k-NN 하이퍼파라미터 - Amazon SageMaker

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

k-NN 하이퍼파라미터

다음 표에는 Amazon SageMaker k-Nearest Neighbors(k-NN) 알고리즘에 대해 설정할 수 있는 하이퍼파라미터가 나열되어 있습니다.

파라미터 이름 설명
feature_dim

입력 데이터의 특징 수.

필수

유효한 값: 양수.

k

가장 가까운 이웃 수.

필수

유효한 값: 양수

predictor_type

데이터 레이블에 사용할 추론 유형.

필수

유효한 값: 분류의 경우 분류자 또는 회귀의 경우 regressor

sample_size

훈련 데이터 세트에서 샘플링할 데이터 포인트의 총 수.

필수

유효한 값: 양수

dimension_reduction_target

줄일 대상 차원.

dimension_reduction_type 파라미터를 지정하는 경우 필수입니다.

유효한 값: 0보다 크고 feature_dim보다 작은 양의 정수.

dimension_reduction_type

차원 감소 메서드 유형.

선택 사항

유효한 값: 무작위 투영의 경우 sign 또는 빠른 Johnson-Lindenstrauss 변환의 경우 fjlt

기본값: 차원 감소 없음

faiss_index_ivf_nlists

index_typefaiss.IVFFlat 또는 faiss일 때 인덱스에서 구성할 중심체의 수입니다.IVFPQ

선택 사항

유효한 값: 양수

기본값: 자동이며 sqrt(sample_size)로 확인됩니다.

faiss_index_pq_m

가 faiss로 index_type 설정된 경우 인덱스에서 구성할 벡터 하위 구성 요소의 수입니다. IVFPQ

FaceBook AI 유사성 검색(FAISS) 라이브러리에서는 값이 데이터 차원의 제수faiss_index_pq_m여야 합니다. faiss_index_pq_m이 데이터 차원의 나눗수가 아닌 경우 데이터 차원을 faiss_index_pq_m으로 나눌 수 있는 가장 작은 정수로 늘립니다. 차원 감소가 적용되지 않는 경우 이 알고리즘은 제로 패딩을 추가합니다. 차원 감소가 적용된 경우 이 알고리즘은 dimension_reduction_target 하이퍼파라미터의 값을 늘립니다.

선택 사항

유효한 값: 다음 정수 중 하나: 1, 2, 3, 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 96

index_metric

가장 가까운 이웃을 찾을 때 지점 간 거리를 측정하는 지표. faiss.IVFPQ로 설정된 index_type을 사용하여 훈련하는 경우 INNER_PRODUCT 거리 및 COSINE 유사성은 지원되지 않습니다.

선택 사항

유효한 값: 유클리딘 거리의 경우 L2, 내부 제품 거리의 경우 INNER_PRODUCT, 코사인 유사성의 COSINE 경우 .

기본값: L2

index_type

인덱스의 유형.

선택 사항

유효한 값: faiss.Flat , faiss.IVFFlat, faiss.IVFPQ.

기본값: faiss.Flat

mini_batch_size

데이터 반복자의 미니 배치당 관측치의 수.

선택 사항

유효한 값: 양수

기본값: 5000