aws

Developer Guide

AWS Lambda

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Lambda Developer Guide

AWS Lambda: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Lambda Developer Guide

Table of Contents

What is AWS Lambda? ...ccciiiiiiiiiieennniiiiiiiieiiinnsesssssessssissscesssans 1
WHhEN 10 USE LamMBDAa ...ttt ettt te e e a et et b e st e st e s e e saesa e e e anenes 1
HOW LamMbBAa WOTKS ...ttt ettt st et este s e e st st et et e s be s e e sessaenaanaesansanes 2
KEY TRATUIES ...ttt ettt e st et e et e st e e e e e s e e e e st e st e b e s bessaesaeseeseensentesassassassassaensansans 2

.. 2
.. 3
.. 3
Related iNFOIMAtION ...ttt st st e et st et be b e s e e e e saesaesaenaenes 3
HOW T WOTKS ettt ettt et s e s et et e e e e e et e st et e s e beeseeseeseensensantansansanes 3
Lambda functions and function handlers ... 4
Lambda execution environment and rUNtimes ... a e e 5
EVENTS @NA tHIGQEIS ettt ste e te e st e e et e st e st e st e s s e e se e e e sa e s essesaesaassassassaesaensensansansans 5
Lambda permissions @nd FOLEScceceeieieeceeeeeeeeeeete ettt e et et stesaesse s e e e s e e a e aeaeean 6
RUNNING COAR ittt et et et e st e st este st e e e e e e et et et e s e st e sassessaessessessansansansasassessaensanes 9
Creating event-driven arChit@CLUIES ..ottt sa e saesaesaesaens 23
Designing an QPPLICAtION ...ttt ettt ettt eenennens 35

Create your first FUNCHIONceeeiiiiiiiiiiiiiiieeteniiiiieceentinesnssssssessssssseess 42
PrEIEGQUISITES .ottt ettt et et e st e st e s sae e s ae s s ae e st e s ss e e st e s sse e s st esssessssassseessaesssessssessseesssesssesssaesnses 42
Create the TUNCLION ...ttt et et e st e sae s e b e e seeseeraene e s enaeaanes 44
INVOKE the FUNCLION .ottt e s ae s te st s e e e e e e e st et e s besbesseesaese e e ennanean 50
CLEAN UP ettt ettt et e st e st e st e et e e e st et et e st e be b e s s e e s e eseeseesse st ensansansassaesaeseessensentassassansassasssensansanean 53
NEXE STEPS ettt ettt e st e e rte e e s re e s s ste s s s st e sesan e s s st e sessaesessasssssassssesssssassssaessssaesssseessssesssnnes 54

Example apps and Patternseeeeciiiiiiiiiiiiinneenneiiiiiiiieiinisse 56
FILE PrOCESSING c.uvevieeeeiieietetectecte e ste e e e e et e st et et estessessesseese e s et esae st estessassassasssesaassessantansansansassasseesesnsenean 56
Database INtEGIatioN ...ttt ettt e s e e e e sa et e st e b e sae b e e e e e e e et enaanaanes 56
SCREAULEA TASKS ..ottt ettt e e s et et et e s be st e s b e s sa e e e s s esaesa st ansassassessessaassensansanes 56
AdAItiONAL FESOUICTES ...ttt ste s e s e e e et e e et e s te st et e st e s e ssae s et et ensessessassasseesaensansansansan 57
FilE-PrOCESSING QPP .eeeeeeeiiieitinieiteseeeeeee et e rte st e stestestesseeseesae s eaessessesassassessaessessassassansensassassessasssensensansan 57

Create the SOUICE COUE FILES ...ttt st e st re e e e s ss et e b e baeans 59
DEPLOY ThE QPP ceeeeeieieteeee ettt ettt et et e st e st e s s e s s e e e et et e ae b e aesbessessaeseensenaensantans 61
LTS A 1 LI o o OO RO R RTSRRSRRR 73
NEXE SEEPS eeteiiiirteeeectee ettt s e ste s e e e st e e st e s sae s s s e e s aa et e s aesssae s se e st esssesssaesssaessaasssesssaessseessaenns 80
Scheduled-MAiNtENANCE QPP ..icecieeeeeeeeeeeteteteste ettt e et estesse e e e e e e e s et essesaassessessassesnsansanes 81

PrErEQUISITES .eeeeeieeeieeteece ettt ettt st s st e st e st e s sae e s b e s s seessaesssaesssasssaesssasssaesssasssaesssessseesssennses 82

AWS Lambda Developer Guide

Downloading the example QPP fileS ...t sa e aens 82
Creating and populating the example DynamoDB tablecooieveececeneeceeeeeeeeee e 92
Creating the scheduled-maintenNancCe APP ..ottt sae st e 95
TESEING ThE QPP coeeeieiee ettt e st et e s e e e e e e e et et e s besaesseeseeseenaenaansans 100
NEXE SEEPS eveieieetererrter ettt te et e s rte s ste e st e e ae e s e e s saeessaessae e s st e s seesssessseesssesssessssessseesseassseessaennses 100
ManNagemeENnt tOOLSuiiiiiiiiiiiiiieeetniiiiciiieiitteeesessanes 101
[WoYar=1 Ma [EAVZ=] o o] aT=T oYl o o | K3 OO OO USRS 101
INfrastructure as Code (1aC) tOOLS ...uuivveiiieeiiieeteeeeeeeeeeeeete et eersreeeaeeeesaeeseseesssseesssseessssesssssesssseesns 101
Workflow and event management t0O0LSc.coeeeeieieciececececececee ettt st reaas 102
(o Yar=1 M e [=NV7=] o] g n =T o | OO T RO TSRS 102
Key benefits of local developmEent ...t saeaeaas 102
PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 103
Authentication and aCCESS CONTIOLcivuiriiiririiiiirerrereteere ettt et ee 103
Moving from console to local developmento e 106
Working With fUNCEiONS LOCALLYoouvieeeeeeee ettt saesaeaas 107
Convert your function to an AWS SAM template and use 1aC toolsccccceeeeeeereeeeveeenne. 109
NEXE SEEPS ettt ettt te et e s te s sre s st e s sae e s e e s saeessaessse e st e s saesssesssaesssesssessssessseesssesssensseennses 110
GILHUD ACLIONS ..ttt sttt ettt st et e s et et s s s et e e ssa st et ssasansenasnan 110
EXQMPLE WOTKTLOW ...ttt ettt st e s te e s e e et et esaesaa s e s e e s e naeaenansansans 110
AdAItiONAL FESOUICESverveieiireieteeretet ettt et st s et s e st et s e sseste e s sasse st ssassensenassessensesens 111
INFrastructure @S COA@ (IAC) ittt et eeeteeesseeeesseesesstesesssesssssesssssessssessssseessssesssssens 111
[2C tOOLS FOr LAamBDAa ...ttt ettt st sa ettt es 111
Using AWS SAM and Infrastructure COMPOSENcoueeeeieiecieiectececeeee e eeeeerestesse s e s e eeeaeseens 113
USING AWS CDK ...cviiiieieiieieesteeteestessteestesstesssessseessaesssessssesssessssessssssssesssessssesssassssessssesssesssasssessseens 125
WOTKFLOWS @Nd EVENTS ...ttt sttt et st st e st e s st e s s e ssasaesaesans 135
Orchestrating workflows with Step FUNCLIONScouviieiiieeeeeecceeee e 135
Managing events with EventBridge and EventBridge Schedulercccveeveeeeeneneeveeeenne. 137
Lambda runtimes ...cccciiiiiiiiiiiinnininnnnnnnnsssssssssssssnnss 138
SUPPOITEA FUNLIMIES ..ottt ettt et e stesaeste s e et e e sa e s e s e s e se b e tassassassasssessassansansansansan 138
NEW FUNTIME FELEASES ..ottt sttt ettt st et st et e e s et e e s e sbe st e e ssassesassassensenas 141
Runtime deprecation POLICY ...ttt s sa e st e s aesae s s e s s e e e s e e aesaentans 142
Shared responsibility MOAEL ...ttt ns 143
Runtime use after depPreCation ... ettt ste st s e eea e aenaans 144
Receiving runtime deprecation NOtIfICAtioNSc.cceeeeieieicceeee e 146
DEPreCated MUNTIMIES ...ttt et et e st e st e s be e e e e e e e e et estessesaessasseesessnenaanes 147
RUNTIME VEIrSION UPAALES ...ooeiiieeeeeeeteteeestee ettt ettt stesaesteese e e e e e e e s e s e stesaassessessaesaensensansansans 151

AWS Lambda Developer Guide

Backward comMPatibilitycc.coueoeoeeeeeee e aeaens 152
RUNTIME UPAALE MOAES ...ttt ste e st e e et et e st e tesba s e s aesnnenaenes 153
Two-phase runtime version rolloUt ...t 154
Configuring runtime ManNageMENT ...ttt e et sa et es 155
RUNtIME VErSion FOLL-DACKooviiiiiiieieteceeet ettt ettt sa e e sa e e seas 156
RUNTIME VEIrSioN UPAALES ...ooviieieeieeeeeetetete ettt te e s e sa e s et a e st e s e s seesn e e e aenaansanes 158
Shared responsibility MOAEL ...ttt et aennan 160
PEIIMISSIONS ...ttt sttt e a et a e st st et s b e st e e st s be st e st e sbeenbe st ssesanannis 162
Get data about fuNCtioNS BY FUNTIME ..ottt aesaeaens 163
Listing function versions that use a particular runtime ..o, 163
Identifying most commonly and most recently invoked functionscccceeeeereevieceeciecnenen, 165
RUNEIME MOAITICAtIONS ...ttt ettt b e s et eaese s 170
Language-specific environment variables ...t 170
WIEAPPEE SCHIPTS ceeeeeiieieeitieteesteste et cste et estesste e s saessaeestessseessesssaesssasssaesssessssesssessseessseesseesssessssesnses 170
RUNTIME AP .ttt ettt s e et b e st sb et e se s sbe st e atebe st essesnsasanennes 174
NEXE INVOCATION ettt ettt et e s e s b st ae s b e st sesnessnanas 174
INVOCALION FESPONSE ...uviiiiiiciiieieeeteete et et et e s stess e e s sae e st e s stesssaesssessssasssesssaesssaessaesssesssaesssesssaesssannns 176
INIEIALIZAION BITOK .ottt ettt st s b et s b e st et s e s et e e s sa s esaenas 176
INVOCATION BITOF ettt sttt e a e et e st s ae st e s s e b e st e sesbe st e sesnanns 178
OS-0NLY FUNLIMIES .ottt ettt ettt e testeste e e e et e s et et e s aesbessasssesaesaessensansesasassasnnesaansans 180
BUilding @ CUSTOM FUNTIMIE ..onieeeee ettt st ae s e e e e e e e s saesaenaaeens 181
CUSTOM FUNEIME TULOTIAL ettt st ettt st a e aesn e ne 184
OPEN SOUICE FEPOSITONIES ...eeiieeirieeiiieteeteerteerteseeesseeestesstess e esseeessaesssesssaesssessssesssessssesssessssesssesssaessees 193
RUNEIME INEErfAace CLENTS ..ottt sttt sttt st s bt e s e saea s 193
EVENT LIDFAMIES ..ottt sttt ettt et sttt et et et s sba b e e ssesesaenas 194
CONtAINET DASE IMAGES ..ottt re et st e st e st e sae s e e se s e esseaesaesbestessassassassnansaneans 194
DEVELOPMENT TOOLS ...ttt te s te s te st e e e e e e e e e e ae st e tessessesseesaenasssensansansans 194
SAMPLE PrOJECLS ..ttt ste e e e e e et e st e st et e st e s s e s seeseesae s et essessassassassaesesssansansansansan 195
Configuring fUNCLIONS .uueuiiiiiiiiiiiiiiieenniiiciieiietiteeeeessssesssssseseesssans 196
ZIP FILE @ICRIVES .ttt ettt e s e st st e e s e e e e e et e ae st et e seeseeseeraeneanaanes 198
Creating the FUNCLION ...ttt et e e e e nesaenaens 198
Using the console COde ItOr ...ttt s a e sa e st et aas 200
Updating fUNCLION COAE ..ttt ettt et et e st e et et s aas 200
Changing the FUNTIME ...ttt ste e e e e et et sbe st e s be e e saennenean 201
Changing the arChit@CLUIE ...ttt st st e e se e e e aatans 201
USING the Lambda AP ...ttt ettt te st ste s e e s a et et esbe st e b e s sa e e s nnennan 202

AWS Lambda Developer Guide

Downloading your fUNCLION COAE ...ttt st 202
AWS CLOUAFOIMALION ittt ettt sttt e s e st et s e sse st e e s e sae st e e ssassesaesessessenees 203
ENCIYPLTION ettt e s sae st e s s e s e e s b e e s e e s aesssaessaa et e s seassaesssaesssessseassaessses 203
CONTAINET IMAGES ...eveiieieieecteeeeeteere st e st esteesaeesstessaeesstessseessesssaesssessstesssessssesssessstesssessseesssessseesssenses 211
REQUITEIMIENTS .ttt ettt st et e s sae e s e e s a e e st e st e e ssa e s b e s saesbeesaaesssasssaessseesseesssesssaennses 212
USING aN AWS DASE IMAGE ...cueeieeeeeeeete ettt ettt teste s e e e e e e e e s et e stessassesse e e esaenneneneans 213
Using an AWS OS-0nly Dase iMAagecceoueeeiieieeeececetetesteste et ee st saestesaesse e e na e sae s 214
USiNg @ NON-AWS DASE IMAGE ...eoiiieieieeteeeeeetete e e ste e stesre s s e s s ae s e stesaessessesssssasssesaessansensansanes 215
RUNEIME INLEIrfAace CLIENTS .ottt sa et et a s s e 215
AMAzon ECR PEIMUSSIONS ...cociiiiiiiiiieitisteriteestes e estesssessseessaessseessessssesssesssessssessseesssesssessssessssssssens 216
FUNCEION LFECYCLE ettt ettt tesae st e e s e e et e e e st e b e tassaeseesnenaans 219
MEBIMIOTY eeiitieteicieeetee st eete st e st e e steseseessatesstessaessste s saesssassaaasssesseesssassseasssesssaesssessstesssessseesssessseesssessseensaens 220
WheEN £0 INCrEASE MEIMONY ..c.uecuiiuieiiteieiectectesteete e e e e rtesaestestesteste s e s e e s ssaessesessensessessassassesssessansans 220
USING the CONSOLE ...ttt et e st et e s e e e e e e e e e et e testasbesseesaesaensenean 221
USING the AWS CLI ettt ste e te e e e e e et e ae s aesae s s e se e e s e e s e s et et asbassessaesasnsensansanes 221
USING AWS SAM Lottt erte st e s ste st e s sae s te e s s e s s e e s s e s sa e s s e e s st e s aesssaessaeessaasssesssaessseessaesssesn 222
Accepting function memory recommendations (CONSOLE)ccceueeeeeeereecieceeciecececee e 222
EPNEMEIAl STOFQQE ..ttt ettt et e s e e s e s e e e et et et et e ssassessaesaensensanean 223
USE CASES ittt et e st e st s ste et e st s s be st e s st s b e st e e st s ae st e e st s se st e e st s st s b e e st e st et e e at e st e be e st e eaeenranes 223
USING the CONSOLE ...ttt ettt et e e s e s e e e e e e e st esaesbe st e basseeseeseensennan 224
USING the AWS CLI ettt ste e te e e e e e et e ae s aesae s s e se e e s e e s e s et et asbassessaesasnsensansanes 224
USING AWS SAM Lottt erte st e s ste st e s sae s te e s s e s s e e s s e s sa e s s e e s st e s aesssaessaeessaasssesssaessseessaesssesn 224
INSEFUCTION SEES (ARMY/XEB) .ottt eeeteeeesteeesaeesssatesesstesessessssseessssesesssesssssessseessssessnnees 226
Advantages of using arm64 archit@CtUre ..ot 226
Requirements for migration to arm64 archit@Cturecoeoeeeeeeveececececeeeee e 227
Function code compatibility with arm64 architeCcture ..o 227
How to migrate to arm64 arChit@CIUIE ..o 227
Configuring the instruction set archit@CtUre ... 228
TIMEOUT <.ttt ettt et e a e st st s st st e et e s st s b e st e e st e b e e st e entsabessbe st ensasateseensess 230
When t0 iNCrease tiMEOULcccoeieeiiirenietreretctrestet sttt et se st e s e ste st esesse st e e ssessesassasans 230
USING the CONSOLE ...ttt et e st e s ae s e e e e a e e e st e ae s be st e b asseesaesaensennan 230
USING the AWS CLI ettt ste st e e e e e et et e aesae st e sa e e s e e s e s e ae st asbassessaesasnsensansanes 231
USING AWS SAM ettt st ste st e s sae s st e st e s st e s s e s s e e s s e e s st assae s saessaeesstasssesssaessseesstesssennns 231
ENVIrONMENt VAFIADLES ..ottt ettt sttt ettt s sb e b e s s 233
Create enviroNmMeENt VAriables ...ttt sae st s sa e sse e enas 233
Example scenario for environment variables ... 237

Vi

AWS Lambda Developer Guide

Retrieve environmMent Variables ...ttt saes 239
Defined runtime environmMeNnt vVariables ...ttt se e aes 240
Securing enViroNmMENt Variables ...ttt s e e e e e nenens 242
Attaching fUNCLIONS 0 @ VPC ...ttt st e te e e et et saesae st e sse s e e e e saesaannans 246
REQUITEd [AM PEITNISSIONSoccverecieeiieieeeeeetestestestesteeee e eeesesaessessessasseesaessessessensessassassessesssensassens 246
Attaching Lambda functions to an Amazon VPC in your AWS accountcccceeeeeeeeeennnne. 248
Internet access when attached 0 @ VPC ...ttt se e 251
[PVEB SUPPOIT ..ottt sttt et este st esae s s e e s aesssa e s s e ssst e s sasssaesbesssaasssesssaesssessssesssessssesseensaens 252
Best practices for using Lambda with Amazon VPCSs ... 253
Understanding Hyperplane Elastic Network Interfaces (ENIS)cooovevieciecenenenieeieeeeeeeeene 254
Using IAM condition keys for VPC SEtHINGS ...c.ccueeiiieieteeeeeee ettt snesnens 255
VP C LULOTIALS oottt et ste sttt st et ss e st et s et st e s et e e s et et e e saasbesaesasaensenassansansons 260
Attaching functions to resources in another acCoUNt ... 261
PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 261
Create an Amazon VPC in your function's accountccoceoeeeeeeiceeecceeeeeecee e 262
Grant VPC permissions to your function's execution roleccoeeeeeeneneniecvecceeceeceeceecienn, 262
.. 263
Create a VPC peering conNection reQUESTuooviiriinreinieeitestessrecste et esaessseeseesssessssesssaessnens 263
Prepare your reSOUICE'S QCCOUNTcivviiiiieiiiieterrtesteesreesstessreesstessseesssesssaesssesssaesssessssesssesssnessessnes 264
Update VPC configuration in your function's accountcceoeeeeeeieeceeciecececececeeee e 265
TESE YOUN FUNCHION .ottt st sttt st e st e s be s e e e e e e e e s et e sanean 266
Internet access fOr VPC fUNCLIONS ..ottt ettt sae st s s e sasaesassans 268
INBOUNA NEEWOIKING ..ottt et e s e s e s e e et et e s b e st e be s b e seesesnnanes 293
Considerations for Lambda interface endpoints ..o 293
Creating an interface endpoint for Lambda ... 294
Creating an interface endpoint policy for Lambda ..o 295
FILE SYSTOIM ettt ettt et e st e e e e e e et et e st et e s aeesessaese e st e st ensantansassaseeseensansensanean 297
Execution role and USer PErMUSSIONSc.cceceeeeiieiieiierieceseseseeeeeesee e esaessesaessessesseeseesssssessessansans 297
Configuring a file system and acCess POINtccccvecieeieceriececeeeeeee e sae e 298
Connecting to a file System (CONSOLE)cueuiieeeeeceeeeeeeeee et a e 299
ALIGSES ...ttt sttt s e st et e st et e st et e s st et e et et e s s et et e e et e R e h et et e R et et e R e b et e e e s et et e R e benteneeaenes 300
USING QLIASES vttt ettt e te e st e s te e e e e e et et et e aa s b e seese e e esaesaastentansansassassaesaensansanes 302
WEIGNTEA QLIASES ..ottt et e st e s ae s be s e s e e e e e e s et e aesbasbassassasseesnenaanes 303
VIBISIONS ...ttt ettt ettt et e e st s b st et e b e et e et s b st e e st e b e et e e st s se s et e e st e see b e e st esesasesnteseensesseessens 308
Creating fUNCLION VEISIONSouiieeeceeeeee ettt ettt ste e e e et et e s tesaesaessessessnenaennens 309
USING VEISIONS .ceneeiiiiieieiiteetesetesieeesteessessseessseesstesssessssesssessstesssessssssssessssesssessssesssessssesssessssesssesssaasss 310

vii

AWS Lambda Developer Guide

Granting PEIMISSIONScocuiiiieriiirierieerrtee st est e et este s st estesssesssaessseesstesssesssaesssessseesssesssassssesssaessaasn 311
TGS ettt ettt et s e ettt e st e st e e b e e b e e b e e b e s b e e e b e e At e e b e e e b e et e e s e e aeeaa e e aee st e e teesraesreeseassraanne 312
Permissions required for working With tags ... 312
UsiNg tags With the CONSOLE ..ttt a et saeaan 312
USING tags With the AWS CLI ..ttt te e re e e e e aesae st e saesse s e ssnennan 314
RESPONSE SEIEAMING ...eeiiiieieieeteeeeetert ettt essee e st e s ae s st e s s ae e st e s ae e s e e s saa e saesssessssesssaesssesssesssaensses 316
Bandwidth limits for response Streamingcccceeeeeeiecieciececececec et a e 317
VPC compatibility with response Streaming ..o 317
WIEING TUNCLIONS ...ttt ettt et e st s s e et et esbe st e st e s se e e e e et e s ansantesanes 317
INVOKING TUNCLIONS ..ttt re e s e sa et e te st e s aesae e e e e e e e e e nesaansantans 319
Tutorial: Creating a response streaming function with a function URLcccceeeennnnneee. 321
INVOKING FUNCEIONS c.ouiiiiiiiiiiiiiiieeiiiiiiciiiiiiieessseeesssssseeessess 325
Invoke a fuNCtion SYNCRIONOUSLYccuveuieieieeeeeeee ettt sttt a e e a e e e aa s 327
ASYNCAIrONOUS INVOCALION ..ottt ettt tesaesteste e e e e e s et et e saesaassassessesseennensansans 331
ErrOr NANALING oottt et e s te e et e e e e e e st e st e b e s b e e se e e e e e na e sabantans 332
CONFIGUIATION <.ttt et et e s b e st e s be s e s e e e e e et et e aeesassessseseansensansanes 333
RETAINING FECOIAS ...ttt e e e et et e st e st e s b e s e sessaesaenaesaebessessassassassneseanaans 335
EVENT SOUICE MAPPINGS .ooeeiiiieieieierieeeteesttestee st estesssessstesssessstessseessaessssssssasssessssessssssssessseesssessssesssens 345
Event source mappings and trgQErs ... rieeeeeeeeeciestesesese e e eesaestestesae s e sses e s e e saesaessenean 345
BAtChing DENAVION ...ttt st st s e e n e e e a et et nes 346
ProViSiON@d MOAEeeviieieietrerectrertete ettt ettt ettt s et e e s e s et e e sse b et esassassenassnnes 349
Event source mMappPing APl ...ttt ssre s ste e st e s aessae e s sae s sae s st e s aaesnessaeessaesssaesnnas 350
Event SoUrce MAapPinNg TGS ..coceeiirieieerieeeerteereestes e esreessse s st esssessseessaessssesssessseesssessssesssesssnanns 350
EVENT FILLEIING ettt et ettt e st e e e e e e e et et e tesbasaasseesaesnenaensansan 355
Understanding event filtering DasiCs ... 356
Handling records that don't meet filter criteria ... 358
FILLEE FULE SYNLAX ettt ettt et e st e s te e e e e e e st e st e ae st e ssesse e e esaesaenaesaansansanss 359
Attaching filter criteria to an event source mapping (CoNSoLe)cceceeeeeeeeceeceereeceecreceeeeene. 360
Attaching filter criteria to an event source mapping (AWS CLI) c...ceoveiecreieeceneceeeeeeeeeenne 361
Attaching filter criteria to an event source mapping (AWS SAM)ccoveeerenenvececeeceeeenen 363
ENCryption Of filt@r Criteria .ottt sttt 363
Using filters with different AWS SEIrVICES ...ttt 369
TESEING 1N CONSOLE .ttt e s te st e st e et e e e e e s e s et e stesbesaassassessnesaensensansansans 371
Invoking functions With tESt @VENTS ...ttt 371
Creating Private teST @VENTS ...ttt re e s sae s re s e s aa e ne s 372
Creating shareable teSt @VENTS ...ttt sa e 372

viii

AWS Lambda Developer Guide

Deleting shareable test event SChEMAS ... 374
FUNCEION STAT@S ...ttt et sttt st a e st s e s b e et s s s sae st s sneebanne 375
Function states during UPAAtES ..ottt ettt aes 376
RETIIES ..ttt ettt sttt b e et s e s be st e et e b e et e e st s b e st e st e sb e et e e st s be et e ntenens 378
RECUISIVE LOOP ELECHION ...ttt ettt st e e sa e st e st e b e se e e e e e nnanes 380
Understanding recursive Lloop detection ...t 380
Supported AWS Services and SDKSc.ooiiieiiiieiecieceeeceeeeeeee et stesaeste s e s e e e s s e saesaesaesaessessaes 382
Recursive Loop NOLITICAtIONS ...ccueveeeeeeeeeeeee ettt et sae e s a e an s 384
Responding to recursive loop detection Notifications ..., 385
Allowing a Lambda function to run in @ recursive LlOOPcccceeeeeeereeeeecceeee e 386
Supported regions for Lambda recursive loop detectioncceeceeeeeeecvecceececceeececen, 388
FUNCEION URLS ..ttt ettt et sttt st st s s s sa e st e st s b et e s se s be st e snessnasntenens 390
Creating @ function URL (CONSOLE) ...oveeueeueeieieeetetectetesee ettt ettt sve e e aea e a et e s 391
Creating @ funNCtion URL (AWS CLI) oottt stestesve e e e et esaessesaessesses s enenneneens 393
Adding a function URL to a CloudFormation template ... 394
Cross-origin resource Sharing (CORS) ...ttt st s te e e e s s ss et s ae s 395
Throttling FUNCLION URLS ...ttt steste s e e s et e aesaesbasse s e e sesaennannanaans 397
Deactivating fUNCLION URLS ..ottt e et et tesaesae s e s e s e e e s saesaesaaaans 397
Deleting fUNCLION URLS ...ttt a et saesae st e sa s e s e s e e s e senaenaaneans 397
ACCESS CONTIOL ettt ettt ettt et e st et s et et e s et e e s e s b et e e ssessesaesasaessesasensansans 398
INVOKING TUNCHION URLS ...ttt ettt te e a e b aeste b e s s ssa e a et e e e banns 407
MONItOriNG FUNCLION URLS ...ttt teese e e e s sa e s et e ssessesae s e e e esnenneaaneans 419
Function URLS vS AMAzon APl GAt@WAYcociirieiiiiriieinticieeseeeseesssesseessaeeseesssessssesssessssesssssnne 420
Tutorial: Creating a webhook endpoint ... 426
(SITTaT el o7 3 HE ot 1 1T Vo OO PPPPU 440
Understanding and visualizing CONCUITENCYoouiveeiieieieeetecteete e ee e reste e stesse e a e e nennan 440
Calculating concurrency for @ fUNCLION ...ttt 445
Understanding reserved concurrency and provisioned CONCUITENCYcccceeveveeeerereereereesneseennens 446
RESEIVEA CONCUITENCY ...uveurireeieeieereeeeeetetestestestessessesseessessesessessessassassessssssessessessessessessessassessssssassans 447
ProViSioN@d CONCUITENCY ...c.cecveeierieeieeeeeeeetetestestessessessesseesessessessessassassesssessessensessessassassassasssessssens 449
How Lambda allocates provisioned CONCUITENCYcooveiecieciecienececeeeeee ettt 453
Comparing reserved concurrency and provisioned CONCUITENCYccceveeeeveereeceecresresresesreseenens 454
Understanding concurrency and requests pPer SECONdc.cccoeeeeereeeeieereesieseseeeeeee e eeeesnenns 455
CONCUITENCY QUOTAS .eeviiiiiteecttertesct e tee st estessaesssaessseesstesssesssaessaeessaesssessssesssaesssesssassssessseesssesssesssaessens 457
Configuring reServed CONCUITEMNCYcciieiecierieiieeteetesteeeeeeeessesestessessessasseessessessessessassassessessessssnsensanes 459
Configuring reServed CONCUITEMNCYccceeeeeeieeeeetecrestestessessesseeseesessessessessessassessesssessessessansessesses 460

AWS Lambda Developer Guide

Accurately estimating required reserved concurrency for a functionccccevveveiiecieciecnennen, 462
Configuring proviSioN@d CONCUITENCYccceevieierierierieeeeeereeeeitetestestessessesessesessessessessessassessessesssensn 463
Configuring proviSioN@d CONCUITENCYccoeceeeeereeeeriereriestestestessessesseeeessessessessessessessassessessssnsenes 464
Accurately estimating required provisioned concurrency for a functionccccceeeeeeenenen. 466
Optimizing function code when using provisioned CONCUITENCYccccceeeeeeeeeeeeceeseecresrennens 467
Using environment variables to view and control provisioned concurrency behavior 468
Understanding logging and billing behavior with provisioned concurrencyc.cc.......... 468
Using Application Auto Scaling to automate provisioned concurrency management 469
SCALING DERNAVION ...ttt e et a e st e st e be e e e e e e e s et e s anaanes 474
CoNCUITENCY SCALING FALE .ttt e st e e te et e e e e e s et e sbesaesaesseeseesaennenaeneans 474
MORNILOFING CONCUITENCY ..eiouierreieierireeeteeseeeseessseesteesseessaesssessssesssesssaesssessssesssessssesssessssesssessssesssesssaesses 476
General CONCUITENCY MELIICS ..c.eiciicieereereeeeeeeetete e te e tesaeste s e e e e s e e e s e stestessessasseesaeseessessensensansanes 476
Provisioned CONCUITENCY MELIICS .uivuieuieieieecieciecteetee ettt ste e re s e e e e e e e s e saestesae e s sessneaenes 476
Working with the ClaimedAccountConcUIIEeNCY MELriC oiviviceceneeereeeeeceecee e sveeens 479
BUilding With NOE.|S ..ccuueeeeiiiiiiiiiiiiiiiinnnnniiiiiiiiieniinseeessssessssssssess 482
NOE.JS INILIALIZATION .ottt e e e s bt e be s s e s e s e aea e s e tenes 484
Designating a function handler as an ES MOdULE ...t 484
Runtime-included SDK VEISIONScccociviriiirenieirerentetsestest e sest et ssessesteessestesessessesassassessesessassessssens 486
USING KEEP-QLIVE ...ttt ste e s ettt a e st et e s b e s e e e et et e besae st assaesassaensansanes 486
CA Certificate LoAING ...ttt ettt steste s e e e e e e e sa e st e st e s aesbe s b e e e e e e e eaanaantans 486
HANALEE .ttt sttt sttt sa e sttt s e st e s se b et e sa s b et et esessesaesassassensssassensasans 488
SEL UP YOUF PrOJECL ..ttt estesrressrtesste s st e e ssessseesssessssesssesssaesssessssesssesssessssesssaesssasnne 488
EXQMIPLE FUNCHION .ottt ste st e e ettt sb e s ae s basse s sa e s e nenaanaenes 489
Handler NamMing CONVENTIONScviiiieieieeseseeeeee ettt sre e s et e et e s saesaessesaessa s e s saesnenanes 491
INPUL @VENT ODJECT ettt re e s e e et e a e b e s aesae st e s b e s be e e s e eanennantans 492
Valid Randler PAtLEINS ...ttt e e e e et et s ae st e s s e s e s e e e e aeaeaanean 492
UsiNg the SDK fOr JAVASCIIPL c..ooviieeeeeeceeee ettt e e et saesaesaesae s s a e s nea e e s 494
Accessing enviroNmMeNt Variables ...t 495
USING GLODAL SEALE ..ottt ettt e b e s b s e e e e a e e e b e aaaaean 495
BEST PraACLICES .ottt et s e st s s s sa e s s e e st e s sae s st e s se e s st e s aaessnessaenns 495
DEPLOY .ZIP filE QIrCRIVES ...ttt s e e bt s b e s b e s sseeanans 498
Runtime dependencies iN NOUE.JScceoeeeeirieierctectetesteseeee ettt sae e sre e e s sassaesaesaassanaas 498
Creating a .zip deployment package with no dependenciesccooeeeeeeeceecreceneneneneeeane 499
Creating a .zip deployment package with dependenciescoveeececenenenecceccecceececeeenn, 499
Creating a Node.js layer for your dependenciescceevueeecrececeneneneeeeeecee e e 500
Dependency search path and runtime-included libraries ..., 501

AWS Lambda Developer Guide

Creating and updating Node.js Lambda functions using .zip filescccceenererenienvencrecenne 502
DePLloy CONLAINET IMAGESccveeeeeieeeceeeetetecteete e e st e e e e e te s e stestestessesse s e esasssessessessessansassassessesssesaensans 509
AWS base images fOr NOAEL]S ...ttt s te st s ae s s se e ns 510
USING aN AWS DASE IMAGE ...cuuieieeeeeeeee ettt ettt ste e te e e e e e e e s et e st e ssassessa e e esaenaeaeneans 511
USiNg @ NON-AWS DASE IMAGE ...ocviieieieeteeeeeeeetete e stesteste s e s e s s se st e stessessessesss s e e s e saessansensansanes 517
LQYEIS ittt te st e st e s st e et e s s ae e st e s ae e s e e s b e et e e b e e e st e e st e e e e bt e st e e b e et e e ae e st e e s e e s ae e st eesaeesaeaees 527
Package your Llayer CONTENT ... ettt ettt a e e s bt seeas 527
Create the layer in Lambda ...ttt ettt be s s ens 532
Add the layer 10 YouUr fUNCHION ..ottt st s ns 533

Y L1010 (=TT o] o OO OO 534
CONEEXTE ettt ettt et st e a e st st st e b et s s st e s st s bt et e e st e b e s b e n e e b e et e ne s besntenns 535
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 537
Creating a function that returNs LOGS ...t 537
Using Lambda advanced logging controls with NOde.jsccceeeeircieciecenecececeeeeeeeeee 539
Viewing logs in the Lambda CONSOLE ...ttt 545
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeeee et 545
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccooveereeeneeeeieeceeeeeeeeene 546
DELELING LOGS ettt e e sttt e st e s ae s b e e e e e e e et et et e bassesseeseennennanes 549
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 550
Using ADOT to instrument your Node.js fUNCLIONScceeeeirieieieecteeeseeeeee et 551
Using the X-Ray SDK to instrument your Node.js functionsccccceeveeveeecrececeneccceeeceenen, 551
Activating tracing with the Lambda conSOLe ...t 552
Activating tracing with the Lambda APl ...ttt sae s 553
Activating tracing with AWS CloudFormation ... 553
INterpreting an X-RAY TraCe ...ttt ettt ssee st s s ae s saeesa e s saeessaessnaessnassnnanns 554
Storing runtime dependencies in a layer (X-Ray SDK)ccccooeierereneeieeeeeecrecteceese e eeeeenens 557
BUilding With TYPeSCript ..eeiiiiiiiiiiiiiiettiiiiiiiiiitiiiinnesssesisiseeeeesss 558
Development ENVIFONMENT ...ttt st este s e s e e e s e e s e te b e stessesaaesessessnensansensensanes 559
Type definitions for Lambda ...ttt s ae st s ae e nnens 560
HANALEE ettt sttt et sttt e s e st et st et e sa s b et et esesaestesassansensssarsansasans 562
SEL UP YOUE PrOJECT .ttt sttt e e st e s see e st e s saessseessseesaeessaesssaessaassseesssesssaesssessseessaannne 562
EXQMIPLE FUNCHION .ottt ettt st b e b e s ae s e se e e e e e nena e aenes 563
Handler Naming CONVENTIONS ..ottt e e a et aestesbesaessessa e s e neaanes 565
INPUL @VENT ODJECT ettt s te st e e et e e b e aesae st e s b e s se e e e saennennaneans 566
Valid RandLler PAtLEINS ...ttt e e e e e st et este st e s s e s e e e s e e e eaesaennan 567
Using the SDK fOr JAVASCIIPL c..ocviieeeeeeeeecee ettt tesae st saesse s e s n e aenea e ae s 569

Xi

AWS Lambda Developer Guide

Accessing enviroNmMeNt Variables ...t 570
USING GLODAL SEALE ..ottt a e st e st e s ba s b e e e e e e e e e e b e aansanan 570
BEST PrACLICES ...ttt ettt s st e e st e s s s e e s e e e e e s sae e s sa e s ae e sa e e ae e saeeraenas 570
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt se ettt s a e s e ae e ns 573
USING AWS SAM Lottt ettt s e st e s sae s st e s ae s st e s sae s saesss e e s st assaesssaessaeesstasssessssessssessaesssennn 573
USING the AWS CDK ...ttt ettt stestesteste s e e e e e et e saessessessasse e e s e e s et assestassassassaesasnsensansanes 575
Using the AWS CLI and @ShUIld ...ttt 578
DePLloy CONLAINET IMAGESccveeeeeeeeeeeeeeetetecteete e e st e e e e e tesaestestestessesse s e eseessesaessessassansessassessssssenaensans 581
Using a Node.js base image to build and package TypeScript function code 581
CONEEXTE ..ttt ettt s e bt st e st et e b e et s s st e e st s bt et e e ae e be st e st e sbe et e ne e beentennas 589
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 591
TOOLS ANA LIDFAFIES .ottt sttt et sa et s b et s et e s ssasaesaeneen 591
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging 592
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured
LOGGING ettt ettt et e st e e e a et et et e st e et e e e reeas e s et e testanteeseesaenaestenaantantans 594
Viewing logs in the Lambda CONSOLE ...ttt 598
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeeee et 598
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 600
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracingcccceeuveuenenee. 601
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 603
INterpreting an X-RAY TraCe ...ttt sttt e sste st e s ae s saeesaessaeessaesssaessaassnaanns 607
Building With PYthoNeeeeeiiiiiiiiiiiiiiiennnniiiiiieiiiiittnessssssssssssssecss 608
Runtime-included SDK VEFSIONScccociviriiiriniinerentetsestest et et ssessestssessestesessessessssessessessssassessesens 609
Experimental features in PYython 3.13 ...ttt nens 610
RESPONSE FOIMIAL ...ttt et e st e st e s e e e e e s e e e b e s et e ssassesseesaensensensansansans 610
Graceful shutdown fOr @XEENSIONS ..ottt ettt ae e ene 610
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 612
Example Python Lambda function COde ... 612
Handler Naming CONVENTIONSc.ooiiieieeececeree ettt e e ae s saesbesbessessa s e s s e nenenes 614
Using the Lambda event ODjJECt ...ttt 615
Accessing and using the Lambda context object ... 616
Valid handler signatures for Python handlers ... 616
RETUIMING @ VALUE ..ttt e et e st et et e st e s ae st ebe e e e e e s et e ba st e s s asseesasseenaansansanean 617
Using the AWS SDK for Python (Boto3) in your handler ..., 618
Accessing enviroNmMeNt Variables ...t 619
Code best practices for Python Lambda functions ... 619

xii

AWS Lambda Developer Guide

DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e s e ettt sae e rneanens 622
Runtime dependencies in PYTRON ...ttt 622
Creating a .zip deployment package with no dependenciescccoeveeeeeceecreceecenececeenenne 623
Creating a .zip deployment package with dependenciescccooeieeeceeenecrecceccecceecececien, 623
Dependency search path and runtime-included libraries ..., 626
USING _ PYCACHE__ FOLAEIS .ttt ettt sa e et st aeenas 628
Creating .zip deployment packages with native libraries ..., 628
Creating and updating Python Lambda functions using .zip filescccoceveeeeenenieneceeeee 629

DePLloy CONLAINET IMAGESccveeeeeeeeeeeeeeetetecteete e e st e e e e e tesaestestestessesse s e eseessesaessessassansessassessssssenaensans 637
AWS base images for PYthON ...ttt te e e s nenens 638
USING aN AWS DASE IMAGE ...cvieeeeeeeceteeereeee ettt testeste e e e e e se e s et e st e ssessessa e e esaenaenaensans 639
USiNg @ NON-AWS DASE IMAGE ...eoiiieieieeteeeeeetete e e ste e stesre s s e s s ae s e stesaessessesssssasssesaessansensansanes 646

LQYEIS ittt te st e st e s st e et e s s ae e st e s ae e s e e s b e et e e b e e e st e e st e e e e bt e st e e b e et e e ae e st e e s e e s ae e st eesaeesaeaees 656
Package your Llayer CONTENT ...ttt ettt a e a et sae st s e as 656
Create the layer in Lambda ...ttt ettt aesbe st ens 532
Add the layer 10 YouUr fUNCHION ..ottt st ns 662
SAMPLE QPP cetereiieeeieeee ettt et e et e st et e st e s b e e e s e e e et et et et et e b e e se e e et et eaentebesaeereeaeeneenaanes 663

CONEEXTE ettt ettt st e a e st e s et e b e st s s s b e s st e bt et e e st e be st e e a e e sbe et e ne s beentens 664

LOGGING ertiiiiitieieccteete ettt et et s st e et e e st e st e s s te e st e s s s e e st e e bt e s b e e b e e s b e e a e et e e st e s e e e sa e e et e e ta et eeseesseanaraas 666
PriNtiNg £0 the LOG ettt sa e st s b et e s s e e e e s e a e aenaaneans 666
USING @ 10GQING LIDIArY ..ottt ettt stesae et et e st e ba st e e sesnnennan 667
Using Lambda advanced logging controls with Python ... 669
Viewing logs in Lambda CONSOLEecvieeieeeeeeeeeteeeeee ettt sa e e ae e 673
Viewing logs in CloudWatch CONSOLE ...ttt esnens 674
VieWing Logs WIth AWS CLI ...ttt ste s e e e s e s e s e sae st e saesaassas e ssnennannans 674
DELELING LOGS ettt e e sttt e st e s ae s b e e e e e e e et et et e bassesseeseennennanes 677
TOOLS ANA LIDFATIES ettt sttt sa et e e e e s be st e e ssasaesaeseen 677
Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 678
Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 682

TOSTING ettt e et et e s st e s e e s ae e s b e e s st e st e s b e e b e e et e s b e e b e e e e e e a e e Rt e e b e et e e s e e st eesaeeraeenras 689
Testing your serverless apPLliCAtioNS ..ottt st sa e e aan 690

TEACING ittt ettt st e st e e st e s ae s s e e s b e s st e s aesssa e s st e e st asssasssaesssaesseasssesssaessseesstesssessseesssessseesssenses 692
Using Powertools for AWS Lambda (Python) and AWS SAM for tracingcccceeeeveeveecvecnennene 693
Using Powertools for AWS Lambda (Python) and the AWS CDK for tracingcccceeeeeeeenene 695
Using ADOT to instrument your Python functions ... 700
Using the X-Ray SDK to instrument your Python functionscccceveviecececececeeeceeeee 701

xiii

AWS Lambda Developer Guide

Activating tracing with the Lambda conSOoLe ... 702
Activating tracing with the Lambda APl ...ttt 702
Activating tracing with AWS CloudFormation ... 702
INterpreting an X-RAY TraCe ...ttt e see st e s ae s st e s e e s saeessaesssaessnassnaanns 703
Storing runtime dependencies in a layer (X-Ray SDK)cccoceremereneeieeeeeeceectectese e eeeeennns 706
BUilding With RUDYaeeeeeiiiiiiiiiiiiiiiiittiiiiiieiiiiiieeeessssessisiscstesstssases 708
Runtime-included SDK VEISIONScccociveriiiirinieirerenieesestestee et et ssessestesessessesessessessssassessessssassessesens 709
Enabling Yet Another RUDY JIT (YJIT) ettt e et et saesae st s nnan 710
HANALEE ettt sttt sttt a e sttt s et e e st e st e sa s b et e st e sasaestesassansensesarsensasans 711
RUDY RANALEE DASICS ..ttt ettt a e b ae b s e e a et e e e aanes 711
Code best practices for Ruby Lambda functions ... 712
DEPLOY .ZIP filE QIrCRIVES ...ttt se ettt e s ae e snesnens 715
Dependenci@s iN RUDY ...ttt ettt stesre s e e s e s e st et e sae s s e s e e e e naennennan 715
Creating a .zip deployment package with no dependenciesccccoeveeereceecrececenececeeneane 716
Creating a .zip deployment package with dependenciescccorieoeceeeneeecceeceeceecececen, 716
Creating a Ruby layer for your dependenciesccuueeeeneeeeieeeceeceectestecee e saens 718
Creating .zip deployment packages with native libraries ..., 718
Creating and updating Ruby Lambda functions using .zip filescccoeeeeererrveveceecieenenee. 720
DePLloy CONLAINET IMAGESccveereeieeieeeeeetectecteete e tes e e e e e te s et e st e stessesse s e esasssesaessessessansassassessessnesaensans 727
AWS base images fOr RUDY ...ttt s et sae st s e se s e s e aenannens 728
USING aN AWS DASE IMAGE ...cuieieeeeeceteees ettt et stestesteese e e e e e e s et e stesaesse s e e e esaennenneneans 728
USiNg @ NON-AWS DASE IMAGE ...eoiiieieiecieeeeeetetete e stestestessee e e e s s e s e stesaestessesss s e e s e saessensassansanes 735
LQYBES ittt e et e et e et e e e s s e s s a e e s e s e e s e s e e s e st e s bt e e b e e e a e e et e s e Rt e e e s a e e st e s e neesssaaeesraaann 745
Package your Llayer CONTENT ...ttt a e s b st et as 745
Create the layer in Lambda ...ttt ettt s re s s ens 532
Using gems from layers in @ fUNCLION ...t 752
Add the layer 10 Your fUNCHION ..ottt s 753
SAMPLE QPP cereriiiiereeeee ettt te et e et e st e st e st e st e e e e e e e et e b et e be et e b e e se e e et et e aentabeeseeseeaeeneenaanes 754
CONEEXTE ettt sttt st a e st e s et e b st s s s b e s st s bt et e e n e e be st e st e b e et e nesbesntens 755
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 756
Creating a function that returns LOGS ...ttt 756
Viewing logs in the Lambda CONSOLE ...ttt 757
Viewing logs in the CloudWatch CONSOLEoueoieieieeeee ettt 758
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccoovevveeeeeneeeeceeeeceeeenene 758
DELELING LOGS ettt ae e e e sttt e st e st e s b e e e e e e e et et et e tasseeseeseennennanes 761
Working with the Ruby logger LIDrary ...ttt n s 761

Xiv

AWS Lambda Developer Guide

TEACING ettt ettt st e s st e e st e s sae s s e e s b e s se e s aesssaessae e seesssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 763
Enabling active tracing with the Lambda APl ... 768
Enabling active tracing with AWS CloudFormationccoceeeeineeeecececectececesece s 769
Storing runtime dependencies iN @ LAYEN ...ttt aas 769

BUilding With JAVa ...iieeeeereiiiiiiiiiiiiiienenenciiiiiieeiiiesss 771

HANALEE ettt sttt sttt a e sttt s et e e st e st e sa s b et e st e sasaestesassansensesarsensasans 775
Setting up your Java handler Project ...ttt a e aan 775
Example Java Lambda function COAE ...ttt nens 776
Valid class definitions for Java handlers ...t 781
Handler Naming CONVENTIONSc.ooiiieieeecececeeee ettt e e e e s s saestessesaesse s e e s eneaanes 782
Defining and accessing the input event ObjJecCt ..o 783
Accessing and using the Lambda context object ... 784
Using the AWS SDK for Java v2 in your handler ... 785
Accessing enviroNmMeNt Variables ...t 786
USING GLODAL SEALE ..ottt sttt e st e b e s ae s e e e e e e e e e b e aansanan 787
Code best practices for Java Lambda functions ... 787

DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e et et r e s ae e snesnans 790
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 790
TOOLS ANA LIDFAFIES .ottt b e st sa et st e st e s b et et ssasaesaeseen 790
Building a deployment package With Gradle ... 792
Using layers for dePENAENCIESccuceeceeeieeieceeeeecee ettt a e et st sae e s ae e e e e e aenes 793
Building a deployment package With Maven ... 793
Uploading a deployment package with the Lambda consolecooeeecvecveciececeneneeeeeee 795
Uploading a deployment package with the AWS CLI ... 797
Uploading a deployment package wWith AWS SAM ...t sve s 798

DePLloy CONLAINET IMAGESccveeeeeieeieeeeeetetecteete e tes e e e e e et e sae st e stestessessessessasssesaessessessansassassessssnnesaensans 801
AWS Dbase iMAGES TOI JAVA .c..coueieiceeieteeecteseree ettt te e e et sa e st st esbassessa e e e e e nenaanes 802
USING @N AWS DASE IMAGE ...cvieeeeeeeeeee ettt ettt te e teste e e e e e e s et e stessassesse e e esaeaeaeneans 803
USiNg @ NON-AWS DASE IMAGE ...ecriieieiececeeeetete e te e ste e sse e e e e s se s e stesaestessesse s e e e e saessassansansanes 812

LQYEIS ettt ettt te st e st e st e et e s ae e st e s ae e s e e st e et e e bt e e st e e st et e e bt e Rt e e b e e et e e ae e st e e s e e s ae e aeeeseeeaaeaees 823
Package your Llayer CONTENT ...ttt ettt s a et s e st bans 823
Create the layer in Lambda ...ttt ettt s te st s ens 532
Add the layer 10 Your fUNCHION ..ottt s 826

CUSTOM SEIHALIZATION ..ottt ettt st et s b et et s et e e e e be st e e ssasaessennene 828
When to use custom SEraliZationcocciiriniininincrcercscrcse ettt se s sae s saens 828
Implementing custom SErialiZation ... 829

XV

AWS Lambda Developer Guide

Testing custom SErialiZation ...ttt et e e e e sa e e aan 830
CUStOM STArtUP DERAVION ..ottt s ae e e e e a e e s b e e aens 831
Understanding the JAVA_TOOL_OPTIONS environment variablecccccooevenvenenveeenceecnennene 831
CONEEXTE ..ttt et s e bt st st s e b et s b s b e e st s st et e e st e be st e entesbe et e st s nesntennas 834
Context in SAMPLe aPPLICATIONSooiiieeeee ettt st e e a e e aenes 836
LOGGING ettt e ete s e s st e e te e st e s te s ssa e st e s sse e s b e e b e e s b e s s e e et e e s e e b e e s e et e e st e st e e aa e st eeseesreanaraas 838
Creating a function that returNs LOgS ...t anens 838
Using Lambda advanced logging controls with Java ... 840
Implementing advanced logging with Log4j2 and SLF4J ...t 843
TOOLS ANA LIDFAFIES ettt ettt sb ettt s et e e s e sesneneen 846
Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 847
Viewing logs in the Lambda CONSOLE ...ttt 851
Viewing logs in the CloudWatch CONSOLEoueoiiieieeeee ettt 851
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccooveevevenenveneeceeeecrereene 852
DELEEING LOGS ettt e e e s e sa et et e st e st e s b e s b e et e s e e e e e et et et e senaeeseeaeenaanes 855
SAMPLE LOGGING COUR ..ttt ettt ettt e e s s e e e e e e e b e s aesba b assassasseensanaan 855
TEACING ittt ettt ete st e e ste e st e s ae s s e e s be e st essaessseasssa e st esssasaseasssassseasssesassesssessstesssessssessseesseesssennes 857
Using Powertools for AWS Lambda (Java) and AWS SAM for tracingcceceeeeevenecennnnen. 858
Using Powertools for AWS Lambda (Java) and the AWS CDK for tracingccccevvevvecveenennene 860
Using ADOT to instrument your Java fUNCLIONS ..ottt 872
Using the X-Ray SDK to instrument your Java functionsccceeeveeveiicececececeneeeeeeene 872
Activating tracing with the Lambda conSOLe ...t 873
Activating tracing with the Lambda APl ...ttt e 873
Activating tracing with AWS CloudFormation ...t 874
INterpreting an X-RAY TraCe ...ttt ettt sre s eessae e saessaeesaessaesssnessnaessnassnasnne 874
Storing runtime dependencies in a layer (X-Ray SDK)ccccoocimirerenrenientetecreceeseseseseeeenens 877
X-Ray tracing in sample applications (X-Ray SDK)c.ccoeeriririerierrerrerieneseeeeeeeeeeseesaessennens 878
SAMIPLE QPPS weveerierieiiieitestertesee e et st e e stestestestestessessessae s et essassassansassessesseessastansansasasassessassaessensensansansans 880
BUIldiNg With GO ...cciiiiiiiirrriiiiiiiiiiiiiiinnieennniiiiiiieeiiisss 882
GO FUNTIME SUPPOIT .ottt et et est e s sae e st e s sae s st e s ssessseesssessssesssesssaasssessssesssesssaesssessseesssasssaens 882
TOOLS ANA LIDFATIES ..ottt sttt ettt et et s e b et e e saesaeasnas 883
HANALEE .ttt sttt st ettt st et e s e st e e s se b et e sa s b et et esesaestesassastensssassensasens 884
Setting up your GO handler Project ...ttt aan 884
Example Go Lambda fuNCtion COAE ..ttt eanens 885
Handler NamMing CONVENTIONSco.viiiieieieeseseeeeee ettt e e e e sa e s e saestessessessa s e s e esnenanes 888
Defining and accessing the input event ObjJecCt ... 888

XVi

AWS Lambda Developer Guide

Accessing and using the Lambda context object ... 889
Valid handler signatures for GO handlers ...t saeeens 890
Using the AWS SDK for Go v2 in your handler ...t 891
Accessing enviroNmMeNt Variables ...t 892
USING GLODAL SEALE ..ottt a e st e st e s be s s e e e e e e e e e e b e aanaanas 892
Code best practices for Go Lambda funNCtions ... 893
CONEEXTE ettt ettt st e bt st e sttt e s be s b e s st s bt et e e a e e be st e st e sbe et e ne s beentens 895
Supported variables, methods, and properties in the context object ..o, 895
Accessing invoke context iNfOrmMation ... 896
Using the context in AWS SDK client initializations and callsccooeoeeeeeneeeeieeeeeee. 898
DEPLOY .ZIP filE QIrCRIVES ...ttt st sa et et s b e s ae e rn e ns 899
Creating a .zip file 0N MACcOS aNd LiNUX c..oouiiiiieeeeeeeeeteetesee et stesvesve e ae e ennens 899
Creating a .zip file 0N WINAOWS ..ottt sae st e sre s s e e e aennens 901
Creating and updating Go Lambda functions using .zip files ..., 904
DePLloy CONLAINET IMAGESccveeeeeieeeeeietetetecteete e e st e e e e e tesaeste st e stessessesseesasssesaesaessensansassassessssssesaensans 911
AWS base images for deploying GO fUNCLIONSccocveieeereciceeeeeee e 911
GO ruUNtiME INEEITACE CLENT .cveeeee ettt a et sb et s sse s 912
Using an AWS OS-0nly Dase iMagecccceeeieeieeeececetetectesese et stesaesae e e e e e saesae s 912
USiNg @ NON-AWS DASE IMAGE ...ecviieiecieeieeieeeeete e te e stesresre e e e e sae s e stesaessessesse s e s s e saensasansansanes 919
LQYEIS ettt et te st et e e st e et e s ae e st e s s ae e s e e s b e et e e b e e e st e e s e et e e bt e st e e e e e e e e e ae e st e e s e e st e e aeeesteeaaaaees 928
LOGGING eetiiiiitieeccteete ettt et e st s s e e et e e st e st e s s ta e st e e s a e e s b e e a e e s b e e b e e s b e e b e e et e e ae e s e e et e e e e e aa et eesa e stanaraas 929
Creating a function that returNs LOgS ...t 929
Viewing logs in the Lambda CONSOLE ...ttt 931
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeeeee et 931
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccocveereeeeeneeeeceeeeeeeenene 931
DELELING LOGS ettt e e sttt e st e s ae s b e e e e e e e et et et e bassesseeseennennanes 935
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 936
Using ADOT to instrument your GO fUNCLIONSccveieieeeceeececeeee et 937
Using the X-Ray SDK to instrument your GO fUNCLIONScoeeieiiieieceeceeeeeeeee e 937
Activating tracing with the Lambda conSOLe ... 937
Activating tracing with the Lambda APl ...ttt 938
Activating tracing with AWS CloudFormation ... 938
INterpreting an X-RAY TraCe ...ttt ssee st e s ae s sae e s e e s saeessaesssaessnassananne 939
BUilding With CHccciiiiiiiiiiiiiiiiiinniinnininnisnss 942
Development ENVIFONMENT ...ttt steste s e s e e e e s e s et e st e stessessessassessnensansensensanes 942
Installing the .NET project t€mMPLAtES ...ttt 942

XVii

AWS Lambda Developer Guide

Installing and updating the CLI tOOLS ...t 942
HANALEE ettt sttt sttt a e sttt s et e e st e st e sa s b et e st e sasaestesassansensesarsensasans 944
Setting up your C# handler Project ...ttt sae s saeas 944
Example C# Lambda funNCtion COAE ...ttt 945
CLass LIBrary NANALENS ...ttt e sa e st e st aesbesae s e e e e e e s enaeneans 949
Executable assembly RANALErS ...ttt a e saeaens 950
Valid handler signatures for C# fUNCLIONSc.coueeuiiieiieeeeecce e sa e 951
Handler Naming CONVENTIONS ..ottt e e ae s saestessesaessa e e s s e e e nnenes 951
Serialization in C# Lambda fUNCLIONScc.ooveriiiiiieteeetreerctet ettt enens 952
Accessing and using the Lambda context object ... 954
Using the SDK for .NET V3 in your handler ...t 955
Accessing enviroNmMeNt Variables ...t 956
USING GLODAL SEALE ..ottt ettt e st e b e s ae s e e e e e e e e e e b e aasaeas 957
Simplify function code with the Lambda Annotations frameworkcccooeevvevieveecrecvennennee. 957
Code best practices for C# Lambda funNCtions ...t 958
DEPLOYMENT PACKAGE ..ottt te e sttt e st e st e st e sbesse s e e s e e e aetestessasassessnenaanaans 961
NET Lambda GLODAL CLI ..cviuiiiiiirieeietrerteteesesteeseste et e st seste st e e ssessesassassesaesasaassenasans 962
AWS SAM Lttt sttt ettt ettt s e st e a et e st et e e a e st et e s et et et et e e e s e st et e e eaetenaeaans 968
AWS CDK ..eeieeeectesieeeteste et e s ste st e s ste s st e s sae s s e e s saesssaessseesstessaasssasssaesssessssesssessssesssessseesssessssessaesssaanns 971
ASPINET ettt sttt s st e st e s e e s st e e st e s b e s s e e s b e e st e s b e s s e e s b e et e e b e e s e e e b e et e e saa e s e e e sreesateesaeenses 975
LQYEIS ettt et te st et e e st e et e s ae e st e s s ae e s e e s b e et e e b e e e st e e s e et e e bt e st e e e e e e e e e ae e st e e s e e st e e aeeesteeaaaaees 980
DePLloy CONLAINET IMAGESccveereeieeieeeeeetectecteete e tes e e e e e te s et e st e stessesse s e esasssesaessessessansassassessessnesaensans 981
AWS base iMages fOr INET ...ttt ste e ste e e s sae st e saestessa s e e e e e e s et e s e saessanaanns 982
USING aN AWS DASE IMAGE ...cvieiiceeeeetete ettt ste e te e e e e e e e s et e stesaesse s e e e esaennennansans 982
USiNg @ NON-AWS DASE IMAGE ...eoiiieieiecieeeeeetetete e stestestessee e e e s s e s e stesaestessesss s e e s e saessensassansanes 984
Native AOT COMPILAtION ..oovieeeeeeee ettt e st esae s se s e e e e e e e e e e aaaanaans 989
LambBbda FUNTIMIE ..ottt ettt ettt ettt s s b e st e e s sa s et e e aaneesanan 989
PrErEQUISITES .ottt ettt sre s st e s s ae s st e st e s st e s ae s saesaa s s st esssaesstesssaessaessseasssessseennees 990
GELEING STAMTEA ..ottt e ettt e b e st e st e e e e e e se e e et esaessasassassasnaennans 990
SEMHALIZATION ettt ettt et s bt et s e st et e st e b et e sesae st e e senteneens 993
TEIMIMING ettt st s e et e st e s ae e st e e saeessae s saes st assseesssesssaesssessstasssessseesssessseesssensssesnees 994
TrOUBLESNOOTING ..ttt sttt et et e st e st e be s e e e e e esaeae s entanean 995
CONEEXTE ettt ettt et a e st e s et s b et s s s b e s st s st et e e ae e be st e e st e sbe et e ne s beentenns 996
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 998
Creating a function that returNs LOgS ...t 998
Using Lambda advanced logging controls with .NETccccceiirioieieieeeeececeeee e 999

xviii

AWS Lambda Developer Guide

TOOLS AN LIDFATIES ettt ettt sa et et a s b et s ne 1006
Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging 1007
Viewing logs in the Lambda CONSOLE ...ttt 1010
Viewing logs in the CloudWatch CONSOLEcueeuieeieieieeeeeeeee et 1010
Viewing logs using the AWS Command Line Interface (AWS CLI) ..c.ooeveeeeeeveeceeirecieciecrenene 1010
DELELTING LOGS ettt st s e e ettt e st et e b e e s e e e e s e s et et e st e sessaeseenaenean 1014
TEACING ceeieeieteecteeteect ettt st s e e e st e st e s sae e st e s sae e s b e s s e e st eesseessaesssasssassseesstesssessssessseesssesssesssaensseessennns 1015
Using Powertools for AWS Lambda (.NET) and AWS SAM for tracingcccceceeveeeecvecvennnee. 1016
Using the X-Ray SDK to instrument your .NET functionscccoeeeeeinciecececeneeeceeeee 1019
Activating tracing with the Lambda conSOLe ... 1020
Activating tracing with the Lambda APl ...ttt n s 1021
Activating tracing with AWS CloudFormation ...t 1021
INterpreting an X-RAY TraCe ...ttt st s e s e e s st e s ae s aaesnessseesaesssaassnas 1022
TOSTING ettt sttt e e st e st e s s re e s e e s st e st e s s aa e s be e st e e b e e s e e e b e e at e et e e s e e et e e st e e saeesaeesaesreans 1025
Testing your serverless apPLliCAtioNSc.coeoiiieiiicieceeeceeee e sae e 1026
Building wWith POWErShellcciiiiiiiiieeereiiiiiiiiiiiiiinneenensiisieecininnnsesssssssssssssssssssssssssssssssssssssass 1029
Development ENVIFONMENTcoui ittt ettt et este e e e e e e s ste s e saa s e ssassa e e s snennenns 1031
DEPLOYMENT PACKAGE ..ottt te et et e st et e st e st e s s e s saese e e e e e aa b e sassessessnenaanes 1032
Creating @ Lambda fUNCLION ...ttt s 1032
HANALEE ettt ettt ettt st et s s e st et s e b et e sa s b et e st ssessestesassassenasansan 1034
RETUIMMING AAT@ ottt s s s e e e e sa e st e st e st e st e s e e seene e st eaensanes 1035
CONEEXTE .ttt ettt et a e st et s bt et e et e b e s b e e st e se et e e st e se st e nt e seeabesneenesn 1036
LOGGING ettt ettt e st e s ste s st e s ae s sae e s b e s s e e s b e s sa e e be e s st e e e e e s e e e b e e s e e et e e st e et e e st e e seassaeesaesananns 1037
Creating a function that returns LOgS ... 1037
Viewing logs in the Lambda CONSOLE ...ttt 1039
Viewing logs in the CloudWatch CONSOLEcueueeeieieieeeeeeeete et 1039
Viewing logs using the AWS Command Line Interface (AWS CLI) ..ccooeoeveeeeveeceecrecieiecrenene 1039
DELEEING LOGS ettt sttt e st et e et e e s e e e e s e s et et et e sessaeseeraenean 1043
BUilding With RUSEcerueeiiiiiiiiiiiiiieennnniiiiicieeittttssssssssssssssssesssns 1044
HANALEE ettt sttt et b e st ettt s s b et et s e b et e sa s b et e st ssastestesassassenasansan 1046
Setting up your RUSt handler ProjeCt ...ttt 1046
Example Rust Lambda fuNCtion COAE ...ttt nens 1047
Valid class definitions for RUSt handLers ..ot 1050
Handler Naming CONVENTIONScc.eoiiieieieecececeeee ettt te e te s e e e e s e e saesaesaesaessassassae e esnennan 1051
Defining and accessing the input event object ... 1052
Accessing and using the Lambda context object ... 1053

Xix

AWS Lambda Developer Guide

Using the AWS SDK for Rust in your RandLer ...t 1053
Accessing enviroNmMeNt Variables ...ttt sreaens 1054
USING SNArEA SEALE ...ttt e st e st e et e e s e s e s et et e stassa s e sassnenean 1054
Code best practices for Rust Lambda functions ... 1055
CONEEXTE ..ttt e st st a e st et s st et e et e be s b e s st e se et e e st e sessbeenteeseenbesneeness 1057
Accessing invoke context iNfOrmMation ...t 1057
HTTP @VENTS .ttt ettt b e st stses st et b e st sts s e s b e et e sse s b e st e st enanns 1059
DePLOy .ZIP file QICRIVES ...ttt ettt e st s e s s e e e a e a e aaneans 1062
PrEr@QUISITES .eeeeiteeieetert ettt sttt a e s ste e st e s sae e s e e s sae e s st e s aesssaesssaesssasssaesssessssesssesssesssaannns 1062
BUILAING the FUNCLION wc.eeeeeee ettt st a e et b aan 1062
Deploying the FUNCLION ...ttt st s a b 1063
INVOKING the FUNCHION ..ottt te s e e e e aesaatans 1065
LQYEIS ettt et et et e it e e st e st e s st e st e s s ae e s b e e s aa e e b e e s e e e b e e st e e e e e st e e b e et e e e e e e s e e e b e e st e e aeesaaeeaaenseans 1066
LOGGING ettt ettt e st e s ste s st e s te s sae e s b e s s e e s s e s s sa e e b e e s st e e b e e s e e e b e e s e e e s e e st e et e e st e e seassaeesaesaaenns 1067
Creating a function that WIiteS LOgS ...ttt s 1067
Implementing advanced logging with the Tracing crate ... 1067
BESt PracCtiCes ..uciiceiiiiiiieennnneiiiiiiieiiiiieeeessssessssseseeesss 1070
FUNCEION COAE ..ttt sttt ettt et b et et s et et s s be st e e s b e b e e e sasaenes 1070
FUNCLION CONTIQUIALION ettt ettt e b et s e e e s e s e ae st e aannas 1071
FUNCLION SCALADILILY oottt et st e e et a e s et nes 1073
MELriCS aNA QLAIIMNS ..eeiiiiieteereeree ettt et ettt st e s et et s se b e e s besaesassassessenaens 1073
WOTrKiNG With STFEAIMS ...ttt ettt e s ae e e e s e e s et e te st e b e ssaesas e ennennan 1074
SECUNITY DEST PraCiCOS ..ottt e e e e ettt st e st e s e seese e s e e e e e aanes 1075
Testing serverless fUNCLIONSiiiiiiiiiiiiiiinnenniiiiiiieeiiiieeesses 1076
Targeted DUSINESS OULCOMIES ..ottt te e e e et et estesae s s e e e e a e aesaensaneans 1077
WRAL 10 TS .ttt ettt et ettt et st et sae st et e be st et esassestenassansensesarsans 1077
HOW 10O tESt SEIVEILESS ..ottt sttt et ettt s e s e e st e s s et e e s e sbe st esassassensesasans 1078
TESEING TECANIGUES ..ottt ettt et e st et e e e s e e e e b et e st et e s sasseeseesaensansansanean 1079
TeStiNG iN The CLOUA ..ttt sa e b st e e e e e e e a e e e aennan 1079
TESEING WIth MOCKS ...ttt ettt e st e s s e se s e e e e e e e e tebenes 1082
Testing With @mMULALION ...c.eoeieeee ettt sa e saesae s ae e s ae e e anenaan 1083
BOST PrACLICES ...ttt ettt e e st e st e st e s st e s e e e s e e s ae e s e e s aa e aa e s ae e sa e e baessaessaeennes 1084
Prioritize testing in the CloUd ...ttt aeas 1084
Structure your code for testability ... 1084
Accelerate development feedback LOOPSccceeeeieieieiceee e 1085
FOCUS 0N INTEGratioN TESTSciiiieieeeetecectee ettt e s sae s ae s aeesr e s ae e s ae s sa e snas 1085

XX

AWS Lambda Developer Guide

Create isolated test ENVIFONMENTS ...ttt ettt se e ae e ne 1086
Use mocks for isolated buSiNeSS LOGICccuicueieriereeieecteeeeer ettt 1087
Use emMuUlators SPAriNgLY ...ttt ste e te e e e e et e s ae b e s sre s e sseeaeaenes 1087
Challenges teSting LOCALLYcveueeieeeeeeeee ettt sttt s ae e s e se e e e e sae s 1088
Example: Lambda function creates an S3 bucket ... 1088
Example: Lambda function processes messages from an Amazon SQS queue..................... 1089
FAQ ettt ettt a e st sttt e b et et e R e b et e Rt e b et et e s et et e R e et et e e e s e te st esessensenaes 1089
NEXt SLEPS ANA FESOUICESueevieeeeiereteeteeeeeeee e ste e stestesse s e e s e s et estessessassassassaessessansansassassassasseeseanes 1090
Lambda SNapSTartiiiiiiiiiiiiiiiietnniiiiiceiiiittssssssssssssssssesssans 1092
USE CASES ..ttt ettt sttt et e e st st st st s b et e bt s b e st et e b e et e e Rt s be st e st e b e et e e aesenesanenns 1093
Supported features and LMItAtioNscoeoeeieiciccee e e 1093
SUPPOITEA REGIONS ...ttt rte et e st e e e e e s e et e aestesaesse st e ssae e e s eaestestasassassesssensansansansenes 1094
Compatibility CONSIAEratioNSoov ettt e s e s e e e e e sa et e saesraeans 1094
PrICING oottt ettt ettt s e et e s st e e s e e e st e s be s b e e s et e s e e s sa e saa e aa e sae e sa e s s aeseeesteesaesnnaeseans 1095
ACTIVatiNg SNAPSTArT ...ttt et s e e st s e e s sae s e e s ae e s e e e sae e s e e s aaesanans 1096
Activating SNapStart (CONSOLE) ...ttt s te e e re e e se e a e st saenas 1096
Activating SNapStart (AWS CLI) ..ottt e e e e et e aeste s sse e e snnesaesna s 1097
Activating SNAPSTArt (API) ..ottt ra et st e st e s te s s e e s e e e e ettt e aannas 1099
FUNCEION STA@S .ottt ettt e e et sae st b e st e sneens 1100
Updating @ SNAPSROT ...ttt a e sttt ns 1100
Using SNapStart With AWS SDKS ...ttt se e e saesaeste s e s se e s e e s esnesaesaanes 1100
Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDKccevevveeveeveeennee 1101
Deleting SNAPSNOLS ...ttt ettt ae e e e e a et et aenas 1101
HaNALiNG UNIGQUENESS ..ottt s e st st estestestesse e e e e e s s e e st et e s e saassaeseensensanaansansanes 1102
AVOId SAVING STATE ettt ettt st et e st et e s ae e e e e e e et e st et e sestessaeseeseennanes 1102
USE CSPRINGS ...ttt ettt st et s s st e st s b st e s st s s e st e s st e sae st e s st s sae st e sessesssannens 1104
SCANNING TOOL (JAVA) ettt ettt este s e e e e e sa et et e s te b e s sessesnneaenaanes 1107
RUNEIME NOOKS ..ttt sttt et st ettt et s s b et e s se b et s e s b e s esans 1108
JAVA ettt ettt s b e st a e st et e Rt s b e st e e st e b e et e e st s ebesaesne s 1108
PYTRON <ttt e st e st e e et e st e st e st et e ae e aeeseene e e et eaaaerantan 1112

N E T ettt st s et s s et e s b e s s s at e s s s b e s s aa e e s s e e e e aa e e e a e e e s a e e e s a e e e s s e e e raaeenneesnnns 1114
MONIEOTING ceveiiiiieiceeeteecteete st rte st este s st e s steesae e s be s se e s b essseasssesssaesssassseasssesssesssessseesssessssessessseenssenns 1117
CLOUAWAALCN LOGS ..ttt ettt e s ae s te s s e e e e et e ae st et e sesaessaesaennennannan 1117
AWS XoRAY ittt sttt s e s st e s ste s st e s sae s st e s saeessaessaa e saassaeessaesssaesssessseessaesssaesssessseesssesnn 1118
TELEMIEELIY AP ...ttt ettt sae e st e st e e e e e et et et e st e bassasseesaessenaessensansansansas 1118
API Gateway and function URL MELIICS c..ccuevieeeeeecectetecteesiesee ettt saeae s 1119

XXi

AWS Lambda Developer Guide

SECUNEY MOAEL ettt ettt e e e s e e e s e s et e ae st e s basseesaesaenaensantansanaanes 1120
BEST PrACLICES ...ttt sttt a e s s ae e st e s a e s st e s e e e s e e s ae e s e e e saa e aa e s aeeesa e e baesreessaeennes 1121
PerformanCe tUNING ..ottt steste e e s e e e e e e et e st e st e ssessassassneneenaansansansans 1121
NetWOrking Dest PractiCes ... iiiceceeieeececee ettt e et tesaesae s e e e e e e aesaesaannan 1125
o101 0] (=T VoY o] u [o e PSR SOSURRRR 1127
SNapStartNOtREAAYEXCEPLIONocviieieieeeeceetete ettt e et et estesae s e e se e e e s e aaneans 1127
SNapStartTIMEOULTEXCEPTION ..ottt s e s e e e sae e s s e ssseesaassaeanns 1127
500 INtErNAL SEIVICE EFTON ..cviiviirieiierieteteentesteestestesteessestesessestestssessestesessessessssessessesessessessesesses 1128
40T UNQUENOMIZEA ...ttt ettt st ettt ettt a s et e e s e saesaesaesans 1128
UNKNOWNHOSTEXCEPLION (JAVA) c.viviiiieeceeteeteceeee ettt te et e e e s stesae st e s e snennan 1128
SNAPShot Creation FAILUIES ...ttt st a e e e nan 1129
SNaPshot Creation LAtENCY ...ttt 1129
INtegrating Other SErVICESccciiiiiiiiieeeriiiiiieiiiiiiinneessneissiiiieteessaans 1130
CreatiNg @ TFIGGEN ..ottt ettt et sae st e s st e e s e e s s e e s st e s sa e e s st e s ssaessaesssaesssesssassssessaaenns 1130
SEIVICES LIS ittt sttt ettt ettt e s e st e st s e s b et e e ssesbe st esessestenassessanssnsssansensesans 1131
APACNE KAFKQ .ttt ettt e st e st s s e e e e e et et e st et e s tasseeseesae e ententenean 1133
IMISK ettt sttt st e st e s s te e s e e e sae et e s sae e st e e ss e e ste s s e esssas st asssessa e ssaesseesssessaessteesatasstensstensaaeanens 1134
Self-managed APAche Kafka ...ttt aens 1198
Schema registries With @VeNt SOUICES ...ttt 1234
Low latency APache KAfKa ...ttt a et st sae st sa e nes 1262
AP GALEWAY ...eeeiiiieieeiticieesitcste st este s st sstessaeestessaeesssessaeesstessessssasssessssesssessssassseesssesssessssesssessssessenns 1264
ChOOSING @GN API LYPE ettt et et st e st e st et e s e s e e e e e et et e st e saassessaeseeneensansanes 1265
Adding an endpoint to your Lambda function ... 1266
ProXY INTEGIATION ...eoiiiieeectcect ettt sttt te st e s ae s ae e s e e s sae s sa e s seessaesssaessnessssessaasssennns 1266
EVENT FOIMALt ottt ettt sb et s s b e st et ssa st e e nas 1267
RESPONSE FOIMIAL ...ttt ae st e e e e e e e et et e b e aestassaese s e ennanes 1267
PEIIMISSIONS ...ttt ettt st sttt st st s b e st e et esae et e e st s sessbesatessesnanesnsesn 1268
SAMPLE QAPPLICALION ettt te e e st st et e b e st e s s e e e e e e e esnennan 1270
TULOTTAL oottt ettt sttt et sttt et e e s b et e e s sesae st esassenbentesansansenesns 1270
EFTOTS ettt ettt s e sttt e b et e e st s b e st e e st e b e et e e st s ebe st e atesseeaesneans 1287
APl Gateway Vs fUNCLION URLScuioiieeeeecteteteteestee ettt saestestessesse s s s s s esassanaans 1288
INFrastrUCTUre COMPOSEN ...ttt et e et e st esteste e e e e e s et e b et e tessassessaeseessensensansansansan 1293
Exporting a Lambda function to Infrastructure COmMpPOSErccvvvecveciecececereeeeeeeeee e 1293
OtNEE FESOUICES ...ttt ettt ettt et et e st e s et s s e st et e sesbestesessesse st enessassensesesansenssen 1295
CLOUAFOIMALION ..ttt ettt sttt st s ae st s e st e e e e sbe st e e s b asbe st esassansenessassenssens 1296
AmaAzon DOCUMENTIDB ...ttt ettt st et s s be st s s s b e st esneeaee 1299

xxii

AWS Lambda Developer Guide

Example Amazon DocumentDB @VENT ...ttt e e saeaeaan 1300
Prerequisites and PEIrMISSIONSccccieiiiriereeeseeeeee e ete e stestestesses e e e e e e saessessessessessassessassasssensn 1301
ConfigUre NEtWOIK SECUIILY ...ecuieeeeieeeteteeeecee ettt e et et saesae st s e e s e e s e aesaennan 1302
Creating an Amazon DocumentDB event source mapping (Console)cccceeveeveeceeceeeeeennene. 1306
Creating an Amazon DocumentDB event source mapping (SDK or CLI)ccoeeveeevereeennnnnen. 1307
Polling and stream starting POSItioNS ..o 1310
Monitoring your Amazon DocumentDB event SOUICEcovieeieiviinviennieeneeneecseeeseeeseessnenane 1310
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1311
DYNAMIODB ...ttt ss e s sre e s s st e s s re e s s b e s s s snessssnessssnessssaassssaessssaassssaessssaasssneasssses 1337
Polling and batching StrEaMIS ...ttt s ae e nennan 1337
Polling and stream starting POSItiONScocoeeieiciieeeeeereree e 1338
SIMULLANEOUS FEAUETS ...ttt ettt ettt e st st et s e st e st s e b et e e ssesse st esassassenessessensans 1339
EXQIMIPLE EVENT ...ttt ettt e st et esaeste s e e e s s e e et e st e ae st e ssassaeseesaenaansansanean 1339
Create MAPPING ..ottt ettt essae s s e e s ste e st e s ae s saes s e esstesssesssaesssessstasssessssesseessaans 1341
BAtCh it@M FAILUIES ..ottt ettt st s b et s s b e b e e esen 1343
ErrOr NANALING oottt s e st e e s e e b e st st e b e s be s e e e e na et e aenbanes 1356
SEALEFUL PrOCESSING ..ottt rte st st e e e e e e s e e s e st e be st e s b essaeseesaennennaneans 1362
PAFAMELELS ...ttt ettt st et a e st et s s be st e st s b e et e s e e be st e neesneeas 1367
EVENT FILEEIING .ottt st s e e et e st et e st e s b e e basae e e e e e s e tesbansanes 1369
TULOTTAL ettt ettt sttt sttt s e bbb e st e s b e b et s sesae st esassenbentesarsansenenns 1378
B ettt ettt et et e e A ettt e e et R et et e Rt e s et e e e senbeaese b e ae e eaenes 1394
Granting permissions to EventBridge (CloudWatch Events)cccoceeeeeeeeeeeeveeceeceeceecieeenne 1394
Elastic Load Balancing (Application Load BalanCer)cceeeeereeceeeeeeceeceecteceeeeeeee e 1396
Invoke using an EventBridge SChHEAULEN ...ttt 1398
Set UP the XECULION FOLE ettt ettt e e s a e e e b et es 1398
Create @ SCREAULE ...ttt sttt ettt et s sb e st e s b e sae e ssesaassenans 1398
RELALEA FESOUICESouvviieietreeteeretet ettt sttt et sttt s et e e e sbe s e e s s e sbe st ssassessesassansananan 1403
L0 ettt ettt et sttt st et a et et et b et et e e b et et e R et et e s e bet et e s et e st eseesente s eaententenaes 1404
KiNesSis DAta STrEAMIScuiiiiiiieieeete ettt sttt st et e s st e st s s st et s b st e s st s seesaesseeness 1406
Polling and batching StrEaMS ...ttt sa et sae e s seennens 1406
EXQIMIPLE EVENT ...ttt ettt st et e s te st e e e e e et et e s besae s b e s seeseesaenaensantansensanes 1408
Create MAPPING ..ottt e st s et s re e s sae e st e s ae s sae s s e e s st esssesssaessseesseasssesssaesssesssaanns 1409
BAtCh it@M TAILUIES ..ottt ettt st et e e s b e b e e esans 1415
ErrOr NANALING oottt e st st e s e e s e e e st et e st e s be s e e e e aa et e naebanes 1430
SEALEFUL PrOCESSING ..ottt st et et e e e e e e s et e ae st e sbassaeseesaeseennannans 1436
PAFAMIELELS ...ttt ettt st s e a e st et s s be st e at et e et e st e be st e ne e sneeas 1439

xxiii

AWS Lambda Developer Guide

EVENT FILEEIING oottt st ettt et e s b e e se s e e e e e e b e testensanes 1442
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1446
KUDBIMELES ..ottt st et sa ettt s b st et s e s et s e saa b et e e saestesassansensns 1463
AWS Controllers for KUDErnNetes (ACK)eooceeeveeeiiieeieeeiieeeeesseeeesseesessesessseessssesssssesssssssssssesns 1463
CrOSSPLANE ...ttt te e e e e et et e st e st e s b e s sesse e e e e e s et et asaessassaeseeseensensantesasanseeseeneanes 1463
IMQ ettt ettt ettt sttt et ettt e et e R b et e R e R et et e R b et e e b et e Rt e R e se s et eae s e st esenaenteneeten 1465
Understanding the Lambda consumer group for Amazon MQccoeeveeeveveeceeceeceeceeceennenn 1467
CONFIGUIE EVENT SOUICEooeeeeveieeieeeceetetetestesteste e e e e e e st e ste st e st e ssessa e e s e e s et esaestessassessaeseennensanes 1471
PArAMIELEIS ...ttt sttt s st esssb e s st s e e ae e sa e s nes 1477
EVENT FILEEIING oottt st ettt et e s b e e se s e e e e e e b e testensanes 1478
TrOUDLESNOOT ...ttt ettt s s b st et s b et e s s e sae e esasans 1484
RS ettt ettt ettt ettt e st et e e e a et et a et et et A e b et e e b et e Rt e R et et e aeetetese et e tenaesatn 1486
Configuring your function to work with RDS r@SOUICEScccceeveeeieeeecieceeeceeeeeeeeeeve e 1486
Connecting to an Amazon RDS database in a Lambda function ..., 1492
Processing event notifications from Amazon RDS ...t 1511
Complete Lambda and Amazon RDS tULOrialcecveveeieeeeeeeeceeeeeee et 1512
Amazon RDS VS DYNAMODBooiiiiiieeecteertestessreesee st e ssesseessaesssesssaesssaesssesssessssessssssseens 1512
S ettt et et e b et et R s b et et e A et et e R et et e e e R et et e A e A et e Rt e s et et e seese b e s e e s e te s eaeesententesans 1517
TULOrIAl: USE @N S3 trIGEN ..ottt e stesaesse s e e e e s e e et e s ae st e saessesse s e s sa e e e saeneansanes 1518
Tutorial: Use an Amazon S3 trigger to create thumbnails ... 1544
SECIEES MANQGEL ..ttt et ste st e s ste e s e e s ste s se e s sae e st e s saesssaesse e st asssesssaesssaesssesssessssesssaesseens 1573
When t0 USE SECIretS MANQAGENcuccieeieeieeieeeeeeeetete e ste e steste s e e e e e e s e ssestessessassessassesssensensansans 1573
Use Secrets Manager in @ fUNCHION ...ttt 1573
ENVIrONMENT VAriabLesouoouiiiiieteetceettsetet ettt sttt e sae st e sa s sae s e e sans 1582
SEErEt FOTALION ettt sr st ae st e st e s e b st s nesnesnis 1584
SIS ettt e a ettt e e R et et b et et e R et et e R e A et et e R et et e e s te st e st e s e tentens 1585
Understanding polling and batching behavior for Amazon SQS event source mappings .. 1585
Example standard qUeUE MESSAgE EVENTccceeeeeeieeiceetecte e saestessestesae e e e saennan 1586
Example FIFO qUEUE MESSAGE EVENTccueeueeeeieeeeetetecteste e e e e e e e e saestestessessessesssessennensansans 1588
Create MAPPING ..ottt e st s et s re e s sae e st e s ae s sae s s e e s st esssesssaessseesseasssesssaesssesssaanns 1589
SCALING DERAVION ..ttt st st e e e et et e st et s ae s seeseenennanes 1592
ErrOr NANALING oottt e st st e s e e s e e e st et e st e s be s e e e e aa et e naebanes 1594
PAFAMIELELS ...ttt ettt st st a e st e e a s b e st at e b e et e st e sbe st e ne e sneeas 1607
EVENT FILEEIING oottt st e e s e e ettt sae s b e e seeae e e e e eaetesbansanes 1608
TULOTTAL ettt sttt sttt et e st et a st et e e s b et et s ae s s et esassensentesarsansenesns 1613
SQS Cross-aCCoUNT TULOMIAL ..c.ueiieiieeiecieeceeceecece ettt eae e ese e sseesseesssessseeseens 1631

XXiv

AWS Lambda Developer Guide

STEP FUNCLIONS ..ttt ettt s st et e st e st e s se e s s et s s e e s sae s st e s ae s saesseessaasssassssesssaesssesssenns 1638
When to USe STEP FUNCLIONS ...ttt et a e e sae b e s sse s e e e e e aenens 1638
When not 10 USe StEP FUNCLIONSooveieeeeeee ettt stesae s n s 1644

53 BATCN ettt b e e e b e e e et et et e besaeeaeeseeasensentetentatans 1646
Invoking Lambda functions from Amazon S3 batch operationsc.cceeeeeeeeveeieeceecvecienene 1647

SINS ettt sttt ettt e st s a et et e Rt e b et et e R e et et e et et e e R et et e ae s et et esententens 1649
Adding an Amazon SNS topic trigger for a Lambda function using the console 1649
Manually adding an Amazon SNS topic trigger for a Lambda functionccccceuvnennnneee. 1650
SAMPLE SNS EVENL SNAPE ..ttt ettt ae s e e e s e e e e b et e tenaanes 1651
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1652

Lambda PermiSSIiONScciiiiiiiiiieeeeeniiiieicceiiinieseess 1671

Execution role (permissions for functions to access other resources)ccceveeveeceeceecrecreceennene. 1673
Creating an execution role in the 1AM CONSOLE ... 1673
Creating and managing roles with the AWS CLI ... 1674
Grant least privilege access to your Lambda execution roleceveeeciececenenececeeeeene 1676
UpPdate @XECULION FOLE ...cuviieeeieeeeeeeetetetete et et et e stesaestesse e e e e s e e e saesbesbesbessessnssasnnannan 1676
AWS MANAGEA POLICIES w.uveeeeeeieeeetetecteeses ettt rte e teste e e s e e e e e et e s testeste st assasseesnessassensansansans 1678
SOUrCE TUNCLION ARN L.ceiiiiiceeetcte ettt sttt ettt e st et s b et e e s sesae e saesaasnenaes 1681

Access permissions (permissions for other entities to access your functions)cccccceeueeunnnene 1686
Identity-based POLICIEScueveeeeeeeeeeeeee ettt e e st et e st e se s e e s snennan 1686
RESOUICE-DASEA POLICIES ...oceveeieeeteteceeee ettt ettt s te st e e st s e sae st e s aessesseesaennenes 1693
Attribute-based access CONLIOL ..ottt sae e 1701
ReSOUICes and CONITIONScccoiviriiireriiireneteesestete et e st este st e e s este e s e sse e e e ssessessesassans 1709

Security, governance, and COMPLIANCE ...ccciiiveeeeeeeiiiiiiiiiiiiiineneenneisisiseeeesssessssssssssssssssssssssssssssse 1716

DAta PrOTECLION ..ttt ettt et s sae e st e s ae s st e s s e e s e e s sae s saessaa e saasssaasssensseeneans 1717
ENCryplion iN TraNSIt ..ottt s e s e e s sae s s e e s se e saessaaessaesssaessnessneanns 1718
ENCIYPLION @t FOST .ttt ettt s st e s s e e st e s aa e s b e s saaesaessaaessnassnaanns 1718

Identity and Access ManAgEMENTcc.coeeieiiieeeiecteteteste e ee e e e e et e testesseste s e esee e esaesesaesanean 1723
AUAIENCE ..ttt ettt et s et et sb et st s et et e s e b et e e s s et et e sassestenassenseseesasensenersen 1724
Authenticating With identities ...t 1724
Managing access USING POLICIESccueeeeieieiiiececteeeeee ettt sre st e e sre s e e e e s e s e saestesaessessessseseeneens 1728
How AWS Lambda works With TAM ...ttt es 1730
Identity-based pPolicy @XAMPLESouevieeeeeeeeeeeee ettt 1737
AWS MANAGEA POLICIES ettt ettt te e st e e e s e e e e e et et e saeste st assas e esnessensensansansans 1740
TrOUBLESNOOTING ...ttt e e et st e s b e ste st e se e e sa e s e sneaensaneans 1745

GOVEIMANCE ...uteneieieiteeitecetete et e et s te et et et e et e st sbe st e st et e st e ese s b e e st e st ebe e st e st sabesstessesnsesstessesasasatensessanns 1747

XXV

AWS Lambda Developer Guide

Proactive controls With GUAId ...ttt saea e 1749
Proactive controls With AWS CONfig ..ottt 1753
Detective controls With AWS CONFIg ...ttt 1760
COAE SIGMING 1ottt rte e e e e et e et et et e st e st e sse e s e e se e e e s et astasassasssesesseensensansansansanes 1764
COAE SCANMING .ecuveeeieieeeetecteteetece ettt et e st e s teste st e e e e e e s e s e saestassassassasseesaessessansassansansassaesaessensensanes 1767
ODBSEIVADILILY .veveeeeeiieeeeeece ettt e e e e e et et e s be s b e st e e e e e s e e s et e se st assasseesaeseenaenean 1772
ComPLiaNCe ValidAtion ...ttt a et e st s e e et nes 1779
RESILIEINCE .ottt ettt ettt st et s s st et st et e e b e sae st e sa b e st esassansenssnesansesans 1779
INFrasStrUCTUIE SECUNILY .uviieieteecee ettt et e st e s e e e e e e s e s et e saesaessessessnennannans 1780
Securing workloads with public @NdPOINtS ... 1781
Authentication and QUthOFIZAtioN ...t 1781
Protecting APl @NAPOINTS ...c..ooueiieiieeceeecteeer ettt te e saeste s e e e e e saesaestesaesae e s saesaenaennenaan 1781
OB SIGNING oottt e s e st e e e e et e st e st e s testesbe s s e s e e e e s esa et ansassassassaesaesesssessansansansansans 1783
SIgNAtUre VAlidAtion ...ttt st e e e e st b e s b e s e s e sesnnennan 1783
Create CONFIGUIALION ..ottt ettt s s e e e s et e aasbaeans 1784
POIIMISSIONS ...ttt ettt st st et sb e st s b e st e st esae et e st s sessaesntesseebessesaness 1786
Code signing configuration tagscccceeieciecieceneceeeeeeee et e e st et esaesbe s e sss s s ennens 1787
Monitoring and debugging fUNCLIONScccuuueiiiiiiiiiiiiinneenniciiiiiciiiiitinaessssessssssecesssssssssssssses 1791
PrICING ettt ettt e s e e et e s st e e s e e e st e s ae s b e e sae e s sae s ba e s e e ae e saa e ae e st ae st e et e s saessnaenseens 1791
FUNCEION MEEFICS ettt ettt st et sa e s s b st e s sae s e esne s 1792
VIEeW FUNCHION MELIICS c.uoiiieieeeeteeceseet ettt ettt s b st a e st s saa e e e sanen 1792
MELIIC TYPES ettt ettt e s e e s s e e s e e s s e e s be s saa e s beessaessbesssaesssasstasssassssesseesseesssennn 1793
FUNCLION LOGS ottt ettt et e st e st este s e e s s e e et et e s ae st e saassesseesae s estesaensansassasassesssessansans 1801
Choosing a service destination to SeNd lOgS t0cceceeeeeeerieieeeee e 1801
Configuring log deStiNAtioNScouieiiieeee ettt e s nnns 1802
Configuring advanced logging controls for Lambda functionsc.ccceeveeiieceneneneceennne 1802
LOG FOIMALS ettt et st e st e st e s b e st e e e e e e s et et e tesbassessneneaneenaansanes 1803
LOG-LEVEL FILEEIING vttt e e e e et a e bt e s e be s e e e s e s e aensasaneans 1809
LOg With CLOUAWARLCN LOGS ..ottt e e sae st et be s s e s se e e aeneaan 1814
LOG WIth FIFEROSE ..ttt ettt e st et s et st te s tasaeeanennens 1831
LOG With AMQAZON S3 ...ttt et e st st e st et e e e e e e s et et e besaasseesaennanes 1833
CLOUATIAIL LOGS wnveieieeieectetetetes ettt e s e st et e e e e e s e ae st e st et e ssesseesaesaensesaessansansansassasseensansans 1838
Lambda data events in CloUdTrailcoeviiiriririnetnereretecrestce ettt sttt se s ssens 1839
Lambda management events in CLoUdTrailcceoeeieieieeeeeeeec ettt 1841
Using CloudTrail to troubleshoot disabled Lambda event sourcescocveeeeeeervevecnennene 1843
Lambda eVent @XAMPLES ...ttt te e se et et te s st e e aeaantens 1844

XXVi

AWS Lambda Developer Guide

AWS X-RAY erververeeseeseesevesessessesssesssesesasesasssssssasssesesasessssssassssssasesasesssssssssasesasssasesssesssssasesasesasesssssnns 1846
Understanding X-RAY TraCESccoiiiiiiicieceeecececeete et testesteste s e s e e e e s saestestassessessas e s s enneaeneans 1847
Default tracing behavior in Lambda ...t 1851
EXECULiON role PEIMISSIONSccueciiietetetetec ettt ste e e ettt esaessesse s e e sa e aea et etanes 1852
Enabling Active tracing with the Lambda APl ...t 1852
Enabling Active tracing with AWS CloudFormationcccovievicieceneneneseceeeeeveeenne 1853

FUNCLION INSIGNLS ..ottt sttt et et e sae st st s s st e s et et et e b e saesaessassaennanes 1854
HOW Tt WOTKS .ottt ettt ettt sttt et e ss e st et s e sse st e e ssesaesaenansans 1854
PrICING ettt ettt s et s st e st e st st e s st s b e st e s e e s b e s b e s aa e s e e e b e s st e ae et e sa e se et eeatenseetasaaeeaan 1855
SUPPOIEEA FUNTIMIES ..ottt ettt te st e s e sae s e s e s et e b e st e st e sassessaesa e e ssnesaansansansanes 1855
Enabling Lambda Insights in the CONSOLEcccouiieiiiieieeeeeece e 1855
Enabling Lambda Insights programmaticallycccoceeeieneneninienctccecretcseseseseee s 1855
Using the Lambda Insights dashboard ... 1856
Detecting funNction aNOMALIESooeeiiiicieeeecec et 1857
Troubleshooting @ TUNCLION ...ttt sa e e e aan 1859
WNAL'S NEXEY .ottt ettt ettt ettt s b et e e se st e e s e be st s e ssesae st esasestesassansanesnn 1861

View apPpLliCation MELIICS ...cciiieieeeecee ettt ettt te st e s te s s e s e e e e sae b e bessesse s e ennanes 1862

APPLICATION SIGNQALS ..ottt ettt st s e e e s e et et e s b et e s ae s b e e s e e e e n e e enaenean 1864
How Application Signals integrates with Lambda ..., 1864
PIICING ettt ettt s e e st e st e st e st e s st s b e st e s e e s e e e s e s st e s e e e b e s st e ae et e s s e e be e b e satesreetesaaeraan 1865
SUPPOIEEA FUNTIMIES ...ttt ettt e st e s e s e s e s e et et e s e st e st e saasaessassa e e esaeaansansansanes 1865
Enabling Application Signals in the Lambda console ..., 1865
Using the Application Signals dashboard ... 1866

DEDUG WIth VS COAE ..ttt ettt ettt e st e s ve s e e sa et sb e st e st e sae s e s e e saesae e enaensansans 1868
SUPPOIEEA FUNTIMIES ...ttt ettt e st e st e sae s e s e e s et e s e st e st e saesaessassn e e ssnesansansansanes 1868
Security and remote debUgQgiNg ...t an 1868
PrEFEQUISITES ooveieeeticieetereceectest sttt sae s rte st s ae st e s e e sae s sae s st e be st essaesaesasessaassesnsesssensesssesseessasssenes 1869
Remotely debug Lambda fUNCLIONSceiveiiieeeeeeeeeeere sttt e 1869
Disable remote debUgQging ...ttt s reaens 1870
Additional iINFOrMAtIoNc.coueiiieee ettt se st st b et e ae s 1871

Lambda LQY@rs ...eeeeeiiiiiiiiiiiiiinnnmemniiiiiicciiiiinsssess 1872

HOW 0 USE LQYEIS ...ttt sttt s e e e et st e st e st e st e s e s s e e e et et e sa e b e tesaassassasnnenaessansanes 1874

LAyers anNd LQYEr VEISIONSc.ccueeerieeieiiieiectestestesteseses e seesaesaessessessessessassesssessessessessassessassessasssensenes 1874

PACKAGING LQYEIS ..ttt sttt et e st s te st esse s e e e et et et e st e stessessassa e s asaessansensassansassessaanean 1875
Layer paths for each Lambda runtime ...ttt 1875

Creating and deleting LQYEIS ... ettt et s re e re s e s e e a e aa e n 1879

XXVii

AWS Lambda Developer Guide

CrEATING @ LAYEK ettt e st et e st e st e st e s e et e st et et et e sae st esseesaeneensensansansans 1879
Deleting @ LAYEr VEISION ...ttt ettt stesae st e s e e e sa e st et e b e sae s e e se s e eneesaennenes 1880
AAING LAYEIS ..ottt ettt et e st e st e e e e e e st et et e st e s s e s bessaesaesaestessasassessassassaensansansans 1881
Finding layer information ...ttt teste s s s e saeaans 1882
Layers with AWS CLOUAFOIrMAtion ...ttt a et saesaestesae e s e s ennens 1885
LAYErs WIth AWS SAM ...ttt et et e st et e s se s e e e e e e e et e st e s b e st e saeesaeseensentensansansanes 1886
Lambda eXtENSIONS ...cceeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieesissses 1887
EXECULION @NVIFONMENT ..ottt ettt sttt et e s s ae st s nessae st esneens 1888
Impact on performance anNd FESOUICESc.coeceeieieieeeceee ettt sre e e e e e et e s aesaasaanns 1889
POITNISSIONS ...ttt ettt sttt e b st e st s b e et e e st s se s b e st s se et e e st e ssessesstesasnsanns 1889
CONFIGUIING EXEENSIONSoeviieeieeectetetete et et e s et e stestestesse e e e e s e e s e sesaesaestassassaesesssensensensensanes 1890
Configuring extensions (.zip file Archive) ... 1890
Using extensions in CONtAINEr IMAGEScociiiiieriirnieineineeectesre st essreesreesssesssaesssessssesssesssaessees 1890
NEXE SEEPS evtiieiitieteectee ettt et e et e s e s s et e st e s s se s st e s saeesste s saessaassseesssessaesssessssesssessssesssessseans 1891
EXTENSIONS PAITNELS ...ttt ettt re e e e s sae s s e e s se e st e s sae s s e e ssae e saasssesssnasssaesssesssennns 1892
AWS MaANAgEd EXEENSIONSccueeieieieieiecteceeeee et et estestessessessee e e e e s esessesessassassassessasssessansans 1893
EXEENSIONS AP .ttt ettt sttt e e st s st s e st st e et e st s sbe s st s st s b e et essasasasntans 1894
Lambda execution environmMent LfECYCLE ... 1895
EXEENSIONS AP FEFEIENCE ..ttt a et s sa et st a e s 1904
TELEMIELIY APH ..ttt te e te e s e s e e e et e b et et e s b e s s e e s e e se e s e s astasassasseeseesaessantensansansans 1910
Creating extensions using the Telemetry APl ... e 1911
RegiStering YOUIr @XEENSION ..c...ciiiiiiiirieiceeeteectee st ree et e saessreesstessaeesssesssaesssessseasssessssesssassseens 1913
Creating @ telemMEry LISTENEI ... ettt 1913
Specifying a destination Protocol ... 1915
Configuring memory usage and buffering ... 1916
Sending a subscription request to the Telemetry API ...t 1917
Inbound Telemetry APl MESSAGEScceeeeeeeeieierertectestesteseseeeessesesaessessesaessessesssesssssesaessensensan 1918
APL FEFEIENCE .ttt sttt ettt et ettt e s et e e e e be b esassestensesassensenens 1922
EVENT SChEMA FEFEIENCE ..ottt sttt et b e e nes 1926
Converting events t0 OTEL SPANS ...ttt ra et ae st e s s e e e nenan 1947
LOGS AP ettt st s e e st e st s ae s s e s e s b s a e e s b e s et e e e e a e e e e e s e e st e e aaessaessaesnnesranan 1953
TroubLeSHOOTING ..cciiiiiiiieriiiiiiiiiiiiiiiiieenneeiiiiiiieetttttassssssssssssssssssessass 1966
CONFIGUIATION <.ttt e et e st e st e st e st e e e s s e e e et e e e b e s benbassassessaeseessensansanes 1966
MemMOry CONTIGUIATIONSocuieiiieteieesee ettt a e s st e sae st e s s e s e e e e sa e e e s esesaansanes 1967
CPU-bound cONfIGUIAtIONScviiieeeecceeeeee ettt st re e e a et sa e st et saesa e s ae s n s 1967
TIMEOULS .ttt sttt sa e et s b st et s s e st e st s b e st e s st e sseebessbessesasasnnan 1967

XXViii

AWS Lambda Developer Guide

Memory leakage between iNVOCAtIONS ..ot 1968
Asynchronous results returned to a later iNVOCationcoeeeeciececececececeeee e 1971
DEPLOYIMENT ...ttt ettt e te e s e et e e e et et et et et e s s asseeseessesaessessessansansassassessaesaassensensansans 1975
General: Permission is denied / Cannot load SUCH fileocueeveeiiveeiiieiiieeeeeeeeeeeeeeeeeaeeee 1976
General: Error occurs when calling the UpdateFunctionCodeccooveeueeeveeeceneeecreene. 1977
Amazon S3: Error Code PermanentRedirect.cocovvverenirienenieireneneeeseseccsese st 1977
General: Cannot find, cannot load, unable to import, class not found, no such file or
(o [T =Tl o] oY OO TR 1978
General: Undefined method handler ... 1978
General: Lambda code storage limit exceededooeeeereeieeeceeeee e 1979
Lambda: Layer conversion failed ...ttt 1979
Lambda: InvalidParameterValueException or RequestEntityTooLargeException 1980
Lambda: InvalidParameterValuEEXCEPLION ...ttt neens 1981
Lambda: Concurrency and mMemOory QUOTASccccceveeerereeieeeeeeteseesteeressessesseessessessesaessessessenss 1981
Lambda: Invalid alias configuration for provisioned concurrencycccccoeveeveeeeveeceeceeceennene. 1981
INVOCATION .ttt ettt s s a e st st e st et s st st e et e ae st e e st s sesabasntessasasesneans 1982
Lambda: Function times out during Init phase (Sandbox.Timedout)ccccceveeviecriceecrecnenen. 1983
IAM: lambda:InvokeFunction Not authorized ... 1984
Lambda: Couldn't find valid bootstrap (Runtime.lnvalidEntrypoint)ccccceoeeveeeeceecvecnennene 1984
Lambda: Operation cannot be performed ResourceConflictExceptioncccceoeeveeveevenennene 1984
Lambda: Function is stuck in PENAINGccueoueiieiieeeeeeee ettt resre e 1985
Lambda: One function is using all CONCUITENCYooveieieieeeeeeecee e 1985
General: Cannot invoke function with other accounts or Servicescooeevverevervenenincennens 1985
General: Function invocation iS LOOPINGcccecieieiiececececeeee et sresaeeens 1985
Lambda: Alias routing with provisioned CONCUITENCYccoeeeereeieeeieeeeeeee e 1986
Lambda: Cold starts with provisioned CONCUITENCYcc.cceeueeeeereeeeeeeeeeeceece e 1986
Lambda: Cold starts With NEW VEISIONSc.coevviireniiiireierenee et sae e 1987
EFS: Function could not mount the EFS file system ..., 1987
EFS: Function could not connect to the EFS file system ... 1987
EFS: Function could not mount the EFS file system due to timeoutcccooeerrvrrrrenneee. 1988
Lambda: Lambda detected an 10 process that was taking too longcccoeeeeveviivecvenenene 1988
Container: CodeArtifactUSerEXCEPLION EITOrSccuicveeeeeeeeeceetete et sae st saeaas 1988
Container: INVAlIdENTrYPOINt EITOISc.viviiieeeeeeeeteteteces et teste e e re s s e s e ssanaans 1988
EXECULION <ttt ettt sttt st et e s st s b et e s e et e st e sesabe s st esseenasseasness 1989
Lambda: Remote debugging with Visual Studio Codecoriiieiicececeeeeeeeeeee e 1990
Lambda: Execution takes t00 LONG ...ttt re s ne 1990

XXiX

AWS Lambda Developer Guide

Lambda: Unexpected event Payload ...ttt n s ae s s seens 1990
Lambda: Unexpectedly large payload SIZESccoceeeerereeieeeeeetecteesesec et 1991
Lambda: JSON encoding and decoding €rrorscceceeeeieneneeeceeeeceete e stese e e e eeennens 1992
Lambda: Logs or traces dON't QPPEANccueeeeeeietetetectectesee ettt sresaesaeste s e e e e e e e e saesaeaens 1992
Lambda: Not all of my function's l0gs @PPeArc.cceeeeeeceecteeeeeeee e 1993
Lambda: The function returns before execution finishesc.coocvverivrvnenivnenenrcrenine 1994
Lambda: Running an unintended function version or aliascccecevieveeeceneneniececceeceeeenee. 1994
Lambda: Detecting infinit@ LOOPS ..cueoveeveeieeeeeeeteeeeee ettt sa et aeaas 1995
General: Downstream service unavailability ... 1996
AWS SDK: Versions and UPAAESccceeeeereeieieeeeerestectestesteseeeeeeeeesaesaessessessessassesssessessessensan 1996
Python: Libraries load iNCOMTECLLY ..ottt ae e nnens 1997
Java: Your function takes longer to process events after updating to Java 17 from Java
T ettt ettt sttt e et s et et R et et e R et et e e A et e Rt et et et e seebe b e s e esententeaenee 1998
EVENT SOUICE MAPPING ceoiiiiiiiieieiterieccteere st essteestesssessseessaeestessseessaesssessssasssessssessseesssessseesssesssesssaes 1998
Identifying and managing throttling ... 1998
Errors in the processing fUNCLION ... 2000
Identifying and handling backpreSSUIe ...ttt sae st saeeaens 2002
NEEWOTKING «oeveteeieeieceetetecte ettt e te s te s et e st e s e e e e s et et et e tassessesseeseessessessansansassasseesaesaassensansansans 2003
VPC: Function loses internet access Or timMes OULcccceuevirireniirinenentnenenteeeesee st eesesseeenens 2003
VPC: TCP or UDP connection intermittently fails ..., 2004
VPC: Function needs access to AWS services without using the internetccocueunneee. 2004
VPC: Elastic network interface limit reached ... 2004
EC2: Elastic network interface with type of "lambda" ... 2005
DNS: Fail to connect to hosts with UNKNOWNHOSTEXCEPTIONccccevevievirenenereneneeennes 2005
Sample apPPliCAtIONSccciiiiiiiieeeeeiiiiiiieiiiiiiiieeenenniiiiieeeettseesses 2006
WOrking With AWS SDKScciiiiiiiiiieneemnnniiisiecieninnesssass 2009
COodE EXAMPLES ...ceeeeeeeeeniiiiiieiiiiiineaeesneessssssseeeessesssns 2011
BaSICS ittt sttt st b e et b et a s b e et e st e be et e e ae s be s st e st e sbeeaeesneens 2023
HELLO LaAMIBAQ ..ttt ettt s st sttt st et sba e e e ne s 2024
LEAIN the DASICS ..ottt ettt sttt s bt a s e sae e ssasaa s e e 2033
ACTIONS .ttt ettt sttt s s b st e et e st e st e et s e st s b e st e st et e st e se s b asntenneenanns 2170
SCONANIOS ..ttt ettt et e et e bt st e st s st et e et e st st e e st s se et e e st e se st eesteseeatesstssassteseensasnsasens 2304
Automatically confirm known users with a Lambda function ..o, 2305
Automatically migrate known users with a Lambda function ... 2345
Create a REST API t0 track COVID=T9 dataccccvveeievirenienirenienieeeenienteeseesteesessessesessessesassens 2369
Create a lending LIbrary REST AP ...ttt e e e saestesaessesseese s e e s e saesne s 2370

XXX

AWS Lambda Developer Guide

Create @ messenger aPPLICALION ...ttt a e e nan 2371
Create a serverless application to manage photosccriereciececececeeeeee e 2372
Create a websocket chat application ... 2376
Create an application to analyze customer feedbackccoeveeeieieciecencceeeceeeeee e 2376
Invoke a Lambda function from @ BrOWSENcocveivenienieincnreseteteesestee st aes 2383
Transform data with S3 Object Lambda ..ot 2384
Use APl Gateway to invoke a Lambda function ...t 2384
Use Step Functions to invoke Lambda functions ... 2386
Use scheduled events to invoke a Lambda function ... 2387
Use the Neptune APl to query graph data ...t 2389
Write custom activity data with a Lambda function after Amazon Cognito user
QAUERENTICATION ..ttt ettt ettt et s st et e e saesae e ens 2390
SEIVEILESS EXAMPLESeoeieieteteteeeee ettt te e te e s e e e e e e e et e st e s tesbe s b e esaese e e esaessetasansassesseessensansansan 2412
Connecting to an Amazon RDS database in a Lambda function ..., 2413
Invoke a Lambda function from a Kinesis trigger ... 2432
Invoke a Lambda function from a DynamoDB triggerceeveecieceeceececeseeeeeeee e 2442
Invoke a Lambda function from a Amazon DocumentDB triggerccoeveeeeeveeveeceeceecnenene 2452
Invoke a Lambda function from an Amazon MSK triggereeveveeceeceesececeeeeeeeenes 2464
Invoke a Lambda function from an Amazon S3 trigger ... eeceeececeeeeeeeeeereeecaeeens 2474
Invoke a Lambda function from an Amazon SNS trigger ... eeveceececeeceseeee e 2486
Invoke a Lambda function from an Amazon SQS trigger ... eeeveeceeceececeeeseeeeeeeenens 2495
Reporting batch item failures for Lambda functions with a Kinesis trigger 2504
Reporting batch item failures for Lambda functions with a DynamoDB trigger 2517
Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2528
AWS community CONTHDULIONS ...cveeieieeeeeeeee ettt st ae e e e 2538
Build and test a serverless appliCation ... 2538
Lambda qUORAS ...ccciiiiiiiiieeninciiieiieiiiiiteeessssesssssssesesss 2541
COMPULE ANA SEOFAGE ..ttt te s te s e e e et sae st e st e s te s e s se e e e s et esbestassassessaesaennenaanes 2542
Function configuration, deployment, and eXecutioncccceoeeeeeeieieeiecieceecececece e 2544
LAmMbBAa API FEQUESLS ...everieieeeeeeteteteteste e st e e e tesaestestestessesse s e e e s s e s estessessassassessassasssessansassensansens 2546
OtNEE SEIVICES ..ttt ettt ettt st et s e st e e e st et e e s b et et saesae st esassessensesesansensssanes 2547
(DT oYal 1Ty 1 T=T 01 a1 TS o] o PO UPUTTN 2548
EQrlIEr UPAALES ..ottt sttt e e s et st e st e st e st e s s e e seesa e e e s et e tebansassassnssessaanean 2571

XXXi

AWS Lambda Developer Guide

What is AWS Lambda?

You can use AWS Lambda to run code without provisioning or managing servers. Lambda runs
your code on a high-availability compute infrastructure and manages all the computing resources,
including server and operating system maintenance, capacity provisioning, automatic scaling, and
logging. You organize your code into Lambda functions. The Lambda service runs your function
only when needed and scales automatically. For pricing information, see AWS Lambda Pricing for
details.

When using Lambda, you are responsible only for your code. Lambda manages the compute fleet
that offers a balance of memory, CPU, network, and other resources to run your code. Because
Lambda manages these resources, you cannot log in to compute instances or customize the
operating system on provided runtimes.

When to use Lambda

Lambda is an ideal compute service for application scenarios that need to scale up rapidly, and
scale down to zero when not in demand. For example, you can use Lambda for:

» Stream processing: Use Lambda and Amazon Kinesis to process real-time streaming data for
application activity tracking, transaction order processing, clickstream analysis, data cleansing,
log filtering, indexing, social media analysis, Internet of Things (loT) device data telemetry, and
metering.

» Web applications: Combine Lambda with other AWS services to build powerful web applications
that automatically scale up and down and run in a highly available configuration across multiple
data centers. To build web applications with AWS services, developers can use infrastructure as
code (IaC) and orchestration tools such as AWS CloudFormation, AWS Cloud Development Kit
(AWS CDK), AWS Serverless Application Model, or coordinate complex workflows using AWS Step
Functions.

» Mobile backends: Build backends using Lambda and Amazon API Gateway to authenticate and
process APl requests. Use AWS Amplify to easily integrate with your iOS, Android, Web, and
React Native frontends.

« loT backends: Build serverless backends using Lambda to handle web, mobile, IoT, and third-
party API requests.

« File processing: Use Amazon Simple Storage Service (Amazon S3) to trigger Lambda data

processing in real time after an upload.

When to use Lambda 1

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/cloudformation
https://aws.amazon.com/cdk
https://aws.amazon.com/cdk
https://aws.amazon.com/serverless/sam
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions

AWS Lambda Developer Guide

« Database Operations and Integration: Use Lambda to process database interactions both
reactively and proactively, from handling queue messages for Amazon RDS operations like user
registrations and order submissions, to responding to DynamoDB changes for audit logging, data
replication, and automated workflows.

» Scheduled and Periodic Tasks: Use Lambda with EventBridge rules to execute time-based
operations such as database maintenance, data archiving, report generation, and other
scheduled business processes using cron-like expressions.

How Lambda works

Because Lambda is a serverless, event-driven compute service, it uses a different programming
paradigm than traditional web applications. The following model illustrates how Lambda
fundamentally works:

1. You write and organize your code in Lambda functions, which are the basic building blocks you

use to create a Lambda application.

2. You control security and access through Lambda permissions, using execution roles to manage

what AWS services your functions can interact with and what resource policies can interact with
your code.

3. Event sources and AWS services trigger your Lambda functions, passing event data in JSON
format, which your functions process (this includes event source mappings).

4. Lambda runs your code with language-specific runtimes (like Node.js and Python) in execution

environments that package your runtime, layers, and extensions.

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Key features

Configure, control, and deploy secure applications:

« Environment variables modify application behavior without new code deployments.

« Versions safely test new features while maintaining stable production environments.

How Lambda works 2

https://docs.aws.amazon.com/serverless/latest/devguide/

AWS Lambda Developer Guide

« Lambda layers optimize code reuse and maintenance by sharing common components across
multiple functions.

» Code signing enforce security compliance by ensuring only approved code reaches production
systems.

Scale and perform reliably:

« Concurrency and scaling controls precisely manage application responsiveness and resource
utilization during traffic spikes.

« Lambda SnapStart significantly reduce cold start times. Lambda SnapStart can provide as low as

sub-second startup performance, typically with no changes to your function code.

» Response streaming optimize function performance by delivering large payloads incrementally
for real-time processing.

« Container images package functions with complex dependencies using container workflows.

Connect and integrate seamlessly:

+ VPC networks secure sensitive resources and internal services.

« File system integration that shares persistent data and manage stateful operations across
function invocations.

« Function URLs create public-facing APIs and endpoints without additional services.

« Lambda extensions augment functions with monitoring, security, and operational tools.

Related information

« For information on how Lambda works, see How Lambda works.

» To start using Lambda, see Create your first Lambda function.

» For a list of example applications, see Getting started with example applications and patterns.

How Lambda works

Lambda functions are the basic building blocks you use to build Lambda applications. To write
functions, it's essential to understand the core concepts and components that make up the Lambda

Related information 3

AWS Lambda Developer Guide

programming model. This section will guide you through the fundamental elements you need to
know to start building serverless applications with Lambda.

« Lambda functions and function handlers - A Lambda function is a small block of code that
runs in response to events. functions are the basic building blocks you use to build applications.
Function handlers are the entry point for event objects that your Lambda function code

processes.

o Lambda execution environment and runtimes - Lambda execution environments manage the
resources required to run your function. Run times are the language-specific environments your

functions run in.

« Events and triggers - how other AWS services invoke your functions in response to specific

events.

« Lambda permissions and roles - how you control who can access your functions and what other
AWS services your functions can interact with.

® Tip
If you want to start by understanding serverless development more generally, see
Understanding the difference between traditional and serverless development in the AWS
Serverless Developer Guide.

Lambda functions and function handlers

In Lambda, functions are the fundamental building blocks you use to create applications. A
Lambda function is a piece of code that runs in response to events, such as a user clicking a button
on a website or a file being uploaded to an Amazon Simple Storage Service (Amazon S3) bucket.
You can think of a function as a kind of self-contained program with the following properties.

A Lambda function handler is the method in your function code that processes events. When a
function runs in response to an event, Lambda runs the function handler. Data about the event
that caused the function to run is passed directly to the handler. While the code in a Lambda
function can contain more than one method or function, Lambda functions can only have one
handler.

To create a Lambda function, you bundle your function code and its dependencies in a deployment
package. Lambda supports two types of deployment package, .zip file archives and container

Images.

Lambda functions and function handlers 4

https://docs.aws.amazon.com/serverless/latest/devguide/serverless-shift-mindset.html

AWS Lambda Developer Guide

« A function has one specific job or purpose
« They run only when needed in response to specific events

« They automatically stop running when finished

Lambda execution environment and runtimes

Lambda functions run inside a secure, isolated execution environment which Lambda manages for

you. This execution environment manages the processes and resources that are needed to run your
function. When a function is first invoked, Lambda creates a new execution environment for the
function to run in. After the function has finished running, Lambda doesn't stop the execution
environment right away; if the function is invoked again, Lambda can re-use the existing execution
environment.

The Lambda execution environment also contains a runtime, a language-specific environment that
relays event information and responses between Lambda and your function. Lambda provides a
number of managed runtimes for the most popular programming languages, or you can create

your own.

For managed runtimes, Lambda automatically applies security updates and patches to functions
using the runtime.

Events and triggers

You can also invoke a Lambda function directly by using the Lambda console, AWS CLI, or one of
the AWS Software Development Kits (SDKs). It's more usual in a production application for your

function to be invoked by another AWS service in response to a particular event. For example, you
might want a function to run whenever an item is added to an Amazon DynamoDB table.

To make your function respond to events, you set up a trigger. A trigger connects your function

to an event source, and your function can have multiple triggers. When an event occurs, Lambda
receives event data as a JSON document and converts it into an object that your code can process.
You might define the following JSON format for your event and the Lambda runtime converts this
JSON to an object before passing it to your function's handler.

Example custom Lambda event

"Location": "SEA",
"WeatherData":{

Lambda execution environment and runtimes 5

https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/

AWS Lambda Developer Guide

"TemperaturesF":{
"MinTempF": 22,
"MaxTempF": 78

iy

"PressuresHPa":{
"MinPressureHPa": 1015,
"MaxPressureHPa": 1027

Stream and queue services like Amazon Kinesis or Amazon SQS, Lambda use an event source
mapping instead of a standard trigger. Event source mappings poll the source for new data, batch
records together, and then invoke your function with the batched events. For more information,
see How event source mappings differ from direct triggers.

To understand how a trigger works, start by completing the Use an Amazon S3 trigger tutorial, or

for a general overview of using triggers and instructions on creating a trigger using the Lambda
console, see Integrating other services.

Lambda permissions and roles

For Lambda, there are two main types of permissions that you need to configure:

» Permissions that your function needs to access other AWS services

« Permissions that other users and AWS services need to access your function

The following sections describe both of these permission types and discuss best practices for
applying least-privilege permissions.

Permissions for functions to access other AWS resources

Lambda functions often need to access other AWS resources and perform actions on them. For
example, a function might read items from a DynamoDB table, store an object in an S3 bucket,
or write to an Amazon SQS queue. To give functions the permissions they need to perform these
actions, you use an execution role.

A Lambda execution role is a special kind of AWS Identity and Access Management (IAM) role, an
identity you create in your account that has specific permissions associated with it defined in a

policy.

Lambda permissions and roles 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Lambda Developer Guide

Every Lambda function must have an execution role, and a single role can be used by more than
one function. When a function is invoked, Lambda assumes the function's execution role and is
granted permission to take the actions defined in the role's policy.

When you create a function in the Lambda console, Lambda automatically creates an execution
role for your function. The role's policy gives your function basic permissions to write log outputs
to Amazon CloudWatch Logs. To give your function permission to perform actions on other

AWS resources, you need to edit the role to add the extra permissions. The easiest way to add
permissions is to use an AWS managed policy. Managed policies are created and administered by

AWS and provide permissions for many common use cases. For example, if your function performs
CRUD operations on a DynamoDB table, you can add the AmazonDynamoDBFullAccess policy to

your role.
Permissions for other users and resources to access your function

To grant other AWS service permission to access your Lambda function, you use a resource-
based policy. In 1AM, resource-based policies are attached to a resource (in this case, your Lambda
function) and define who can access the resource and what actions they are allowed to take.

For another AWS service to invoke your function through a trigger, your function's resource-based
policy must grant that service permission to use the 1ambda: InvokeFunction action. If you
create the trigger using the console, Lambda automatically adds this permission for you.

To grant permission to other AWS users to access your function, you can define this in your
function's resource-based policy in exactly the same way as for another AWS service or resource.
You can also use an identity-based policy that's associated with the user.

Best practices for Lambda permissions

When you set permissions using IAM policies, security best practice is to grant only the permissions

required to perform a task. This is known as the principle of least privilege. To get started granting
permissions for your function, you might choose to use an AWS managed policy. Managed policies
can be the quickest and easiest way to grant permissions to perform a task, but they might also
include other permissions you don't need. As you move from early development through test and
production, we recommend you reduce permissions to only those needed by defining your own
customer-managed policies.

The same principle applies when granting permissions to access your function using a resource-
based policy. For example, if you want to give permission to Amazon S3 to invoke your function,

Lambda permissions and roles 7

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

AWS Lambda Developer Guide

best practice is to limit access to individual buckets, or buckets in particular AWS accounts, rather
than giving blanket permissions to the S3 service.

Lambda permissions and roles 8

AWS Lambda Developer Guide

Running code with Lambda

When you write a Lambda function, you are creating code that will run in a unique serverless
environment. Understanding how Lambda actually runs your code involves two key aspects:
the programming model that defines how your code interacts with Lambda, and the execution

environment lifecycle that determines how Lambda manages your code's runtime environment.
The Lambda programming model

Programming model functions as a common set of rules for how Lambda works with your code,

regardless of whether you're writing in Python, Java, or any other supported language. The
programming model includes your runtime and handler.

1. Lambda receives an event.

2. Lambda uses the runtime (like Python or Java) to prepare the event in a format your code can
use.

3. The runtime sends the formatted event to your handler.

4. Your handler processes the event using the code you've written in your Lambda function.

Essential to this model is the handler, where Lambda sends events to be processed by your code.
Think of it as the entry point to your code. When Lambda receives an event, it passes this event and
some context information to your handler. The handler then runs your code to process these events
- for example, it might read a file when it's uploaded to Amazon S3, analyze an image, or update

a database. Once your code finishes processing an event, the handler is ready to process the next
one.

The Lambda execution model

While the programming model defines how Lambda interacts with your code, Execution
environment is where Lambda actually runs your function — it's a secure, isolated compute space
created specifically for your function. Each environment follows a lifecycle of three phases.

1. Initialization: Lambda creates the environment and gets everything ready to run your function.
This includes setting up your chosen runtime, loading your code, and running any startup code
you've written.

2. Invocation: When events arrive, Lambda uses this environment to run your function. The
environment can process many events over time, one after another. As more events come in,

Running code 9

foundation-progmodel.html
lambda-runtime-environment.html
lambda-runtime-environment.html

AWS Lambda Developer Guide

Lambda creates additional environments to handle the increased demand. When demand drops,
Lambda stops environments that are no longer needed.

3. Shutdown: Eventually, Lambda will shut down environments. Before doing this, it gives your
function a chance to clean up any remaining tasks.

This environment handles important aspects of running your function. It provides your
function with memory and a /tmp directory for temporary storage. It maintains resources like
database connections between invocations, so your function can reuse them. It offers features
like provisioned concurrency, where Lambda prepares environments in advance to improve
performance.

Understanding the Lambda programming model

Lambda provides a programming model that is common to all of the runtimes. The programming
model defines the interface between your code and the Lambda system. You tell Lambda the entry
point to your function by defining a handler in the function configuration. The runtime passes in
objects to the handler that contain the invocation event and the context, such as the function name
and request ID.

When the handler finishes processing the first event, the runtime sends it another. The function's
class stays in memory, so clients and variables that are declared outside of the handler method in
initialization code can be reused. To save processing time on subsequent events, create reusable
resources like AWS SDK clients during initialization. Once initialized, each instance of your function
can process thousands of requests.

Your function also has access to local storage in the /tmp directory, a transient cache that can be
used for multiple invocations. For more information, see Execution environment.

When AWS X-Ray tracing is enabled, the runtime records separate subsegments for initialization

and execution.

The runtime captures logging output from your function and sends it to Amazon CloudWatch
Logs. In addition to logging your function's output, the runtime also logs entries when function
invocation starts and ends. This includes a report log with the request ID, billed duration,
initialization duration, and other details. If your function throws an error, the runtime returns that
error to the invoker.

Running code 10

AWS Lambda Developer Guide

® Note
Logging is subject to CloudWatch Logs quotas. Log data can be lost due to throttling or, in

some cases, when an instance of your function is stopped.

Lambda scales your function by running additional instances of it as demand increases, and by
stopping instances as demand decreases. This model leads to variations in application architecture,
such as:

» Unless noted otherwise, incoming requests might be processed out of order or concurrently.

« Do not rely on instances of your function being long lived, instead store your application's state
elsewhere.

» Use local storage and class-level objects to increase performance, but keep to a minimum the
size of your deployment package and the amount of data that you transfer onto the execution
environment.

For a hands-on introduction to the programming model in your preferred programming language,
see the following chapters.

» Building Lambda functions with Node.js

» Building Lambda functions with Python

» Building Lambda functions with Ruby

» Building Lambda functions with Java

» Building Lambda functions with Go

» Building Lambda functions with C#

» Building Lambda functions with PowerShell

Understanding the Lambda execution environment lifecycle

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function. The execution environment also provides lifecycle support for the function's runtime and
any external extensions associated with your function.

Running code 11

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

AWS Lambda

Developer Guide

The function's runtime communicates with Lambda using the Runtime API. Extensions

communicate with Lambda using the Extensions API. Extensions can also receive log messages and

other telemetry from the function by using the Telemetry API.

O| Runtime API [

@ Extensions API

@®

(S
©
(s

@ Telemetry API

(~
O

Runtime + Function N

API Endpoints

Processes

Lambda Service Execution Environment

When you create your Lambda function, you specify configuration information, such as the amount

of memory available and the maximum execution time allowed for your function. Lambda uses this

information to set up the execution environment.

The function's runtime and each external extension are processes that run within the execution
environment. Permissions, resources, credentials, and environment variables are shared between

the function and the extensions.

Topics

» Lambda execution environment lifecycle

« Cold starts and latency

» Reducing cold starts with Provisioned Concurrency

« Optimizing static initialization

Lambda execution environment lifecycle

EXTENSION | RUNTIME FUNCTION

RUNTIME EXTENSION

INIT INIT INIT INVOKE =~~~ INVOKE ="~ SHUTDOWN | SHUTDOWN
“ v J (. J - J
Y Y Y Y
INIT INVOKE INVOKE SHUTDOWN

Running code

12

AWS Lambda Developer Guide

Each phase starts with an event that Lambda sends to the runtime and to all registered extensions.
The runtime and each extension indicate completion by sending a Next API request. Lambda
freezes the execution environment when the runtime and each extension have completed and
there are no pending events.

Topics

« Init phase

 Failures during the Init phase

» Restore phase (Lambda SnapStart only)

« Invoke phase
 Failures during the invoke phase

o Shutdown phase

Init phase

In the Init phase, Lambda performs three tasks:

Start all extensions (Extension init)

Bootstrap the runtime (Runtime init)

Run the function's static code (Function init)

Run any before-checkpoint runtime hooks (Lambda SnapStart only)

The Init phase ends when the runtime and all extensions signal that they are ready by sending

a Next API request. The Init phase is limited to 10 seconds. If all three tasks do not complete
within 10 seconds, Lambda retries the Init phase at the time of the first function invocation with
the configured function timeout.

When Lambda SnapStart is activated, the Init phase happens when you publish a function

version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
before-checkpoint runtime hook, then the code runs at the end of Init phase.

(® Note

The 10-second timeout doesn't apply to functions that are using provisioned concurrency
or SnapStart. For provisioned concurrency and SnapStart functions, your initialization code

Running code 13

AWS Lambda Developer Guide

can run for up to 15 minutes. The time limit is 130 seconds or the configured function
timeout (maximum 900 seconds), whichever is higher.

When you use provisioned concurrency, Lambda initializes the execution environment when

you configure the PC settings for a function. Lambda also ensures that initialized execution
environments are always available in advance of invocations. You may see gaps between your
function's invocation and initialization phases. Depending on your function's runtime and memory
configuration, you may also see variable latency on the first invocation on an initialized execution
environment.

For functions using on-demand concurrency, Lambda may occasionally initialize execution
environments ahead of invocation requests. When this happens, you may also observe a time gap
between your function's initialization and invocation phases. We recommend you to not take a
dependency on this behavior.

Failures during the Init phase

If a function crashes or times out during the Init phase, Lambda emits error information in the
INIT_REPORT log.

Example — INIT_REPORT log for timeout
INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: timeout

Example — INIT_REPORT log for extension failure

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: error Error Type:
Extension.Crash

If the Init phase is successful, Lambda doesn't emit the INIT_REPORT log unless SnapStart or
provisioned concurrency is enabled. SnapStart and provisioned concurrency functions always emit

INIT_REPORT. For more information, see Monitoring for Lambda SnapStart.

Restore phase (Lambda SnapStart only)

When you first invoke a SnapStart function and as the function scales up, Lambda resumes new
execution environments from the persisted snapshot instead of initializing the function from
scratch. If you have an after-restore runtime hook, the code runs at the end of the Restore phase.

You are charged for the duration of after-restore runtime hooks. The runtime must load and after-

Running code 14

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

AWS Lambda Developer Guide

restore runtime hooks must complete within the timeout limit (10 seconds). Otherwise, you'll get
a SnapStartTimeoutException. When the Restore phase completes, Lambda invokes the function
handler (the Invoke phase).

Failures during the Restore phase
If the Restore phase fails, Lambda emits error information in the RESTORE_REPORT log.

Example — RESTORE_REPORT log for timeout

RESTORE_REPORT Restore Duration: 1236.04 ms Status: timeout

Example — RESTORE_REPORT log for runtime hook failure

RESTORE_REPORT Restore Duration: 1236.04 ms Status: error Error Type: Runtime.ExitError

For more information about the RESTORE_REPORT log, see Monitoring for Lambda SnapStart.

Invoke phase

When a Lambda function is invoked in response to a Next APl request, Lambda sends an Invoke
event to the runtime and to each extension.

The function's timeout setting limits the duration of the entire Invoke phase. For example, if you
set the function timeout as 360 seconds, the function and all extensions need to complete within
360 seconds. Note that there is no independent post-invoke phase. The duration is the sum of all
invocation time (runtime + extensions) and is not calculated until the function and all extensions

have finished executing.

The invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Failures during the invoke phase

If the Lambda function crashes or times out during the Invoke phase, Lambda resets the
execution environment. The following diagram illustrates Lambda execution environment behavior
when there's an invoke failure:

EXTENSION | RUNTIME ~ FUNCTION RUNTIME | EXTENSION EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION
INIT INIT INIT IEVCKE PAOKE RESET | SHUTDOWN INIT INIT INIT INVOKE SHUTDOWN | SHUTDOWN

INIT INVOKE INVOKE WITH ERROR INVOKE SHUTDOWN

Running code 15

AWS Lambda Developer Guide

In the previous diagram:

« The first phase is the INIT phase, which runs without errors.
» The second phase is the INVOKE phase, which runs without errors.

« At some point, suppose your function runs into an invoke failure (common causes include
function timeouts, runtime errors, memory exhaustion, VPC connectivity issues, permission
errors, concurrency limits, and various configuration problems). For a complete list of possible
invocation failures, see the section called “Invocation”. The third phase, labeled INVOKE WITH
ERROR, illustrates this scenario. When this happens, the Lambda service performs a reset.

The reset behaves like a Shutdown event. First, Lambda shuts down the runtime, then sends a
Shutdown event to each registered external extension. The event includes the reason for the
shutdown. If this environment is used for a new invocation, Lambda re-initializes the extension
and runtime together with the next invocation.

Note that the Lambda reset does not clear the /tmp directory content prior to the next init
phase. This behavior is consistent with the regular shutdown phase.

(® Note

AWS is currently implementing changes to the Lambda service. Due to these changes,
you may see minor differences between the structure and content of system log
messages and trace segments emitted by different Lambda functions in your AWS
account.

If your function's system log configuration is set to plain text, this change affects the
log messages captured in CloudWatch Logs when your function experiences an invoke
failure. The following examples show log outputs in both old and new formats.

These changes will be implemented during the coming weeks, and all functions in all
AWS Regions except the China and GovCloud regions will transition to use the new-
format log messages and trace segments.

Example CloudWatch Logs log output (runtime or extension crash) - old style

START RequestId: c3252230-c73d-49f6-8844-968c01ldle2el Version: $LATEST
RequestId: c¢3252230-c73d-49f6-8844-968c01ldle2el Error: Runtime exited without
providing a reason

Runtime.ExitError

Running code 16

AWS Lambda Developer Guide

END RequestId: c3252230-c73d-49f6-8844-968c0ldle2el
REPORT RequestId: c3252230-c73d-49f6-8844-968c@1dle2el Duration: 933.59 ms Billed
Duration: 934 ms Memory Size: 128 MB Max Memory Used: 9 MB

Example CloudWatch Logs log output (function timeout) - old style

START RequestId: b70435cc-261c-4438-b9b6-efesc8f@4b21 Version: $LATEST
2024-03-04T17:22:38.033Z b70435cc-261c-4438-b9b6-efe4c8f04b21 Task timed out after
3.00 seconds

END RequestId: b70435cc-261c-4438-b9b6-efestc8f04b21
REPORT RequestId: b70435cc-261c-4438-b9b6-efe4c8F04b21 Duration: 3004.92 ms Billed

Duration: 3000 ms Memory Size: 128 MB Max Memory Used: 33 MB Init Duration: 111.23
ms

The new format for CloudWatch logs includes an additional statusfield in the REPORT line. In
the case of a runtime or extension crash, the REPORT line also includes a field ExroxrType.

Example CloudWatch Logs log output (runtime or extension crash) - new style

START RequestId: 5b866fbl-7154-4af6-8078-6ef6castc2ddd Version: $LATEST

END RequestId: 5b866fbl-7154-4af6-8078-6ef6casc2ddd

REPORT RequestId: 5b866fbl-7154-4af6-8078-6ef6casc2ddd Duration: 133.61 ms Billed
Duration: 133 ms Memory Size: 128 MB Max Memory Used: 31 MB Init Duration: 80.00
ms Status: error Error Type: Runtime.ExitError

Example CloudWatch Logs log output (function timeout) - new style

START RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f@fda Version: $LATEST

END RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f0fda

REPORT RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f@fda Duration: 3016.78 ms Billed
Duration: 3016 ms Memory Size: 128 MB Max Memory Used: 31 MB Init Duration: 84.00
ms Status: timeout

» The fourth phase represents the INVOKE phase immediately following an invoke failure.
Here, Lambda initializes the environment again by re-running the INIT phase. This is called a
suppressed init. When suppressed inits occur, Lambda doesn't explicitly report an additional INIT
phase in CloudWatch Logs. Instead, you may notice that the duration in the REPORT line includes
an additional INIT duration + the INVOKE duration. For example, suppose you see the following
logs in CloudWatch:

Running code 17

AWS Lambda Developer Guide

2022-12-20T01:00:00.000-08:00 START RequestId: XXX Version: $LATEST
2022-12-20T01:00:02.500-08:00 END RequestId: XXX
2022-12-20T01:00:02.500-08:00 REPORT RequestId: XXX Duration: 3022.91 ms
Billed Duration: 3000 ms Memory Size: 512 MB Max Memory Used: 157 MB

In this example, the difference between the REPORT and START timestamps is 2.5 seconds.
This doesn't match the reported duration of 3022.91 millseconds, because it doesn't take into
account the extra INIT (suppressed init) that Lambda performed. In this example, you can infer
that the actual INVOKE phase took 2.5 seconds.

For more insight into this behavior, you can use the Accessing real-time telemetry

data for extensions using the Telemetry API. The Telemetry APl emits INIT_START,
INIT_RUNTIME_DONE, and INIT_REPORT events with phase=invoke whenever suppressed
inits occur in between invoke phases.

» The fifth phase represents the SHUTDOWN phase, which runs without errors.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown event to each registered
external extension. Extensions can use this time for final cleanup tasks. The Shutdown event is a
response to a Next API request.

Duration limit: The maximum duration of the Shutdown phase depends on the configuration of
registered extensions:

« 0 ms - A function with no registered extensions

« 500 ms - A function with a registered internal extension

« 2,000 ms - A function with one or more registered external extensions

If the runtime or an extension does not respond to the Shutdown event within the limit, Lambda
ends the process using a SIGKILL signal.

After the function and all extensions have completed, Lambda maintains the execution
environment for some time in anticipation of another function invocation. However, Lambda
terminates execution environments every few hours to allow for runtime updates and maintenance
—even for functions that are invoked continuously. You should not assume that the execution

Running code 18

AWS Lambda Developer Guide

environment will persist indefinitely. For more information, see Implement statelessness in

functions.

When the function is invoked again, Lambda thaws the environment for reuse. Reusing the
execution environment has the following implications:

» Objects declared outside of the function's handler method remain initialized, providing
additional optimization when the function is invoked again. For example, if your Lambda
function establishes a database connection, instead of reestablishing the connection, the original
connection is used in subsequent invocations. We recommend adding logic in your code to check
if a connection exists before creating a new one.

« Each execution environment provides between 512 MB and 10,240 MB, in 1-MB increments, of
disk space in the /tmp directory. The directory content remains when the execution environment
is frozen, providing a transient cache that can be used for multiple invocations. You can add extra
code to check if the cache has the data that you stored. For more information on deployment
size limits, see Lambda quotas.

« Background processes or callbacks that were initiated by your Lambda function and did not
complete when the function ended resume if Lambda reuses the execution environment. Make
sure that any background processes or callbacks in your code are complete before the code exits.

Cold starts and latency

When Lambda receives a request to run a function via the Lambda API, the service first prepares an
execution environment. During this initialization phase, the service downloads your code, starts the
environment, and runs any initialization code outside of the main handler. Finally, Lambda runs the
handler code.

Time

L J

Download your Start new execution Execute initialization Execute handler
code environment code code

Cold start duration

Invocation duration

In this diagram, the first two steps of downloading the code and setting up the environment are
frequently referred to as a “cold start”. You are not charged for this time, but it does add latency to
your overall invocation duration.

Running code 19

AWS Lambda Developer Guide

After the invocation completes, the execution environment is frozen. To improve resource
management and performance, Lambda retains the execution environment for a period of

time. During this time, if another request arrives for the same function, Lambda can reuse the
environment. This second request typically finishes more quickly, since the execution environment
is already fully set up. This is called a “warm start”.

Cold starts typically occur in under 1% of invocations. The duration of a cold start varies from
under 100 ms to over 1 second. In general, cold starts are typically more common in development
and test functions than production workloads. This is because development and test functions are
usually invoked less frequently.

Reducing cold starts with Provisioned Concurrency

If you need predictable function start times for your workload, provisioned concurrency is the
recommended solution to ensure the lowest possible latency. This feature pre-initializes execution
environments, reducing cold starts.

For example, a function with a provisioned concurrency of 6 has 6 execution environments pre-
warmed.

Time .
1 1
2 2
3 3
4 4
5 5 Cold start duration
Function ready
6 6

Invocation duration

Optimizing static initialization

Static initialization happens before the handler code starts running in a function. This is the
initialization code that you provide, that is outside of the main handler. This code is often used
to import libraries and dependencies, set up configurations, and initialize connections to other
services.

Running code 20

AWS Lambda Developer Guide

The following Python example shows importing, and configuring modules, and creating the
Amazon S3 client during the initialization phase, before the 1ambda_handler function runs
during invoke.

import os
import json
import cv2
import logging
import boto3

s3 = boto3.client('s3"')
logger = logging.getlLogger()
logger.setlLevel(logging.INFO)

def lambda_handler(event, context):

Handler logic...

The largest contributor of latency before function execution comes from initialization code. This
code runs when a new execution environment is created for the first time. The initialization code is
not run again if an invocation uses a warm execution environment. Factors that affect initialization
code latency include:

» The size of the function package, in terms of imported libraries and dependencies, and Lambda
layers.

« The amount of code and initialization work.

» The performance of libraries and other services in setting up connections and other resources.

There are a number of steps that developers can take to optimize static initialization latency. If a
function has many objects and connections, you may be able to rearchitect a single function into
multiple, specialized functions. These are individually smaller and each have less initialization code.

It's important that functions only import the libraries and dependencies that they need. For
example, if you only use Amazon DynamoDB in the AWS SDK, you can require an individual service
instead of the entire SDK. Compare the following three examples:

// Instead of const AWS = require('aws-sdk'), use:
const DynamoDB = require('aws-sdk/clients/dynamodb')

Running code 21

AWS Lambda Developer Guide

// Instead of const AWSXRay = require('aws-xray-sdk'), use:
const AWSXRay = require('aws-xray-sdk-core')

// Instead of const AWS = AWSXRay.captureAWS(require('aws-sdk')), use:
const dynamodb = new DynamoDB.DocumentClient()
AWSXRay.captureAWSClient(dynamodb.service)

Static initialization is also often the best place to open database connections to allow a function to
reuse connections over multiple invocations to the same execution environment. However, you may
have large numbers of objects that are only used in certain execution paths in your function. In this
case, you can lazily load variables in the global scope to reduce the static initialization duration.

Avoid global variables for context-specific information. If your function has a global variable
that is used only for the lifetime of a single invocation and is reset for the next invocation, use a
variable scope that is local to the handler. Not only does this prevent global variable leaks across
invocations, it also improves the static initialization performance.

Running code 22

AWS Lambda Developer Guide

Creating event-driven architectures with Lambda

An event is anything triggers a Lambda function to run. There are two fundamental ways that
events can trigger Lambda: through direct invocation (push) and event source mappings (pull).

Many AWS services can directly invoke your Lambda functions. These services push events to

your Lambda function. Events that trigger a function can be almost anything, from an HTTP
request through APl Gateway, a schedule managed by an EventBridge rule, an AWS loT event, or
an Amazon S3 event. With event source mapping, Lambda actively fetches (or pulls) events from a
queue or stream. You configure Lambda to check for events from a supported service, and Lambda
handles the polling and invocation of your function.

When passed to your function, events are structured in JSON format. The JSON structure varies
depending on the service that generates it and the event type. While Lambda function invocations
can last up to 15 minutes, Lambda is best-suited for short invocations that last one second or less.
This is particularly true of event-driven architectures, where each Lambda function is treated as a
microservice responsible for performing a narrow set of specific instructions.

(@ Note

Event-driven architectures communicate across different systems using networks, which
introduce variable latency. For workloads that require very low latency, such as real-time
trading systems, this design may not be the best choice. However, for highly scalable and
available workloads, or those with unpredictable traffic patterns, event-driven architectures
can provide an effective way to meet these demands.

Topics

+ Benefits of event-driven architectures

o Trade-offs of event-driven architectures

« Anti-patterns in Lambda-based event-driven applications

Benefits of event-driven architectures

Lambda supports two methods of invocation in event-driven architectures:

1. Direct invocation (push method): AWS services trigger Lambda functions directly. For example:

Creating event-driven architectures 23

AWS Lambda Developer Guide

« Amazon S3 triggers a function when a file is uploaded
» API Gateway triggers a function when it receives an HTTP request

2. Event source mapping (pull method): Lambda retrieves events and invokes functions. For
example:

o Lambda retrieves messages from an Amazon SQS queue and invokes a function

o Lambda reads records from a DynamoDB stream and invokes a function

Both methods contribute to the benefits of event-driven architectures, as described below.
Replacing polling and webhooks with events

Many traditional architectures use polling and webhook mechanisms to communicate state
between different components. Polling can be highly inefficient for fetching updates since there

is a lag between new data becoming available and synchronization with downstream services.
Webhooks are not always supported by other microservices that you want to integrate with. They
may also require custom authorization and authentication configurations. In both cases, these
integration methods are challenging to scale on-demand without additional work by development
teams.

Creating event-driven architectures 24

AWS Lambda

Developer Guide

Polling based
communication

Thirdpaty .. |

= ®
Opll

Time-based
rle

l

= Downstream

application resource
Lambda
function
Webhook-based @
communication
Custom
authorizer
Third-party ,,, —1 > - s Downstream
application resource
HTTP

endpoint

Both of these mechanisms can be replaced by events, which can be filtered, routed, and pushed
downstream to consuming microservices. This approach can result in less bandwidth consumption,
CPU utilization, and potentially lower cost. These architectures can also reduce complexity, since
each functional unit is smaller and there is often less code.

Third-party Evg
application

bifs
= = Downstream

resource

Lambda
function

Creating event-driven architectures

25

AWS Lambda Developer Guide

Event-driven architectures can also make it easier to design near-real-time systems, helping
organizations move away from batch-based processing. Events are generated at the time when
state in the application changes, so the custom code of a microservice should be designed to
handle the processing of a single event. Since scaling is handled by the Lambda service, this
architecture can handle significant increases in traffic without changing custom code. As events
scale up, so does the compute layer that processes events.

Reducing complexity

Microservices enable developers and architects to decompose complex workflows. For example,
an ecommerce monolith may be broken down into order acceptance and payment processes
with separate inventory, fulfillment and accounting services. What may be complex to manage
and orchestrate in a monolith becomes a series of decoupled services that communicate
asynchronously with events.

Bl AWS Cloud
; Order acceptance P Payment processing :
o cftr @ |||« - AWS Step Functions ; M ‘r;\(‘;ewnitgéy

5 P workflows i ~(O°

: AP Gateway SQS queue ' I Start payment - . EventBridge

! i function Q ! event bus

' P N a '

--- o C‘")—- ; . Fulfilment
i / \ l i service

OO

' ! Accounting
service

This approach also makes it possible to assemble services that process data at different rates. In
this case, an order acceptance microservice can store high volumes of incoming orders by buffering
the messages in an SQS queue.

A payment processing service, which is typically slower due to the complexity of handling
payments, can take a steady stream of messages from the SQS queue. It can orchestrate complex
retry and error handling logic using AWS Step Functions, and coordinate active payment workflows
for hundreds of thousands of orders.

Improving scalability and extensibility

Microservices generate events that are typically published to messaging services like Amazon
SNS and Amazon SQS. These behave like an elastic buffer between microservices and help handle

Creating event-driven architectures 26

AWS Lambda Developer Guide

scaling when traffic increases. Services like Amazon EventBridge can then filter and route messages
depending upon the content of the event, as defined in rules. As a result, event-based applications
can be more scalable and offer greater redundancy than monolithic applications.

This system is also highly extensible, allowing other teams to extend features and add functionality
without impacting the order processing and payment processing microservices. By publishing
events using EventBridge, this application integrates with existing systems, such as the inventory
microservice, but also enables any future application to integrate as an event consumer. Producers
of events have no knowledge of event consumers, which can help simplify the microservice logic.

Trade-offs of event-driven architectures

Variable latency

Unlike monolithic applications, which may process everything within the same memory space on
a single device, event-driven applications communicate across networks. This design introduces
variable latency. While it's possible to engineer applications to minimize latency, monolithic
applications can almost always be optimized for lower latency at the expense of scalability and
availability.

Workloads that require consistent low-latency performance, such as high-frequency trading
applications in banks or sub-millisecond robotics automation in warehouses, are not good
candidates for event-driven architecture.

Eventual consistency

An event represents a change in state, and with many events flowing through different services
in an architecture at any given point of time, such workloads are often eventually consistent. This
makes it more complex to process transactions, handle duplicates, or determine the exact overall
state of a system.

Some workloads contain a combination of requirements that are eventually consistent (for
example, total orders in the current hour) or strongly consistent (for example, current inventory).
For workloads needing strong data consistency, there are architecture patterns to support this. For
example:

« DynamoDB can provide strongly consistent reads, sometimes at a higher latency, consuming a

greater throughput than the default mode. DynamoDB can also support transactions to help

maintain data consistency.

Creating event-driven architectures 27

https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html

AWS Lambda Developer Guide

» You can use Amazon RDS for features needing ACID properties, though relational databases
are generally less scalable than NoSQL databases like DynamoDB. Amazon RDS Proxy can help
manage connection pooling and scaling from ephemeral consumers like Lambda functions.

Event-based architectures are usually designed around individual events instead of large batches
of data. Generally, workflows are designed to manage the steps of an individual event or execution
flow instead of operating on multiple events simultaneously. In serverless, real-time event
processing is preferred over batch processing: batches should be replaced with many smaller
incremental updates. While this can make workloads more available and scalable, it also makes it
more challenging for events to have awareness of other events.

Returning values to callers

In many cases, event-based applications are asynchronous. This means that caller services do not
wait for requests from other services before continuing with other work. This is a fundamental
characteristic of event-driven architectures that enables scalability and flexibility. This means that
passing return values or the result of a workflow is more complex than in synchronous execution
flows.

Most Lambda invocations in production systems are asynchronous, responding to events from

services like Amazon S3 or Amazon SQS. In these cases, the success or failure of processing an
event is often more important than returning a value. Features such as dead letter queues (DLQs)

in Lambda are provided to ensure you can identify and retry failed events, without needing to
notify the caller.

Debugging across services and functions

Debugging event-driven systems is also different compared to a monolithic application. With
different systems and services passing events, it's not possible to record and reproduce the exact
state of multiple services when errors occur. Since each service and function invocation has
separate log files, it can be more complicated to determine what happened to a specific event that
caused an error.

There are three important requirements for building a successful debugging approach in event-
driven systems. First, a robust logging system is critical, and this is provided across AWS services
and embedded in Lambda functions by Amazon CloudWatch. Second, in these systems, it's
important to ensure that every event has a transaction identifier that is logged at each step
throughout a transaction, to help when searching for logs.

Creating event-driven architectures 28

https://en.wikipedia.org/wiki/ACID
https://aws.amazon.com/rds/proxy/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html

AWS Lambda Developer Guide

Finally, it's highly recommended to automate the parsing and analysis of logs by using a debugging
and monitoring service like AWS X-Ray. This can consume logs across multiple Lambda invocations
and services, making it much easier to pinpoint the root cause of issues. See Troubleshooting
walkthrough for in-depth coverage of using X-Ray for troubleshooting.

Anti-patterns in Lambda-based event-driven applications

When building event-driven architectures with Lambda, be careful of anti-patterns that are
technically functional, but may be suboptimal from an architecture and cost perspective. This
section provides general guidance about these anti-patterns, but is not prescriptive.

The Lambda monolith

In many applications migrated from traditional servers, such as Amazon EC2 instances or Elastic
Beanstalk applications, developers “lift and shift” existing code. Frequently, this results in a single
Lambda function that contains all of the application logic that is triggered for all events. For a basic
web application, a monolithic Lambda function would handle all APl Gateway routes and integrate
with all necessary downstream resources.

AWS Cloud
S
oc—
oc—
E— oc—
Monolithic o—
application DynamoDE table
ANY route
) . —
j —
AP| Gateway Lambda
function
e
53 bucket

This approach has several drawbacks:

» Package size - The Lambda function may be much larger because it contains all possible code
for all paths, which makes it slower for the Lambda service to run.

» Hard to enforce least privilege — The function’s execution role must allow permissions to all

resources needed for all paths, making the permissions very broad. This is a security concern.
Many paths in the functional monolith do not need all the permissions that have been granted.

Creating event-driven architectures 29

AWS Lambda Developer Guide

« Harder to upgrade - In a production system, any upgrades to the single function are more risky
and could break the entire application. Upgrading a single path in the Lambda function is an
upgrade to the entire function.

« Harder to maintain - It's more difficult to have multiple developers working on the service since
it's a monolithic code repository. It also increases the cognitive burden on developers and makes
it harder to create appropriate test coverage for code.

« Harder to reuse code - It's harder to separate reusable libraries from monoliths, making code
reuse more difficult. As you develop and support more projects, this can make it harder to
support the code and scale your team'’s velocity.

« Harder to test — As the lines of code increase, it becomes harder to unit test all the possible
combinations of inputs and entry points in the code base. It's generally easier to implement unit
testing for smaller services with less code.

The preferred alternative is to decompose the monolithic Lambda function into individual
microservices, mapping a single Lambda function to a single, well-defined task. In this simple web
application with a few API endpoints, the resulting microservice-based architecture can be based
upon the API Gateway routes.

AWS Cloud
Microservice
application
oc—
GET route Ussr data | —
I— | —
oc—
Lambda DynameoDB table
function
PUT route Binary data
Lambda 53 bucket
APl Gateway function
DELETE
route Einary data
>
Lambda 53 bucket
function

Creating event-driven architectures 30

AWS Lambda Developer Guide

Recursive patterns that cause run-away Lambda functions

AWS services generate events that invoke Lambda functions, and Lambda functions can send
messages to AWS services. Generally, the service or resource that invokes a Lambda function
should be different to the service or resource that the function outputs to. Failure to manage this
can result in infinite loops.

For example, a Lambda function writes an object to an Amazon S3 object, which in turn invokes the
same Lambda function via a put event. The invocation causes a second object to be written to the
bucket, which invokes the same Lambda function:

Lambda function 53 bucket

° Event |
! Put object !

| Put event !

[Fut object

' Put event !

| Put object !

Put event |

While the potential for infinite loops exists in most programming languages, this anti-pattern has
the potential to consume more resources in serverless applications. Both Lambda and Amazon

S3 automatically scale based upon traffic, so the loop may cause Lambda to scale to consume all
available concurrency and Amazon S3 will continue to write objects and generate more events for
Lambda.

This example uses S3, but the risk of recursive loops also exists in Amazon SNS, Amazon SQS,
DynamoDB, and other services. You can use recursive loop detection to find and avoid this anti-
pattern.

Creating event-driven architectures 31

AWS Lambda Developer Guide

Lambda functions calling Lambda functions

Functions enable encapsulation and code re-use. Most programming languages support the
concept of code synchronously calling functions within a code base. In this case, the caller waits
until the function returns a response.

When this happens on a traditional server or virtual instance, the operating system scheduler
switches to other available work. Whether the CPU runs at 0% or 100% does not affect the overall
cost of the application, since you are paying for the fixed cost of owning and operating a server.

This model often does not adapt well to serverless development. For example, consider a simple
ecommerce application consisting of three Lambda functions that process an order:

Create order Process payment Create invoice

Place order

i
|
|

)
Lt

Process credit card

-
Ll

Create PDF

!
=

Response

Response

i
o

Response

In this case, the Create order function calls the Process payment function, which in turn calls the
Create invoice function. While this synchronous flow may work within a single application on a
server, it introduces several avoidable problems in a distributed serverless architecture:

» Cost — With Lambda, you pay for the duration of an invocation. In this example, while the Create
invoice functions runs, two other functions are also running in a wait state, shown in red on the
diagram.

« Error handling - In nested invocations, error handling can become much more complex. For
example, an error in Create invoice might require the Process payment function to reverse the
charge, or it may instead retry the Create invoice process.

» Tight coupling — Processing a payment typically takes longer than creating an invoice. In this
model, the availability of the entire workflow is limited by the slowest function.

Creating event-driven architectures 32

AWS Lambda Developer Guide

« Scaling — The concurrency of all three functions must be equal. In a busy system, this uses more
concurrency than would otherwise be needed.

In serverless applications, there are two common approaches to avoid this pattern. First, use

an Amazon SQS queue between Lambda functions. If a downstream process is slower than an
upstream process, the queue durably persists messages and decouples the two functions. In this
example, the Create order function would publish a message to an SQS queue, and the Process
payment function consumes messages from the queue.

The second approach is to use AWS Step Functions. For complex processes with multiple types
of failure and retry logic, Step Functions can help reduce the amount of custom code needed to
orchestrate the workflow. As a result, Step Functions orchestrates the work and robustly handles
errors and retries, and the Lambda functions contain only business logic.

Synchronous waiting within a single Lambda function

Within a single Lambda, ensure that any potentially concurrent activities are not scheduled
synchronously. For example, a Lambda function might write to an S3 bucket and then write to a
DynamoDB table:

[| —
oc—
oc—
oc—
Lambda function 53 bucket DynamoDB table
PS Event |
! Put object
| Response
White item
o
Response
) Response

In this design, wait times are compounded because the activities are sequential. In cases where the
second task depends on the completion of the first task, you can reduce the total waiting time and
the cost of execution by have two separate Lambda functions:

Creating event-driven architectures 33

AWS Lambda Developer Guide

'l [| —
\ [| —
oc—
U [—
Lambda function 53 bucket Lambda function DynamoDB table
. Event
i Put object |
- > Fut event !
< : . > Write item
Response | =

In this design, the first Lambda function responds immediately after putting the object to the
Amazon S3 bucket. The S3 service invokes the second Lambda function, which then writes data
to the DynamoDB table. This approach minimizes the total wait time in the Lambda function

executions.

Creating event-driven architectures

34

AWS Lambda Developer Guide

Designing a Lambda applications

A well-architected event-driven application uses a combination of AWS services and custom
code to process and manage requests and data. This chapter focuses on Lambda-specific topics
in application design. There are many important considerations for serverless architects when
designing applications for busy production systems.

Many of the best practices that apply to software development and distributed systems also apply
to serverless application development. The overall goal is to develop workloads that are:

» Reliable - offering your end users a high level of availability. AWS serverless services are reliable
because they are also designed for failure.
« Durable - providing storage options that meet the durability needs of your workload.

» Secure - following best practices and using the tools provided to secure access to workloads and
limit the blast radius.

» Performant - using computing resources efficiently and meeting the performance needs of your
end users.

» Cost-efficient- designing architectures that avoid unnecessary cost that can scale without
overspending, and also be decommissioned without significant overhead.

The following design principles can help you build workloads that meet these goals. Not every
principle may apply to every architecture, but they should guide you in general architecture
decisions.

Topics

e Use services instead of custom code

« Understand Lambda abstraction levels

« Implement statelessness in functions

« Minimize coupling

o Build for on-demand data instead of batches

» Consider AWS Step Functions for orchestration

« Implement idempotency

« Use multiple AWS accounts for managing quotas

Designing an application 35

AWS Lambda Developer Guide

Use services instead of custom code

Serverless applications usually comprise several AWS services, integrated with custom code run
in Lambda functions. While Lambda can be integrated with most AWS services, the services most
commonly used in serverless applications are:

Category AWS service
Compute AWS Lambda
Data storage Amazon S3

Amazon DynamoDB

Amazon RDS
API Amazon API Gateway
Application integration Amazon EventBridge

Amazon SNS

Amazon SQS
Orchestration AWS Step Functions
Streaming data and analytics Amazon Data Firehose

(® Note

Many serverless services provide replication and support for multiple Regions, including
DynamoDB and Amazon S3. Lambda functions can be deployed in multiple Regions as part
of a deployment pipeline, and API Gateway can be configured to support this configuration.
See this example architecture that shows how this can be achieved.

There are many well-established, common patterns in distributed architectures that you can build
yourself or implement using AWS services. For most customers, there is little commercial value in

Designing an application 36

https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/serverless-architecture-for-global-applications-ra.pdf?did=wp_card&trk=wp_card

AWS Lambda Developer Guide

investing time to develop these patterns from scratch. When your application needs one of these
patterns, use the corresponding AWS service:

Pattern AWS service

Queue Amazon SQS

Event bus Amazon EventBridge
Publish/subscribe (fan-out) Amazon SNS
Orchestration AWS Step Functions
API Amazon AP| Gateway
Event streams Amazon Kinesis

These services are designed to integrate with Lambda and you can use infrastructure as code
(1aC) to create and discard resources in the services. You can use any of these services via the AWS
SDK without needing to install applications or configure servers. Becoming proficient with using
these services via code in your Lambda functions is an important step to producing well-designed
serverless applications.

Understand Lambda abstraction levels

The Lambda service limits your access to the underlying operating systems, hypervisors, and
hardware running your Lambda functions. The service continuously improves and changes
infrastructure to add features, reduce cost and make the service more performant. Your code
should assume no knowledge of how Lambda is architected and assume no hardware affinity.

Similarly, Lambda's integrations with other services are managed by AWS, with only a small
number of configuration options exposed to you. For example, when API Gateway and Lambda
interact, there is no concept of load balancing since it is entirely managed by the services. You also
have no direct control over which Availability Zones the services use when invoking functions at

any point in time, or how Lambda determines when to scale up or down the number of execution
environments.

This abstraction helps you focus on the integration aspects of your application, the flow of data,
and the business logic where your workload provides value to your end users. Allowing the services

Designing an application 37

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

AWS Lambda Developer Guide

to manage the underlying mechanics helps you develop applications more quickly with less custom
code to maintain.

Implement statelessness in functions

When building Lambda functions, you should assume that the environment exists only for a single
invocation. The function should initialize any required state when it is first started. For example,
your function may require fetching data from a DynamoDB table. It should commit any permanent
data changes to a durable store such as Amazon S3, DynamoDB, or Amazon SQS before exiting. It
should not rely on any existing data structures or temporary files, or any internal state that would
be managed by multiple invocations.

To initialize database connections and libraries, or load state, you can take advantage of static
initialization. Since execution environments are reused where possible to improve performance,
you can amortize the time taken to initialize these resources over multiple invocations. However,
you should not store any variables or data used in the function within this global scope.

Minimize coupling

Most architectures should prefer many, shorter functions over fewer, larger ones. The purpose

of each function should be to handle the event passed into the function, with no knowledge or
expectations of the overall workflow or volume of transactions. This makes the function agnostic
to the source of the event with minimal coupling to other services.

Any global-scope constants that change infrequently should be implemented as environment
variables to allow updates without deployments. Any secrets or sensitive information should be
stored in AWS Systems Manager Parameter Store or AWS Secrets Manager and loaded by the

function. Since these resources are account-specific, you can create build pipelines across multiple
accounts. The pipelines load the appropriate secrets per environment, without exposing these to
developers or requiring any code changes.

Build for on-demand data instead of batches

Many traditional systems are designed to run periodically and process batches of transactions that
have built up over time. For example, a banking application may run every hour to process ATM
transactions into central ledgers. In Lambda-based applications, the custom processing should be
triggered by every event, allowing the service to scale up concurrency as needed, to provide near-
real time processing of transactions.

Designing an application 38

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/secrets-manager/

AWS Lambda Developer Guide

While you can run cron tasks in serverless applications by using scheduled expressions for rules in
Amazon EventBridge, these should be used sparingly or as a last-resort. In any scheduled task that
processes a batch, there is the potential for the volume of transactions to grow beyond what can
be processed within the 15-minute Lambda duration limit. If the limitations of external systems
force you to use a scheduler, you should generally schedule for the shortest reasonable recurring
time period.

For example, it's not best practice to use a batch process that triggers a Lambda function to fetch
a list of new Amazon S3 objects. This is because the service may receive more new objects in
between batches than can be processed within a 15-minute Lambda function.

Ooll 2
EveniBridge rule Lambda function S3 bucket

Scheduled event | :
N Tevem ! |

Fetch list of new objects

F 3

L List !
: Fetch object 1 !
| Object . 5
: Fetch object 2 |
' Object Fetch object 3 !
' Object
: Fetch object._n |
| Object E

Instead, Amazon S3 should invoke the Lambda function each time a new object is put into the
bucket. This approach is significantly more scalable and works in near-real time.

-)

vl | Ewvents
1

1

53 bucket Lambda function

Designing an application 39

https://en.wikipedia.org/wiki/Cron
https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html

AWS Lambda Developer Guide

Consider AWS Step Functions for orchestration

Workflows that involve branching logic, different types of failure models, and retry logic typically
use an orchestrator to keep track of the state of the overall execution. Avoid using Lambda
functions for this purpose, since it results in tight coupling and complex code handling routing.

With AWS Step Functions, you use state machines to manage orchestration. This extracts the

error handling, routing, and branching logic from your code, replacing it with state machines
declared using JSON. Apart from making workflows more robust and observable, you can also add
versioning to workflows and make the state machine a codified resource that you can add to a code
repository.

It's common for simpler workflows in Lambda functions to become more complex over time. When
operating a production serverless application, it's important to identify when this is happening, so
you can migrate this logic to a state machine.

Implement idempotency

AWS serverless services, including Lambda, are fault-tolerant and designed to handle failures. For
example, if a service invokes a Lambda function and there is a service disruption, Lambda invokes
your function in a different Availability Zone. If your function throws an error, Lambda retries the
invocation.

Since the same event may be received more than once, functions should be designed to be
idempotent. This means that receiving the same event multiple times does not change the result
beyond the first time the event was received.

You can implement idempotency in Lambda functions by using a DynamoDB table to track recently
processed identifiers to determine if the transaction has already been handled previously. The
DynamoDB table usually implements a Time To Live (TTL) value to expire items to limit the storage
space used.

Use multiple AWS accounts for managing quotas

Many service quotas in AWS are set at the account level. This means that as you add more
workloads, you can quickly exhaust your limits.

An effective way to solve this issue is to use multiple AWS accounts, dedicating each workload to
its own account. This prevents quotas from being shared with other workloads or non-production
resources.

Designing an application 40

https://aws.amazon.com/step-functions/
https://en.wikipedia.org/wiki/Idempotence
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html

AWS Lambda Developer Guide

In addition, by using AWS Organizations, you can centrally manage the billing, compliance, and
security of these accounts. You can attach policies to groups of accounts to avoid custom scripts

and manual processes.

One common approach is to provide each developer with an AWS account, and then use separate
accounts for a beta deployment stage and production:

AWS Cloud
T

F----s === smEmmEm== 1 | | 1
1 1 Code | 1 Code | 1
1 8 Q 8 ool 1 push 1 o] 1 pusfr 1 E‘ 1

i L | - | |
: @ Pty | H: @ | : @ _ |
" Developer 1 1 Beta 1 1 Production 1
: accounts : : account : : account :
1 | 1 1 1 1

In this model, each developer has their own set of limits for the account, so their usage does
not impact your production environment. This approach also allows developers to test Lambda
functions locally on their development machines against live cloud resources in their individual
accounts.

Designing an application 41

https://aws.amazon.com/organizations/

AWS Lambda Developer Guide

Create your first Lambda function

To get started with Lambda, use the Lambda console to create a function. In a few minutes, you
can create and deploy a function and test it in the console.

As you carry out the tutorial, you'll learn some fundamental Lambda concepts, like how to
pass arguments to your function using the Lambda event object. You'll also learn how to return
log outputs from your function, and how to view your function's invocation logs in Amazon
CloudWatch Logs.

To keep things simple, you create your function using either the Python or Node.js runtime. With
these interpreted languages, you can edit function code directly in the console's built-in code
editor. With compiled languages like Java and C#, you must create a deployment package on your
local build machine and upload it to Lambda. To learn about deploying functions to Lambda using
other runtimes, see the links in the the section called “Next steps” section.

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Prerequisites

Sign up for an AWS account
If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

Prerequisites 42

https://docs.aws.amazon.com/serverless/latest/devguide/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS Lambda Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Prerequisites 43

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Lambda Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In 1AM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a Lambda function with the console

In this example, your function takes a JSON object containing two integer values labeled
"length" and "width". The function multiplies these values to calculate an area and returns this
as a JSON string.

Your function also prints the calculated area, along with the name of its CloudWatch log group.
Later in the tutorial, you'll learn to use CloudWatch Logs to view records of your functions'

invocation.
To create a Hello world Lambda function with the console

1. Open the Functions page of the Lambda console.

Choose Create function.
Select Author from scratch.
In the Basic information pane, for Function name, enter myLambdaFunction.

For Runtime, choose either Node.js 22 or Python 3.13.

o uv M W N

Leave architecture set to x86_64, and then choose Create function.

In addition to a simple function that returns the message Hello from Lambda!, Lambda also
creates an execution role for your function. An execution role is an AWS Identity and Access

Management (IAM) role that grants a Lambda function permission to access AWS services and

Create the function 44

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda

Developer Guide

resources. For your function, the role that Lambda creates grants basic permissions to write to
CloudWatch Logs.

Use the console's built-in code editor to replace the Hello world code that Lambda created with
your own function code.

Node.js

To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the index.mjs tab in the code editor, select index.mjs in the file explorer as
shown on the following diagram.

I
Jo
S

g
N

EXPLORER index.mjs >

~ MYLAMBDAFUNCTION index.mjs > ...
index.mjs export const handler = async (event) =»> {

1

2 Jf TODO implement
’ 3 const response =

4 statusCode: 288,

5 body: 1SON.stringify('Hellc from Lambda!')

6 ki

return response;
~ DEPLOY

Deploy (Ctrl+Shift+U)
Test (Ctrl+Shift+1)

I

[+]

2. Paste the following code into the index.mijs tab, replacing the code that Lambda created.

export const handler = async (event, context) => {

const length = event.length;

const width = event.width;

let area = calculateArea(length, width);
console.log('The area is ${areal’);

console.log('CloudWatch log group: ', context.logGroupName);

let data = {

};

"area": area,

Create the function

45

AWS Lambda Developer Guide

return JSON.stringify(data);

function calculateArea(length, width) {
return length * width;
}
I

3. Inthe DEPLOY section, choose Deploy to update your function's code:
“+ DEPLOY [UNDEPLOYED CHANGES]

A You have undeployed changes.

Deploy {Ctrl+Shift+U)

Test {Ctrl+Shift+)

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

+ The Lambda handler:

Your Lambda function contains a Node.js function named handler. A Lambda function in
Node.js can contain more than one Node.js function, but the handler function is always the
entry point to your code. When your function is invoked, Lambda runs this method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to handlezr. Be sure not to edit the name of
this Node.js function. If you do, Lambda won't be able to run your code when you invoke your
function.

To learn more about the Lambda handler in Node.js, see the section called “"Handler".

« The Lambda event object:

The function handler takes two arguments, event and context. An event in Lambda is a
JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if your function is invoked when

Create the function 46

AWS Lambda Developer Guide

an object is uploaded to an Amazon Simple Storage Service (Amazon S3) bucket, the event
contains the name of the bucket and the object key.

In this example, you'll create an event in the console by entering a JSON formatted document
with two key-value pairs.

« The Lambda context object:
The second argument that your function takes is context. Lambda passes the context object

to your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the 1ogGroupName parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Node.js, see the section called “Context”.

« Logging in Lambda:

With Node.js, you can use console methods like console.log and console.error to send
information to your function's log. The example code uses console.log statements to
output the calculated area and the name of the function's CloudWatch Logs group. You can
also use any logging library that writes to stdout or stderr.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see

the 'Building with' pages for the runtimes you're interested in.

Python
To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the lambda_function.py tab in the code editor, select lambda_function.py
in the file explorer as shown on the following diagram.

Create the function 47

AWS Lambda Developer Guide

= EXPLORER index.mjs % lambda_functionpy X
~ MYLAMBDAFUNCTION @ lambda_function.py
lg index.mjs 1 import json

p @ lambda_function.py
o> /
B:llj ~ DEPLOY [UNDEPLOYED CHAMNGES]

i\

def lambda_handler(event, context):
TODO implement
return {
"statusCode’: 268,
‘body”: json.dumps('Hello from Lambda!")

[T s B I s Wy R < W

A You have undeployed changes.

2. Paste the following code into the lambda_function.py tab, replacing the code that Lambda
created.

import json
import logging

logger = logging.getlLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):

Get the length and width parameters from the event object. The
runtime converts the event object to a Python dictionary
length = event['length']

width = event['width']

area = calculate_area(length, width)
print(f"The area is {areal}")

logger.info(f"CloudWatch logs group: {context.log_group_name}")

return the calculated area as a JSON string
data = {"area": area}
return json.dumps(data)

def calculate_area(length, width):
return length*width

3. Inthe DEPLOY section, choose Deploy to update your function's code:

Create the function 48

AWS Lambda Developer Guide

~ DEPLOY [UNDEPLOYED CHAMNGES]
& You have undeployed changes.

Deploy (Ctr+Shift+U)

Test (Ctri+Shift+1)

||

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

+ The Lambda handler:

Your Lambda function contains a Python function named lambda_handler. A Lambda

function in Python can contain more than one Python function, but the handler function
is always the entry point to your code. When your function is invoked, Lambda runs this

method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to 1ambda_handlexr. Be sure not to edit the
name of this Python function. If you do, Lambda won't be able to run your code when you
invoke your function.

To learn more about the Lambda handler in Python, see the section called “Handler".

« The Lambda event object:

The function 1lambda_handler takes two arguments, event and context. An event in
Lambda is a JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if your function is invoked when
an object is uploaded to an Amazon Simple Storage Service (Amazon S3) bucket, the event
contains the name of the bucket and the object key.

In this example, you'll create an event in the console by entering a JSON formatted document
with two key-value pairs.

« The Lambda context object:

Create the function 49

AWS Lambda Developer Guide

The second argument that your function takes is context. Lambda passes the context object
to your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the 1og_group_name parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Python, see the section called “Context".

« Logging in Lambda:

With Python, you can use either a print statement or a Python logging library to send
information to your function's log. To illustrate the difference in what's captured, the example
code uses both methods. In a production application, we recommend that you use a logging
library.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Invoke the Lambda function using the console code editor

To invoke your function using the Lambda console code editor, create a test event to send to your
function. The event is a JSON formatted document containing two key-value pairs with the keys
"length" and "width".

To create the test event

1. Inthe TEST EVENTS section of the console code editor, choose Create test event.

~ TEST ENENTS

You haven't created any test events.

Create test event {Ctrl+Shift+C)

2. For Event Name, enter myTestEvent.

3. Inthe Event JSON section, replace the default JSON with the following:

Invoke the function 50

AWS Lambda Developer Guide

"length": 6,
"width": 7
}

4. Choose Save.

To test your function and view invocation records

In the TEST EVENTS section of the console code editor, choose the run icon next to your test event:

~ TEST EVENTS -+
v & Private saved events

myTestEvent V4

Invoke Function wrth Saved Test Event

When your function finishes running, the response and function logs are displayed in the OUTPUT
tab. You should see results similar to the following:

Node.js

Status: Succeeded
Test Event Name: myTestEvent

Response
n{\narea\n:42}n

Function Logs

START RequestId: 5c012b@a-18f7-4805-b2f6-40912935034a Version: $LATEST
2024-08-31T23:39:45.313Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area is 42
2024-08-31T23:39:45.331Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO CloudWatch log
group: /aws/lambda/myLambdaFunction

END RequestId: 5c@12b0a-18f7-4805-b2f6-40912935034a

REPORT RequestId: 5c@12b@a-18f7-4805-b2f6-40912935034a Duration: 20.67 ms Billed
Duration: 21 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration: 163.87 ms

Request ID
5c012b0a-18f7-4805-b2f6-40912935034a

Python

Status: Succeeded
Test Event Name: myTestEvent

Invoke the function 51

AWS Lambda Developer Guide

Response
Il{\llarea\ll: 42}"

Function Logs

START RequestId: 2d@b1579-46fb-4bf7-abel-8e08840eae5b Version: $LATEST

The area is 42

[INFO] 2024-08-31T23:43:26.428Z 2d0b1579-46fb-4bf7-a6el1-8e08840eae5b CloudWatch logs
group: /aws/lambda/myLambdaFunction

END RequestId: 2d@bl579-46fb-4bf7-a6el-8e08840eae5h

REPORT RequestId: 2d@b1579-46fb-4bf7-a6el-8e08840eae5b Duration: 1.42 ms Billed
Duration: 2 ms Memory Size: 128 MB Max Memory Used: 39 MB Init Duration: 123.74 ms

Request ID
2d0b1579-46fb-4bf7-a6el-8e@8840eae5b

When you invoke your function outside of the Lambda console, you must use CloudWatch Logs to
view your function's execution results.

To view your function's invocation records in CloudWatch Logs

1. Open the Log groups page of the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/myLambdaFunction). This is the log
group name that your function printed to the console.

3. Scroll down and choose the Log stream for the function invocations you want to look at.

Log streams (14) ‘ G ‘ ‘ Create log stream ‘ ‘ Search all log streams ‘
Q, Filter log streams or try prefix search ‘ (] Exact match [J Show expired (&) Info 1 &
O Log stream v | Last event time v
O 2024/04/30/[$LATEST]e0fa 2024-04-30 17:24:16 (UTC)
O 2024/04/19/[$LATEST]e9a 2024-04-19 20:59:06 (UTC)
O 2024/02/22/[$LATEST]cfO 2024-02-22 18:38:41 (UTC)
O 2024/02/21/[1]1d132c4d 2024-02-21 21:37:01 (UTC)
O 2024/02/21/[1]5ad 2024-02-21 21:37:01 (UTC)

You should see output similar to the following:

Invoke the function

52

https://console.aws.amazon.com/cloudwatch/home#logs:

AWS Lambda Developer Guide

Node.js

INIT_START Runtime Version: nodejs:22.v13 Runtime Version ARN:
arn:aws:lambda:us-

west-2::runtime:e3aaabf6b92ef8755eaae2f4bfdcb7eb8c4536a5e044900570a42bdba7b869d9
START RequestId: ababc@fc-cf99-49d7-a77d-26d805dacd2@ Version: $LATEST
2024-08-23T22:04:15.809Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area
is 42

2024-08-23T22:04:15.810Z ababcOfc-cf99-49d7-a77d-26d805dacd2@ INFO
CloudWatch log group: /aws/lambda/myLambdaFunction

END RequestId: ababc@fc-cf99-49d7-a77d-26d805dacd20

REPORT RequestId: aba6c@fc-cf99-49d7-a77d-26d805dacd20 Duration: 17.77 ms
Billed Duration: 18 ms Memory Size: 128 MB Max Memory Used: 67 MB Init
Duration: 178.85 ms

Python

INIT_START Runtime Version: python:3.13.v16 Runtime Version ARN:
arn:aws:lambda:us-

west-2::runtime:ca202755c87b9%ec2b58856efb7374b4f7b655a0ea3debld5acc9aee9e297b072
START RequestId: 9d4096ee-acb3-4c25-bel0-8a210f0a9d8e Version: $LATEST

The area is 42

[INFO] 2024-09-01T00:05:22.464Z 9315ab6b-354a-486e-884a-2fb2972b7d84 CloudWatch
logs group: /aws/lambda/myLambdaFunction

END RequestId: 9d4@96ee-acb3-4c25-bel@-8a210f0@a9d8e

REPORT RequestId: 9d4096ee-acb3-4c25-bel®-8a210f0a9d8e Duration: 1.15 ms
Billed Duration: 2 ms Memory Size: 128 MB Max Memory Used: 40 MB

Clean up

When you're finished working with the example function, delete it. You can also delete the log
group that stores the function's logs, and the execution role that the console created.

To delete the Lambda function

1
2
3.
4

Open the Functions page of the Lambda console.

Select the function that you created.
Choose Actions, Delete.

Type confixrm in the text input field and choose Delete.

Clean up 53

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To delete the log group

1. Open the Log groups page of the CloudWatch console.

2. Select the function's log group (/aws/lambda/myLambdaFunction).
3. Choose Actions, Delete log group(s).

4. In the Delete log group(s) dialog box, choose Delete.

To delete the execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.

2. Select the function's execution role (for example, myLambdaFunction-role-3lexxmpl).
3. Choose Delete.
4

In the Delete role dialog box, enter the role name, and then choose Delete.

Additional resources and next steps

Now that you've created and tested a simple Lambda function using the console, take these next
steps:

» Learn to add dependencies to your function and deploy it using a .zip deployment package.
Choose your preferred language from the following links.

Node.js

the section called “"Deploy .zip file archives”

Typescript

the section called “"Deploy .zip file archives”

Python

the section called “"Deploy .zip file archives”

Ruby

the section called “"Deploy .zip file archives”

Java

the section called “"Deploy .zip file archives”

Next steps

54

https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles

AWS Lambda Developer Guide

Go

the section called “Deploy .zip file archives”
C#

the section called “Deployment package”

« To learn how to invoke a Lambda function using another AWS service, see Tutorial: Using an
Amazon S3 trigger to invoke a Lambda function.

» Choose one of the following tutorials for more complex examples of using Lambda with other
AWS services.

o Tutorial: Using Lambda with APl Gateway: Create an Amazon API Gateway REST API that
invokes a Lambda function.

» Using a Lambda function to access an Amazon RDS database: Use a Lambda function to write
data to an Amazon Relational Database Service (Amazon RDS) database through RDS Proxy.

« Using an Amazon S3 trigger to create thumbnail images: Use a Lambda function to create a
thumbnail every time an image file is uploaded to an Amazon S3 bucket.

Next steps 55

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

Getting started with example applications and patterns

The following resources can be used to quickly create and deploy serverless apps that implement
some common Lambda uses cases. For each of the example apps, we provide instructions to either
create and configure resources manually using the AWS Management Console, or to use the AWS
Serverless Application Model to deploy the resources using laC. Follow the console intructions to
learn more about configuring the individual AWS resources for each app, or use to AWS SAM to
quickly deploy resources as you would in a production environment.

File Processing

« PDF Encryption Application: Create a serverless application that encrypts PDF files when they

are uploaded to an Amazon Simple Storage Service bucket and saves them to another bucket,
which is useful for securing sensitive documents upon upload.

« Image Analysis Application: Create a serverless application that extracts text from images

using Amazon Rekognition, which is useful for document processing, content moderation, and
automated image analysis.

Database Integration

» Queue-to-Database Application: Create a serverless application that writes queue messages to

an Amazon RDS database, which is useful for processing user registrations and handling order
submissions.

« Database Event Handler: Create a serverless application that responds to Amazon DynamoDB

table changes, which is useful for audit logging, data replication, and automated workflows.

Scheduled Tasks

« Database Maintenance Application: Create a serverless application that automatically deletes

entries more than 12 months old from an Amazon DynamoDB table using a cron schedule, which
is useful for automated database maintenance and data lifecycle management.

File Processing 56

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-example-s3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-example-ddb.html

AWS Lambda Developer Guide

» Create an EventBridge scheduled rule for Lambda functions: Use scheduled expressions for
rules in EventBridge to trigger a Lambda function on a timed schedule. This format uses cron
syntax and can be set with a one-minute granularity.

Additional resources

Use the following resources to further explore Lambda and serverless application development:

« Serverless Land: a library of ready-to-use patterns for building serverless apps. It helps

developers create applications faster using AWS services like Lambda, APl Gateway, and
EventBridge. The site offers pre-built solutions and best practices, making it easier to develop
serverless systems.

« Lambda sample applications: Applications that are available in the GitHub repository for this

guide. These samples demonstrate the use of various languages and AWS services. Each sample
application includes scripts for easy deployment and cleanup and supporting resources.

o Code examples for Lambda using AWS SDKs: Examples that show you how to use Lambda with

AWS software development kits (SDKs). These examples include basics, actions, scenarios, and
AWS community contributions. Examples cover essential operations, individual service functions,
and specific tasks using multiple functions or AWS services.

Create a serverless file-processing app

One of the most common use cases for Lambda is to perform file processing tasks. For example,
you might use a Lambda function to automatically create PDF files from HTML files or images, or
to create thumbnails when a user uploads an image.

In this example, you create an app which automatically encrypts PDF files when they are uploaded
to an Amazon Simple Storage Service (Amazon S3) bucket. To implement this app, you create the
following resources:

» An S3 bucket for users to upload PDF files to

« A Lambda function in Python which reads the uploaded file and creates an encrypted, password-
protected version of it

» A second S3 bucket for Lambda to save the encrypted file in

Additional resources 57

https://docs.aws.amazon.com/eventbridge/latest/userguide/run-lambda-schedule.html
https://serverlessland.com/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-samples.html
https://docs.aws.amazon.com/lambda/latest/dg/service_code_examples.html

AWS Lambda Developer Guide

You also create an AWS ldentity and Access Management (IAM) policy to give your Lambda function
permission to perform read and write operations on your S3 buckets.

/)

Amazon Simple Storage AWS Lambda Amazon Simple Storage
Service (S3) Service (S3)

X I

b4

v @
Permissions
policy

File upload Source bucket File encrypt Destination bucket
function

Y

® Tip
If you're brand new to Lambda, we recommend that you start with the tutorial Create your
first function before creating this example app.

You can deploy your app manually by creating and configuring resources with the AWS
Management Console or the AWS Command Line Interface (AWS CLI). You can also deploy the app
by using the AWS Serverless Application Model (AWS SAM). AWS SAM is an infrastructure as code
(1aC) tool. With l1aC, you don't create resources manually, but define them in code and then deploy
them automatically.

If you want to learn more about using Lambda with laC before deploying this example app, see the
section called “Infrastructure as code (laC)".

File-processing app 58

AWS Lambda Developer Guide

Create the Lambda function source code files

Create the following files in your project directory:

« lambda_function.py - the Python function code for the Lambda function that performs the
file encryption

« requirements.txt - a manifest file defining the dependencies that your Python function code
requires

Expand the following sections to view the code and to learn more about the role of each file. To
create the files on your local machine, either copy and paste the code below, or download the files
from the aws-lambda-developer-guide GitHub repo.

Python function code

Copy and paste the following code into a file named 1lambda_function. py.

from pypdf import PdfReader, PdfWriter
import uuid

import os

from urllib.parse import unquote_plus
import boto3

Create the S3 client to download and upload objects from S3
s3_client = boto3.client('s3')

def lambda_handler(event, context):
Iterate over the S3 event object and get the key for all uploaded files
for record in event['Records']:
bucket = record['s3']['bucket']['name']
key = unquote_plus(record['s3']J['object']['key']) # Decode the S3 object key to
remove any URL-encoded characters
download_path = f'/tmp/{uuid.uuid4()}.pdf' # Create a path in the Lambda tmp
directory to save the file to
upload_path = f'/tmp/converted-{uuid.uuid4()}.pdf' # Create another path to
save the encrypted file to

If the file is a PDF, encrypt it and upload it to the destination S3 bucket
if key.lower().endswith('.pdf'):
s3_client.download_file(bucket, key, download_path)
encrypt_pdf(download_path, upload_path)

Create the source code files 59

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/file-processing-python

AWS Lambda Developer Guide

encrypted_key = add_encrypted_suffix(key)
s3_client.upload_file(upload_path, f'{bucket}-encrypted', encrypted_key)

Define the function to encrypt the PDF file with a password
def encrypt_pdf(file_path, encrypted_file_path):

reader = PdfReader(file_path)
PdfWriter()

writer

for page in reader.pages:
writer.add_page(page)

Add a password to the new PDF
writer.encrypt("my-secret-password")

Save the new PDF to a file
with open(encrypted_file_path, "wb") as file:
writer.write(file)

Define a function to add a suffix to the original filename after encryption
def add_encrypted_suffix(original_key):

filename, extension = original_key.rsplit('."', 1)

return f'{filename}_encrypted.{extension}"

(® Note

In this example code, a password for the encrypted file (my-secret-password) is
hardcoded into the function code. In a production application, don't include sensitive
information like passwords in your function code. Instead, create an AWS Secrets Manager

secret and then use the AWS Parameters and Secrets Lambda extension to retrieve your

credentials in your Lambda function.

The python function code contains three functions - the handler function that Lambda runs

when your function is invoked, and two separate function named add_encrypted_suffix and
encrypt_pdf that the handler calls to perform the PDF encryption.

When your function is invoked by Amazon S3, Lambda passes a JSON formatted event argument
to the function that contains details about the event that caused the invocation. In this case, the
information includes name of the S3 bucket and the object keys for the uploaded files. To learn
more about the format of event object for Amazon S3, see the section called “S3".

Create the source code files 60

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Lambda Developer Guide

Your function then uses the AWS SDK for Python (Boto3) to download the PDF files specified in
the event object to its local temporary storage directory, before encrypting them using the pypdf
library.

Finally, the function uses the Boto3 SDK to store the encrypted file in your S3 destination bucket.
requirements. txt manifest file

Copy and paste the following code into a file named requirements. txt.

boto3
pypdf

For this example, your function code has only two dependencies that aren't part of the standard
Python library - the SDK for Python (Boto3) and the pypdf package the function uses to perform
the PDF encryption.

(® Note

A version of the SDK for Python (Boto3) is included as part of the Lambda runtime, so your
code would run without adding Boto3 to your function's deployment package. However, to
maintain full control of your function's dependencies and avoid possible issues with version
misalignment, best practice for Python is to include all function dependencies in your
function's deployment package. See the section called “Runtime dependencies in Python"

to learn more.

Deploy the app

You can create and deploy the resources for this example app either manually or by using AWS
SAM. In a production environment, we recommend that you use an laC tool like AWS SAM to
quickly and repeatably deploy whole serverless applications without using manual processes.

Deploy the resources manually
To deploy your app manually:

» Create source and destination Amazon S3 buckets

» Create a Lambda function that encrypts a PDF file and saves the encrypted version to an S3
bucket

Deploy the app 61

https://pypi.org/project/pypdf/

AWS Lambda Developer Guide

« Configure a Lambda trigger that invokes your function when objects are uploaded to your source
bucket
Before you begin, make sure that Python is installed on your build machine.

Create two S3 buckets

First create two S3 buckets. The first bucket is the source bucket you will upload your PDF files to.
The second bucket is used by Lambda to save the encrypted file when you invoke your function.

Console
To create the S3 buckets (console)

1. Open the General purpose buckets page of the Amazon S3 console.

2. Select the AWS Region closest to your geographical location. You can change your region
using the drop-down list at the top of the screen.

8 0@ @

United States
M. Virginia us-east-1
Ohio us-east-2

M. California us-west-1

Oregon us-west-2

3. Choose Create bucket.

4. Under General configuration, do the following:

a. For Bucket type, ensure General purpose is selected.

b. For Bucket name, enter a globally unique name that meets the Amazon S3 bucket
naming rules. Bucket names can contain only lower case letters, numbers, dots (.), and
hyphens (-).

5. Leave all other options set to their default values and choose Create bucket.

6. Repeat steps 1 to 4 to create your destination bucket. For Bucket name, enter amzn-s3-
demo-bucket-encrypted, where amzn-s3-demo-bucket is the name of the source
bucket you just created.

Deploy the app 62

https://www.python.org/downloads/
https://console.aws.amazon.com/s3/buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

AWS CLI

Before you begin, make sure that the AWS CLlI is installed on your build machine.

To create the Amazon S3 buckets (AWS CLI)

1. Run the following CLI command to create your source bucket. The name you choose for
your bucket must be globally unique and follow the Amazon S3 bucket naming rules.
Names can only contain lower case letters, numbers, dots (.), and hyphens (-). For region
and LocationConstraint, choose the AWS Region closest to your geographical location.

aws s3api create-bucket --bucket amzn-s3-demo-bucket --region us-east-2 \
--create-bucket-configuration LocationConstraint=us-east-2

Later in the tutorial, you must create your Lambda function in the same AWS Region as
your source bucket, so make a note of the region you chose.

2. Run the following command to create your destination bucket. For the bucket name, you
must use amzn-s3-demo-bucket-encrypted, where amzn-s3-demo-bucket is the
name of the source bucket you created in step 1. For region and LocationConstraint,
choose the same AWS Region you used to create your source bucket.

aws s3api create-bucket --bucket amzn-s3-demo-bucket-encrypted --region us-
east-2 \
--create-bucket-configuration LocationConstraint=us-east-2

Create an execution role

An execution role is an IAM role that grants a Lambda function permission to access AWS services
and resources. To give your function read and write access to Amazon S3, you attach the AWS
managed policy AmazonS3FullAccess.

Console
To create an execution role and attach the AmazonS3FullAccess managed policy (console)

1. Open the Roles page in the IAM console.
2. Choose Create role.

3. For Trusted entity type, select AWS service, and for Use case, select Lambda.

Deploy the app 63

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home/roles

AWS Lambda Developer Guide

4. Choose Next.

5. Addthe AmazonS3FullAccess managed policy by doing the following:

a. In Permissions policies, enter AmazonS3FullAccess into the search bar.
b. Select the checkbox next to the policy.
c. Choose Next.

6. In Role details, for Role name enter LambdaS3Role.

7. Choose Create Role.

AWS CLI
To create an execution role and attach the AmazonS3FullAccess managed policy (AWS CLI)

1. Save the following JSON in a file named trust-policy. json. This trust policy
allows Lambda to use the role’s permissions by giving the service principal
lambda.amazonaws.com permission to call the AWS Security Token Service (AWS STS)
AssumeRole action.

{
"Version": "2012-10-17",

"Statement": [

{
"Effect": "Allow",
"Principal": {
"Sexvice": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

1
}

2. From the directory you saved the JSON trust policy document in, run the following CLI
command to create the execution role.

aws iam create-role --role-name LambdaS3Role --assume-xole-policy-document
file://trust-policy.json

3. To attach the AmazonS3FullAccess managed policy, run the following CLI command.

Deploy the app 64

AWS Lambda Developer Guide

aws iam attach-role-policy --role-name LambdaS3Role --policy-arn
arn:aws:iam: :aws:policy/AmazonS3FullAccess

Create the function deployment package

To create your function, you create a deployment package containing your function code and

its dependencies. For this application, your function code uses a separate library for the PDF

encryption.

To create the deployment package

1.

Navigate to the project directory containing the 1lambda_function.py and
requirements. txt files you created or downloaded from GitHub earlier and create a new
directory named package.

Install the dependencies specified in the requirements. txt file in your package directory
by running the following command.

pip install -r requirements.txt --target ./package/

Create a .zip file containing your application code and its dependencies. In Linux or MacOS, run
the following commands from your command line interface.

cd package
zip -r ../lambda_function.zip .
cd ..

zip lambda_function.zip lambda_function.py

In Windows, use your preferred zip tool to create the lambda_function. zip file. Make sure
that your lambda_function. py file and the folders containing your dependencies are all at
the root of the .zip file.

You can also create your deployment package using a Python virtual environment. See Working

with .zip file archives for Python Lambda functions

Deploy the app 65

AWS Lambda Developer Guide

Create the Lambda function

You now use the deployment package you created in the previous step to deploy your Lambda
function.

Console
To create the function (console)

To create your Lambda function using the console, you first create a basic function containing
some ‘Hello world’ code. You then replace this code with your own function code by uploading
the.zip file you created in the previous step.

To ensure that your function doesn't time out when encrypting large PDF files, you configure
the function's memory and timeout settings. You also set the function's log format to JSON.
Configuring JSON formatted logs is necessary when using the provided test script so it can read
the function's invocation status from CloudWatch Logs to confirm successful invocation.

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same AWS Region you created your S3 bucket in. You can

change your region using the drop-down list at the top of the screen.

4 0 @

United States
M. Virginia us-east-1
Ohio us-east-2
N. California us-west-1

Oregon us-west-2

Choose Create function.
4. Choose Author from scratch.

Under Basic information, do the following:

a. For Function name, enter EncxyptPDF.
b. For Runtime choose Python 3.12.
c. For Architecture, choose x86_64.

6. Attach the execution role you created in the previous step by doing the following:

Deploy the app 66

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda

Developer Guide

a. Expand the Change default execution role section.

b. Select Use an existing role.

¢. Under Existing role, select your role (LambdaS3Role).

Choose Create function.

To upload the function code (console)

ok W

In the Code source pane, choose Upload from.

Choose .zip file.

Choose Upload.

In the file selector, select your .zip file and choose Open.

Choose Save.

To configure the function memory and timeout (console)

P WD

Select the Configuration tab for your function.
In the General configuration pane, choose Edit.
Set Memory to 256 MB and Timeout to 15 seconds.

Choose Save.

To configure the log format (console)

ok W

Select the Configuration tab for your function.
Select Monitoring and operations tools.

In the Logging configuration pane, choose Edit.
For Logging configuration, select JSON.

Choose Save.

Deploy the app

67

AWS Lambda Developer Guide

AWS CLI
To create the function (AWS CLI)

* Run the following command from the directory containing your lambda_function.zip
file.For the region parameter, replace us-east-2 with the region you created your S3
buckets in.

aws lambda create-function --function-name EncryptPDF \

--zip-file fileb://lambda_function.zip --handler lambda_function.lambda_handlexr
\

--runtime python3.12 --timeout 15 --memory-size 256 \

--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-east-2 \
--logging-config LogFormat=JSON

Configure an Amazon S3 trigger to invoke the function

For your Lambda function to run when you upload a file to your source bucket, you need to
configure a trigger for your function. You can configure the Amazon S3 trigger using either the
console or the AWS CLI.

/A Important

This procedure configures the S3 bucket to invoke your function every time that an object
is created in the bucket. Be sure to configure this only on the source bucket. If your Lambda
function creates objects in the same bucket that invokes it, your function can be invoked
continuously in a loop. This can result in un expected charges being billed to your AWS
account.

Console
To configure the Amazon S3 trigger (console)

1. Open the Functions page of the Lambda console and choose your function (EncryptPDF).

2. Choose Add trigger.
3. Select S3.
4

Under Bucket, select your source bucket.

Deploy the app 68

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. Under Event types, select All object create events.

6. Under Recursive invocation, select the check box to acknowledge that using the same
S3 bucket for input and output is not recommended. You can learn more about recursive
invocation patterns in Lambda by reading Recursive patterns that cause run-away Lambda
functions in Serverless Land.

7. Choose Add.

When you create a trigger using the Lambda console, Lambda automatically creates a
resource based policy to give the service you select permission to invoke your function.

AWS CLI
To configure the Amazon S3 trigger (AWS CLI)

1. Add a resource based policy to your function that allows your Amazon S3 source bucket to
invoke your function when you add a file. A resource-based policy statement gives other
AWS services permission to invoke your function. To give Amazon S3 permission to invoke
your function, run the following CLI command. Be sure to replace the source-account
parameter with your own AWS account ID and to use your own source bucket name.

aws lambda add-permission --function-name EncxryptPDF \
--principal s3.amazonaws.com --statement-id s3invoke --action
"lambda:InvokeFunction" \

--source-arn arn:aws:s3:::amzn-s3-demo-bucket \
--source-account 123456789012

The policy you define with this command allows Amazon S3 to invoke your function only
when an action takes place on your source bucket.

(@ Note

Although S3 bucket names are globally unique, when using resource-based policies
it is best practice to specify that the bucket must belong to your account. This is
because if you delete a bucket, it is possible for another AWS account to create a
bucket with the same Amazon Resource Name (ARN).

2. Save the following JSON in a file named notification. json. When applied to your
source bucket, this JSON configures the bucket to send a notification to your Lambda

Deploy the app 69

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Lambda Developer Guide

function every time a new object is added. Replace the AWS account number and AWS
Region in the Lambda function ARN with your own account number and region.

{

"LambdaFunctionConfigurations": [

{
"Id": "EncryptPDFEventConfiguration",

"LambdaFunctionArn": "arn:aws:lambda:us-
east-2:123456789012:function:EncryptPDF",
"Events": ["s3:0bjectCreated:Put"]

3. Run the following CLI command to apply the notification settings in the JSON file you
created to your source bucket. Replace amzn-s3-demo-bucket with the name of your
own source bucket.

aws s3api put-bucket-notification-configuration --bucket amzn-s3-demo-bucket \
--notification-configuration file://notification.json

To learn more about the put-bucket-notification-configuration command and
the notification-configuration option, see put-bucket-notification-configuration in
the AWS CLI Command Reference.

Deploy the resources using AWS SAM

Before you begin, make sure that Docker and the latest version of the AWS SAM CLI are installed on

your build machine.

1. In your project directory, copy and paste the following code into a file named
template.yaml. Replace the placeholder bucket names:

» For the source bucket, replace amzn-s3-demo-bucket with any name that complies with
the S3 bucket naming rules.

» For the destination bucket, replace amzn-s3-demo-bucket-encrypted with <source-
bucket-name>-encrypted, where <source-bucket> is the name you chose for your
source bucket.

Deploy the app 70

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-notification-configuration.html
https://docs.docker.com/get-docker/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Resources:
EncryptPDFFunction:
Type: AWS::Serverless::Function
Properties:
FunctionName: EncryptPDF
Architectures: [x86_64]
CodeUri: ./
Handler: lambda_function.lambda_handler
Runtime: python3.12
Timeout: 15
MemorySize: 256
LoggingConfig:
LogFormat: JSON
Policies:
- AmazonS3FullAccess
Events:
S3Event:
Type: S3
Properties:
Bucket: !Ref PDFSourceBucket
Events: s3:0bjectCreated:*

PDFSourceBucket:
Type: AWS::S3::Bucket
Properties:
BucketName: amzn-s3-demo-bucket

EncryptedPDFBucket:
Type: AWS::S3::Bucket
Properties:

BucketName: amzn-s3-demo-bucket-encrypted

The AWS SAM template defines the resources you create for your app. In this example, the
template defines a Lambda function using the AWS: :Serverless: :Function type and two
S3 buckets using the AWS: :S3: :Bucket type. The bucket names specified in the template
are placeholders. Before you deploy the app using AWS SAM, you need to edit the template to

Deploy the app 71

AWS Lambda Developer Guide

rename the buckets with globally unique names that meet the S3 bucket naming rules. This

step is explained further in the section called “Deploy the resources using AWS SAM".

The definition of the Lambda function resource configures a trigger for the function using the
S3Event event property. This trigger causes your function to be invoked whenever an object is
created in your source bucket.

The function definition also specifies an AWS Identity and Access Management (IAM) policy to
be attached to the function's execution role. The AWS managed policy AmazonS3FullAccess
gives your function the permissions it needs to read and write objects to Amazon S3.

2. Run the following command from the directory in which you saved your template.yaml,
lambda_function.py, and requirements. txtfiles.

sam build --use-container

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them. Specifying the --use-container option builds your
function inside a Lambda-like Docker container. We use it here so you don't need to have
Python 3.12 installed on your local machine for the build to work.

During the build process, AWS SAM looks for the Lambda function code in the location you
specified with the CodeUri property in the template. In this case, we specified the current
directory as the location (. /).

If a requirements. txt file is present, AWS SAM uses it to gather the specified dependencies.
By default, AWS SAM creates a .zip deployment package with your function code and
dependencies. You can also choose to deploy your function as a container image using the

PackageType property.

3. To deploy your application and create the Lambda and Amazon S3 resources specified in your
AWS SAM template, run the following command.

sam deploy --guided

Using the - -guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

Deploy the app 72

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-packagetype

AWS Lambda Developer Guide

« An AWS CloudFormation stack named sam-app
« A Lambda function with the name EncryptPDF

« Two S3 buckets with the names you chose when you edited the template.yaml AWS SAM
template file

« An IAM execution role for your function with the name format sam-app-
EncryptPDFFunctionRole-2gGaapHFW0OQ@8

When AWS SAM finishes creating your resources, you should see the following message:

Successfully created/updated stack - sam-app in us-east-2

Test the app

To test your app, upload a PDF file to your source bucket, and confirm that Lambda creates an
encrypted version of the file in your destination bucket. In this example, you can either test this
manually using the console or the AWS CLI, or by using the provided test script.

For production applications, you can use traditional test methods and techniques, such as unit
testing, to confirm the correct functioning of your Lambda function code. Best practice is also to
conduct tests like those in the provided test script which perform integration testing with real,
cloud-based resources. Integration testing in the cloud confirms that your infrastructure has been
correctly deployed and that events flow between different services as expected. To learn more, see
Testing serverless functions.

Testing the app manually

You can test your function manually by adding a PDF file to your Amazon S3 source bucket. When
you add your file to the source bucket, your Lambda function should be automatically invoked and
should store an encrypted version of the file in your target bucket.

Console
To test your app by uploading a file (console)
1. To upload a PDF file to your S3 bucket, do the following:

a. Open the Buckets page of the Amazon S3 console and choose your source bucket.
b. Choose Upload.

Test the app 73

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks
https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

2.

c. Choose Add files and use the file selector to choose the PDF file you want to upload.
d. Choose Open, then choose Upload.

Verify that Lambda has saved an encrypted version of your PDF file in your target bucket by
doing the following:

a. Navigate back to the Buckets page of the Amazon S3 console and choose your
destination bucket.

b. Inthe Objects pane, you should now see a file with name format
filename_encrypted. pdf (where filename. pdf was the name of the file you
uploaded to your source bucket). To download your encrypted PDF, select the file, then
choose Download.

¢. Confirm that you can open the downloaded file with the password your Lambda
function protected it with (my-secret-passwozrd).

AWS CLI

To test your app by uploading a file (AWS CLI)

1.

From the directory containing the PDF file you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test file.

aws s3api put-object --bucket amzn-s3-demo-bucket --key test.pdf --body ./
test.pdf

Verify that your function has created an encrypted version of your file and saved it to your
target S3 bucket. Run the following CLI command, replacing amzn-s3-demo-bucket-
encrypted with the name of your own destination bucket.

aws s3api list-objects-v2 --bucket amzn-s3-demo-bucket-encrypted

If your function runs successfully, you'll see output similar to the following. Your target
bucket should contain a file with the name format <your_test_file>_encrypted.pdf,
where <your_test_file> is the name of the file you uploaded.

"Contents": [

Test the app 74

https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

{
"Key": "test_encrypted.pdf",
"LastModified": "2023-06-07T00:15:50+00:00",
"ETag": "\"7781a43e765a8301713f533d70968ale\"",
"Size": 2763,
"StorageClass": "STANDARD"

}

}

3. To download the file that Lambda saved in your destination bucket, run the following CLI
command. Replace the --bucket parameter with the name of your destination bucket.
For the --key parameter, use the filename <your_test_file>_encrypted.pdf, where
<your_test_file> is the name of the the test file you uploaded.

aws s3api get-object --bucket amzn-s3-demo-bucket-encrypted --
key test_encrypted.pdf my_encrypted_file.pdf

This command downloads the file to your current directory and saves it as
my_encrypted_file.pdf.

4. Confirm the you can open the downloaded file with the password your Lambda function
protected it with (my-secret-password).

Testing the app with the automated script
Create the following files in your project directory:

« test_pdf_encrypt.py - a test script you can use to automatically test your application

« pytest.ini - a configuration file for the the test script

Expand the following sections to view the code and to learn more about the role of each file.
Automated test script

Copy and paste the following code into a file named test_pdf_encrypt.py. Be sure to replace
the placeholder bucket names:

e Inthe test_source_bucket_available function, replace amzn-s3-demo-bucket with the
name of your source bucket.

Test the app 75

AWS Lambda Developer Guide

e Inthe test_encrypted_file_in_bucket function, replace amzn-s3-demo-bucket-
encrypted with source-bucket-encrypted, where source-bucket> is the name of your
source bucket.

« In the cleanup function, replace amzn-s3-demo-bucket with the name of your source bucket,

and replace amzn-s3-demo-bucket-encrypted with the name of your destination bucket.

import boto3
import json
import pytest
import time
import os

@pytest.fixture
def lambda_client():
return boto3.client('lambda')

@pytest.fixture
def s3_client():
return boto3.client('s3"')

@pytest.fixture
def logs_client():
return boto3.client('logs"')

@pytest.fixture(scope='session')

def cleanup():
Create a new S3 client for cleanup
s3_client = boto3.client('s3'")

yield
Cleanup code will be executed after all tests have finished

Delete test.pdf from the source bucket

source_bucket = 'amzn-s3-demo-bucket'

source_file_key = 'test.pdf'
s3_client.delete_object(Bucket=source_bucket, Key=source_file_key)
print(f"\nDeleted {source_file_key} from {source_bucket}")

Delete test_encrypted.pdf from the destination bucket
destination_bucket = 'amzn-s3-demo-bucket-encrypted'
destination_file_key = 'test_encrypted.pdf'

Test the app

76

AWS Lambda Developer Guide

s3_client.delete_object(Bucket=destination_bucket, Key=destination_file_key)
print(f"Deleted {destination_file_key} from {destination_bucket}")

@pytest.mark.order(1)
def test_source_bucket_available(s3_client):
s3_bucket_name = 'amzn-s3-demo-bucket'
file_name = 'test.pdf'
file_path = os.path.join(os.path.dirname(__file_), file_name)

file_uploaded = False

try:
s3_client.upload_file(file_path, s3_bucket_name, file_name)
file_uploaded = True

except:

print("Error: couldn't upload file")

assert file_uploaded, "Could not upload file to S3 bucket"

@pytest.mark.order(2)
def test_lambda_invoked(logs_client):

Wait for a few seconds to make sure the logs are available
time.sleep(5)

Get the latest log stream for the specified log group
log_streams = logs_client.describe_log_streams(
logGroupName="'/aws/lambda/EncryptPDF',
orderBy='LastEventTime',
descending=True,
limit=1

latest_log_stream_name = log_streams['logStreams']J[@]['logStreamName']
Retrieve the log events from the latest log stream
log_events = logs_client.get_log_events(

logGroupName="'/aws/lambda/EncryptPDF',
logStreamName=latest_log_stream_name

success_found = False

Test the app 77

AWS Lambda Developer Guide

for event in log_events['events']:
message = json.loads(event['message'])
status = message.get('record', {}).get('status')

if status == 'success':
success_found = True
break

assert success_found, "Lambda function execution did not report 'success' status in
logs."

@pytest.mark.order(3)

def test_encrypted_file_in_bucket(s3_client):
Specify the destination S3 bucket and the expected converted file key
destination_bucket = 'amzn-s3-demo-bucket-encrypted'
converted_file_key = 'test_encrypted.pdf'

try:
Attempt to retrieve the metadata of the converted file from the destination
S3 bucket
s3_client.head_object(Bucket=destination_bucket, Key=converted_file_key)
except s3_client.exceptions.ClientError as e:
If the file is not found, the test will fail
pytest.fail(f"Converted file '{converted_file_key}' not found in the
destination bucket: {str(e)}")

def test_cleanup(cleanup):
This test uses the cleanup fixture and will be executed last
pass

The automated test script executes three test functions to confirm correct operation of your app:

« The test test_source_bucket_available confirms that your source bucket has been
successfully created by uploading a test PDF file to the bucket.

« The test test_lambda_invoked interrogates the latest CloudWatch Logs log stream for
your function to confirm that when you uploaded the test file, your Lambda function ran and
reported success.

o The test test_encrypted_file_in_bucket confirms that your destination bucket contains
the encrypted test_encrypted. pdf file.

After all these tests have run, the script runs an additional cleanup step to delete the test. pdf
and test_encrypted. pdf files from both your source and destination buckets.

Test the app 78

AWS Lambda Developer Guide

As with the AWS SAM template, the bucket names specified in this file are placeholders. Before
running the test, you need to edit this file with your app's real bucket names. This step is explained
further in the section called “Testing the app with the automated script”

Test script configuration file

Copy and paste the following code into a file named pytest.ini.

[pytest]
markers =
order: specify test execution order

This is needed to specify the order in which the tests in the test_pdf_encrypt.py script run.
To run the tests do the following:

1. Ensure that the pytest module is installed in your local environment. You can install pytest
by running the following command:

pip install pytest

2. Save a PDF file named test. pdf in the directory containing the test_pdf_encrypt.py and
pytest.ini files.

3. Open a terminal or shell program and run the following command from the directory
containing the test files.

pytest -s -v

When the test completes, you should see output like the following:

platform linux -- Python 3.12.2, pytest-7.2.2, pluggy-1.0.0 -- /usr/bin/python3
cachedir: .pytest_cache

hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/
pdf_encrypt_app/.hypothesis/examples')

Test order randomisation NOT enabled. Enable with --random-order or --random-order-
bucket=<bucket_type>

rootdir: /home/pdf_encrypt_app, configfile: pytest.ini

Test the app 79

AWS Lambda Developer Guide

plugins: anyio-3.7.1, hypothesis-6.70.0, localserver-0.7.1, random-order-1.1.0
collected 4 items

test_pdf_encrypt.py::test_source_bucket_available PASSED
test_pdf_encrypt.py::test_lambda_invoked PASSED
test_pdf_encrypt.py::test_encrypted_file_in_bucket PASSED
test_pdf_encrypt.py::test_cleanup PASSED

Deleted test.pdf from amzn-s3-demo-bucket

Deleted test_encrypted.pdf from amzn-s3-demo-bucket-encrypted

Next steps

Now you've created this example app, you can use the provided code as a basis to create other
types of file-processing application. Modify the code in the 1lambda_function.py file to
implement the file-processing logic for your use case.

Many typical file-processing use cases involve image processing. When using Python, the most
popular image-processing libraries like pillow typically contain C or C++ components. In order
to ensure that your function's deployment package is compatible with the Lambda execution
environment, it's important to use the correct source distribution binary.

When deploying your resources with AWS SAM, you need to take some extra steps to include

the right source distribution in your deployment package. Because AWS SAM won't install
dependencies for a different platform than your build machine, specifying the correct source
distribution (.whl file) in your requirements. txt file won't work if your build machine uses an
operating system or architecture that's different from the Lambda execution environment. Instead,
you should do one of the following:

« Use the --use-container option when running sam build. When you specify this option,
AWS SAM downloads a container base image that's compatible with the Lambda execution
environment and builds your function's deployment package in a Docker container using that
image. To learn more, see Building a Lambda function inside of a provided container.

« Build your function's .zip deployment package yourself using the correct source distribution
binary and save the .zip file in the directory you specify as the CodeUri in the AWS SAM
template. To learn more about building .zip deployment packages for Python using binary

Next steps 80

https://pypi.org/project/pillow/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-build.html#using-sam-cli-build-options-container

AWS Lambda Developer Guide

distributions, see the section called “Creating a .zip deployment package with dependencies” and

the section called “Creating .zip deployment packages with native libraries”.

Create an app to perform scheduled database maintenance

You can use AWS Lambda to replace scheduled processes such as automated system backups,

file conversions, and maintenance tasks. In this example, you create a serverless application that
performs regular scheduled maintenance on a DynamoDB table by deleting old entries. The app
uses EventBridge Scheduler to invoke a Lambda function on a cron schedule. When invoked, the
function queries the table for items older than one year, and deletes them. The function logs each
deleted item in CloudWatch Logs.

To implement this example, first create a DynamoDB table and populate it with some test data
for your function to query. Then, create a Python Lambda function with an EventBridge Scheduler
trigger and an IAM execution role that gives the function permission to read, and delete, items
from your table.

S m

EventBridge ! Lambda : DynamoDB
Scheduler '
A
Permissions
Policy
A 5 : I | —
O [—
Zo: » < . gl w | —
el : | w—
Maintenance
D DB
Schedule function Y"tlzgllg

® Tip
If you're new to Lambda, we recommend that you complete the tutorial Create your first
function before creating this example app.

You can deploy your app manually by creating and configuring resources with the AWS
Management Console. You can also deploy the app by using the AWS Serverless Application Model

Scheduled-maintenance app 81

AWS Lambda Developer Guide

(AWS SAM). AWS SAM is an infrastructure as code (laC) tool. With lIaC, you don't create resources
manually, but define them in code and then deploy them automatically.

If you want to learn more about using Lambda with laC before deploying this example app, see the
section called "“Infrastructure as code (laC)".

Prerequisites

Before you can create the example app, make sure you have the required command line tools and
programs installed.

Python

To populate the DynamoDB table you create to test your app, this example uses a Python script
and a CSV file to write data into the table. Make sure you have Python version 3.8 or later
installed on your machine.

« AWS SAM CLI

If you want to create the DynamoDB table and deploy the example app using AWS SAM, you
need to install the AWS SAM CLI. Follow the installation instructions in the AWS SAM User Guide.

o AWS CLI

To use the provided Python script to populate your test table, you need to have installed and
configured the AWS CLI. This is because the script uses the AWS SDK for Python (Boto3), which
needs access to your AWS Identity and Access Management (IAM) credentials. You also need
the AWS CLI installed to deploy resources using AWS SAM. Install the CLI by following the
installation instructions in the AWS Command Line Interface User Guide.

« Docker

To deploy the app using AWS SAM, Docker must also be installed on your build machine. Follow
the instructions in Install Docker Engine on the Docker documentation website.

Downloading the example app files

To create the example database and the scheduled-maintenance app, you need to create the
following files in your project directory:

Example database files

Prerequisites 82

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/engine/install/

AWS Lambda Developer Guide

« template.yaml - an AWS SAM template you can use to create the DynamoDB table
« sample_data.csv -a CSV file containing sample data to load into your table

» load_sample_data.py - a Python script that writes the data in the CSV file into the table

Scheduled-maintenance app files

« lambda_function.py - the Python function code for the Lambda function that performs the
database maintenance

« requirements.txt - a manifest file defining the dependencies that your Python function code
requires

« template.yaml - an AWS SAM template you can use to deploy the app

Test file

« test_app.py - a Python script that scans the table and confirms successful operation of your
function by outputting all records older than one year

Expand the following sections to view the code and to learn more about the role of each file in
creating and testing your app. To create the files on your local machine, copy and paste the code
below.

AWS SAM template (example DynamoDB table)

Copy and paste the following code into a file named template.yaml.

AWSTemplateFormatVersion: '2010-09-09'

Transform: AWS::Serverless-2016-10-31

Description: SAM Template for DynamoDB Table with Order_number as Partition Key and
Date as Sort Key

Resources:
MyDynamoDBTable:
Type: AWS::DynamoDB::Table
DeletionPolicy: Retain
UpdateReplacePolicy: Retain
Properties:
TableName: MyOrderTable
BillingMode: PAY_PER_REQUEST

Downloading the example app files 83

AWS Lambda

Developer Guide

AttributeDefinitions:
- AttributeName: Order_number
AttributeType: S
- AttributeName: Date
AttributeType: S
KeySchema:
- AttributeName: Order_number
KeyType: HASH
- AttributeName: Date
KeyType: RANGE
SSESpecification:
SSEEnabled: true
GlobalSecondaryIndexes:
- IndexName: Date-index
KeySchema:
- AttributeName: Date
KeyType: HASH
Projection:
ProjectionType: ALL
PointInTimeRecoverySpecification:
PointInTimeRecoveryEnabled: true

Outputs:
TableName:
Description: DynamoDB Table Name
Value: !Ref MyDynamoDBTable
TableArn:
Description: DynamoDB Table ARN
Value: !GetAtt MyDynamoDBTable.Arn

(@ Note

AWS SAM templates use a standard naming convention of template.yaml. In this
example, you have two template files - one to create the example database and another to
create the app itself. Save them in separate sub-directories in your project folder.

This AWS SAM template defines the DynamoDB table resource you create to test your app. The
table uses a primary key of Order_number with a sort key of Date. In order for your Lambda
function to find items directly by date, we also define a Global Secondary Index named Date-

index.

Downloading the example app files

84

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

AWS Lambda Developer Guide

To learn more about creating and configuring a DynamoDB table using the
AWS: :DynamoDB: : Table resource, see AWS::DynamoDB::Table in the AWS CloudFormation User
Guide.

Sample database data file

Copy and paste the following code into a file named sample_data.csv.

Date,Order_number,CustomerName, ProductID,Quantity, TotalAmount
2023-09-01,0RD0O0Q1,Alejandro Rosalez,PROD123,2,199.98
2023-09-01,0RD002,Akua Mansa,PROD456,1,49.99
2023-09-02,0RDO0O3,Ana Carolina Silva,PROD789,3,149.97
2023-09-03,0RD0O0O4, Arnav Desai,PROD123,1,99.99
2023-10-01,0RD0O0O5,Carlos Salazar, PROD456,2,99.98
2023-10-02,0RD0O06,Diego Ramirez,PROD789,1,49.99
2023-10-03,0RDO0O7 ,Efua Owusu,PROD123,4,399.96
2023-10-04,0RD0O0O8, John Stiles,PROD456,2,99.98
2023-10-05,0RD009, Jorge Souza,PR0OD789,3,149.97
2023-10-06,0RD0O10, Kwaku Mensah,PR0OD123,1,99.99
2023-11-01,0RDQ11,Li Juan,PROD456,5,249.95
2023-11-02,0RDQ12,Marcia Oliveria, PROD789,2,99.98
2023-11-03,0RDQ13,Maria Garcia,PROD123,3,299.97
2023-11-04,0RDO14,Martha Rivera,PROD456,1,49.99
2023-11-05,0RD0Q15,Mary Major,PROD789,4,199.96
2023-12-01,0RD016,Mateo Jackson,PR0OD123,2,199.99
2023-12-02,0RDQ17,Nikki Wolf,PROD456,3,149.97
2023-12-03,0RD0Q18,Pat Candella,PROD789,1,49.99
2023-12-04,0RDO19, Paulo Santos,PROD123,5,499.95
2023-12-05,0RD020,Richard Roe,PROD456,2,99.98
2024-01-01,0RD0O21,Saanvi Sarkar,PROD789,3,149.97
2024-01-02,0RD022,Shirley Rodriguez,PR0OD123,1,99.99
2024-01-03,0RD023,Sofia Martinez, PROD456,4,199.96
2024-01-04,0RD0O24, Terry Whitlock,PROD789,2,99.98
2024-01-05,0RD025,Wang Xiulan,PROD123,3,299.97

This file contains some example test data to populate your DynamoDB table with in a standard
comma-separated values (CSV) format.

Python script to load sample data

Copy and paste the following code into a file named load_sample_data.py.

import boto3

Downloading the example app files 85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda Developer Guide

import csv
from decimal import Decimal

Initialize the DynamoDB client
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('MyOrderTable')
print("DDB client initialized.")

def load_data_from_csv(filename):
with open(filename, 'r') as file:
csv_reader = csv.DictReader(file)
for row in csv_reader:
item = {
'Order_number': row['Order_number'],
'Date': row['Date'],
'CustomerName': row['CustomerName'],
'"ProductID': row['ProductID'],
'Quantity': int(row['Quantity']),
'TotalAmount': Decimal(str(row['TotalAmount']))
}
table.put_item(Item=item)
print(f"Added item: {item['Order_number']} - {item['Date']}")

if __name__ == "__main__":
load_data_from_csv('sample_data.csv')
print("Data loading completed.")

This Python script first uses the AWS SDK for Python (Boto3) to create a connection to your
DynamoDB table. It then iterates over each row in the example-data CSV file, creates an item from
that row, and writes the item to the DynamoDB table using the boto3 SDK.

Python function code

Copy and paste the following code into a file named lambda_function. py.

import boto3

from datetime import datetime, timedelta

from boto3.dynamodb.conditions import Key, Attr
import logging

logger = logging.getlLogger()
logger.setLevel ("INFO")

Downloading the example app files 86

AWS Lambda

Developer Guide

def lambda_handler(event, context):
Initialize the DynamoDB client
dynamodb = boto3.resource('dynamodb')

Specify the table name
table_name = 'MyOrderTable'
table = dynamodb.Table(table_name)

Get today's date
today = datetime.now()

Calculate the date one year ago
one_year_ago = (today - timedelta(days=365)).strftime('%Y-%m-%d')

Scan the table using a global secondary index
response = table.scan(
IndexName="'Date-index",
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
},
ExpressionAttributeValues={
':one_year_ago': one_year_ago

Delete old items
with table.batch_writer() as batch:
for item in response['Items']:
Order_number = item['Order_number']
batch.delete_item(
Key={
'Order_number': Order_number,
'Date': item['Date']

)

logger.info(f'deleted order number {Order_number}')

Check if there are more items to scan
while 'LastEvaluatedKey' in response:
response = table.scan(
IndexName="'DateIndex’,
FilterExpression="'#date < :one_year_ago'
ExpressionAttributeNames={

~

Downloading the example app files

87

AWS Lambda Developer Guide

'#date': 'Date’
.
ExpressionAttributeValues={
':one_year_ago': one_year_ago
},

ExclusiveStartKey=response['LastEvaluatedKey']

Delete old items
with table.batch_writer() as batch:
for item in response['Items']:
batch.delete_item(
Key={
'Order_number': item['Order_number'],
'Date': item['Date']

return {
'statusCode': 200,
'body': 'Cleanup completed successfully'

The Python function code contains the handler function (Lambda_handler) that Lambda runs
when your function is invoked.

When the function is invoked by EventBridge Scheduler, it uses the AWS SDK for Python (Boto3)

to create a connection to the DynamoDB table on which the scheduled maintenance task is to be
performed. It then uses the Python datetime library to calculate the date one year ago, before

scanning the table for items older than this and deleting them.

Note that responses from DynamoDB query and scan operations are limited to a maximum of

1 MB in size. If the response is larger than 1 MB, DynamoDB paginates the data and returns a
LastEvaluatedKey element in the response. To ensure that our function processes all the records
in the table, we check for the presence of this key and continue performing table scans from the
last evaluated position until the whole table has been scanned.

requirements. txt manifest file

Copy and paste the following code into a file named requirements. txt.

boto3

Downloading the example app files 88

AWS Lambda Developer Guide

For this example, your function code has only one dependency that isn't part of the standard
Python library - the SDK for Python (Boto3) that the function uses to scan and delete items from
the DynamoDB table.

(® Note

A version of the SDK for Python (Boto3) is included as part of the Lambda runtime, so your
code would run without adding Boto3 to your function's deployment package. However, to
maintain full control of your function's dependencies and avoid possible issues with version
misalignment, best practice for Python is to include all function dependencies in your
function's deployment package. See the section called “Runtime dependencies in Python"

to learn more.

AWS SAM template (scheduled-maintenance app)

Copy and paste the following code into a file named template.yaml.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: SAM Template for Lambda function and EventBridge Scheduler rule

Resources:
MyLambdaFunction:
Type: AWS::Serverless::Function
Properties:
FunctionName: ScheduledDBMaintenance
CodeUri: ./
Handler: lambda_function.lambda_handler
Runtime: python3.11
Architectures:
- x86_64
Events:
ScheduleEvent:
Type: ScheduleV2
Properties:
ScheduleExpression: cron(@ 3 1 * ? *)
Description: Run on the first day of every month at 03:00 AM
Policies:
- CloudWatchLogsFullAccess
- Statement:
- Effect: Allow

Downloading the example app files

89

AWS Lambda Developer Guide

Action:
- dynamodb:Scan
- dynamodb:BatchWriteItem
Resource: !Sub 'arn:aws:dynamodb:${AWS::Region}:${AWS: :AccountId}:table/
MyOrderTable'

LambdalogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName: !Sub /aws/lambda/${MyLambdaFunction}
RetentionInDays: 30

Outputs:
LambdaFunctionName:
Description: Lambda Function Name
Value: !Ref MyLambdaFunction
LambdaFunctionAzn:
Description: Lambda Function ARN
Value: !GetAtt MyLambdaFunction.Azn

(® Note

AWS SAM templates use a standard naming convention of template.yaml. In this
example, you have two template files - one to create the example database and another to
create the app itself. Save them in separate sub-directories in your project folder.

This AWS SAM template defines the resources for your app. We define the Lambda function using
the AWS: :Serverless: :Function resource. The EventBridge Scheduler schedule and the trigger
to invoke the Lambda function are created by using the Events property of this resource using a
type of ScheduleV2. To learn more about defining EventBridge Scheduler schedules in AWS SAM
templates, see ScheduleV2 in the AWS Serverless Application Model Developer Guide.

In addition to the Lambda function and the EventBridge Scheduler schedule, we also define a
CloudWatch log group for your function to send records of deleted items to.

Test script

Copy and paste the following code into a file named test_app.py.

import boto3
from datetime import datetime, timedelta

Downloading the example app files 90

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-schedulev2.html

AWS Lambda Developer Guide

import json

Initialize the DynamoDB client
dynamodb = boto3.resource('dynamodb')

Specify your table name
table_name = 'YourTableName'
table = dynamodb.Table(table_name)

Get the current date
current_date = datetime.now()

Calculate the date one year ago
one_year_ago = current_date - timedelta(days=365)

Convert the date to string format (assuming the date in DynamoDB is stored as a
string)
one_year_ago_str = one_year_ago.strftime('%Y-%m-%d"')

Scan the table
response = table.scan(
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
},
ExpressionAttributeValues={
':one_year_ago': one_year_ago_str

Process the results
old_records = response['Items']

Continue scanning if we have more items (pagination)
while 'LastEvaluatedKey' in response:
response = table.scan(
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
1,
ExpressionAttributeValues={
':one_year_ago': one_year_ago_str
},

ExclusiveStartKey=response['LastEvaluatedKey']

Downloading the example app files 91

AWS Lambda

Developer Guide

)

old_records.extend(response['Items'])

for record in old_records:
print(json.dumps(record))

The total number of old records should be zero.
print(f"Total number of old records: {len(old_records)}")

This test script uses the AWS SDK for Python (Boto3) to create a connection to your DynamoDB

table and scan for items older than one year. To confirm if the Lambda function has run

successfully, at the end of the test, the function prints the number of records older than one year

still in the table. If the Lambda function was successful, the number of old records in the table
should be zero.

Creating and populating the example DynamoDB table

To test your scheduled-maintenance app, you first create a DynamoDB table and populate it with
some sample data. You can create the table either manually using the AWS Management Console

or by using AWS SAM. We recommend that you use AWS SAM to quickly create and configure the
table using a few AWS CLI commands.

Console

To create the DynamoDB table

1.
2.
3.

Open the Tables page of the DynamoDB console.

Choose Create table.

Create the table by doing the following:

a.
b.
C.
d.

Under Table details, for Table name, enter M\yOrdexTable.
For Partition key, enter Oxdex_numbexr and leave the type as String.
For Sort key, enter Date and leave the type as String.

Leave Table settings set to Default settings and choose Create table.

When your table has finished creating and its Status shows as Active, create a global
secondary index (GSI) by doing the following. Your app will use this GSI to search for items
directly by date to determine what to delete.

a.

Choose MyOrderTable from the list of tables.

Creating and populating the example DynamoDB table 92

https://console.aws.amazon.com/dynamodbv2/home#tables

AWS Lambda Developer Guide

b. Choose the Indexes tab.
c. Under Global secondary indexes, choose Create index.

d. Under Index details, enter Date for the Partition key and leave the Data type set to
String.

e. For Index name, enter Date-index.

f. Leave all other parameters set to their default values, scroll to the bottom of the page,
and choose Create index.

AWS SAM

To create the DynamoDB table

1.

Navigate to the folder you saved the template.yaml file for the DynamoDB table in. Note
that this example uses two template.yaml files. Make sure they are saved in separate
sub-folders and that you are in the correct folder containing the template to create your
DynamoDB table.

Run the following command.

sam build

This command gathers the build artifacts for the resources you want to deploy and places
them in the proper format and location to deploy them.

To create the DynamoDB resource specified in the template.yaml file, run the following
command.

sam deploy --guided

Using the --guided flag means that AWS SAM will show you prompts to guide you
through the deployment process. For this deployment, enter a Stack name of cxron-app-
test-db, and accept the defaults for all other options by using Enter.

When AWS SAM has finished creating the DynamoDB resource, you should see the
following message.

Successfully created/updated stack - cron-app-test-db in us-west-2

Creating and populating the example DynamoDB table 93

AWS Lambda Developer Guide

4. You can additionally confirm that the DynamoDB table has been created by opening the
Tables page of the DynamoDB console. You should see a table named MyOrderTable.

After you've created your table, you next add some sample data to test your app. The CSV file
sample_data.csv you downloaded earlier contains a number of example entries comprised
of order numbers, dates, and customer and order information. Use the provided python script
load_sample_data. py to add this data to your table.

To add the sample data to the table

1. Navigate to the directory containing the sample_data.csv and load_sample_data.py
files. If these files are in separate directories, move them so they're saved in the same location.

2. Create a Python virtual environment to run the script in by running the following command.
We recommend that you use a virtual environment because in a following step you'll need to
install the AWS SDK for Python (Boto3).

python -m venv venv

3. Activate the virtual environment by running the following command.

source venv/bin/activate

4. Install the SDK for Python (Boto3) in your virtual environment by running the following
command. The script uses this library to connect to your DynamoDB table and add the items.

pip install boto3

5. Run the script to populate the table by running the following command.

python load_sample_data.py

If the script runs successfully, it should print each item to the console as it loads it and report
Data loading completed.

6. Deactivate the virtual environment by running the following command.

deactivate

7. You can verify that the data has been loaded to your DynamoDB table by doing the following:

Creating and populating the example DynamoDB table 94

https://console.aws.amazon.com/dynamodbv2/home#tables

AWS Lambda Developer Guide

a.

Open the Explore items page of the DynamoDB console and select your table
(MyOrderTable).

In the Items returned pane, you should see the 25 items from the CSV file that the script
added to the table.

Creating the scheduled-maintenance app

You can create and deploy the resources for this example app step by step using the AWS

Management Console or by using AWS SAM. In a production environment, we recommend that you

use an Infrustracture-as-Code (laC) tool like AWS SAM to repeatably deploy serverless applications

without using manual processes.

For this example, follow the console instructions to learn how to configure each AWS resource

separately, or follow the AWS SAM instructions to quickly deploy the app using AWS CLI

commands.

Console

To create the function using the AWS Management Console

First, create a function containing basic starter code. You then replace this code with your own
function code by either copying and pasting the code directly in the Lambda code editor, or by
uploading your code as a . zip package. For this task, we recommend copying and pasting the

code.

1. Open the Functions page of the Lambda console.
2. Choose Create function.

3. Choose Author from scratch.

4. Under Basic information, do the following:

a. For Function name, enter ScheduledDBMaintenance.
b. For Runtime choose the latest Python version.

c. For Architecture, choose x86_64.

Choose Create function.

After your function is created, you can configure your function with the provided function
code.

Creating the scheduled-maintenance app 95

https://console.aws.amazon.com/dynamodbv2/home#item-explorer
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. Inthe Code source pane, replace the Hello world code that Lambda created with the
Python function code from the 1ambda_function. py file that you saved earlier.

b. Inthe DEPLOY section, choose Deploy to update your function's code:

~ DEPLOY [UNDEPLOYED CHANGES]
& You have undeployed changes.

Deploy (Ctrl+Shift+U)

Test (Ctri+Shift+1)

To configure the function memory and timeout (console)

1. Select the Configuration tab for your function.
2. In the General configuration pane, choose Edit.

3. Set Memory to 256 MB and Timeout to 15 seconds. If you are processing a large table with
many records, for example in the case of a production environment, you might consider
setting Timeout to a larger number. This gives your function more time to scan, and clean
the database.

4. Choose Save.

To configure the log format (console)

You can configure Lambda functions to output logs in either unstructured text or JSON
format. We recommend that you use JSON format for logs to make it easier to search and
filter log data. To learn more about Lambda log configuration options, see the section called
“Configuring advanced logging controls for Lambda functions”.

1. Select the Configuration tab for your function.
Select Monitoring and operations tools.
In the Logging configuration pane, choose Edit.

For Logging configuration, select JSON.

ik W

Choose Save.

Creating the scheduled-maintenance app 96

AWS Lambda Developer Guide

To set Up IAM permissions

To give your function the permissions it needs to read and delete DynamoDB items, you need to
add a policy to your function's execution role defining the necessary permissions.

1. Open the Configuration tab, then choose Permissions from the left navigation bar.
2. Choose the role name under Execution role.

3. Inthe lAM console, choose Add permissions, then Create inline policy.

4

Use the JSON editor and enter the following policy:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"dynamodb:Scan",
"dynamodb:DeleteItem",
"dynamodb:BatchWriteItem"
1,
"Resource": "arn:aws:dynamodb:*:*:table/MyOrderTable"
}
]
}

5. Name the policy DynamoDBCleanupPolicy, then create it.

To set up EventBridge Scheduler as a trigger (console)

1. Open the EventBridge console.

2. In the left navigation pane, choose Schedulers under the Scheduler section.
3. Choose Create schedule.
4. Configure the schedule by doing the following:
a. Under Schedule name, enter a name for your schedule (for example,
DynamoDBCleanupSchedule).

b. Under Schedule pattern, choose Recurring schedule.

Creating the scheduled-maintenance app 97

https://console.aws.amazon.com/events/home

AWS Lambda

Developer Guide

C.

d.

For Schedule type leave the default as Cron-based schedule, then enter the following
schedule details:

« Minutes: 0

 Hours: 3

« Day of month: 1

« Month: *

« Day of the week: ?

e Year: *

When evaluated, this cron expression runs on the first day of every month at 03:00 AM.

For Flexible time window, select Off.

5. Choose Next.

6. Configure the trigger for your Lambda function by doing the following:

a.

e.

In the Target detail pane, leave Target API set to Templated targets, then select AWS
Lambda Invoke.

Under Invoke, select your Lambda function (ScheduledDBMaintenance) from the
dropdown list.

Leave the Payload empty and choose Next.

Scroll down to Permissions and select Create a new role for this schedule. When you
create a new EventBridge Scheduler schedule using the console, EventBridge Scheduler
creates a new policy with the required permissions the schedule needs to invoke your
function. For more information about managing your schedule permissions, see Cron-
based schedules. in the EventBridge Scheduler User Guide.

Choose Next.

7. Review your settings and choose Create schedule to complete creation of the schedule and

Lambda trigger.

Creating the scheduled-maintenance app 98

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

AWS Lambda Developer Guide

AWS SAM

To deploy the app using AWS SAM

1.

Navigate to the folder you saved the template.yaml file for the app in. Note that this
example uses two template.yaml files. Make sure they are saved in separate sub-folders
and that you are in the correct folder containing the template to create the app.

Copy the lambda_function.py and requirements. txt files you downloaded earlier

to the same folder. The code location specified in the AWS SAM template is . /, meaning
the current location. AWS SAM will search in this folder for the Lambda function code when
you try to deploy the app.

Run the following command.

sam build --use-container

This command gathers the build artifacts for the resources you want to deploy and places
them in the proper format and location to deploy them. Specifying the --use-container
option builds your function inside a Lambda-like Docker container. We use it here so you
don't need to have Python 3.12 installed on your local machine for the build to work.

To create the Lambda and EventBridge Scheduler resources specified in the
template.yaml file, run the following command.

sam deploy --guided

Using the - -guided flag means that AWS SAM will show you prompts to guide you
through the deployment process. For this deployment, enter a Stack name of cron-
maintenance-app, and accept the defaults for all other options by using Enter.

When AWS SAM has finished creating the Lambda and EventBridge Scheduler resources,
you should see the following message.

Successfully created/updated stack - cron-maintenance-app in us-west-2

You can additionally confirm that the Lambda function has been created by opening
the Functions page of the Lambda console. You should see a function named
ScheduledDBMaintenance.

Creating the scheduled-maintenance app 99

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Testing the app

To test that your schedule correctly triggers your function, and that your function correctly cleans
records from the database, you can temporarily modify your schedule to run once at a specific
time. You can then run sam deploy again to reset your recurrence schedule to run once a month.

To run the application using the AWS Management Console

1. Navigate back to the EventBridge Scheduler console page.

2. Choose your schedule, then choose Edit.

3. In the Schedule pattern section, under Recurrence, choose One-time schedule.
4

Set your invocation time to a few minutes from now, review your settings, then choose Save.

After the schedule runs and invokes its target, you run the test_app. py script to verify that your
function successfully removed all old records from the DynamoDB table.

To verify that old records are deleted using a Python script

1. In your command line, navigate to the folder where you saved test_app.py.

2. Run the script.

python test_app.py

If successful, you will see the following output.

Total number of old records: 0

Next steps

You can now modify the EventBridge Scheduler schedule to meet your particular application
requirements. EventBridge Scheduler supports the following schedule expressions: cron, rate, and
one-time schedules.

For more information about EventBridge Scheduler schedule expressions, see Schedule types in the
EventBridge Scheduler User Guide. Access Management in the IAM User Guide

Testing the app 100

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

AWS Lambda Developer Guide

Development, deployment, and management tools

As a Lambda developer, you have access to a variety of tools that can streamline your workflow,
from local development to deployment and management of complex serverless applications. This
section explores local development environments and Infrastructure as Code (laC) tools that can
enhance your productivity and improve the quality of your Lambda-based solutions.

Local development tools

Local development environments enable you to work offline and leverage advanced IDE features
while iterating quickly on your Lambda functions. These tools help you debug complex functions
and develop in environments with limited connectivity. They also support team collaboration and
integration with version control systems.

For more information on developing Lambda functions locally, see Developing Lambda functions

locally with VS Code. This page describes how to move Lambda function development from the

AWS console to Visual Studio Code, which provides a rich development environment with features
like debugging and code completion. To make the transition, you need to set up the AWS Toolkit
for Visual Studio Code and credentials, after which you can use advanced features in VS Code while
maintaining the ability to deploy directly to AWS.

Local development for Lambda provides several key capabilities:

Use Visual Studio Code integration with the Lambda console

Configure local Lambda development environments

Debug and test functions locally

Apply best practices for local function management

For more information, see Developing Lambda functions locally with VS Code.

Infrastructure as Code (l1aC) tools

With Infrastructure as Code (laC) tools, you can define and manage your serverless architecture
using code. This approach helps maintain consistency across environments, lets you control your
infrastructure versions, and facilitates DevOps practices. 1aC is especially valuable for automating
deployments, ensuring consistent environments, and managing multi-region deployments.

Local development tools 101

AWS Lambda Developer Guide

Key laC tools and concepts for Lambda include frameworks for template creation, deployment
management, and best practices for serverless infrastructure::

Core laC principles for Lambda development
AWS CloudFormation, AWS SAM, and AWS CDK capabilities

Tool selection criteria and comparison

Best practices for Lambda laC implementation

Whether you're working independently on a small project or as part of a large team managing
enterprise-scale serverless applications, these development and deployment tools can help you
write, deploy, and manage your Lambda functions more effectively.

For more information, see Using Lambda with infrastructure as code (laC).

Workflow and event management tools

Lambda applications can be used in orchestration of complex workflows and handling of

various events. AWS provides specialized tools to help you manage these aspects of serverless
development. Learn about AWS Step Functions for workflow orchestration and Amazon
EventBridge for event management, and how to integrate them with your Lambda functions.
These tools can significantly enhance the scalability and reliability of your serverless applications
by providing robust state management and event-driven architectures. By leveraging these
services, you can build more sophisticated and resilient Lambda-based solutions that can handle
complex business processes and react to a wide range of system and application events.

For more information, see Managing Lambda workflows and events.

Developing Lambda functions locally with VS Code

You can move your Lambda functions from the Lambda console to Visual Studio Code, which
provides a full development environment and allows you to use other local development options
like AWS SAM and AWS CDK.

Key benefits of local development

While the Lambda console provides a quick way to edit and test functions, local development
offers more advanced capabilities:

Workflow and event management tools 102

AWS Lambda Developer Guide

« Advanced IDE features: Debugging, code completion, and refactoring tools
 Offline development: Work and test changes locally before cloud deployment

« Infrastructure as code integration: Seamless use with AWS SAM, AWS CDK, and Infrastructure
Composer

- Dependency management: Full control over function dependencies
Prerequisites

Before developing Lambda functions locally in VS Code, you must have:

« VS Code: For installation instructions, see Download VS Code.

« AWS Toolkit for Visual Studio Code: For installation instructions, see Setting up the AWS Toolkit
for Visual Studio Code. For an overview, see AWS Toolkit for Visual Studio Code.

« AWS credentials: For information about configuring credentials, see Setting up your AWS
credentials.

o AWS SAM CLI: For installation instructions, see Installing the AWS SAM CLI.

« Docker installed (optional, but required for local testing): For installation instructions, see Get
Docker.

® Note

If you already have an AWS account and profile configured locally, ensure that the
AdministratorAccess managed policy is added to your configured AWS profile.

Authentication and access control

To develop Lambda functions locally, you need AWS credentials to securely access and manage
AWS resources on your behalf, just like they would in the cloud. The AWS Toolkit for VS Code
supports the following authentication methods:

The AWS Toolkit for VS Code supports the following authentication methods:

« IAM user long-term credentials

« Temporary credentials from assumed roles

Prerequisites 103

https://code.visualstudio.com/download
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://aws.amazon.com/visualstudiocode/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

AWS Lambda Developer Guide

« Identity federation

« AWS account root user credentials (not recommended)

This section guides you through obtaining and configuring these credentials using IAM user long-
term credentials.

Get IAM Credentials

If you already have an IAM user with access keys, have both the access key ID and secret access key
ready for the next section. If you don't have these keys, follow these steps to create them:

® Note

You must use both the access key ID and secret access key together to authenticate your
requests.

To create an IAM user and access keys:

—

. Open the IAM console at https://console.aws.amazon.com/iam/

. In the navigation pane, choose Users.

. Choose Create user.

. For User name, enter a name and choose Next.

. Under Set permissions, choose Attach policies directly.
Select AdministratorAccess and choose Next.

Choose Create user.

In the success banner, choose View user.

© ® N O v oA WN

Choose Create access key.

10For Use case, select Local code.

11Select the confirmation check box and choose Next.
12(Optional) Enter a description tag value.

13Choose Create access key.

14Copy your access key and secret access key immediately. You won't be able to access the secret
access key again after you leave this page.

Authentication and access control 104

https://console.aws.amazon.com/iam/

AWS Lambda Developer Guide

/A Important

Never share your secret key or commit it to source control. Store these keys securely and
delete them when no longer needed.

(® Note

For more information, see Create an IAM user in your AWS account and Manage access keys
for IAM users in the IAM User Guide.

Configure AWS credentials using the AWS Toolkit

The following table summarizes the credential setup process you will complete in the following
procedure.

What to Do Why?

Open Sign In panel Start authentication

Use Command Palette, search for AWS Add a Access the sign-in Ul
New Connection

Choose IAM Credential Use your access keys for programmatic access
Enter profile name, access key, secret key Provide credentials for connection
See AWS Explorer update Confirm you're connected

Complete the following steps authenticate to your AWS account:

1. Open the Sign In panel in VS Code:

a. To start the authentication process, select the AWS icon in the left navigation pane or open
the Command Palette (Cmd+Shift+P on Mac or Ctrl+Shift+P on Windows/Linux) and search
for and select AWS Add a New Connection.

2. In the sign in panel, choose IAM Credentials and select Continue.

Authentication and access control 105

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Lambda Developer Guide

® Note

To proceed, you will need to allow AWS IDE Extensions for VS Code to access your data.

3. Enter your profile name, access key ID, and secret access key, then select Continue.

4. Verify the connection by checking the AWS Explorer in VS Code for your AWS services and
resources.

For information on setting up authentication with long-term credentials, see Using long-term
credentials to authenticate AWS SDKs and tools.

For information about configuring authentication, see AWS IAM credentials in the AWS Toolkit for
Visual Studio Code User Guide.

Moving from console to local development

(@ Note

If you've made changes in the console, make sure you don't have any undeployed changes
before transitioning to local development.

To move a Lambda function from the Lambda console to VS Code, complete the following steps:

1. Open the Lambda console.

Choose the name of your function.

Select the Code source tab.

A WM

Choose Open in Visual Studio Code.

(® Note

The Open in Visual Studio Code button is only available in AWS Toolkit version 3.69.0
and later. If you have an earlier version of the AWS Toolkit installed, you may see a
Cannot open the handler message in VS Code. To resolve this, update your AWS
Toolkit to the latest version.

Moving from console to local development 106

https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-credentials.html
https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

5. When prompted, allow your browser to open VS Code.

When you open your function in VS Code, Lambda creates a local project with your function
code in a temporary location that's designed for quick testing and deployment. This includes the
function code, dependencies, and a basic project structure that you can use for local development.

For details on using AWS in VS Code, see the AWS Toolkit for Visual Studio Code User Guide.

Working with functions locally

After opening your function in VS Code, follow these steps to access and manage your functions:

1. Select the AWS icon in the sidebar to open the AWS Explorer:

@ EXPLORER

~ PYTHON-DEMO BEOLO& lambda_function.py > ...
lambda_function.py json

lambda_handler(

{
'statusCode': 200,
'body"': json.dumps('Hello from Lambda!")

2. In the AWS Explorer, select the region with your Lambda function:

Working with functions locally 107

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html

AWS Lambda Developer Guide

£ python-demo

AWS

v EXPLORER ol - lambda_function.py > ...
&2 Connected with profile:default json
> US East (N. Virginia)
v US East (Ohio)

AP| Gateway {

lambda_handler(

App Runner 'statusCode': 200,
CloudFormation "body': json.dumps('Hello from Lambda!')
CloudWatch Logs

DocumentDB

EC2

ECR

ECS

loT

Lambda

Redshift

S3

EELEIELCI

Schemas

Step Functions

Systems Manager

VOVOVOVV VYV YV VYV VYV VYV WV VYWV

Resources
> US West (Oregon)

3. Under your selected region, expand the Lambda section to view and manage your functions:

2 python-demo

AWS

v EXPLORER oy .- lambda_function.py > ...
£ Connected with profile:default json
> US East (N. Virginia)
X lambda_handler(
v US East (Ohio)
> API Gateway {
> App Runner 'statusCode': 200,
SPGloudFormation 'body': json.dumps('Hello from Lambda!")
> CloudWatch Logs
> DocumentDB
> EC2
> ECR
> ECS
> loT
v Lambda
A\ examplel
A\ example2
A example3
A\ python-demo D O
> Redshift python-demo
> 83 arn:aws:lambda:us-east-2:708576985790:function:python-demo
> SageMaker Al
> Schemas

>
>
>
>

Working with functions locally

AWS Lambda Developer Guide

With your function opened in VS Code, you can:

 Edit function code with full language support and code completion.

Test your function locally using the AWS Toolkit.

Debug your function with breakpoints and variable inspection.

Deploy your updated function back to AWS using the cloud icon.

Install and manage dependencies for your function.

For more information, see Working with AWS Lambda functions in the AWS Toolkit for Visual
Studio Code User Guide.

Convert your function to an AWS SAM template and use IaC tools

In VS Code, you can convert your Lambda function to an AWS SAM template by choosing the
Convert to AWS SAM Application icon next to your Lambda function. You will be prompted to
select an AWS SAM project location. Once selected, your Lambda function will be converted to a
template.yaml file that is saved in your new AWS SAM project.

With your function converted to an AWS SAM template, you can:

» Control the versioning of your infrastructure

« Automate deployments

« Remotely debug functions

« Add additional AWS resources to your application

« Maintain consistent environments across your development lifecycle

» Use Infrastructure Composer to visually edit your AWS SAM template

For more information on using laC tools, refer to the following guides:

The AWS Serverless Application Model Developer Guide

The AWS Cloud Development Kit (AWS CDK) Developer Guide

The Infrastructure Composer Developer Guide

The AWS CloudFormation User Guide

Convert your function to an AWS SAM template and use laC tools

109

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/building-lambda.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS Lambda Developer Guide

These tools provide additional capabilities for defining, testing, and deploying your serverless
applications.

Next steps

To learn more about working with Lambda functions in VS Code, see the following resources:

« Working with AWS Lambda functions in the AWS Toolkit for VS Code User Guide

» Working with serverless applications in the AWS Toolkit for VS Code User Guide

« Infrastructure as code in the Lambda Developer Guide

Using GitHub Actions to deploy Lambda functions

You can use GitHub Actions to automatically deploy Lambda functions when you push code

or configuration changes to your repository. The Deploy Lambda Function action provides a

declarative, simple YAML interface that eliminates the complexity of manual deployment steps.

Example workflow

To configure automated Lambda function deployment, create a workflow file in your repository's
.github/workflows/ directory:

Example GitHub Actions workflow for Lambda deployment

name: Deploy AWS Lambda

on:
push:

branches:

- main

jobs:
deploy:

runs-on: ubuntu-latest

permissions:
id-token: write # Required for 0IDC authentication
contents: read # Required to check out the repository

steps:
- uses: actions/checkout@v4

Next steps 110

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/building-lambda.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/serverless-apps.html
https://docs.aws.amazon.com/lambda/latest/dg/foundation-iac.html
https://github.com/features/actions
https://github.com/aws-actions/aws-lambda-deploy

AWS Lambda Developer Guide

- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentialsev4
with:
role-to-assume: arn:aws:iam::123456789012:role/GitHubActionRole
aws-region: us-east-1

- name: Deploy Lambda Function
uses: aws-actions/aws-lambda-deploy@vl
with:
function-name: my-lambda-function
code-artifacts-dir: ./dist

This workflow runs when you push changes to the main branch. It checks out your repository,
configures AWS credentials using OpenID Connect (OIDC), and deploys your function using the
code in the . /dist directory.

For additional examples including updating function configuration, deploying via S3 buckets, and
dry run validation, see the Deploy Lambda Function README.

Additional resources

» Configure AWS Credentials GitHub Action

» Configuring OpenID Connect in AWS

Using Lambda with infrastructure as code (l1aC)

Lambda functions rarely run in isolation. Instead, they often form part of a serverless application
with other resources such as databases, queues, and storage. With infrastructure as code (laC),
you can automate your deployment processes to quickly and repeatably deploy and update whole
serverless applications involving many separate AWS resources. This approach speeds up your
development cycle, makes configuration management easier, and ensures that your resources are

deployed the same way every time.

laC tools for Lambda

AWS CloudFormation

CloudFormation is the foundational IaC service from AWS. You can use YAML or JSON
templates to model and provision your entire AWS infrastructure, including Lambda functions.

Additional resources 111

https://github.com/aws-actions/aws-lambda-deploy
https://github.com/aws-actions/configure-aws-credentials
https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://aws.amazon.com/what-is/iac/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

AWS Lambda Developer Guide

CloudFormation handles the complexities of creating, updating, and deleting your AWS
resources.

AWS Serverless Application Model (AWS SAM)
AWS SAM is an open-source framework built on top of CloudFormation. It provides a simplified

syntax for defining serverless applications. Use AWS SAM templates to quickly provision
Lambda functions, APIs, databases, and event sources with just a few lines of YAML.

AWS Cloud Development Kit (AWS CDK)

The CDK is a code-first approach to IaC. You can define your Lambda-based architecture using
TypeScript, JavaScript, Python, Java, C#/.Net, or Go. Choose your preferred language and use
programming elements like parameters, conditionals, loops, composition, and inheritance to
define the desired outcome of your infrastructure. The CDK then generates the underlying

CloudFormation templates for deployment. For an example of how to use Lambda with CDK,
see Deploying Lambda functions with AWS CDK.

|
]
AWS SAM HEN

template (YAML) AWS CloudFormation AWS CloudFormation stack
(infrastructure + code)

Code AWS Cloud Development Kit
(CDK)

AWS also provides a service called AWS Infrastructure Composer to develop laC templates using a
simple graphical interface. With Infrastructure Composer, you design an application architecture by
dragging, grouping, and connecting AWS services in a visual canvas. Infrastructure Composer then
creates an AWS SAM template or an AWS CloudFormation template from your design that you can
use to deploy your application.

laC tools for Lambda

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html

AWS Lambda Developer Guide

In the the section called "Using AWS SAM and Infrastructure Composer” section below, you use
Infrastructure Composer to develop a template for a serverless application based on an existing
Lambda function.

Using Lambda functions in AWS SAM and Infrastructure Composer

In this tutorial, you can get started using laC with Lambda by creating an AWS SAM template
from an existing Lambda function and then building out a serverless application in Infrastructure
Composer by adding other AWS resources.

As you carry out this tutorial, you'll learn some fundamental concepts, like how AWS resources are
specified in AWS SAM. You'll also learn how to use Infrastructure Composer to build a serverless
application you can deploy using AWS SAM or AWS CloudFormation.

To complete this tutorial, you'll carry out the following steps:

» Create an example Lambda function
» Use the Lambda console to view the AWS SAM template for the function

« Export your function's configuration to AWS Infrastructure Composer and design a simple
serverless application based on your function’s configuration

« Save an updated AWS SAM template you can use as a basis to deploy your serverless application

Prerequisites

In this tutorial, you use Infrastructure Composer’s local sync feature to save your template and
code files to your local build machine. To use this feature, you need a browser that supports the
File System Access API, which allows web applications to read, write, and save files in your local
file system . We recommend using either Google Chrome or Microsoft Edge. For more information
about the File System Access API, see What is the File System Access API?

Create a Lambda function

In this first step, you create a Lambda function you can use to complete the rest of the tutorial. To
keep things simple, you use the Lambda console to create a basic 'Hello world' function using the
Python 3.11 runtime.

To create a 'Hello world' Lambda function using the console

1. Open the Lambda console.

Using AWS SAM and Infrastructure Composer 113

https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-fsa.html#reference-fsa-api
https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

2. Choose Create function.

3. Leave Author from scratch selected, and under Basic information, enter LambdaIaCDemo for
Function name.

4. For Runtime, select Python 3.11.

5. Choose Create function.

View the AWS SAM template for your function

Before you export your function configuration to Infrastructure Composer, use the Lambda console
to view your function's current configuration as an AWS SAM template. By following the steps in
this section, you'll learn about the anatomy of an AWS SAM template and how to define resources
like Lambda functions to start specifying a serverless application.

To view the AWS SAM template for your function

1. Open the Functions page of the Lambda console.

2. Choose the function you just created (LambdaIaCDemo).

3. In the Function overview pane, choose Template.

In place of the diagram representing your function’s configuration, you'll see an AWS SAM
template for your function. The template should look like the following.

This AWS SAM template has been generated from your function's

configuration. If your function has one or more triggers, note

that the AWS resources associated with these triggers aren't fully

specified in this template and include placeholder values.Open this template
in AWS Application Composer or your favorite IDE and modify

it to specify a serverless application with other AWS resources.
AWSTemplateFormatVersion: '2010-09-09'

Transform: AWS::Serverless-2016-10-31

Description: An AWS Serverless Specification template describing your function.

H OH O OB H O

Resources:
LambdaIaCDemo:

Type: AWS::Serverless::Function

Properties:
CodeUri:
Description:
MemorySize: 128
Timeout: 3

Using AWS SAM and Infrastructure Composer 114

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Handler: lambda_function.lambda_handler
Runtime: python3.11
Architectures:
- x86_64
EventInvokeConfig:
MaximumEventAgeInSeconds: 21600
MaximumRetryAttempts: 2
EphemeralStorage:
Size: 512
RuntimeManagementConfig:
UpdateRuntimeOn: Auto
SnapStart:
ApplyOn: None
PackageType: Zip
Policies:
Statement:
- Effect: Allow
Action:
- logs:CreatelLogGroup
Resource: arn:aws:logs:us-east-1:123456789012:*
- Effect: Allow
Action:
- logs:CreatelLogStream
- logs:PutLogEvents
Resource:
- >
arn:aws:logs:us-east-1:123456789012:1og-group:/aws/lambda/
LambdaIaCDemo: *

Let's take a moment to look at the YAML template for your function and understand some key
concepts.

The template starts with the declaration Transform: AWS::Serverless-2016-10-31. This
declaration is required because behind the scenes, AWS SAM templates are deployed through AWS

CloudFormation. Using the Transform statement identifies the template as an AWS SAM template
file.

Following the Transform declaration comes the Resources section. This is where the AWS
resources you want to deploy with your AWS SAM template are defined. AWS SAM templates can
contain a combination of AWS SAM resources and AWS CloudFormation resources. This is because

Using AWS SAM and Infrastructure Composer 115

AWS Lambda Developer Guide

during deployment, AWS SAM templates expand to AWS CloudFormation templates, so any valid
AWS CloudFormation syntax can be added to an AWS SAM template.

At the moment, there is just one resource defined in the Resources section of the template,

your Lambda function LambdaIaCDemo. To add a Lambda function to an AWS SAM template, you
use the AWS: :Serverless: :Function resource type. The Properties of a Lambda function
resource define the function’s runtime, function handler, and other configuration options. The path
to your function’s source code that AWS SAM should use to deploy the function is also defined
here. To learn more about Lambda function resources in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

As well as the function properties and configurations, the template also specifies an AWS Identity
and Access Management (IAM) policy for your function. This policy gives your function permission
to write logs to Amazon CloudWatch Logs. When you create a function in the Lambda console,
Lambda automatically attaches this policy to your function. To learn more about specifying

an IAM policy for a function in an AWS SAM template, see the policies property on the
AWS::Serverless::Function page of the AWS SAM Developer Guide.

To learn more about the structure of AWS SAM templates, see AWS SAM template anatomy.

Use AWS Infrastructure Composer to design a serverless application

To start building out a simple serverless application using your function’s AWS SAM template as

a starting point, you export your function configuration to Infrastructure Composer and activate
Infrastructure Composer's local sync mode. Local sync automatically saves your function’s code and
your AWS SAM template to your local build machine and keeps your saved template synced as you
add other AWS resources in Infrastructure Composer.

To export your function to Infrastructure Composer
1. In the Function Overview pane, choose Export to Application Composer.

To export your function's configuration and code to Infrastructure Composer, Lambda creates
an Amazon S3 bucket in your account to temporarily store this data.

2. In the dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Infrastructure Composer.

3. (Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

Using AWS SAM and Infrastructure Composer 116

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

Selecting Confirm and create project opens the Infrastructure Composer console. On the
canvas, you'll see your Lambda function.

4. From the Menu dropdown, choose Activate local sync.

5. In the dialog box that opens, choose Select folder and select a folder on your local build
machine.

6. Choose Activate to activate local sync.

To export your function to Infrastructure Composer, you need permission to use certain API actions.
If you're unable to export your function, see the section called “Required permissions” and make
sure you have the permissions you need.

(@ Note

Standard Amazon S3 pricing applies for the bucket Lambda creates when you export a
function to Infrastructure Composer. The objects that Lambda puts into the bucket are
automatically deleted after 10 days, but Lambda doesn't delete the bucket itself.

To avoid additional charges being added to your AWS account, follow the instructions in
Deleting a bucket after you have exported your function to Infrastructure Composer. For
more information about the Amazon S3 bucket Lambda creates, see the section called
“Infrastructure Composer”.

To design your serverless application in Infrastructure Composer

After activating local sync, changes you make in Infrastructure Composer will be reflected in the
AWS SAM template saved on your local build machine. You can now drag and drop additional AWS
resources onto the Infrastructure Composer canvas to build out your application. In this example,
you add an Amazon SQS simple queue as a trigger for your Lambda function and a DynamoDB
table for the function to write data to.

1. Add an Amazon SQS trigger to your Lambda function by doing the following:

a. Inthe search field in the Resources palette, enter SQS.

b. Drag the SQS Queue resource onto your canvas and position it to the left of your Lambda
function.

c. Choose Details, and for Logical ID enter LambdaIaCQueue.

Using AWS SAM and Infrastructure Composer 117

https://aws.amazon.com/s3/pricing
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html

AWS Lambda Developer Guide

d. Choose Save.

e. Connect your Amazon SQS and Lambda resources by clicking on the Subscription port on
the SQS queue card and dragging it to the left hand port on the Lambda function card.
The appearance of a line between the two resources indicates a successful connection.
Infrastructure Composer also displays a message at the bottom of the canvas indicating
that the two resources are successfully connected.

2. Add an Amazon DynamoDB table for your Lambda function to write data to by doing the
following:
a. Inthe search field in the Resources palette, enter DynamoDB.

b. Drag the DynamoDB Table resource onto your canvas and position it to the right of your
Lambda function.

¢. Choose Details, and for Logical ID enter LambdaIaCTable.
d. Choose Save.

e. Connect the DynamoDB table to your Lambda function by clicking on the right hand port
of the Lambda function card and dragging it to the left hand port on the DynamoDB card.

Now that you've added these extra resources, let's take a look at the updated AWS SAM template

Infrastructure Composer has created.

To view your updated AWS SAM template

e On the Infrastructure Composer canvas, choose Template to switch from the canvas view to
the template view.

Your AWS SAM template should now contain the following additional resources and properties:

« An Amazon SQS queue with the identifier LambdaIaCQueue

LambdaIaCQueue:
Type: AWS::SQS: :Queue
Properties:
MessageRetentionPeriod: 345600

Using AWS SAM and Infrastructure Composer 118

AWS Lambda Developer Guide

When you add an Amazon SQS queue using Infrastructure Composer, Infrastructure Composer
sets the MessageRetentionPeriod property. You can also set the FifoQueue property by
selecting Details on the SQS Queue card and checking or unchecking Fifo queue.

To set other properties for your queue, you can manually edit the template to add them. To learn
more about the AWS: : SQS: : Queue resource and its available properties, see AWS::SQS::Queue
in the AWS CloudFormation User Guide.

« An Events property in your Lambda function definition that specifies the Amazon SQS queue as
a trigger for the function

Events:
LambdaIaCQueue:
Type: SQS
Properties:
Queue: !GetAtt LambdaIaCQueue.Arn
BatchSize: 1

The Events property consists of an event type and a set of properties that depend on the type.
To learn about the different AWS services you can configure to trigger a Lambda function and
the properties you can set, see EventSource in the AWS SAM Developer Guide.

« A DynamoDB table with the identifier LambdaIaCTable

LambdaIaCTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
- AttributeName: id
AttributeType: S
BillingMode: PAY_PER_REQUEST
KeySchema:
- AttributeName: id
KeyType: HASH
StreamSpecification:
StreamViewType: NEW_AND_OLD_IMAGES

When you add a DynamoDB table using Infrastructure Composer, you can set your table's keys
by choosing Details on the DynamoDB table card and editing the key values. Infrastructure

Using AWS SAM and Infrastructure Composer 119

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html

AWS Lambda Developer Guide

Composer also sets default values for a number of other properties including BillingMode and
StreamViewType.

To learn more about these properties and other properties you can add to your AWS SAM
template, see AWS::DynamoDB::Table in the AWS CloudFormation User Guide.

« A new IAM policy that gives your function permission to perform CRUD operations on the
DynamoDB table you added.

Policies:

- DynamoDBCrudPolicy:
TableName: !Ref LambdaIaCTable

The complete final AWS SAM template should look like the following.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
LambdaIaCDemo:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 128
Timeout: 3
Handler: lambda_function.lambda_handler
Runtime: python3.11
Architectures:
- x86_64
EventInvokeConfig:
MaximumEventAgeInSeconds: 21600
MaximumRetryAttempts: 2
EphemeralStorage:
Size: 512
RuntimeManagementConfig:
UpdateRuntimeOn: Auto
SnapStart:
ApplyOn: None
PackageType: Zip
Policies:

Using AWS SAM and Infrastructure Composer 120

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda Developer Guide

- Statement:
- Effect: Allow
Action:
- logs:CreatelLogGroup
Resource: arn:aws:logs:us-east-1:594035263019:*
- Effect: Allow
Action:
- logs:CreatelLogStream
- logs:PutLogEvents
Resource:
- arn:aws:logs:us-east-1:594035263019:1og-group:/aws/lambda/
LambdaIaCDemo: *
- DynamoDBCrudPolicy:
TableName: !Ref LambdaIaCTable
Events:
LambdaIaCQueue:
Type: SQS
Properties:
Queue: !GetAtt LambdaIaCQueue.Arn
BatchSize: 1
Environment:
Variables:
LAMBDAIACTABLE_TABLE_NAME: !'Ref LambdaIaCTable
LAMBDAIACTABLE_TABLE_ARN: !GetAtt LambdaIaCTable.Arn
LambdaIaCQueue:
Type: AWS::SQS: :Queue
Properties:
MessageRetentionPeriod: 345600
LambdaIaCTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
- AttributeName: id
AttributeType: S
BillingMode: PAY_PER_REQUEST
KeySchema:
- AttributeName: id
KeyType: HASH
StreamSpecification:
StreamViewType: NEW_AND_OLD_IMAGES

Using AWS SAM and Infrastructure Composer 121

AWS Lambda Developer Guide

Deploy your serverless application using AWS SAM (optional)

If you want to use AWS SAM to deploy a serverless application using the template you just created
in Infrastructure Composer, you first need to install the AWS SAM CLI. To do this, follow the
instructions in Installing the AWS SAM CLI.

Before you deploy your application, you also need to update the function code that Infrastructure
Composer saved along with your template. At the moment, the 1ambda_function. py file that
Infrastructure Composer saved contains only the basic 'Hello world' code that Lambda provided
when you created the function.

To update your function code, copy the following code and paste it into the
lambda_function. py file Infrastructure Composer saved to your local build machine. You
specified the directory for Infrastructure Composer to save this file to when you activated Local
Sync mode.

This code accepts a key value pair in a message from the Amazon SQS queue you created in
Infrastructure Composer. If both the key and value are strings, the code then uses them to write an
item to the DynamoDB table defined in your template.

Updated Python function code

import boto3
import os
import json

define the DynamoDB table that Lambda will connect to
tablename = os.environ['LAMBDAIACTABLE_TABLE_NAME']

create the DynamoDB resource
dynamo = boto3.client('dynamodb')

def lambda_handler(event, context):
get the message out of the SQS event
message = event['Records']J[0Q]['body"']
data = json.loads(message)
write event data to DDB table
if check_message_format(data):
key = next(iter(data))
value = datalkey]
dynamo.put_item(

Using AWS SAM and Infrastructure Composer 122

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Lambda Developer Guide

TableName=tablename,
Item={
'id': {'S': key},
'"Value': {'S': value}

)

else:
raise ValueError("Input data not in the correct format")

check that the event object contains a single key value
pair that can be written to the database
def check_message_format(message):
if len(message) != 1:
return False

key, value = next(iter(message.items()))

if not (isinstance(key, str) and isinstance(value, str)):
return False

else:
return True

To deploy your serverless application

To deploy your application using the AWS SAM CLI, carry out the following steps. For your function
to build and deploy correctly, Python version 3.11 must be installed on your build machine and on
your PATH.

1. Run the following command from the directory in which Infrastructure Composer saved your
template.yaml and lambda_function. py files.

sam build

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them.

2. To deploy your application and create the Lambda, Amazon SQS, and DynamoDB resources
specified in your AWS SAM template, run the following command.

sam deploy --guided

Using AWS SAM and Infrastructure Composer 123

AWS Lambda Developer Guide

Using the - -guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

« An AWS CloudFormation stack named sam-app
« A Lambda function with the name format sam-app-LambdaIaCDemo-99VXPpYQVvIM
« An Amazon SQS queue with the name format sam-app-LambdaIaCQueue-xL87VeKsGilo

« A DynamoDB table with the name format sam-app-LambdaIaCTable-CNOS66COVLNV

AWS SAM also creates the necessary IAM roles and policies so that your Lambda function can read
messages from the Amazon SQS queue and perform CRUD operations on the DynamoDB table.

Testing your deployed application (optional)

To confirm that your serverless application deployed correctly, send a message to your Amazon
SQS queue containing a key value pair and check that Lambda writes an item into your DynamoDB
table using these values.

To test your serverless application

1. Open the Queues page of the Amazon SQS console and select the queue that
AWS SAM created from your template. The name has the format sam-app-
LambdaIaCQueue-xL87VeKsGiIo.

2. Choose Send and receive messages and paste the following JSON into the Message body in
the Send message section.

{
"myKey": "myValue"
}

3. Choose Send message.

Sending your message to the queue causes Lambda to invoke your function through the event
source mapping defined in your AWS SAM template. To confirm that Lambda has invoked your
function as expected, confirm that an item has been added to your DynamoDB table.

Using AWS SAM and Infrastructure Composer 124

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks
https://console.aws.amazon.com/sqs/v2/home#/queues

AWS Lambda Developer Guide

4. Open the Tables page of the DynamoDB console and select your table. The name has the
format sam-app-LambdaIaCTable-CNOS66COVLNV.

5. Choose Explore table items. In the Items returned pane, you should see an item with the id
myKey and the Value myValue.

Deploying Lambda functions with AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an infrastructure as code (laC) framework that you
can use to define AWS cloud infrastructure by using a programming language of your choosing.

To define your own cloud infrastructure, you first write an app (in one of the CDK's supported
languages) that contains one or more stacks. Then, you synthesize it to an AWS CloudFormation
template and deploy your resources to your AWS account. Follow the steps in this topic to deploy a
Lambda function that returns an event from an Amazon API Gateway endpoint.

The AWS Construct Library, included with the CDK, provides modules that you can use to model
the resources that AWS services provide. For popular services, the library provides curated
constructs with smart defaults and best practices. You can use the aws_lambda module to define
your function and supporting resources with just a few lines of code.

Prerequisites

Before starting this tutorial, install the AWS CDK by running the following command.

npm install -g aws-cdk

Step 1: Set up your AWS CDK project

Create a directory for your new AWS CDK app and initialize the project.

JavaScript

mkdir hello-lambda
cd hello-lambda
cdk init --language javascript

TypeScript

mkdir hello-lambda

Using AWS CDK 125

https://console.aws.amazon.com/dynamodbv2#tables
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html

AWS Lambda Developer Guide

cd hello-lambda
cdk init --language typescript

Python

mkdir hello-lambda
cd hello-lambda
cdk init --language python

After the project starts, activate the project's virtual environment and install the baseline
dependencies for AWS CDK.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

mkdir hello-lambda
cd hello-lambda
cdk init --language java

Import this Maven project to your Java integrated development environment (IDE). For
example, in Eclipse, choose File, Import, Maven, Existing Maven Projects.

CH#

mkdir hello-lambda
cd hello-lambda
cdk init --language cshazrp

(@ Note

The AWS CDK application template uses the name of the project directory to generate
names for source files and classes. In this example, the directory is named hello-1lambda.
If you use a different project directory name, your app won't match these instructions.

AWS CDK v2 includes stable constructs for all AWS services in a single package that's called aws -
cdk-11ib. This package is installed as a dependency when you initialize the project. When working

Using AWS CDK 126

AWS Lambda Developer Guide

with certain programming languages, the package is installed when you build the project for the
first time.

Step 2: Define the AWS CDK stack

A CDK stack is a collection of one or more constructs, which define AWS resources. Each CDK stack
represents an AWS CloudFormation stack in your CDK app.

To define your CDK stack, follow the instructions for your preferred programming language. This
stack defines the following:

» The function's logical name: MyFunction

« The location of the function code, specified in the code property. For more information, see
Handler code in the AWS Cloud Development Kit (AWS CDK) API Reference.

« The REST API's logical name: HelloApi
« The APl Gateway endpoint's logical name: ApiGwEndpoint

Note that all of the CDK stacks in this tutorial use the Node.js runtime for the Lambda function.
You can use different programming languages for the CDK stack and the Lambda function to
leverage the strengths of each language. For example, you can use TypeScript for the CDK stack
to leverage the benefits of static typing for your infrastructure code. You can use JavaScript for
the Lambda function to take advantage of the flexibility and rapid development of a dynamically
typed language.

JavaScript

Open the 1ib/hello-lambda-stack. js file and replace the contents with the following.

const { Stack } = require('aws-cdk-1ib');
const lambda = require('aws-cdk-lib/aws-lambda');
const apigw = require('aws-cdk-lib/aws-apigateway');

class HellolLambdaStack extends Stack {
/**
*
* @param {Construct} scope
* @param {string} id
* @param {StackProps=} props
*/

constructor(scope, id, props) {

Using AWS CDK 127

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html#handler-code

AWS Lambda

Developer Guide

super(scope, id, props);

const fn = new lambda.Function(this, 'MyFunction', {
code: lambda.Code.fromAsset('lib/lambda-handler'),
runtime: lambda.Runtime.NODEJS_LATEST,
handler: 'index.handler'

1)

const endpoint = new apigw.LambdaRestApi(this, 'MyEndpoint', {
handler: fn,
restApiName: "HelloApi"

1)

module.exports = { HelloLambdaStack }

TypeScript

Openthe 1lib/hello-lambda-stack.ts file and replace the contents with the following.

import * as cdk from 'aws-cdk-1lib';

import { Construct } from 'constructs';

import * as apigw from "aws-cdk-lib/aws-apigateway";
import * as lambda from "aws-cdk-lib/aws-lambda";
import * as path from 'node:path’;

export class HelloLambdaStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps){
super(scope, id, props)
const fn = new lambda.Function(this, 'MyFunction', {
runtime: lambda.Runtime.NODEJS_LATEST,
handler: 'index.handler',
code: lambda.Code.fromAsset(path.join(__dirname, 'lambda-handler')),

1});

const endpoint = new apigw.LambdaRestApi(this, “ApiGwEndpoint’, {
handler: fn,
restApiName: ‘HelloApi’,

1)

Using AWS CDK

128

AWS Lambda Developer Guide

Python

Open the /hello-lambda/hello_lambda/hello_lambda_stack.py file and replace the
contents with the following.

from aws_cdk import (
Stack,
aws_apigateway as apigw,
aws_lambda as _lambda

)

from constructs import Construct
class HellolLambdaStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init__(scope, construct_id, **kwargs)

fn = _lambda.Function(
self,
"MyFunction",
runtime=_lambda.Runtime.NODEJS_LATEST,
handler="index.handler",
code=_lambda.Code.from_asset("lib/lambda-handlezr")

endpoint = apigw.LambdaRestApi(
self,
"ApiGwEndpoint",
handler=fn,
rest_api_name="HelloApi"

Java

Open the /hello-lambda/src/main/java/com/myorg/HellolLambdaStack. java file
and replace the contents with the following.

package com.myorg;

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.apigateway.LambdaRestApi;

Using AWS CDK 129

AWS Lambda Developer Guide

import software.amazon.awscdk.services.lambda.Function;

public class HelloLambdaStack extends Stack {
public HelloLambdaStack(final Construct scope, final String id) {
this(scope, id, null);

public HelloLambdaStack(final Construct scope, final String id, final StackProps

props) {
super(scope, id, props);

Function hello = Function.Builder.create(this, "MyFunction")
.runtime(software.amazon.awscdk.services.lambda.Runtime.NODEJS_LATEST)

.code(software.amazon.awscdk.services.lambda.Code.fromAsset("lib/lambda-handler"))
.handler("index.handlexr")
Lbuild();

LambdaRestApi api = LambdaRestApi.Builder.create(this, "ApiGwEndpoint")
.restApiName("HelloApi")
.handler(hello)
.build();

CH

Open the src/HelloLambda/HellolLambdaStack. cs file and replace the contents with the
following.

using Amazon.CDK;

using Amazon.CDK.AWS.APIGateway;
using Amazon.CDK.AWS.Lambda;
using Constructs;

namespace HellolLambda
{
public class HelloLambdaStack : Stack
{
internal HellolLambdaStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)

Using AWS CDK 130

AWS Lambda Developer Guide

{
var fn = new Function(this, "MyFunction", new FunctionProps
{
Runtime = Runtime.NODEJS_LATEST,
Code = Code.FromAsset("lib/lambda-handler"),
Handler = "index.handler"
1}
var api = new LambdaRestApi(this, "ApiGwEndpoint", new
LambdaRestApiProps
{
Handler = fn
1}
}

Step 3: Create the Lambda function code

1. From the root of your project (hello-1lambda), create the /1ib/lambda-handler directory
for the Lambda function code. This directory is specified in the code property of your AWS
CDK stack.

2. Create a new file called index. js inthe /1ib/lambda-handler directory. Paste the
following code into the file. The function extracts specific properties from the API request and
returns them as a JSON response.

exports.handler = async (event) => {
// Extract specific properties from the event object
const { resource, path, httpMethod, headers, queryStringParameters, body } =
event;
const response = {
resource,
path,
httpMethod,
headers,
queryStringParameters,
body,
iF
return {
body: JSON.stringify(response, null, 2),
statusCode: 200,

Using AWS CDK 131

AWS Lambda

i

Developer Guide

};

Step 4: Deploy the AWS CDK stack

1. From the root of your project, run the cdk synth command:

cdk synth

This command synthesizes an AWS CloudFormation template from your CDK stack. The
template is an approximately 400-line YAML file, similar to the following.

® Note

If you get the following error, make sure that you are in the root of your project
directory.

--app is required either in command-line, in cdk.json or in ~/.cdk.json

Example AWS CloudFormation template

Resources:
MyFunctionServiceRole3C357FF2:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Version: "2012-10-17"

ManagedPolicyAzrns:
- Fn::Join:
- - "arn:"

- Ref: AWS::Partition
- :iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Using AWS CDK 132

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-synth.html

AWS Lambda Developer Guide

Metadata:
aws:cdk:path: HelloLambdaStack/MyFunction/ServiceRole/Resource
MyFunctionlBAAS2E7:
Type: AWS::Lambda::Function
Properties:
Code:
S3Bucket:
Fn::Sub: cdk-hnb659fds-assets-${AWS: :AccountId}-${AWS: :Region}
S3Key:
ab1111111cd32708dc4b83e81a21c296d607ff2cdef00f1d7f4833878219213901.zip
Handler: index.handler
Role:
Fn::GetAtt:
- MyFunctionServiceRole3C357FF2
- Arn
Runtime: nodejs22.x

2. Run the cdk deploy command:

cdk deploy

Wait while your resources are created. The final output includes the URL for your API Gateway
endpoint. Example:

Outputs:
HellolLambdaStack.ApiGwEndpoint77F417B1 = https://abcdl1234.execute-api.us-

east-1.amazonaws.com/prod/

Step 5: Test the function

To invoke the Lambda function, copy the APl Gateway endpoint and paste it into a web browser or
run a curl command:

curl -s https://abcdl234.execute-api.us-east-1.amazonaws.com/prod/

The response is a JSON representation of selected properties from the original event object, which
contains information about the request made to the API Gateway endpoint. Example:

Using AWS CDK 133

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-deploy.html

AWS Lambda Developer Guide

"resource": "/",

"path": "/",

"httpMethod": "GET",

"headers": {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif, image/

webp, image/apng, */*;q=0.8,application/signed-exchange;v=b3;q=0.7",

"Accept-Encoding": "gzip, deflate, br, zstd",
"Accept-Language": "en-US,en;q=0.9",
"CloudFront-Forwarded-Proto": "https",
"CloudFront-Is-Desktop-Viewer": "true",
"CloudFront-Is-Mobile-Viewer": "false",
"CloudFront-Is-SmartTV-Viewer": "false",
"CloudFront-Is-Tablet-Viewer": "false",
"CloudFront-Viewer-ASN": "16509",
"CloudFront-Viewer-Country": "US",
"Host": "abcdl234.execute-api.us-east-1.amazonaws.com",

Step 6: Clean up your resources

The API Gateway endpoint is publicly accessible. To prevent unexpected charges, run the cdk
destroy command to delete the stack and all associated resources.

cdk destroy

Next steps
For information about writing AWS CDK apps in your language of choice, see the following:
TypeScript

Working with the AWS CDK in TypeScript

JavaScript

Working with the AWS CDK in JavaScript

Python

Working with the AWS CDK in Python

Java

Working with the AWS CDK in Java

Using AWS CDK 134

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-destroy.html
https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-destroy.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html

AWS Lambda Developer Guide

CH#

Working with the AWS CDK in C#

Go

Working with the AWS CDK in Go

Managing Lambda workflows and events

When building serverless applications with Lambda, you often need ways to orchestrate function
execution and handle events. AWS provides two key services that help coordinate Lambda
functions:

o AWS Step Functions for workflow orchestration

« Amazon EventBridge Scheduler and Amazon EventBridge for event management

Additionally, you can integrate Step Functions and EventBridge together in your applications. For
example, you might use EventBridge Scheduler to trigger Step Functions workflows when specific
events occur, or configure Step Functions workflows to publish events to EventBridge Scheduler at
defined execution points. The following topics in this section provide more information on how you
can use these services.

Orchestrating workflows with Step Functions

AWS Step Functions is a workflow orchestration service that helps you coordinate multiple Lambda
functions and other AWS services into structured workflows. These workflows can maintain state,
handle errors with sophisticated retry mechanisms, and process data at scale.

Step Functions offers two types of workflows to meet different orchestration needs:

Standard workflows

Ideal for long-running, auditable workflows that require exactly-once execution semantics.
Standard workflows can run for up to one year, provide detailed execution history, and support
visual debugging. They are suitable for processes like order fulfillment, data processing
pipelines, or multi-step analytics jobs.

Workflows and events 135

https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-go.html

AWS Lambda Developer Guide

Express workflows

Designed for high-event-rate, short-duration workloads with at-least-once execution semantics.
Express workflows can run for up to five minutes and are ideal for high-volume event
processing, streaming data transformations, or loT data ingestion scenarios. They offer higher
throughput and potentially lower cost compared to Standard workflows.

® Note

For more information on Step Functions workflow types, see Choosing workflow type in
Step Functions.

Within these workflows, Step Functions provides two types of Map states for parallel processing:
Inline Map

Processes items from a JSON array within the execution history of the parent workflow. Inline
Map supports up to 40 concurrent iterations and is suitable for smaller datasets or when you
need to keep all processing within a single execution. For more information, see Using Map
state in Inline mode.

Distributed Map

Enables processing of large-scale parallel workloads by iterating over datasets that exceed

256 KiB or require more than 40 concurrent iterations. With support for up to 10,000 parallel
child workflow executions, Distributed Map excels at processing semi-structured data stored in
Amazon S3, such as JSON or CSV files, making it ideal for batch processing and ETL operations.
For more information, see Using Map state in Distributed mode.

By combining these workflow types and Map states, Step Functions provides a flexible and
powerful toolset for orchestrating complex serverless applications, from small-scale operations to
large-scale data processing pipelines.

To get started with using Lambda with Step Functions, see Orchestrating Lambda functions with
Step Functions.

Orchestrating workflows with Step Functions 136

https://docs.aws.amazon.com/step-functions/latest/dg/choosing-workflow-type.html
https://docs.aws.amazon.com/step-functions/latest/dg/choosing-workflow-type.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/state-map-distributed.html

AWS Lambda Developer Guide

Managing events with EventBridge and EventBridge Scheduler

Amazon EventBridge is an event bus service that helps you build event-driven architectures. It
routes events between AWS services, integrated applications, and software as a service (SaaS)
applications. EventBridge Scheduler is a serverless scheduler that enables you to create, run, and
manage tasks from one central service, allowing you to invoke Lambda functions on a schedule
using cron and rate expressions, or configure one-time invocations.

Amazon EventBridge and EventBridge Scheduler help you build event-driven architectures with
Lambda. EventBridge routes events between AWS services, integrated applications, and SaaS
applications, while EventBridge Scheduler provides specific scheduling capabilities for invoking
Lambda functions on a recurring or one-time basis.

These services provide several key capabilities for working with Lambda functions:

Create rules that match and route events to Lambda functions using EventBridge

Set up recurring function invocations using cron and rate expressions with EventBridge Scheduler

Configure one-time function invocations at specific dates and times

Define flexible time windows and retry policies for scheduled invocations

For more information, see Invoke a Lambda function on a schedule.

Managing events with EventBridge and EventBridge Scheduler 137

AWS Lambda Developer Guide

Lambda runtimes

Lambda supports multiple languages through the use of runtimes. A runtime provides a language-
specific environment that relays invocation events, context information, and responses between
Lambda and the function. You can use runtimes that Lambda provides, or build your own.

Lambda is agnostic to your choice of runtime. For simple functions, interpreted languages like
Python and Node.js offer the fastest performance. For functions with more complex computation,
compiled languages like Java are often slower to initialize but run quickly in the Lambda handler.
Choice of runtime is also influenced by developer preference and language familiarity.

Each major programming language release has a separate runtime, with a unique runtime identifier,
such as nodejs22.x or python3.13. To configure a function to use a new major language
version, you need to change the runtime identifier. Since AWS Lambda cannot guarantee backward
compatibility between major versions, this is a customer-driven operation.

For a function defined as a container image, you choose a runtime and the Linux distribution when

you create the container image. To change the runtime, you create a new container image.

When you use a .zip file archive for the deployment package, you choose a runtime when you
create the function. To change the runtime, you can update your function's configuration.

The runtime is paired with one of the Amazon Linux distributions. The underlying execution
environment provides additional libraries and environment variables that you can access from your

function code.

Lambda invokes your function in an execution environment. The execution environment provides

a secure and isolated runtime environment that manages the resources required to run your
function. Lambda re-uses the execution environment from a previous invocation if one is available,
or it can create a new execution environment.

To use other languages in Lambda, such as Go or Rust, use an OS-only runtime. The Lambda

execution environment provides a runtime interface for getting invocation events and sending

responses. You can deploy other languages by implementing a custom runtime alongside your

function code, or in a layer.

Supported runtimes

The following table lists the supported Lambda runtimes and projected deprecation dates. After
a runtime is deprecated, you're still able to create and update functions for a limited period. For

Supported runtimes 138

AWS Lambda

Developer Guide

more information, see the section called “Runtime use after deprecation”. The table provides the

currently forecasted dates for runtime deprecation, based on our the section called “Runtime

deprecation policy”. These dates are provided for planning purposes and are subject to change.

Name

Node.js 22

Node.js 20

Node.js 18

Python 3.13

Python 3.12

Python 3.11

Python 3.10

Python 3.9

Java 21

Java 17

Identifier

nodejs22.

X

nodejs20.

X

nodejs18.

X

python3.
3

python3.
2

python3.
1

python3.
0
python3.

java2l

javal7

Operating
system

Amazon
Linux 2023

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2

Deprecation
date

Apr 30, 2027

Apr 30, 2026

Sep 1, 2025

Jun 30, 2029

Oct 31, 2028

Jun 30, 2026

Jun 30, 2026

Dec 15, 2025

Jun 30, 2029

Jun 30, 2026

Block

function

create

Jun 1, 2027

Jun 1, 2026

Feb 3, 2026

Jul 31, 2029

Nov 30, 2028

Jul 31, 2026

Jul 31, 2026

Feb 3, 2026

Jul 31, 2029

Jul 31, 2026

Block

function

update

Jul 1, 2027

Jul 1, 2026

Mar 9, 2026

Aug 31, 2029

Jan 10, 2029

Aug 31, 2026

Aug 31, 2026

Mar 9, 2026

Aug 31, 2029

Aug 31, 2026

Supported runtimes

139

AWS Lambda

Developer Guide

Name

Java 11

Java 8

.NET 9
(container
only)

.NET 8

Ruby 3.4

Ruby 3.3

Ruby 3.2

OS-only

Runtime

OS-only
Runtime

(® Note

Identifier

javall

java8.al2

dotnet9

dotnet8

ruby3.4

ruby3.3

ruby3.2

provided.

al2023

provided.

al2

Operating
system

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2023

Amazon
Linux 2023

Amazon
Linux 2023

Amazon
Linux 2

Amazon
Linux 2023

Amazon
Linux 2

Deprecation
date

Jun 30, 2026

Jun 30, 2026

Not
scheduled

Nov 10, 2026

Not

scheduled

Mar 31, 2027

Mar 31, 2026

Jun 30, 2029

Jun 30, 2026

Block
function
create

Jul 31, 2026

Jul 31, 2026

Not
scheduled

Dec 10, 2026

Not

scheduled

Apr 30, 2027

Apr 30, 2026

Jul 31, 2029

Jul 31, 2026

Block
function
update

Aug 31, 2026

Aug 31, 2026

Not
scheduled

Jan 11, 2027

Not

scheduled

May 31, 2027

May 31, 2026

Aug 31, 2029

Aug 31, 2026

For new regions, Lambda will not support runtimes that are set to be deprecated within the

next 6 months.

Supported runtimes

140

AWS Lambda Developer Guide

Lambda keeps managed runtimes and their corresponding container base images up to date
with patches and support for minor version releases. For more information see Lambda runtime

updates.

To programmatically interact with other AWS services and resources from your Lambda function,
you can use one of AWS SDKs. The Node.js, Python, and Ruby runtimes include a version of the
AWS SDK. However, to maintain full control of your dependencies, and to maximize backward
compatibility during automatic runtime updates, we recommend that you always include the SDK
modules your code uses (along with any dependencies) in your function's deployment package or in
a Lambda layer.

We recommend that you use the runtime-included SDK version only when you can't include
additional packages in your deployment. For example, when you create your function using the
Lambda console code editor or using inline function code in an AWS CloudFormation template.

Lambda periodically updates the versions of the AWS SDKs included in the Node.js, Python, and
Ruby runtimes. To determine the version of the AWS SDK included in the runtime you're using, see
the following sections:

o Runtime-included SDK versions (Node.js)

« Runtime-included SDK versions (Python)

o Runtime-included SDK versions (Ruby)

Lambda continues to support the Go programming language after deprecation of the Go 1.x
runtime. For more information, see Migrating AWS Lambda functions from the Go1.x runtime to
the custom runtime on Amazon Linux 2 on the AWS Compute Blog.

All supported Lambda runtimes support both x86_64 and arm64 architectures.

New runtime releases

Lambda provides managed runtimes for new language versions only when the release reaches the
long-term support (LTS) phase of the language's release cycle. For example, for the Node.js release

cycle, when the release reaches the Active LTS phase.

Before the release reaches the long-term support phase, it remains in development and can still
be subject to breaking changes. Lambda applies runtime updates automatically by default, so
breaking changes to a runtime version could stop your functions from working as expected.

New runtime releases 141

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://nodejs.org/en/about/previous-releases
https://nodejs.org/en/about/previous-releases

AWS Lambda Developer Guide

Lambda doesn't provide managed runtimes for language versions which aren't scheduled for LTS
release.

The following list shows the target launch month for upcoming Lambda runtimes. These dates are
indicative only and subject to change.

 Java 25 - October 2025

« Python 3.14 - November 2025
» Node.js 24 - November 2025

« .NET 10 - December 2025

Runtime deprecation policy

Lambda runtimes for .zip file archives are built around a combination of operating system,
programming language, and software libraries that are subject to maintenance and security
updates. Lambda's standard deprecation policy is to deprecate a runtime when any major
component of the runtime reaches the end of community long-term support (LTS) and security
updates are no longer available. Most usually, this is the language runtime, though in some cases, a
runtime can be deprecated because the operating system (OS) reaches end of LTS.

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities.

To learn more about managing runtime upgrades and deprecation, see the following sections and
Managing AWS Lambda runtime upgrades on the AWS Compute Blog.

/A Important

Lambda occasionally delays deprecation of a Lambda runtime for a limited period beyond
the end of support date of the language version that the runtime supports. During this
period, Lambda only applies security patches to the runtime OS. Lambda doesn’t apply
security patches to programming language runtimes after they reach their end of support
date.

Runtime deprecation policy 142

https://aws.amazon.com/blogs/compute/managing-aws-lambda-runtime-upgrades/

AWS Lambda

Developer Guide

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed

runtimes and container base images. By default, Lambda will apply these updates automatically

to functions using managed runtimes. Where the default automatic runtime update setting has

been changed, see the runtime management controls shared responsibility model. For functions

deployed using container images, you're responsible for rebuilding your function's container image

from the latest base image and redeploying the container image.

When a runtime is deprecated, Lambda’s responsibility for updating the managed runtime and

container base images ceases. You are responsible for upgrading your functions to use a supported

runtime or base image.

In all cases, you are responsible for applying updates to your function code, including its
dependencies. Your responsibilities under the shared responsibility model are summarized in the

following table.

Runtime lifecycle phase

Supported managed runtime

Supported container image

Lambda's responsibilities

Provide regular runtime
updates with security patches
and other updates.

Apply runtime updates
automatically by default (see
the section called “Runtime

update modes” for non-defau

[t behaviors).

Provide regular updates to
container base image with
security patches and other
updates.

Your responsibilities

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Regularly re-build and re-
deploy your container image
using the latest base image.

Shared responsibility model

143

AWS Lambda Developer Guide

Runtime lifecycle phase Lambda's responsibilities Your responsibilities
Managed runtime approachi Notify customers prior to Monitor Lambda documenta
ng deprecation runtime deprecation via tion, AWS Health Dashboard
documentation, AWS Health , email, or Trusted Advisor
Dashboard, email, and for runtime deprecation
Trusted Advisor. information.
Responsibility for runtime Upgrade functions to a
updates ends at deprecation. supported runtime before the

previous runtime is deprecate
d.

Container image approaching Deprecation notifications are Be aware of deprecation
deprecation not available for functions schedules and upgrade
using container images. functions to a supported base
image before the previous
Responsibility for container image is deprecated.
base image updates ends at

deprecation.

Runtime use after deprecation

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. While

you can continue to invoke your functions indefinitely, AWS strongly recommends migrating to

a supported runtime. Deprecated runtimes are provided 'as-is', without any warranties, and may
contain bugs, errors, defects, or other vulnerabilities. Functions that use a deprecated runtime may
also experience degraded performance or other issues, such as a certificate expiry, that can cause
them to stop working properly.

You can update a function to use a newer supported runtime at any time after a runtime is
deprecated. We recommend testing your function with the new runtime before applying changes
in production environments. You will not be able to revert to the deprecated runtime after
function updates are blocked. We recommend using function versions and aliases to enable safe
deployment with rollback.

The following timeline describes what happens when a runtime is deprecated:

Runtime use after deprecation 144

AWS Lambda

Developer Guide

Runtime lifecycle
phase

Deprecation notice
period

Deprecation

Block function create

Block function
update

When

At least 180 days
before deprecation

Deprecation date

At least 30 days after
deprecation

At least 60 days after
deprecation

What

« AWS sends notifications through email and
the AWS Health Dashboard to accounts that
have functions using this runtime in their
$LATEST version.

« Affected functions are also listed in the AWS
Health Dashboard Scheduled changes tab
and the AWS Trusted Advisor deprecated
runtimes check.

« AWS may no longer apply security updates
or other updates.

« Functions are no longer eligible for technical
support.

« You can no longer create or update
functions using the deprecated runtime in
the Lambda console. You can continue to
create and update functions through the
AWS CLI, AWS SAM, or AWS CloudForm
ation.

« Lambda begins blocking creation of new
functions.

« You can continue to update code and
configuration for existing functions through
the AWS CLI, AWS SAM, or AWS CloudForm
ation..

« Lambda begins blocking the update of code
and configuration for existing functions.

» You can still upgrade the function configura
tion to a supported runtime. However,
rolling back to the deprecated runtime may
be blocked.

Runtime use after deprecation

145

https://docs.aws.amazon.com/health/latest/ug/aws-health-account-views.html
https://docs.aws.amazon.com/health/latest/ug/aws-health-account-views.html
https://docs.aws.amazon.com/awssupport/latest/user/security-checks.html#aws-lambda-functions-deprecated-runtimes
https://docs.aws.amazon.com/awssupport/latest/user/security-checks.html#aws-lambda-functions-deprecated-runtimes

AWS Lambda Developer Guide

® Note

For some runtimes, AWS is delaying the block-function-create and block-function-update
dates beyond the usual 30 and 60 days after deprecation. AWS has made this change in
response to customer feedback to give you more time to upgrade your functions. Refer to
the tables in the section called “Supported runtimes” and the section called “"Deprecated
runtimes” to see the dates for your runtime. Lambda will not start blocking function
creates or updates before the dates given in these tables.

Receiving runtime deprecation notifications

When a runtime approaches its deprecation date, Lambda sends you an email alert if any functions
in your AWS account use that runtime. Notifications are also displayed in the AWS Health
Dashboard and in AWS Trusted Advisor.

« Receiving email notifications:

Lambda sends you an email alert at least 180 days before a runtime is deprecated. This email
lists the $LATEST versions of all functions using the runtime. To see a full list of affected function
versions, use Trusted Advisor or see the section called "Get data about functions by runtime”.

Lambda sends email notification to your AWS account's primary account contact. For information
about viewing or updating the email addresses in your account, see Updating contact
information in the AWS General Reference.

 Receiving notifications through the AWS Health Dashboard:

The AWS Health Dashboard displays a notification at least 180 days before a runtime is
deprecated. Notifications appear on the Your account health page under Other notifications.
The Affected resources tab of the notification lists the $LATEST versions of all functions using

the runtime.

(® Note

To see a full and up-to-date list of affected function versions, use Trusted Advisor or see
the section called "Get data about functions by runtime”.

Receiving runtime deprecation notifications 146

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://health.aws.amazon.com/health/home#/account/dashboard/other-notifications

AWS Lambda Developer Guide

AWS Health Dashboard notifications expire 90 days after the affected runtime is deprecated.
» Using AWS Trusted Advisor

Trusted Advisor displays a notification at least 180 days before a runtime is deprecated.
Notifications appear on the Security page. A list of your affected functions is displayed under
AWS Lambda Functions Using Deprecated Runtimes. This list of functions shows both $LATEST
and published versions and updates automatically to reflect your functions' current status.

You can turn on weekly email notifications from Trusted Advisor in the Preferences page of the
Trusted Advisor console.

Deprecated runtimes

The following runtimes have reached end of support:

Name Identifier Operating Deprecation Block Block

system date function function
create update

.NET 6 dotnet6 Amazon Dec 20, 2024 Feb 3, 2026 Mar 9, 2026
Linux 2

Python 3.8 python3.8 Amazon Oct 14,2024 Feb 3, 2026 Mar 9, 2026
Linux 2

Node.js 16 nodejsl6. Amazon Jun 12,2024 Feb 3, 2026 Mar 9, 2026

X Linux 2

.NET 7 dotnet?7 Amazon May 14, 2024 N/A N/A

(container Linux 2

only)

Java 8 java8 Amazon Jan 8, 2024 Feb 8, 2024 Mar 9, 2026
Linux

Go 1.x gol.x Amazon Jan 8, 2024 Feb 8, 2024 Mar 9, 2026
Linux

Deprecated runtimes

147

https://console.aws.amazon.com/trustedadvisor/home#/category/security
https://console.aws.amazon.com/trustedadvisor/home?#/preferences

AWS Lambda

Developer Guide

Name

OS-only

Runtime

Ruby 2.7

Node.js 14

Python 3.7

.NET Core 3.1

Node.js 12

Python 3.6

.NET 5
(container
only)

.NET Core 2.1

Node.js 10

Ruby 2.5

Identifier

provided

ruby2.7

nodejsl4.
X

python3.7

dotnetcor
e3.1

nodejsl2.
X

python3.6

dotnet5.0

dotnetcor
e2.1

nodejsl0.
X

ruby2.5

Operating
system

Amazon
Linux

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux

Amazon
Linux 2

Amazon
Linux

Amazon
Linux 2

Amazon
Linux

Deprecation
date

Jan 8, 2024

Dec 7, 2023

Dec 4, 2023

Dec 4, 2023

Apr 3, 2023

Mar 31, 2023

Jul 18, 2022

May 10, 2022

Jan 5, 2022

Jul 30, 2021

Jul 30, 2021

Block

function

create

Feb 8, 2024

Jan 9, 2024

Jan 9, 2024

Jan 9, 2024

Apr 3, 2023

Mar 31, 2023

Jul 18, 2022

N/A

Jan 5, 2022

Jul 30, 2021

Jul 30, 2021

Block

function

update

Mar 9, 2026

Mar 9, 2026

Mar 9, 2026

Mar 9, 2026

May 3, 2023

Apr 30, 2023

Aug 29, 2022

N/A

Apr 13,2022

Feb 14, 2022

Mar 31, 2022

Deprecated runtimes

148

AWS Lambda Developer Guide
Name Identifier Operating Deprecation Block Block
system date function function
create update
Python 2.7 python2.7 Amazon Jul 15, 2021 Jul 15, 2021 May 30, 2022
Linux
Node.js 8.10 nodejs8.1 Amazon Mar 6, 2020 Feb 4, 2020 Mar 6, 2020
0 Linux
Node.js 4.3 nodejs4.3 Amazon Mar 5, 2020 Feb 3, 2020 Mar 5, 2020
Linux
Node.js 4.3 nodejs4.3 Amazon Mar 5, 2020 Mar 31,2019 Apr 30, 2019
edge -edge Linux
Node.js 6.10 nodejs6.1 Amazon Aug 12,2019 Jul 12,2019 Aug 12, 2019
0 Linux
.NET Core 1.0 dotnetcor Amazon Jun 27,2019 Jun 30,2019 Jul 30, 2019
el.0 Linux
.NET Core 2.0 dotnetcor Amazon May 30, 2019 Apr 30, 2019 May 30, 2019
e2.0 Linux
Node.js 0.10 nodejs Amazon Aug 30,2016 Sep 30,2016 Oct 31,2016
Linux

In almost all cases, the end-of-life date of a language version or operating system is known well in
advance. The following links give end-of-life schedules for each language that Lambda supports as
a managed runtime.

Language and framework support policies

Node.js — github.com
Python - devguide.python.org

Ruby - www.ruby-lang.org

Java — www.oracle.com and Corretto FAQs

Deprecated runtimes

149

https://github.com/nodejs/Release#release-schedule
https://devguide.python.org/versions/#versions
https://www.ruby-lang.org/en/downloads/branches/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://aws.amazon.com/corretto/faqs/

AWS Lambda Developer Guide

« Go-golang.org
e .NET - dotnet.microsoft.com

Deprecated runtimes 150

https://golang.org/doc/devel/release.html
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

AWS Lambda Developer Guide

Understanding how Lambda manages runtime version updates

Lambda keeps each managed runtime up to date with security updates, bug fixes, new features,
performance enhancements, and support for minor version releases. These runtime updates are
published as runtime versions. Lambda applies runtime updates to functions by migrating the
function from an earlier runtime version to a new runtime version.

By default, for functions using managed runtimes, Lambda applies runtime updates automatically.
With automatic runtime updates, Lambda takes on the operational burden of patching the runtime
versions. For most customers, automatic updates are the right choice. You can change this default
behavior by configuring runtime management settings.

Lambda also publishes each new runtime version as a container image. To update runtime versions
for container-based functions, you must create a new container image from the updated base

image and redeploy your function.

Each runtime version is associated with a version number and an ARN (Amazon Resource Name).
Runtime version numbers use a numbering scheme that Lambda defines, independent of the
version numbers that the programming language uses. Runtime version numbers are not always
sequential. For example, version 42 might be followed by version 45. The runtime version ARN is a
unique identifier for each runtime version. You can view the ARN of your function's current runtime
version in the Lambda console, or the INIT_START line of your function logs.

Runtime versions should not be confused with runtime identifiers. Each runtime has a unique
runtime identifier, such as python3.13 or nodejs22. x. These correspond to each major
programming language release. Runtime versions describe the patch version of an individual
runtime.

® Note

The ARN for the same runtime version number can vary between AWS Regions and CPU
architectures.

Topics

» Backward compatibility

o Runtime update modes

« Two-phase runtime version rollout

Runtime version updates 151

AWS Lambda Developer Guide

» Configuring Lambda runtime management settings

Rolling back a Lambda runtime version

Identifying Lambda runtime version changes

Understanding the shared responsibility model for Lambda runtime management

Controlling Lambda runtime update permissions for high-compliance applications

Backward compatibility

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an
existing function that depends on the previous, insecure behavior.

When building and deploying your function, it is important to understand how to manage your
dependencies to avoid potential incompatibilities with a future runtime update. For example,
suppose your function has a dependency on package A, which in turn depends on package B. Both
packages are included in the Lambda runtime (for example, they could be parts of the SDK or its
dependencies, or parts of the runtime system libraries).

Consider the following scenarios:

Deployment Patching compatible Reason

» Package A: Use from Yes Future runtime updates
runtime to packages A and B are
runtime

» Package A: In deployment Yes Your deployment takes
package precedence, so future runtime

« Package B: In deployment updates to packages A and B
package have no effect.

« Package A: In deployment Yes* Future runtime updates to
package package B are backward

compatible.

Backward compatibility 152

AWS Lambda Developer Guide

Deployment Patching compatible Reason
« Package B: Use from *If A and B are tightly
runtime coupled, compatibility issues

can occur. For example,

the boto3 and botocore
packages in the AWS SDK for
Python should be deployed

together.
« Package A: Use from No Future runtime updates to
runtime package A might require an
« Package B: In deployment updated version of package

package B. However, the deployed
version of package B takes
precedence, and might not be
forward compatible with the
updated version of package

A.

To maintain compatibility with future runtime updates, follow these best practices:

« When possible, package all dependencies: Include all required libraries, including the AWS
SDK and its dependencies, in your deployment package. This ensures a stable, compatible set of
components.

« Use runtime-provided SDKs sparingly: Only rely on the runtime-provided SDK when you can't
include additional packages (for example, when using the Lambda console code editor or inline
code in an AWS CloudFormation template).

« Avoid overriding system libraries: Don't deploy custom operating system libraries that may
conflict with future runtime updates.

Runtime update modes

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an

Runtime update modes 153

AWS Lambda Developer Guide

existing function that depends on the previous, insecure behavior. Lambda runtime management
controls help reduce the risk of impact to your workloads in the rare event of a runtime version
incompatibility. For each function version ($LATEST or published version), you can choose one of
the following runtime update modes:

o Auto (default) - Automatically update to the most recent and secure runtime version using Two-
phase runtime version rollout. We recommend this mode for most customers so that you always
benefit from runtime updates.

« Function update — Update to the most recent and secure runtime version when you update
your function. When you update your function, Lambda updates the runtime of your function to
the most recent and secure runtime version. This approach synchronizes runtime updates with
function deployments, giving you control over when Lambda applies runtime updates. With this
mode, you can detect and mitigate rare runtime update incompatibilities early. When using this
mode, you must regularly update your functions to keep their runtime up to date.

« Manual - Manually update your runtime version. You specify a runtime version in your function
configuration. The function uses this runtime version indefinitely. In the rare case in which a new
runtime version is incompatible with an existing function, you can use this mode to roll back
your function to an earlier runtime version. We recommend against using Manual mode to try
to achieve runtime consistency across deployments. For more information, see Rolling back a
Lambda runtime version.

Responsibility for applying runtime updates to your functions varies according to which runtime
update mode you choose. For more information, see Understanding the shared responsibility
model for Lambda runtime management.

Two-phase runtime version rollout

Lambda introduces new runtime versions in the following order:

1. In the first phase, Lambda applies the new runtime version whenever you create or
update a function. A function gets updated when you call the UpdateFunctionCode or
UpdateFunctionConfiguration API operations.

2. In the second phase, Lambda updates any function that uses the Auto runtime update mode and
that hasn't already been updated to the new runtime version.

Two-phase runtime version rollout 154

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

The overall duration of the rollout process varies according to multiple factors, including the
severity of any security patches included in the runtime update.

If you're actively developing and deploying your functions, you will most likely pick up new runtime
versions during the first phase. This synchronizes runtime updates with function updates. In the
rare event that the latest runtime version negatively impacts your application, this approach lets
you take prompt corrective action. Functions that aren't in active development still receive the
operational benefit of automatic runtime updates during the second phase.

This approach doesn't affect functions set to Function update or Manual mode. Functions using
Function update mode receive the latest runtime updates only when you create or update them.
Functions using Manual mode don't receive runtime updates.

Lambda publishes new runtime versions in a gradual, rolling fashion across AWS Regions. If your
functions are set to Auto or Function update modes, it's possible that functions deployed at the
same time to different Regions, or at different times in the same Region, will pick up different
runtime versions. Customers who require guaranteed runtime version consistency across their
environments should use container images to deploy their Lambda functions. The Manual mode

is designed as a temporary mitigation to enable runtime version rollback in the rare event that a
runtime version is incompatible with your function.

Configuring Lambda runtime management settings

You can configure runtime management settings using the Lambda console or the AWS Command
Line Interface (AWS CLI).

(® Note

You can configure runtime management settings separately for each function version.

To configure how Lambda updates your runtime version (console)

Open the Functions page of the Lambda console.

1
2. Choose the name of a function.

3. Onthe Code tab, under Runtime settings, choose Edit runtime management configuration.
4

Under Runtime management configuration, choose one of the following:

» To have your function update to the latest runtime version automatically, choose Auto.

Configuring runtime management 155

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

« To have your function update to the latest runtime version when you change the function,
choose Function update.

« To have your function update to the latest runtime version only when you change the
runtime version ARN, choose Manual. You can find the runtime version ARN under Runtime
management configuration. You can also find the ARN in the INIT_START line of your
function logs.

For more information about these options, see Runtime update modes.

5. Choose Save.

To configure how Lambda updates your runtime version (AWS CLI)

To configure runtime management for a function, run the put-runtime-management-config AWS
CLI command. When using Manual mode, you must also provide the runtime version ARN.

aws lambda put-runtime-management-config \

--function-name my-function \

--update-runtime-on Manual \

--runtime-version-arn arn:aws:lambda:us-
east-2::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1

You should see output similar to the following:

{
"UpdateRuntimeOn": "Manual",
"FunctionArn": "arn:aws:lambda:us-east-2:111122223333:function:my-function",
"RuntimeVersionArn": "arn:aws:lambda:us-

east-2::runtime:8eeff65f6809a3ce81507fe733fe@9b835899b99481ba22fd75b5a7338290ecl"
}

Rolling back a Lambda runtime version

In the rare event that a new runtime version is incompatible with your existing function, you can
roll back its runtime version to an earlier one. This keeps your application working and minimizes
disruption, providing time to remedy the incompatibility before returning to the latest runtime
version.

Runtime version roll-back 156

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html

AWS Lambda Developer Guide

Lambda doesn't impose a time limit on how long you can use any particular runtime version.
However, we strongly recommend updating to the latest runtime version as soon as possible

to benefit from the latest security patches, performance improvements, and features. Lambda
provides the option to roll back to an earlier runtime version only as a temporary mitigation in
the rare event of a runtime update compatibility issue. Functions using an earlier runtime version
for an extended period may eventually experience degraded performance or issues, such as a
certificate expiry, which can cause them to stop working properly.

You can roll back a runtime version in the following ways:

« Using the Manual runtime update mode

» Using published function versions

For more information, see Introducing AWS Lambda runtime management controls on the AWS

Compute Blog.
Roll back a runtime version using Manual runtime update mode

If you're using the Auto runtime version update mode, or you're using the $LATEST runtime
version, you can roll back your runtime version using the Manual mode. For the function version
you want to roll back, change the runtime version update mode to Manual and specify the ARN of
the previous runtime version. For more information about finding the ARN of the previous runtime
version, see Identifying Lambda runtime version changes.

(@ Note

If the $LATEST version of your function is configured to use Manual mode, then you can't
change the CPU architecture or runtime version that your function uses. To make these
changes, you must change to Auto or Function update mode.

Roll back a runtime version using published function versions

Published function versions are an immutable snapshot of the $LATEST function code and
configuration at the time that you created them. In Auto mode, Lambda automatically updates the
runtime version of published function versions during phase two of the runtime version rollout.

In Function update mode, Lambda doesn't update the runtime version of published function

versions.

Runtime version roll-back 157

https://aws.amazon.com/blogs/compute/introducing-aws-lambda-runtime-management-controls/

AWS Lambda Developer Guide

Published function versions using Function update mode therefore create a static snapshot of the
function code, configuration, and runtime version. By using Function update mode with function
versions, you can synchronize runtime updates with your deployments. You can also coordinate
rollback of code, configuration, and runtime versions by redirecting traffic to an earlier published
function version. You can integrate this approach into your continuous integration and continuous
delivery (Cl/CD) for fully automatic rollback in the rare event of runtime update incompatibility.
When using this approach, you must update your function regularly and publish new function
versions to pick up the latest runtime updates. For more information, see Understanding the

shared responsibility model for Lambda runtime management.

Identifying Lambda runtime version changes

The runtime version number and ARN are logged in the INIT_START log line, which Lambda
emits to CloudWatch Logs each time that it creates a new execution environment. Because the

execution environment uses the same runtime version for all function invocations, Lambda emits
the INIT_START log line only when Lambda executes the init phase. Lambda doesn't emit this
log line for each function invocation. Lambda emits the log line to CloudWatch Logs, but it is not
visible in the console.

(@ Note

Runtime version numbers are not always sequential. For example, version 42 might be
followed by version 45.

Example Example INIT_START log line

INIT_START Runtime Version: python:3.13.v14 Runtime Version ARN: arn:aws:lambda:eu-
south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a@llfadlfa65127e9e61

Rather than working directly with the logs, you can use Amazon CloudWatch Contributor Insights
to identify transitions between runtime versions. The following rule counts the distinct runtime
versions from each INIT_START log line. To use the rule, replace the example log group name /
aws/lambda/* with the appropriate prefix for your function or group of functions.

{
"Schema": {
"Name": "CloudWatchLogRule",

Runtime version updates 158

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights-CreateRule.html

AWS Lambda Developer Guide

"Version": 1
.
"AggregateOn": "Count",
"Contribution": {
"Filters": [
{
"Match": "eventType",
"In": [
"INIT_START"

}

1,

"Keys": [
"runtimeVersion",
"runtimeVersionArn"

]

},

"LogFormat": "CLF",
"LogGroupNames": [
"/aws/lambda/*"

1,
"Fields": {

"1": "eventType",

"4": "runtimeVersion",

"8": "runtimeVersionArn"

The following CloudWatch Contributor Insights report shows an example of a runtime version
transition as captured by the preceding rule. The orange line shows execution environment
initialization for the earlier runtime version (python:3.13.v12), and the blue line shows execution
environment initialization for the new runtime version (python:3.13.v14).

Runtime version updates 159

AWS Lambda Developer Guide

Top 2 of 2 unique contributors Q

2 unique contributors « No unit

4.0
30
20
1.0
17:33 17:34 17:35 17:36 17.37 17:38 17:39 17:40 1741 17:42 17:43 17:44 17:45 17:46 1747
14:50 15:50 16:50 17:51
® 1. python:3.9.v14 arn:aws-lambda. . 2. python:3.9.v12 arn:aws:lambda. ..

Understanding the shared responsibility model for Lambda runtime
management

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container images. Responsibility for updating existing functions to use the latest
runtime version varies depending on which runtime update mode you use.

Lambda is responsible for applying runtime updates to all functions configured to use the Auto
runtime update mode.

For functions configured with the Function update runtime update mode, you're responsible for
regularly updating your function. Lambda is responsible for applying runtime updates when you
make those updates. If you don't update your function, then Lambda doesn't update the runtime. If
you don't regularly update your function, then we strongly recommend configuring it for automatic
runtime updates so that it continues to receive security updates.

For functions configured to use the Manual runtime update mode, you're responsible for updating
your function to use the latest runtime version. We strongly recommend that you use this mode
only to roll back the runtime version as a temporary mitigation in the rare event of runtime update
incompatibility. We also recommend that you change to Auto mode as quickly as possible to
minimize the time in which your functions aren't patched.

Shared responsibility model 160

AWS Lambda

Developer Guide

If you're using container images to deploy your functions, then Lambda is responsible for

publishing updated base images. In this case, you're responsible for rebuilding your function's
container image from the latest base image and redeploying the container image.

This is summarized in the following table:

Deployment
mode

Managed
runtime,
Auto mode

Managed
runtime,
Function
update mode

Managed
runtime,
Manual
mode

Container
image

Lambda's responsibility

Publish new runtime versions
containing the latest patches.

Apply runtime patches to
existing functions.

Publish new runtime versions
containing the latest patches.

Publish new runtime versions
containing the latest patches.

Publish new container images
containing the latest patches.

Customer's responsibility

Roll back to a previous runtime version in
the rare event of a runtime update compatibi
lity issue. Follow best practices for backward

compatibility.

Update functions regularly to pick up the
latest runtime version.

Switch a function to Auto mode when you're
not regularly updating the function.

Roll back to a previous runtime version in
the rare event of a runtime update compatibi
lity issue. Follow best practices for backward

compatibility.

Use this mode only for temporary runtime
rollback in the rare event of a runtime update
compatibility issue.

Switch functions to Auto or Function update
mode and the latest runtime version as soon
as possible.

Redeploy functions regularly using the latest
container base image to pick up the latest
patches.

For more information about shared responsibility with AWS, see Shared Responsibility Model.

Shared responsibility model

161

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Lambda Developer Guide

Controlling Lambda runtime update permissions for high-compliance
applications

To meet patching requirements, Lambda customers typically rely on automatic runtime updates.
If your application is subject to strict patching freshness requirements, you may want to limit use
of earlier runtime versions. You can restrict Lambda's runtime management controls by using
AWS Identity and Access Management (IAM) to deny users in your AWS account access to the
PutRuntimeManagementConfig APl operation. This operation is used to choose the runtime
update mode for a function. Denying access to this operation causes all functions to default to
the Auto mode. You can apply this restriction across your organization by using a service control
policies (SCP). If you must roll back a function to an earlier runtime version, you can grant a policy
exception on a case-by-case basis.

Permissions 162

https://docs.aws.amazon.com/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

Retrieve data about Lambda functions that use a deprecated
runtime

When a Lambda runtime is approaching deprecation, Lambda alerts you through email and
provides notifications in the AWS Health Dashboard and Trusted Advisor. These emails and
notifications list the $LATEST versions of functions using the runtime. To list all of your function
versions that use a particular runtime, you can use the AWS Command Line Interface (AWS CLI) or
one of the AWS SDKs.

If you have a large number of functions which use a runtime that is due to be deprecated, you can
also use the AWS CLI or AWS SDKs to help you prioritize updates to your most commonly invoked
functions.

Refer to the following sections to learn how to use the AWS CLI and AWS SDKs to gather data
about functions that use a particular runtime.

Listing function versions that use a particular runtime

To use the AWS CLI to list all of your function versions that use a particular runtime, run the
following command. Replace RUNTIME_IDENTIFIER with the name of the runtime that's being
deprecated and choose your own AWS Region. To list only $LATEST function versions, omit - -
function-version ALL from the command.

aws lambda list-functions --function-version ALL --region us-east-1 --output text --
quexry "Functions[?Runtime=='RUNTIME_IDENTIFIER'].FunctionArn"

® Tip
The example command lists functions in the us-east-1 region for a particular AWS

account You'll need to repeat this command for each region in which your account has
functions and for each of your AWS accounts.

You can also list functions that use a particular runtime using one of the AWS SDKs. The following
example code uses the V3 AWS SDK for JavaScript and the AWS SDK for Python (Boto3) to return
a list of the function ARNSs for functions using a particular runtime. The example code also returns
the CloudWatch log group for each of the listed functions. You can use this log group to find the

Get data about functions by runtime 163

AWS Lambda Developer Guide

last invocation date for the function. See the following section the section called “Identifying most
commonly and most recently invoked functions” for more information.

Node.js

Example JavaScript code to list functions using a particular runtime

import { LambdaClient, ListFunctionsCommand } from "@aws-sdk/client-lambda";
const lambdaClient = new LambdaClient();

const command = new ListFunctionsCommand({
FunctionVersion: "ALL",
MaxItems: 50

1);

const response = await lambdaClient.send(command);

for (const f of response.Functions){
if (f.Runtime == '<your_runtime>'){ // Use the runtime id, e.g. 'nodejs22.x' or
'python3.13"'
console.log(f.FunctionAzrn);
// get the CloudWatch log group of the function to
// use later for finding the last invocation date
console.log(f.LoggingConfig.LogGroup);

}

// If your account has more functions than the specified
// MaxItems, use the returned pagination token in the
// next request with the 'Marker' parameter
if ('NextMarker' in response){

let paginationToken = response.NextMarker;

}
Python

Example Python code to list functions using a particular runtime

import boto3
from botocore.exceptions import ClientError

def list_lambda_functions(target_runtime):

lambda_client = boto3.client('lambda"')

Listing function versions that use a particular runtime 164

AWS Lambda Developer Guide

response = lambda_client.list_functions(
FunctionVersion="ALL',
MaxItems=50
)
if not response['Functions']:
print("No Lambda functions found")
else:
for function in response['Functions']:
if function['PackageType']=='Zip' and function['Runtime'] ==
target_runtime:
print(function['FunctionAzn'])
Print the CloudWatch log group of the function
to use later for finding last invocation date
print(function['LoggingConfig']['LogGroup'])

if 'NextMarker' in response:
pagination_token = response['NextMarker']

if __name__ == "__main__":
Replace python3.12 with the appropriate runtime ID for your Lambda functions
list_lambda_functions('python3.12")

To learn more about using an AWS SDK to list your functions using the ListFunctions action, see the
SDK documentation for your preferred programming language.

You can also use the AWS Config Advanced queries feature to list all your functions that use an
affected runtime. This query only returns function $LATEST versions, but you can aggregate
queries to list function across all regions and multiple AWS accounts with a single command. To
learn more, see Querying the Current Configuration State of AWS Auto Scaling Resources in the
AWS Config Developer Guide.

Identifying most commonly and most recently invoked functions

If your AWS account contains functions that use a runtime that's due to be deprecated, you might
want to prioritize updating functions that are frequently invoked or functions that have been
invoked recently.

If you have only a few functions, you can use the CloudWatch Logs console to gather this
information by looking at your functions' log streams. See View log data sent to CloudWatch Logs

for more information.

Identifying most commonly and most recently invoked functions 165

https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/config/latest/developerguide/querying-AWS-resources.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData

AWS Lambda Developer Guide

To see the number of recent function invocations, you can also use the CloudWatch metrics
information shown in the Lambda console. To view this information, do the following:

Open the Functions page of the Lambda console.

1
2. Select the function you want to see invocation statistics for.
3. Choose the Monitor tab.
4

Set the time period you wish to view statistics for using the date range picker. Recent
invocations are displayed in the Invocations pane.

For accounts with larger numbers of functions, it can be more efficient to gather this data
programmatically using the AWS CLI or one of the AWS SDKs using the DescribeLogStreams and
GetMetricStatistics APl actions.

The following examples provide code snippets using the V3 AWS SDK for JavaScript and the AWS
SDK for Python (Boto3) to identify the last invoke date for a particular function and to determine
the number of invocations for a particular function in the last 14 days.

Node.js

Example JavaScript code to find last invocation time for a function

import { CloudWatchLogsClient, DescribelogStreamsCommand } from "@aws-sdk/client-
cloudwatch-logs";
const cloudWatchLogsClient = new CloudWatchLogsClient();
const command = new DescribelogStreamsCommand({
logGroupName: '<your_log_group_name>",
orderBy: 'LastEventTime',
descending: true,
limit: 1
1)
try {
const response = await cloudWatchLogsClient.send(command);
const lastEventTimestamp = response.logStreams.length > 0 ?
response.logStreams[@].lastEventTimestamp : null;
// Convert the UNIX timestamp to a human-readable format for display
const date = new Date(lastEventTimestamp).tolLocaleDateString();
const time = new Date(lastEventTimestamp).tolLocaleTimeString();
console.log(" ${date} ${timel}’);

} catch (e){
console.error('Log group not found.')

Identifying most commonly and most recently invoked functions 166

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogStreams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

AWS Lambda Developer Guide

}

Python

Example Python code to find last invocation time for a function

import boto3
from datetime import datetime

cloudwatch_logs_client = boto3.client('logs')

response = cloudwatch_logs_client.describe_log_streams(
logGroupName="<your_log_group_name>",
orderBy='LastEventTime',
descending=True,
limit=1

try:
if len(response['logStreams']) > 0:
last_event_timestamp = response['logStreams']J[0@]['lastEventTimestamp']
print(datetime.fromtimestamp(last_event_timestamp/1000)) # Convert timestamp
from ms to seconds
else:
last_event_timestamp = None
except:
print('Log group not found')

® Tip
You can find your function's log group name using the ListFunctions API operation. See the

code in the section called "Listing function versions that use a particular runtime"” for an
example of how to do this.

Node.js

Example JavaScript code to find number of invocations in last 14 days

import { CloudWatchClient, GetMetricStatisticsCommand } from "eaws-sdk/client-
cloudwatch";

Identifying most commonly and most recently invoked functions 167

https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html

AWS Lambda

Developer Guide

const cloudWatchClient = new CloudWatchClient();
const command = new GetMetricStatisticsCommand({
Namespace: 'AWS/Lambda’,
MetricName: 'Invocations',

StartTime: new Date(Date.now()-86400*1000*14), // 14 days ago

EndTime: new Date(Date.now()),
Period: 86400 * 14, // 14 days.
Statistics: ['Sum'],
Dimensions: [{

Name: 'FunctionName',

Value: '<your_function_name>"
1]

1);

const response = await cloudWatchClient.send(command);
const invokesInLastl4Days = response.Datapoints.length > @ ?

response.Datapoints[0].Sum : 0;

console.log('Number of invocations: ' + invokesInLastl4Days);

Python

Example Python code to find number of invocations in last 14 days

import boto3
from datetime import datetime, timedelta

cloudwatch_client = boto3.client('cloudwatch')

response = cloudwatch_client.get_metric_statistics(

Namespace="'AWS/Lambda’,
MetricName='Invocations',
Dimensions=[
{
'Name': 'FunctionName',
'Value': '<your_function_name>'
.
1,
StartTime=datetime.now() - timedelta(days=14),
EndTime=datetime.now(),
Period=86400 * 14, # 14 days
Statistics=[
'Sum'’

Identifying most commonly and most recently invoked functions

168

AWS Lambda Developer Guide

)

if len(response['Datapoints']) > 0:
invokes_in_last_14_days = int(response['Datapoints']J[@]['Sum'])
else:
invokes_in_last_14_days

1
S

print(f'Number of invocations: {invokes_in_last_14_days}"')

Identifying most commonly and most recently invoked functions 169

AWS Lambda Developer Guide

Modifying the runtime environment

You can use internal extensions to modify the runtime process. Internal extensions are not separate

processes—they run as part of the runtime process.

Lambda provides language-specific environment variables that you can set to add options and
tools to the runtime. Lambda also provides wrapper scripts, which allow Lambda to delegate the

runtime startup to your script. You can create a wrapper script to customize the runtime startup
behavior.

Language-specific environment variables

Lambda supports configuration-only ways to enable code to be pre-loaded during function
initialization through the following language-specific environment variables:

e JAVA_TOOL_OPTIONS - On Java, Lambda supports this environment variable to set additional
command-line variables in Lambda. This environment variable allows you to specify the
initialization of tools, specifically the launching of native or Java programming language agents
using the agentlib or javaagent options. For more information, see JAVA_TOOL_OPTIONS

environment variable.

« NODE_OPTIONS - Available in Node.js runtimes.

o DOTNET_STARTUP_HOOKS — On .NET Core 3.1 and above, this environment variable specifies a
path to an assembly (dll) that Lambda can use.

Using language-specific environment variables is the preferred way to set startup properties.

Wrapper scripts

You can create a wrapper script to customize the runtime startup behavior of your Lambda
function. A wrapper script enables you to set configuration parameters that cannot be set through
language-specific environment variables.

® Note

Invocations may fail if the wrapper script does not successfully start the runtime process.

Runtime modifications 170

https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options
https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options

AWS Lambda Developer Guide

Wrapper scripts are supported on all native Lambda runtimes. Wrapper scripts are not supported
on OS-only runtimes (the provided runtime family).

When you use a wrapper script for your function, Lambda starts the runtime using your script.
Lambda sends to your script the path to the interpreter and all of the original arguments for the
standard runtime startup. Your script can extend or transform the startup behavior of the program.
For example, the script can inject and alter arguments, set environment variables, or capture
metrics, errors, and other diagnostic information.

You specify the script by setting the value of the AWS_LAMBDA_EXEC_WRAPPER environment
variable as the file system path of an executable binary or script.

Example: Create and use a wrapper script as a Lambda layer

In the following example, you create a wrapper script to start the Python interpreter with the -
X importtime option. When you run the function, Lambda generates a log entry to show the
duration of the import time for each import.

To create and use a wrapper script as a layer

1. Create a directory for the layer:

mkdir -p python-wrapper-layer/bin
cd python-wrapper-layer/bin

2. Inthe bin directory, paste the following code into a new file named importtime_wrapper.
This is the wrapper script.

#!/bin/bash

the path to the interpreter and all of the originally intended arguments
args=("%e")

the extra options to pass to the interpreter
extra_args=("-X" "importtime")

insert the extra options
args=("${args[@]:0:$#-13" "${extra_args[@]}" "${args[e@]l: -1}")

start the runtime with the extra options
exec "${args[e@l}"

Wrapper scripts 171

AWS Lambda

Developer Guide

3. Give

the script executable permissions:

chmod +x importtime_wrapper

4. Crea

te a .zip file for the layer:

cd ..
zip -r ../python-wrapper-layer.zip .

5. Confirm that your .zip file has the following directory structure:

python-wrapper-layer.zip
bin

6. Crea

importtime_wrapper

te a layer using the .zip package.

7. Crea

a.
b.
C.
d.
e.
8. Add

d.
e.
9. Add

a
b.
C.
d.

te a function using the Lambda console.

Open the Lambda console.

Choose Create function.
Enter a Function name.
For Runtime, choose the Latest supported Python runtime.
Choose Create function.

the layer to your function.

Choose your function, and then choose the Code tab if it's not already selected.
Scroll down to the Layers section, and then choose Add a layer.

For Layer source, select Custom layers, and then choose your layer from the Custom
layers dropdown list.

For Version, choose 1.
Choose Add.

the wrapper environment variable.

Choose the Configuration tab, then choose Environment variables.
Under Environment variables, choose Edit.
Choose Add environment variable.

For Key, enter AWS_LAMBDA_EXEC_WRAPPER.

Wrapper scripts

172

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

e. For Value, enter /opt/bin/importtime_wrapper (/opt/ + your .zip layer's folder
structure).

f. Choose Save.

10. Test the wrapper script.

a. Choose the Test tab.

b. Under Test event, choose Test. You don't need to create a test event—the default event
will work.

c. Scroll down to Log output. Because your wrapper script started the Python interpreter
with the -X importtime option, the logs show the time required for each import. For

example:
532 | collections
import time: 63 | 63 | _functools
import time: 1053 | 3646 | functools
import time: 2163 | 7499 | enum
import time: 100 | 100 | _sre
import time: 446 | 446 | re._constants
import time: 691 | 1136 | Ire._parser
import time: 378 | 378 | re._casefix
import time: 670 | 2283 | re._compiler
import time: 416 | 416 | copyreg

Wrapper scripts 173

AWS Lambda Developer Guide

Using the Lambda runtime API for custom runtimes

AWS Lambda provides an HTTP API for custom runtimes to receive invocation events from Lambda

and send response data back within the Lambda execution environment. This section contains the
API reference for the Lambda runtime API.

|O} ! O| Runtime API '_fu‘._\ l[’J Runtime + Function EL)

© -++-{O)] Extensions API
@ @ Telemetry API

API Endpoints Processes

Lambda Service Execution Environment

The OpenAPI specification for the runtime API version 2018-06-01 is available in runtime-api.zip

To create an APl request URL, runtimes get the APl endpoint from the
AWS_LAMBDA_RUNTIME_API environment variable, add the API version, and add the desired
resource path.

Example Request

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next"

API methods

« Next invocation

« Invocation response

« Initialization error

e Invocation error

Next invocation

Path - /runtime/invocation/next

Method - GET

Runtime API 174

samples/runtime-api.zip

AWS Lambda Developer Guide

The runtime sends this message to Lambda to request an invocation event. The response body
contains the payload from the invocation, which is a JSON document that contains event data from
the function trigger. The response headers contain additional data about the invocation.

Response headers

Lambda-Runtime-Aws-Request-Id - The request ID, which identifies the request that
triggered the function invocation.

For example, 8476a536-e9f4-11e8-9739-2dfe598c3fcd.

« Lambda-Runtime-Deadline-Ms - The date that the function times out in Unix time
milliseconds.

For example, 1542409706888.

e Lambda-Runtime-Invoked-Function-Arn - The ARN of the Lambda function, version, or
alias that's specified in the invocation.

For example, arn:aws:lambda:us-east-2:123456789012:function:custom-runtime.

e Lambda-Runtime-Trace-Id - The AWS X-Ray tracing header.

For example, Root=1-5bef4de7-
ad49b0e87f6ef6c87fc2e700; Parent=9a9197af755a6419; Sampled=1.

e« Lambda-Runtime-Client-Context — For invocations from the AWS Mobile SDK, data about
the client application and device.

e Lambda-Runtime-Cognito-Identity - For invocations from the AWS Mobile SDK, data
about the Amazon Cognito identity provider.

Do not set a timeout on the GET request as the response may be delayed. Between when Lambda
bootstraps the runtime and when the runtime has an event to return, the runtime process may be
frozen for several seconds.

The request ID tracks the invocation within Lambda. Use it to specify the invocation when you send
the response.

The tracing header contains the trace ID, parent ID, and sampling decision. If the request is
sampled, the request was sampled by Lambda or an upstream service. The runtime should set the
_X_AMZN_TRACE_ID with the value of the header. The X-Ray SDK reads this to get the IDs and
determine whether to trace the request.

Next invocation 175

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

AWS Lambda Developer Guide

Invocation response

Path - /runtime/invocation/AwsRequestId/response
Method - POST

After the function has run to completion, the runtime sends an invocation response to Lambda. For
synchronous invocations, Lambda sends the response to the client.

Example success request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "SUCCESS"

Initialization error

If the function returns an error or the runtime encounters an error during initialization, the runtime
uses this method to report the error to Lambda.

Path - /runtime/init/error
Method - POST
Headers

Lambda-Runtime-Function-Error-Type - Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

Runtime.NoSuchHandler

Runtime.APIKeyNotFound

Runtime.Configlnvalid

Runtime.UnknownReason

Body parameters

Invocation response 176

AWS Lambda Developer Guide

ErrorRequest - Information about the error. Required: no.

This field is a JSON object with the following structure:

{
errorMessage: string (text description of the error),
errorType: string,
stackTrace: array of strings

}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
"errorMessage" : "Error parsing event data.",
"errorType" : "InvalidEventDataException",
"stackTrace": []

}

Response body parameters

« StatusResponse - String. Status information, sent with 202 response codes.

« ErrorResponse — Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

o 202 - Accepted
e 403 - Forbidden

« 500 - Container error. Non-recoverable state. Runtime should exit promptly.

Example initialization error request

ERROR="{\"errorMessage\" : \"Failed to load function.\", \"errorType\" :
\"InvalidFunctionException\"}"

Initialization error 177

AWS Lambda Developer Guide

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/init/error" -d "$ERROR" --
header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error

If the function returns an error or the runtime encounters an error, the runtime uses this method to
report the error to Lambda.

Path - /runtime/invocation/AwsRequestId/errox
Method - POST
Headers

Lambda-Runtime-Function-Error-Type - Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

Runtime.NoSuchHandler

Runtime.APIKeyNotFound

Runtime.Configlnvalid

Runtime.UnknownReason

Body parameters
ErrorRequest - Information about the error. Required: no.

This field is a JSON object with the following structure:

{
errorMessage: string (text description of the error),
errorType: string,
stackTrace: array of strings

}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Invocation error 178

AWS Lambda Developer Guide

Example Function error

{
"errorMessage" : "Error parsing event data.",
"errorType" : "InvalidEventDataException",
"stackTrace": []

}

Response body parameters

« StatusResponse - String. Status information, sent with 202 response codes.

« ErrorResponse — Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

202 - Accepted
400 - Bad Request
403 - Forbidden

500 - Container error. Non-recoverable state. Runtime should exit promptly.

Example error request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9

ERROR="{\"errorMessage\" : \"Error parsing event data.\", \"errorType\"
\"InvalidEventDataException\"}"

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/error"
-d "$ERROR" --header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error 179

AWS Lambda Developer Guide

When to use Lambda's OS-only runtimes

Lambda provides managed runtimes for Java, Python, Node.js, .NET, and Ruby. To create Lambda
functions in a programming language that is not available as a managed runtime, use an OS-only
runtime (the provided runtime family). There are three primary use cases for OS-only runtimes:

« Native ahead-of-time (AOT) compilation: Languages such as Go, Rust, and C++ compile natively
to an executable binary, which doesn't require a dedicated language runtime. These languages
only need an OS environment in which the compiled binary can run. You can also use Lambda
OS-only runtimes to deploy binaries compiled with .NET Native AOT and Java GraalVM Native.

You must include a runtime interface client in your binary. The runtime interface client calls the
Using the Lambda runtime API for custom runtimes to retrieve function invocations and then
calls your function handler. Lambda provides runtime interface clients for Go, .NET Native AOT, C
++ (experimental), and Rust (experimental).

You must compile your binary for a Linux environment and for the same instruction set
architecture that you plan to use for the function (x86_64 or armé64).

 Third-party runtimes: You can run Lambda functions using off-the-shelf runtimes such as Bref
for PHP or the Swift AWS Lambda Runtime for Swift.

« Custom runtimes: You can build your own runtime for a language or language version that
Lambda doesn't provide a managed runtime for, such as Node.js 19. For more information, see
Building a custom runtime for AWS Lambda. This is the least common use case for OS-only
runtimes.

Lambda supports the following OS-only runtimes:

Name Identifier Operating Deprecation Block Block
system date function function
create update
OS-only provided. Amazon Jun 30, 2029 Jul 31, 2029 Aug 31, 2029
Runtime al2023 Linux 2023
OS-only provided. Amazon Jun 30, 2026 Jul 31, 2026 Aug 31, 2026
Runtime al2 Linux 2

OS-only runtimes 180

https://github.com/awslabs/aws-lambda-cpp
https://github.com/awslabs/aws-lambda-cpp
https://bref.sh/docs/news/01-bref-1.0.html#amazon-linux-2
https://github.com/swift-server/swift-aws-lambda-runtime#swift-aws-lambda-runtime

AWS Lambda Developer Guide

The Amazon Linux 2023 (provided.al2@23) runtime provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

The provided.al2023 runtime uses dnf as the package manager instead of yum, which is the
default package manager in Amazon Linux 2. For more information about the differences between
provided.al2023 and provided.al2, see Introducing the Amazon Linux 2023 runtime for AWS
Lambda on the AWS Compute Blog.

Building a custom runtime for AWS Lambda

You can implement an AWS Lambda runtime in any programming language. A runtime is a
program that runs a Lambda function's handler method when the function is invoked. You can
include the runtime in your function's deployment package or distribute it in a layer. When you
create the Lambda function, choose an OS-only runtime (the provided runtime family).

(® Note

Creating a custom runtime is an advanced use case. If you're looking for information about
compiling to a native binary or using a third-party off-the-shelf runtime, see When to use
Lambda's OS-only runtimes.

For a walkthrough of the custom runtime deployment process, see Tutorial: Building a custom

runtime.

Topics

» Requirements

« Implementing response streaming in a custom runtime

Requirements

Custom runtimes must complete certain initialization and processing tasks. A runtime runs the
function's setup code, reads the handler name from an environment variable, and reads invocation
events from the Lambda runtime API. The runtime passes the event data to the function handler,
and posts the response from the handler back to Lambda.

Building a custom runtime 181

https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

AWS Lambda Developer Guide

Initialization tasks

The initialization tasks run once per instance of the function to prepare the environment to handle
invocations.

» Retrieve settings — Read environment variables to get details about the function and
environment.

o _HANDLER - The location to the handler, from the function's configuration. The standard
formatis file.method, where file is the name of the file without an extension, and method
is the name of a method or function that's defined in the file.

o LAMBDA_TASK_ROOT - The directory that contains the function code.
o AWS_LAMBDA_RUNTIME_API - The host and port of the runtime API.

For a full list of available variables, see Defined runtime environment variables.

« Initialize the function — Load the handler file and run any global or static code that it contains.
Functions should create static resources like SDK clients and database connections once, and
reuse them for multiple invocations.

« Handle errors - If an error occurs, call the initialization error APl and exit immediately.

Initialization counts towards billed execution time and timeout. When an execution triggers the
initialization of a new instance of your function, you can see the initialization time in the logs and
AWS X-Ray trace.

Example log

REPORT RequestId: f8acl2@8... Init Duration: 48.26 ms Duration: 237.17 ms Billed
Duration: 300 ms Memory Size: 128 MB Max Memory Used: 26 MB

Processing tasks

While it runs, a runtime uses the Lambda runtime interface to manage incoming events and report

errors. After completing initialization tasks, the runtime processes incoming events in a loop. In
your runtime code, perform the following steps in order.

« Get an event - Call the next invocation API to get the next event. The response body contains

the event data. Response headers contain the request ID and other information.

Building a custom runtime 182

AWS Lambda Developer Guide

» Propagate the tracing header - Get the X-Ray tracing header from the Lambda-Runtime-
Trace-1Id header in the API response. Set the _X_AMZN_TRACE_ID environment variable locally
with the same value. The X-Ray SDK uses this value to connect trace data between services.

« Create a context object — Create an object with context information from environment variables
and headers in the API response.

« Invoke the function handler - Pass the event and context object to the handler.

« Handle the response - Call the invocation response API to post the response from the handler.

« Handle errors - If an error occurs, call the invocation error API.

« Cleanup - Release unused resources, send data to other services, or perform additional tasks
before getting the next event.

Entrypoint

A custom runtime's entry point is an executable file named bootstrap. The bootstrap file

can be the runtime, or it can invoke another file that creates the runtime. If the root of your
deployment package doesn't contain a file named bootstrap, Lambda looks for the file in the
function's layers. If the bootstrap file doesn't exist or isn't executable, your function returns a
Runtime.InvalidEntrypoint error upon invocation.

Here's an example bootstrap file that uses a bundled version of Node.js to run a JavaScript
runtime in a separate file named runtime. js.

Example bootstrap

#!/bin/sh
cd $LAMBDA_TASK_ROOT
./node-v11.1.0-1inux-x64/bin/node runtime.js

Implementing response streaming in a custom runtime

For response streaming functions, the response and error endpoints have slightly modified

behavior that lets the runtime stream partial responses to the client and return payloads in chunks.
For more information about the specific behavior, see the following:

« /runtime/invocation/AwsRequestId/response — Propagates the Content-Type header
from the runtime to send to the client. Lambda returns the response payload in chunks via

Building a custom runtime 183

AWS Lambda Developer Guide

HTTP/1.1 chunked transfer encoding. The response stream can be a maximum size of 20 MiB. To
stream the response to Lambda, the runtime must:

Set the Lambda-Runtime-Function-Response-Mode HTTP header to streaming.

Set the Transfer-Encoding header to chunked.

Write the response conforming to the HTTP/1.1 chunked transfer encoding specification.

Close the underlying connection after it has successfully written the response.

e /runtime/invocation/AwsRequestId/error — The runtime can use this endpoint to report
function or runtime errors to Lambda, which also accepts the Transfer-Encoding header. This
endpoint can only be called before the runtime begins sending an invocation response.

« Report midstream errors using error trailers in /runtime/invocation/AwsRequestId/
response - To report errors that occur after the runtime starts writing the invocation response,
the runtime can optionally attach HTTP trailing headers named Lambda-Runtime-Function-
Error-Type and Lambda-Runtime-Function-Error-Body. Lambda treats this as a
successful response and forwards the error metadata that the runtime provides to the client.

® Note

To attach trailing headers, the runtime must set the Trailer header value at the
beginning of the HTTP request. This is a requirement of the HTTP/1.1 chunked transfer
encoding specification.

e Lambda-Runtime-Function-Exrror-Type — The error type that the runtime encountered.
This header consists of a string value. Lambda accepts any string, but we recommend a format
of <category.reason>. For example, Runtime.APIKeyNotFound.

e Lambda-Runtime-Function-Error-Body - Base64-encoded information about the error.

Tutorial: Building a custom runtime

In this tutorial, you create a Lambda function with a custom runtime. You start by including the
runtime in the function's deployment package. Then you migrate it to a layer that you manage
independently from the function. Finally, you share the runtime layer with the world by updating
its resource-based permissions policy.

Custom runtime tutorial 184

AWS Lambda Developer Guide

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the AWS CLI version 2. Commands and the expected
output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.54@.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macQS, use your preferred shell and package manager.

(® Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example

CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

You need an IAM role to create a Lambda function. The role needs permission to send logs to
CloudWatch Logs and access the AWS services that your function uses. If you don't have a role for
function development, create one now.

To create an execution role

1. Open the roles page in the IAM console.
2. Choose Create role.

3. Create a role with the following properties.

« Trusted entity - Lambda.

Custom runtime tutorial 185

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

+ Permissions - AWSLambdaBasicExecutionRole.

e Role name - 1lambda-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to CloudWatch Logs.

Create a function

Create a Lambda function with a custom runtime. This example includes two files: a runtime
bootstrap file and a function handler. Both are implemented in Bash.

1. Create a directory for the project, and then switch to that directory.

mkdir runtime-tutorial
cd runtime-tutorial

2. Create a new file called bootstrap. This is the custom runtime.

Example bootstrap

#!/bin/sh
set -euo pipefail

Initialization - load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
HEADERS="$(mktemp)"
Get an event. The HTTP request will block until one is received
EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

Extract request ID by scraping response headers received above
REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
'"[:space:]"' | cut -d: -f2)

Run the handler function from the script

Custom runtime tutorial 186

AWS Lambda Developer Guide

RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

Send the response

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

The runtime loads a function script from the deployment package. It uses two variables
to locate the script. LAMBDA_TASK_ROOT tells it where the package was extracted, and
_HANDLER includes the name of the script.

After the runtime loads the function script, it uses the runtime API to retrieve an invocation
event from Lambda, passes the event to the handler, and posts the response back to Lambda.
To get the request ID, the runtime saves the headers from the API response to a temporary file,
and reads the Lambda-Runtime-Aws-Request-Id header from the file.

® Note

Runtimes have additional responsibilities, including error handling, and providing
context information to the handler. For details, see Requirements.

3. Create a script for the function. The following example script defines a handler function that
takes event data, logs it to stderr, and returns it.

Example function.sh

function handler () {
EVENT_DATA=$1
echo "$EVENT_DATA" 1>&2;
RESPONSE="Echoing request: '$EVENT_DATA'"

echo $RESPONSE

The runtime-tutorial directory should now look like this:

runtime-tutorial
bootstrap
function.sh

Custom runtime tutorial 187

AWS Lambda Developer Guide

4. Make the files executable and add them to a .zip file archive. This is the deployment package.

chmod 755 function.sh bootstrap
zip function.zip function.sh bootstrap

5. Create a function named bash-runtime. For --role, enter the ARN of your Lambda
execution role.

aws lambda create-function --function-name bash-runtime \

--zip-file fileb://function.zip --handler function.handler --runtime
provided.al2023 \

--role arn:aws:iam::123456789012:role/lambda-role

6. Invoke the function.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

You should see a response like this:

"StatusCode": 200,
"ExecutedVersion": "$LATEST"

7. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Custom runtime tutorial 188

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Create a layer

To separate the runtime code from the function code, create a layer that only contains the runtime.
Layers let you develop your function's dependencies independently, and can reduce storage usage
when you use the same layer with multiple functions. For more information, see Managing Lambda
dependencies with layers.

1. Create a .zip file that contains the bootstrap file.

zip runtime.zip bootstrap

2. Create a layer with the publish-layer-version command.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

This creates the first version of the layer.

Update the function

To use the runtime layer in the function, configure the function to use the layer, and remove the
runtime code from the function.

1. Update the function configuration to pull in the layer.

aws lambda update-function-configuration --function-name bash-xruntime \
--layers arn:aws:lambda:us-east-1:123456789012:1ayex:bash-runtime:1

This adds the runtime to the function in the /opt directory. To ensure that Lambda uses the
runtime in the layer, you must remove the boostrap from the function's deployment package,
as shown in the next two steps.

2. Create a .zip file that contains the function code.

zip function-only.zip function.sh

3. Update the function code to only include the handler script.

Custom runtime tutorial 189

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html?highlight=nodejs16%20x

AWS Lambda Developer Guide

aws lambda update-function-code --function-name bash-runtime --zip-file fileb://
function-only.zip

4. Invoke the function to confirm that it works with the runtime layer.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command

Line Interface User Guide for Version 2.

You should see a response like this:

"StatusCode": 200,
"ExecutedVersion": "$LATEST"

5. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Update the runtime

1. To log information about the execution environment, update the runtime script to output
environment variables.

Example bootstrap

#!/bin/sh

set -euo pipefail

Custom runtime tutorial 190

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Configure runtime to output environment variables
echo "## Environment variables:"
env

Load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
HEADERS="$(mktemp)"
Get an event. The HTTP request will block until one is received
EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

Extract request ID by scraping response headers received above
REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
'"[:space:]"' | cut -d: -f2)

Run the handler function from the script
RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

Send the response
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/

response" -d "$RESPONSE"
done

2. Create a .zip file that contains the new version of the bootstrap file.

zip runtime.zip bootstrap

3. Create a new version of the bash-runtime layer.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

4. Configure the function to use the new version of the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws:lambda:us-east-1:123456789012:1ayex:bash-runtime:2

Custom runtime tutorial 191

AWS Lambda Developer Guide

Share the layer

To share a layer with another AWS account, add a cross-account permissions statement to the
layer's resource-based policy. Run the add-layer-version-permission command and specify the

account ID as the principal. In each statement, you can grant permission to a single account, all
accounts, or an organization in AWS Organizations.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission \
--layer-name bash-runtime \
--version-number 2 \
--statement-id xaccount \
--action lambda:GetLayerVexsion \
--principal 111122223333 \
--output text

You should see output similar to the following:

{"Sid":"xaccount", "Effect":"Allow","Principal":
{"AWS":"arn:aws:iam::111122223333:ro00t"}, "Action":"lambda:GetLayerVersion", "Resource":"arn:aws:
east-1:123456789012:1ayer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

Clean up

Delete each version of the layer.

aws lambda delete-layer-version --layer-name bash-runtime --version-number 1
aws lambda delete-layer-version --layer-name bash-runtime --version-number 2

Because the function holds a reference to version 2 of the layer, it still exists in Lambda. The
function continues to work, but functions can no longer be configured to use the deleted version.
If you modify the list of layers on the function, you must specify a new version or omit the deleted
layer.

Delete the function with the delete-function command.

Custom runtime tutorial 192

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html

AWS Lambda Developer Guide

aws lambda delete-function --function-name bash-runtime

Open source repositories

AWS Lambda provides a variety of open source tools, libraries, and components to help you build,
customize, and optimize your serverless applications. These resources include runtime interface
clients, event libraries, container base images, development tools, and sample projects that are
maintained by AWS and available on GitHub. By leveraging these open source repositories, you can
extend Lambda's capabilities, create custom runtimes, process events from various AWS services,
and gain deeper insights into your function's performance. This page provides an overview of the
key open source projects that support Lambda development.

Runtime Interface Clients

Lambda Runtime Interface Clients (RICs) are open source libraries that implement the Runtime API
and manage the interaction between your function code and the Lambda service. These clients
handle receiving invocation events, passing context information, and reporting errors.

The runtime interface clients used by Lambda's managed runtimes and container base images are
published as open source. When you build custom runtimes or extend existing ones, you can use
these open source libraries to simplify your implementation. The following open source GitHub
repositories contain the source code for Lambda's RICs:

» Node.js Runtime Interface Client

« Python Runtime Interface Client

« Java Runtime Interface Client

« Ruby Runtime Interface Client

e .NET Runtime Interface Client

+ Go Runtime Interface Client

o Lambda Base Images

o Rust Runtime Interface Client (experimental)

For more information about using these clients to build custom runtimes, see the section called

“Building a custom runtime”.

Open source repositories 193

https://github.com/aws/aws-lambda-nodejs-runtime-interface-client
https://github.com/aws/aws-lambda-python-runtime-interface-client
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client
https://github.com/aws/aws-lambda-ruby-runtime-interface-client
https://github.com/aws/aws-lambda-dotnet
https://github.com/aws/aws-lambda-go
https://github.com/aws/aws-lambda-base-images
https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

Event libraries

Lambda event libraries provide type definitions and helper utilities for processing events from
various AWS services. These libraries help you parse and handle event data in a type-safe manner,
making it easier to work with events from services like Amazon S3, Amazon DynamoDB, and
Amazon API Gateway.

For compiled languages, AWS provides the following event libraries:

Java Event Library

.NET Event Libraries

Go Event Library

Rust Event Library

For interpreted languages like Node.js, Python, and Ruby, events can be parsed directly as JSON
objects without requiring a separate library. However, developers using Node.js and Python can
leverage powertools for AWS Lambda, which provides built-in schemas for AWS events that offer
type hinting, data validation, and functionality similar to what compiled language libraries provide.

» Powertools for TypeScript

» Powertools for Python

Container base images

AWS provides open source container base images that you can use as a starting point for building
container images for your Lambda functions. These base images include the runtime interface
client and other components needed to run your functions in the Lambda execution environment.

For more information about the available base images and how to use them, see the AWS Lambda

Base Images repository and the section called “Container images”.

Development tools

AWS provides additional open source development tools to help you build and optimize your
Lambda functions:

Event libraries 194

https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-events
https://github.com/aws/aws-lambda-dotnet/tree/master/Libraries/src
https://github.com/aws/aws-lambda-go/tree/main/events
https://github.com/awslabs/aws-lambda-rust-runtime
https://docs.powertools.aws.dev/lambda/typescript/latest/features/parser/#built-in-schemas
https://docs.powertools.aws.dev/lambda/python/latest/utilities/parser/#built-in-models
https://github.com/aws/aws-lambda-base-images
https://github.com/aws/aws-lambda-base-images

AWS Lambda Developer Guide

Powertools for AWS Lambda

Powertools for AWS Lambda simplifies serverless development with essential utilities to prevent
duplicate processing, and batch processing for multi-record handling and Kafka consumer library.
These features help you minimize code complexity and operational overhead.

You can also leverage built-in event schema validation, structured logging and tracing, and
parameter store integration which are designed to accelerate the creation of production-ready
Lambda functions while following AWS well-architected best practices.

GitHub repositories:

« Python

» TypeScript
e Java

o .NET

Java development tools

» Java Profiler (experimental) - A tool for profiling Java Lambda functions.

« Java Libraries - A repository that contains a comprehensive collection of Java libraries and tools

for Lambda development, including key projects such as JUnit testing utilities and profiling tools.

« Serverless Java Container - A library that enables you to run existing Java applications on
Lambda with minimal changes.

.NET development tools

The AWS Lambda .NET repository provides .NET libraries and tools for Lambda development,
including key projects such as for AWS Lambda tools for the .NET CLI and .NET Core server for
hosting .NET Core applications.

Sample projects

Explore a comprehensive collection of sample Lambda projects and applications at Serverless Land

repositories. These samples demonstrate various Lambda use cases, integration patterns, and best
practices to help you get started with your serverless applications.

Sample projects 195

https://github.com/aws-powertools/powertools-lambda-python
https://github.com/aws-powertools/powertools-lambda-typescript
https://github.com/aws-powertools/powertools-lambda-java
https://github.com/aws-powertools/powertools-lambda-dotnet
https://github.com/aws/aws-lambda-java-libs/tree/main/experimental/aws-lambda-java-profiler
https://github.com/aws/aws-lambda-java-libs
https://github.com/aws/serverless-java-container
https://github.com/aws/aws-lambda-dotnet
https://serverlessland.com/repos
https://serverlessland.com/repos

AWS Lambda Developer Guide

Configuring AWS Lambda functions

Learn how to configure the core capabilities and options for your Lambda function using the
Lambda API or console.

Memory

Learn how and when to increase function memory.

Ephemeral storage

Learn how and when to increase your function's temporary storage capacity.

Timeout

Learn how and when to increase your function's timeout value.

Environment variables

You can make your function code portable and keep secrets out of your code by storing them in
your function's configuration by using environment variables.

Outbound networking

You can use your Lambda function with AWS resources in an Amazon VPC. Connecting your
function to a VPC lets you access resources in a private subnet such as relational databases and
caches.

Inbound networking

You can use an interface VPC endpoint to invoke your Lambda functions without crossing the
public internet.

File system

You can use your Lambda function to mount a Amazon EFS to a local directory. A file system
allows your function code to access and modify shared resources safely and at high concurrency.

Aliases

You can configure your clients to invoke a specific Lambda function version by using an alias,
instead of updating the client.

Versions

By publishing a version of your function, you can store your code and configuration as a
separate resource that cannot be changed.

196

AWS Lambda Developer Guide

Tags

Use tags to enable attribute-based access control (ABAC), to organize your Lambda functions,

and to filter and generate reports on your functions using the AWS Cost Explorer or AWS Billing
and Cost Management services.

Response streaming

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they

become available. Additionally, you can use response streaming to build functions that return
larger payloads.

197

AWS Lambda Developer Guide

Deploying Lambda functions as .zip file archives

When you create a Lambda function, you package your function code into a deployment package.
Lambda supports two types of deployment packages: container images and .zip file archives. The
workflow to create a function depends on the deployment package type. To configure a function

defined as a container image, see the section called "Container images”.

You can use the Lambda console and the Lambda API to create a function defined with a .zip file
archive. You can also upload an updated .zip file to change the function code.

(® Note

You cannot change the deployment package type (.zip or container image) for an existing

function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

« Creating the function

« Using the console code editor

« Updating function code

« Changing the runtime

« Changing the architecture

» Using the Lambda API

» Downloading your function code

+ AWS CloudFormation

« Encrypting Lambda .zip deployment packages

Creating the function

When you create a function defined with a .zip file archive, you choose a code template, the
language version, and the execution role for the function. You add your function code after
Lambda creates the function.

.zip file archives 198

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType

AWS Lambda Developer Guide

To create the function

1. Open the Functions page of the Lambda console.

Choose Create function.

Choose Author from scratch or Use a blueprint to create your function.

P WD

Under Basic information, do the following:

a. For Function name, enter the function name. Function names are limited to 64 characters
in length.

b. For Runtime, choose the language version to use for your function.

c. (Optional) For Architecture, choose the instruction set architecture to use for your
function. The default architecture is x86_64. When you build the deployment package for
your function, make sure that it is compatible with this instruction set architecture.

5. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing role.

6. (Optional) Expand Advanced settings. You can choose a Code signing configuration for the
function. You can also configure an (Amazon VPC) for the function to access.

7. Choose Create function.

Lambda creates the new function. You can now use the console to add the function code and
configure other function parameters and features. For code deployment instructions, see the
handler page for the runtime your function uses.

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Deploy Ruby Lambda functions with .zip file archives

Java

Deploy Java Lambda functions with .zip or JAR file archives

Creating the function 199

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using the console code editor

The console creates a Lambda function with a single source file. For scripting languages, you can
edit this file and add more files using the built-in code editor. To save your changes, choose Save.
Then, to run your code, choose Test.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Updating function code

For scripting languages (Node.js, Python, and Ruby), you can edit your function code in the
embedded code editor. If the code is larger than 3MB, or if you need to add libraries, or for
languages that the editor doesn't support (Java, Go, C#), you must upload your function code as

a .zip archive. If the .zip file archive is smaller than 50 MB, you can upload the .zip file archive from
your local machine. If the file is larger than 50 MB, upload the file to the function from an Amazon
S3 bucket.

To upload function code as a .zip archive

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.
3. Under Code source, choose Upload from.
4

Choose .zip file, and then choose Upload.

« Inthe file chooser, select the new image version, choose Open, and then choose Save.

Using the console code editor 200

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. (Alternative to step 4) Choose Amazon S3 location.

o Inthe text box, enter the S3 link URL of the .zip file archive, then choose Save.

Changing the runtime

If you update the function configuration to use a new runtime, you may need to update the
function code to be compatible with the new runtime. If you update the function configuration to
use a different runtime, you must provide new function code that is compatible with the runtime
and architecture. For instructions on how to create a deployment package for the function code,
see the handler page for the runtime that the function uses.

The Node.js 20, Python 3.12, Java 21, .NET 8, Ruby 3.3, and later base images are based on the
Amazon Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023
provides several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc. For more information, see Introducing the Amazon
Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

To change the runtime

Open the Functions page of the Lambda console.

1
2. Choose the function to update and choose the Code tab.

3. Scroll down to the Runtime settings section, which is under the code editor.
4. Choose Edit.

a. For Runtime, select the runtime identifier.
b. For Handler, specify file name and handler for your function.
c. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Changing the architecture

Before you can change the instruction set architecture, you need to ensure that your function's
code is compatible with the target architecture.

If you use Node.js, Python, or Ruby and you edit your function code in the embedded editor, the
existing code may run without modification.

Changing the runtime 201

https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

However, if you provide your function code using a .zip file archive deployment package, you
must prepare a new .zip file archive that is compiled and built correctly for the target runtime and
instruction-set architecture. For instructions, see the handler page for your function runtime.

To change the instruction set architecture

1. Open the Functions page of the Lambda console.

Choose the function to update and choose the Code tab.
Under Runtime settings, choose Edit.

For Architecture, choose the instruction set architecture to use for your function.

Lok W

Choose Save.

Using the Lambda API

To create and configure a function that uses a .zip file archive, use the following API operations:

e CreateFunction

» UpdateFunctionCode

» UpdateFunctionConfiguration

Downloading your function code

You can download the current unpublished ($LATEST) version of your function code .zip via the
Lambda console. To do this, first ensure that you have the following IAM permissions:

iam:GetPolicy

o iam:GetPolicyVersion

o iam:GetRole

o iam:GetRolePolicy

o iam:ListAttachedRolePolicies
o iam:ListRolePolicies

e jam:ListRoles

Using the Lambda API 202

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

To download the function code .zip

1. Open the Functions page of the Lambda console.

2. Choose the function you want to download the function code .zip for.

3. In the Function overview, choose the Download button, then choose Download function
code .zip.

« Alternatively, choose Download AWS SAM file to generate and download a SAM template
based on your function's configuration. You can also choose Download both to download
both the .zip and the SAM template.

AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function that uses a .zip file archive. In your
AWS CloudFormation template, the AWS: : Lambda: : Function resource specifies the Lambda
function. For descriptions of the properties in the AWS: : Lambda: : Function resource, see
AWS::Lambda::Function in the AWS CloudFormation User Guide.

In the AWS: : Lambda: : Function resource, set the following properties to create a function
defined as a .zip file archive:

o AWS::Lambda::Function
» PackageType - Set to Zip.

» Code - Enter the Amazon S3 bucket name and .zip file name in the S3Bucket and
S3Keyfields. For Node.js or Python, you can provide inline source code of your Lambda
function.

+ Runtime - Set the runtime value.

« Architecture — Set the architecture value to arm64 to use the AWS Graviton2 processor. By
default, the architecture value is x86_64.

Encrypting Lambda .zip deployment packages

Lambda always provides server-side encryption at rest for .zip deployment packages and function
configuration details with an AWS KMS key. By default, Lambda uses an AWS owned key. If this
default behavior suits your workflow, you don't need to set up anything else. AWS doesn't charge
you to use this key.

AWS CloudFormation 203

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

AWS Lambda Developer Guide

If you prefer, you can provide an AWS KMS customer managed key instead. You might do this

to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage the function's code or configuration.

Customer managed keys incur standard AWS KMS charges. For more information, see AWS Key
Management Service pricing.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric encryption Creating symmetric KMS keys in the AWS Key
Management Service Developer Guide.

Permissions
Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. For more information, see How to change a key policy in the AWS Key Management
Service Developer Guide.

When you use a customer managed key to encrypt a .zip deployment package, Lambda doesn't add
a grant to the key. Instead, your AWS KMS key policy must allow Lambda to call the following AWS
KMS API operations on your behalf:

o kms:GenerateDataKey

» kms:Decrypt

The following example key policy allows all Lambda functions in account 111122223333 to call
the required AWS KMS operations for the specified customer managed key:

Encryption 204

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-how-to
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Lambda Developer Guide

Example AWS KMS key policy

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
}I
"Action": [
"kms : GenerateDataKey",
"kms :Decrypt"
]I
"Resourxce": "arn:aws:kms:us-east-1:111122223333:key/key-id",
"Condition": {
"StringlLike": {
"kms :EncryptionContext:aws:lambda:FunctionArn":
"arn:aws:lambda:us-east-1:111122223333:function:*"

}

For more information about troubleshooting key access, see the AWS Key Management Service
Developer Guide.

Principal permissions

When you use a customer managed key to encrypt a .zip deployment package, only principals with
access to that key can access the .zip deployment package. For example, principals who don't have
access to the customer managed key can't download the .zip package using the presigned S3 URL
that's included in the GetFunction response. An AccessDeniedException is returned in the Code
section of the response.

Example AWS KMS AccessDeniedException

Encryption 205

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html

AWS Lambda Developer Guide

"Code": {
"RepositoryType": "S3",
"Error": {
"ErrorCode": "AccessDeniedException",
"Message": "KMS access is denied. Check your KMS permissions. KMS

Exception: AccessDeniedException KMS Message: User: arn:aws:sts::111122223333:assumed-
role/LambdaTestRole/session is not authorized to perform: kms:Decrypt on resource:
arn:aws:kms:us-east-1:111122223333:key/key-id with an explicit deny in a resource-
based policy"
I
"SourceKMSKeyArn": "arn:aws:kms:us-east-1:111122223333:key/key-id"
I

For more information about permissions for AWS KMS keys, see Authentication and access control
for AWS KMS.

Using a customer managed key for your .zip deployment package

Use the following APl parameters to configure customer managed keys for .zip deployment
packages:

» SourceKMSKeyArn: Encrypts the source .zip deployment package (the file that you upload).

« KMSKeyArn: Encrypts environment variables and Lambda SnapStart snapshots.

When SourceKMSKeyArn and KMSKeyArn are both specified, Lambda uses the KMSKeyArn key
to encrypt the unzipped version of the package that Lambda uses to invoke the function. When
SourceKMSKeyArn is specified but KMSKeyArn is not, Lambda uses an AWS managed key to
encrypt the unzipped version of the package.

Lambda console
To add customer managed key encryption when you create a function

Open the Functions page of the Lambda console.

1
2. Choose Create function.

3. Choose Author from scratch or Container image.
4

Under Basic information, do the following:

a. For Function name, enter the function name.

Encryption 206

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/lambda/latest/api/API_FunctionCode.html#lambda-Type-FunctionCode-SourceKMSKeyArn
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-KMSKeyArn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

b. For Runtime, choose the language version to use for your function.

5. Expand Advanced settings, and then select Enable encryption with an AWS KMS
customer managed key.

6. Choose a customer managed key.

7. Choose Create function.

To remove customer managed key encryption, or to use a different key, you must upload
the .zip deployment package again.

To add customer managed key encryption to an existing function

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.
3. Inthe Code source pane, choose Upload from.
4

Choose .zip file or Amazon S3 location.

Code source info Upload from a
.zip file
File Edit Find WView Go Tools Window Amazon S3 location
Q hE) index.mjs > Environment Var »
“g - T L8~ 1 gonst url = "https://aws.amazon.com/";
i index.mjs 3 export const handler = async(event) => {
5. Upload the file or enter the Amazon S3 location.
6. Choose Enable encryption with an AWS KMS customer managed key.
7. Choose a customer managed key.
8. Choose Save.
AWS CLI

To add customer managed key encryption when you create a function

In the following create-function example:

« --zip-file: Specifies the local path to the .zip deployment package.

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package.

Encryption 207

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

AWS Lambda Developer Guide

» --kms-key-arn: Specifies the customer managed key to encrypt the environment variables
and the unzipped version of the deployment package.

aws lambda create-function \
--function-name myFunction \
--runtime nodejs22.x \
--handler index.handler \
--role arn:aws:iam::111122223333:ro0le/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip \
--source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id \
--kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key2-id

In the following create-function example:

» --code: Specifies the location of .zip file in an Amazon S3 bucket. You only need to use the
S30bjectVersion parameter for versioned objects.

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package.

« --kms-key-arn: Specifies the customer managed key to encrypt the environment variables
and the unzipped version of the deployment package.

aws lambda create-function \
--function-name myFunction \
--runtime nodejs22.x --handler index.handler \
--role arn:aws:iam::111122223333:ro0le/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S30bjectVersion=myObjectVersion \
--source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id \
--kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key2-id

To add customer managed key encryption to an existing function

In the following update-function-code example:

« --zip-file: Specifies the local path to the .zip deployment package.

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package. Lambda uses an AWS owned key to encrypt the unzipped
package for function invocations. If you want to use a customer managed key to encrypt the

Encryption 208

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

unzipped version of the package, run the update-function-configuration command with the

--kms-key-arn option.

aws lambda update-function-code \
--function-name myFunction \
--zip-file fileb://myFunction.zip \
--source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id

In the following update-function-code example:

« --s3-bucket: Specifies the location of the .zip file in an Amazon S3 bucket.
» --s3-key: Specifies the Amazon S3 key of the deployment package.

« --s3-object-version: For versioned objects, the version of the deployment package
object to use.

e --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package. Lambda uses an AWS owned key to encrypt the unzipped
package for function invocations. If you want to use a customer managed key to encrypt the
unzipped version of the package, run the update-function-configuration command with the

--kms-key-arn option.

aws lambda update-function-code \
--function-name myFunction \
--s3-bucket amzn-s3-demo-bucket \
--s3-key myFileName.zip \
--s3-object-version myObject Version
--source-kms-key-axrn arn:aws:kms:us-east-1:111122223333:key/key-id

To remove customer managed key encryption from an existing function

In the following update-function-code example, --zip-file specifies the local path to the .zip
deployment package. When you run this command without the --source-kms-key-arn
option, Lambda uses an AWS owned key to encrypt the zipped version of the deployment

package.

aws lambda update-function-code \
--function-name myFunction \
--zip-file fileb://myFunction.zip

Encryption 209

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Encryption 210

AWS Lambda Developer Guide

Create a Lambda function using a container image

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

There are three ways to build a container image for a Lambda function:

» Using an AWS base image for Lambda

The AWS base images are preloaded with a language runtime, a runtime interface client to

manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

« Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface

emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface

client for your language in the image.

» Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include a runtime interface client for your language in the

image.

® Tip
To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow

the Best practices for writing Dockerfiles.

To create a Lambda function from a container image, build your image locally and upload it to
an Amazon Elastic Container Registry (Amazon ECR) repository. If you're using a container image
provided by an AWS Marketplace seller, you need to clone the image to your private Amazon ECR

Container images 211

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html

AWS Lambda Developer Guide

repository first. Then, specify the repository URI when you create the function. The Amazon ECR
repository must be in the same AWS Region as the Lambda function. You can create a function
using an image in a different AWS account, as long as the image is in the same Region as the
Lambda function. For more information, see Amazon ECR cross-account permissions.

® Note

Lambda does not support Amazon ECR FIPS endpoints for container images. If
your repository URI includes ecr-fips, you are using a FIPS endpoint. Example:
111122223333 .dkr.ecr-fips.us-east-1.amazonaws.com.

This page explains the base image types and requirements for creating Lambda-compatible
container images.

(@ Note

You cannot change the deployment package type (.zip or container image) for an existing

function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

» Requirements

« Using an AWS base image for Lambda

« Using an AWS 0OS-only base image

« Using a non-AWS base image

« Runtime interface clients

« Amazon ECR permissions

» Function lifecycle

Requirements

Install the AWS CLI version 2 and the Docker CLI. Additionally, note the following requirements:

Requirements 212

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

» The container image must implement the Using the Lambda runtime API for custom runtimes.

The AWS open-source runtime interface clients implement the API. You can add a runtime

interface client to your preferred base image to make it compatible with Lambda.

« The container image must be able to run on a read-only file system. Your function code can
access a writable /tmp directory with between 512 MB and 10,240 MB, in 1-MB increments, of
storage.

« The default Lambda user must be able to read all the files required to run your function code.
Lambda follows security best practices by defining a default Linux user with least-privileged
permissions. This means that you don't need to specify a USER in your Dockerfile. Verify that
your application code does not rely on files that other Linux users are restricted from running.

« Lambda supports only Linux-based container images.

« Lambda provides multi-architecture base images. However, the image you build for your function
must target only one of the architectures. Lambda does not support functions that use multi-
architecture container images.

Using an AWS base image for Lambda

You can use one of the AWS base images for Lambda to build the container image for your

function code. The base images are preloaded with a language runtime and other components
required to run a container image on Lambda. You add your function code and dependencies to the
base image and then package it as a container image.

AWS periodically provides updates to the AWS base images for Lambda. If your Dockerfile includes
the image name in the FROM property, your Docker client pulls the latest version of the image
from the Amazon ECR repository. To use the updated base image, you must rebuild your container
image and update the function code.

The Node.js 20, Python 3.12, Java 21, .NET 8, Ruby 3.3, and later base images are based on the
Amazon Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023

provides several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead

of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container

Using an AWS base image 213

https://docs.docker.com/reference/dockerfile/#user
https://gallery.ecr.aws/lambda/
https://gallery.ecr.aws/lambda/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html

AWS Lambda Developer Guide

Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

® Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

To build a container image using an AWS base image, choose the instructions for your preferred
language:

« Node.js
» TypeScript (uses a Node.js base image)

« Python

e Java

+ Go
« NET

e Ruby

Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Tags Runtime Operating Dockerfile Deprecation
system
al2023 OS-only Amazon Dockerfile for OS-only Jun 30, 2029
Runtime Linux 2023 Runtime on GitHub

Using an AWS OS-only base image 214

https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023

AWS Lambda Developer Guide

Tags Runtime Operating Dockerfile Deprecation
system
al2 OS-only Amazon Dockerfile for OS-only Jun 30, 2026
Runtime Linux 2 Runtime on GitHub

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Using a non-AWS base image

Lambda supports any image that conforms to one of the following image manifest formats:

» Docker image manifest V2, schema 2 (used with Docker version 1.10 and newer)

« Open Container Initiative (OCI) Specifications (v1.0.0 and up)

Lambda supports a maximum uncompressed image size of 10 GB, including all layers.

(® Note

To make the image compatible with Lambda, you must include a runtime interface client

for your language in the image.

Runtime interface clients

If you use an OS-only base image or an alternative base image, you must include a runtime
interface client in your image. The runtime interface client must extend the Using the Lambda
runtime API for custom runtimes, which manages the interaction between Lambda and your
function code. AWS provides open-source runtime interface clients for the following languages:

« Node.js

« Python
e Java

« NET
. Go

« Ruby

Using a non-AWS base image 215

https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided

AWS Lambda Developer Guide

o Rust —The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

If you're using a language that doesn't have an AWS-provided runtime interface client, you must
create your own.

Amazon ECR permissions

Before you create a Lambda function from a container image, you must build the image locally and
upload it to an Amazon ECR repository. When you create the function, specify the Amazon ECR
repository URI.

Make sure that the permissions for the user or role that creates the function includes
GetRepositoryPolicy and SetRepositoryPolicy.

For example, use the IAM console to create a role with the following policy:

JSON

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "VisualEditox0",
"Effect": "Allow",
"Action": [
"ecr:SetRepositoryPolicy",
"ecr:GetRepositoryPolicy"

1,

"Resource": "arn:aws:ecr:us-east-1:111122223333:xepositoxy/hello-world"

Amazon ECR repository policies

For a function in the same account as the container image in Amazon ECR, you can add
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer permissions to your Amazon ECR
repository policy. The following example shows the minimum policy:

Amazon ECR permissions 216

https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

"Sid": "LambdaECRImageRetrievalPolicy",
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
1,
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

]

For more information about Amazon ECR repository permissions, see Private repository policies in
the Amazon Elastic Container Registry User Guide.

If the Amazon ECR repository does not include these permissions, Lambda attempts to add
them automatically. Lambda can add permissions only if the principal calling Lambda has
ecr:getRepositoryPolicy and ecr:setRepositoryPolicy permissions.

To view or edit your Amazon ECR repository permissions, follow the directions in Setting a private
repository policy statement in the Amazon Elastic Container Registry User Guide.

Amazon ECR cross-account permissions

A different account in the same region can create a function that uses a container image owned by
your account. In the following example, your Amazon ECR repository permissions policy needs the
following statements to grant access to account number 123456789012.

» CrossAccountPermission — Allows account 123456789012 to create and update Lambda
functions that use images from this ECR repository.

« LambdaECRImageCrossAccountRetrievalPolicy — Lambda will eventually set a function's state
to inactive if it is not invoked for an extended period. This statement is required so that Lambda
can retrieve the container image for optimization and caching on behalf of the function owned
by 123456789012.

Amazon ECR permissions 217

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html

AWS Lambda Developer Guide

Example — Add cross-account permission to your repository

JSON

"Version": "2012-10-17",
"Statement": [
{
"Sid": "CrossAccountPermission",
"Effect": "Allow",
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"
1,
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"
}I
"Resource": "arn:aws:ecr:us-east-1:123456789012:xepository/example-Llambda-
repository"
},
{
"Sid": "LambdaECRImageCrossAccountRetrievalPolicy",
"Effect": "Allow",
"Action": [
"ecxr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"
]I
"Principal": {
"Sexvice": "lambda.amazonaws.com"
},
"Condition": {
"ArnLike": {
"aws:sourceARN": "arn:aws:lambda:us-east-1:123456789012:function:*"
}
}I

"Resource": "arn:aws:ecr:us-east-1:123456789012:xepository/example-Llambda-
repository"

}

Amazon ECR permissions 218

AWS Lambda Developer Guide

To give access to multiple accounts, you add the account IDs to the Principal list in
the CrossAccountPermission policy and to the Condition evaluation list in the
LambdaECRImageCrossAccountRetrievalPolicy.

If you are working with multiple accounts in an AWS Organization, we recommend that you
enumerate each account ID in the ECR permissions policy. This approach aligns with the AWS
security best practice of setting narrow permissions in IAM policies.

In addition to Lambda permissions, the user or role that creates the function must also have
BatchGetImage and GetDownloadUrlForLayer permissions.

Function lifecycle

After you upload a new or updated container image, Lambda optimizes the image before the
function can process invocations. The optimization process can take a few seconds. The function
remains in the Pending state until the process completes, when the state transitions to Active.
You can't invoke the function until it reaches the Active state.

If a function is not invoked for multiple weeks, Lambda reclaims its optimized version, and the
function transitions to the Inactive state. To reactivate the function, you must invoke it. Lambda
rejects the first invocation and the function enters the Pending state until Lambda re-optimizes
the image. The function then returns to the Active state.

Lambda periodically fetches the associated container image from the Amazon ECR repository. If
the corresponding container image no longer exists on Amazon ECR or permissions are revoked,
the function enters the Failed state, and Lambda returns a failure for any function invocations.

You can use the Lambda API to get information about a function's state. For more information, see
Lambda function states.

Function lifecycle 219

AWS Lambda Developer Guide

Configure Lambda function memory

Lambda allocates CPU power in proportion to the amount of memory configured. Memory is the
amount of memory available to your Lambda function at runtime. You can increase or decrease the
memory and CPU power allocated to your function using the Memory setting. You can configure
memory between 128 MB and 10,240 MB in 1-MB increments. At 1,769 MB, a function has the
equivalent of one vCPU (one vCPU-second of credits per second).

This page describes how and when to update the memory setting for a Lambda function.

Sections

« Determining the appropriate memory setting for a Lambda function

Configuring function memory (console)

Configuring function memory (AWS CLI)

Configuring function memory (AWS SAM)

Accepting function memory recommendations (console)

Determining the appropriate memory setting for a Lambda function

Memory is the principal lever for controlling the performance of a function. The default setting,
128 MB, is the lowest possible setting. We recommend that you only use 128 MB for simple
Lambda functions, such as those that transform and route events to other AWS services. A higher
memory allocation can improve performance for functions that use imported libraries, Lambda
layers, Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon
EFS). Adding more memory proportionally increases the amount of CPU, increasing the overall
computational power available. If a function is CPU, network or memory-bound, then increasing
the memory setting can dramatically improve its performance.

To find the right memory configuration, monitor your functions with Amazon CloudWatch and set
alarms if memory consumption is approaching the configured maximums. This can help identify
memory-bound functions. For CPU-bound and 10-bound functions, monitoring the duration

can also provide insight. In these cases, increasing the memory can help resolve the compute or
network bottlenecks.

You can also consider using the open source AWS Lambda Power Tuning tool. This tool uses

AWS Step Functions to run multiple concurrent versions of a Lambda function at different

Memory 220

https://github.com/alexcasalboni/aws-lambda-power-tuning

AWS Lambda Developer Guide

memory allocations and measure the performance. The input function runs in your AWS account,
performing live HTTP calls and SDK interaction, to measure likely performance in a live production
scenario. You can also implement a Cl/CD process to use this tool to automatically measure the
performance of new functions that you deploy.

Configuring function memory (console)

You can configure the memory of your function in the Lambda console.
To update the memory of a function

1. Open the Functions page of the Lambda console.

2. Choose a function.
3. Choose the Configuration tab and then choose General configuration.

Code Test Monitor Configuration Aliases Versions

Description Memory Ephemeral storage
128 MB 512 MB

Timeout SnapStart Info

3
Function URL 0 min 3 sec None

4. Under General configuration, choose Edit.
5. For Memory, set a value from 128 MB to 10,240 MB.

6. Choose Save.

Configuring function memory (AWS CLI)

You can use the update-function-configuration command to configure the memory of your
function.

Example

aws lambda update-function-configuration \
--function-name my-function \
--memory-size 1024

Using the console 221

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

Configuring function memory (AWS SAM)

You can use the AWS Serverless Application Model to configure memory for your function. Update
the MemorySize property in your template.yaml file and then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
my-function:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 1024
Other function properties...

Accepting function memory recommendations (console)

If you have administrator permissions in AWS Identity and Access Management (IAM), you can opt
in to receive Lambda function memory setting recommendations from AWS Compute Optimizer.
For instructions on opting in to memory recommendations for your account or organization, see
Opting in your account in the AWS Compute Optimizer User Guide.

(@ Note

Compute Optimizer supports only functions that use x86_64 architecture.

When you've opted in and your Lambda function meets Compute Optimizer requirements, you
can view and accept function memory recommendations from Compute Optimizer in the Lambda
console in General configuration.

Using AWS SAM 222

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-memorysize
https://docs.aws.amazon.com/serverless-applicati