity-based IAM policies for Lambda
	Granting users access to a Lambda function
	Granting users access to a Lambda layer

	Viewing resource-based IAM policies in Lambda
	Supported API actions
	Granting Lambda function access to AWS services
	Granting function access to an organization
	Granting Lambda function access to other accounts
	Granting Lambda layer access to other accounts

	Using attribute-based access control in Lambda
	Secure your functions by tag
	Prerequisites
	Step 1: Require tags on new functions
	Step 2: Allow actions based on tags attached to a Lambda function and IAM principal
	Step 3: Grant list permissions
	Step 4: Grant IAM permissions
	Step 5: Create the IAM role
	Step 6: Create the IAM user
	Step 7: Test the permissions
	Step 8: Clean up your resources

	Fine-tuning the Resources and Conditions sections of policies
	Understanding the Condition section in policies
	Referencing functions in the Resource section of policies
	Supported IAM actions and function behaviors

	Security in AWS Lambda
	Data protection in AWS Lambda
	Encryption in transit
	Data encryption at rest for AWS Lambda
	Monitoring your encryption keys for Lambda

	Identity and Access Management for AWS Lambda
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Lambda works with IAM
	Identity-based policies for Lambda
	Identity-based policy examples for Lambda

	Resource-based policies within Lambda
	Policy actions for Lambda
	Policy resources for Lambda
	Policy condition keys for Lambda
	ACLs in Lambda
	ABAC with Lambda
	Using temporary credentials with Lambda
	Forward access sessions for Lambda
	Service roles for Lambda
	Service-linked roles for Lambda

	Identity-based policy examples for AWS Lambda
	Policy best practices
	Using the Lambda console
	Allow users to view their own permissions

	AWS managed policies for AWS Lambda
	AWS managed policy: AWSLambda_FullAccess
	AWS managed policy: AWSLambda_ReadOnlyAccess
	AWS managed policy: AWSLambdaBasicExecutionRole
	AWS managed policy: AWSLambdaDynamoDBExecutionRole
	AWS managed policy: AWSLambdaENIManagementAccess
	AWS managed policy: AWSLambdaInvocation-DynamoDB
	AWS managed policy: AWSLambdaKinesisExecutionRole
	AWS managed policy: AWSLambdaMSKExecutionRole
	AWS managed policy: AWSLambdaRole
	AWS managed policy: AWSLambdaSQSQueueExecutionRole
	AWS managed policy: AWSLambdaVPCAccessExecutionRole
	Lambda updates to AWS managed policies

	Troubleshooting AWS Lambda identity and access
	I am not authorized to perform an action in Lambda
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Lambda resources

	Create a governance strategy for Lambda functions and layers
	Proactive controls for Lambda with AWS CloudFormation Guard
	Caveats

	Implement preventative controls for Lambda with AWS Config
	Detect non-compliant Lambda deployments and configurations with AWS Config
	Phase 1: Identify access resources
	Phase 2: Visualize and design
	Phase 3: Implement and enforce

	Lambda code signing with AWS Signer
	Automate security assessments for Lambda with Amazon Inspector
	Implement observability for Lambda security and compliance
	Visibility into Lambda configurations
	Visibility into Lambda compliance
	Visibility into Lambda function boundaries using Security Hub
	Addressing the observability findings

	Compliance validation for AWS Lambda
	Resilience in AWS Lambda
	Infrastructure security in AWS Lambda
	Securing workloads with public endpoints
	Authentication and authorization
	Protecting API endpoints

	Using code signing to verify code integrity with Lambda
	Signature validation
	Creating code signing configurations for Lambda
	Configuration prerequisites
	Creating code signing configurations
	Enabling code signing for a function

	Configuring IAM policies for Lambda code signing configurations
	Using tags on code signing configurations
	Permissions required for working with tags
	Using tags with the Lambda console
	Using tags with the AWS CLI
	Updating tags with the Lambda tag APIs
	Adding tags when creating a code signing configuration
	Viewing tags with the Lambda tag APIs
	Filtering resources by tag

	Monitoring, debugging, and troubleshooting Lambda functions
	Pricing
	Using CloudWatch metrics with Lambda
	Viewing metrics for Lambda functions
	Types of metrics for Lambda functions
	Invocation metrics
	Performance metrics
	Concurrency metrics
	Asynchronous invocation metrics
	Event source mapping metrics

	Working with Lambda function logs
	Choosing a service destination to send logs to
	Configuring log destinations
	Configuring advanced logging controls for Lambda functions
	Configuring JSON and plain text log formats
	Supported runtimes and logging methods
	Default log formats
	JSON format for system logs
	JSON format for application logs
	Setting your function's log format

	Log-level filtering
	Configuring log-level filtering
	System log level event mapping
	Application log-level filtering with custom runtimes

	Sending Lambda function logs to CloudWatch Logs
	Required IAM permissions
	Pricing
	Configuring CloudWatch log groups
	Execution role permissions

	Viewing CloudWatch logs for Lambda functions
	Stream function logs with CloudWatch Logs Live Tail
	Comparing Live Tail and --log-type Tail
	Permissions
	Start a Live Tail session in the Lambda console

	Access function logs using the console
	Access logs with the AWS CLI
	Parsing logs and structured logging
	JSON structured logging
	Useful Insights queries

	Log visualization and dashboards

	Sending Lambda function logs to Firehose
	Pricing
	Required permissions for Firehose log destination
	Sending Lambda function logs to Firehose
	Cross-Account Logging

	Sending Lambda function logs to Amazon S3
	Pricing
	Required permissions for Amazon S3 log destination
	Set up a CloudWatch Logs subscriptions filter to send Lambda function logs to Amazon S3
	To create a subscription filter for Amazon S3

	Sending Lambda function logs to Amazon S3
	Cross-Account Logging

	Logging AWS Lambda API calls using AWS CloudTrail
	Lambda data events in CloudTrail
	Lambda management events in CloudTrail
	Using CloudTrail to troubleshoot disabled Lambda event sources
	Lambda event examples

	Visualize Lambda function invocations using AWS X-Ray
	Understanding X-Ray traces
	Default tracing behavior in Lambda
	Execution role permissions
	Enabling Active tracing with the Lambda API
	Enabling Active tracing with AWS CloudFormation

	Monitor function performance with Amazon CloudWatch Lambda Insights
	How Lambda Insights monitors serverless applications
	Pricing
	Supported runtimes
	Enabling Lambda Insights in the Lambda console
	Enabling Lambda Insights programmatically
	Using the Lambda Insights dashboard
	Example workflow to detect function anomalies
	Example workflow using queries to troubleshoot a function
	What's next?

	Monitoring Lambda applications
	Monitor application performance with Amazon CloudWatch Application Signals
	How Application Signals integrates with Lambda
	Pricing
	Supported runtimes
	Enabling Application Signals in the Lambda console
	Using the Application Signals dashboard

	Remotely debug Lambda functions with Visual Studio Code
	Supported runtimes
	Security and remote debugging
	Prerequisites
	Remotely debug Lambda functions
	Disable remote debugging
	Additional information

	Managing Lambda dependencies with layers
	How to use layers
	Layers and layer versions
	Packaging your layer content
	Layer paths for each Lambda runtime

	Creating and deleting layers in Lambda
	Creating a layer
	Deleting a layer version

	Adding layers to functions
	Finding layer information

	Using AWS CloudFormation with layers
	Using AWS SAM with layers

	Augment Lambda functions using Lambda extensions
	Execution environment
	Impact on performance and resources
	Permissions
	Configuring Lambda extensions
	Configuring extensions (.zip file archive)
	Using extensions in container images
	Example: Adding an external extension

	Next steps

	AWS Lambda extensions partners
	AWS managed extensions

	Using the Lambda Extensions API to create extensions
	Lambda execution environment lifecycle
	Init phase
	Invoke phase
	Shutdown phase
	Permissions and configuration
	Failure handling
	Troubleshooting extensions

	Extensions API reference
	Register
	Next
	Init error
	Exit error

	Accessing real-time telemetry data for extensions using the Telemetry API
	Creating extensions using the Telemetry API
	Registering your extension
	Creating a telemetry listener
	Specifying a destination protocol
	Configuring memory usage and buffering
	Sending a subscription request to the Telemetry API
	Inbound Telemetry API messages
	Lambda Telemetry API reference
	Subscribe
	Example Subscribe API request

	Lambda Telemetry API Event schema reference
	Telemetry API Event object types
	platform.initStart
	platform.initRuntimeDone
	platform.initReport
	platform.start
	platform.runtimeDone
	platform.report
	platform.restoreStart
	platform.restoreRuntimeDone
	platform.restoreReport
	platform.extension
	platform.telemetrySubscription
	platform.logsDropped
	function
	extension

	Shared object types
	InitPhase
	InitReportMetrics
	InitType
	ReportMetrics
	RestoreReportMetrics
	RuntimeDoneMetrics
	Span
	Status
	TraceContext
	TracingType

	Converting Lambda Telemetry API Event objects to OpenTelemetry Spans
	Map to OTel Spans with Span Events
	Map to OTel Spans with Child Spans

	Using the Lambda Logs API
	Subscribing to receive logs
	Memory usage
	Destination protocols
	Buffering configuration
	Example subscription
	Sample code for Logs API
	Logs API reference
	Subscribe

	Log messages
	Function logs
	Extension logs
	Platform logs
	Example platform log messages
	Platform runtimeDone messages
	Examples

	Troubleshooting issues in Lambda
	Troubleshoot configuration issues in Lambda
	Memory configurations
	CPU-bound configurations
	Timeouts
	Memory leakage between invocations
	Asynchronous results returned to a later invocation

	Troubleshoot deployment issues in Lambda
	General: Permission is denied / Cannot load such file
	General: Error occurs when calling the UpdateFunctionCode
	Amazon S3: Error Code PermanentRedirect.
	General: Cannot find, cannot load, unable to import, class not found, no such file or directory
	General: Undefined method handler
	General: Lambda code storage limit exceeded
	Lambda: Layer conversion failed
	Lambda: InvalidParameterValueException or RequestEntityTooLargeException
	Lambda: InvalidParameterValueException
	Lambda: Concurrency and memory quotas
	Lambda: Invalid alias configuration for provisioned concurrency

	Troubleshoot invocation issues in Lambda
	Lambda: Function times out during Init phase (Sandbox.Timedout)
	IAM: lambda:InvokeFunction not authorized
	Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint)
	Lambda: Operation cannot be performed ResourceConflictException
	Lambda: Function is stuck in Pending
	Lambda: One function is using all concurrency
	General: Cannot invoke function with other accounts or services
	General: Function invocation is looping
	Lambda: Alias routing with provisioned concurrency
	Lambda: Cold starts with provisioned concurrency
	Lambda: Cold starts with new versions
	EFS: Function could not mount the EFS file system
	EFS: Function could not connect to the EFS file system
	EFS: Function could not mount the EFS file system due to timeout
	Lambda: Lambda detected an IO process that was taking too long
	Container: CodeArtifactUserException errors
	Container: InvalidEntrypoint errors

	Troubleshoot execution issues in Lambda
	Lambda: Remote debugging with Visual Studio Code
	Lambda: Execution takes too long
	Lambda: Unexpected event payload
	Lambda: Unexpectedly large payload sizes
	Lambda: JSON encoding and decoding errors
	Lambda: Logs or traces don't appear
	Lambda: Not all of my function's logs appear
	Lambda: The function returns before execution finishes
	Lambda: Running an unintended function version or alias
	Lambda: Detecting infinite loops
	General: Downstream service unavailability
	AWS SDK: Versions and updates
	Python: Libraries load incorrectly
	Java: Your function takes longer to process events after updating to Java 17 from Java 11

	Troubleshoot event source mapping issues in Lambda
	Identifying and managing throttling
	Errors in the processing function
	Identifying and handling backpressure

	Troubleshoot networking issues in Lambda
	VPC: Function loses internet access or times out
	VPC: TCP or UDP connection intermittently fails
	VPC: Function needs access to AWS services without using the internet
	VPC: Elastic network interface limit reached
	EC2: Elastic network interface with type of "lambda"
	DNS: Fail to connect to hosts with UNKNOWNHOSTEXCEPTION

	Lambda sample applications
	Using Lambda with an AWS SDK
	Code examples for Lambda using AWS SDKs
	Hello Lambda
	Basic examples for Lambda using AWS SDKs
	Hello Lambda
	Learn the basics of Lambda with an AWS SDK
	Actions for Lambda using AWS SDKs
	Use CreateAlias with a CLI
	Use CreateFunction with an AWS SDK or CLI
	Use DeleteAlias with a CLI
	Use DeleteFunction with an AWS SDK or CLI
	Use DeleteFunctionConcurrency with a CLI
	Use DeleteProvisionedConcurrencyConfig with a CLI
	Use GetAccountSettings with a CLI
	Use GetAlias with a CLI
	Use GetFunction with an AWS SDK or CLI
	Use GetFunctionConcurrency with a CLI
	Use GetFunctionConfiguration with a CLI
	Use GetPolicy with a CLI
	Use GetProvisionedConcurrencyConfig with a CLI
	Use Invoke with an AWS SDK or CLI
	Use ListFunctions with an AWS SDK or CLI
	Use ListProvisionedConcurrencyConfigs with a CLI
	Use ListTags with a CLI
	Use ListVersionsByFunction with a CLI
	Use PublishVersion with a CLI
	Use PutFunctionConcurrency with a CLI
	Use PutProvisionedConcurrencyConfig with a CLI
	Use RemovePermission with a CLI
	Use TagResource with a CLI
	Use UntagResource with a CLI
	Use UpdateAlias with a CLI
	Use UpdateFunctionCode with an AWS SDK or CLI
	Use UpdateFunctionConfiguration with an AWS SDK or CLI

	Scenarios for Lambda using AWS SDKs
	Automatically confirm known Amazon Cognito users with a Lambda function using an AWS SDK
	Automatically migrate known Amazon Cognito users with a Lambda function using an AWS SDK
	Create an API Gateway REST API to track COVID-19 data
	Create a lending library REST API
	Create a messenger application with Step Functions
	Create a photo asset management application that lets users manage photos using labels
	Create a websocket chat application with API Gateway
	Create an application that analyzes customer feedback and synthesizes audio
	Invoke a Lambda function from a browser
	Transform data for your application with S3 Object Lambda
	Use API Gateway to invoke a Lambda function
	Use Step Functions to invoke Lambda functions
	Use scheduled events to invoke a Lambda function
	Use the Amazon Neptune API to develop a Lambda function that queries graph data
	Write custom activity data with a Lambda function after Amazon Cognito user authentication using an AWS SDK

	Serverless examples for Lambda
	Connecting to an Amazon RDS database in a Lambda function
	Invoke a Lambda function from a Kinesis trigger
	Invoke a Lambda function from a DynamoDB trigger
	Invoke a Lambda function from a Amazon DocumentDB trigger
	Invoke a Lambda function from an Amazon MSK trigger
	Invoke a Lambda function from an Amazon S3 trigger
	Invoke a Lambda function from an Amazon SNS trigger
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with a Kinesis trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	AWS community contributions for Lambda
	Build and test a serverless application

	Lambda quotas
	Compute and storage
	Function configuration, deployment, and execution
	Lambda API requests
	Other services

	Document history
	Earlier updates

