aws

Developer Guide

AWS Step Functions

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Step Functions Developer Guide

AWS Step Functions: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Step Functions Developer Guide

Table of Contents

What is Step FUNCLIONS?iiiiiieeeeiiiiiiiieiiiiinenensssnsssssseeess 1
Standard and EXpress WOrkflOWS tYPES ...ttt sae e neens 3
.. 4
INtegrating With Other SEIVICES ...ttt st st a s 4
Example use €ases fOr WOIrKFLOWS ...ttt aesae e e a e a e saeaan 7
.. 7

USE CASES .eereuniieeneiinnnnnientunieesnecsessecienssssssssessesssnns 11
DAt PrOCESSING ..ueeiiieiiiicierteecteete sttt s e e st e s ste e st e s saesssaesbe e s st essse s saesssaasseesssesssaesssaesssesssessseessesssaens 11

[\ F= Yol 11 T =Y [11 o T OO O ROURSRRRRRRR 12
MiICrOSErviCe OFCNESTIALION ...c.couiiiieieectctrect ettt ettt b e st s s e st e s aesaesasnas 14

IT and security QULOMATIONc.cciiieeceee ettt et e saesaesaesbe s e e e e e s ennesaeaaaans 15
Getting started tULOrial ... iiiiiiiiiiiiiiirriieeceiiiieeteeesseeiisieeeeetttss 17
WHat YOU WLl DUILA ettt ettt te st e e et sa e st e e aa s e e nneaenes 17
Step 1 - Create your State MAChINe ...ttt aeaens 19
Overview Of WOrKfLOW STUAIO ...c..oivirieiiiiictceccectserct ettt et st sa e 20
Overview of the state MAChINEG ...t sr s sre s saens 21

ViIieW the WOTKFLOW COA@ (ASL) ueueieeiiieeeeeeeeeeeeeetteeetteeeteeeeveeesaeeessseesssseessseesssseesssseesssesssssesssnseens 22
(Actually) Create the state MACKhINEGcooeeeeeee et 23

Step 2 - Start your state MAChING ...ttt aan 25
Review the eXecUtion details ...ttt sttt saes 26

Step 3 - Process eXternal iNPUL ...ttt te e re et et ae st sre e srnesn s 29
Remove the hard-coded INPUL ...ttt st s a e ae s 30

Run the updated workflow, with iNput dataccevieeoeeee e 30
ReVieW WOTKFLOW @XECULIONSovivireeieietetcereescctcset ettt et sae st s s s se s saes 31

STEP 4 - INTEGIAte @ SEIVICE wooueeiieeieeeeete ettt ettt s e st e s et s s e e s sae s s e e s aesssaesssaessnasssesssaassseesseans 32
HOW dO iNtE@Qrations WOIK? ..ottt ettt steste e e e e s e s saesaesaesse s e e e ssaenaeneneans 33

Step 4.1 - Add sentiment analysis STAteccoeeeeiecieieeeeececee e ae s 34

Step 4.2 - Configure the sentiment analysis Statecccceveeeceeeneeececceee e 34

Step 4.3 - Configure an identity POLICY .ot 35

Step 4.4 - Run your stat@ MAChINE ..ottt te e saennens 36
CLEAN UP FESOUICES ...eveeeeureiretetestesteeteeeeeesaessestessessessessessassaessassessassassassassassesssassentansansansassessessassessssssensen 38
StAte MACKINES ..ciiiiiiiiiiiiiiiiiiiininiiinssssssssssssssnnsssssssssssssssssssssssssssssssssssesstsssssssessssssssssssssssssssssssssssssss 39
KEY CONEEPTES ettt ettt e s et e s ae e s s se e s e st e se st e sssnaessssaesssneassssaassssasssssessssaassssaassnnaes 41

SEAE MACKHING DATA .ottt ettt ettt e e e e aeeseeeeateeseeasstessasssseessessstessaessaasseesnsteseassssaassannaeasan 43

AWS Step Functions Developer Guide

DAata FOIMAT ...ttt et et a e s s a e st esae et 44
State Maching INPUE/OULPUL ...ttt e et et sa e s s e s snens 44
StAte INPUL/OULPUL ...ttt et te e e e s e et et et et e st e se s e seesaeaessensanean 45
INVOKE STEP FUNCLIONS ..ttt e st e e e s e sa e st b e s a e e s ss e e e e e e e e et enaansanes 46
Transitions iN State MACKhINES ..ottt ettt se e saas 47
Transitions in Distributed Map StAte ...t 48

REAA CONSISTENCY vttt ettt et e s et e et e e e e e e et et et e st e st e s e s seeseeseesaentansansansassasseesessaesaanes 48
ACTIVITIES wevvvrerennnnnnnnnnnnniniiiiiiiiiiitiiiiiiieiesiessns 49
OVEIVIBW ..ttt ettt ettt et s s a e st e e s st et e s st s st st e et e e ae e b e st e st sebesate st esesnbesstsssesntasseeserns 49
APIs Related to ACLIVITY TASKS ..ottt ettt re e a e st et saa s 49
Waiting for an Activity Task t0 COMPLELE ...ttt anan 50
Example: Activity WOrker in RUDY ...ttt ettt et 51
INEXE STEPS weeietirititeett ettt ettt e st e et e st e s te s s e e s sae e st e s aeessaessaesssaesseesssesssaesssassssesssessseesssesssaesssessseesssennns 52
Cho0oSiNg WOIKFLOW tYPE ...ceeeeeeeiiiiiiiiiiiiiinnennniiiisecciininesecsssssssssssssessns 53
EXPress WOTKFLOW TYPES ...ttt ettt et et esae s e s e et et e st e b e s basaasseenaennan 56
EXECULION QUAKANTEES ...ttt re et e s e st e s sae e st e s sae s s st e s saa s aa e s ba s saesssaessnasssaassaessseennees 57
AMaAzon States LANQUAQGEcccuccirreiiirmecirsescnssesirssessessessssssessessssssssssssssssssssssssssssssssssesssssssssssssssass 59
Example Amazon States Language Specification (JSONata)ccccveeveeereeveeceecieceecececeee e 59
State MACKHING STTUCTUIE ..ttt st e a ettt b et b et e ene 61
COMMON STALE FIELAS ..ottt sttt sb et s st s e sa e e e e saans 63
INEFINSIC FUNCLIONS ettt sttt ettt et s sa et e s s et et st et e e aassesasnaens 64
Fields that support intrinSic FUNCLIONScoouiiieeeeee e 66
INEFNSICS FOI @ITAYS wuviieeeieeietetetetee ettt et e e e e e e s e et et et e st et e s sesseesa e e e s ensansessassasassaeseanes 66
Intrinsics for data encoding and deCOdINgG ...t 71
INtrinsic for hash CalCULAtIONcoucviiiie ettt sa et ae e 72
Intrinsics for JSSON data mManipulation ... 73
INtrinsics fOr Math OPEratioNS ...ttt s ae s ne 75
INtrinSiC fOr StriNG OPEIratioN ...ttt te e s e e e saenaan 77
Intrinsic for unique identifier GenNeration ... 78
INtrinSic fOr geNEeriC OPEIrAtioN ...ttt s ae s be s e e eesaennan 79
Reserved characters in intrinSic fFUNCLIONScocoiiiininieee et 80
WOTKFLOW SEALES ..ciiiiiiiiiiiiiiiinnininsssssssssssssssssssnnssnsssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssss 81
Reference list Of WOrKFLOW SEates ..ottt sa e saes 83
TASK ettt ettt ettt ettt ettt et e Rt et et et e st e be st e e e R et et e e ese s et eaaaentenans 83
TASK LYPIES ettt ee et ste e te s e s e e e e e e e et et et e st e st e s s e e sa e s s ena e s et et e se s aeseeaeeRe et et esa b e teeseeseeraenaanes 85

TASK SEATE TIELAS ..ottt ettt s st et e b e b e s bt e e e e nas 88

AWS Step Functions Developer Guide

Task state definition @XAMPLES ...ttt e e aeaeaans 91
CROICE ittt ettt ettt e s st et et e b et e st e ae et et e e e b et et e s e e R et et e s et et eseebe b eneenanee 94
ChOICE RULES (JSONGEA) ceeeieeiiineiieeeieeteteeteceetetesatesesstesesateeesseesssseessssesessseessssesssssesssssesssssesssssessssnesas 95
ChoiCE RULES (JSONPALN) «..eeieeeeeeeeeeeeeecteecee et eestecesatesesatesesaeesesseesessesesssesssssssssssessssesssnsesssnsesssnses 96
PATALLEL .ottt ettt et st s e et sttt b et e st et e e s et et esense e enene 100
Parallel State EXAMPLE ...ttt ettt testesse s e e e s et e s e sestesaesaessassnennannans 101
Parallel State Input and OuUtpUt ProCeSSINGc.ccueciecieeierererececeetete e stesteete e e e e e saessesaessaneens 103
ErrOr HANALING ettt a et et e st e st e e s e e e e e et e s ae s e bassaesnenaennanean 105
VAP ceteeiiieieertee ettt et e st e e ste e st e s et e st e e s e e s b e s st e e b e e r e e et e e st e et e e a e e e e et e e e e e s Rt e et e e s e e e st essteesaaessaeeaeesraennns 105
Map ProCeSSING MOAESceeieerecieereeeeeeteiteteste e s e s e e e ese e e et e saestessassessessassasseessassessensansansassessesssenen 106
INLINE MO ettt ettt sttt et s e st et e sa et e e s s et et esassensenaene 108
DiStribDULEA MOAE ...ttt ettt b e sttt s e sb e e e e s b estesassasans 118
PSS ettt s a e st et e b et et e b et e Rt e b e et e Rt e ae et e at e b e et e ne e ae et enes 132
Pass State Example (JSONPQth) ...ttt ste st re e e aeneaens 134
WVQITE ettt ettt e et e e st e s st e s s a e e aa e s b e e s e e s s b e et e e b e e e st e e b e e R e e e bt e s R ae e sa e e s e e e be e e st e e re et e e reesstennres 134
Walit STate EXQAMIPLES ..ottt ettt ettt et e st e e e e st e b e st e saessasseesaesnenaennans 136
SUCCEEM ..ttt ettt e sttt sa et e st et e s b e st et s e b et e st e s et e st esesse st esessastestesansensesassassessesersentases 137
- 11 OO ESEUS U R R RR 137
Fail state definition @XAMPLES ...ttt sttt ns 139
Tutorials and WOrKSROPS ...ccciiiiiiiiemnnciiiiiiiiiiiiinneennneiiiiiiceiiitsss 141
TULOTIALS ettt ettt st ettt et s s b e s s b et e e s s et et e sesbe st esaesesbentenasansenassansansesans 142
Handle error CONAITIONSoiiuieiiiiererececct ettt st sttt et et st e e sae st e e s e s b e s e s snasaeneen 144
Step 1: Create a Lambda function that throws an error ..., 144
Step 2: Test your Lambda fUNCLION ..ottt aan 144
Step 3: Create your state machine Maching ... 145
Step 4: Configure your state Maching ... 147
Step 5: Run the state MAacChine ...t e sr et 147
Create a state Machine USING AWS SAM ...ttt et te e s s e s nenanes 148
PrErEQUISITES .ottt ettt sre st e s sae s st e s s e e s st e s s ae s sa e s aeessaesssessssesssaesssasssessssessssennees 149
Step 1: Download a Sample AWS SAM Applicationccceieiiciecieceeeeecee et 150
Step 2: Build YOUr APPLICAtION ..ottt ettt st e te e s saesaaaens 151
Step 3: Deploy Your Application to the AWS Cloud ... 152
TrOUBLESNOOTING ..ttt sttt et et e st e st e be s e e e e e esaeae s entanean 153
CLEAN UP ettt ettt et st et e st e st e st e e s e e e e st e st e be st e st e sbesse e e eseenaensansasebanseeseesaesaeseensantans 153
EXQMING @XECULIONS ...ttt ettt a et ae st st s b st e st s snessae st s snesnbanns 154
Step 1: Create and test the required Lambda functionscceoeieoeoenenenecceceeeeeeeeeen, 155

AWS Step Functions Developer Guide

Step 2: Create and execute the state Maching ... 157
Step 3: View the state machine execution detailsccceceeeeeeereeceeciececeeecee e 161
Step 4: Explore the different View modeseeeeeeeeeeeeeeeeeeectee et se e saenens 161
Create a state machine that uses Lambda ...t 163
Step 1: Create @ Lambda fUNCLION ...ttt 164
Step 2: Test the Lambda fUNCLION ...ttt nens 165
Step 3: Create @ State MAChINe ...ttt aeaeaens 165
Step 4: Run the state MAaChiNe ...t 167
Waiit for hUMAN QPPIrOVAL ...ttt a ettt e s e e e e e s e e e aa b e aanas 168
Step 1: Create @ TEMIPLAtE ..ottt e et et be st et e e e s nennan 169
SteP 2: Create @ SEACK ..ottt nes 169
Step 3: Approve the SNS SUDSCHPLION ... 170
Step 4: Run the state MAaChiNe ...t 170
TEMPLALE SOUMCE COUE .ttt ettt e te s s e e et et e s bastessassaesaennenaanes 173
Repeat actions With INLNE Map ...ttt steste s s e se e e aanaans 183
Step 1: Create the WOrkflow PrototyPe ...ttt e 183
Step 2: Configure iNput and OULPULoceeeeiieeeee ettt 184
Step 3: Review and save auto-generated definition ... 185
Step 4: Run the state MAaChinNe ...t sa et s 187
Copy large-scale CSV using Distributed Map ...t 188
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 189
Step 1: Create the WOrkflow PrototyPe ...ttt sae e 189
Step 2: Configure the required fields for Map State ... 190
Step 3: Configure additional OPLIONScc.couioieiieceeeeeeeerec et nens 191
Step 4: Configure the Lambda funNCtion ... 192
Step 5: Update the WOrkflow prototype ...ttt 193
Step 6: Review the auto-generated Amazon States Language definition and save the
WOTKTLOW ettt ettt et et a e st e sttt et et e st et eaassabe st ssesaastesassensesass 193
Step 7: Run the state MAaChine ...t 195
[terate @ Loop With LAambda ...ttt a e et et s ae s nnens 196
Step 1: Create a Lambda function to iterate @ countccoeeeeeeeeeeeiccceeeecec e, 197
Step 2: Test the Lambda FUNCLION ..ottt ettt sae e nenens 198
Step 3: Create @ State MAChiNe ...ttt a e et saens 199
Step 4: Start @ NEW EXECULION ..ottt ettt sse s ee s st ssaessseesaesssesssaessnaessnessananns 202
Process batch data With Lambda ...ttt sae s e saens 203
Step 1: Create the state MAaChINEG ...ttt 203

Vi

AWS Step Functions Developer Guide

Step 2: Create the Lambda fUNCLiON ... 205
Step 3: Run the state MAaChine ...ttt s 206
Process individual items with Lambdacccoeiiieniiniccceceeee et 208
Step 1: Create the state MAaChINEG ...t 208
Step 2: Create the Lambda fUNCLiON ... 211
Step 3: Run the state MAaChine ... a et s 206
Start @ WOrkflow from EVENEBIidge ..ottt sve e n e nens 215
Prerequisite: Create a State MacChing ...t 215
Step 1: Create a Bucket in AMAzZON S3 ...ttt ste e e a e et aeeaas 216
Step 2: Enable Amazon S3 Event Notification with EventBridgecceeveevecreceveneceeeenne. 216
Step 3: Create an Amazon EventBridge RULE ... 217
StEP 4: TESt The RULE ettt et st b e s ae s b e e s e e e e e saennan 218
Example of EXECULION INPUL ...ttt st as 219
Create an APl USING APl GATEWAY ...c.eeiuiiriiiiieteeiecrteesee st eseessse s e e s ssessseesssesssaesssessseesssessseasssens 219
Step 1: Create an IAM Role for APl GateWayccceiecieciececereeeeeeee sttt e s snenens 220
Step 2: Create your APl Gate@Way AP ...ttt essreeseessaesseessaeeseesssesssaessaeesnnanns 221
Step 3: Test and Deploy the APl Gateway API ...ttt saeeaens 222
Create an Activity state MAChing ...t s ean 224
Step 1: Create an ACTIVITY .ottt sae st e s st s st e s saeessnesssesssaesssaessnassnaans 225
Step 2: Create @ State MAChINE ...ttt e e e aaaens 225
Step 3: IMPLEMENT @ WOTKET ...ttt ettt et e s e s nennan 228
Step 4: Run the state MAaChine ...t 230
Step 5: RUN aNd StOP the WOIKET ...ttt ae e aas 231
VIEW X-RAY TrACES ...ttt st re et esae s sae s s sae s sae e s sae s sa e s b e s saaasssesssaesssessssesssesssessssessseesssannns 232
Step 1: Create an IAM role for Lambda ...ttt 232
Step 2: Create @ Lambda fUNCLION ...ttt 233
Step 3: Create two more Lambda fuNCLioNS ..o 234
Step 4: Create @ State MAChING ...ttt aeaens 235
Step 5: Run the state MAaChine ...t et 237
Gather AmMAzon S3 BUCKET INTO ..ottt sttt se e s st snes 240
Step 1: Create the state MAaChINEG ...t ns 240
Step 2: Add the necessary IAM role PermMiSSIONScccceeerereeeereeriecee e ete e sae e s 242
Step 3: Run a Standard state machine executioncceeeeceececeececececee e 243
Step 4: Run an Express state maching eXeCUtioncceececececececececere e 244
Continue long-running workflows using Step Functions API (recommended)ccccueveuunneeee. 245
Step 1: Create a long-running state Maching ... 245

vii

AWS Step Functions Developer Guide

Step 2: Create a state machine to call the Step Functions APl actioncccceeveeeeeeeevecnennene 246
Step 3: Update the IAM POLICY .ottt sa et st e saesse e s e e e enaens 247
Step 4: Run the state MAaChiNe ... a e 248
Using Lambda to continue @ WOrKFLOWoueireeeeeeeee ettt 249
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 250
Step 1: Create a Lambda function to iterate @ count ..o, 251
Step 2: Create a Restart Lambda function to start a new Step Functions execution 253
Step 3: Create @ State MAChINe ...ttt aeaeaens 254
Step 4: Update the IAM POLICY ...ttt sa et saesaesaessesae e e snnens 258
Step 5: Run the state MacChine ...ttt 259
ACCESS CrOSS-ACCOUNT FESOUICTESueeiuieiirieiieeiteteeteetesteestes e e ssesste st seseste st esseesbe s st sesesssesntessesasesseesens 261
PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 262
Step 1: Update the Task state definition to specify the target roleccoocveveeeceeeneeecnnnnen. 262
Step 2: Update the target role's trust POLICY ..c.coeeereeiecieeeeee e 264
Step 3: Add the required permission in the target rolec.coeoeeeeveceececececeecee e, 265
Step 4: Add permission in execution role to assume the target rolecccoeeeeeeeeeeeeiennenee. 265
WOTKSROPS ..ottt ettt te e et e e e s et e st e st e s bessesseese e e e s et e tessassessaeseessessassesasansasseesasnsensanes 266
Starter tEMPLAtes ... cciiiiiiiiiiiieeeciiieeeeiititieeaseeesssieeeettttasssssssssssssssssessssssssssssssssssssssssssssssassnssnns 268
ManNage @ CONTAINET TASK ..ocviieieieceeeceeteteteete e e e et e et e sae st e st e e se e e e e s e e s et et e saessesseesaenaassensansanes 269
Step 1: Create the state MAaChINEG ...t 269
Step 2: Run the demo state MAaChing ... 270
Transfer data FECOTASccvirieirieeeeree ettt sttt et s s et et s e sae st e e s e be e sanssassanees 270
Step 1: Create the state MAaChINEG ...t 271
Step 2: Run the demo state MAaChing ... e 271
Lo o 2 oo L 1=T Ou OO 272
Step 1: Create the state MAaChINEG ...t 272
Step 2: Run the demo state MAaChing ... 273
TASK TIMIEE ettt ettt sttt et e s b et et e et et e e s s et et ssasentesassansansensene 273
Step 1: Create the state MAaChINEG ...t 274
Step 2: Run the demo state MAaChine ... 274
Callback pattern EXAMPLE ...t ettt st e e e e e et e ste st e ste e e e e enaeaansantans 275
Step 1: Create the state MAaChINEG ...t 275
Step 2: Run the demo state MAaChing ... 275
Manage an AmMAzon EMR JOD ...ttt ettt st st a e e e 276
Step 1: Create the state MAaChINEG ...ttt 276
Step 2: Run the demo state MAaChing ... 270

viii

AWS Step Functions Developer Guide

RUN @N EMR SEIVEILESS JOD ..ottt ettt s re e e e et sa e st a e s s e se e e ennens 277
Step 1: Create the state MAaChINEG ...t 278
Step 2: Run the demo state MAaChing ... 278

Start @ workflow Within @ WOIKFLOWc.oceueiiiiieeeec ettt saens 279
Step 1: Create the state MAChINEG ...t 279
Step 2: Run the demo state MAaChing ... 279

Process data With @ Map .ttt ettt st s e e e et et sa e st et e e s e e snennenes 280
Step 1: Create the state MAChINEG ...t 280
Step 2: Subscribe to the AMazon SNS tOPIC ..o 280
Step 3: Add messages to the AMazon SQS QUEUEceeeeeeeeeeeeeeeeee e sae st sre s 281
Step 4: Run the state MAaChiNe ...t 281

Distributed Map to process @ CSV fil@ iN S3 ...ttt re e aenens 282
Step 1: Create the state MAaChINEG ...t as 282
Step 2: Run the demo state MAaChine ...t 283

Distributed Map to process fileS iN S3 ...ttt st sae e 283
Step 1: Create the state MAaChINEG ...t 284
Step 2: Run the demo state MAaChing ... 285

Train @ machine learNing MOEL ...ttt e e sa e saa s 285
Step 1: Create the state MAaChINEG ...t as 286
Step 2: Run the demo state MAaChing ... 286

Tune @ maching 1earNiNg MOAELc.eoueeiiieeeeeeee ettt estesaesbe e e e e e e nennan 287
Step 1: Create the state MAaChINEG ...t 287
Step 2: Run the demo state MAaChing ... e 288

Perform Al prompt-chaining with Amazon Bedrock ... 288
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 289
Step 1: Create the state MAaChINEG ...t 289
Step 2: Run the demo state MAaChing ... 290

Process high-volume messages from SQS ...ttt e e aesaesse e neens 290
Step 1: Create the state MAaChINEG ...t 291
Step 2: Trigger the state Maching eXeCULION ... 291

Selective checkpointing @XAMIPLE ...ttt ns 292
Step 1: Create the State MAChiNe ...t 293
Step 2: Run the demo state MAaChing ... 293

Start @ COAeBUILA DUILA ..ottt sa ettt sb et e s e b e s saa e 294
Step 1: Create the state MAaChINEG ...ttt 294
Step 2: Run the demo state MAaChing ... 294

AWS Step Functions Developer Guide

Preprocess data and train a machine learning Model ... 295
Step 1: Create the state MAaChINEG ...t 295
Step 2: Run the demo state MAaChing ... 296

Orchestrate Lambda fUNCLIONScoeoviiiinieirinerererctsesete ettt sttt et s ss s s ssa s 296
Step 1: Create the state MAChINEG ...t 298
Step 2: Run the demo state MAaChing ... 298

StArt @N ATRHENA QUETY ettt ettt et e s e e e e a st sttt et e b e seese e st e e e aatasansanes 299
Step 1: Create the state MAChINEG ...t 299
Step 2: Run the demo state MAacChing ... 299

Execute queries in sequence and parallel using Athena ... 300
Step 1: Create the state MAaChINEG ...t as 300
Step 2: Run the demo state MAaChing ... 301

QUENY Large dAtASELS ...cucouiieeeeeeeeeeeeee ettt ettt te st e st e st e s e e e e e e s et e st e aeste st e s seesaeseeneenneaentans 301
Step 1: Create the state MAaChINEG ...t as 301
Step 2: Run the demo state MAaChing ... 302

KEEP data UP 10 At ettt te et sa et et e b e s b e s se e e e e nn e aennans 302
Step 1: Create the state MAaChINEG ...t as 302
Step 2: Run the demo state MAaChine ... 303

Manage an AmMAazon EKS CLUSTEN ..ottt sae s ae s s a e e ae s 303
Step 1: Create the state MAaChINEG ...t 304
Step 2: Run the demo state MAaChing ... 304

Make a Call tO APl GAtEWAYcueeeeeeeeeeceeeteetes ettt e te e s e se e e e e e s et e s te st et e ssassessaesnenaeneennan 305
Step 1: Create the STAte .ttt s aeeens 305
Step 2: Run the demo state MAaChing ... e 306

Call @ microservice With APl GAtEWAYc.cceeeeieieieietececeeeeee et teste st aessesse e s s s e e e s e sesaessasaens 306
Step 1: Create the state MAaChINEG ...t 306
Step 2: Run the demo state MAaChing ... 307

Send a custom event t0 EVENIBIIAQE ...ttt sttt 307
Step 1: Create the state MAaChINEG ...t 308
Step 2: Run the demo state MAaChine ... 308

Invoke Synchronous Express Workflows through APl Gatewaycccceeeeeeeeececcecceeceeceeceeevene. 309
Step 1: Create the state MAaChINEG ...t 309
Step 2: Run the demo state MAaChing ... 310

ETL job in AMAzon REASNIfL ...ttt st a e e aan 310
Step 1: Create the state MAaChINEG ...ttt 311
Step 2: Run the demo state MAaChing ... 312

AWS Step Functions Developer Guide

ManNage @ DAtCR JOD ..ottt et e e e e a et naan 312
Step 1: Create the state MAaChINEG ...t 312
Step 2: Run the demo state MAaChing ... 270

Fan oUt @ DAtCh JOD ettt et e st e e e e e aetens 313
Step 1: Create the state MAChINEG ...t 314
Step 2: Run the demo state MAaChing ... 314

Batch jOb With Lambda ...ttt ettt a e a e aan 314
Step 1: Create the state MAChINEG ...t 315
Step 2: Run the demo state MAacChing ... 315

Developing WOIrKFLOWScccciiiiiiieeenneciiiiiieiiiiinnneesssnsssissisecessee 316

Defining YOUIr WOIKFLOW ..ottt a et et sttt s ns 317

Running and debugging your WOrKFLOWS ...ttt 324

Deploying YOUr WOIKFLOWSoovieeeeeeeeeetete ettt ettt et e e s e saestesaesaesaeesessnennannans 325

USING WOTKFLOW STUAIO ..ttt ve e s sa et sae b e s s e e s neaesaaaens 326
DESIGN IMOAE ...ttt ettt ettt e e e e st e e e e e et et e st e st e s be b e s saesa e e e s estessestansassansaesasssensanes 327
COAE MOAE ettt ettt et s st et e e s s et et e st et e e saa b entesessesseseesansensesensn 330
CONTFIG MOAE ..ttt ettt e s e st e e e e e e e e st e st e s be s e e sessaessenaeaebasassassassassnassansans 332
Create @ WOTKFLOW ..ottt sttt ettt a s aasa e 333
Configure iNPUL @and OULPUL ...ttt sttt a e a e a et e 341
Set UP EXECULION FOLES ..ttt st ettt e st e st esbe st e s be e e e e e e e s esaenaensensans 348
Configure error RANALING ..ottt e st e e e e sa e s e s aesaaaans 354
Using Workflow Studio in Infrastructure COMPOSETcccccveeeeeieerereeeceeeeeete et eeeeeee e 356

USING AWS SAM L.ttt ettt sttt et e ste s e e s sae e st e s ae s st e s e e e s st e s aesssaesssa s st asssessaesssassseesssesssaennees 360
Why use Step FUNctions With AWS SAMT? ...ttt sre st e s s et saesaessans 360
Step Functions integration with the AWS SAM specificationcccceveevevececeneniecceceeeee, 361
Step Functions integration with the SAM CLI ... 361
DefinitionSubstitutions in AWS SAM temPplates ... 362
NEXE SEEPS ettt ettt te st e e s ste e st e e ae e s e e s aeessaessae e s st e s sasssseessaesseesssessssesssessssasssensseennses 366

Create a state machine with ClLOUdFOrMAtioNccccviviiiiininnineceeereee et see e 367
Step 1: Set up your AWS CloudFormation template ... 367
Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 372
Step 3: Start a State Maching eXeCULION ...t 377

Using CDK to create a Standard WOIKFLOWccooueeeeiiieieeeeceee ettt nnens 378
Step 1: Set up your AWS CDK PFrOJECT ..c..uiiiiiicieeetesteeitecstesreestessresseesssesssaessseessesssessseessssessaens 379
Step 2: Use AWS CDK to create a state Maching ... 380
Step 3: Start a state Maching @XECULION ...t 389

Xi

AWS Step Functions Developer Guide

SEEP 4: CLEAN UP ettt te e e e e e e e e e et e st e s ae s e st e s s e e e e e e s et esaantassesaassassassnenaansans 390
NEXE SEEPS ettt ettt te et te s sae e st e s ae e s aessaeessaesssa e s st e s sa e sseessaesseesssessssessseesssesssesssaennses 390
Using CDK to create an EXpress WOrKFLOW ..ottt 391
Step 1: Set Up YOUr AWS CDK PrOJECTuuiiviieieecterteesterressrtestessreesseeesseesssessseessaessseesssessssssseens 391
Step 2: Use the AWS CDK to create an APl Gateway REST API with Synchronous Express
State Machine backend iNtEGration ...t eens 395
Step 3: TeSt the APl GAtEWAY ...ttt s et steste s e sse e e e e e e e s e snesaesaasaans 404
SEEP 4: CLEAN UP ettt te e e e e e e e e e et e st e s ae s e st e s s e e e e e e s et esaantassesaassassassnenaansans 406
Using Terraform to deploy WOrKFLOWS ...ttt 406
PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 407
Development lifecycle with Terraform ... 407
IAM roles and policies for your state Maching ... 409
EXPOrting to 1aC tEMIPLAtES ..ottt ettt e e s e e bt et sre e reennens 410
Template configuration OPLIONS ...ttt 411
Export and download 1aC tEMPLAte ...c.eceeeeeeeeeeeeeee ettt e 412
Export 1aC template to AWS Infrastructure COMPOSENcceeveereeeeeeeeeerecteee et re s 412
Starting state Machinesueeeiiiiiiiiiiiiirrnceccenttteeeessssssisiseeeeesssssssssssssssssssssssssssssssssssssses 415
SEArT FrOM @ TASK ettt st et sttt st e st et e e ssa s et ssassasaesasan 415
Associate WOrKFlOW EXECULIONSccveriiirenientiirenieteesiestetsesaet e ssest e e ssessesessessessesassessassessssenes 417
Using EVeNtBridge SCREAULETcu ettt e aestesaesae s e s e e ssaesaeaanaans 418
Set UP the @XECULION FOLE ...ttt e e s aesae st e s aessessa e s anennannans 418
Create @ SCREAULE ..ottt ettt st ettt e st e e s e b et e e saassenaen 419
RELALEA FESOUICES ...cuveiieieteeiete ettt st ettt ettt et st et e s se b et ssa st et esassassesaesansensesansan 423
VIieWING WOTKFLOW FURNS ..ottt s teete s et et e sae st e s ae s e ese s s e s e s e e e s assessassessessnesaennans 423
EXECULION dETAILS ..ottt st ettt st st e s b st e e s e s e e e e snans 424
Standard and EXPress diffErenCES ...ttt 431
Limitations viewing Express Workflow e@XeCUtionscccecveciecienenenenececeeee et 432
Redriving State MACKINESc..cuieeeeeeeeeeeeeeeertee ettt ste st e st e st e s e e e e e e e sae st e saassassassnesaanaans 433
Redrive eligibility for unsuccessful @XeCUtioNS ... 434
Redrive behavior of individual States ...ttt 434
IAM permission to redrive an @XECULION ...t 436
Redriving eXecUtions iN CONSOLEoiiiiiiieieeeececeeee ettt e et e ste st e sae s e s seeaeaennennan 436
Redriving eXecUtions USING AP ...ttt e e e e aestesaestesse s e e e e e e s esaesaesaensans 438
Examining redriven @XECULIONSccecueeerieeeeicecteciecteste e se e e e e e saesaesaesaesse s e e e e e e aesaenaesaanes 438
Retry behavior of redriven @XECULIONSc.coeeiiieieiecceeee ettt a e a e ae s 440
ViIEWING MAP RURNS ..ttt ettt ssve s te e sae s st e s aessaessaeessaessaaesaassasssssesssaesssassseesssesssaesnsens 442

xii

AWS Step Functions Developer Guide

Map RUN @XECUTION SUMMIAIY ..ccoiiiiiieieeiterteesitesee st esteesresseessseessesssessssessssesssesssessssessssessaesssnsns 442
EFTOr MESSAGE ...ttt ettt st e s st e s e st e s e sae e s s aeasssaeessssasssssasssssasssssasssssessssaesssseanss 443
[TEM ProCESSING STATUS ..coveiiiiiieeeceteccterrere et ssre s ee s esae s sre e s e e s saeesssessaesssassssasssesssaennnans 443
LISEING EXECULIONS ..ottt ettt sttt st e sae s sa e s ae e st e s aesssaessaaessaesssa s saesssassssasssessssesssaenees 445
REANVING MAP RUNS ...ttt teste e e e e e e e et et e st e st e s sessessaesaensesaesaasessassassassaensansansans 446
Redrive eligibility for child workflows in @ Map RUN ..o 447
Child workflow execution redrive BERAVIOr ..ot 448
Scenarios of input used 0N Map RUN FEATIVEceiieiieieeececeeeere ettt saeaens 449
IAM permission t0 redrive @ Map RUN ...ttt te e se e e e sae s neans 450
Redriving Map RUN iN CONSOLE ...ttt ettt s re s e n e ns 451
Redriving Map RUN USING APl ... ettt et e te st steste s e e e e e s s eaestesaesaessassassnennennens 452
Processing input and OULPULciiiiiiiiiiiiiieeneiiiiiieeititteseesssnss 454
Passing data With Vari@bles ...ttt st e st s e s sae s saens 457
Conceptual overview Of Variables ...ttt 457
Reserved variable : $SAtes ...ttt bbbttt benas 459
Variable NAME SYNTAX ..ucouiieeeeceeeeee ettt st e b ae s e b e s e e e e e a et e e e sanes 459
VariADLE SCOPE ...ttt ettt st e s te st e st e e e e e e et et et e sessaeseeseeneenaensensansansans 460
ASSIGN FIELA 1N ASL ettt ettt ste et e s te s e e e e e e e b e st et e s aassessa e e eneesaesaansansansanes 460
Evaluation order in an assign field ...t 462
LITTIES ettt ettt s e et s a e s b e st b e et st s b e st e e at e b e e b e st e ae et e et e seenasntens 463
Using variables in JSSONPQth STates ...t sae e saeas 463
TranSTOrMING dAta ...ttt ettt e s b e s b e s e e e e e e e aetabanaan 465
QUENYLANGUAGE TIELA ..ttt et e e e e saesa e sttt e s sesseesnesaenennanaans 468
WIItiNg JSONQLA @XPrESSIONSecicviiiieeiiieieirteniteestestesereessteesseesssessseesssessseesssessseesssasssessssessssesssens 468
Reserved variable © $SAtes ...ttt ettt ettt bt 469
HaNdLliNg @XPreSSION EITOISccuecieeeeieeeeteeectectestestestesteereeaesaestestessessessassaessesaesaessessessassassesssessenes 470
CoNVErting t0 JSONQLQA ..ottt ssre e s e e s ae s ra e s s e e sraessae s saessaesanasssasnnas 470
JSONGLA EXAMIPLES ..ttt et st e st e st e s se e e e e e s et et e te st e saassasseenaennanes 473
JSONGLA FUNCHIONS ettt sttt st ettt e s e b et s s be e e e s s e sa et ene 476
CONLEXE ODJECL .ttt ettt et e s e e e e et et et e st e s s e s s e e se s e e s essassassansessessaessensansansansans 479
Accessing the Context ODJECT ...ttt sr e e aan 479
CoNtEXt ODJECE FIELAS .ottt et sa e sttt e s e s se e e e e e e e aesaensans 480
Context object data for Map States ... 482
USING JSONPGLN PAtRS ...ttt ettt s e s s e e e e e a e aeaens 484
REFEIENCE PANS ...ttt b e sttt st bea e sa s 484
Manipulate parameters With Paths ... e sae s 486

xiii

AWS Step Functions Developer Guide

INPUEPATN <.ttt et et e st e st et e s s e e e s e e e e e et e st e bessessessesseensesaansansan 486
PAramMELEIS ...ttt st sttt et b e st a et et b e s b et s a et et e n e s e esne s 487
RESULESELECEON ...ttt ettt ettt e st e s b et et s sesae st esassensesasnas 489
Example: Manipulating state data with paths ... 492
Filtering State@ OULPUL ..ottt ettt ae st se e e e e et et aa s 497
Specify state output With PAths ... 497
Replace iNPUL WIth FESULLeceeeeeeee ettt st s e e e e e sa e ae s 498
Discard Result and KEEP INPUL ...ttt e et et esaesaesse e sesnnennan 499
INnclude ReSUlt With INPUL ..ottt sttt 499
Update a Node in INput With RESULLc.ooveieeeeeeeeeeeee ettt 501
Include Error and INput in @ CQtCh et r e et 501
Map state input and output fields in Step FUNCLIONSccoooviieiereeieeceeeeeecee e 502
EEIMREAAEN ..ttt ettt ettt st et e s et et s e b et e e s sa b et e sasbestenassansenssnnnne 504
EEMISPALN ..ttt a et ettt st e s et e e s e be st e e ssesaeneen 521
OIS ELECEON ettt ettt st sttt st et e e b et et s s et et s e ssestesaesassensanas 523
EEMBATCNEL ettt et et sttt et e s s et et s e be st e e ssanbenaesansen 525
RESULEWIIEEL ettt sttt sttt et et et e s et e e s e st et e sse b e e s e sbe st ssassantensssenns 530
Parsing iNPUL CSV fIlES ..ttt sttt re s e et st st s e s b e s b e s e e e a et ennan 541
INtEGrating SEIVICES ...cciiiiiiiiiiieeennnniiiiiiiieiiiiennssesssssssssssssseesssnee 544
Call OTNETN AWS SEIVICES ...oovieenteieieieteenenteteesteste s te st e st st e sse st et s e sae st e e s se st e e ssassestenessessessssassensenes 544
AWS SDK INTEGIAtiONS .ottt ettt sre et e s te e st e s aessseesseessaessssesssassssesssassssessssessaanns 544
OPptimiIzed INTEGIrAtiONS ...ttt sa et s e e e e s e e s et e saeaan 545
CrOSS-QCCOUNT QCCESS ...oouiiuiiiiiieeitirieeteentesreete st seseste st e sseesae st sesesbe st essesssesstssesasesatessesssessessesssenes 545
INtegration PAtLern SUPPOIT ...ttt ettt sae s sse e s sse e s e e s saessssessaaessnessneassnasane 545
Service INtegration PAtLEINS ...ttt s e et e s sr e s s e e s sseessnesssesssaesseessnanns 547
Integration PaAttern SUPPOIT ...ttt se e s e s a e s sae s saessse e s s essnnessnasane 545
REQUEST RESPONSEeevtiieiieieieecteetesstesteesatessaeseseessaeesstesssessssesssessstasssessssesssessssesssessssesssessssesssennns 549
RUN @ JOD ((SYNIC) ettt ettt a e st et e st e st s se st e e st e s e st et e basbesseesaesaesaessansansansan 550
Walit FOr CAllDACK ...eeeeieiieiieteteeeeeet ettt sttt ettt s be st e e ssesse e ssanens 552
CAll HTTPS APIS ettt et s ste st et sse st et s e sae st e e s se st e e ssesse st s e ssassestesassestesassansensenassansensesansans 558
Connectivity fOr an HTTP TasK ...ttt e e ss et saesbestesae s e s e ssnesae s 559
HTTP TAsk definition ..c.ccoeeiiiiicieeeeeeseteteret ettt sttt ettt sa e st ss e e ne 560
HTTP TASK FIELAS ..ottt ettt sttt ettt et s s b e st e s et s e se e esasnes 560
Merging EventBridge connection and HTTP Task definition dataccccceeeeeneneninceececcnenen, 568
Applying URL-encoding on request Body ...ttt ste e 571
IAM permissions to run an HTTP TaSK ...ttt sve e aenas 573

Xiv

AWS Step Functions Developer Guide

HTTP Task @XAMIPLEueoeeeeeeeee ettt ettt te st e st e e se s e e s e e et et e bessassassaeseesaennensansans 574
TESEING AN HTTP TASK ettt ettt te e te e e e e e s et e b e s b e saesseese e e e nnenaennans 576
Unsupported HTTP TaSK FESPONSEScceeeeieieiereiertesesesteeeeseessesaessessessessessessesssessenssssessessassens 578
CONNECLION BITOKS ...ttt sttt et ae st e st s b st e st e s e st e s st s se st e e ntessesbes st essesnsesatessennne 579
PSS PAAMELELSeeeieieeeeecteete ettt ettt st s e e st e s et s st e s st e e st e s aesssaessaa e s st assaeessaessaesstassseassaesssaenntans 579
Pass static JSON QS PAramMELEIS ...ttt ettt e e e sse e s sae s ssa e s sae e s e e s saesssaesssaesnnans 580
Pass state input as parameters USing Paths ... 580
Pass Context object NOAES @S PAraMELErSc.cceeeeeeeeiieeteetere ettt ae e aens 581
AWS SDK INEEGIatiONSeviiiieieeceectecctertes ettt st e s see e st e ssaessaeesstessseessaesssaesssasssaesssesssaesssessseans 582
USIiNG SErvice iNTEGIatioNsc.iiviiiiiiirieectertece ettt e st st e s sre e st e s saessseesssesssaessesssaesssessssasssenanes 582
Supported Service iNTEGrationscccvicicieceieceeeee ettt e st ae st e stessessesse s e esnennens 584
Deprecated Service iNtEGrationsccccececierieeeeeceeeeree ettt saesaestesbe s e e e e s e s eaenaens 634
Integrating optimized SEIrVICEScuuueeeciiiiiiiiiiiiiiiinnnnniiiiiieeiiinieneeessns 635
AMAZON APl GALEWAYeieiiieiieiieicierieisteesteestes e s st essseesssesssesssessssessssesssessseesssessssesssesssessssessseesssasssaans 637
APl Gateway feAatUre SUPPOIt ... ettt e e e e sa e tesae st esseesa s e e e s s e saessansans 637
REQUEST FOIMIAL ..ttt e et s e e e e et e st e s te st e be e e s seeseesaesnenaensansans 638
Authentication and QUthOFIZAtioN ...ttt 641
Service INTegration PATLEINS ...ttt ee s re e s e e s sae e s s e s saaessnessnaens 642
OULPUL FOMMIAT ettt s te e s e e e e et et e st et e ste s b e s seeseesa e s enaesaansansensanes 643
ErrOr NANALING «ooeeeeeeeeee ettt et e st s se e e e e et e st e st e b e e seese e e e e e nnensanbansans 644
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 644
AMAZON ALNENG .ottt st ettt et st b e st e s b et e e s e b et e e s et e e nas 646
SUPPOTEEA APIS ..ttt et et ste st e st e st e e e e e et e ae st et e b e b e e se s e esaesaessastansassassaesasnsensansanes 647
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 647
AWS BatCh .ottt ettt st sttt st ettt e b e b et e st e e e e e s et et esesaa st enaenan 657
SUPPOTEEA APIS ..ttt ettt et e s te st et esse e e e et et et e s e s b e baese e e esaesaestassansansassassesnsensansanes 658
[AM POLICIES ..ottt tetete ettt et et e s te s e e te e e e e e e et e s be st e be st e e s e esaesa et estensessansassaeseansensansanes 658
AMAZON BEATOCK ..ttt sttt sttt st e st s s st et e st et e e s e sbe s saassassesaesansenssas 660
SErvice INTEGIAtiON APIS ...ttt st e s e e s sae e st e s sae s s e e s saaessnessaesssnasssasssaanns 660
Task State defiNitioN ...ttt sa e sa et sa e 662
[AM POLICIES ..ottt ettt e st e e st e et e e e e e e e et e s be st e s be st e s s eesaesae st estansensansassaesesnsensensanes 662
AWS COAEBUILL ...ttt ettt st et a et sae st et s b e st e s s e st et s e sa st esassessanseneens 670
SUPPOTEEA APIS ..ttt ettt e e te st e st e st e e e e e et et et et e s s e b e e seesaessesaessassansassassassasssensansanes 672
.. 672
[AM POLICIES ..ottt et e st te st e et e e e e e e e et e be st e bessesseesa e e e st estensestansassassesnsensensanes 673
AMAzZON DYNAMODB ...ttt ettt s e et e s sae s s e e s sae s st e s sae s saessaessaessesssaesssaesssassseesssesanes 685

XV

AWS Step Functions Developer Guide

SUPPOTEEA APIS ..ttt et e te e st e st e st e e e et et et e s e st e sassessaessesaestastansansassassaassensansanes 686
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 686
AMAZON ECS/FArQAte ...cvioiecieeeeeeeeeeetetectetecte e e et e et estestesteste s e s e s e e s e s et et et estessassassasssansansansansansans 688
SUPPOTEEA APIS ..ttt et et te st e st e s e e e e e et et et e s e s s e b e e se s e essesaastassansassassassasnsensansanes 688
Passing Data to an AmMAzon ECS TaSK ...ttt ste e eesaesaennens 689
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 691
AMAZON EKS .ttt ettt sttt et s b e sttt b e et ae s bt eene e ae s b e ne s 694
Kubernetes APl iNtEGratioNs ...ttt ettt ste e e e st e saesaesae s e s e e e ennens 695
Optimized AMAzon EKS APIS ... ettt e e e e e s ste st e saesae st e e s e s e e ae st e aesaanes 701
PEITNISSIONS ..ttt ettt et et s s st et e b st e et ssse st e st e aeesbe st essesasasntesesnsanns 706
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 708
AMAZON EMR ettt ettt ettt a e s e e st e ae e 711
SUPPOTEEA APIS ..ttt ettt e st ste st e s te s te e e e et et et et e st e s e e sessaesaesaassessansansassassaassensansanes 712
EXQIMIPLES ettt ettt s te e e e e et et e st et et et e s e e aeeae et et e ta b e saeseeseeaaensententetantans 720
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 723
AMAzoN EMR 0N EKS ..ottt sttt ettt st st st s b st e s e s b st ne s sae st ssneenenne 729
AMAZON EMR SEIVETLESS ..ottt ettt ettt st st e se st e e ssa st et s e s sa st e e ssesaesassassessensens 732
SErvice INTEGrAtION APIS ...ttt st s s e e s sae e st e s sae s s e e s saeessnessaasssnassasssnanns 733
INTEGIAtION USE CASES ..ooceeiiiiieieeteeteeeteete et s st s te e st e s saesssaessaessseessaesssaessseessaasssasssaesssessseesssesnses 738
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 741
AMAZON EVENTBIIAGE ..ottt st e st e st e st e st esae s e e s e s s e e e e e e e s e stessassessessnesaennans 758
SUPPOTEEA APIS ..ttt et et e s te st e st et e e et et e st et e aesbaesessaesaesaassassansansassaesasssensansanes 760
ErrOr RANALING oottt te st ea et e st e sbe st e s se e e e se e e e naeaeaansaneans 760
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 761
AWS GLUE ettt ettt st ettt et sttt e et e st e e s b et e e e e s b et s st e s et esaesassestesessensenassansansenssansanens 762
SUPPOTEEA APIS ..ttt ettt et e s te st et esse e e e et et et e s e s b e baese e e esaesaestassansansassassesnsensansanes 762
[AM POLICIES ..ottt tetete ettt et et e s te s e e te e e e e e e et e s be st e be st e e s e esaesa et estensessansassaeseansensansanes 763
AWS GLUE DALABIEWeevieirieieteirientet sttt sestet e e ste st e sse st et s e ste st s e ssastesassassestesassessessssansensesassessenens 764
SUPPOTEEA APIS ..ttt et e e te st e st e s e e e e e e et et et e s b e beese s e esaessestassassassassassasssensansanes 765
[AM POLICIES ..ottt ettt e st e e st e et e e e e e e e et e s be st e s be st e s s eesaesae st estansensansassaesesnsensensanes 765
AWS LamMDAQ ..ottt ettt sttt st e st s b st e s s et et e e sae st et e s e s et e e sse s e e enesenaesantan 766
SUPPOTEEA APIS ..ttt ettt e e te st e st e st e e e e e et et et et e s s e b e e seesaessesaessassansassassassasssensansanes 766
EXQIMIPLES ettt ettt s te e e e e et et e st et et et e s e e aeeae et et e ta b e saeseeseeaaensententetantans 766
[AM POLICIES ..ottt et e st te st e et e e e e e e e et e be st e bessesseesa e e e st estensestansassassesnsensensanes 769
AWS Elemental MeAIiQCONVEIt ...ttt siest e sseste st s e aeste e s e stesas e ssessesassessessssansans 770
SUPPOTEEA APIS ..ttt ettt e e te st e st e st e e e e e et et et et e s s e b e e seesaessesaessassansassassassasssensansanes 772

XVi

AWS Step Functions Developer Guide

[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 773
AMAZON SAGEMAAKEL Al ...ttt et ettt et e st e st e st e s e e e e s e e s e s et e ae st essassessessasnnenaennans 776
SUPPOTEEA APIS ..ttt et et te st e st e s e e e e e et et et e s e s s e b e e se s e essesaastassansassassassasnsensansanes 776
Transform JOD EXQMIPLE ...ttt ettt e et e e st et sbe s e s e e e e et e a et e s 777
Training JOD EXAMIPLE ..ottt ettt e st e s ae e e e s e e e s e st e st e stessassassa e s enaannens 778
Labeling JOD EXQMIPLE ...ttt ettt steste st s e et e e e b e s te b e s e seesnenaan 780
Processing JOD EXQMIPLE ...ttt e st st et esae st e s e s e e e e e e a et e aanaansans 782
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 783
AMAZON SNS L.ttt ettt st e b st et ae st st a et s b st e at e b e et e st s nesaens 793
SUPPOTEEA APIS ..ttt ettt e st ste st e s te s te e e e et et et et e st e s e e sessaesaesaassessansansassassaassensansanes 795
[AM POLICIES ..ottt ettt et et e e s e e te e e e e e s et e s be st e basseeseesaesae st et ensensansassaesesnsensensanes 795
AMNQZON SQS ..ottt e e rtreeeeessare e e s saee e e e ssaseeessssaseesssaaeeess st s eeee s aseeeessareeeessaeeeeansanaesns 796
SUPPOTEEA APIS ..ttt ettt e st ste st e s te s te e e e et et et et e st e s e e sessaesaesaassessansansassassaassensansanes 798
[AM POLICIES ..ottt ettt e te st e e se e e e e e e et e b e st e bassesseesaesae st estansensansassaesesnsensensanes 798
AWS SEEP FUNCLIONS ..ttt ettt st et s s e e s ae s s e e s e e s sa e s saessaaessaesssaesssesssaasssasssaenssassneens 799
SUPPOTEEA APIS ..ttt et e e te st e st este s e e e et et e st e s e st e b e e se e e esaesaessastansansassassasnsensansanes 800
EXQIMIPLES ..ottt e e e et et e st et e st e s b e e seeseese e e et e tentesbesbesaeeseeneentensantentensanes 800
[AM POLICIES ..ottt ettt st e st e e s e et e e e e e e et e b et e bassasseesaesa et et ansentansassaesesnsansensanes 802
Securing state MACKINESccciiiiiiiiieeeiiiiiiiiiiiiiteeeasseeiiiieeeeetetesssnns 806
DAt PrOTECLION ...ttt sre st e e e s s e e s sae e s e e s aeessaessaaessnasssaesssasssaesssassseann 806
Data at reSt @NCIYPLION ...ttt s st e s e e s sre e s e e s saesssaesssaessnessanassnasane 808
Data in tranSit @NCIYPLION ..ottt sae e s e e s sae s sa e s sae e s e e s saesssaesnnas 828
Identity and Access ManNAgEIMENTccecieieeeieieieteteste e e e e et rae e e st e stesaeste s e e s e e e s e s e aessansessanes 828
AUAIENCE ..ttt sttt et s b et st s b et et s b et e e s s et et s sa b et e st ssa s e st esessansesessansensenanns 828
Authenticating With identities ...ttt nnens 829
Managing access USING POLICIES ...coiceeieiiecieeecececeeeete et ste et te e e e e e e e s e e e stestessessesse e e esnennennan 832
ACCESS CONTIOL 1ottt este sttt sttt e s te st e e e st et s se s e s s e ssassesaesassestesasansessssensensenanes 835
How AWS Step Functions works With [AM ...t 835
Identity-based pPOLliCYy XAMPLES ..ottt ae e e e e et aesaenaans 842
AWS MANAGEA POLICIES ..veeveeeeeieteieteeteceeee ettt et et esae s e e e e e s e e e st e stesaessesseese e e essesaensesansansansas 845
Creating a state MAChiNg TAM FOLE ...ttt st a e e aes 847
Creating granular permissions for NON-admMin USErSccccoeeieieiecieceecececee e 849
Accessing CrosS-aCCOUNT AWS FESOUICESeeevueieierrreeniteriteistessseesstessseesssessssesssesssessssessssesssesssassns 852
Create VPC @NAPOINTS ..ottt ettt et e st e s se e e e e e et et e tesaessassessesnnenaannans 857
IAM Policies for iNtegrated SEIVICES ... iieciecieeeeeeeeeeee ettt stesaesae s se e e ennens 860
Activities or NO task WOIKFLOWSc.ooueruiirinieiiiecreccteet ettt sae e e 862

XVii

AWS Step Functions Developer Guide

IAM policies for Distributed Mapsccceeeeereeereceeeeeete ettt stesaesae e s e sn e e nes 863
Creating tag-based POLICIES ...ttt e e e sa e st besaasrens 868
Troubleshooting identity and QCCESS ...t a e es 869
ComPLANCE VAliIAAtiON ..ottt st a et st esae s aesbesbe e e e e e aeaeaantans 871
RESILIEICE .ottt sttt ettt s a et s s be st et s s et et e e b et esasse b e st esasaanteseesenseneans 872
INFraStrUCTUIE SECUNILY cuviieeeeeeececee ettt ettt te st e st e e e e se e et e st e b e sta s s e s se e e e e eaensesaansans 872
Logging and MONIEOIING ...cccciiiiiieieeneiiiiiiiiiiiiiieeeeessssssissseccesse 874
Metrics iN CLOUAWALCR ..ottt sttt et ettt e e s s s e sa e snans 874
CLOUAWATCN MELIICS vttt ettt ettt s e st st et e ssa st e e esansan 875
Viewing metrics in CLOUAWATCH ...ttt n e et eens 885
Setting alarms iN CLOUAWATCH ...ttt aan 886
AULOMALE EVENT AELIVEIY ..ttt st e e et sa et e s b e s sesse e e e e ennanaanes 887
STEP FUNCLIONS VENTS ...ttt ettt estessve e st e s sae s sae s sae e st e s aeesaesssaessnassseasssasssaesnnes 888
Delivering Step FUNCLIONS BVENTS ...ttt tesae e ae e ae s 888
Triggering Step Functions state Machings ... 889
EVENTS il FEFEIENCE ..ttt sttt sb e st e s s e e e 890
API Calls iN CLOUATIAIL c.cuiieiiirieietrerestetr ettt ettt sae st et b e s e st e e s e s e s e e saassenaenens 895
Data events in CLOUATIAIL ..ottt ettt et esse e e ssesae e s e sae s e e ssans 897
Management events in CLoUdTrail ...ttt aeaas 898
EVENT EXAIMPLES ..ottt e et ra et et e st e s ae s e s e e e e e e et et e b e be st assaeseesaenaansensansanes 900
Logging in CLOUAWAtCR LOGS ...occuiiieieeieeeceetete ettt stestesse s e e s e e e s e saesba st assessaesaenaennennan 902
CONFIGUIE LOGGING ettt re e e e et et e s te st e s be e e e e e e s et et esaessassassnesesnsensansanes 902
CloudWatch LOgs PAYLOAASceeveeeeeeeeeeeteteeeee ettt steste e s e e ree s et e s e ssesae s e e e s snenenaneans 903
IAM Policies for logging to CloudWatch LOGSccuoieieeeeereeeceeeetcteteteesve e 903
EVENT LOG LEVELS ..ttt ettt st e s te e e e a e et et e st e st e s besse e e e e esae s antansanaanes 905
Trace data iN X-RAY ..ottt e et e st et e st e st e b e s e e e s e e s et e te st ansassassassesssensansansansn 909
Setup and CONFIGUIALION ..o.eeeieeeeee ettt st e e e a et sae s nes 910
CONCEPLS ettt et e s st e st e s sae e st e e te e s e e s sae e s st e s ba e st essbeessaesssesssaesssessseesssessssesssessseesssessseensaens 914
SErVICE INTEGIALIONS ..ottt e s e e s sae e st e s st e s s e s aeessaesae s saesssaesssasssesnnes 915
Viewing the X-Ray CONSOLE ...ttt ettt e sve s e e e e e et e saesaesaessessesaennennens 916
Viewing X-Ray tracing information for Step FUNCLIONSccoooeiieirieeeeeeee e 916
THACES ettt ettt s e st b e et et b e st e st s b e et e Rt e b e st e st et e et e e st e sbe e st e st et eentesneens 917
SEIVICE MAP cetieiiiiieteecteete st et e sste s st e e ste e sseesste s s st sssse s st essaesssaesssassseesssasssessssessseesssesssesssaessseensaens 917
Segments and SUDSEGMENTSc.ooviieeeeeeeee ettt a e et e eaas 919
ANALYTICS oottt ettt e st e st e st e e e e e e e e et et et e b et e e seeseer e e s e et et e tententaesaeseennenaanes 920
CONFIGUIATION <.ttt et a e st et e s b e st e s be e e e e e e e s et et e aessasseesneseansensansanes 920

xviii

AWS Step Functions Developer Guide

What if there is no data in the trace map or service Map?eeececececececeseere e 921
Events using User NOTIfiCAtiONS ..ottt ste e e e nesae s naens 921
Testing and debUgQginNgiiiiiiiiiiiiineenniiiiiiiiiiiiieneesssmiiiieiieeetsss 922
TESt WILh TESE STALE .ottt sttt ettt e s e st saa b et e e s sasae e enas 922
Data flow simulator (UNSUPPOITEA) ..ottt ettt st ste s e e a e e e saa st e saannas 922
Step Functions Local (UNSUPPOITEA) ..ottt sttt aessessesan e e nnens 922
TESEING WIth TESTSTALE ..ottt sa et et e s ae b be e e e e e e e naanes 923
Considerations about using the TestState APl ... 923
Using inspection levels in TEStStAte APl ... ettt et ae e eaas 924
IAM permissions for uSing TeStSTate APl ...ttt aenens 931
Testing @ STate (CONSOLE) ..ottt a et st et e s esse e e e e e e aeaanes 932
Testing @ state USING AWS CLI ...ttt ettt ssee s e e st e s saessaesssesssnesssessssessasesssesssannns 933
Testing and debugging input and output data floOw ..., 939
Step Functions Local (UNSUPPOITEA) ...ttt e e et et saesse e s s e e nnens 943
Setting Up Step Functions Local and DOCKEN ...ttt 944
Setting Up Step Functions Local - Java VErsioNceeeeeeeececieeectece e e e e s saessensens 944
Configuring Step FUuNctions LOCal OPLioNSooveiiieciececececeeeeeete ettt nesnesaeneens 946
RUNNING Step FUNCLIONS LOCAL ...oovieeeeeeeeeeee ettt a ettt ae s a e aes 948
Tutorial: Testing using Step Functions and AWS SAM CLI Localccocveeveeecereeveeeceeeeceeceennen 950
Testing with mocked service iNtegrations ... saens 954
Versions aNd QliASeS ..ccccciiiiieiiiininss 972
VIBISIONS ...ttt ettt ettt et e et s b st et b e et e et s b st e e st e e b e e b e e st s sesabe e st e seesbesstasesasesntesesnsesseansess 973
Publishing a state machine version (CONSOLE)cuoueieoieceeeeeeeeeeeeee e 974
Managing VersionNs WIith APIS ...ttt re e a st et sae s s se e ns 974
Running a state machine version from the console ... 975
ALIGSES ...veeereteerietet ettt s te st et e st et e st et et s et et e st et e st s et e e e et e Rt e h et et s et et e R et et et e se e et eRaese e eneeaanee 976
Creating a state machine alias (CONSOLE) ..o 977
Managing aQliases With APIS ...ttt sttt et esaesse e e e e e s e e e saebansansans 977
Alias routing CONFIGUIAtION ..ottt sa et a e aeeaas 978
Running a state machine using an alias (CONSOLE)ccuvcveieeereeeeecececee e 979
Versions and alias aUthOFZation ...ttt sae e sa e e aes 979
SCOPING AOWN PEIMMISSIONSeiuiieieieiteiieetestesteeeeeeeetestessessessessessessaessessessessessessessessassessesssssessassans 980
Associating executions with @ version or alias ...t 981
Viewing executions started with a version or an aliascccceceeeeeeeeveeceeciececeseseeee e 982
DEPLOYMENT EXAMIPLE ..ottt et et e te st e s te s e e e e s e e et e aestassassessaesaensensensansansans 985
Gradual deployment Of VEISIONS ...ttt e ettt sre s e nenenes 988

Xix

AWS Step Functions Developer Guide

HanNALiNg @ITOKS auueeiiiiiiiiiiiiiiieeenniiiiieieiiineseeessssssssssssesesssnnes 998
EFFOI NAIMIES .ttt sttt a e s st eseb e sttt e et s st st e s st e e st e b e st e ssesasesntensaane 998
RELIYING @fLEI QN EITOK ..ttt st ae s e et e e e e s et et e st e aesaassessaesnennens 1001

RELrY field @XAMPLES ..ottt e st e e sae st e st e s s e s be e e e sn e aenennan 1003
FALlDACK STATES ..ottt sttt et sttt et sa e st b et e s esae e e ne 1005
EFTOT OUEPUL .ttt te et ae s re e s e s s a e e s ae s aa e s e e e aeassae s saesssassstasssesssaesssassseens 1007
Cause payloads and service iNtegrationsccceececicereneeeceeeee e aeaens 1007
State machine examples using Retry and using Catch ... 1008
Handling @ failure USING REIIY ...ttt ettt se e ae e eesaeaens 1008
Handling a failure USing CatCh ...ttt 1010
Handling @ timeout USING RELIY ...ttt ettt te e a et aees 1011
Handling a timeout USING CatCh ...ttt ae e 1012

TroubLeShOOTING ..ciiiiiiiieriiiiiiiiiiiiiiineeennniiiiiieeetttesasssssssssssssssssesssass 1013

GENETAL ISSUBS ..ttt ettt ettt s b e st e sae st e s s e be st e e sae st e e s b e s e st ssessastesaesessantesesassesersen 1013
I'm unable to create a state MAChINE. ...t 1013
I'm unable to use a JsonPath to reference the previous task’s output.ccccceeveeervrcvenennene 1013
There was a delay in state transitions. ... 1014
When | start new Standard Workflow executions, they fail with the
ExecutionLimitEXCEEAEA EITON. ..ottt ettt see st e sse st e ssesae e esens 1014
A failure on one branch in a parallel state causes the whole execution to fail. 1014

SErVICE INTEGIATIONSooeieiiieieeecetecterte ettt s sre e st e et e s aessse e s e e s saeesssesssaesssassnsssssessssesssasneanns 1014
My job is complete in the downstream service, but in Step Functions the task state
remains "In progress" or its completion is delayed.ccoeoeeieeeieciecineeee e, 1014
| want to return a JSON output from a nested state machine execution.cccccecveevenennene 1015
| can't invoke a Lambda function from another account.ccccoveeevirienenrinienennereneeene. 1015
I'm unable to see task tokens passed from .waitForTaskToken states.cccecereuenenee. 1016

ACTIVITIES ettt sttt et sttt et b s s s s e st s et et e b et e sessesnaesesntensensensansanse 1017
My state machine execution is stuck at an activity state.cccoceveeececenenneee 1017
My activity worker times out while waiting for a task token.cccocvvvecieveneneneneneceeene 1017

EXPreSS WOIKTLOWSeoiiiieieteeteeesee ettt s st st et e st e s e s s e s s et e e e b e saa st e saasseesesnnennanes 1018
My application times out before receiving a response from a StartSyncExecution API
CALL ettt sttt et et b et et e et et e s b et et e sese st e e eneaenaesans 1018
I'm unable to see the execution history in order to troubleshoot Express Workflow
FQULUTES. ettt ettt et e b e st e s e s et s ae s et e e s et e e esesbe e enasnanes 1018

BESt PracCtiCes ..cceeeciiiiirnnnnnnniiiiinieiiiinenessssesssssssssecessssssssssssssssssssesssass 1020
Optimizing with EXPress WOIKFLOWScccoiiiiiiiiiececeseseses st se et ste e re e s s aesaesae s e e 1020

XX

AWS Step Functions Developer Guide

NESE WOTKFLOWS ...ttt sttt ettt ss et e s e b e e s e saasaesaesans 1020
Convert to EXpress WOrKFLOW tYPe ...ttt nns 1021
TAGGING FESOUICESuveiveeereerieeeitereteesteestesssessseesssesssaesssessseesssessssesssessssesssessssesssesssessssessseesssesssessssesssees 1022
Tagging for CoSt ALLOCALIONceeiiieieececee ettt e tesae e e s e e e s enaneans 1023
TAGQING TOr SEOUILY ettt e e e e e e et et e st e s b e be e e s e e sn e s enaensansansans 1023
Managing tags in the Step FUNCLIONS CONSOLEuoeeeeieieeeeeecee e 1024
Managing tags with Step FUNCtions APl ACLIONS ..ot 1024
Using timeouts to avoid StUCK @XECULIONSc.ecuiiieieeeeeeeecece ettt saesreaens 1025
Using AmMazon S3 to Pass large data ...ttt sae e nnens 1026
Avoiding execution hiStOry QUOTAcceeieieeceeece ettt ettt s s e nennan 1028
Handling Lambda @XCEPLIONScveiieeieececeeeetctete ettt ettt saesae s te e e e s s a e aesaesae s 1029
Avoiding latency for activity task tasks ... e 1030
Log resource POLICY LIMILS ..ottt ettt e te e s e e a et a e ae st e sae s aenneaenns 1031
SEIVICE QUOLAS ..cceeeennnniiieeeeiiiinneeesssssssssssssesssane 1032
GENETAL QUOLAS ..ttt et et e st e st e st e s te e s e e e e s et et et e sestessaesaesaesaensantesansasansassaanes 1033
(@180 = I (=] 1 0=Te IR (o J= el o]0 [] K-S 1033
(O]8T0] = I £=] X T=Te I o T L I I 2 = 1 ST 1034
Quotas related to state throttling ...t 1035
Quotas related to APl action throttling ... 1036
QUOLA related tO TESESTATE AP ... ettt re e e s b e esreessessssessseenneens 1037
(@14 =T g o [[] - [OOSR 1037
Quotas related to state Maching EXECULIONScueieeiiiiicicececece et e e 1041
Quotas related to task EXECULIONS ..ot cabe e sre e e e eaaeenns 1043
Quotas related to versions @and QlIASESoceeieieiiiiiceceecece e e 1044
Restrictions related t0 tagQing ...ttt st a s 1044
Recent feature laUNCRESueeeeeeeeeenreennennnnnnnnnnninininiiiiiiiiiiiiieiieiieeieessssssssssssssssssssssssssssssssssssssse 1046
(DT oYal 1Ty 1 1= 31 a1 T o] o OO OPUTTN 1047

XXi

AWS Step Functions Developer Guide

What is Step Functions?

(® Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

With AWS Step Functions, you can create workflows, also called State machines, to build
distributed applications, automate processes, orchestrate microservices, and create data and
machine learning pipelines.

Step Functions is based on state machines and tasks. In Step Functions, state machines are called
workflows, which are a series of event-driven steps. Each step in a workflow is called a state. For
example, a Task state represents a unit of work that another AWS service performs, such as calling
another AWS service or API. Instances of running workflows performing tasks are called executions
in Step Functions.

The work in your state machine tasks can also be done using Activities which are workers that exist
outside of Step Functions.

AWS Step Functions Developer Guide

Choice state
” Choose your path...

/
l $.condition == "3P" |
v
HTTP Endpoint
| 2% call HTTPS APIs

l

Textract: AnalyzeDocument
Extract text

Lambda: Invoke
Retrieve data

'

Glue: StartJobRun
Start data processing

In the Step Functions' console, you can visualize, edit, and debug your application’s workflow. You
can examine the state of each step in your workflow to make sure that your application runs in
order and as expected.

Depending on your use case, you can have Step Functions call AWS services, such as Lambda, to
perform tasks. You can have Step Functions control AWS services, such as AWS Glue, to create
extract, transform, and load workflows. You also can create long-running, automated workflows
for applications that require human interaction.

For a complete list of AWS Regions where Step Functions is available, see the AWS Region Table.

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Step Functions Developer Guide

(@ Learn how to use Step Functions

Start with the Getting started tutorial in this guide. For advanced topics and use cases, see
the modules in The Step Functions Workshop.

Standard and Express workflows types

Step Functions has two workflow types:

« Standard workflows are ideal for long-running, auditable workflows, as they show execution
history and visual debugging.

Standard workflows have exactly-once workflow execution and can run for up to one year. This
means that each step in a Standard workflow will execute exactly once.

» Express workflows are ideal for high-event-rate workloads, such as streaming data processing
and loT data ingestion.

Express workflows have at-least-once workflow execution and can run for up to five minutes.
This means that one or more steps in an Express Workflow can potentially run more than once,
while each step in the workflow executes at least once.

Standard workflows Express workflows

2,000 per second execution 100,000 per second execution rate
rate

4,000 per second state Nearly unlimited state transition rate

transition rate

Priced by state transition Priced by number and duration of executions
Show execution history and Show execution history and visual debugging based on log
visual debugging level

See execution history in Step Send execution history to CloudWatch
Functions

Standard and Express workflows types 3

https://catalog.workshops.aws/stepfunctions
https://aws.amazon.com/cloudwatch/

AWS Step Functions Developer Guide

Standard workflows Express workflows

Support integrations with all Support integrations with all services.
services.

Support optimized integrati
ons with some services.

Support Request Response Support Request Response pattern for all services
pattern for all services

Support Run a Job and/or
Wait for Callback patterns

in specific services (see
following section for details)

For more information on Step Functions pricing and choosing workflow type, see the following:

o AWS Step Functions pricing

» Choosing workflow type in Step Functions

Integrating with other services

Step Functions integrates with multiple AWS services. To call other AWS services, you can use two
integration types:

« AWS SDK integrations provide a way to call any AWS service directly from your state machine,
giving you access to thousands of API actions.

« Optimized integrations provide custom options for using those services in your state machines.

To combine Step Functions with other services, there are three service integration patterns:

» Request Response (default)

Call a service, and let Step Functions progress to the next state after it gets an HTTP response.

e Runajob (.sync)

Integrating with other services 4

https://aws.amazon.com/step-functions/pricing/

AWS Step Functions

Developer Guide

Call a service, and have Step Functions wait for a job to complete.

» Wait for a callback with a task token (.waitForTaskToken)

Call a service with a task token, and have Step Functions wait until the task token returns with a

callback.

Standard Workflows and Express Workflows support the same integrations but not the same

integration patterns.

« Standard Workflows support Request Response integrations. Certain services support Run a
Job (.sync), or Wait for Callback (.waitForTaskToken) , and both in some cases. See the following

optimized integrations table for details.

» Express Workflows only support Request Response integrations.

To help decide between the two types, see Choosing workflow type in Step Functions.

AWS SDK integrations in Step Functions

Integrated service Request Response
Over two hundred Standard & Express
services

Optimized integrations in Step Functions

Integrated service Request Response

Amazon AP| Gateway Standard & Express

Amazon Athena Standard & Express
AWS Batch Standard & Express
Amazon Bedrock Standard & Express

Run a Job - .sync

Not supported

Run a Job - .sync

Not supported
Standard
Standard

Standard

Wait for Callback -
.waitForTaskToken

Standard

Wait for Callback -
.waitForTaskToken

Standard
Not supported
Not supported

Standard

Integrating with other services

AWS Step Functions

Developer Guide

Integrated service

AWS CodeBuild

Amazon DynamoDB

Amazon ECS/Fargate

Amazon EKS
Amazon EMR

Amazon EMR on EKS

Amazon EMR
Serverless

Amazon EventBridge

AWS Glue

AWS Glue DataBrew

AWS Lambda

AWS Elemental
MediaConvert

Amazon SageMaker
Al

Amazon SNS
Amazon SQS

AWS Step Functions

Request Response

Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express
Standard & Express

Standard & Express

Standard & Express
Standard & Express
Standard & Express
Standard & Express

Standard & Express

Standard & Express

Standard & Express
Standard & Express

Standard & Express

Run a Job - .sync

Standard
Not supported
Standard
Standard
Standard
Standard

Standard

Not supported
Standard
Standard
Not supported

Standard

Standard

Not supported
Not supported

Standard

Wait for Callback -
.waitForTaskToken

Not supported
Not supported
Standard
Standard
Not supported
Not supported

Not supported

Standard
Not supported
Not supported
Standard

Not supported

Not supported

Standard
Standard

Standard

Integrating with other services

AWS Step Functions Developer Guide

Example use cases for workflows

Step Functions manages your application's components and logic, so you can write less code and
focus on building and updating your application quickly. The following image shows six use cases
for Step Functions workflows.

Example use cases for workflows 7

AWS Step Functions Developer Guide

1 Orchestrate tasks 2 Choosetasks 3 Retry tasks
o " based on data o

v\
C D

4 Add a human in the loop 5 Process data in parallel
° _ Data
e —fg—F | 1] |
T | |
P1 P2 P3 Pn |

Data[0] —» M1 —» M2 —» Mn
D/v [o] i

¢ [Results]

—> Data[1] —» M1 —»> M2 —» Mn

a i
~ Data[n] —» M1 —» M2 — Mn

Example use cases for workflows 8

AWS Step Functions Developer Guide

1. Orchestrate tasks — You can create workflows that orchestrate a series of tasks, or steps, in
a specific order. For example, Task A might be a Lambda function which provides inputs for
another Lambda function in Task B. The last step in your workflow provides the final result.

2. Choose tasks based on data - Using a Choice state, you can have Step Functions make
decisions based on the state’s input. For example, imagine that a customer requests a credit limit
increase. If the request is more than your customer’s pre-approved credit limit, you can have
Step Functions send your customer's request to a manager for sign-off. If the request is less than
your customer's pre-approved credit limit, you can have Step Functions approve the request
automatically.

3. Error handling (Retry / Catch) - You can retry failed tasks, or catch failed tasks and
automatically run alternative steps.

For example, after a customer requests a username, perhaps the first call to your validation
service fails, so your workflow may retry the request. When the second request is successful, the
workflow can proceed.

Or, perhaps the customer requested a username that is invalid or unavailable, a Catch
statement could lead to a Step Functions workflow step that suggests an alternative username.

For examples of Retry and Catch, see Handling errors in Step Functions workflows.

4. Human in the loop - Step Functions can include human approval steps in the workflow. For
example, imagine a banking customer attempts to send funds to a friend. With a callback and

a task token, you can have Step Functions wait until the customers friend confirms the transfer,
and then Step Functions will continue the workflow to notify the banking customer that the
transfer has completed.

For an example, see Create a callback pattern example with Amazon SQS, Amazon SNS, and
Lambda.

5. Process data in parallel steps — Using a Parallel state, Step Functions can process input
data in parallel steps. For example, a customer might need to convert a video file into several
display resolutions, so viewers can watch the video on multiple devices. Your workflow could
send the original video file to several Lambda functions or use the optimized AWS Elemental
MediaConvert integration to process a video into multiple display resolutions at the same time.

6. Dynamically process data elements — Using a Map state, Step Functions can run a set of
workflow steps on each item in a dataset. The iterations run in parallel, which makes it possible
to process a dataset quickly. For example, when your customer orders thirty items, your system
needs to apply the same workflow to prepare each item for delivery. After all items have been

Example use cases for workflows 9

AWS Step Functions Developer Guide

gathered and packaged for delivery, the next step might be to quickly send your customer a
confirmation email with tracking information.

For an example starter template, see Process data with a Map.

Example use cases for workflows 10

AWS Step Functions Developer Guide

Discover use cases for Step Functions workflows

With AWS Step Functions, you can build workflows that manage state over time, make decisions
based on incoming data, and handle errors and exceptions.

Use case categories

« Data processing

« Machine learning

« Microservice orchestration

 IT and security automation

Data processing

As the volume of data grows from diverse sources, organizations need to process their data faster
so they can quickly make well-informed business decisions. To process data at scale, organizations
need to elastically provision resources to manage the information they receive from mobile
devices, applications, satellites, marketing and sales, operational data stores, infrastructure, and
more.

With horizontal scaling and fault-tolerant workflows, Step Functions can operate millions of
concurrent executions. You can process your data faster using parallel executions with Parallel
workflow state state. Or, you can use the dynamic parallelism of the Map workflow state
state to iterate over large data sets in a data stores, such as Amazon S3 buckets. Step Functions
also provide the capability to retry failed executions, or choose a specific path to handle errors
without managing complex error handling processes.

Step Functions directly integrates with other data processing services provided by AWS such
as AWS Batch for batch processing, Amazon EMR for big data processing, AWS Glue for data
preparation, Athena for data analysis, and AWS Lambda for compute.

Examples of the types of data processing workflows that customers use Step Functions to
accomplish include:

File, video, and image processing

» Take a collection of video files and convert them to other sizes or resolutions that are ideal for
the device they will be displayed on, such as mobile phones, laptops, or a television.

Data processing 11

AWS Step Functions Developer Guide

« Take a large collection of photos uploaded by users and convert them into thumbnails or various
resolution images that can then be displayed on users' websites.

» Take semi-structured data, such as a CSV file, and combine it with unstructured data, such as an
invoice, to produce a business report that is sent to business stakeholders monthly.

» Take earth observing data collected from satellites, convert it into formats that align with each
other and then add other data sources collected on earth for additional insight.

» Take the transportation logs from various modes of transportation for products and look for
optimizations using Monte Carlo Simulations and then send reports back to the organizations
and people that are relying on you to ship their goods.

Coordinate extract, transform and load (ETL) jobs:

« Combine sales opportunity records with marketing metric datasets through a series of data
preparation steps using AWS Glue, and produce business intelligence reports that can be used
across the organization.

» Create, start, and terminate an Amazon EMR cluster for big data processing.

Batch processing and High Performance Computing (HPC) workloads:

 Build a genomics secondary analysis pipeline that processes raw whole genome sequences
into variant calls. Align raw files to a reference sequence, and call variants on a specified list of
chromosomes using dynamic parallelism.

 Find efficiencies in the production of your next mobile device or other electronics by simulating
various layouts using different electric and chemical compounds. Run large batch processing of
your workloads through various simulations to get the optimal design.

Machine learning

Machine learning provides a way for organizations to quickly analyze collected data to identify
patterns and make decisions with minimal human intervention. Machine learning starts with an
initial set of data, known as training data. Training data increases a machine learning model's
prediction accuracy and acts as the foundation through which the model learns. After the trained
model is considered accurate enough to meet business needs, you can deploy the model into
production. The AWS Step Functions Data Science Project on Github is an open-source library

Machine learning 12

https://github.com/aws/aws-step-functions-data-science-sdk-python

AWS Step Functions Developer Guide

that provides workflows to preprocess data, train, and then publish your models using Amazon
SageMaker Al and Step Functions.

Preprocessing existing data sets is how an organization often creates training data. This
preprocessing method adds information, such as by labeling objects in an image, annotating text
or processing audio. To preprocess data you can use AWS Glue, or you can create an SageMaker Al
notebook instance that runs in a Jupyter Notebook. After your data is ready, it can be uploaded to
Amazon S3 for access. As machine learning models are trained, you can make adjustments to each
model's parameters to improve accuracy.

Step Functions provides a way to orchestrate end-to-end machine learning workflows on
SageMaker Al. These workflows can include data preprocessing, post-processing, feature
engineering, data validation, and model evaluation. After the model has been deployed to
production, you can refine and test new approaches to continually improve business outcomes. You
can create production-ready workflows directly in Python, or you can use the Step Functions Data
Science SDK to copy that workflow, experiment with new options, and place the refined workflow
in production.

Some types of machine learning workflows that customers use Step Functions for include:
Fraud Detection

« Identify and prevent fraudulent transactions, such as credit fraud, from occurring.
» Detect and prevent account takeovers using trained machine learning models.

« Identify promotional abuse, including the creation of fake accounts, so you can quickly take
action.

Personalization and Recommendations

« Recommend products to targeted customers based upon what is predicted to attract their
interest.

» Predict whether a customer will upgrade their account from a free tier to a paid subscription.

Data Enrichment

» Use data enrichment as part of preprocessing to provide better training data for more accurate
machine learning models.

« Annotate text and audio excerpts to add syntactical information, such as sarcasm and slang.

Machine learning 13

AWS Step Functions Developer Guide

» Label additional objects in images to provide critical information for the model to learn from,
such as whether an object is an apple, a basketball, a rock, or an animal.

Microservice orchestration

Step Functions gives you options to manage your microservice workflows.

Microservice architecture breaks applications into loosely coupled services. Benefits include
improved scalability, increased resiliency, and faster time to market. Each microservice is
independent, making it easy to scale up a single service or function without needing to scale the
entire application. Individual services are loosely coupled, so that independent teams can focus on
a single business process, without needing to understand the entire application.

Microservices also provide individual components that suit your business needs, giving you
flexibility without rewriting your entire workflow. Different teams can use the programming
languages and frameworks of their choice to work with their microservice.

For long-running workflows you can use Standard Workflows with AWS Fargate integration to
orchestrate applications running in containers. For short-duration, high-volume workflows that
need an immediate response, Synchronous Express Workflows are ideal. One example are web-
based or mobile applications, which require the completion of a series of steps before they return
a response. You can directly trigger a Synchronous Express Workflows from Amazon APl Gateway,
and the connection is held open until the workflow completes or timeouts. For short duration
workflows that do not require an immediate response, Step Functions provides Asynchronous
Express Workflows.

Examples of some API orchestrations that use Step Functions include:

Synchronous or real-time workflows
« Change a value in a record; such as updating an employee’s last name and making the change
immediately visible.

» Update an order during checkout, for example, adding, removing, or changing the quantity of an
item; then immediately showing the updated cart to your customer.

« Run a quick processing job and immediately return the result back to the requester.

Container Orchestration

Microservice orchestration 14

AWS Step Functions Developer Guide

e Run jobs on Kubernetes with Amazon Elastic Kubernetes Service or on Amazon Elastic Container
Service (ECS) with Fargate and integrate with other AWS services, such as sending notifications
with Amazon SNS, as part of the same workflow.

IT and security automation

With Step Functions, you can create workflows that automatically scale and react to errors in your
workflow. Your workflows can automatically retry failed tasks and use an exponential backoff to
handle errors.

Error handling is essential in IT automation scenarios to manage complex and time-consuming
operations, such as upgrading and patching software, deploying security updates to address
vulnerabilities, selecting infrastructure, synchronizing data, and routing support tickets. By
automating repetitive and time-consuming tasks, your organization can complete routine
operations quickly and consistently at scale. Your focus can shift to strategic efforts such as feature
development, complex support requests, and innovation while meeting your operational demands.

When human intervention is required for the workflow to proceed, for example approving a
substantial credit increase, you can define branching logic in Step Functions, so that requests under
a limit are automatically approved, and requests of the limit require human approval. When human
approval is required, Step Functions can pause the workflow, wait for a human response, then
continue the workflow after a response is received.

Some examples automation workflows include the following:
IT automation

« Auto-remediate incidents such as open SSH ports, low disk space, or public access granted to an
Amazon S3 bucket.

« Automate the deployment of AWS CloudFormation StackSets.

Security automation

« Automate the response to a scenario where a user and user access key has been exposed.

« Auto-remediate security incident responses according to policy actions, such as restricting action
to specific ARNs.

« Warn employees of phishing emails within seconds of receiving them.

IT and security automation 15

AWS Step Functions Developer Guide

Human Approval

« Automate machine learning model training, then get approval of the model by a data scientist
before deploying the updated model.

« Automate customer feedback routing based on sentiment analysis so negative comments are
quickly escalated for review.

IT and security automation 16

AWS Step Functions Developer Guide

Learn how to get started with Step Functions

With the Step Functions service, you can orchestrate complex application workflows. To get
started, you'll use Workflow Studio to create and run a built-in Hello World workflow. You'll review
the auto-generated Amazon States Language (ASL) definition in code. Finally, you'll drag-and-drop

a service integration to do sentiment analysis.

After you complete this tutorial, you'll know how to use Workflow Studio to create, configure, run,
and update a workflow using both the Design and Code modes.

Estimated duration: 20-30 minutes

What you will build

Your first state machine will start with flow states. Flow states are used to direct and control your
workflow. After you learn how to run the workflow, you will add an Action to integrate the Amazon
Comprehend service with a Task state.

The following diagram shows a visual of the complete state machine that you will build. When you
first create the Hello World state machine, it will not need additional resources to run. The Step
Functions console will create all the states and an IAM role in a single click. Later, when you add the
service integration, you will need to create a role with a custom permission policy.

What you will build 17

AWS Step Functions

Developer Guide

Start |

Pass state

‘ Ci:) Set

Variables and State Output

i] IQ‘ Choice state

Is Hello World Example?

Default

| {% $states.input.IsHelloworldExample %... |

Wait state
H Wait for X Seconds

y

Parallel state
H | | Execute in Parallel

==

Pass state

Pass state
H %,3 Snapshot Execution Elapsed Time

Format Execution Start Date

l })

A 4

=

Comprehend: DetectSentiment
DetectSentiment

@)
b4
K
| Pass state
H ? Set Checkpoint

A 4

\n

Succeed state
Success

Succeed state
|| @ Summarize the Execution

What you will build

18

AWS Step Functions

Developer Guide

Step 1 - Create your state machine

In Step Functions, workflows are called state machines. We'll use both terms interchangeably. Your
workflows will contain states that either take action or control the flow of your state machines.

1. Go to the Step Functions console.

2. Inthe Step Functions console, choose "Step Functions" from the upper left navigation, or the

breadcrumbs, then choose Get started:

Step Functions <

Application integration.
State machines

> :et:eitli::)er resources ’:‘-v’vs Step FunCtions
Assemble functions into
sin our feedback panel 3 business-critical applications

AWS Step Functions is a visual workflow service that helps developers use AWS
services to build distributed applications, automate processes, orchestrate
microservices, and create data and machine learning (ML) pipelines.

3. From the options, choose Run Hello World:

Create your state machine

Get started

Run a Hello World workflow in just a few clicks.

Get started

Run Hello World Choose a template
(e) (e)
k | .]
() - -
o— O—
- é o) P
0O —
: — &
Create, run, and inspect Choose a workflow
a Hello World workflow template that matches
in 3 minutes. your use case.
Run Hello World (Choose a template)

Create your own

(oo)
d |

O—

N
7~
—%_J

Create your own
workflow from scratch.

(Create your own)

Step 1 - Create your state machine

19

AWS Step Functions

Developer Guide

® Tip
We recommend stepping through the short in-console walk through to become familiar
with the UI.

Overview of Workflow Studio

With Workflow Studio for Step Functions, you can visually drag-and-drop states onto a canvas to

build workflows.

You can add and edit states, configure steps, transform results, and set up error handling. The
following screenshot shows four important areas of the interface that you will use to build your

state machines.

= ® | 6

MyStateMachine-Visual-Design Modes eit ((actions v) (Erecute 1) save |8

€ Undo Redo @ Zoomin @ Zoom out © Center [J Feedback
Workflow D Definition

Start

The top level state machine properties for this
workflow.
MOST POPULAR
Set variables q
State machine query language

Invoke JSONata

Start at
Publish Wait for X seconds
Set variables
RunTask
Comment - optional
Is Hello World example? H

StartExecution
A Hello World example demonstrating various

state types of the Amazon States Language.
StartJobRun

No Yes TimeoutSeconds - optional
HTTPS APIS

Call HTTPS APIs
End

States browser Inspector panel

Canvas and workflow graph

Modes - Workflow Studio provides three modes of operation and defaults to the visual design
mode.

Overview of Workflow Studio

20

AWS Step Functions Developer Guide

» Design - a visual editing mode, where you can drag-and-drop states into your workflow.

» Code - a mode that focuses on the Amazon States Language code, also known as ASL code. You
can edit ASL code directly and see changes reflected in the visual design.

« Config - configuration options including the name and type of the state machine (Standard or
Express), assigned role when the workflow runs, logging, tracing, versioning, encryption, and
tags.

States browser contains the following three tabs:

« Actions - a list of AWS APIs that you can drag-and-drop into your workflow. Each action
represents a Task workflow state.

» Flow - flow states to control the order of steps in your workflow.

« Patterns - ready-to-use, reusable building blocks, such as iteratively processing data in an
Amazon S3 bucket.

Canvas and workflow graph is where you drag-and-drop states on to your workflow graph,
change the order of states, and select states to configure and test.

Inspector panel is where you view and edit the properties of any state selected on the canvas. You
can turn on the Definition toggle to show the code for the currently selected state.

Overview of the state machine

The Hello World workflow starts with a Pass state which passes its input to its output, without
performing work. Pass states can be used to generate static JSON output or transform JSON input
before passing the data to the next state. Pass states are useful when constructing and debugging
state machines.

The next state, a Choice state, uses the data in IsHelloWorldExample to choose the next branch
of the workflow. If the first rule matches, the workflow pauses in a Wait state, then runs two tasks
in a Parallel state, before moving on to a checkpoint and the successful end of the workflow. When
there is no match, the workflow defaults to the Fail state before stopping the state machine.

Wait states can be useful when you want to delay before performing more work. Perhaps your
workflow will wait 30 seconds after an order entry, so your customer has time to notice and fix an
incorrect shipping address.

Parallel states can run multiple processes on your data. Perhaps the workflow will print an order
ticket, update inventory, and increase a daily sales report simultaneously.

Overview of the state machine 21

AWS Step Functions

Developer Guide

MyFirstStateMachine 2

€ Undo Redo @ Zoomin

& Design

[Q Search

Actions Flow

MOST POPULAR

Patterns info

AWS Lambda
Invoke

E

Amazon SNS
Publish

@

I\ Amazon ECS
(, RunTask

AWS Step Functions
StartExecution

AWS Glue
StartJobRun

EEE

HTTPS APIS

HTTP Endpoint Updated

Call HTTPS APIs

| S0y

COMPUTE
Eﬂ Amazon Data Lifecycle Manager »

. Amazon EBS >

@, Zoom out

|

{} Code

© Center

0 Duplicate

€3 Config

{7 Delete

Start

|

T rasstate
1 Set Variables and State Output

l SQ Is Hello World Example?

Default

Fail state

@ Fail the Execution

\—;

]

Choice state

[Cassu

Y
\ Wait state

elloworidExample %.

Wait for X Seconds ‘

l

\ Parallel state

Execute in Parallel ‘

—)\ —
: Y .
I Pass state I
| SO Format Execution Start Date P
Y
’ |
Q G
— :

=

v
Pass state
Snapshot Execution Elapsed Time

)

S S
Pass state
Set Checkpoint

Succeed state
| @ Summarize the Execution

)

End

View the workflow code (ASL)

7 Feedback

Definition (read-only)
@ Definition -Test state >

G copy

“Is Hello World Example?": {

"Type": "Choice",

“Comment": "A Choice state adds
branching logic to a state machine.
IChoice rules use the Condition property
to evaluate expressions with custom
JSONata logic, allowing for flexible
branching.",

"Default": "Fail the Execution",

"Choices": [

{

"Next": "Wait for X Seconds",
"Condition": "{%
$states.input.IsHelloWorldExample %}
b2

1
},

“Fail the Execution": {

“Type": "Fail",

"Comment": "A Fail state stops the
execution of the state machine and marks
it as a failure, unless it is caught by
a Catch block.",

"Error": "Not a Hello World
Example"

"Wait for X Seconds": {

"Type": "Wait",

“Comment": "A Wait state delays
the state machine from continuing for a
specified time.",

“Seconds": "{%
$states. input.ExecutionWaitTimeInSeconds
s},

Your first state machine is in fact quite detailed, so explore further by reviewing the code.

State machines are defined using Amazon States Language (ASL), an open source specification that

describes a JSON-based language to describe state machines declaratively.

To view the entire state machine definition

1. Choose the {} Code button to view the ASL code.

2. View the code on the left and compare with the state machine graph on the right.

3. Select some states on the canvas to review. For example, pick the Choice state.

View the workflow code (ASL)

22

https://states-language.net/

AWS Step Functions Developer Guide

4 Undo Cc Redo 5= Format 0 Copy </> (@mmands [2 View docs @ Zoom in @ Zoom out ® Center [J Feedback
4 ng A Pass state passes its input to its output, without performiglfwork. Pass states are
5 ng useful when constructing and debugging state machines
6 "Set Variables and State Output": { 7 N
7 "Type": "Pass", ‘\ Start /;
8 "Comment": "A Pass state passes its input its output, without p ~—
9 "Next": "Is Hello World Example?", l
10 "Output: {
11 "IsHelloWorldExample": true, | Pass state
12 "ExecutionWaitTimeInSeconds": 3 . H ? Set Variables and State Output
13 3,
14 "Assign'": { l
15 ""CheckpointCount": @ —
16 } Choice state
7 5 ﬁ, Is Hello World Example?
18 "Is Hello World Example?": {
19 "Type": “Choice",
20 "Comment": "A Choice state adds branching logic to a state machine Demuu‘ {% $states.input.IsHelloWorldExample %...
21 "Default": "Fail the Execution",
22 "Choices": [Wait state
23 { .
24 “Next": "Wait for X Seconds", ‘ H Wait for X Seconds
25 "Condition": "{% $states.input.IsHelloWorldExample %}"
26 H i
;; } : H m Parallel state
29 “Fail the Execution": { Execute in Parallel
30 "Type": "Fail",

31 "Comment": "A Fail state stops the execution of the state machine ///\

Did you notice how the state's definition is highlighted in the code view?

To view code in the Inspector

1. Switch back to Design mode.
Expand the Inspector panel on the right.

Select the Choice state from the workflow graph on the Canvas.

P wWN

In the Inspector panel, choose the Definition toggle.

Try choosing other states. See how the ASL code for each state you select is scrolled into view and
highlighted?

(Actually) Create the state machine

/A Warning: name your state machine now!

You cannot rename a state machine after you create it. Choose a name before you save
your state machine.

(Actually) Create the state machine 23

AWS Step Functions Developer Guide

Until now, you've been working on a draft of your state machine. No resources have been created
yet.

To rename and create your state machine

1. Choose Config mode.
For state machine name, enter MyFirstStateMachine

For permissions, accept the default to Create a new role.

P WD

Choose the Create button to actually create your state machine.

You should see notifications that your state machine and a new IAM role have been created.

You will be automatically presented with the option to start the state machine. You'll do that in the
next step!

Start execution

Name

{ c49ac097-3a74-41e3-aa50-45da500975b4

Must be 1-80 characters. Can use alphanumeric characters, dashes, or underscores.

Input - optional
Enter input values for this execution in JSON format

(Format JSON) (Export) (Import)

1 {
"Comment": "Insert your JSON here"

}

(@ Start execution with latest revision

[C] Openin a new browser tab

Cancel Start execution

(Actually) Create the state machine 24

AWS Step Functions Developer Guide

@ Workflow creation achieved!

Step Functions created your workflow and IAM role. Now, you are ready to start your state
machine.

Step 2 - Start your state machine

After your state machine has been created, you can start your workflow running.

Workflows optionally take Input that can be used in the state, sent to integrated services, and
passed to the next state.

The Hello World state machine is self-contained and does not need input.

To start the state machine

1. Enter hello@01 for the name of the execution.
2. Leave the input field empty.

3. Choose the Start execution button.

Step 2 - Start your state machine 25

AWS Step Functions Developer Guide

Start execution X

Name

[hello001)

Must be 1-80 characters. Can use alphanumeric characters, dashes, or underscores.

Input - optional
Enter input values for this execution in JSON format

(Format JSON) (Export) (Import)

{

"Comment": "Insert your JSON here"

}

@ Start execution with latest revision

[C) Open in a new browser tab

Cancel Start execution

Review the execution details

Immediately after starting, you should see the first two states have succeeded.
After a short wait, the rest of the state transitions will run to complete the workflow.

Are you wondering how the Choice state (/s Hello World Example?) decided to branch to the Wait
for X Seconds state?

1. Hint: the first step in the state machine contains the data needed for the branch decision

2. Inthe Graph View, you can monitor progress during execution and explore details for each
state.

3. Select the first Pass state (named Set Variables and State Output), then review the Input/
Output tab.

You should see that State input is blank, but State output contains JSON that sets the value of
IsHelloWorldExample to true.

Review the execution details 26

AWS Step Functions

Developer Guide

Graph view

®OEE

Wait for X Seconds ©

| Execute in Parallel

[« \
| | Format Execution StartDate | | Snapshot Execution Elapsed Time
Set Checkpoint
| Fail the Execution Summarize the Execution
< ‘ o

N —
\‘! End
&

@ In progress @ Failed A Caught error @ Canceled @ Succeeded

Set Variables and State Output

Input/Output Variables

(P Advanced view

¥ State input Learn more [4
1 {+

v State output Learn more [4

1v |

2 "IsHelloWorldExample": true,

3 "ExecutionWaitTimeInSeconds":

4 }

Details

Test state

Definition Events

]

[u]
P

Switch from the Graph view to the Table view to see a list of states by name, type, and status.

Table view
[Q_ Filter by properties or search by ki] [Filter by a date and time range]
Name Type | Status Resource | Duration Timeline Started After

[o Set Variables ar Pass @ Succeeded - 0 1 00:00:00.022
(@) Is Hello World E Choice @ Succeeded - 0 "7 00:00:00.022
(@) Wait for X Secor Wait @© Succeeded - 00:00:30.059 Eee————— 00:00:00.022 H
O Execute in Pare Parallel @ Succeeded - 0 "1 00:00:30.081
O #0 ParallelBra... @ Succeeded - 0 "7 00:00:30.081
(@) #1 ParallelBra... @ Succeeded - 0 00:00:30.081
O Set Checkpoint ~ Pass @ Succeeded - 0 1 00:00:30.081
O Summarize the Succeed @ Succeeded - 0 1 00:00:30.081

® Tip

Set Variables and State Output

Input/Output Variables Details >

(P Advanced view
V¥ State input Learn more [%

1 {3 [u]
V¥ State output Learn more [4

1v 4 [u]

2 "IsHelloWorldExample": true, Formatted <Y

3 "ExecutionWaitTimeInSeconds": 30

4 ¥

Take note of the Duration and Timeline fields in the previous screenshot. At a glance, you
can see which states take more time than others.

There are two more views to explore on this Executions Details page: Event view and State view.

Review the execution details

27

AWS Step Functions

Developer Guide

The Event view is a detailed granular view of the flow from state to state.

Expand the first PassStateEntered and PassStateExited events in the Event View table to see
how the state takes no input, assigns a variable called CheckpointCount the value of zero, and

produces the output you saw previously.

Events (20)
[Q Filter by properties or search by keywo.] [Filter by a date and time range]
ID 'S Type Step Resource
> 1 © ExecutionStarted
v 2 @ PassStateEntered Set Variables and State Output
1v {
2 "input": {},
3v "inputDetails": {
4 "truncated": false
5 1
6 "name": "Set Variables and State Output"
7 }
v 3 (© PassStateExited Set Variables and State Output
1v |
2v "assignedVariables": {
3 "CheckpointCount": "@"
4 +
5v "assignedVariablesDetails": {
6 "truncated": false
7 +
8 "name": "Set Variables and State Output",
9v "output": {
10 "IsHelloWorldExample": true,
11 "ExecutionWaitTimeInSeconds": 30
12 +
13v "outputDetails": {
14 “truncated": false
15 }
16 }
> 4 @ ChoiceStateEntered Is Hello World Example?
» 5 (ChoiceStateExited Is Hello World Example?
» 6 @ WaitStateEntered Wait for X Seconds

Started After

0

00:00:00.022

00:00:00.022

00:00:00.022

00:00:00.022

00:00:00.022

Timestamp v

Nov 19, 2024, 22:29:06.417 (UTC-07:00)

Nov 19, 2024, 22:29:06.439 (UTC-07:00)

[u]
S—

Nov 19, 2024, 22:29:06.439 (UTC-07:00)

[u]
—pTH

Nov 19, 2024, 22:29:06.439 (UTC-07:00)

Nov 19, 2024, 22:29:06.439 (UTC-07:00)

Nov 19, 2024, 22:29:06.439 (UTC-07:00)

Lastly, you have the State view which is similar to the Table view. In the State view table, you can

selectively expand states to see just the Inputs and Outputs for each state:

Review the execution details

28

AWS Step Functions Developer Guide

Table view
[Q Filter by properties or search by keyword) [Filter by a date and time range]
Name | Type | Status | Resource I Duration Timeline | Started After
P Set Variables and State Output Pass @ Succeeded - 0 L 00:00:00.022
» s Hello World Example? Choice @© Succeeded - 0 L 00:00:00.022
» Wait for X Seconds Wait @ Succeeded - 00:00:30.0... I 00:00:00.022
» Format Execution Start Date Pass @ Succeeded - 0 1 00:00:30.081
¥ Snapshot Execution Elapsed Time Pass @ Succeeded - 0 1 00:00:30.081
State input
1v { 'ﬁ
2 "IsHelloWorldExample": true, e <>
3 "ExecutionWaitTimeInSeconds": 30
4 }

State output

v A B
2 "ElapsedTimeToSnapshot": 30.081 e o <I>
3 }

» Execute in Parallel Parallel @ Succeeded - 0 1 00:00:30.081

» Set Checkpoint Pass @ Succeeded - 0 1 00:00:30.081

» Summarize the Execution Succeed @© Succeeded - 0 1 00:00:30.081

(G Congratulations! You've run your first Step Functions state machine!

Using a Pass state to add static data into a workflow is a common pattern, especially for
troubleshooting.

In the next step, you'll update the workflow so you can dynamically set your state machine
input.

Step 3 - Process external input

Setting the value of IsHelloWorldExample to a constant value inside the workflow is not
realistic. You should expect your state machine to respond to varying input data.

In this step, we'll show you how external JSON data can be used as input to your workflow:

Step 3 - Process external input 29

AWS Step Functions Developer Guide

Processing

Remove the hard-coded input

First, replace the hard-coded value in the Output of the first Pass state.

1. Edit your Hello World state machine by selecting the Edit state machine button located at the
top right of the page.

2. Select the first Pass state after Start (named Set Variables and State Output), then select the
Output tab.

3. Replace the Output with following JSON:

{
"IsHelloWorldExample": "{% $states.input.hello_world %}",
"ExecutionWaitTimeInSeconds": "{% $states.input.wait %}"

}

4. Save the state machine.

The updated state output will pull input data from the reserved $states variable using a JSONata

expression. Those values will be passed to the next state as output to become the input for the
next state.

Run the updated workflow, with input data

Next, run the workflow and provide external input data as JSON.

Remove the hard-coded input 30

AWS Step Functions Developer Guide

1. Choose the Execute button to run the workflow.

2. For the Name, use the randomly generated ID.

3. Use the following JSON for the input field:
{
"wait" : 20,
"hello_world": true
}

4. Choose the Start execution button.

Your state machine execution should wait a lot longer (20 seconds), but eventually it should
succeed using the input you provided.

In the Graph view, review the Input/Output for the first Pass State. Notice how the input you
provided was converted into outputs. Also, take a look at the Execution input and output at
the top of the execution details page. Both locations show the input that you used to start the
execution.

® Tip

What do you expect if you run a new execution with hello_world set to false? Try it!

Review workflow executions

Now that you've run your workflow a few times, review the execution details to review runs of your
workflow.

To review execution details

1. Choose State machines from the navigation breadcrumbs or left-hand menu.

2. Choose your state machine.

In the Executions tab, you should see a list of executions, similar to the following screenshot:

Review workflow executions 31

AWS Step Functions Developer Guide

Executions Monitoring Logging Definition Aliases Versions Tags
Executions (0/4) @ View details Stop execution Redrive Start execution
[Q Filter executions by property or value] [Filter by status ¥] [Last 15 months J [Local timezone ¥] 4 matches 1 ol
O Name v [Status v | Start Time (local) v | End Time (local) v | Duration v | Version | Alias
O hellooo1 © Succeeded Dec 20, 2024, 12:51:01, Dec 20, 2024, 12:51:02 00:00:01.129
[0 7403a05a-abbf-41f4-bfd6-d28e638e772d @® Failed Dec 20, 2024, 12:47:22 Dec 20, 2024, 12:47:23 00:00:00.094
O 9538bd53-7fd1-4d18-af0e-b2c841569779 © Succeeded Dec 20, 2024, 12:44:05 Dec 20, 2024, 12:44:25 00:00:20.197
O a062f767-06e7-4409-8fe3-9c1a40e6b43c © Succeeded Dec 20, 2024, 11:45:50 Dec 20, 2024, 11:45:53 00:00:03.191

One final note: workflow execution names must be unique and cannot be reused. Although we
suggested a short name (hello@01) in this tutorial, we recommend using a naming convention
that will always be unique for your production workloads.

® Tip
Congratulations! You've modified your workflow to process external input that can vary
every time you run your workflow.

Step 4 - Integrate a service

Step Functions state machines can call over 220 AWS services using AWS SDK integrations. AWS

services provide over 10,000 potential API actions for your state machines.

In this step, you will integrate an Amazon Comprehend task for sentiment analysis to process your
state machine input.

Service integrations use one of three service integration patterns:

1. Request a Response (default) - wait for HTTP response, then immediately proceed to the next
state.

2. Run aJob (.sync) - wait for a job to complete before moving to the next step.

3. Wait for Callback (.waitForTaskToken) - pause a workflow until a task token is returned by an
external process.

Step 4 - Integrate a service 32

https://docs.aws.amazon.com/step-functions/latest/dg/supported-services-awssdk.html

AWS Step Functions Developer Guide

For your first integration, you will use the Request Response (default) integration pattern.

How do integrations work?

A Task state represents a single unit of work performed by a state machine. All work in your state
machine is done by tasks.

A task typically performs work by passing input to the API actions of other services which then
perform their own work. You can specify how a Task performs, using a number of fields including:
Credentials, Retry, Catch, TimeoutSeconds, and more. You can learn more about Tasks in
the section called “Task".

To use AWS SDK integrations, you specify the service name and API to call. Some integrations also
require parameters.

You can use Amazon States Language to specify an AWS API action in the Resource field of a task
state. You may optionally add a service integration type to the service name.

To specify an API action, you will use the following resource name template:

arn:aws:states:::aws-sdk:serviceName:apiAction.[servicelIntegrationPattern]

(® Parameter name case

Note that API actions will be camelCase (lowercase initial), but ParameterNames will be
Pascal case (Uppercase initial).

Examples of resource names

How do integrations work? 33

AWS Step Functions Developer Guide

e arn:aws:states:::aws-sdk:ec2:describelInstances will return the results from calling
the Amazon EC2 describelnstances API.

e arn:aws:states:::aws-sdk:s3:1istBuckets will return the results from calling the
Amazon S3 listBuckets API.

e arn:aws:states:::aws-sdk:sfn:startExecution will start a nested Step Functions state
machine execution and return the results of that workflow.

When Step Functions calls another service using the Task state, the default pattern is Request
Response. With the Request Response integration pattern, Step Functions calls a service, receives a
response, and immediately proceeds to the next state.

N
Al A

rF N

Step 4.1 - Add sentiment analysis state

Edit your MyFirstStateMachine state machine.

From the Actions panel in the States browser, search for DetectSentiment.

Drag & drop Comprehend DetectSentiment onto the Default branch of the Choice state.
Select and delete the Fail state.

i o=

From the Flow tab in the States browser, drag the Success state after DetectSentiment.

Step 4.2 - Configure the sentiment analysis state

1. Select the Comprehend step to configure it in the Inspector panel.

2. Select the Arguments & Output tab, then replace the Arguments with the following JSON:

"LanguageCode": "en",
IITeXtII: II{O/O O/o}ll

}

3. Place your cursor between the percent signs: {% %} and type: $

Step 4.1 - Add sentiment analysis state 34

https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html#connect-default
https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html#connect-default

AWS Step Functions Developer Guide

4.

Use auto-complete in the editor to choose states,
then type . and choose context,

then type . and choose Execution,

then type . and choose Input,

finally, type . feedback_comment to retrieve initial input from the Context Object.

After choosing those auto-complete options, you should have the following JSON for your states
Arguments:

"LanguageCode": "en",
"Text": "{% $states.context.Execution.Input.feedback_comment %3}"

(® Using editor auto-complete

With editor auto-complete, you can explore your options.
Auto-complete will list your variables, the reserved $states variable which contains the

context object, and available functions with their definitions!

Step 4.3 - Configure an identity policy

Before you can run the workflow, you need to create a role and policy to allow the state machine

to perform API calls to the external service.

To create an IAM role for Step Functions

1.

2
3
4.
5

Go to the IAM console in a new tab and select Roles.
Choose Create a new role.

For Trusted entity type choose AWS Service.

For Use case choose Step Functions.

For Add permissions choose Next to accept the default policy. You will add a policy for
Comprehend after creating the role.

Step 4.3 - Configure an identity policy 35

AWS Step Functions Developer Guide

6. For Name, enter Hel loWorldWorkflowRole.

7. Choose Create role.

To add a policy to the HelloWorldWorkflowRole for Amazon Comprehend

1. Select and edit the HelloWorldWorkflowRole role.
Choose Add permission then Create inline policy.
Select Comprehend for the service.

In Read choose DetectSentiment, then Next

i A W

For Policy name enter DetectSentimentPolicy, then Create policy. You should have
created a policy as JSON, similar to the following: TIM

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"comprehend:DetectSentiment"
1,
"Resource": [
nxn
1,
"Effect": "Allow"
}
]
}

To attach the IAM role to the Step Functions state machine

1. Return to editing your state machine and select the Config tab.
2. From the Execution role dropdown, choose Hel loWorldWorkflowRole.

3. Save your state machine.

Step 4.4 - Run your state machine

Start executing your state machine with the following JSON for input:

Step 4.4 - Run your state machine 36

AWS Step Functions Developer Guide

{
"hello_world": false,
"wait": 42,
"feedback_comment" : "This getting started with Step Functions workshop is a
challenge!"
}

Troubleshooting a permissions error...

Without the correct policy, you will receive a permissions error, similar to the following:

User: arn:aws:sts::account-id:assumed-role/StepFunctions-MyStateMachine-role is not
authorized

to perform: comprehend:DetectSentiment because no identity-based policy allows the
comprehend:DetectSentiment

action (Service: Comprehend, Status Code: 400, Request ID: alb2c3d4-5678-90ab-cdef-
EXAMPLE11111)

The previous error message is telling you that your state machine is not authorized to use the
external service. Go back a step and make sure you have configured an identity policy.

Practice what you've learned!

Before you dive into more complex workflows, practice what you've learned with the following
tasks:

« Review the DetectSentiment step. Take a look at the input/output in the various views to see
the results of sentiment detection.

o Find the duration of the DetectSentiment state in the table view.

« Change the comment in the JSON input, then re-run your state machine.

To learn more about sentiment analysis results, see Amazon Comprehend - Sentiment.

One way to think about Request Response integration is the response generally represents only an
acknowledgement of the request. However, in some integrations, such as sentiment analysis, the
acknowledgement actually represents completion of the task.

Step 4.4 - Run your state machine 37

https://docs.aws.amazon.com/comprehend/latest/dg/how-sentiment.html

AWS Step Functions Developer Guide

The key learning is the Task state does not wait for the underlying job in Request Response
integrations. To wait for a response, you'll need to explore the Run a Job (.sync) service integration
pattern.

(® Congratulations!

You created your first state machine and integrated a sentiment analysis task using the
Request Response pattern.

@ We value your feedback!

If you found this getting started tutorial helpful, or you have suggestions to improve the
tutorial, let us know by using the feedback options on this page.

Clean up resources

Take the following steps to clean up the resources you created:

Navigate to the Step Functions page in the AWS Console.

1
2. Select State machines from the navigation pane on the left.
3. Choose the MyFirstStateMachine

4. To delete the IAM roles

1 - Follow the link for the 1AM role to go to the IAM role page in a new tab. Delete the custom
related role.

2 - In IAM Roles, search for the auto-generated role containing MyFirstStateMachine.
Delete the auto-generated role.

5. Return to your Step Functions console tab and select the Actions drop down, then select
Delete to delete the state machine.

Your state machine and related role should now be deleted successfully.

Clean up resources 38

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

Learn about state machines in Step Functions

Step Functions is based on state machines, which are also called workflows. Workflows are
comprised of a series of event-driven steps.

You define a workflow using Amazon States Language, also known as ASL. You can optionally use
Workflow Studio, a visual workflow designer, to build and edit your workflows.

Each step in a workflow is called a state. There are two types of states: Flow states and Task states:

Flow states

Flow states control the flow of execution of the steps. For example, Choice states provide
conditional logic; Wait states pause workflow execution; Map states run child workflows for
each item in a dataset; and Parallel states create separate branches in your workflows.

Task states

Task states represent a unit of work that another AWS service performs, such as calling another
AWS service or API. Tasks states are also known as Actions. You can choose hundreds of actions
to perform work in AWS and external services. (Note: You can also use workers that run outside
of Step Functions to perform tasks. For more info, see Activities.)

39

AWS Step Functions Developer Guide

State Machine / Workflow (JSONata)

Input ::
Flow state

Choice state Variables
H Choose your path...

Default | {% $type = 'local' %} |
AW

state state

state state

@ ﬁ Output

Executions and handling errors

When you run your workflows, Step Functions creates a workflow instance called an execution.
You can monitor the status of your workflow executions. If an execution experiences an error, the
workflow might catch the error. Depending on your use case, you might redrive the execution later
to resume the workflow.

Passing data

You can optionally provide input data in the form of JSON text to your workflows. Each step can
pass data to subsequent steps using variables and state output. Data stored in variables can be

40

AWS Step Functions Developer Guide

used by later steps. State output becomes the input for the very next step. To learn more about
passing data, see the section called “Passing data with variables”.

At the end of workflows, your state machine can optionally produce output, also in the form of
JSON.

Transforming data

States and state machines can transform data using a query language. The recommended query
language is JSONata; however, state machines created prior to re:Invent 2024 use JSONPath. For
backward compatibility, your state machines or individual states must opt-in to using JSONata for
their query language.

You can recognize JSONata state machines and individual states by the QueryLanguage field set
to "JSONata". State machines and states that use JSONPath, lack the QueryLanguage field.

States that use JSONPath will have state fields such as InputPath, Parameters, ResultSelector,
ResultPath, and OutputPath. In JSONPath state machine definitions, you will also see field names
that end in .$ and values prefixed with $. and $$., both of which represent paths. In the paths,
you might see various intrinsic functions, such as States.MathAdd. Intrinsic functions are only
used in JSONPath.

JSONata states use Arguments and Output fields. In these optional fields, you might see JSONata
expressions that look like the following: "{% $type = 'local' %}". With JSONata, you can use
expressions, operators, and functions. To learn more, see the section called “Transforming data".

(® Note

You can use only one query language per state. You cannot mix JSONPath and JSONata
within a single step.

Key concepts

The following provides an overview of the key Step Functions terms for context.

Term Description

Workflow A sequence of steps that often reflect a business process.

Key concepts 41

AWS Step Functions

Developer Guide

Term

States

Workflow
Studio

State
machine

Amazon
States
Language

Input and
output
configuration

Service
integration

Description

Individual steps in your state machine that can make decisions based on their
input, perform actions from those inputs, and pass output to other states.

For more information, see Discovering workflow states to use in Step Functions.

A visual workflow designer that helps you to prototype and build workflows
faster.

For more information, see Developing workflows in Step Functions Workflow
Studio.

A workflow defined using JSON text representing the individual states or steps
in the workflow along with fields, such as StartAt, TimeoutSeconds , and
Version.

For more information, see State machine structure in Amazon States Language

for Step Functions workflows.

A JSON-based, structured language used to define your state machines. With
ASL, you define a collection of states that can do work (Task state), determine
which states to transition to next (Choice state), and stop an execution with an

error (Fail state).

For more information, see Using Amazon States Language to define Step

Functions workflows.

States in a workflow receive JSON data as input and usually pass JSON data as
output to the next state. Step Functions provides filters to control the data flow
between states.

For more information, see Processing input and output in Step Functions.

You can call AWS service API actions from your workflow.

For more information, see Integrating services with Step Functions.

Key concepts

42

AWS Step Functions

Developer Guide

Term

Service
integration
type

Service
integration
pattern

Execution

Description

« AWS SDK integrations — Standard way to call any of over two hundred AWS

services and over nine thousand API actions directly from your state machine.

« Optimized integrations — Custom integrations that streamline calling and

exchanging data with certain services. For example, Lambda Invoke will
automatically convert the Payload field of the response from an escaped
JSON string into a JSON object.

When calling an AWS service, you use one of the following service integration
patterns:

« Request a response (default) — Call a service and move to the next state

immediately after receiving an HTTP response.

« Run ajob (.sync) — Call a service and have Step Functions wait for a job to

complete.

o Wait for a callback with a task token (.waitForTaskToken) — Call a service with

a task token and have Step Functions wait until the task token returns with a
callback.

State machine executions are instances where you run your workflow to
perform tasks.

For more information, see Starting state machine executions in Step Functions.

State Machine Data

State machine data takes the following forms:

« The initial input into a state machine

» Data passed between states

» The output from a state machine

This section describes how state machine data is formatted and used in AWS Step Functions.

Topics

State Machine Data

43

AWS Step Functions Developer Guide

e Data Format

» State Machine Input/Output

« State Input/Output

Data Format

State machine data is represented by JSON text. You can provide values to a state machine using
any data type supported by JSON.

® Note

« Numbers in JSON text format conform to JavaScript semantics. These numbers typically
correspond to double-precision IEEE-854 values.

« The following is valid JSON text:
« Standalone, quote-delimited strings
« Objects
» Arrays
« Numbers
» Boolean values
e null

» The output of a state becomes the input for the next state. However, you can restrict
states to work on a subset of the input data by using Input and Output Processing.

State Machine Input/Output

You can give your initial input data to an AWS Step Functions state machine in one of two ways.
You can pass the data to a StartExecution action when you start an execution. You can also

pass the data to the state machine from the Step Functions console. Initial data is passed to the
state machine's StartAt state. If no input is provided, the default is an empty object ({}).

The output of the execution is returned by the last state (terminal). This output appears as JSON
text in the execution's result.

Data Format 44

https://standards.ieee.org/findstds/standard/854-1987.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

For Standard Workflows, you can retrieve execution results from the execution history using
external callers, such as the DescribeExecution action. You can view execution results on the
Step Functions console.

For Express Workflows, if you enabled logging, you can retrieve results from CloudWatch Logs,
or view and debug the executions in the Step Functions console. For more information, see Using
CloudWatch Logs to log execution history in Step Functions and Viewing execution details in the
Step Functions console.

You should also consider quotas related to your state machine. For more information, see Service
quotas

State Input/Output

Each state's input consists of JSON text from the preceding state or, for the StartAt state, the
input into the execution. Certain flow-control states echo their input to their output.

In the following example, the state machine adds two numbers together.

1. Define the AWS Lambda function.

function Add(input) {
var numbers = JSON.parse(input).numbers;
var total = numbers.reduce(
function(previousValue, currentValue, index, array) {
return previousValue + currentValue; });
return JSON.stringify({ result: total });
}

2. Define the state machine.

{
"Comment": "An example that adds two numbers together.",
"StartAt": "Add",
"Version": "1.0",
"TimeoutSeconds": 10,
"States":

{
"Add": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:123456789012:function:Add",
"End": true

State Input/Output 45

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

}

3. Start an execution with the following JSON text.
{ "numbers": [3, 4] }
The Add state receives the JSON text and passes it to the Lambda function.

The Lambda function returns the result of the calculation to the state.

The state returns the following value in its output.

{ "result": 7 }

Because Add is also the final state in the state machine, this value is returned as the state
machine's output.

If the final state returns no output, then the state machine returns an empty object ({3}).

For more information, see Processing input and output in Step Functions.

Invoke AWS Step Functions from other services

You can configure several other services to invoke state machines. Based on the state machine's
workflow type, you can invoke state machines asynchronously or synchronously. To invoke

state machines synchronously, use the StartSyncExecution API call or Amazon API Gateway

integration with Express Workflows. With asynchronous invocation, Step Functions pauses the
workflow execution until a task token is returned. However, waiting for a task token does make the
workflow synchronous.

Services that you can configure to invoke Step Functions include:

« AWS Lambda, using the StartExecution call.

« Amazon API Gateway

« Amazon EventBridge

« AWS CodePipeline

Invoke Step Functions 46

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-api-gateway.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StepFunctions.html

AWS Step Functions Developer Guide

o AWS loT Rules Engine
o AWS Step Functions

Step Functions invocations are governed by the StartExecution quota. For more information,
see:

« Step Functions service quotas

Transitions in state machines

When you start a new execution of your state machine, the system begins with the state referenced
in the top-level StartAt field. This field, given as a string, must exactly match, including case, the
name of a state in the workflow.

After a state runs, AWS Step Functions uses the value of the Next field to determine the next state
to advance to.

Next fields also specify state names as strings. This string is case-sensitive and must match the
name of a state specified in the state machine description exactly

For example, the following state includes a transition to NextState.

"SomeState" : {

.« ey

"Next" : "NextState"

Most states permit only a single transition rule with the Next field. However, certain flow-control
states, such as a Choice state, allow you to specify multiple transition rules, each with its own
Next field. The Amazon States Language provides details about each of the state types you can
specify, including information about how to specify transitions.

States can have multiple incoming transitions from other states.

The process repeats until it either reaches a terminal state (a state with "Type": Succeed,
"Type": Fail, or "End": true), or a runtime error occurs.

When you redrive an execution, it's considered as a state transition. In addition, all states that are
rerun in a redrive are also considered as state transitions.

Transitions in state machines 47

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-stepfunctions.html

AWS Step Functions Developer Guide

The following rules apply to states within a state machine:

« States can occur in any order within the enclosing block. However, the order in which they're
listed doesn't affect the order in which they're run. That order is determined by the contents of
the states.

« Within a state machine, there can be only one state designated as the start state. The start
state is defined by the value of the StartAt field in the top-level structure.

» Depending on your state machine logic — for example, if your state machine has multiple logic
branches — you may have more than one end state.

« If your state machine consists of only one state, it can be both the start and end state.

Transitions in Distributed Map state

When you use the Map state in Distributed mode, you'll be charged one state transition for each
child workflow execution that the Distributed Map state starts. When you use the Map state in Inline
mode, you aren't charged a state transition for each iteration of the Inline Map state.

You can optimize cost by using the Map state in Distributed mode and include a nested workflow
in the Map state definition. The Distributed Map state also adds more value when you start child
workflow executions of type Express. Step Functions stores the response and status of the Express
child workflow executions, which reduces the need to store execution data in CloudWatch Logs.
You can also get access to flow controls available with a Distributed Map state, such as defining
error thresholds or batching a group of items. For information about Step Functions pricing, see
AWS Step Functions pricing.

Read Consistency in Step Functions

State machine updates in AWS Step Functions are eventually consistent. All StartExecution
calls within a few seconds will use the updated definition and roleArn (the Amazon Resource
Name for the IAM role). Executions started immediately after calling UpdateStateMachine might
use the previous state machine definition and roleAzrn.

For more information, see the following:

« UpdateStateMachine in the AWS Step Functions API Reference

Transitions in Distributed Map state 48

https://aws.amazon.com/step-functions/pricing/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html

AWS Step Functions Developer Guide

Learn about Activities in Step Functions

With Step Functions activities, you can set up a task in your state machine where the actual work
is performed by a worker running outside of Step Functions. For example you could have a worker
program running on Amazon Elastic Compute Cloud (Amazon EC2), Amazon Elastic Container
Service (Amazon ECS), or even mobile devices.

Overview

In AWS Step Functions, activities are a way to associate code running somewhere (known as an
activity worker) with a specific task in a state machine. You can create an activity using the Step
Functions console, or by calling CreateActivity. This provides an Amazon Resource Name (ARN)
for your task state. Use this ARN to poll the task state for work in your activity worker.

® Note

Activities are not versioned and are expected to be backward compatible. If you must make
a backward-incompatible change to an activity, create a new activity in Step Functions
using a unique name.

An activity worker can be an application running on an Amazon EC2 instance, an AWS Lambda
function, a mobile device: any application that can make an HTTP connection, hosted anywhere.
When Step Functions reaches an activity task state, the workflow waits for an activity worker

to poll for a task. An activity worker polls Step Functions by using GetActivityTask, and
sending the ARN for the related activity. GetActivityTask returns a response including input
(a string of JSON input for the task) and a taskToken (a unique identifier for the task). After
the activity worker completes its work, it can provide a report of its success or failure by using
SendTaskSuccess or SendTaskFailure. These two calls use the taskToken provided by
GetActivityTask to associate the result with that task.

APIs Related to Activity Tasks

Step Functions provides APIs for creating and listing activities, requesting a task, and for managing
the flow of your state machine based on the results of your worker.

The following are the Step Functions APIs that are related to activities:

Overview 49

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html#StepFunctions-GetActivityTask-response-taskToken
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html

AWS Step Functions Developer Guide

e CreateActivity

o GetActivityTask

e ListActivities

e SendTaskFailure

e SendTaskHeartbeat

e SendTaskSuccess

(® Note

Polling for activity tasks with GetActivityTask can cause latency in some
implementations. See Avoiding latency when polling for activity tasks.

Waiting for an Activity Task to Complete

Configure how long a state waits by setting TimeoutSeconds in the task definition. To keep
the task active and waiting, periodically send a heartbeat from your activity worker using
SendTaskHeartbeat within the time configured in TimeoutSeconds. By configuring a long

timeout duration and actively sending a heartbeat, an activity in Step Functions can wait up to a
year for an execution to complete.

For example, if you need a workflow that waits for the outcome of a long process, do the following:

1. Create an activity by using the console, or by using CreateActivity. Make a note of the
activity ARN.

2. Reference that ARN in an activity task state in your state machine definition and set
TimeoutSeconds.

3. Implement an activity worker that polls for work by using GetActivityTask, referencing that
activity ARN.

4. Use SendTaskHeartbeat periodically within the time you set in HeartbeatSeconds in your

state machine task definition to keep the task from timing out.
5. Start an execution of your state machine.

6. Start your activity worker process.

Waiting for an Activity Task to Complete 50

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListActivities.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html

AWS Step Functions Developer Guide

The execution pauses at the activity task state and waits for your activity worker to poll for
a task. Once a taskToken is provided to your activity worker, your workflow will wait for
SendTaskSuccess or SendTaskFailure to provide a status. If the execution doesn't receive

either of these or a SendTaskHeartbeat call before the time configured in TimeoutSeconds,

the execution will fail and the execution history will contain an ExecutionTimedOut event.

Example: Activity Worker in Ruby

The following example activity worker code implements a consumer-producer pattern with a
configurable number of threads for pollers and activity workers. The poller threads are constantly
long polling the activity task in Step Functions. When an activity task is retrieved, it is passed
through a bounded blocking queue for the activity thread to pick up.

« For more information, see the AWS SDK for Ruby API Reference.

» To download this code and related resources, see the step-functions-ruby-activity-worker

repository on GitHub.

The following code is the main entry point for this example Ruby activity worker.

require_relative '../lib/step_functions/activity
credentials = Aws::SharedCredentials.new

region = 'us-west-2'

activity_arn = 'ACTIVITY_ARN'

activity = StepFunctions::Activity.new(
credentials: credentials,
region: region,
activity_arn: activity_arn,
workers_count: 1,
pollers_count: 1,
heartbeat_delay: 30

Start method block contains your custom implementation to process the input
activity.start do |input|

{ result: :SUCCESS, echo: input['value'] }
end

Example: Activity Worker in Ruby 51

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/
https://github.com/aws-samples/step-functions-ruby-activity-worker

AWS Step Functions

Developer Guide

You must specify your activity ARN and region. The code includes defaults that you can set, such as

number of threads and heartbeat delay.

Item

require_relative

region

workers_count

pollers_count

heartbeat_delay

input

Next Steps

Description

Relative path to the following example activity
worker code.

AWS Region of your activity.

The number of threads for your activity
worker. For most implementations, between
10 and 20 threads should be sufficient. The
longer the activity takes to process, the
more threads it might need. As an estimate,
multiply the number of process activities
per second by the 99th percentile activity
processing latency, in seconds.

The number of threads for your pollers.
Between 10 and 20 threads should be sufficien
t for most implementations.

The delay in seconds between heartbeats.

Implementation logic of your activity.

For a more detailed look at creating state machines that use an activity workers, see:

» Creating an Activity state machine using Step Functions

Next Steps

52

AWS Step Functions Developer Guide

Choosing workflow type in Step Functions

When you create a state machine, you must choose a Type of either Standard (default) or Express,
referred to commonly as a standard workflow or an express workflow.

You define both state machine types using the Using Amazon States Language to define Step

Functions workflows.

Both standard and express workflows can start in response to events, such as HTTP requests from
Amazon API Gateway, loT rules, and over 140 other event sources in Amazon EventBridge.

/A Workflow type is immutable

The workflow type can not be updated after you create a state machine.

Standard Workflows are ideal for long-running (up to one year), durable, and auditable workflows.
You can retrieve the full execution history using the Step Functions API for up to 90 days after your
execution completes.

Standard Workflows follow an exactly-once model, where your tasks and states are never run
more than once, unless you have specified Retry behavior in ASL. The exactly-once model makes
Standard Workflows suited to orchestrating non-idempotent actions, such as starting an Amazon
EMR cluster or processing payments.

Standard Workflow executions are billed according to the number of state transitions processed.

Express Workflows are ideal for high-volume, event-processing workloads such as loT data
ingestion, streaming data processing and transformation, and mobile application backends. They
can run for up to five minutes.

Express Workflows use an at-least-once model, so an execution could potentially run more

than once. The at-least-once model makes Express Workflows better suited for orchestrating
idempotent actions, such as transforming input data to store in Amazon DynamoDB using a PUT
action.

Express Workflow executions are billed by number of executions, total duration of execution, and
memory consumed during execution.

53

https://docs.aws.amazon.com/step-functions/latest/apireference

AWS Step Functions

Developer Guide

® Tip

To deploy an example Express workflow, see Processing data in parallel in The AWS Step

Functions Workshop.

Comparison of Standard and Express workflow types

Type / Category

Maximum duration

Supported execution start
rate

Supported state transition
rate

Pricing

Execution history

Standard Workflows

One year

For information about
quotas related to supported
execution start rate, see
Quotas related to API action

Express Workflows:
Synchronous and Asynchron
ous

Five minutes

For information about
quotas related to supported
execution start rate, see
Quotas related to API action

throttling.

For information about quotas
related to supported state
transition rate, see Quotas
related to state throttling.

Priced by number of state
transitions. A state transition
is counted each time a step in
your execution is completed.

Executions can be listed and
described with Step Functions
APIs. Executions can be
visually debugged through
the console. They can also be
inspected in CloudWatch Logs
by enabling logging on your
state machine.

throttling.

No limit

Priced by the number of
executions you run, their
duration, and memory
consumption.

Unlimited execution history,
that is, as many execution
history entries are maintained
as you can generate within a
5-minute period.

Executions can be inspected
in CloudWatch Logs or the

54

https://catalog.workshops.aws/stepfunctions/parallel-state
https://aws.amazon.com/step-functions/pricing

AWS Step Functions

Developer Guide

Type / Category

Execution semantics

Service integrations

Distributed Map

Activities

Standard Workflows

For more information
about debugging Standard
Workflow executions in the
console, see Standard and

Express console experienc

e differences and Viewing

workflow runs.

Exactly-once workflow
execution.

Supports all service integrati
ons and patterns.

Supported

Supported

Express Workflows:
Synchronous and Asynchron
ous

Step Functions console by
enabling logging on your
state machine.

For more information about

debugging Express Workflow
executions in the console, see
Standard and Express console

experience differences and

Viewing workflow runs.

Asynchronous Express
Workflows: At-least-once
workflow execution.

Synchronous Express
Workflows: At-most-once
workflow execution.

Supports all service integrati
ons.

(® Note

Express Workflows
do not support
Job-run (.sync) or
Callback (.waitForT
askToken) service
integration patterns.

Not supported

Not supported

55

AWS Step Functions Developer Guide

@ Optimize workflow type

For a comparison and an example cost impact analysis, see Choosing the workflow type in

the Large-scale data processing with Step Functions workshop.

Synchronous and Asynchronous Express Workflows in Step
Functions

There are two types of Express Workflows that you can choose: Asynchronous Express Workflows
and Synchronous Express Workflows.

« Asynchronous Express Workflows return confirmation that the workflow was started, but don't
wait for the workflow to complete. To get the result, you must poll the service's CloudWatch
Logs. You can use Asynchronous Express Workflows when you don't require immediate response
output, such as messaging services or data processing that other services don't depend on. You
can start Asynchronous Express Workflows in response to an event, by a nested workflow in Step
Functions, or by using the StartExecution API call.

» Synchronous Express Workflows start a workflow, wait until it completes, and then return
the result. Synchronous Express Workflows can be used to orchestrate microservices. With
Synchronous Express Workflows, you can develop applications without the need to develop
additional code to handle errors, retries, or run parallel tasks. You can run Synchronous
Express Workflows invoked from Amazon APl Gateway, AWS Lambda, or by using the
StartSyncExecution API call.

(@ Note

If you run Step Functions Express Workflows synchronously from the console, the
StartSyncExecution request expires after 60 seconds. To run the Express Workflows
synchronously for a duration of up to five minutes, make the StartSyncExecution
request using the AWS SDK or AWS Command Line Interface (AWS CLI) instead of the
Step Functions console.

Express Workflow types 56

https://catalog.workshops.aws/serverless-data-processing/advanced/optimization/workflow-type
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions

Developer Guide

Synchronous Express execution API calls don't contribute to existing account capacity limits.
Step Functions provides capacity on demand and automatically scales with sustained workload.

Surges in workload may be throttled until capacity is available.

Execution guarantees in Step Functions workflows

Standard Workflows

Exactly-once workflow
execution

Execution state internall
y persists between state
transitions.

Automatically returns an
idempotent response on
starting an execution with the
same name as a currently-
running workflow. The new
workflow doesn't start and an
exception is thrown once the
currently-running workflow is
complete.

Execution history data
removed after 90 days.
Workflow names can be
reused after removal of out-
of-date execution data.

To meet compliance,
organizational, or regulator
y requirements, you can
reduce the execution history

Asynchronous Express
Workflows

At-least-once workflow
execution

Execution state doesn't
persist between state
transitions.

Idempotency is not automatic
ally managed. Starting
multiple workflows with

the same name results

in concurrent execution

s. Can result in loss of
internal workflow state if
state machine logic is not
idempotent.

Execution history is not
captured by Step Functions

. Logging must be enabled
through Amazon CloudWatch
Logs.

Synchronous Express
Workflows

At-most-once workflow
execution

Execution state doesn't
persist between state
transitions.

Idempotency is not automatic
ally managed. Step Functions
waits once an execution
starts and returns the state
machine’s result on completio
n. Workflows don't restart if
an exception occurs.

Execution history is not
captured by Step Functions

. Logging must be enabled
through Amazon CloudWatch
Logs.

Execution guarantees

57

AWS Step Functions Developer Guide

Standard Workflows Asynchronous Express Synchronous Express
Workflows Workflows

retention period to 30 days by
sending a quota request. To
do this, use the AWS Support
Center Console and create a
new case.

Execution guarantees 58

AWS Step Functions Developer Guide

Using Amazon States Language to define Step Functions
workflows

The Amazon States Language is a JSON-based, structured language used to define your state
machine, a collection of states, that can do work (Task states), determine which states to
transition to next (Choice states), stop an execution with an error (Fail states), and so on.

For more information, see the Amazon States Language Specification and Statelint, a tool that
validates Amazon States Language code.

To create a state machine on the Step Functions console using Amazon States Language, see
Getting Started.

(@ Note

If you define your state machines outside the Step Functions' console, such as in an editor
of your choice, you must save your state machine definitions with the extension .asl.json.

Example Amazon States Language Specification (JSONata)

"Comment": "An example of the Amazon States Language using a choice state.",
"QuerylLanguage": "JSONata",
"StartAt": "FirstState",
"States": {
"FirstState": {
"Type": "Task",
"Assign": {
"foo" : "{% $states.input.foo_input %}"
},
"Resource": "arn:aws:lambda:region:123456789012:function:FUNCTION_NAME",
"Next": "ChoiceState"
I
"ChoiceState": {
"Type": "Choice",
"Default": "DefaultState",
"Choices": [

{

Example Amazon States Language Specification (JSONata) 59

https://states-language.net/spec.html
https://github.com/awslabs/statelint
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions

Developer Guide

"Next": "FirstMatchState",
"Condition": "{% $foo = 1 %}"
iy

{
"Next": "SecondMatchState",

"Condition": "{% $foo = 2 %}"

]

iy

"FirstMatchState": {
HTypeH : HTaSkH’
"Resource": "arn:aws:lambda:region:123456789012:function:0nFirstMatch",
"Next": "NextState"

iy

"SecondMatchState": {
HTypeH : HTaSkH’
"Resource": "arn:aws:lambda:region:123456789012:function:0nSecondMatch",
"Next": "NextState"

iy

"DefaultState": {
HTypeH: HFailH’
"Error": "DefaultStateError",
"Cause": "No Matches!"

iy

"NextState": {
HTypeH: HTaSkH’
"Resource": "arn:aws:lambda:region:123456789012:function:FUNCTION_NAME",
"End": true

Example Amazon States Language Specification (JSONata)

60

AWS Step Functions Developer Guide

State machine structure in Amazon States Language for Step
Functions workflows

(® Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

State machines are defined using JSON text that represents a structure containing the following
fields.

Comment (Optional)

A human-readable description of the state machine.
QueryLanguage (Optional; when omitted, defaults to JSONPath)

« The name of the query language used by the state machine. Allowed values are JSONPath
and JSONata.

« If not provided for the state machine, the default value for each state is JSONPath.

« When the top-level state machine query language is JSONPath, individual states can override
the query language by setting QueryLanguage to JSONata. Given this approach, you can
incrementally convert a state machine from JSONPath to JSONata one state at a time.

» Note: You cannot revert a top-level JSONata-based state machine to a mix of JSONata and
JSONPath states.

StartAt (Required)

A string that must exactly match (is case sensitive) the name of one of the state objects.

TimeoutSeconds (Optional)

The maximum number of seconds an execution of the state machine can run. If it runs longer
than the specified time, the execution fails with a States.Timeout Error Name.

Version (Optional)

The version of the Amazon States Language used in the state machine (default is "1.0").

States (Required)

An object containing a comma-delimited set of states.

State machine structure 61

AWS Step Functions Developer Guide

The States field contains States.

{
"Statel" : {
Iy
"State2" : {
Iy

}

A state machine is defined by the states it contains and the relationships between them.

The following is an example.

{
"Comment": "A Hello World example of the Amazon States Language using a Pass state",
"StartAt": "HelloWorld",
"States": {
"HelloWorld": {
"Type": "Pass",
"Result": "Hello World!",
"End": true
}
}
}

When an execution of this state machine is launched, the system begins with the state referenced
in the StartAt field ("HelloWor1ld"). If this state has an "End": true field, the execution stops
and returns a result. Otherwise, the system looks for a "Next" : field and continues with that
state next. This process repeats until the system reaches a terminal state (a state with "Type":
"Succeed", "Type": "Fail", or "End": true), or a runtime error occurs.

The following rules apply to states within a state machine:

« States can occur in any order within the enclosing block, but the order in which they're listed
doesn't affect the order in which they're run. The contents of the states determines this order.

« Within a state machine, there can be only one state that's designated as the start state,
designated by the value of the StartAt field in the top-level structure. This state is the one that
is executed first when the execution starts.

State machine structure 62

AWS Step Functions Developer Guide

« Any state for which the End field is true is considered an end (or terminal) state. Depending
on your state machine logic—for example, if your state machine has multiple branches of
execution—you might have more than one end state.

« If your state machine consists of only one state, it can be both the start state and the end
state.

Common state fields in workflows

The following fields are common to all state elements.
Type (Required)

The state's type.
QueryLanguage (Optional; when omitted, defaults to JSONPath)

« The name of the query language used by the state. Allowed values are JSONPath and
JSONata.

« When the top-level state machine query language is JSONPath, individual states can override
the query language by setting QueryLanguage to JSONata. Given this approach, you can
incrementally convert a state machine from JSONPath to JSONata one state at a time.

Next

The name of the next state that is run when the current state finishes. Some state types, such as
Choice, allow multiple transition states.

If the current state is the last state in your workflow, or a terminal state, such as Succeed
workflow state or Fail workflow state, you don't need to specify the Next field.

End

Designates this state as a terminal state (ends the execution) if set to true. There can be any
number of terminal states per state machine. Only one of Next or End can be used in a state.
Some state types, such as Choice, or terminal states, such as Succeed workflow state and Fail

workflow state, don't support or use the End field.

Comment (Optional)

Holds a human-readable description of the state.

Common state fields 63

AWS Step Functions Developer Guide

Assign (Optional)

Used to store variables. The Assign field accepts a JSON object with key/value pairs that
define variable names and their assigned values. Any string value, including those inside objects
or arrays, will be evaluated as JSONata when surrounded by {% %} characters

For more information, see the section called “Passing data with variables”.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%]} characters.

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see Input and Output Processing.

InputPath (Optional, JSONPath only)

A path that selects a portion of the state's input to be passed to the state's task for processing.
If omitted, it has the value $ which designates the entire input. For more information, see Input
and Output Processing.

OutputPath (Optional, JSONPath only)

A path that selects a portion of the state's output to be passed to the next state. If omitted, it
has the value $ which designates the entire output. For more information, see Input and Output

Processing.

Intrinsic functions for JSONPath states in Step Functions

(& Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

Intrinsic functions 64

AWS Step Functions Developer Guide

/A Warning

Intrinsic functions are only available to states that use the JSONPath query language. For
JSONata, see the section called “Transforming data".

The Amazon States Language provides several intrinsic functions, also known as intrinsics, for use
in fields that accept JSONPath. With intrinsics, you can perform basic data processing operations
without using a Task state.

Intrinsics look similar to functions in programming languages. They can be used to help payload
builders process the data going to and from the Resource field of a Task state that uses the
JSONPath query language.

In Amazon States Language, intrinsic functions are grouped into the following categories, based on
the type of data processing task that you want to perform:

o Intrinsics for arrays

« Intrinsics for data encoding and decoding

« Intrinsic for hash calculation

o Intrinsics for JSON data manipulation

o Intrinsics for Math operations

« Intrinsic for String operation

« Intrinsic for unique identifier generation

« Intrinsic for generic operation

To use intrinsic functions, you must specify . $ in the key value in your state machine definitions, as
shown in the following example:

"KeyId.$": "States.Array($.Id)"

You can nest up to 10 intrinsic functions within a field in your workflows. The following example
shows a field named myArn that includes nine nested intrinsic functions:

"myArn.$": "States.Format('{}.{}.{3}',
States.ArrayGetItem(States.StringSplit(States.ArrayGetItem(States.StringSplit($.ImageRecipe.Ar
/'), 2), '), 0),

Intrinsic functions 65

AWS Step Functions Developer Guide

States.ArrayGetItem(States.StringSplit(States.ArrayGetItem(States.StringSplit($.ImageRecipe. Az
/'), 2), '.Y), 1"

(@ QueryLanguage required for intrinsic functions

To use intrinsic functions, the state machine must use the JSONPath query language.
States that use JSONata cannot use intrinsic functions; however, JSONata and Step
Functions provide equivalent options.

Fields that support intrinsic functions

The following states support intrinsic functions in the following fields:

Pass state : Parameters

Task state : Parameters, ResultSelector, Credentials

Parallel state: Parameters, ResultSelector

Map state: Parameters, ResultSelector

Intrinsics for arrays
Use the following intrinsics for performing array manipulations.

States.Array

The States.Array intrinsic function takes zero or more arguments. The interpreter returns a
JSON array containing the values of the arguments in the order provided. For example, given
the following input:

"Id": 123456

You could use

"BuildId.$": "States.Array($.Id)"

Which would return the following result:

Fields that support intrinsic functions 66

AWS Step Functions Developer Guide

“BuildId”: [123456]

States.ArrayPartition

Use the States.ArrayPartition intrinsic function to partition a large array. You can also use
this intrinsic to slice the data and then send the payload in smaller chunks.

This intrinsic function takes two arguments. The first argument is an array, while the second
argument defines the chunk size. The interpreter chunks the input array into multiple arrays of
the size specified by chunk size. The length of the last array chunk may be less than the length
of the previous array chunks if the number of remaining items in the array is smaller than the
chunk size.

Input validation

» You must specify an array as the input value for the function's first argument.

» You must specify a non-zero, positive integer for the second argument representing the
chunk size value.

If you specify a non-integer value for the second argument, Step Functions will round it off to
the nearest integer.

« The input array can't exceed Step Functions' payload size limit of 256 KiB.

For example, given the following input array:
{"inputArray": [1,2,3,4,5,6,7,8,9] }

You could use the States.ArrayPartition function to divide the array into chunks of four
values:

"inputArray.$": "States.ArrayPartition($.inputArray,4)"
Which would return the following array chunks:
{"inputArray": [[1,2,3,4], [5,6,7,8], [91] }

In the previous example, the States.ArrayPartition function outputs three arrays. The
first two arrays each contain four values, as defined by the chunk size. A third array contains the
remaining value and is smaller than the defined chunk size.

Intrinsics for arrays 67

AWS Step Functions Developer Guide

States.ArrayContains

Use the States.ArrayContains intrinsic function to determine if a specific value is present
in an array. For example, you can use this function to detect if there was an error in a Map state

iteration.

This intrinsic function takes two arguments. The first argument is an array, while the second
argument is the value to be searched for within the array.

Input validation

» You must specify an array as the input value for function's first argument.
« You must specify a valid JSON object as the second argument.

« The input array can't exceed Step Functions' payload size limit of 256 KiB.

For example, given the following input array:

"inputArray": [1,2,3,4,5,6,7,8,9],
"lookingFor": 5

You could use the States.ArrayContains function to find the 1lookingFor value within the

inputArray:
"contains.$": "States.ArrayContains($.inputArray, $.lookingFor)"

Because the value stored in 1ookingFor is included in the inputArray,
States.ArrayContains returns the following result:

{"contains": true }

States.ArrayRange

Use the States.ArrayRange intrinsic function to create a new array containing a specific
range of elements. The new array can contain up to 1000 elements.

This function takes three arguments. The first argument is the first element of the new array,
the second argument is the final element of the new array, and the third argument is the
increment value between the elements in the new array.

Intrinsics for arrays

68

AWS Step Functions Developer Guide

Input validation

« You must specify integer values for all of the arguments.

If you specify a non-integer value for any of the arguments, Step Functions will round it off to
the nearest integer.

» You must specify a non-zero value for the third argument.

« The newly generated array can't contain more than 1000 items.

For example, the following use of the States.ArrayRange function will create an array with
a first value of 1, a final value of 9, and values in between the first and final values increase by
two for each item:

"array.$": "States.ArrayRange(l, 9, 2)"

Which would return the following array:
{"array": [1,3,5,7,9] }

States.ArrayGetItem

This intrinsic function returns a specified index's value. This function takes two arguments. The
first argument is an array of values and the second argument is the array index of the value to
return.

For example, use the following inputArray and index values:

"inputArray": [1,2,3,4,5,6,7,8,9],
"index": 5

From these values, you can use the States.ArrayGetItem function to return the value in the
index position 5 within the array:

"item.$": "States.ArrayGetItem($.inputArray, $.index)"

In this example, States.ArrayGetItem would return the following result:

Intrinsics for arrays 69

AWS Step Functions Developer Guide

{ "item": 6 }
States.ArraylLength

The States.ArraylLength intrinsic function returns the length of an array. It has one
argument, the array to return the length of.

For example, given the following input array:

"inputArray": [1,2,3,4,5,6,7,8,9]

You can use States.ArraylLength to return the length of inputArray:

"length.$": "States.ArraylLength($.inputArray)"

In this example, States.ArrayLength would return the following JSON object that
represents the array length:

{ "length": 9 }

States.ArrayUnique

The States.ArrayUnique intrinsic function removes duplicate values from an array and
returns an array containing only unique elements. This function takes an array, which can be
unsorted, as its sole argument.

For example, the following inputArray contains a series of duplicate values:

{"inputArray": [1,2,3,3,3,3,3,3,4] }

You could use the States.ArrayUnique function as and specify the array you want to remove
duplicate values from:

"array.$": "States.ArrayUnique($.inputArray)"

The States.ArrayUnique function would return the following array containing only unique
elements, removing all duplicate values:

Intrinsics for arrays 70

AWS Step Functions Developer Guide

{"array": [1,2,3,4] }

Intrinsics for data encoding and decoding

Use the following intrinsic functions to encode or decode data based on the Base64 encoding
scheme.

States.Base64Encode

Use the States.Base64Encode intrinsic function to encode data based on MIME Base64
encoding scheme. You can use this function to pass data to other AWS services without using an
AWS Lambda function.

This function takes a data string of up to 10,000 characters to encode as its only argument.

For example, consider the following input string:

{"input": "Data to encode" }

You can use the States.Base64Encode function to encode the input string as a MIME
Base64 string:

"base64.%$": "States.Base64Encode($.input)"”

The States.Base64Encode function returns the following encoded data in response:
{"base64": "RGFQYSB@ObyBlbmNvZGU=" }

States.Base64Decode

Use the States.Base64Decode intrinsic function to decode data based on MIME Base64
decoding scheme. You can use this function to pass data to other AWS services without using a
Lambda function.

This function takes a Base64 encoded data string of up to 10,000 characters to decode as its
only argument.

For example, given the following input:

Intrinsics for data encoding and decoding 71

AWS Step Functions Developer Guide

{"baseb4": "RGFOYSBObyBlbmNvZGU=" }

You can use the States.Base64Decode function to decode the base64 string to a human-
readable string:

"data.$": "States.Base64Decode($.base64)"

The States.Base64Decode function would return the following decoded data in response:

{"data": "Decoded data" }

Intrinsic for hash calculation

States.Hash

Use the States.Hash intrinsic function to calculate the hash value of a given input. You can
use this function to pass data to other AWS services without using a Lambda function.

This function takes two arguments. The first argument is the data you want to calculate the
hash value of. The second argument is the hashing algorithm to use to perform the hash
calculation. The data you provide must be an object string containing 10,000 characters or less.

The hashing algorithm you specify can be any of the following algorithms:
« MD5

SHA-1

SHA-256

SHA-384

SHA-512

For example, you can use this function to calculate the hash value of the Data string using the
specified Algorithm:

"Data": "input data",
"Algorithm": "SHA-1"

Intrinsic for hash calculation 72

AWS Step Functions Developer Guide

You can use the States.Hash function to calculate the hash value:

"output.$": "States.Hash($.Data, $.Algorithm)"

The States.Hash function returns the following hash value in response:

{"output": "aaff4a450al04cd177d28d18d7485e8caed74b7" }

Intrinsics for JSON data manipulation
Use these functions to perform basic data processing operations on JSON objects.

States.JsonMexrge

Use the States.JsonMerge intrinsic function to merge two JSON objects into a single object.
This function takes three arguments. The first two arguments are the JSON objects that you
want to merge. The third argument is a boolean value of false. This boolean value determines
if the deep merging mode is enabled.

Currently, Step Functions only supports the shallow merging mode; therefore, you must specify
the boolean value as false. In the shallow mode, if the same key exists in both JSON obijects,
the latter object's key overrides the same key in the first object. Additionally, objects nested
within a JSON object are not merged when you use shallow merging.

For example, you can use the States.JsonMerge function to merge the following JSON
objects that share the key a.

"jSOﬂl"I { nan: {naln: 1, nazn: 2}’ nbn: 2 }’
njsonzn: { nan: {"33": 1’ "34": 2}' "C": 3 }

You can specify the json1 and json2 objects as inputs in the States.JsonMerge function to

merge them together:

"output.$": "States.JsonMerge($.jsonl, $.json2, false)"

The States. JsonMexrge returns the following merged JSON object as result. In the merged
JSON object output, the json2 object's key a replaces the jsonl object's key a. Also, the

Intrinsics for JSON data manipulation 73

AWS Step Functions Developer Guide

nested object in jsonl object's key a is discarded because shallow mode doesn't support
merging nested objects.

{
"output": {
"a": {"a3": 1, "a4": 2},
"b: 2,
"c": 3
}
}
States.StringToJson

The States.StringToJson function takes a reference path to an escaped JSON string as its
only argument.

The interpreter applies a JSON parser and returns the input's parsed JSON form. For example,
you can use this function to escape the following input string:

{
"escaped]JsonString": "{\"foo\": \"bar\"}"

}
Use the States.StringToJson function and specify the escapedJsonString as the input
argument:

States.StringToJson($.escaped]sonString)

The States.StringToJson function returns the following result:

{ nfoon: "baI" }

States.JsonToString

The States.JsonToString function takes only one argument, which is the path that contains
the JSON data to return as an unescaped string. The interpreter returns a string that contains
JSON text representing the data specified by the Path. For example, you can provide the
following JSON Path containing an escaped value:

Intrinsics for JSON data manipulation 74

AWS Step Functions Developer Guide

{

"unescapedJson": {
II.FOOII: Ilbarll

Provide the States.JsonToString function with the data contained within unescapedJson:

States.JsonToString($.unescapedlson)

The States.JsonToString function returns the following response:

{\"foo\": \"bar\"}

Intrinsics for Math operations

Use these functions to perform Math operations.
States.MathRandom

Use the States.MathRandom intrinsic function to return a random number between the
specified start number (inclusive) and end number (exclusive).

You can use this function to distribute a specific task between two or more resources.

This function takes three arguments. The first argument is the start number, the second
argument is the end number, and the last argument controls the optional seed value, Note that
if you use this function with the same seed value, it will return identical numbers.

/A Important

Because the States.MathRandom function does not return cryptographically
secure random numbers, we recommend that you don't use it for security sensitive

applications.

Input validation

Intrinsics for Math operations 75

AWS Step Functions Developer Guide

» You must specify integer values for the start number and end number arguments.

If you specify a non-integer value for the start number or end number argument, Step
Functions will round it off to the nearest integer.

For example, to generate a random number between one and 999, you can use the following
input values:

"start": 1,
"end": 999

To generate the random number, provide the start and end values to the
States.MathRandom function:

"random.$": "States.MathRandom($.start, $.end)"

The States.MathRandom function returns the following random number as a response:

{"random": 456 }

States.MathAdd

Use the States.MathAdd intrinsic function to return the sum of two numbers. For example,
you can use this function to increment values inside a loop without invoking a Lambda function.

Input validation

« You must specify integer values for all the arguments.

If you specify a non-integer value for one or both the arguments, Step Functions will round it
off to the nearest integer.

« You must specify integer values in the range of -2147483648 and 2147483647.

For example, you can use the following values to subtract one from 111:

Intrinsics for Math operations 76

AWS Step Functions Developer Guide

"valuel": 111,
"step": -1

Then, use the States.MathAdd function defining valuel as the starting value, and step as
the value to increment valuel by:

"valuel.$": "States.MathAdd($.valuel, $.step)"

The States.MathAdd function would return the following number in response:

{"valuel": 110 }

Intrinsic for String operation
States.StringSplit

Use the States.StringSplit intrinsic function to split a string into an array of values. This
function takes two arguments. The first argument is a string and the second argument is the
delimiting character that the function will use to divide the string.

Example - Split an input string using a single delimiting character

For this example, use States.StringSplit to divide the following inputString, which
contains a series of comma separated values:

"ipnputString": "1,2,3,4,5",

"splitter": ",

Use the States.StringSplit function and define inputString as the first argument, and
the delimiting character splitter as the second argument:

"array.$": "States.StringSplit($.inputString, $.splitter)"

The States.StringSplit function returns the following string array as result:

Intrinsic for String operation 77

AWS Step Functions Developer Guide

{"arrayll: [Illll’ ||2||’ ||3||’ ||4||’ ||5||:| }

Example - Split an input string using multiple delimiting characters

For this example, use States.StringSplit to divide the following inputString, which
contains multiple delimiting characters:

{
"inputString": "This.is+a,test=string",
"splitter": ".+,="

}
Use the States.StringSplit function as follows:

{
"myStringArray.$": "States.StringSplit($.inputString, $.splitter)"
}

The States.StringSplit function returns the following string array as result:

{"myStringArray": [
"This",

is",

a’,
"teSt",
"string"

1}

Intrinsic for unique identifier generation

States.UUID

Use the States.UUID intrinsic function to return a version 4 universally unique identifier (v4
UUID) generated using random numbers. For example, you can use this function to call other
AWS services or resources that need a UUID parameter or insert items in a DynamoDB table.

The States.UUID function is called with no arguments specified:

"uuid.$": "States.UUID()"

Intrinsic for unique identifier generation 78

AWS Step Functions Developer Guide

The function returns a randomly generated UUID, as in the following example:

{"uuid": "ca4cll40-dccl-40cd-ad@5-7b4aa23df4a8" }

Intrinsic for generic operation
States.Format

Use the States.Format intrinsic function to construct a string from both literal and
interpolated values. This function takes one or more arguments. The value of the first argument
must be a string, and may include zero or more instances of the character sequence {}.

There must be as many remaining arguments in the intrinsic function invocation as there are
occurrences of {}. The interpreter returns the string defined in the first argument with each {}
replaced by the value of the positionally-corresponding argument in the Intrinsic invocation.

For example, you can use the following inputs of an individual's name, and a template
sentence to have their name inserted into:

{

"name": "Arnav",
"template": "Hello, my name is {}."

}

Use the States.Format function and specify the template string and the string to insert in
place of the {} characters:

States.Format('Hello, my name is {}.', $.name)

or

States.Format($.template, $.name)

With either of the previous inputs, the States.Format function returns the completed string
in response:

Hello, my name is Arnav.

Intrinsic for generic operation 79

AWS Step Functions Developer Guide

Reserved characters in intrinsic functions

The following characters are reserved for intrinsic functions, and must be escaped with a backslash
("\") if you want them to appear in the Value: '{}, and \.

If the character \ needs to appear as part of the value without serving as an escape character, you
must escape it with a backslash. The following escaped character sequences are used with intrinsic
functions:

» The literal string \' represents '.
« The literal string \{ represents {.
« The literal string \} represents }.
« The literal string \\ represents \.

In JSON, backslashes contained in a string literal value must be escaped with another backslash.
The equivalent list for JSON is:

The escaped string \\\\' represents \'.

The escaped string \\\{ represents \ {.

The escaped string \\\\} represents \ }.
The escaped string \\\\ represents \\.

® Note

If an open escape backslash \ is found in the intrinsic invocation string, the interpreter will
return a runtime error.

You must use square bracket notation for a Path passed as an argument to an Intrinsic Function

if the field name contains any character that is not included in the member-name-shorthand
definition of the JsonPath ABNF rule. If your Path contains non-alphanumeric characters, besides _,
you must use square bracket notation. For example, $.abc.['def ghi'].

Reserved characters in intrinsic functions 80

https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#jsonpath-abnf

AWS Step Functions Developer Guide

Discovering workflow states to use in Step Functions

States are elements in your state machine. A state is referred to by its name, which can be any
string, but which must be unique within the scope of the entire state machine.

States take input from the invocation or a previous state. States can filter the input and then
manipulate the output that is sent to the next state.

The following is an example state named HelloWorld that invokes an AWS Lambda function.

"HelloWorld": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:123456789012:function:HelloFunction",
"Next": "AfterHelloWorldState",
"Comment": "Run the HelloWorld Lambda function"

Individual states can make decisions based on their input, perform actions from those inputs, and
pass output to other states. In AWS Step Functions, you define your workflows in the Amazon
States Language (ASL). The Step Functions console provides a graphical representation of your
state machine to help visualize your application’s logic.

The following screenshot shows some of the most popular Actions and the seven Flow states from
Workflow Studio:

81

AWS Step Functions Developer Guide

Actions Flow Patterns Info Actions Flow Patterns Info
MOST POPULAR H SQZ Choice
Adds if-then-else logic.

AWS Lambda

Invoke ‘ | Parallel
Adds separate branches.

Amazon SNS
| KA pubiish Map info

H A 2 1 Runs p-E;I:E-!l-lel workflows for each
item in a dataset.

=

1 Amazon ECS

RunTask Pass
H Cl:l Transforms data or acts as
AWS Step Functions placeholder.
” SZE: StartExecution
Wait
0% AWS Glue H CL) Delays for a specified time.

StartJobRun

.

H Success
@ Stops and marks as success.

THIRD-PARTY API

H Fail
HTTP Endpoint ® Stops and marks as failure.
” AP Call third-party API

States share many common features:

« A Type field indicating what type of state it is.

« An optional Comment field to hold a human-readable comment about, or description of, the
state.

« Each state (except Succeed or Fail states) requires a Next field that specifies the next state
in the workflow. Choice states can actually have more than one Next within each Choice Rule.
Alternatively, a state can become a terminal state by setting the End field to true.

Certain state types require additional fields, or may redefine common field usage.

To access log information for workflows

« After you have created and run Standard workflows, you can access information about each
state, its input and output, when it was active and for how long, by viewing the Execution Details
page in the Step Functions console.

82

AWS Step Functions Developer Guide

« After you have created and Express Workflow executions and if logging is enabled, you can see
execution history in the Step Functions console or Amazon CloudWatch Logs.

For information about viewing and debugging executions, see Viewing workflow runs and the

section called “Logging in CloudWatch Logs".

Reference list of workflow states

States are separated in Workflow Studio into Actions, also known as Task states, and seven

Flow states. Using Task states, or actions in Workflow Studio, you can call third party services,
invoke functions, and use hundreds of AWS service endpoints. With Flow states, you can direct
and control your workflow. All states take input from the previous state, and many provide input
filtering, and filtering/transformation for output that is passed to the next state in your workflow.

» Task workflow state: Add a single unit of work to be performed by your state machine.

» Choice workflow state: Add a choice between branches of execution to your workflow.

 Parallel workflow state: Add parallel branches of execution to your workflow.

« Map workflow state: Dynamically iterate steps for each element of an input array. Unlike a

Parallel flow state, a Map state will execute the same steps for multiple entries of an array in
the state input.

» Pass workflow state: Pass state input through to the output. Optionally, filter, transform, and
add fixed data into the output.

« Wait workflow state: Pause your workflow for a certain amount of time or until a specified time

or date.

» Succeed workflow state: Stops your workflow with a success.

« Fail workflow state: Stops your workflow with a failure.

Task workflow state

(3 Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

Reference list of workflow states 83

AWS Step Functions Developer Guide

A Task state ("Type": "Task") represents a single unit of work performed by a state machine.
A task performs work by using an activity or an AWS Lambda function, by integrating with other
supported AWS services, or by invoking a HTTPS API, such as Stripe.

The Amazon States Language represents tasks by setting a state's type to Task and by providing
the task with the Amazon Resource Name (ARN) of the activity, Lambda function, or the HTTPS API
endpoint.

Invoke a function with JSONata Arguments
The following Task state definition (JSONata) invokes a Lambda function named priceWatcher.

Note the use of JSONata expressions to query input data to use in Arguments and the task result in
the assign field.

"Get Current Price": {
IlTypell: IITaSkII’

"QuerylLanguage" : "JSONata",
"Resource": "arn:aws:states:::lambda:invoke",
"Next": "Check Price",
"Arguments": {
"Payload": {
"product": "{% $states.context.Execution.Input.product %}"
I
"FunctionName": "arn:aws:lambda:<region>:account-id:function:priceWatcher:$LATEST"
I
"Assign": {
"currentPrice": "{% $states.result.Payload.current_price %}"
}

}

Invoke a function with JSONPath Parameters

The following Task state definition (JSONPath) invokes a Lambda function named
HelloFunction.

"Lambda Invoke": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:region:account-id:function:HelloFunction:$LATEST"

Task 84

AWS Step Functions Developer Guide

}I

"End": true

Task types

Step Functions supports the following task types that you can specify in a Task state definition:

Activity
Lambda functions

A supported AWS service
An HTTP Task

You specify a task type by providing its ARN in the Resource field of a Task state definition. The
following example shows the syntax of the Resource field. All Task types except the one that
invokes an HTTPS API, use the following syntax. For information about syntax of the HTTP Task,
see Call HTTPS APIs in Step Functions workflows.

In your Task state definition, replace the italicized text in the following syntax with the AWS
resource-specific information.

arn:partition:service:region:account:task_type:name

The following list explains the individual components in this syntax:

« partitionis the AWS Step Functions partition to use, most commonly aws.

« service indicates the AWS service used to execute the task, and can be one of the following
values:

« states for an activity.

« lambda for a Lambda function. If you integrate with other AWS services, for example, Amazon
SNS or Amazon DynamoDB, use sns or dynamodb.

« regionis the AWS Region code in which the Step Functions activity or state machine type,

Lambda function, or any other AWS resource has been created.
« account is the AWS account ID in which you've defined the resource.
« task_type is the type of task to run. It can be one of the following values:

e activity - An activity.

Task types 85

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Step Functions Developer Guide

e function - A Lambda function.

« servicename — The name of a supported connected service (see Integrating services with

Step Functions).

« name is the registered resource name (activity name, Lambda function name, or service API
action).

(® Note

Step Functions doesn't support referencing ARNs across partitions or regions. For example,
aws-cn can't invoke tasks in the aws partition, and the other way around.

The following sections provide more detail about each task type.
Activity

Activities represent workers (processes or threads), implemented and hosted by you, that perform a
specific task. They are supported only by Standard Workflows, not Express Workflows.

Activity Resource ARNs use the following syntax.

arn:partition:states:region:account:activity:name

® Note

You must create activities with Step Functions (using a CreateActivity, API action, or the
Step Functions console) before their first use.

For more information about creating an activity and implementing workers, see Activities.

Lambda functions

Lambda tasks execute a function using AWS Lambda. To specify a Lambda function, use the ARN of
the Lambda function in the Resource field.

Depending on the type of integration (Optimized integration or AWS SDK integration) you use for
specifying a Lambda function, the syntax of your Lambda function's Resource field varies.

Task types 86

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

The following Resource field syntax is an example of an optimized integration with a Lambda
function.

"arn:aws:states:::lambda:invoke"

The following Resource field syntax is an example of an AWS SDK integration with a Lambda
function.

"arn:aws:states:::aws-sdk:lambda:invoke"

The following Task state definition shows an example of an optimized integration with a Lambda
function named Hel loWorld.

"LambdaState": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:region:function:HelloWorld:$LATEST"

iy
"Next": "NextState"

After the Lambda function specified in the Resource field completes, its output is sent to the
state identified in the Next field ("NextState").

A supported AWS service

When you reference a connected resource, Step Functions directly calls the API actions of a
supported service. Specify the service and action in the Resource field.

Connected service Resource ARNs use the following syntax.

arn:partition:states:region:placeholder-account:servicename:APIname

(® Note

To create a synchronous connection to a connected resource, append . sync to the
APIname entry in the ARN. For more information, see Integrating services.

Task types 87

AWS Step Functions Developer Guide

For example:

{
"StartAt": "BATCH_JOB",

"States": {
"BATCH_JOB": {
"Type": "Task",
"Resource": "arn:aws:states:::batch:submitJob.sync",
"Parameters": {
"JobDefinition": "preprocessing",
"JobName": "PreprocessingBatchJob",
"JobQueue": "SecondaryQueue",
"Parameters.$": "$.batchjob.parameters",
"RetryStrategy": {
"attempts": 5
}
I
"End": true
}
}
}

Task state fields

In addition to the common state fields, Task states have the following fields.

Resource (Required)

A URI, especially an ARN that uniquely identifies the specific task to execute.
Axrguments (Optional, JSONata only)

Used to pass information to the API actions of connected resources. Values can include JSONata
expressions. For more information, see Transforming data with JSONata in Step Functions.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%} characters.

Task state fields 88

AWS Step Functions Developer Guide

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see Input and Output Processing.

Parameters (Optional, JSONPath only)

Used to pass information to the API actions of connected resources. The parameters can use a
mix of static JSON and JsonPath. For more information, see Passing parameters to a service API
in Step Functions.

Credentials (Optional)

Specifies a target role the state machine's execution role must assume before invoking the
specified Resource. Alternatively, you can also specify a JSONPath value or an intrinsic
function that resolves to an IAM role ARN at runtime based on the execution input. If you
specify a JSONPath value, you must prefix it with the $. notation.

For examples of using this field in the Task state, see Task state's Credentials field examples.
For an example of using this field to access a cross-account AWS resource from your state
machine, see Accessing cross-account AWS resources in Step Functions.

(® Note

This field is supported by the Task types that use Lambda functions and a supported
AWS service.

ResultPath (Optional, JSONPath only)

Specifies where (in the input) to place the results of executing the task that's specified in
Resource. The input is then filtered as specified by the OutputPath field (if present) before
being used as the state's output. For more information, see Input and Output Processing.

ResultSelector (Optional, JSONPath only)

Pass a collection of key value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy if the state encounters runtime
errors. For more information, see State machine examples using Retry and using Catch.

Task state fields 89

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. This state is executed if the
state encounters runtime errors and its retry policy is exhausted or isn't defined. For more
information, see Fallback States.

TimeoutSeconds (Optional)

Specifies the maximum time an activity or a task can run before it times out with the
States.Timeout error and fails. The timeout value must be positive, non-zero integer. The
default value is 99999999.

The timeout count begins when the start event is executed, such as when TaskStarted,
ActivityStarted, or LambdaFunctionStarted events are logged in the execution
event history. For Activities, the count begins when GetActivityTask receives a token and
ActivityStarted is logged in the execution event history.

When a task starts, Step Functions waits for a success or failure response from the task or
activity worker within the specified TimeoutSeconds duration. If the task or activity worker
fails to respond within this time, Step Functions marks the workflow execution as failed.

® Note

HTTP task timeout has a maximum of 60 seconds, even if TimeoutSeconds exceeds
that limit. See the section called “Quotas related to HTTP Task”

TimeoutSecondsPath (Optional, JSONPath only)

If you want to provide a timeout value dynamically from the state input using a reference path,
use TimeoutSecondsPath. When resolved, the reference path must select fields whose values
are positive integers.

(® Note

A Task state cannot include both TimeoutSeconds and TimeoutSecondsPath. HTTP
task timeout has a maximum of 60 seconds, even if the TimeoutSecondsPath value
exceeds that limit.

Task state fields 90

AWS Step Functions Developer Guide

HeartbeatSeconds (Optional)

Determines the frequency of heartbeat signals an activity worker sends during the execution
of a task. Heartbeats indicate that a task is still running and it needs more time to complete.
Heartbeats prevent an activity or task from timing out within the TimeoutSeconds duration.

HeartbeatSeconds must be a positive, non-zero integer value less than the
TimeoutSeconds field value. The default value is 99999999. If more time than the specified
seconds elapses between heartbeats from the task, the Task state fails with a States.Timeout

error.

For Activities, the count begins when GetActivityTask receives a token and
ActivityStarted is logged in the execution event history.

HeartbeatSecondsPath (Optional, JSONPath only)

If you want to provide a heartbeat value dynamically from the state input using a reference
path, use HeartbeatSecondsPath. When resolved, the reference path must select fields
whose values are positive integers.

(® Note

A Task state cannot include both HeartbeatSeconds and HeartbeatSecondsPath.

A Task state must set either the End field to true if the state ends the execution, or must provide
a state in the Next field that is run when the Task state is complete.

Task state definition examples

The following examples show how you can specify the Task state definition based on your
requirement.

» Specifying Task state timeouts and heartbeat intervals

« Static timeout and heartbeat notification example

« Dynamic task timeout and heartbeat notification example

» Using Credentials field

» Specifying hard-coded IAM role ARN

Task state definition examples 91

AWS Step Functions Developer Guide

» Specifying JSONPath as IAM role ARN

» Specifying an intrinsic function as IAM role ARN

Task state timeouts and heartbeat intervals

It's a good practice to set a timeout value and a heartbeat interval for long-running activities. This
can be done by specifying the timeout and heartbeat values, or by setting them dynamically.

Static timeout and heartbeat notification example
When HelloWorld completes, the next state (here called NextState) will be run.

If this task fails to complete within 300 seconds, or doesn't send heartbeat notifications in intervals
of 60 seconds, the task is marked as failed.

"ActivityState": {
"Type": "Task",
"Resource": "arn:aws:states:region:123456789012:activity:HelloWorld",
"TimeoutSeconds": 300,
"HeartbeatSeconds": 60,
"Next": "NextState"

Dynamic task timeout and heartbeat notification example
In this example, when the AWS Glue job completes, the next state will be run.

If this task fails to complete within the interval set dynamically by the AWS Glue job, the task is
marked as failed.

"GlueJobTask": {
"Type": "Task",
"Resource": "arn:aws:states:::glue:startJobRun.sync",
"Parameters": {
"JobName": "myGlueJob"
},
"TimeoutSecondsPath": "$.params.maxTime",
"Next": "NextState"

Task state definition examples 92

AWS Step Functions Developer Guide

Task state's Credentials field examples
Specifying hard-coded IAM role ARN

The following example specifies a target IAM role that a state machine's execution role must
assume to access a cross-account Lambda function named Echo. In this example, the target role
ARN is specified as a hard-coded value.

{
"StartAt": "Cross-account call",
"States": {
"Cross-account call": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Credentials": {
"RoleArn": "arn:aws:iam::111122223333:role/LambdaRole"
},
"Parameters": {
"FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:Echo"
1,
"End": true
}
}
}

Specifying JSONPath as IAM role ARN

The following example specifies a JSONPath value, which will resolve to an IAM role ARN at

runtime.
{
"StartAt": "Lambda",
"States": {
"Lambda": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",

"Credentials": {
"RoleArn.$": "$.roleArn"
},

Task state definition examples 93

AWS Step Functions Developer Guide

}

Specifying an intrinsic function as IAM role ARN

The following example uses the States.Format intrinsic function, which resolves to an IAM role
ARN at runtime.

"StartAt": "Lambda",
"States": {
"Lambda": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Credentials": {
"RoleArn.$": "States.Format('arn:aws:iam::{}:role/ROLENAME', $.accountId)"
},

Choice workflow state

(® Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

A Choice state ("Type": "Choice") adds conditional logic to a state machine.

In addition to most of the common state fields, Choice states contains the following additional
fields.

Choices (Required)
An array of Choice Rules that determines which state the state machine transitions to next.

When a Choice state is run, it evaluates each Choice Rule to true or false. Based on the result
of this evaluation, Step Functions transitions to the next state in the workflow.

Choice 94

AWS Step Functions Developer Guide

You must define at least one rule in the Choice state.

Default (Optional, Recommended)

The name of the state to transition to if none of the transitions in Choices is taken.

/A Important

Choice states don't support the End field. In addition, they use Next only inside their
Choices field.

Choice Rules (JSONata)

A Choice state must have a Choices field whose value is a non-empty array of Choice Rules,
which contain the following fields when using JSONata:

» Condition field — a JSONata expression that evaluates to true/false.

o Next field - a value that must match a state name in the state machine.

The following example checks whether the numerical value is equal to 1.

{
"Condition": "{% $foo = 1 %}",
"Next": "NumericMatchState"

The following example checks whether the typevariable is equal to local.

{
"Condition": "{% $type = 'local' %}",
"Next": "StringMatchState"

}

The following example checks whether the string is greater than MyStringABC.

{
"Condition": "{% $foo > 'MyStringABC' %}",
"Next": "StringGreaterMatchState"

Choice Rules (JSONata)

95

AWS Step Functions Developer Guide

}

The following example checks whether the string is not null.

{
"Condition" : "{% $possiblyNullValue != null and $possiblyNullValue = 42 %}",
"Next": "NotNullAnd42"

}

Choice Rules (JSONPath)

A Choice state must have a Choices field whose value is a non-empty array of Choice Rules,
which contain the following fields when using JSONPath:

« A comparison - Two fields that specify an input variable to compare, the type of comparison,
and the value to compare the variable to. Choice Rules support comparison between two
variables. Within a Choice Rule, the value of variable can be compared with another value from
the state input by appending Path to name of supported comparison operators. The values of
Variable and Path fields in a comparison must be valid Reference Paths.

« A Next field — The value of this field must match a state name in the state machine.

The following example checks whether the numerical value is equal to 1.

{
"Variable": "$.foo",
"NumericEquals": 1,
"Next": "FirstMatchState"
}

The following example checks whether the string is equal to MyString.

{
"Variable": "$.foo",
"StringEquals": "MyString",
"Next": "FirstMatchState"

}

The following example checks whether the string is greater than MyStringABC.

Choice Rules (JSONPath) 96

AWS Step Functions

Developer Guide

{
"Variable": "$.foo",
"StringGreaterThan": "MyStringABC",
"Next": "FirstMatchState"

}

The following example checks whether the string is null.

{
"Variable": "$.possiblyNullValue",
"IsNull": true

}

The following example shows how the StringEquals rule is only evaluated when

$.keyThatMightNotExist exists because of the preceding IsPresent Choice Rule.

"And": [
{
"Variable": "$.keyThatMightNotExist",
"IsPresent": true
1,
{
"Variable": "$.keyThatMightNotExist",
"StringEquals": "foo"
}
]

The following example checks whether a pattern with a wildcard matches.

{
"Variable": "$.foo",
"StringMatches": "log-*.txt"
}

The following example checks whether the timestamp is equal to 2001-01-01T12:00:00Z.

"Variable": "$.foo",
"TimestampEquals": "2001-01-01T12:00:00Z",
"Next": "FirstMatchState"

Choice Rules (JSONPath)

97

AWS Step Functions Developer Guide

}

The following example compares a variable with another value from the state input.

{
"Variable": "$.foo",
"StringEqualsPath": "$.bar"

}

Step Functions examines each of the Choice Rules in the order listed in the Choices field. Then
it transitions to the state specified in the Next field of the first Choice Rule in which the variable
matches the value according to the comparison operator.

The following comparison operators are supported:

« And

 BooleanEquals,BooleanEqualsPath

« IsBoolean

e IsNull

e IsNumeric

o IsPresent

« IsString

o IsTimestamp

» Not

 NumericEquals,NumericEqualsPath

e NumericGreaterThan,NumericGreaterThanPath

e NumericGreaterThanEquals,NumericGreaterThanEqualsPath
e« NumericlLessThan,NumericLessThanPath

e NumericlLessThanEquals,NumericLessThanEqualsPath

« Or

« StringEquals,StringEqualsPath

e StringGreaterThan,StringGreaterThanPath

o StringGreaterThanEquals,StringGreaterThanEqualsPath

Choice Rules (JSONPath)

98

AWS Step Functions

Developer Guide

StringlLessThan,StringLessThanPath
StringLessThanEquals,StringlLessThanEqualsPath
StringMatches

TimestampEquals, TimestampEqualsPath
TimestampGreaterThan,TimestampGreaterThanPath
TimestampGreaterThanEquals, TimestampGreaterThanEqualsPath
TimestamplLessThan,TimestampLessThanPath

TimestamplLessThanEquals,TimestampLessThanEqualsPath

For each of these operators, the corresponding value must be of the appropriate type: string,

number, Boolean, or timestamp. Step Functions doesn't attempt to match a numeric field to a

string value. However, because timestamp fields are logically strings, it's possible that a field

considered to be a timestamp can be matched by a StringEquals comparator.

(® Note

For interoperability, don't assume that numeric comparisons work with values outside
the magnitude or precision that the IEEE 754-2008 binary64 data type represents. In

particular, integers outside of the range [-2°%+1, 2°%-1] might fail to compare in the
expected way.

Timestamps (for example, 2016-08-18T17:33:00Z) must conform to RFC3339 profile
ISO 8601, with further restrictions:

« An uppercase T must separate the date and time portions.

« An uppercase Z must denote that a numeric time zone offset isn't present.

To understand the behavior of string comparisons, see the Java compareTo

documentation.

The values of the And and Or operators must be non-empty arrays of Choice Rules that
must not themselves contain Next fields. Likewise, the value of a Not operator must be a
single Choice Rule that must not contain Next fields.

You can create complex, nested Choice Rules using And, Not, and Or. However, the Next

field can appear only in a top-level Choice Rule.
String comparison against patterns with one or more wildcards (“*") can be performed with
the StringMatches comparison operator. The wildcard character is escaped by using the

Choice Rules (JSONPath)

99

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-

AWS Step Functions Developer Guide

standard \\ (Ex: “*”). No characters other than “*" have any special meaning during
matching.

Parallel workflow state

(& Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

The Parallel state ("Type": "Parallel") can be used to add separate branches of execution
in your state machine.

In addition to the common state fields, Parallel states include these additional fields.

Branches (Required)

An array of objects that specify state machines to execute in parallel. Each such state machine
object must have fields named States and StartAt, whose meanings are exactly like those in
the top level of a state machine.

Parameters (Optional, JSONPath only)

Used to pass information to the state machines defined in the Branches array.

Axrguments (Optional, JSONata only)

Used to pass information to the API actions of connected resources. Values can include JSONata
expressions. For more information, see Transforming data with JSONata in Step Functions.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%} characters.

Parallel 100

AWS Step Functions Developer Guide

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see the section called “Transforming data”.

Assign (Optional)

Used to store variables. The Assign field accepts a JSON object with key/value pairs that
define variable names and their assigned values. Any string value, including those inside objects
or arrays, will be evaluated as JSONata when surrounded by {% %} characters

For more information, see the section called “Passing data with variables”.

ResultPath (Optional, JSONPath only)

Specifies where (in the input) to place the output of the branches. The input is then filtered as
specified by the OutputPath field (if present) before being used as the state's output. For more
information, see Input and Output Processing.

ResultSelector (Optional, JSONPath only)

Pass a collection of key value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy in case the state encounters
runtime errors. For more information, see State machine examples using Retry and using Catch.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state that is executed if the
state encounters runtime errors and its retry policy is exhausted or isn't defined. For more
information, see Fallback States.

A Parallel state causes AWS Step Functions to execute each branch, starting with the state
named in that branch's StartAt field, as concurrently as possible, and wait until all branches
terminate (reach a terminal state) before processing the Parallel state's Next field.

Parallel State Example

Parallel State Example 101

AWS Step Functions Developer Guide

"Comment": "Parallel Example.",
"StartAt": "LookupCustomerInfo",
"States": {

"LookupCustomerInfo": {
"Type": "Parallel",
"End": true,
"Branches": [

{
"StartAt": "LookupAddress",
"States": {
"LookupAddress": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:account-id:function:AddressFinder",
"End": true
}
}
},
{

"StartAt": "LookupPhone",
"States": {
"LookupPhone": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:account-id:function:PhoneFinder",
"End": true

In this example, the LookupAddress and LookupPhone branches are executed in parallel. Here is
how the visual workflow looks in the Step Functions console.

Parallel State Example 102

AWS Step Functions Developer Guide

Parallel state
[||| LookupCustomerinfo

-/’&

Lambda: Invoke Lambda: Invoke
& LookupAddress & LookupPhone

Each branch must be self-contained. A state in one branch of a Parallel state must not have a
Next field that targets a field outside of that branch, nor can any other state outside the branch
transition into that branch.

Parallel State Input and Output Processing

A Parallel state provides each branch with a copy of its own input data (subject to modification
by the InputPath field). It generates output that is an array with one element for each branch,
containing the output from that branch. There is no requirement that all elements be of the same
type. The output array can be inserted into the input data (and the whole sent as the Parallel
state's output) by using a ResultPath field in the usual way (see Input and Output Processing).

{

"Comment": "Parallel Example.",
"StartAt": "FunWithMath",

Parallel State Input and Output Processing 103

AWS Step Functions Developer Guide

"States": {
"FunWithMath": {
"Type": "Parallel",
"End": true,
"Branches": [

{
"StartAt": "Add",
"States": {
"Add": {
"Type": "Task",
"Resource": "arn:aws:states:region:123456789012:activity:Add",
"End": true
}
}
1,
{
"StartAt": "Subtract",
"States": {
"Subtract": {
"Type": "Task",
"Resource": "arn:aws:states:region:123456789012:activity:Subtract",
"End": true
}
}
}
]

If the FunwWithMath state was given the array [3, 2] as input, then both the Add and Subtract
states receive that array as input. The output of the Add and Subtract tasks would be the sum
of and difference between the array elements 3 and 2, which is 5 and 1, while the output of the
Parallel state would be an array.

[5 1]

Parallel State Input and Output Processing 104

AWS Step Functions Developer Guide

® Tip
If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,

see Flattening an array of arrays.

Error Handling

If any branch fails, because of an unhandled error or by transitioning to a Fail state, the entire
Parallel state is considered to have failed and all its branches are stopped. If the error is not
handled by the Parallel state itself, Step Functions stops the execution with an error.

(® Note

When a parallel state fails, invoked Lambda functions continue to run and activity workers
processing a task token are not stopped.

» To stop long-running activities, use heartbeats to detect if its branch has been
stopped by Step Functions, and stop workers that are processing tasks. Calling
SendTaskHeartbeat, SendTaskSuccess, or SendTaskFailure will throw an error if
the state has failed. See Heartbeat Errors.

» Running Lambda functions cannot be stopped. If you have implemented a fallback, use a
Wait state so that cleanup work happens after the Lambda function has finished.

Map workflow state

Use the Map state to run a set of workflow steps for each item in a dataset. The Map state's
iterations run in parallel, which makes it possible to process a dataset quickly. Map states can use a
variety of input types, including a JSON array, a list of Amazon S3 objects, or a CSV file.

Step Functions provides two types of processing modes for using the Map state in your workflows:
Inline mode and Distributed mode.

Error Handling 105

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html#API_SendTaskHeartbeat_Errors

AWS Step Functions Developer Guide

® Tip
To deploy an example of a workflow that uses a Map state, see Processing arrays of data
with Choice and Map in The AWS Step Functions Workshop.

Map state processing modes

Step Functions provides the following processing modes for the Map state depending on how you
want to process the items in a dataset.

« Inline - Limited-concurrency mode. In this mode, each iteration of the Map state runs in the
context of the workflow that contains the Map state. Step Functions adds the execution history
of these iterations to the parent workflow's execution history. By default, Map states run in Inline
mode.

In this mode, the Map state accepts only a JSON array as input. Also, this mode supports up to 40
concurrent iterations.

For more information, see Using Map state in Inline mode in Step Functions workflows.

 Distributed - High-concurrency mode. In this mode, the Map state runs each iteration as a child
workflow execution, which enables high concurrency of up to 10,000 parallel child workflow
executions. Each child workflow execution has its own, separate execution history from that of
the parent workflow.

In this mode, the Map state can accept either a JSON array or an Amazon S3 data source, such as
a CSV file, as its input.

For more information, see Distributed mode.

The mode you should use depends on how you want to process the items in a dataset. Use the
Map state in Inline mode if your workflow's execution history won't exceed 25,000 entries, or if you
don't require more than 40 concurrent iterations.

Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads
that meet any combination of the following conditions:

» The size of your dataset exceeds 256 KiB.

Map processing modes 106

https://catalog.workshops.aws/stepfunctions/choice-and-map
https://catalog.workshops.aws/stepfunctions/choice-and-map

AWS Step Functions

Developer Guide

« The workflow's execution event history would exceed 25,000 entries.

» You need a concurrency of more than 40 concurrent iterations.

Inline mode and Distributed mode differences

The following table highlights the differences between the Inline and Distributed modes.

Inline mode
Supported data sources

Accepts a JSON array passed from a previous
step in the workflow as input.

Map iterations

In this mode, each iteration of the Map state
runs in the context of the workflow that
contains the Map state. Step Functions adds
the execution history of these iterations to the
parent workflow's execution history.

Maximum concurrency for parallel iterations
Lets you run up to 40 iterations as concurren

tly as possible.

Input payload and event history sizes

Distributed mode

Accepts the following data sources as input:

« JSON array passed from a previous step in
the workflow

« JSON file in an Amazon S3 bucket that
contains an array

« CSV file in an Amazon S3 bucket
« Amazon S3 object list

« Amazon S3 inventory

In this mode, the Map state runs each iteration

as a child workflow execution, which enables

high concurrency of up to 10,000 parallel child

workflow executions. Each child workflow
execution has its own, separate execution
history from that of the parent workflow.

Lets you run up to 10,000 parallel child
workflow executions to process millions of
data items at one time.

Map processing modes

107

AWS Step Functions

Developer Guide

Inline mode

Enforces a limit of 256 KiB on the input
payload size and 25,000 entries in the
execution event history.

Monitoring and observability

You can review the workflow's execution
history from the console or by invoking the

GetExecutionHistory APl action.

You can also view the execution history
through CloudWatch and X-Ray.

Distributed mode

Lets you overcome the payload size limitation
because the Map state can read input directly
from Amazon S3 data sources.

In this mode, you can also overcome execution
history limitations because the child workflow
executions started by the Map state maintain
their own, separate execution histories from
the parent workflow's execution history.

When you run a Map state in Distributed
mode, Step Functions creates a Map Run
resource. A Map Run refers to a set of child
workflow executions that a Distributed Map
state starts. You can view a Map Run in the
Step Functions console. You can also invoke
the DescribeMapRun API action. A Map Run
also emits metrics to CloudWatch.

For more information, see Viewing a Distribut

ed Map Run execution in Step Functions.

Using Map state in Inline mode in Step Functions workflows

(& Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

By default, Map states runs in Inline mode. In Inline mode, the Map state accepts only a JSON array
as input. It receives this array from a previous step in the workflow. In this mode, each iteration of

Inline mode 108

https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

the Map state runs in the context of the workflow that contains the Map state. Step Functions adds
the execution history of these iterations to the parent workflow's execution history.

In this mode, the Map state supports up to 40 concurrent iterations.

A Map state set to Inline is known as an Inline Map state. Use the Map state in Inline mode if your
workflow's execution history won't exceed 25,000 entries, or if you don't require more than 40
concurrent iterations.

For an introduction to using the Inline Map state, see the tutorial Repeat actions with Inline Map.

Contents

» Key concepts in this topic

« Inline Map state fields

» Deprecated fields

« Inline Map state example (JSONPath)

« Inline Map state example with ItemSelector

« Inline Map state input and output processing

Key concepts in this topic
Inline mode

A limited-concurrency mode of the Map state. In this mode, each iteration of the Map state runs
in the context of the workflow that contains the Map state. Step Functions adds the execution
history of these iterations to the parent workflow's execution history. Map states run in the
Inline mode by default.

This mode accepts only a JSON array as input and supports up to 40 concurrent iterations.

Inline Map state

A Map state set to the Inline mode.

Map workflow

The set of steps that the Map state runs for each iteration.

Map state iteration

A repetition of the workflow defined inside of the Map state.

Inline mode 109

AWS Step Functions Developer Guide

Inline Map state fields

To use the Inline Map state in your workflows, specify one or more of these fields. You specify these
fields in addition to the common state fields.

Type (Required)

Sets the type of state, such as Map.

ItemProcessor (Required)
Contains the following JSON objects that specify the Map state processing mode and definition.

The definition contains the set of steps to repeat for processing each array item.

e ProcessorConfig - An optional JSON object that specifies the processing mode for the Map
state. This object contains the Mode sub-field. This field defaults to INLINE, which uses the
Map state in Inline mode.

In this mode, the failure of any iteration causes the Map state to fail. All iterations stop when
the Map state fails.

« StartAt - Specifies a string that indicates the first state in a workflow. This string is case-
sensitive and must match the name of one of the state objects. This state runs first for each
item in the dataset. Any execution input that you provide to the Map state passes to the
StartAt state first.

« States - A JSON object containing a comma-delimited set of states. In this object, you
define the Map workflow.

® Note

» States within the ItemProcessor field can only transition to each other. No state
outside the ItemProcessor field can transition to a state within it.

« The ItemProcessor field replaces the now deprecated Iterator field. Although
you can continue to include Map states that use the Iterator field, we highly
recommend that you replace this field with ItemProcessor.

Step Functions Local doesn't currently support the ItemProcessor field. We

recommend that you use the Iterator field with Step Functions Local.

Inline mode 110

AWS Step Functions Developer Guide

Items (Optional, JSONata only)

A JSON array or a JSONata expression that must evaluate to an array.

ItemsPath (Optional, JSONPath only)

Specifies a reference path using the JsonPath syntax. This path selects the JSON node that
contains the array of items inside the state input. For more information, see ItemsPath (Map,
JSONPath only).

ItemSelector (Optional)

Overrides the values of the input array items before they're passed on to each Map state
iteration.

In this field, you specify a valid JSON that contains a collection of key-value pairs. These pairs
can contain any of the following:

« Static values you define in your state machine definition.
« Values selected from the state input using a path.

» Values accessed from the context object.

For more information, see ItemSelector (Map).

The ItemSelector field replaces the now deprecated Parameters field. Although you can
continue to include Map states that use the Parameters field, we highly recommend that you
replace this field with ItemSelector.

MaxConcurrency (Optional)

Specifies an integer value that provides the upper bound on the number of Map state iterations
that can run in parallel. For example, a MaxConcurrency value of 10 limits the Map state to 10
concurrent iterations running at one time.

In JSONata states, you can specify a JSONata expression that evaluates to an integer.

(® Note

Concurrent iterations may be limited. When this occurs, some iterations won't begin
until previous iterations are complete. The likelihood of this occurring increases when
your input array has more than 40 items.

To achieve a higher concurrency, consider Distributed mode.

Inline mode 111

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

The default value is @, which places no limit on concurrency. Step Functions invokes iterations
as concurrently as possible.

A MaxConcurrency value of 1 invokes the ItemProcessor once for each array element. Items
in the array are processed in the order of their appearance in the input. Step Functions doesn't
start a new iteration until it completes the previous iteration.

MaxConcurrencyPath (Optional, JSONPath only)

If you want to provide a maximum concurrency value dynamically from the state input using a
reference path, use MaxConcurrencyPath. When resolved, the reference path must select a
field whose value is a non-negative integer.

® Note

A Map state cannot include both MaxConcurrency and MaxConcurrencyPath.

ResultPath (Optional, JSONPath only)

Specifies where in the input to store the output of the Map state's iterations. The Map state
then filters the input as specified by the OutputPath field, if specified. Then, it uses the filtered
input as the state's output. For more information, see Input and Output Processing.

ResultSelector (Optional, JSONPath only)

Pass a collection of key value pairs, where the values are either static or selected from the
result. For more information, see ResultSelector.

® Tip
If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,

see Flattening an array of arrays.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy. States use a retry policy when they
encounter runtime errors. For more information, see State machine examples using Retry and

using Catch.

Inline mode 112

AWS Step Functions Developer Guide

@ Note
If you define Retriers for the Inline Map state, the retry policy applies to all Map state
iterations, instead of only failed iterations. For example, your Map state contains two
successful iterations and one failed iteration. If you have defined the Retry field for the
Map state, the retry policy applies to all three Map state iterations instead of only the
failed iteration.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. States run a catcher if they
encounter runtime errors and either don't have a retry policy, or their retry policy is exhausted.
For more information, see Fallback States.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%} characters.

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see the section called “Transforming data".

Assign (Optional)

Used to store variables. The Assign field accepts a JSON object with key/value pairs that
define variable names and their assigned values. Any string value, including those inside objects
or arrays, will be evaluated as JSONata when surrounded by {% %} characters

For more information, see the section called “Passing data with variables”.

Inline mode 113

AWS Step Functions Developer Guide

Deprecated fields

(@ Note

Although you can continue to include Map states that use the following fields, we highly
recommend that you replace Iterator with ItemProcessor and Parameters with
ItemSelector.

Iterator

Specifies a JSON object that defines a set of steps that process each element of the array.

Parameters

Specifies a collection of key-value pairs, where the values can contain any of the following:
« Static values that you define in your state machine definition.

« Values selected from the input using a path.

Inline Map state example (JSONPath)

Consider the following input data for a Map state running in Inline mode.

{
"ship-date": "2016-03-14T01:59:00Z",
"detail": {
"delivery-partner": "UQS",
"shipped": [
{ "prod": "R31", "dest-code": 9511, "quantity": 1344 },
{ "prod": "S39", "dest-code": 9511, "quantity": 40 3},
{ "prod": "R31", "dest-code": 9833, "quantity": 12 3},
{ "prod": "R4Q", "dest-code": 9860, "quantity": 887 },
{ "prod": "R4@", "dest-code": 9511, "quantity": 1220 }
]
}
}

Given the previous input, the Map state in the following example invokes an AWS Lambda function
named ship-val once for each item of the array in the shipped field.

"Validate All": {

Inline mode 114

AWS Step Functions Developer Guide

"Type": "Map",
"InputPath": "$.detail",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"
.
"StartAt": "Validate",
"States": {
"Validate": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"FunctionName": "arn:aws:lambda:us-east-2:account-id:function:ship-
val :$LATEST"

iy

"End": true

iy

"End": true,
"ResultPath": "$.detail.shipped",
"ItemsPath": "$.shipped"

Each iteration of the Map state sends an item in the array, selected with the ItemsPath field, as
input to the ship-val Lambda function. The following values are an example of input the Map
state sends to an invocation of the Lambda function:

{
"prod": "R31",
"dest-code": 9511,
"quantity": 1344
}

When complete, the output of the Map state is a JSON array, where each item is the output of an
iteration. In this case, this array contains the output of the ship-val Lambda function.

Inline Map state example with ItemSelector

Suppose that the ship-val Lambda function in the previous example also needs information
about the shipment's courier. This information is in addition to the items in the array for each

Inline mode 115

AWS Step Functions Developer Guide

iteration. You can include information from the input, along with information specific to the
current iteration of the Map state. Note the ItemSelector field in the following example:

"Validate-All": {
"Type": "Map",
"InputPath": "$.detail",
"ItemsPath": "$.shipped",
"MaxConcurrency": 0,
"ResultPath": "$.detail.shipped",
"ItemSelector": {
"parcel.$": "$$.Map.Item.Value",
"courier.$": "$.delivery-partner"
}I
"ItemProcessor": {
"StartAt": "Validate",
"States": {
"Validate": {
"Type": "Task",

"Resource": "arn:aws:lambda:region:account-id:function:ship-val",
"End": true
}
}
+
"End": true

The ItemSelector block replaces the input to the iterations with a JSON node. This node
contains both the current item data from the Context object and the courier information from

the Map state input's delivery-partner field. The following is an example of input to a single
iteration. The Map state passes this input to an invocation of the ship-val Lambda function.

{
"parcel": {
"prod": "R31",
"dest-code": 9511,
"quantity": 1344
1,
"courier": "UQS"
}

Inline mode 116

AWS Step Functions Developer Guide

In the previous Inline Map state example, the ResultPath field produces output in the same
format as the input. However, it overwrites the detail.shipped field with an array in which each
element is the output of each iteration's ship-val Lambda invocation.

For more information about using the Inline Map state state and its fields, see the following.

Repeat actions with Inline Map

Processing input and output in Step Functions

IltemsPath (Map, JSONPath only)

Context object data for Map states

Inline Map state input and output processing
For a given Map state, InputPath selects a subset of the state's input.

The input of a Map state must include a JSON array. The Map state runs the ItemProcessor
section once for each item in the array. If you specify the ItemsPath field, the Map state selects
where in the input to find the array to iterate over. If not specified, the value of ItemsPath is

$, and the ItemProcessor section expects that the array is the only input. If you specify the
ItemsPath field, its value must be a Reference Path. The Map state applies this path to the

effective input after it applies the InputPath. The ItemsPath must identify a field whose value is
a JSON array.

The input to each iteration, by default, is a single element of the array field identified by the
ItemsPath value. You can override this value with the ItemSelector (Map) field.

When complete, the output of the Map state is a JSON array, where each item is the output of an
iteration.

For more information about Inline Map state inputs and outputs, see the following:

Repeat actions with Inline Map

Inline Map state example with ItemSelector

Processing input and output in Step Functions

Context object data for Map states

Process data from a queue with a Map state in Step Functions

Inline mode 117

AWS Step Functions Developer Guide

Using Map state in Distributed mode for large-scale parallel workloads
in Step Functions

(® Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

With Step Functions, you can orchestrate large-scale parallel workloads to perform tasks, such

as on-demand processing of semi-structured data. These parallel workloads let you concurrently
process large-scale data sources stored in Amazon S3. For example, you might process a single
JSON or CSV file that contains large amounts of data. Or you might process a large set of Amazon
S3 objects.

To set up a large-scale parallel workload in your workflows, include a Map state in Distributed
mode. The Map state processes items in a dataset concurrently. A Map state set to Distributed

is known as a Distributed Map state. In Distributed mode, the Map state allows high-concurrency
processing. In Distributed mode, the Map state processes the items in the dataset in iterations
called child workflow executions. You can specify the number of child workflow executions that can
run in parallel. Each child workflow execution has its own, separate execution history from that

of the parent workflow. If you don't specify, Step Functions runs 10,000 parallel child workflow
executions in parallel.

The following illustration explains how you can set up large-scale parallel workloads in your
workflows.

Distributed mode 118

AWS Step Functions Developer Guide

Define your data processing
workflow using AWS Lambda or
any of the 220 AWS SDK

| |
I]
I]
I I
| |
| |
I. X |
! integrations :
O —— , | l .
| |
| |
| |
I]
I]
I I
| I

Parent workflow Choose an input data
source, such as an
Amazon S3 bucket

Concurrently process data
using 10,000+ API actions
from over 220 AWS services

b _ _ __ __ __ __ _ _ __ __ __ __ _ __ 1

@._

Write execution results
to an S3 bucket

i .-|;r
i)

Iterate and batch

Step Functions batches the Amazon S3 dataset
and iterates over the collection of dataset items to
execute concurrent child workflows.

Concurrent child
workflow executions

(@ Learn in a workshop

Learn how serverless technologies such as Step Functions and Lambda can simplify
management and scaling, offload undifferentiated tasks, and address the challenges of
large-scale distributed data processing. Along the way, you will work with distributed map
for high concurrency processing. The workshop also presents best practices for optimizing
your workflows, and practical use cases for claims processing, vulnerability scanning, and
Monte Carlo simulation.

Workshop: Large-scale Data Processing with Step Functions

Distributed mode 119

https://catalog.workshops.aws/serverless-data-processing

AWS Step Functions Developer Guide

In this topic

» Key terms
« Distributed Map state definition example (JSONPath)

o Permissions to run Distributed Map

» Distributed Map state fields

» Setting failure thresholds for Distributed Map states in Step Functions

» Learn more about distributed maps

Key terms
Distributed mode

A processing mode of the Map state. In this mode, each iteration of the Map state runs as a child
workflow execution that enables high concurrency. Each child workflow execution has its own
execution history, which is separate from the parent workflow's execution history. This mode
supports reading input from large-scale Amazon S3 data sources.

Distributed Map state

A Map state set to Distributed processing mode.

Map workflow

A set of steps that a Map state runs.

Parent workflow

A workflow that contains one or more Distributed Map states.

Child workflow execution

An iteration of the Distributed Map state. A child workflow execution has its own execution
history, which is separate from the parent workflow's execution history.

Map Run

When you run a Map state in Distributed mode, Step Functions creates a Map Run resource. A
Map Run refers to a set of child workflow executions that a Distributed Map state starts, and
the runtime settings that control these executions. Step Functions assigns an Amazon Resource
Name (ARN) to your Map Run. You can examine a Map Run in the Step Functions console. You
can also invoke the DescribeMapRun API action.

Distributed mode 120

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

Map Runs do not emit metrics to CloudWatch. However, child workflow executions of a Map
Run do emit metrics to CloudWatch. These metrics will have a labelled State Machine ARN with
the following format:

arn:partition:states:region:account:stateMachine:stateMachineName/MapRunLabel
or UUID

For more information, see Viewing Map Runs.

Distributed Map state definition example (JSONPath)

Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads
that meet any combination of the following conditions:

» The size of your dataset exceeds 256 KiB.
» The workflow's execution event history would exceed 25,000 entries.

» You need a concurrency of more than 40 concurrent iterations.

The following Distributed Map state definition example specifies the dataset as a CSV file stored in
an Amazon S3 bucket. It also specifies a Lambda function that processes the data in each row of
the CSV file. Because this example uses a CSV file, it also specifies the location of the CSV column
headers. To view the complete state machine definition of this example, see the tutorial Copying
large-scale CSV data using Distributed Map.

"Map": {
"Type": "Map",
"ItemReader": {
"ReaderConfig": {
"InputType": "CSV",
"CSVHeaderLocation": "FIRST_ROW"

1,
"Resource": "arn:aws:states:::s3:getObject",
"Parameters": {
"Bucket": "amzn-s3-demo-bucket",
"Key": "csv-dataset/ratings.csv"
}

iy

"ItemProcessor": {

Distributed mode 121

AWS Step Functions Developer Guide

"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "EXPRESS"
.
"StartAt": "LambdaTask",
"States": {
"LambdaTask": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:us-east-2:account-
id:function:processCSVData"
},

"End": true

}
},
"Label": "Map",
"End": true,
"ResultWriter": {

"Resource": "arn:aws:states:::s3:putObject",
"Parameters": {
"Bucket": "amzn-s3-demo-destination-bucket",
"Prefix": "csvProcessJobs"
}

Permissions to run Distributed Map

When you include a Distributed Map state in your workflows, Step Functions needs appropriate
permissions to allow the state machine role to invoke the StartExecution API action for the
Distributed Map state.

The following IAM policy example grants the least privileges required to your state machine role
for running the Distributed Map state.

Distributed mode 122

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

® Note

Make sure that you replace stateMachineName with the name of the
state machine in which you're using the Distributed Map state. For example,
arn:aws:states:region:account-id:stateMachine:mystateMachine.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"states:StartExecution"
1,
"Resource": [
"arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachineName"
]
.
{
"Effect": "Allow",
"Action": [
"states:DescribeExecution"
1,
"Resource": "arn:aws:states:us-
east-1:123456789012:execution:myStateMachineName:*"
}
]
}

In addition, you need to make sure that you have the least privileges necessary to access the AWS
resources used in the Distributed Map state, such as Amazon S3 buckets. For information, see IAM
policies for using Distributed Map states.

Distributed Map state fields

To use the Distributed Map state in your workflows, specify one or more of these fields. You specify
these fields in addition to the common state fields.

Distributed mode 123

AWS Step Functions Developer Guide

Type (Required)

Sets the type of state, such as Map.

ItemProcessor (Required)

Contains the following JSON objects that specify the Map state processing mode and definition.

ProcessorConfig - JSON object that specifies the mode for processing items, with the
following sub-fields:

» Mode - Set to DISTRIBUTED to use the Map state in Distributed mode.

/A Warning

Distributed mode is supported in Standard workflows but not supported in Express
workflows.

« ExecutionType - Specifies the execution type for the Map workflow as either STANDARD
or EXPRESS. You must provide this field if you specified DISTRIBUTED for the Mode sub-
field. For more information about workflow types, see Choosing workflow type in Step

Functions.

« StartAt - Specifies a string that indicates the first state in a workflow. This string is case-
sensitive and must match the name of one of the state objects. This state runs first for each
item in the dataset. Any execution input that you provide to the Map state passes to the
StartAt state first.

« States — A JSON object containing a comma-delimited set of states. In this object, you

define the Map workflow.

ItemReader

Specifies a dataset and its location. The Map state receives its input data from the specified
dataset.

In Distributed mode, you can use either a JSON payload passed from a previous state or a large-
scale Amazon S3 data source as the dataset. For more information, see ItemReader (Map).

Items (Optional, JSONata only)

A JSON array or a JSONata expression that must evaluate to an array.

Distributed mode 124

AWS Step Functions Developer Guide

ItemsPath (Optional, JSONPath only)

Specifies a reference path using the JsonPath syntax to select the JSON node that contains an

array of items inside the state input.

In Distributed mode, you specify this field only when you use a JSON array from a previous step
as your state input. For more information, see IltemsPath (Map, JSONPath only).

ItemSelector (Optional, JSONPath only)

Overrides the values of individual dataset items before they're passed on to each Map state
iteration.

In this field, you specify a valid JSON input that contains a collection of key-value pairs.
These pairs can either be static values that you define in your state machine definition, values
selected from the state input using a path, or values accessed from the context object. For more

information, see ItemSelector (Map).

ItemBatcher (Optional)

Specifies to process the dataset items in batches. Each child workflow execution then receives a
batch of these items as input. For more information, see ItemBatcher (Map).

MaxConcurrency (Optional)

Specifies the number of child workflow executions that can run in parallel. The interpreter only
allows up to the specified number of parallel child workflow executions. If you don't specify a
concurrency value or set it to zero, Step Functions doesn't limit concurrency and runs 10,000
parallel child workflow executions. In JSONata states, you can specify a JSONata expression
that evaluates to an integer.

(® Note
While you can specify a higher concurrency limit for parallel child workflow executions,
we recommend that you don't exceed the capacity of a downstream AWS service, such
as AWS Lambda.

MaxConcurrencyPath (Optional, JSONPath only)

If you want to provide a maximum concurrency value dynamically from the state input using a
reference path, use MaxConcurrencyPath. When resolved, the reference path must select a
field whose value is a non-negative integer.

Distributed mode 125

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

® Note

A Map state cannot include both MaxConcurrency and MaxConcurrencyPath.

ToleratedFailurePercentage (Optional)

Defines the percentage of failed items to tolerate in a Map Run. The Map Run automatically
fails if it exceeds this percentage. Step Functions calculates the percentage of failed items as
the result of the total number of failed or timed out items divided by the total number of items.
You must specify a value between zero and 100. For more information, see Setting failure
thresholds for Distributed Map states in Step Functions.

In JSONata states, you can specify a JSONata expression that evaluates to an integer.

ToleratedFailurePercentagePath (Optional, JSONPath only)

If you want to provide a tolerated failure percentage value dynamically from the state input
using a reference path, use ToleratedFailurePercentagePath. When resolved, the
reference path must select a field whose value is between zero and 100.

ToleratedFailureCount (Optional)
Defines the number of failed items to tolerate in a Map Run. The Map Run automatically fails if

it exceeds this number. For more information, see Setting failure thresholds for Distributed Map
states in Step Functions.

In JSONata states, you can specify a JSONata expression that evaluates to an integer.

ToleratedFailureCountPath (Optional, JSONPath only)

If you want to provide a tolerated failure count value dynamically from the state input using a
reference path, use ToleratedFailureCountPath. When resolved, the reference path must
select a field whose value is a non-negative integer.

Label (Optional)

A string that uniquely identifies a Map state. For each Map Run, Step Functions adds the label to
the Map Run ARN. The following is an example of a Map Run ARN with a custom label named

demoLabel:

arn:aws:states:region:account-id:mapRun:demoWorkflow/
demolLabel:3c39a231-69bb-3d89-8607-9el124eddbb@b

Distributed mode 126

AWS Step Functions Developer Guide

If you don't specify a label, Step Functions automatically generates a unique label.

(® Note
Labels can't exceed 40 characters in length, must be unique within a state machine
definition, and can't contain any of the following characters:
» Whitespace
« Wildcard characters (? *)
« Bracket characters(< > { } [1)
o Specialcharacters(: ; , \ | *~$ # % & ~ ")

e Control characters (\\u@000 - \\u@01f or \\u@07f - \\u@@9of).

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

ResultWriter (Optional)

Specifies the Amazon S3 location where Step Functions writes all child workflow execution
results.

Step Functions consolidates all child workflow execution data, such as execution input and
output, ARN, and execution status. It then exports executions with the same status to their
respective files in the specified Amazon S3 location. For more information, see ResultWriter

(Map).

If you don't export the Map state results, it returns an array of all the child workflow execution
results. For example:

[1, 2, 3, 4, 5]

ResultPath (Optional, JSONPath only)

Specifies where in the input to place the output of the iterations. The input is then filtered as
specified by the OutputPath field if present, before it is passed as the state's output. For more
information, see Input and Output Processing.

Distributed mode 127

AWS Step Functions Developer Guide

ResultSelector (Optional)

Pass a collection of key-value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

® Tip
If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,
see Flattening an array of arrays.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy. An execution uses the retry policy
if the state encounters runtime errors. For more information, see State machine examples using

Retry and using Catch.

(@ Note

If you define Retriers for the Distributed Map state, the retry policy applies to all of the
child workflow executions the Map state started. For example, imagine your Map state
started three child workflow executions, out of which one fails. When the failure occurs,
the execution uses the Retry field, if defined, for the Map state. The retry policy applies
to all the child workflow executions and not just the failed execution. If one or more
child workflow executions fails, the Map Run fails.

When you retry a Map state, it creates a new Map Run.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. Step Functions uses the
Catchers defined in Catch if the state encounters runtime errors. When an error occurs,

the execution first uses any retriers defined in Retry. If the retry policy isn't defined or is
exhausted, the execution uses its Catchers, if defined. For more information, see Fallback States.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

Distributed mode 128

AWS Step Functions Developer Guide

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%]} characters.

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see the section called “Transforming data".

Assign (Optional)

Used to store variables. The Assign field accepts a JSON object with key/value pairs that
define variable names and their assigned values. Any string value, including those inside objects
or arrays, will be evaluated as JSONata when surrounded by {% %} characters

For more information, see the section called “Passing data with variables”.

Setting failure thresholds for Distributed Map states in Step Functions

When you orchestrate large-scale parallel workloads, you can also define a tolerated failure
threshold. This value lets you specify the maximum number of, or percentage of, failed items
as a failure threshold for a Map Run. Depending on which value you specify, your Map Run fails
automatically if it exceeds the threshold. If you specify both values, the workflow fails when it
exceeds either value.

Specifying a threshold helps you fail a specific number of items before the entire Map Run fails.
Step Functions returns a States.ExceedToleratedFailureThreshold error when the Map
Run fails because the specified threshold is exceeded.

® Note

Step Functions may continue to run child workflows in a Map Run even after the tolerated
failure threshold is exceeded, but before the Map Run fails.

To specify the threshold value in Workflow Studio, select Set a tolerated failure threshold in
Additional configuration under the Runtime settings field.

Distributed mode 129

AWS Step Functions Developer Guide

Tolerated failure percentage

Defines the percentage of failed items to tolerate. Your Map Run fails if this value is exceeded.
Step Functions calculates the percentage of failed items as the result of the total number

of failed or timed out items divided by the total number of items. You must specify a value
between zero and 100. The default percentage value is zero, which means that the workflow
fails if any one of its child workflow executions fails or times out. If you specify the percentage
as 100, the workflow won't fail even if all child workflow executions fail.

Alternatively, you can specify the percentage as a reference path to an existing key-value pair
in your Distributed Map state input. This path must resolve to a positive integer between 0 and
100 at runtime. You specify the reference path in the ToleratedFailurePercentagePath
sub-field.

For example, given the following input:

"percentage": 15

}

You can specify the percentage using a reference path to that input as follows:

IlMapll: {
IlTypell: IlMapll’

"ToleratedFailurePercentagePath": "$.percentage"

/A Important

You can specify either ToleratedFailurePercentage or
ToleratedFailurePercentagePath, but not both in your Distributed Map state
definition.

Distributed mode 130

AWS Step Functions Developer Guide

Tolerated failure count

Defines the number of failed items to tolerate. Your Map Run fails if this value is exceeded.

Alternatively, you can specify the count as a reference path to an existing key-value pair in your
Distributed Map state input. This path must resolve to a positive integer at runtime. You specify
the reference path in the ToleratedFailureCountPath sub-field.

For example, given the following input:

"count": 10

You can specify the number using a reference path to that input as follows:

IlMapll: {
IlTypell: IlMapll’

"ToleratedFailureCountPath": "$.count"

/A Important

You can specify either ToleratedFailureCount or ToleratedFailureCountPath,
but not both in your Distributed Map state definition.

Learn more about distributed maps

To continue learning more about Distributed Map state, see the following resources:

 Input and output processing

To configure the input that a Distributed Map state receives and the output that it generates,
Step Functions provides the following fields:

» ItemReader (Map)

Distributed mode 131

AWS Step Functions Developer Guide

« ItemsPath (Map, JSONPath only)

» ItemSelector (Map)

o ItemBatcher (Map)
o ResultWriter (Map)

» How Step Functions parses input CSV files

In addition to these fields, Step Functions also provides you the ability to define a tolerated
failure threshold for Distributed Map. This value lets you specify the maximum number of, or
percentage of, failed items as a failure threshold for a Map Run. For more information about
configuring the tolerated failure threshold, see Setting failure thresholds for Distributed Map
states in Step Functions.

« Using Distributed Map state

Refer the following tutorials and sample projects to get started with using Distributed Map state.

» Copy large-scale CSV using Distributed Map

» Processing batch data with a Lambda function in Step Functions

» Processing individual items with a Lambda function in Step Functions

» Sample project: Process a CSV file with Distributed Map

« Sample project: Process data in an Amazon S3 bucket with Distributed Map

« Examine Distributed Map state execution

The Step Functions console provides a Map Run Details page, which displays all the information
related to a Distributed Map state execution. For information about how to examine the
information displayed on this page, see Viewing Map Runs.

Pass workflow state

(@ Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

A Pass state ("Type": "Pass") passes its input to its output, without performing work. Pass
states are useful when constructing and debugging state machines.

Pass 132

AWS Step Functions Developer Guide

You can also use a Pass state to transform JSON state input using filters, and then pass the
transformed data to the next state in your workflows. For information about input transformation,
see Manipulate parameters in Step Functions workflows.

In addition to the common state fields, Pass states allow the following fields.

Assign (Optional, JSONata only)

A collection of key-value pairs to assign data to variables. For more information, see the section
called "Passing data with variables”.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%]} characters.

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see the section called “Transforming data".

Result (Optional, JSONPath only)

Refers to the output of a virtual task that is passed on to the next state. If you include
the ResultPath field in your state machine definition, Result is placed as specified by
ResultPath and passed on to the next state.

ResultPath (Optional, JSONPath only)

Specifies where to place the output (relative to the input) of the virtual task specified in
Result. The input is further filtered as specified by the OutputPath field (if present) before
being used as the state's output. For more information, see Processing input and output.

Parameters (Optional, JSONPath only)

Creates a collection of key-value pairs that will be passed as input. You can specify Parameters
as a static value or select from the input using a path. For more information, see the section
called "Manipulate parameters with paths”.

Pass 133

AWS Step Functions

Pass State Example (JSONPath)

Developer Guide

Here is an example of a Pass state that injects some fixed data into the state machine, probably
for testing purposes.

"NO'Op": {
"Type": "PaSS",
"Result": {

"x-datum": 0.381018,
"y-datum": 622.2269926397355

},
"ResultPath": "$.coords",
"End": true

Suppose the input to this state is the following.

{

"georefOf": "Home"

}

Then the output would be this.

{
"georefOf": "Home",
"coords": {
"x-datum": 0.381018,
"y-datum": 622.2269926397355
}
}

Wait workflow state

(® Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

Pass State Example (JSONPath) 134

AWS Step Functions Developer Guide

AWait state ("Type": "Wait") delays the state machine from continuing for a specified time.
You can choose either a relative time, specified in seconds from when the state begins, or an
absolute end time, specified as a timestamp.

In addition to the common state fields, Wait states have one of the following fields.

Seconds

A time, in seconds, to wait before beginning the state specified in the Next field. You must
specify time as an integer value from 0 to 99999999. In JSONata states, you can alternatively
specify a JSONata expression which must evaluate to an integer in the stated range.

Timestamp
An absolute time to wait until beginning the state specified in the Next field.

Timestamps must conform to the RFC3339 profile of ISO 8601, with the further restrictions
that an uppercase T must separate the date and time portions, and an uppercase Z must denote
that a numeric time zone offset is not present, for example, 2024-08-18T17:33:00Z.

In JSONata states, you can specify a JSONata expression which results in a string that conforms
to the previous requirements.

® Note

Currently, if you specify the wait time as a timestamp, Step Functions considers the time
value up to seconds and truncates milliseconds.

SecondsPath (Optional, JSONPath only)

A path in the states input data to an integer value that specifies the time to wait, in seconds,
before proceeding to the next state.

TimestampPath (Optional, JSONPath only)

A path in the states input data to an absolute date and time (timestamp) to wait before
proceeding to the next state.

Wait 135

AWS Step Functions Developer Guide

® Note

You must specify exactly one of Seconds, Timestamp, SecondsPath, or
TimestampPath. In addition, the maximum wait time that you can specify for Standard
Workflows and Express workflows is one year and five minutes respectively.

Wait State Examples

The following Wait state introduces a 10-second delay into a state machine.

"wait_ten_seconds": {
"Type": "Wait",
"Seconds": 10,
"Next": "NextState"

In the next example, the Wait state waits until an absolute time: March 14, 2024, at 1:59 AM UTC.

"wait_until" : {
"Type": "Wait",
"Timestamp": "2024-03-14T01:59:002",
"Next": "NextState"

You don't have to hard-code the wait duration. For example, given the following input data:

"expirydate": "2024-03-14T01:59:00Z"
}

You can select the value of "expirydate" from the input using a reference path to select it from the
input data.

"wait_until" : {
"Type": "Wait",
"TimestampPath": "$.expirydate",
"Next": "NextState"

Wait State Examples 136

AWS Step Functions Developer Guide

Succeed workflow state

A Succeed state ("Type": "Succeed") stops an execution successfully. The Succeed state is a
useful target for Choice state branches that don't do anything but stop the execution.

Because Succeed states are terminal states, they have no Next field, and don't need an End field,
as shown in the following example.

"SuccessState": {
"Type": "Succeed"
}

In addition to the common state fields, Succeed states that use JSONata can include an Output
field.

Output (Optional, JSONata only)

Used to specify and transform output from the state. When specified, the value overrides the
state output default.

The output field accepts any JSON value (object, array, string, number, boolean, null). Any string
value, including those inside objects or arrays, will be evaluated as JSONata if surrounded by {%
%} characters.

Output also accepts a JSONata expression directly, for example: "Output": "{% jsonata
expression %}"

For more information, see the section called “Transforming data”.

Fail workflow state

(® Managing state and transforming data

Learn about Passing data between states with variables and Transforming data with
JSONata.

A Fail state ("Type": "Fail") stops the execution of the state machine and marks it as a
failure, unless it is caught by a Catch block.

Succeed 137

AWS Step Functions Developer Guide

The Fail state only allows the use of Type and Comment fields from the set of common state
fields. In addition, the Fail state allows the following fields.

Cause (Optional)

A custom string that describes the cause of the error. You can specify this field for operational
or diagnostic purposes.

In JSONata states, you can also specify a JSONata expression.

CausePath (Optional, JSONPath only)

If you want to provide a detailed description about the cause of the error dynamically from the
state input using a reference path, use CausePath. When resolved, the reference path must

select a field that contains a string value.

You can also specify CausePath using an intrinsic function that returns a string. These

intrinsics are: States.Format, States.JsonToString, States.ArrayGetltem, States.Base64Encode,
States.Base64Decode, States.Hash, and States.UUID.

/A Important

« You can specify either Cause or CausePath, but not both in your Fail state definition.

« As an information security best practice, we recommend that you remove any
sensitive information or internal system details from the cause description.

Exrxror (Optional)

An error name that you can provide to perform error handling using Retry or Catch fields. You

can also provide an error name for operational or diagnostic purposes.

In JSONata states, you can also specify a JSONata expression.
ExrrorPath (Optional, JSONPath only)
If you want to provide a name for the error dynamically from the state input using a reference

path, use ExrorPath. When resolved, the reference path must select a field that contains a
string value.

Fail 138

AWS Step Functions Developer Guide

You can also specify ExrrorPath using an intrinsic function that returns a string. These
intrinsics are: States.Format, States.JsonToString, States.ArrayGetltem, States.Base64Encode,
States.Base64Decode, States.Hash, and States.UUID.

/A Important

» You can specify either Exror or ExrrorPath, but not both in your Fail state definition.

« As an information security best practice, we recommend that you remove any
sensitive information or internal system details from the error name.

Because Fail states always exit the state machine, they have no Next field and don't require an
End field.

Fail state definition examples
The following Fail state definition example specifies static Error and Cause field values.

"FailState": {
"Type": "Fail",
"Cause": "Invalid response.",
"Error": "ErrorA"

The following Fail state definition example uses reference paths dynamically to resolve the Error
and Cause field values.

"FailState": {
||Type||: ||Fail||’
"CausePath": "$.Cause",
"ExrrorPath": "$.Error"

The following Fail state definition example uses the States.Format intrinsic function to specify the
Error and Cause field values dynamically.

"FailState": {

IlTypell: IlFailll’

"CausePath": "States.Format('This is a custom error message for {3}, caused by {}.',
$.Error, $.Cause)",

Fail state definition examples 139

AWS Step Functions Developer Guide

"ErrorPath": "States.Format('{}', $.Error)"

Fail state definition examples 140

AWS Step Functions Developer Guide

Tutorials and workshops for learning Step Functions

Learn from this guide, workshops, and practical tutorials how to integrate and orchestrate services
with Step Functions.

141

AWS Step Functions Developer Guide

1 Orchestrate tasks 2 Choosetasks 3 Retry tasks
o " based on data o

A B R x@

7\
C D

4 Add a human in the loop 5 Process data in parallel
° _ Data
e —fg—F | 1] |
L § E
P1 P2 P3 Pn

Data[0] —» M1 —» M2 —» Mn
D/v [o] i

¢ [Results]

—> Data[1] —» M1 —»> M2 —» Mn

a i
~ Data[n] —» M1 —» M2 — Mn

Tutorials for learning Step Functions

For a quick introduction, see: Getting started tutorial.

Tutorials 142

AWS Step Functions Developer Guide

For specific scenarios, see the following tutorials:

e the section called “Handle error conditions”

» the section called “Create a state machine using AWS SAM"

e the section called “Create a state machine with CloudFormation”

» the section called “Using CDK to create an Express workflow”

 the section called “Using CDK to create a Standard workflow”

e the section called “Examine executions”

e the section called “Create a state machine that uses Lambda”

 the section called “"Wait for human approval”

» the section called “"Repeat actions with Inline Map”

 the section called “Copy large-scale CSV using Distributed Map”

» the section called "Iterate a loop with Lambda”

e the section called “Process batch data with Lambda”

e the section called “Process individual items with Lambda”

» the section called “Start a workflow from EventBridge”

 the section called “Create an APl using APl Gateway”

» the section called “Create an Activity state machine”

» the section called "View X-Ray traces”

« the section called “Gather Amazon S3 bucket info”

 the section called “Continue long-running workflows using Step Functions APl (recommended)”

 the section called “Using Lambda to continue a workflow"”

« the section called “Access cross-account resources”

@ Learn with starter templates

To deploy and learn from ready-to-run state machines for a variety of use cases, see Starter
templates.

Tutorials 143

AWS Step Functions Developer Guide

Handling error conditions in a Step Functions state machine

In this tutorial, you create an AWS Step Functions state machine with a Task state that invokes an
example Lambda function built to throw a custom error.

Tasks are one of the Fallback states, for which you can configure a Catch field. When errors are
received by the integration, next steps are chosen by the catch field based on the error name.

Step 1: Create a Lambda function that throws an error
Use a Lambda function to simulate an error condition.

Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

Choose Create function.
Choose Use a blueprint, search for Step Functions, and choose Throw a custom error.
For Function name, enter ThrowErrorFunction.

For Role, choose Create a new role with basic Lambda permissions.

A o

Choose Create function.

The following code should be displayed in the code pane.

export const handler = async () => {
function CustomError(message) {
this.name = 'CustomError';
this.message = message;

}

CustomError.prototype = new Error();

throw new CustomError('This is a custom error!');

};

Step 2: Test your Lambda function

Before creating a state machine, verify your Lambda function throws your CustomError when
invoked.

1. Choose the Test tab.

2. Choose Create a new event and keep the default Event JSON

Handle error conditions 144

https://console.aws.amazon.com/lambda/

AWS Step Functions Developer Guide

3. Choose Test to invoke your function with your test event.

4. Expand Executing function to review the details of the thrown error.

You now have a Lambda function ready to throw custom error.

In the next step, you will set up a state machine to catch and retry on that error.

Step 3: Create your state machine machine

Use the Step Functions console to create a state machine that uses a Task workflow state with a
Catch configuration. The state machine will invoke the Lambda function, which you've built to
simulate throwing an error when the function is invoked. Step Functions retries the function using
exponential backoff between retries.

1. Open the Step Functions console, choose State machines from the menu, then choose Create
state machine.

2. Choose Create from blank, and for State machine name, enter CatchErrorStateMachine.

3. Accept the default type (Standard), then choose Continue to edit your state machine in
Workflow Studio.

4. Choose Code to switch to the ASL editor, then replace the code with following state machine
definition:

"Comment": "Example state machine that can catch a custom error thrown by a
function integration.",
"StartAt": "CreateAccount",
"States": {
"CreateAccount": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"Output": "{% $states.result.Payload %}",
"Arguments": {
"FunctionName": "arn:aws:lambda:region:account-
id:function:ThrowErrorFunction:$LATEST",
"Payload": "{% $states.input %}"
},
"Catch": [
{
"ErrorEquals": [
"CustomError"

Step 3: Create your state machine machine 145

https://console.aws.amazon.com/states/home

AWS Step Functions

Developer Guide

1,

"Next": "CustomErrorFallback"
},
{

"ErrorEquals": [
"States.ALL"

1,

"Next": "CatchAllFallback"

}
1,
"End": true,
"Retry": [

{

"ErrorEquals": [
"CustomError",
"Lambda.ServiceException",
"Lambda.AWSLambdaException",
"Lambda.SdkClientException",
"Lambda.TooManyRequestsException"

1,

"IntervalSeconds": 1,

"MaxAttempts": 3,

"BackoffRate": 2,

"JitterStrategy": "FULL"

}
]
},

"CustomErrorFallback": {
HTypeH: HPaSSH’
"End": true,
"Output": {

"Result": "Fallback from a custom error function.

}

iy
"CatchAllFallback": {

"Type": "Passﬂ’
"End": true,
"Output": {

"Result": "Fallback from all other error codes."

}

},
"QueryLanguage": "JSONata"

Step 3: Create your state machine machine

146

AWS Step Functions Developer Guide

}

Step 4: Configure your state machine

Before you run your state machine, you must first connect to the Lambda function that you
previously created.
1. Switch back to Design mode and select the Lambda : Invoke task state named CreateAccount.

2. On the Configuration tab, look for APl Arguments. For Function name choose the Lambda
function that you created earlier.

3. Choose Create, review the roles, then choose Confirm to create your state machine.

Step 5: Run the state machine

After you create and configure your state machine, you can run it and examine the flow.

1. In the editor, choose Execute.

Alternatively, from the State machines list, choose Start execution.

2. In the Start execution dialog box, accept the generated ID, and for Input, enter the following
JSON:

{ "Cause" : "Custom Function Error" }

3. Choose Start execution.

The Step Functions console directs you to a page that's titled with your execution ID, known as the
Execution Details page. You can review the execution results as the workflow progresses and after it
completes.

To review the execution results, choose individual states on the Graph view, and then choose the
individual tabs on the Step details pane to view each state's details including input, output, and
definition respectively. For details about the execution information you can view on the Execution
Details page, see Execution details overview.

Step 4: Configure your state machine 147

AWS Step Functions Developer Guide

Your state machine invokes the Lambda function, which throws a CustomError. Choose the
CreateAccount step in the Graph view to see the state output. Your state machine output should
look similar to the following illustration:

Graph view ‘ S CreateAccount
.: Logs | Lambda [3 | Log group [2
N Input/Output Variables Details Definition Retry Events
 start)
\\ /
Type Status Resource Duration Time
iqi i i 2 £ :00:
. y AWS Lambda Invoke » Original execution @® Failed Logs | Lambda [2 | Log group [00:00:00.448 [
@ CreateAccount > Retry @ Failed Logs | Lambda [% | Log group [2 00:00:00.130
[Catch) \(Catch) > Retry ® Failed Logs | Lambda [7 | Log group [7 00:00:00.136 1
‘ """"""""""""" g ¥ Retry A Caught error Logs | Lambda [2 | Log group [3 00:00:00.140 1
Pass state @ Pass state
State output
5 CustomErrorFallback 3 CatchAllFallback ‘1 =
LY 1v [u]
l 2 "Error": "CustomError" maues <[>
N 3 "Cause": "{\" errorType\ :\"CustomError\",\"errorMessage\":\"Custom error: Custom
{ End Function Error\ s\"trace\": [\"Error\",\" at Runtime.handler
N4 (file:///var/task/index.mjs:6:29)\",\" at Runtime.handleOnceNonStreaming
- (file:///var/runtime/index.mjs:1205:29)\"]1}"
4 ¥
@ nprogress [@)| Failed |4\ caught error © canceled [@)] Succeeded
.
Congratulations!
.

You now have a state machine that can catch and handle error conditions thrown by a Lambda
function. You can use this pattern to implement robust error handling in your workflows.

(@ Note

You can also create state machines that Retry on timeouts or those that use Catch to
transition to a specific state when an error or timeout occurs. For examples of these error
handling techniques, see Examples Using Retry and Using Catch.

Create a Step Functions state machine using AWS SAM

In this guide, you download, build, and deploy a sample AWS SAM application that contains an
AWS Step Functions state machine. This application creates a mock stock trading workflow which
runs on a pre-defined schedule (note that the schedule is disabled by default to avoid incurring
charges).

The following diagram shows the components of this application:

Create a state machine using AWS SAM 148

AWS Step Functions Developer Guide

i StockTradingStateMachine
=
_t; StockSellerFunction :

HourlyTradingSchedule StockCheckerFunction & TransactionTable

StockBuyerFunction

The following is a preview of commands that you run to create your sample application. For more
details about each of these commands, see the sections later in this page

Step 1 - Download a sample application. For this tutorial you

will follow the prompts to select an AWS Quick Start Template
called 'Multi-step workflow'

sam init

Step 2 - Build your application
cd project-directory

sam build

Step 3 - Deploy your application
sam deploy --guided

Prerequisites

This guide assumes that you've completed the steps in the Installing the AWS SAM CLI for your OS.
It assumes that you've done the following:

1. Created an AWS account.
2. Configured IAM permissions.
3. Installed Homebrew. Note: Homebrew is only a prerequisite for Linux and macOS.

4. Installed the AWS SAM CLI. Note: Make sure you have version 0.52.0 or later. You can check
which version you have by executing the command sam --version.

Prerequisites 149

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

AWS Step Functions Developer Guide

Step 1: Download a Sample AWS SAM Application

Command to run:
sam init

Follow the on-screen prompts to select the following:

1. Template: AWS Quick Start Templates
2. Language: Python, Ruby, NodelS, Go, Java, or .NET
3. Project name: (name of your choice - default is sam-app)

4. Quick start application: Multi-step workflow

What AWS SAM is doing:

This command creates a directory with the name you provided for the 'Project name' prompt
(default is sam-app). The specific contents of the directory will depend on the language you
choose.

Following are the directory contents when you choose one of the Python runtimes:

README.md

functions

__init__ .py

stock_buyer

__init__ .py

app.py

requirements.txt
stock_checker

__init__ .py

app.py

requirements.txt
stock_seller

__init__ .py

app.py

requirements.txt
statemachine

stock_trader.asl.json
template.yaml

tests

HOoH OHF O OB OHF O OH OH O B OH R
+*

Step 1: Download a Sample AWS SAM Application

150

AWS Step Functions Developer Guide

unit
__init__ .py
test_buyer.py
test_checker.py
test_seller.py

There are two especially interesting files that you can take a look at:

« template.yaml: Contains the AWS SAM template that defines your application's AWS
resources.

« statemachine/stockTrader.asl. json: Contains the application's state machine definition,
which is written in Using Amazon States Language to define Step Functions workflows.

You can see the following entry in the template.yaml file, which points to the state machine
definition file:

Properties:
DefinitionUri: statemachine/stock_trader.asl.json

It can be helpful to keep the state machine definition as a separate file instead of embedding it in
the AWS SAM template. For example, tracking changes to the state machine definition is easier if
you don't include the definition in the template. You can use the Workflow Studio to create and
maintain the state machine definition, and export the definition from the console directly to the
Amazon States Language specification file without merging it into the template.

For more information about the sample application, see the README . md file in the project
directory.

Step 2: Build Your Application
Command to run:

First change into the project directory (that is, the directory where the template.yaml file for the
sample application is located; by default is sam-app), then run this command:

sam build

Example output:

Step 2: Build Your Application 151

AWS Step Functions Developer Guide

Build Succeeded

Built Artifacts : .aws-sam/build
Built Template : .aws-sam/build/template.yaml

Commands you can use next

[*] Invoke Function: sam local invoke
[*] Deploy: sam deploy --guided

What AWS SAM is doing:

The AWS SAM CLI comes with abstractions for a number of Lambda runtimes to build your
dependencies, and copies all build artifacts into staging folders so that everything is ready to be
packaged and deployed. The sam build command builds any dependencies that your application
has, and copies the build artifacts to folders under .aws-sam/build.

Step 3: Deploy Your Application to the AWS Cloud

Command to run:

sam deploy --guided

Follow the on-screen prompts. You can just respond with Enter to accept the default options
provided in the interactive experience.

What AWS SAM is doing:

This command deploys your application to the AWS cloud. It take the deployment artifacts you
build with the sam build command, packages and uploads them to an Amazon S3 bucket created
by AWS SAM CLI, and deploys the application using AWS CloudFormation. In the output of the
deploy command you can see the changes being made to your AWS CloudFormation stack.

You can verify the example Step Functions state machine was successfully deployed by following
these steps:

1. Sign in to the AWS Management Console and open the Step Functions console at https://
console.aws.amazon.com/states/.

Step 3: Deploy Your Application to the AWS Cloud 152

https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

2. In the left navigation, choose State machines.

3. Find and choose your new state machine in the list. It will be named
StockTradingStateMachine-<unique-hash>.

4. Choose the Definition tab.

You should now see a visual representation of your state machine. You can verify that the
visual representation matches the state machine definition found in the statemachine/
stockTrader.asl. json file of your project directory.

Troubleshooting

SAM CLI error: "no such option: --guided"

When executing sam deploy, you see the following error:

Error: no such option: --guided

This means that you are using an older version of the AWS SAM CLI that does not support the - -
guided parameter. To fix this, you can either update your version of AWS SAM CLI to 0.33.0 or
later, or omit the - -guided parameter from the sam deploy command.

SAM CLI error: "Failed to create managed resources: Unable to locate credentials”

When executing sam deploy, you see the following error:

Error: Failed to create managed resources: Unable to locate credentials

This means that you have not set up AWS credentials to enable the AWS SAM CLI to make AWS
service calls. To fix this, you must set up AWS credentials. For more information, see Setting Up
AWS Credentials in the AWS Serverless Application Model Developer Guide.

Clean Up

If you no longer need the AWS resources you created by running this tutorial, you can remove them
by deleting the AWS CloudFormation stack that you deployed.

Troubleshooting 153

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started-set-up-credentials.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started-set-up-credentials.html

AWS Step Functions Developer Guide

To delete the AWS CloudFormation stack created with this tutorial using the AWS Management
Console, follow these steps:

1. Signin to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. In the left navigation pane, choose Stacks.
3. Inthe list of stacks, choose sam-app (or the name of stack you created).

4. Choose Delete.

When done, the status of the of the stack will change to DELETE_COMPLETE.

Alternatively, you can delete the AWS CloudFormation stack by executing the following AWS CLI
command:

aws cloudformation delete-stack --stack-name sam-app --region region

Verify Deleted Stack

For both methods of deleting the AWS CloudFormation stack, you can verify it was deleted
by going to the https://console.aws.amazon.com/cloudformation, choosing Stacks in the left

navigation pane, and choosing Deleted in the dropdown to the right of the search text box. You
should see your stack name sam-app (or the name of the stack you created) in the list of deleted
stacks.

Examining state machine executions in Step Functions

In this tutorial, you will learn how to inspect the execution information displayed on the Execution
Details page and view the reason for a failed execution. Then, you'll learn how to access different
iterations of a Map state execution. Finally, you'll learn how to configure the columns on the Table
view and apply suitable filters to view only the information of interest to you.

In this tutorial, you create a Standard type state machine, which obtains the price of a set of fruits.

To do this, the state machine uses three AWS Lambda functions which return a random list of four

fruits, the price of each fruit, and the average cost of the fruits. The Lambda functions are designed
to throw an error if the price of the fruits is less than or equal to a threshold value.

Examine executions 154

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

AWS Step Functions Developer Guide

® Note

While the following procedure contains instructions for how to examine the details of
a Standard workflow execution, you can also examine the details for Express workflow
executions. For information about the differences between the execution details for
Standard and Express workflow types, see Standard and Express console experience
differences.

Step 1: Create and test the required Lambda functions

1. Open the Lambda console and then perform steps 1 through 4 in the Step 1: Create a Lambda

function section. Make sure to name the Lambda function GetListOfFruits.

2. After you create your Lambda function, copy the function's Amazon Resource Name (ARN)
displayed in the upper-right corner of the page. To copy the ARN, click the copy icon to copy
the Lambda function's Amazon Resource Name. The following is an example ARN, where
function-name is the name of the Lambda function (in this case, GetListOfFruits):

arn:aws:lambda:region:123456789012:function: function-name

3. Copy the following code for the Lambda function into the Code source area of the
GetListOfFruits page.

function getRandomSubarray(arr, size) {
var shuffled = arr.slice(@), i = arr.length, temp, index;
while (i--) {
index = Math.floor((i + 1) * Math.random());
temp = shuffled[index];
shuffled[index] = shuffled[i];
shuffled[i] = temp;
}

return shuffled.slice(@, size);

exports.handler = async function(event, context) {

const fruits = ['Abiu', 'Acai', 'Acerola', 'Ackee’', 'African
cucumber', 'Apple', 'Apricot’', 'Avocado', 'Banana', 'Bilberry"', 'Blackberry', 'Blackcurrant', 'Jos

Step 1: Create and test the required Lambda functions 155

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

const errorChance = 45;
const waitTime = Math.floor(100 * Math.random());
await new Promise(r => setTimeout(() => r(), waitTime));
const num = Math.floor(100 * Math.random());
// const num = 51;

if (num <= errorChance) {
throw(new Error('Error'));

return getRandomSubarray(fruits, 4);

};

4. Choose Deploy, and then choose Test, to deploy the changes and see the output of your
Lambda function.

5. Create two additional Lambda functions, named GetFruitPrice and CalculateAverage
respectively, with the following steps:

a. Copy the following code into the Code source area of the GetFruitPrice Lambda function:

exports.handler = async function(event, context) {

const errorChance = 0;
const waitTime = Math.floor(100 * Math.random());

await new Promise(r => setTimeout(() => r(), waitTime));
const num = Math.floor(100 * Math.random());

if (num <= errorChance) {
throw(new Error('Error'));

return Math.floor(Math.random()*100)/10;
Iy

b. Copy the following code into the Code source area of the CalculateAverage Lambda
function:

function getRandomSubarray(arr, size) {
var shuffled = arr.slice(@), i = arr.length, temp, index;

Step 1: Create and test the required Lambda functions 156

AWS Step Functions Developer Guide

while (i--) {
index = Math.floor((i + 1) * Math.random());
temp = shuffled[index];
shuffled[index] = shuffled[i];
shuffled[i] = temp;
}

return shuffled.slice(@, size);

const average = arr => arr.reduce((p, ¢) =>p + c, 0) / arr.length;

exports.handler = async function(event, context) {
const errors = [
"Error getting data from DynamoDB",
"Error connecting to DynamoDB",
"Network error",
"MemoryError - Low memory"

]
const errorChance = 0;
const waitTime = Math.floor(100 * Math.random());
await new Promise(r => setTimeout(() => (), waitTime));
const num = Math.floor(100 * Math.random());

if (num <= errorChance) {
throw(new Error(getRandomSubarray(errors, 1)[0]));

return average(event);

};

c. Make sure to copy the ARNs of these two Lambda functions, and then Deploy and Test
them.

Step 2: Create and execute the state machine

Use the Step Functions console to create a state machine that invokes the Lambda functions you
created in Step 1. In this state machine, three Map states are defined. Each of these Map states
contains a Task state that invokes one of your Lambda functions. Additionally, a Retzry field is
defined in each Task state with a number of retry attempts defined for each state. If a Task state

Step 2: Create and execute the state machine 157

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

encounters a runtime error, it's executed again up to the number of retry attempts defined for that
Task.

1. Open the Step Functions console and choose Write your workflow in code.

/A Important

Ensure that your state machine is under the same AWS account and Region as the
Lambda function you created earlier.

2. For Type, keep the default selection of Standard.

3. Copy the following Amazon States Language definition and paste it under Definition. Make
sure to replace the ARNs shown with those of the Lambda functions that you previously
created.

"StartAt": "LoopOverStores",
"States": {
"LoopOverStores": {
"Type": "Map",
"Iterator": {
"StartAt": "GetListOfFruits",
"States": {
"GetListOfFruits": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {

"FunctionName":
"arn:aws:lambda:region:123456789012:function:GetListofFruits:$LATEST",
"Payload": {
"storeName.$": "$"
}
1,
"Retry": [
{

"ErrorEquals": [
"States.ALL"

1,

"IntervalSeconds": 2,

"MaxAttempts": 1,

"BackoffRate": 1.3

Step 2: Create and execute the state machine 158

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

1,
"Next": "LoopOverFruits"
.
"LoopOverFruits": {
"Type": "Map",
"Iterator": {
"StartAt": "GetFruitPrice",
"States": {
"GetFruitPrice": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {

"FunctionName":
"arn:aws:lambda:region:123456789012:function:GetFruitPrice:$LATEST",
"Payload": {
"fruitName.$": "$"
}
I
"Retry": [
{
"ErrorEquals": [
"States.ALL"
1,
"IntervalSeconds": 2,
"MaxAttempts": 3,
"BackoffRate": 1.3
}
1,
"End": true
}
}
I
"ItemsPath": "$",
"End": true
}
}
},
"ItemsPath": "$.stores",
"Next": "LoopOverStoreFruitsPrice",
"ResultPath": "$.storesFruitsPrice"

}I

"LoopOverStoreFruitsPrice": {

Step 2: Create and execute the state machine 159

AWS Step Functions Developer Guide

"Type": "Map",
"End": true,
"Iterator": {
"StartAt": "CalculateAverage",
"States": {
"CalculateAverage": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {
"FunctionName":
"arn:aws:lambda:region:123456789012:function:Calculate-average:$LATEST",
"Payload.$": "$"
I
"Retry": [
{
"ErrorEquals": [
"States.ALL"
1,
"IntervalSeconds": 2,
"MaxAttempts": 2,
"BackoffRate": 1.3

1,

"End": true

iy

"ItemsPath": "$.storesFruitsPrice",
"ResultPath": "$.storesPriceAverage",
"MaxConcurrency": 1

4. Enter a name for your state machine. Keep the default selections for the other options on this
page and choose Create state machine.

5. Open the page titled with your state machine name. Perform steps 1 through 4 in the Step 4:
Run the state machine section, but use the following data as the execution input:

"stores": [
"Store A",

Step 2: Create and execute the state machine 160

AWS Step Functions Developer Guide

"Store B",
"Store C",
"Store D"

Step 3: View the state machine execution details

On the page titled with your execution ID, you can review the results of your execution and debug
any errors.

1. (Optional) Choose from the tabs displayed on the Execution Details page to see the information
present in each of them. For example, to view the state machine input and its execution output,
choose Execution input & output on the Execution summary section.

2. If your state machine execution failed, choose Cause or Show step detail on the error message.
Details about the error are displayed in the Step details section. Notice that the step that caused
the error, which is a Task state named GetListofFruits, is highlighted in the Graph view and
Table view.

(@ Note

Because the GetListofFruits step is defined inside a Map state, and the step failed to
execute successfully, the Status of Map state step is displayed as Failed.

Step 4: Explore the different View modes

You can choose a preferred mode to view either the state machine workflow or the execution event
history. Some of the tasks that you can perform in these View modes are as follows:

Graph view - Switch between different Map state iterations

If your Map state has five iterations and you want to view the execution details for the third and
fourth iterations, do the following:

1. Choose the Map state that you want to view the iteration data for.

Step 3: View the state machine execution details 161

AWS Step Functions Developer Guide

2. From Map iteration viewer, choose the iteration that you want to view. Iterations are counted
from zero. To choose the third iteration out of five, choose #2 from the dropdown list next to
the Map state's name.

(@ Note

If your state machine contains nested Map states, Step Functions displays the parent and
child Map state iterations as two separate dropdown lists representing the iteration data
for the nested states.

3. (Optional) If one or more of your Map state iterations failed to execute or was stopped in an
aborted state, you can view details about the failed iteration. To see these details, choose the
affected iteration numbers under Failed or Aborted in the dropdown list.

Table view - Switch between different Map state iterations

If your Map state has five iterations and you want to view the execution details for the iteration
number three and four, do the following:

1. Choose the Map state for which you want to view the different iteration data.

2. In the tree view display of the Map state iterations, choose the row for iteration named #2 for
iteration number three. Similarly, choose the row named #3 for iteration number four.

Table view - Configure the columns to display

Choose the settings icon. Then, in the Preferences dialog box, choose the columns you want to
display under Select visible columns.

By default, this mode displays the Name, Type, Status, Resource, and Started After columns.
Table view - Filter the results

Limit the amount of information displayed by applying one or more filters based on a property,
such as Status, or a date and time range. For example, to view the steps that failed execution,
apply the following filter:

1. Choose Filter by properties or search by keyword, and then choose Status under Properties.

2. Under Operators, choose Status =.

Step 4: Explore the different View modes 162

AWS Step Functions Developer Guide

3. Choose Status = Failed.

4. (Optional) Choose Clear filters to remove the applied filters.

Event view - Filter the results

Limit the amount of information displayed by applying one or more filters based on a property,
such as Type, or a date and time range. For example, to view the Task state steps that failed
execution, apply the following filter:

1. Choose Filter by properties or search by keyword, and then choose Type under Properties.
2. Under Operators, choose Type =.

3. Choose Type = TaskFailed.

4. (Optional) Choose Clear filters to remove the applied filters.

Event view - Inspect a TaskFailed event detail

Choose the arrow icon next to the ID of a TaskFailed event to inspect its details, including input,
output, and resource invocation that appear in a dropdown box.

Creating a Step Functions state machine that uses Lambda

In this tutorial, you will create a single-step workflow using AWS Step Functions to invoke an AWS
Lambda function.

(® Note

Step Functions is based on state machines and tasks. In Step Functions, state machines

are called workflows, which are a series of event-driven steps. Each step in a workflow is
called a state. For example, a Task state represents a unit of work that another AWS service
performs, such as calling another AWS service or API. Instances of running workflows
performing tasks are called executions in Step Functions.

For more information, see:

o What is Step Functions?

« Call other AWS services

Create a state machine that uses Lambda 163

AWS Step Functions Developer Guide

Lambda is well-suited for Task states, because Lambda functions are serverless and easy to write.
You can write code in the AWS Management Console or your favorite editor. AWS handles the
details of providing a computing environment for your function and running it.

Step 1: Create a Lambda function

Your Lambda function receives event data and returns a greeting message.

/A Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the Lambda console and choose Create function.

On the Create function page, choose Author from scratch.
For Function name, enter HelloFunction.

Keep the default selections for all other options, and then choose Create function.

ok W

After your Lambda function is created, copy the function's Amazon Resource Name (ARN)
displayed in the upper-right corner of the page. The following is an example ARN:

arn:aws:lambda:region:123456789012:function:HelloFunction

6. Copy the following code for the Lambda function into the Code source section of the
HelloFunction page.

export const handler = async(event, context, callback) => {
callback(null, "Hello from " + event.who + "!");

};

This code assembles a greeting using the who field of the input data, which is provided by
the event object passed into your function. You add input data for this function later, when
you start a new execution. The callback method returns the assembled greeting from your
function.

7. Choose Deploy.

Step 1: Create a Lambda function 164

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

Step 2: Test the Lambda function

Test your Lambda function to see it in operation.

1. Choose Test.
2. For Event name, enter HelloEvent.

3. Replace the Event JSON data with the following.

who'": "AWS Step Functions"

The "who" entry corresponds to the event.who field in your Lambda function, completing
the greeting. You will input the same input data when you run your state machine.

4. Choose Save and then choose Test.

5. To review the test results, under Execution result, expand Details.

Step 3: Create a state machine

Use the Step Functions console to create a state machine that invokes the Lambda function that
you created in Step 1.

1. Open the Step Functions console, choose State machines from the menu, then choose Create
state machine.

/A Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda function you created earlier.

2. Choose Create from blank.

3. Name your state machine, then choose Continue to edit your state machine in Workflow
Studio.

4. Inthe States browser on the left, make sure you've chosen the Actions tab. Then, drag and
drop the AWS Lambda Invoke API into the empty state labelled Drag first state here.

5. Inthe Inspector panel on the right, configure the Lambda function:

Step 2: Test the Lambda function 165

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

10.

a. Inthe API Parameters section, choose the Lambda function that you created earlier in the

Function name dropdown list.
b. Keep the default selection in the Payload dropdown list.

(Optional) Choose Definition to view the state machine's Amazon States Language (ASL)
definition, which is automatically generated based on your selections in the Actions tab and

Inspector panel.

Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For example, enter the name LambdaStateMachine.

(@ Note

Names of state machines, executions, and activity tasks must not exceed 80 characters
in length. These names must be unique for your account and AWS Region, and must
not contain any of the following:

Whitespace

Wildcard characters (? *)

Bracket characters(< > { } [1)

Special characters (" # S\ * | ~ " $ &, ; : /)
Control characters (\\u@@00 - \\u@01f or \\u0o7f - \\uoo9of).

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

(Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.
Choose Create.

In the Confirm role creation dialog box, choose Confirm to continue.

Step 3: Create a state machine 166

AWS Step Functions Developer Guide

You can also choose View role settings to go back to State machine configuration.

® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

After you create your state machine, you can run it.

1. On the State machines page, choose LambdaStateMachine.

2. Choose Start execution.

The Start execution dialog box is displayed.

3. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels

that contain non-ASCII characters. Because such characters will not work with Amazon

CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

4. Inthe Input area, replace the example execution data with the following.

who" : "AWS Step Functions"

"who" is the key name that your Lambda function uses to get the name of the person to greet.

5. Choose Start Execution.

Your state machine's execution starts, and a new page showing your running execution is
displayed.

Step 4: Run the state machine

167

AWS Step Functions Developer Guide

6. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution details overview.

® Note

You can also pass payloads while invoking Lambda from a state machine. For more
information and examples about invoking Lambda by passing payload in the Parameters
field, see Invoke an AWS Lambda function with Step Functions.

Deploying a workflow that waits for human approval in Step
Functions

This tutorial shows you how to deploy a human approval project that allows an AWS Step
Functions execution to pause during a task, and wait for a user to respond to an email. The
workflow progresses to the next state once the user has approved the task to proceed.

Deploying the AWS CloudFormation stack included in this tutorial will create all necessary
resources, including:

« Amazon API Gateway resources

An AWS Lambda functions

An AWS Step Functions state machine

An Amazon Simple Notification Service email topic

Related AWS Identity and Access Management roles and permissions

Wait for human approval 168

AWS Step Functions Developer Guide

® Note

You will need to provide a valid email address that you have access to when you create the
AWS CloudFormation stack.

For more information, see Working with CloudFormation Templates and the
AWS: :StepFunctions: :StateMachine resource in the AWS CloudFormation User Guide.

Step 1: Create an AWS CloudFormation template

1. Copy the example code from the AWS CloudFormation Template Source Code section.

2. Paste the source of the AWS CloudFormation template into a file on your local machine.

For this example the file is called human-approval.yaml.

Step 2: Create a stack

1. Log into the AWS CloudFormation console.

2. Choose Create Stack, and then choose With new resources (standard).

3. On the Create stack page, do the following:

a. Inthe Prerequisite - Prepare template section, make sure Template is ready is selected.

b. In the Specify template section, choose Upload a template file and then choose Choose
file to upload the human-approval.yaml file you created earlier that includes the
template source code.

4. Choose Next.

5. On the Specify stack details page, do the following:

a. For Stack name, enter a name for your stack.

b. Under Parameters, enter a valid email address. You'll use this email address to subscribe
to the Amazon SNS topic.

6. Choose Next, and then choose Next again.

7. On the Review page, choose | acknowledge that AWS CloudFormation might create IAM
resources and then choose Create.

Step 1: Create a Template 169

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html
https://console.aws.amazon.com/cloudformation/home

AWS Step Functions Developer Guide

AWS CloudFormation begins to create your stack and displays the CREATE_IN_PROGRESS
status. When the process is complete, AWS CloudFormation displays the CREATE_COMPLETE
status.

8. (Optional) To display the resources in your stack, select the stack and choose the Resources
tab.

Step 3: Approve the Amazon SNS subscription

Once the Amazon SNS topic is created, you will receive an email requesting that you confirm
subscription.

1. Open the email account you provided when you created the AWS CloudFormation stack.

2. Open the message AWS Notification - Subscription Confirmation from no-
reply@sns.amazonaws.com

The email will list the Amazon Resource Name for the Amazon SNS topic, and a confirmation
link.

3. Choose the confirm subscription link.

amazon
webservices”

Subscription confirmed!

You have subscribed se=sssh@amazon.com to the topic:
HumanApprovalExample-SNSHumanApprovalEmailTopic:
AAIMNLKYAIM3.

Your subscription’s id is:

ArN:aws:SNs:us-east-1 ~SENTeins rHumanapproval Example=
SHSHumanApproval EmailTopic=ARIMNLEYAIMI:c358£d09%=-cebl=4cc?=be7f=
52ccfiecdcdf

If it was not yvour intention to subscribe, click here to unsubscribe.

Step 4: Run the state machine

1. On the HumanApprovalLambdaStateMachine page, choose Start execution.

Step 3: Approve the SNS subscription 170

AWS Step Functions Developer Guide

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. Inthe Input box, enter the following JSON input to run your workflow.

"Comment": "Testing the human approval tutorial."

c. Choose Start execution.

The ApprovalTest state machine execution starts, and pauses at the Lambda Callback
task.

d. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 4: Run the state machine 171

AWS Step Functions Developer Guide

Success M Failed Cancelted In Progress +
| start |
L -
Lambda Callback
. J
ManualApprovalChoiceState x
4 ¥
ApprovedPassState RejectedPassState
I\ﬂh\- -H-,/I
‘ e

3. In the email account you used for the Amazon SNS topic earlier, open the message with the
subject Required approval from AWS Step Functions.

The message includes separate URLs for Approve and Reject.

4. Choose the Approve URL.

The workflow continues based on your choice.

Step 4: Run the state machine 172

AWS Step Functions Developer Guide

M Success M Failed Can In Progress
:}eHﬁQ_I g
| Start j:

\‘\L -~

RejectedPass5tate

AWS CloudFormation Template Source Code

Use this AWS CloudFormation template to deploy an example of a human approval process
workflow.

AWSTemplateFormatVersion: "2010-09-09"
Description: "AWS Step Functions Human based task example. It sends an email with an
HTTP URL for approval."
Parameters:
Email:
Type: String
AllowedPattern: "~[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]1+\\.[a-zA-Z0-9-.]+$"
ConstraintDescription: Must be a valid email address.
Resources:
Begin API Gateway Resources
ExecutionApi:
Type: "AWS::ApiGateway::RestApi"
Properties:
Name: "Human approval endpoint"
Description: "HTTP Endpoint backed by API Gateway and Lambda"
FailOnWarnings: true

ExecutionResource:

Template Source Code 173

AWS Step Functions Developer Guide

Type: 'AWS::ApiGateway: :Resource'

Properties:
RestApilId: !'Ref ExecutionApi
ParentId: !GetAtt "ExecutionApi.RootResourceId"
PathPart: execution

ExecutionMethod:
Type: "AWS::ApiGateway::Method"
Properties:

AuthorizationType: NONE
HttpMethod: GET
Integration:
Type: AWS
IntegrationHttpMethod: POST
Uri: !Sub "arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/
${LambdaApprovalFunction.Arn}/invocations"
IntegrationResponses:
- StatusCode: 302
ResponseParameters:
method.response.header.Location:
"integration.response.body.headers.Location"
RequestTemplates:
application/json: |
{
"body" : $input.json('$'),
"headers": {
#foreach($header in $input.params().header.keySet())
"$header":
"$util.escapelavaScript($input.params().header.get($header))"
#if($foreach.hasNext), #end

#end
},
"method": "$context.httpMethod",
"params": {
#foreach($param in $input.params().path.keySet())
"$param": "$util.escapelavaScript($input.params().path.get($param))"
#if($foreach.hasNext), #end

#end
},
"query": {
#foreach($queryParam in $input.params().querystring.keySet())

Template Source Code 174

AWS Step Functions

Developer Guide

"$queryParam":

"$util.escapelavaScript($input.params().querystring.get($queryParam))"

#if($foreach.hasNext), #end

#end

}

ResourceId: !Ref ExecutionResource
RestApilId: !'Ref ExecutionApi
MethodResponses:
- StatusCode: 302
ResponseParameters:
method.response.header.Location: true

ApiGatewayAccount:
Type: 'AWS::ApiGateway::Account'
Properties:

CloudWatchRoleArn: !GetAtt "ApiGatewayCloudWatchLogsRole.Arn"

ApiGatewayCloudWatchLogsRole:
Type: 'AWS::IAM::Role'
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Principal:
Service:
- apigateway.amazonaws.com
Action:
- 'sts:AssumeRole'
Policies:
- PolicyName: ApiGatewaylLogsPolicy
PolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
Action:
- "logs:*"
Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"

ExecutionApiStage:
DependsOn:
- ApiGatewayAccount

Template Source Code

175

AWS Step Functions Developer Guide

Type: 'AWS::ApiGateway::Stage'
Properties:
DeploymentId: !Ref ApiDeployment
MethodSettings:

- DataTraceEnabled: true
HttpMethod: '*'
LogginglLevel: INFO
ResourcePath: /*

RestApilId: !'Ref ExecutionApi
StageName: states

ApiDeployment:
Type: "AWS::ApiGateway: :Deployment"
DependsOn:
- ExecutionMethod
Properties:
RestApilId: !'Ref ExecutionApi
StageName: DummyStage
End API Gateway Resources

Begin
Lambda that will be invoked by API Gateway
LambdaApprovalFunction:
Type: 'AWS::Lambda::Function'
Properties:
Code:
ZipFile:
Fn::Sub: |
const { SFN: StepFunctions } = require("@aws-sdk/client-sfn");
var redirectToStepFunctions = function(lambdaArn, statemachineName,
executionName, callback) {
const lambdaArnTokens = lambdaArn.split(":");
const partition = lambdaArnTokens[1];
const region = lambdaArnTokens[3];
const accountId = lambdaArnTokens[4];

console.log("partition=" + partition);
console.log("region=" + region);
console.log("accountId=" + accountId);

const executionArn = "arn:" + partition + ":states:" + region + ":" +
accountId + ":execution:" + statemachineName + ":" + executionName;
console.log("executionArn=" + executionArn);

Template Source Code 176

AWS Step Functions Developer Guide

const url = "https://console.aws.amazon.com/states/home?region=" + region
+ "#/executions/details/" + executionArn;
callback(null, {
statusCode: 302,
headers: {
Location: url

1)
i

exports.handler = (event, context, callback) => {
console.log('Event= ' + JSON.stringify(event));
const action = event.query.action;
const taskToken = event.query.taskToken;
const statemachineName = event.query.sm;
const executionName event.query.ex;

const stepfunctions = new StepFunctions();

var message = "";
if (action === "approve") {
message = { "Status": "Approved! Task approved by ${Emaill}" 3};
} else if (action === "reject") {
message = { "Status": "Rejected! Task rejected by ${Emaill}" 3};
} else {
console.error("Unrecognized action. Expected: approve, reject.");
callback({"Status": "Failed to process the request. Unrecognized
Action."});
}

stepfunctions.sendTaskSuccess({
output: JSON.stringify(message),
taskToken: event.query.taskToken

)

.then(function(data) {
redirectToStepFunctions(context.invokedFunctionArn, statemachineName,

executionName, callback);

}) .catch(function(err) {
console.error(err, err.stack);
callback(err);

1)

}
Description: Lambda function that callback to AWS Step Functions

Template Source Code 177

AWS Step Functions Developer Guide

FunctionName: LambdaApprovalFunction
Handler: index.handler

Role: !GetAtt "LambdaApiGatewayIAMRole.Arn"
Runtime: nodejsl8.x

LambdaApiGatewayInvoke:

Type: "AWS::Lambda::Permission"

Properties:
Action: "lambda:InvokeFunction"
FunctionName: !GetAtt "LambdaApprovalFunction.Arn"
Principal: "apigateway.amazonaws.com"
SourceArn: !Sub "arn:aws:execute-api:${AWS: :Region}:${AWS: :AccountId}:

${ExecutionApi}/*"

LambdaApiGatewayIAMRole:
Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Action:
- "sts:AssumeRole"
Effect: "Allow"
Principal:
Service:
- "lambda.amazonaws.com"
Policies:
- PolicyName: CloudWatchLogsPolicy
PolicyDocument:
Statement:
- Effect: Allow
Action:
- "logs:*"
Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"
- PolicyName: StepFunctionsPolicy
PolicyDocument:
Statement:
- Effect: Allow
Action:
- "states:SendTaskFailure"
- "states:SendTaskSuccess"
Resource: "*"
End Lambda that will be invoked by API Gateway

Template Source Code 178

AWS Step Functions Developer Guide

Begin state machine that publishes to Lambda and sends an email with the 1link for
approval
HumanApprovallLambdaStateMachine:
Type: AWS::StepFunctions::StateMachine
Properties:
RoleArn: !GetAtt LambdaStateMachineExecutionRole.Arn
DefinitionString:
Fn::Sub: |
{
"StartAt": "Lambda Callback",
"TimeoutSeconds": 3600,
"States": {
"Lambda Callback": {
"Type": "Task",
"Resource": "arn:
${AWS: :Partition}:states:::lambda:invoke.waitForTaskToken",
"Parameters": {
"FunctionName": "${LambdaHumanApprovalSendEmailFunction.Arn}",
"Payload": {
"ExecutionContext.$": "$$",
"APIGatewayEndpoint": "https://${ExecutionApi}.execute-api.
${AWS: :Region}.amazonaws.com/states"
}
I
"Next": "ManualApprovalChoiceState"
I
"ManualApprovalChoiceState": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.Status",
"StringEquals": "Approved! Task approved by ${Emaill}",
"Next": "ApprovedPassState"

1,

{
"Variable": "$.Status",
"StringEquals": "Rejected! Task rejected by ${Emaill}",
"Next": "RejectedPassState"

}

]
1,

"ApprovedPassState": {
IlTypell: IIPaSSII’
"End": true

Template Source Code 179

AWS Step Functions

Developer Guide

},
"RejectedPassState": {

IlTypell: IIPaSSII’
"End": true

SNSHumanApprovalEmailTopic:
Type: AWS::SNS::Topic
Properties:

Subscription:
Endpoint: !Sub ${Email}
Protocol: email

LambdaHumanApprovalSendEmailFunction:
Type: "AWS::Lambda::Function"
Properties:
Handler: "index.lambda_handler"
Role: !GetAtt LambdaSendEmailExecutionRole.Arn
Runtime: "nodejsl18.x"
Timeout: "25"
Code:
ZipFile:
Fn::Sub: |
console.log('Loading function');
const { SNS } = require("@aws-sdk/client-sns");
exports.lambda_handler = (event, context, callback) => {
console.log('event= ' + JSON.stringify(event));
console.log('context= ' + JSON.stringify(context));

const executionContext = event.ExecutionContext;
console.log('executionContext= ' + executionContext);

const executionName = executionContext.Execution.Name;

console.log('executionName= ' + executionName);

const statemachineName = executionContext.StateMachine.Name;

console.log('statemachineName= ' + statemachineName);

const taskToken = executionContext.Task.Token;
console.log('taskToken= ' + taskToken);

Template Source Code

180

AWS Step Functions Developer Guide

const apigwEndpint = event.APIGatewayEndpoint;
console.log('apigwEndpint = ' + apigwEndpint)

const approveEndpoint = apigwEndpint + "/execution?
action=approve&ex=" + executionName + "&sm=" + statemachineName + "&taskToken=" +
encodeURIComponent(taskToken);

console.log('approveEndpoint=

+ approveEndpoint);

const rejectEndpoint = apigwEndpint + "/execution?
action=reject&ex=" + executionName + "&sm=" + statemachineName + "&taskToken=" +
encodeURIComponent(taskToken);

console.log('rejectEndpoint= ' + rejectEndpoint);

const emailSnsTopic = "${SNSHumanApprovalEmailTopic}";
console.log('emailSnsTopic= ' + emailSnsTopic);

var emailMessage = 'Welcome! \n\n';

emailMessage += 'This is an email requiring an approval for a step
functions execution. \n\n'

emailMessage += 'Check the following information and click "Approve"
link if you want to approve. \n\n'

emailMessage += 'Execution Name -> ' + executionName + '\n\n'

emailMessage += 'Approve ' + approveEndpoint + '\n\n'

emailMessage 'Reject ' + rejectEndpoint + '\n\n'

emailMessage 'Thanks for using Step functions!'

+ o+
o

const sns = new SNS();

var params = {
Message: emailMessage,
Subject: "Required approval from AWS Step Functions",
TopicArn: emailSnsTopic

};

sns.publish(params)

.then(function(data) {
console.log("MessageID is " + data.Messageld);
callback(null);

}) .catch(
function(err) {
console.error(err, err.stack);
callback(err);

18

Template Source Code 181

AWS Step Functions

Developer Guide

LambdaStateMachineExecutionRole:

Type: "AWS::IAM::Role"
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: states.amazonaws.com
Action: "sts:AssumeRole"

Policies:

- PolicyName: InvokeCallbackLambda

PolicyDocument:
Statement:
- Effect: Allow
Action:

- "lambda:InvokeFunction"

Resource:

- 1Sub "${LambdaHumanApprovalSendEmailFunction.Arn}"

LambdaSendEmailExecutionRole:
Type: "AWS::IAM::Role"
Properties:

AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: lambda.amazonaws.com
Action: "sts:AssumeRole"

Policies:

- PolicyName: CloudWatchLogsPolicy

PolicyDocument:
Statement:
- Effect: Allow
Action:

- "logs:CreateLogGroup"
- "logs:CreatelLogStream"
- "logs:PutLogEvents"
Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"
- PolicyName: SNSSendEmailPolicy

PolicyDocument:
Statement:
- Effect: Allow

Template Source Code

182

AWS Step Functions Developer Guide

Action:
- "SNS:Publish"
Resource:
- !Sub "${SNSHumanApprovalEmailTopic}"

End state machine that publishes to Lambda and sends an email with the link for
approval
Outputs:
ApiGatewayInvokeURL:
Value: !Sub "https://${ExecutionApi}.execute-api.${AWS: :Region}.amazonaws.com/
states"”
StateMachineHumanApprovalArn:
Value: !Ref HumanApprovallLambdaStateMachine

Using Inline Map state to repeat an action in Step Functions

This tutorial helps you get started with using the Map state in Inline mode. You use the Inline Map
state in your workflows to repeatedly perform an action. For more information about Inline mode,
see Map state in Inline mode.

In this tutorial, you use the Inline Map state to repeatedly generate version 4 universally unique
identifiers (v4 UUID). You start by creating a workflow that contains two Pass workflow state

states and an Inline Map state in the Workflow Studio. Then, you configure the input and output,
including the input JSON array for the Map state. The Map state returns an output array that
contains the v4 UUIDs generated for each item in the input array.

Step 1: Create the workflow prototype

In this step, you create the prototype for your workflow using Workflow Studio. Workflow Studio
is a visual workflow designer available in the Step Functions console. You'll choose the required
states from the Flow tab and use the drag and drop feature of Workflow Studio to create the
workflow prototype.

1. Open the Step Functions console, choose State machines from the menu, then choose Create
state machine.

2. Choose Create from blank.

3. Name your state machine, then choose Continue to edit your state machine in Workflow
Studio.

Repeat actions with Inline Map 183

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

4.

From the Flow tab, drag a Pass state and drop it to the empty state labelled Drag first state
here.

Drag a Map state and drop it below the Pass state. Rename the Map state to Map demo.
Drag a second Pass state and drop it inside of the Map demo state.

Rename the second Pass state to Genexrate UUID.

Step 2: Configure input and output

In this step, you configure input and output for all the states in your workflow prototype. First,
you inject some fixed data into the workflow using the first Pass state. This Pass state passes on
this data as input to the Map demo state. Within this input, you specify the node that contains the
input array the Map demo state should iterate over. Then you define the step that the Map demo
state should repeat to generate the v4 UUIDs. Finally, you configure the output to return for each
repetition.

1.

Choose the first Pass state in your workflow prototype. In the Output tab, enter the following
under Result:

{

"foo": "bar",
"colors": [
"red",
"green",
"blue",

"yellow",
"white"
]
}

Choose the Map demo state and in the Configuration tab, do the following:

a. Choose Provide a path to items array.

b. Specify the following reference path to select the node that contains the input array:

$.colors
Choose the Generate UUID state and in the Input tab, do the following:

a. Choose Transform input with Parameters.

Step 2: Configure input and output 184

AWS Step Functions Developer Guide

b. Enter the following JSON input to generate the v4 UUIDs for each of the input array
items. You use the States.UUID intrinsic function to generate the UUIDs.

{
"uuid.$": "States.UUID()"
}
4. For the Generate UUID state, choose the Output tab and do the following:

a. Choose Filter output with OutputPath.

b. Enter the following reference path to select the JSON node that contains the output array
items:

$.uuid

Step 3: Review and save auto-generated definition

As you drag and drop states from the Flow panel onto the canvas, Workflow Studio automatically
composes the Amazon States Language (ASL) definition of your workflow in real-time. You can edit

this definition as required.

1. (Optional) Choose Definition on the Inspector panel panel to view the automatically-
generated Amazon States Language definition of your workflow.

® Tip
You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

The following example shows the automatically generated Amazon States Language definition
for your workflow.

{
"Comment": "Using Map state in Inline mode",
"StartAt": "Pass",
"States": {
"Pass": {

Step 3: Review and save auto-generated definition 185

AWS Step Functions

Developer Guide

"Type": "Pass",
"Next": "Map demo",
"Result": {
"foo": "bar",
"colors": [
"red",
"green",
"blue",
"yellow",
"white"

}
},
"Map demo": {
"Type": "Map",
"ItemsPath": "$.colors",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"
.
"StartAt": "Generate UUID",
"States": {
"Generate UUID": {
"Type": "Pass",
"End": true,
"Parameters": {
"uuid.$": "States.UUID()"
.
"QutputPath": "$.uuid"

}
iy

"End": true

2. Specify a name for your state machine. To do this, choose the edit icon next to the default

state machine name of MyStateMachine. Then, in State machine configuration, specify a

name in the State machine name box.

For this tutorial, enter the name InlineMapDemo.

Step 3: Review and save auto-generated definition

186

AWS Step Functions

Developer Guide

3.

(Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine configuration.

In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1.
2.

On the InlineMapDemo page, choose Start execution.

In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.
3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID,

known as the Execution Details page. You can review the execution results as the workflow

progresses and after it completes.

Step 4: Run the state machine

187

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

To view the execution input and output side-by-side, choose Execution input and output.
Under Output, view the output array returned by the Map state. The following is an example of
the output array:

[
"a85cbc7b-4e65-4ac2-97af-80ed504adcld"”,
"b@5bcall-d481-414e-aa9a-88285ec6590d",
"f42d59f7-bd32-480f-b270-caddb518ce2a",
"15f18616-517d-4b69-b7c3-bf22222d2efd",
"690bcfee-6d58-408c-abb4-1995ccafdbd2”
]

Copying large-scale CSV data using Distributed Map in Step
Functions

This tutorial helps you start using the Map state in Distributed mode. A Map state set to Distributed
is known as a Distributed Map state. You use the Distributed Map state in your workflows to iterate
over large-scale Amazon S3 data sources. The Map state runs each iteration as a child workflow
execution, which enables high concurrency. For more information about Distributed mode, see Map
state in Distributed mode.

In this tutorial, you use the Distributed Map state to iterate over a CSV file in an Amazon S3 bucket.
You then return its contents, along with the ARN of a child workflow execution, in another Amazon
S3 bucket. You start by creating a workflow prototype in the Workflow Studio. Next, you set the
Map state's processing mode to Distributed, specify the CSV file as the dataset, and provide its
location to the Map state. You also specify the workflow type for the child workflow executions
that the Distributed Map state starts as Express.

In addition to these settings, you also specify other configurations, such as the maximum number
of concurrent child workflow executions and the location to export the Map result, for the example
workflow used in this tutorial.

Copy large-scale CSV using Distributed Map 188

AWS Step Functions Developer Guide

Prerequisites

» Upload a CSV file to an Amazon S3 bucket. You must define a header row within your CSV file.
For information about size limits imposed on the CSV file and how to specify the header row, see
CSV file in an Amazon S3 bucket.

« Create another Amazon S3 bucket and a folder within that bucket to export the Map state result
to.

/A Important

Make sure that your Amazon S3 buckets are in the same AWS account and AWS Region as
your state machine.

Note that even though your state machine may be able to access files in buckets across
different AWS accounts that are in the same AWS Region, Step Functions only supports
state machines to list objects in S3 buckets that are in both the same AWS account and the
same AWS Region as the state machine.

Step 1: Create the workflow prototype

In this step, you create the prototype for your workflow using Workflow Studio. Workflow Studio is
a visual workflow designer available in the Step Functions console. You choose the required state
and API action from the Flow and Actions tabs respectively. You'll use the drag and drop feature of
Workflow Studio to create the workflow prototype.

1. Open the Step Functions console, choose State machines from the menu, then choose Create

state machine.
2. Choose Create from blank.

3. Name your state machine, then choose Continue to edit your state machine in Workflow
Studio.

4. From the Flow tab, drag a Map state and drop it to the empty state labelled Drag first state
here.

5. In the Configuration tab, for State name, enter Process data.

6. From the Actions tab, drag an AWS Lambda Invoke API action and drop it inside the Process
data state.

Prerequisites 189

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

7. Rename the AWS Lambda Invoke state to Process CSV data.

Step 2: Configure the required fields for Map state

In this step, you configure the following required fields of the Distributed Map state:

« ItemReader - Specifies the dataset and its location from which the Map state can read input.

» ItemProcessor — Specifies the following values:

e ProcessorConfig - Set the Mode and ExecutionType to DISTRIBUTED and EXPRESS
respectively. This sets the Map state's processing mode and the workflow type for child
workflow executions that the Distributed Map state starts.

o StartAt - The first state in the Map workflow.

« States - Defines the Map workflow, which is a set of steps to repeat in each child workflow
execution.

» ResultWriter — Specifies the Amazon S3 location where Step Functions writes the Distributed Map
state results.

/A Important

Make sure that the Amazon S3 bucket you use to export the results of a Map Run is under
the same AWS account and AWS Region as your state machine. Otherwise, your state
machine execution will fail with the States.ResultWriterFailed error.

To configure the required fields:
1. Choose the Process data state and, in the Configuration tab, do the following:

a. For Processing mode, choose Distributed.

b. For Item source, choose Amazon S3, and then choose CSV file in S3 from the S3 item
source dropdown list.

c. Do the following to specify the Amazon S3 location of your CSV file:

i. For S3 object, select Enter bucket and key from the dropdown list.

ii. For Bucket, enter the name of the Amazon S3 bucket, which contains the CSV file. For
example, amzn-s3-demo-source-bucket.

Step 2: Configure the required fields for Map state 190

AWS Step Functions Developer Guide

e.

iii. For Key, enter the name of the Amazon S3 object in which you saved the CSV file. You
must also specify the name of the CSV file in this field. For example, csvDataset/
ratings.csv.

For CSV files, you must also specify the location of the column header. To do this, choose

Additional configuration, and then for CSV header location keep the default selection of
First row if the first row of your CSV file is the header. Otherwise, choose Given to specify
the header within the state machine definition. For more information, see ReaderConfig.

For Child execution type, choose Express.

2. In Export location, to export the Map Run results to a specific Amazon S3 location, choose
Export Map state's output to Amazon S3.

3. Do the following:

a.

b.

For S3 bucket, choose Enter bucket name and prefix from the dropdown list.

For Bucket, enter the name of the Amazon S3 bucket where you want to export the
results to. For example, mapOutputs.

For Prefix, enter the folder name where you want to save the results to. For example,
resultData.

Step 3: Configure additional options

In addition to the required settings for a Distributed Map state, you can also specify other options.
These can include the maximum number of concurrent child workflow executions and the location

to export the Map state result to.

1. Choose the Process data state. Then, in Item source, choose Additional configuration.

2. Do the following:

a.

Choose Modify items with ItemSelector to specify a custom JSON input for each child
workflow execution.

Enter the following JSON input:

{
"index.$": "$$.Map.Item.Index",
"value.$": "$$.Map.Item.Value"

}

Step 3: Configure additional options 191

AWS Step Functions Developer Guide

For information about how to create a custom input, see ItemSelector (Map).

3. In Runtime settings, for Concurrency limit, specify the number of concurrent child workflow
executions that the Distributed Map state can start. For example, enter 100.

4. Open a new window or tab on your browser and complete the configuration of the Lambda
function you'll use in this workflow, as explained in Step 4: Configure the Lambda function.

Step 4: Configure the Lambda function

/A Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

1. Open the Lambda console and choose Create function.

2. On the Create function page, choose Author from scratch.

3. Inthe Basic information section, configure your Lambda function:

a. For Function name, enter distributedMapLambda.
b. For Runtime, choose Node.js.
c. Keep all of the default selections and choose Create function.

d. After you create your Lambda function, copy the function's Amazon Resource Name
(ARN) displayed in the upper-right corner of the page. You'll need to provide this in your
workflow prototype. The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:distributedMaplLambda

4. Copy the following code for the Lambda function and paste it into the Code source section of
the distributedMapLambda page.

exports.handler = async function(event, context) {
console.log("Received Input:\n", event);

return {

'statusCode' : 200,

'inputReceived' : event //returns the input that it received
}

Step 4: Configure the Lambda function 192

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

i

5. Choose Deploy. Once your function deploys, choose Test to see the output of your Lambda
function.

Step 5: Update the workflow prototype

In the Step Functions console, you'll update your workflow to add the Lambda function's ARN.

1. Return to the tab or window where you created the workflow prototype.

2. Choose the Process CSV data step, and in the Configuration tab, do the following:

a. For Integration type, choose Optimized.

b. For Function name, start to enter the name of your Lambda function. Choose the function
from the dropdown list that appears, or choose Enter function name and provide the
Lambda function ARN.

Step 6: Review the auto-generated Amazon States Language definition
and save the workflow

As you drag and drop states from the Action and Flow tabs onto the canvas, Workflow Studio
automatically composes the Amazon States Language definition of your workflow in real-time. You

can edit this definition as required.

1. (Optional) Choose Definition on the Inspector panel panel and view the state machine
definition.

® Tip
You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

The following example code shows the automatically generated Amazon States Language
definition for your workflow.

{

Step 5: Update the workflow prototype 193

AWS Step Functions

Developer Guide

"Comment": "Using Map state in Distributed mode",
"StartAt": "Process data",
"States": {

"Process data": {
"Type": "Map",
"MaxConcurrency": 100,
"ItemReader": {
"ReaderConfig": {
"InputType": "CSV",
"CSVHeaderLocation": "FIRST_ROW"

1,
"Resource": "arn:aws:states:::s3:getObject",
"Parameters": {
"Bucket": "amzn-s3-demo-source-bucket",
"Key": "csvDataset/ratings.csv"
}
1,

"ItemProcessor": {
"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "EXPRESS"
I
"StartAt": "Process CSV data",
"States": {
"Process CSV data": {
"Type": "Task",

"Resource": "arn:aws:states:::lambda:invoke",

"OQutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",

"FunctionName": "arn:aws:lambda:us-east-2:account-
id:function:distributedMapLambda"
},
"End": true
}
}

},
"Label": "Processdata",

"End": true,
"ResultWriter": {
"Resource": "arn:aws:states:::s3:putObject",
"Parameters": {
"Bucket": "mapOutputs",
"Prefix": "resultData"

Step 6: Review the auto-generated Amazon States Language definition and save the workflow

194

AWS Step Functions Developer Guide

}

iy

"ItemSelector": {
"index.$": "$$.Map.Item.Index",
"value.$": "$$.Map.Item.Value"

}

}
}

}

2. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name DistributedMapDemo.

3. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine configuration.

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(@ Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 7: Run the state machine

An execution is an instance of your state machine where you run your workflow to perform tasks.

1. On the DistributedMapDemo page, choose Start execution.

2. In the Start execution dialog box, do the following:

1. (Optional) Enter a custom execution name to override the generated default.

Step 7: Run the state machine 195

AWS Step Functions Developer Guide

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.
3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID,
known as the Execution Details page. You can review the execution results as the workflow
progresses and after it completes.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

For example, choose the Map state, and then choose Map Run to open the Map Run Details
page. On this page, you can view all the execution details of the Distributed Map state and the
child workflow executions that it started. For information about this page, see Viewing Map
Runs.

Iterate a loop with a Lambda function in Step Functions

In this tutorial, you implement a design pattern that uses a state machine and an AWS Lambda
function to iterate a loop a specific number of times.

Use this design pattern any time you need to keep track of the number of loops in a state

machine. This implementation can help you break up large tasks or long-running executions into
smaller chunks, or to end an execution after a specific number of events. You can use a similar
implementation to periodically end and restart a long-running execution to avoid exceeding service
quotas for AWS Step Functions, AWS Lambda, or other AWS services.

Before you begin, go through the Creating a Step Functions state machine that uses Lambda
tutorial to ensure you are familiar with using Lambda and Step Functions together.

Iterate a loop with Lambda 196

AWS Step Functions Developer Guide

Step 1: Create a Lambda function to iterate a count

By using a Lambda function you can track the number of iterations of a loop in your state machine.
The following Lambda function receives input values for count, index, and step. It returns these
values with an updated index and a Boolean value named continue. The Lambda function sets
continue to true if the index is less than count.

Your state machine then implements a Choice state that executes some application logic if
continue is true, or exits if it is false.

To create the Lambda function

1. Signin to the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Iterator.
b. For Runtime, choose Node.js.

c. In Change default execution role, choose Create a new role with basic Lambda
permissions.

d. Choose Create function.

4. Copy the following code for the Lambda function into the Code source.

export const handler = function (event, context, callback) {
let index = event.iterator.index
let step = event.iterator.step
let count = event.iterator.count

index = index + step

callback(null, {
index,
step,
count,
continue: index < count

1)

Step 1: Create a Lambda function to iterate a count 197

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

This code accepts input values for count, index, and step. It increments the index by the
value of step and returns these values, and the Boolean continue. The value of continue is
true if index is less than count.

Choose Deploy.

Step 2: Test the Lambda Function

Run your Lambda function with numeric values to see it in operation. You can provide input values

for your Lambda function that mimic an iteration.

To test your Lambda function

1.
2.

Choose Test.
In the Configure test event dialog box, enter TestIterator in the Event name box.

Replace the example data with the following.

{
"Comment": "Test my Iterator function",
"iterator": {
"count": 10,
"index": 5,
"step": 1
}
}

These values mimic what would come from your state machine during an iteration. The
Lambda function will increment the index and return true for continue when the index is
less than count. For this test, the index has already incremented to 5. The test will increment
index to 6 and set continue to true.

Choose Create.

Choose Test to test your Lambda function.

The results of the test are displayed in the Execution results tab.

Choose the Execution results tab to see the output.

{

"index": 6,

Step 2: Test the Lambda Function 198

AWS Step Functions Developer Guide

"step": 1,
"count": 10,
"continue": true

(® Note

If you set index to 9 and test again, the index increments to 10, and continue will
be false.

Step 3: Create a State Machine

& Before you leave the Lambda console...

Copy the Lambda function ARN. Paste it into a note. You'll need it in the next step.

Next, you will create a state machine with the following states:

« ConfigureCount - Sets default values for count, index, and step.

« Iterator - Refers to the Lambda function you created earlier, passing in the values configured
in ConfigureCount.

« IsCountReached - A choice state that continues the loop or proceeds to Done state, based on
the value returned from your Iterator function.

« ExampleWork — A stub for work that needs to be done. In this example, the workflow has a Pass
state, but in a real solution, you would likely use a Task.

« Done - End state of your workflow.

To create the state machine in the console:

1. Open the Step Functions console, and then choose Create a state machine.

Step 3: Create a State Machine 199

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

/A Important

Your state machine must be in the same AWS account and Region as your Lambda
function.

2. Select the Blank template.

3. Inthe Code pane, paste the following JSON which defines the state machine.

For more information about the Amazon States Language, see State Machine Structure.

{
"Comment": "Iterator State Machine Example",
"StartAt": "ConfigureCount",
"States": {

"ConfigureCount": {
"Type": "Pass",
"Result": {

"count": 10,
"index": 0,

"step": 1
1,
"ResultPath": "$.iterator",
"Next": "Iterator"

.
"Iterator": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:123456789012:function:Iterate",
"ResultPath": "$.iterator",
"Next": "IsCountReached"
.
"IsCountReached": {
"Type": "Choice",
"Choices": [

{
"Variable": "$.iterator.continue",
"BooleanEquals": true,
"Next": "ExampleWork"

}

1,

"Default": "Done"

Step 3: Create a State Machine 200

AWS Step Functions Developer Guide

},
"ExampleWork": {
"Comment": "Your application logic, to run a specific number of times",
"Type": "Pass",
"Result": {
"success": true
},
"ResultPath": "$.result",
"Next": "Iterator"
.
"Done": {
"Type": "Pass",
"End": true
}

4. Replace the Iterator Resource field with the ARN for your Iterator Lambda function
that you created earlier.

5. Select Config, and enter a Name for your state machine, such as IterateCount.

(® Note

Names of state machines, executions, and activity tasks must not exceed 80 characters
in length. These names must be unique for your account and AWS Region, and must
not contain any of the following:

Whitespace

Wildcard characters (? *)

Bracket characters(< > { } [1)

Special characters (" # S\ * | ~ " $ &, ; : /)
Control characters (\\u@000 - \\u@01f or \\u0o7f - \\uoo9of).

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

Step 3: Create a State Machine 201

AWS Step Functions Developer Guide

6. For Type, accept default value of Standard. For Permissions, choose Create new role.

7. Choose Create, and then Confirm the role creations.

Step 4: Start a New Execution

After you create your state machine, you can start an execution.

1. On the IterateCount page, choose Start execution.

2. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with Amazon
CloudWatch, we recommend using only ASCII characters so you can track metrics in
CloudWatch.

3. Choose Start Execution.

A new execution of your state machine starts, showing your running execution.

Iterator ()

The execution increments in steps, tracking the count using your Lambda function. On each
iteration, it performs the example work referenced in the ExampleWork state in your state
machine.

When the count reaches the number specified in the ConfigureCount state in your state
machine, the execution quits iterating and ends.

Step 4: Start a New Execution 202

AWS Step Functions Developer Guide

Processing batch data with a Lambda function in Step
Functions

In this tutorial, you use the Distributed Map state's ItemBatcher (Map) field to process an entire
batch of items inside a Lambda function. Each batch contains a maximum of three items. The
Distributed Map state starts four child workflow executions, where each execution processes
three items, while one execution processes a single item. Each child workflow execution invokes a
Lambda function that iterates over the individual items present in the batch.

You'll create a state machine that performs multiplication on an array of integers. Say that

the integer array you provide as inputis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] andthe
multiplication factor is 7. Then, the resulting array formed after multiplying these integers with a
factor of 7, willbe [7, 14, 21, 28, 35, 42, 49, 56, 63, 70].

Step 1: Create the state machine

In this step, you create the workflow prototype of the state machine that passes an entire batch of
data to the Lambda function you'll create in Step 2.

« Use the following definition to create a state machine using the Step Functions console. For
information about creating a state machine, see Step 1: Create the workflow prototype in the
Getting started with using Distributed Map state tutorial.

In this state machine, you define a Distributed Map state that accepts an array of 10 integers
as input and passes this array to a Lambda function in batches of 3. The Lambda function
iterates over the individual items present in the batch and returns an output array named
multiplied. The output array contains the result of the multiplication performed on the
items passed in the input array.

Process batch data with Lambda 203

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

/A Important

Make sure to replace the Amazon Resource Name (ARN) of the Lambda function in the
following code with the ARN of the function you'll create in Step 2.

"StartAt": "Pass",
"States": {
"Pass": {
"Type": "Pass",
"Next": "Map",
"Result": {
"MyMultiplicationFactor": 7,
"MyItems": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

"Map": {
"Type": "Map",
"ItemProcessor": {
"ProcessorConfig": {
"Mode": "DISTRIBUTED",
"ExecutionType": "STANDARD"
},
"StartAt": "Lambda Invoke",
"States": {
"Lambda Invoke": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"QutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:region:account-
id:function:functionName"
.
"Retry": [
{

"ErrorEquals": [
"Lambda.ServiceException",
"Lambda.AWSLambdaException",
"Lambda.SdkClientException",

Step 1: Create the state machine 204

AWS Step Functions Developer Guide

"Lambda.TooManyRequestsException"
1,
"IntervalSeconds": 2,
"MaxAttempts": 6,
"BackoffRate": 2
}
1,
"End": true
}
}
},
"End": true,
"Label": "Map",
"MaxConcurrency": 1000,
"ItemBatcher": {
"MaxItemsPerBatch": 3,
"BatchInput": {
"MyMultiplicationFactor.$": "$.MyMultiplicationFactor"
}
.
"ItemsPath": "$.MyItems"

Step 2: Create the Lambda function

In this step, you create the Lambda function that processes all the items passed in the batch.

/A Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

To create the Lambda function

1. Use the Lambda console to create a Python Lambda function named ProcessEntireBatch.

For information about creating a Lambda function, see Step 4: Configure the Lambda function

in the Getting started with using Distributed Map state tutorial.

2. Copy the following code for the Lambda function and paste it into the Code source section of
your Lambda function.

Step 2: Create the Lambda function 205

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

import json
def lambda_handler(event, context):
multiplication_factor = event['BatchInput']['MyMultiplicationFactor']
items = event['Items']
results = [multiplication_factor * item for item in items]
return {
'statusCode': 200,

'multiplied': results

}

3. After you create your Lambda function, copy the function's ARN displayed in the upper-right
corner of the page. The following is an example ARN, where function-name is the name of
the Lambda function (in this case, ProcessEntireBatch):

arn:aws:lambda:region:123456789012:function: function-name

You'll need to provide the function ARN in the state machine you created in Step 1.
4. Choose Deploy to deploy the changes.

Step 3: Run the state machine

When you run the state machine, the Distributed Map state starts four child workflow executions,

where each execution processes three items, while one execution processes a single item.

The following example shows the data passed to the ProcessEntireBatch function by one of

the child workflow executions.

{
"BatchInput": {
"MyMultiplicationFactor": 7
},
"Items": [1, 2, 3]
}

Given this input, the following example shows the output array named multiplied thatis
returned by the Lambda function.

Step 3: Run the state machine 206

AWS Step Functions

Developer Guide

"statusCode":
"multiplied":
}

200,

[7, 14, 21]

The state machine returns the following output that contains four arrays named multiplied for

the four child workflow executions. These arrays contain the multiplication results of the individual

input items.

"statusCode":
"multiplied":

"statusCode":
"multiplied":

"statusCode":
"multiplied":

"statusCode":
"multiplied":

200,

200,
[28,

200,
[49,

200,
[70]

[7, 14, 21]

35, 42]

56, 63]

To combine all the array items returned into a single output array, you can use the ResultSelector
field. Define this field inside the Distributed Map state to find all the multiplied arrays, extract all

the items inside these arrays, and then combine them into a single output array.

To use the ResultSelector field, update your state machine definition as shown in the following

example.
{
"StartAt": "Pass",
"States": {
IlMapll: {

Step 3: Run the state machine

207

AWS Step Functions Developer Guide

IlTypell: IlMapll’

"ItemsPath": "$.MyItems",
"ResultSelector": {
"multiplied.$": "$..multiplied[*]"
}
}
}
}

The updated state machine returns a consolidated output array as shown in the following example.

{
"multiplied": [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
3

Processing individual items with a Lambda function in Step
Functions

In this tutorial, you use the Distributed Map state's ltemBatcher (Map) field to iterate over individual
items present in a batch using a Lambda function. The Distributed Map state starts four child
workflow executions. Each of these child workflows runs an Inline Map state. For its each iteration,
the Inline Map state invokes a Lambda function and passes a single item from the batch to the
function. The Lambda function then processes the item and returns the result.

You'll create a state machine that performs multiplication on an array of integers. Say that

the integer array you provide as inputis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] andthe
multiplication factor is 7. Then, the resulting array formed after multiplying these integers with a
factor of 7, willbe [7, 14, 21, 28, 35, 42, 49, 56, 63, 70].

Step 1: Create the state machine

In this step, you create the workflow prototype of the state machine that passes a single item from
a batch of items to each invocation of the Lambda function you'll create in Step 2.

» Use the following definition to create a state machine using the Step Functions console. For
information about creating a state machine, see Step 1: Create the workflow prototype in the
Getting started with using Distributed Map state tutorial.

Process individual items with Lambda 208

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

In this state machine, you define a Distributed Map state that accepts an array of 10 integers
as input and passes these array items to the child workflow executions in batches. Each child
workflow execution receives a batch of three items as input and runs an Inline Map state. Every
iteration of the Inline Map state invokes a Lambda function and passes an item from the batch
to the function. This function then multiplies the item with a factor of 7 and returns the result.

The output of each child workflow execution is a JSON array that contains the multiplication
result for each of the items passed.

/A Important

Make sure to replace the Amazon Resource Name (ARN) of the Lambda function in the
following code with the ARN of the function you'll create in Step 2.

{
"StartAt": "Pass",
"States": {
"Pass": {

"Type": "Pass",

"Next": "Map",

"Result": {
"MyMultiplicationFactor": 7,
"MyItems": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

}

b
"Map": {

"Type": "Map",

"ItemProcessor": {
"ProcessorConfig": {

"Mode": "DISTRIBUTED",
"ExecutionType": "STANDARD"

},
"StartAt": "InnerMap",
"States": {
"InnerMap": {
"Type": "Map",

"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"

Step 1: Create the state machine 209

AWS Step Functions Developer Guide

},
"StartAt": "Lambda Invoke",
"States": {
"Lambda Invoke": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$.Payload",
"Parameters": {
"Payload.$": "$",
"FunctionName": "arn:aws:lambda:region:account-
id:function:functionName"
I
"Retry": [
{

"ErrorEquals": [
"Lambda.ServiceException",
"Lambda.AWSLambdaException",
"Lambda.SdkClientException",
"Lambda.TooManyRequestsException"

1,

"IntervalSeconds": 2,

"MaxAttempts": 6,

"BackoffRate": 2

}
1,
"End": true
}
}
},

"End": true,

"ItemsPath": "$.Items",

"ItemSelector": {
"MyMultiplicationFactor.$": "$.BatchInput.MyMultiplicationFactor",
"MyItem.$": "$$.Map.Item.Value"

}
I
"End": true,
"Label": "Map",
"MaxConcurrency": 1000,
"ItemsPath": "$.MyItems",
"ItemBatcher": {
"MaxItemsPerBatch": 3,

Step 1: Create the state machine 210

AWS Step Functions Developer Guide

"BatchInput": {
"MyMultiplicationFactor.$": "$.MyMultiplicationFactor"

Step 2: Create the Lambda function

In this step, you create the Lambda function that processes each item passed from the batch.

/A Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

To create the Lambda function

1. Use the Lambda console to create a Python Lambda function named ProcessSingleItem.

For information about creating a Lambda function, see Step 4: Configure the Lambda function

in the Getting started with using Distributed Map state tutorial.

2. Copy the following code for the Lambda function and paste it into the Code source section of
your Lambda function.

import json
def lambda_handler(event, context):

multiplication_factor = event['MyMultiplicationFactor']
item = event['MyItem']

result = multiplication_factor * item
return {

'statusCode': 200,
'multiplied': result

Step 2: Create the Lambda function 211

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

3. After you create your Lambda function, copy the function's ARN displayed in the upper-right
corner of the page. The following is an example ARN, where function-name is the name of
the Lambda function (in this case, ProcessSingleItem):

arn:aws:lambda:region:123456789012:function: function-name

You'll need to provide the function ARN in the state machine you created in Step 1.
4. Choose Deploy to deploy the changes.

Step 3: Run the state machine

When you run the state machine, the Distributed Map state starts four child workflow executions,

where each execution processes three items, while one execution processes a single item.

The following example shows the data passed to one of the ProcessSingleItem function

invocations inside a child workflow execution.

{
"MyMultiplicationFactor": 7,

"MyItem": 1
X

Given this input, the following example shows the output that is returned by the Lambda function.

{
"statusCode": 200,

"multiplied": 7
}

The following example shows the output JSON array for one of the child workflow executions.

[
{
"statusCode": 200,
"multiplied": 7
1,
{

"statusCode": 200,
"multiplied": 14

Step 3: Run the state machine 212

AWS Step Functions Developer Guide

iy
{
"statusCode": 200,

"multiplied": 21

The state machine returns the following output that contains four arrays for the four child
workflow executions. These arrays contain the multiplication results of the individual input items.

Finally, the state machine output is an array named multiplied that combines all the
multiplication results returned for the four child workflow executions.

[
[
{
"statusCode": 200,
"multiplied": 7
},
{
"statusCode": 200,
"multiplied": 14
},
{
"statusCode": 200,
"multiplied": 21
}
1,
[
{
"statusCode": 200,
"multiplied": 28
},
{
"statusCode": 200,
"multiplied": 35
},
{
"statusCode": 200,
"multiplied": 42
}
1,
[

Step 3: Run the state machine 213

AWS Step Functions Developer Guide

{
"statusCode": 200,
"multiplied": 49
.
{
"statusCode": 200,
"multiplied": 56
.
{
"statusCode": 200,
"multiplied": 63
}
1,
[
{
"statusCode": 200,
"multiplied": 70
}
]
]

To combine all the multiplication results returned by the child workflow executions into a single
output array, you can use the ResultSelector field. Define this field inside the Distributed Map state

to find all the results, extract the individual results, and then combine them into a single output
array named multiplied.

To use the ResultSelector field, update your state machine definition as shown in the following
example.

"StartAt": "Pass",
"States": {

IlMapll: {
IlTypell: IlMapll’

"ItemBatcher": {
"MaxItemsPerBatch": 3,
"BatchInput": {
"MyMultiplicationFactor.$": "$.MyMultiplicationFactor"
}

Step 3: Run the state machine 214

AWS Step Functions Developer Guide

iy

"ItemsPath": "$.MyItems",
"ResultSelector": {

"multiplied.$": "$..multiplied"
}
}
}
}

The updated state machine returns a consolidated output array as shown in the following example.

{
"multiplied": [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]

}

Starting a Step Functions workflow in response to events

You can execute an AWS Step Functions state machine in response to an event routed by an
Amazon EventBridge rule to Step Functions as a target.

The following tutorial shows you how to configure a state machine as a target of an Amazon
EventBridge rule. Whenever files are added to an Amazon Simple Storage Service (Amazon S3)
bucket, the EventBridge rule will start the state machine.

A practical example of this approach could be a state machine that runs Amazon Rekognition
analysis on image files added to the bucket to categorize and assign keywords.

In this tutorial, you start the execution of a Helloworld state machine by uploading a file
to an Amazon S3 bucket. Then you review the example input of that execution to identify
the information that is included in input from the Amazon S3 event notification delivered to
EventBridge.

Prerequisite: Create a State Machine

Before you can configure a state machine as an Amazon EventBridge target, you must create the
state machine.

» To create a basic state machine, use the Creating state machine that uses a Lambda function

tutorial.

« If you already have a Helloworld state machine, proceed to the next step.

Start a workflow from EventBridge 215

AWS Step Functions Developer Guide

Step 1: Create a Bucket in Amazon S3

Now that you have a Helloworld state machine, you need to create an Amazon S3 bucket which
stores your files. In Step 3 of this tutorial, you set up a rule so that when a file is uploaded to this
bucket, EventBridge triggers an execution of your state machine.

1. Navigate to the Amazon S3 console, and then choose Create bucket to create the bucket in

which you want to store your files and trigger an Amazon S3 event rule.

2. Enter a Bucket name, such as username-sfn-tutorial.

(@ Note

Bucket names must be unique across all existing bucket names in all AWS Regions in
Amazon S3. Use your own username to make this name unique. You need to create all
resources in the same AWS Region.

3. Keep all the default selections on the page, and choose Create bucket.

Step 2: Enable Amazon S3 Event Notification with EventBridge

After you create the Amazon S3 bucket, configure it to send events to EventBridge whenever
certain events happen in your S3 bucket, such as file uploads.

1. Navigate to the Amazon S3 console.

2. In the Buckets list, choose the name of the bucket that you want to enable events for.

3. Choose Properties.

4. Scroll down the page to view the Event Notifications section, and then choose Edit in the
Amazon EventBridge subsection.

5. Under Send notifications to Amazon EventBridge for all events in this bucket, choose On.

6. Choose Save changes.

(® Note

After you enable EventBridge, it takes around five minutes for the changes to take
effect.

Step 1: Create a Bucket in Amazon S3 216

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS Step Functions Developer Guide

Step 3: Create an Amazon EventBridge Rule

After you have a state machine, and have created the Amazon S3 bucket and configured it to send
event notifications to EventBridge, create an EventBridge rule.

® Note

You must configure EventBridge rule in the same AWS Region as the Amazon S3 bucket.

To create the rule

1. Navigate to the Amazon EventBridge console, choose Create rule.

® Tip
Alternatively, in the navigation pane on the EventBridge console, choose Rules under
Buses, and then choose Create rule.

2. Enter a Name for your rule (for example, S3Step Functions)and optionally enter a
Description for the rule.

3. For Event bus and Rule type, keep the default selections.
4. Choose Next. This opens the Build event pattern page.
5. Scroll down to the Event pattern section, and do the following:
a. For Event source, keep the default selection of AWS events or EventBridge partner
events.
b. For AWS service, choose Simple Storage Service (S3).
c. For Event type, choose Amazon S3 Event Notification.
d. Choose Specific event(s), and then choose Object Created.

e. Choose Specific bucket(s) by name and enter the bucket name you created in Step 1
(username-sfn-tutorial) to store your files.

f. Choose Next. This opens the Select target(s) page.

Step 3: Create an Amazon EventBridge Rule 217

https://console.aws.amazon.com/events/

AWS Step Functions Developer Guide

To create the target

—

In Target 1, keep the default selection of AWS service.
In the Select a target dropdown list, select Step Functions state machine.

In the State machine list, select the state machine that you created earlier (for example,
Hellowoxrld).

Keep all the default selections on the page, and choose Next. This opens the Configure tags
page.
Choose Next again. This opens the Review and create page.

Review the details of the rule and choose Create rule.

The rule is created and the Rules page is displayed, listing all your Amazon EventBridge rules.

Step 4: Test the Rule

Now that everything is in place, test adding a file to the Amazon S3 bucket, and then look at the
input of the resulting state machine execution.

1.

Add a file to your Amazon S3 bucket.

Navigate to the Amazon S3 console, choose the bucket you created to store files (username -

sfn-tutorial), and then choose Upload.

Add a file, for example test. png, and then choose Upload.

This launches an execution of your state machine, passing information from AWS CloudTrail as
the input.

Check the execution for your state machine.

Navigate to the Step Functions console and select the state machine used in your Amazon
EventBridge rule (Helloworld).

Select the most recent execution of that state machine and expand the Execution Input
section.

This input includes information such as the bucket name and the object name. In a real-world
use case, a state machine can use this input to perform actions on that object.

Step 4: Test the Rule 218

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

Example of Execution Input

The following example shows a typical input to the state machine execution.

"version": "Q",
"id": "6c540ad4-0671-9974-6511-756fbd7771c3",
"detail-type": "Object Created",
"source": "aws.s3",
"account": "123456789012",
"time": "2023-06-23T23:45:487",
"region": "us-east-2",
"resources": [
"arn:aws:s3:::username-sfn-tutorial”
1,
"detail": {
"version": "Q",
"bucket": {
"name": "username-sfn-tutorial"
b
"object": {
"key": "test.png",
"size": 800704,
"etag": "f31d8546bb67845b4d3048cde533b937",
"sequencer": "0Q0621049BA9A8C712B"
b
"request-id": "79104EXAMPLEB723",
"requester": "123456789012",
"source-ip-address": "200.0.100.11",
"reason": "PutObject"

Creating a Step Functions API using APl Gateway

You can use Amazon APl Gateway to associate your AWS Step Functions APIs with methods in an
API Gateway API. When an HTTPS request is sent to an APl method, APl Gateway invokes your Step
Functions API actions.

This tutorial shows you how to create an API that uses one resource and the POST method to
communicate with the StartExecution API action. You'll use the AWS Identity and Access
Management (IAM) console to create a role for APl Gateway. Then, you'll use the API Gateway

Example of Execution Input 219

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

console to create an APl Gateway API, create a resource and method, and map the method to the
StartExecution API action. Finally, you'll deploy and test your API.

(® Note

Although Amazon APl Gateway can start a Step Functions execution by calling
StartExecution, you must call DescribeExecution to get the result.

Step 1: Create an IAM Role for APl Gateway

Before you create your APl Gateway API, you need to give APl Gateway permission to call Step
Functions API actions.

To set up permissions for APl Gateway

1. Signin to the IAM console and choose Roles, Create role.

2. On the Select trusted entity page, do the following:

a. For Trusted entity type, keep the default selection of AWS service.
b. For Use case, choose APl Gateway from the dropdown list.
Select APl Gateway, and then choose Next.

4. On the Add permissions page, choose Next.

(Optional) On the Name, review, and create page, enter details, such as the role name. For
example, enter APIGatewayToStepFunctions.

6. Choose Create role.

The IAM role appears in the list of roles.

7. Choose the name of your role and note the Role ARN, as shown in the following example.

arn:aws:iam::123456789012:role/APIGatewayToStepFunctions

To attach a policy to the IAM role

1. On the Roles page, search for your role (APIGatewayToStepFunctions), and then choose
the role.

Step 1: Create an IAM Role for APl Gateway 220

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide

2. On the Permissions tab, choose Add permissions, and then choose Attach policies.

3. On the Attach Policy page, search for AWSStepFunctionsFullAccess, choose the policy,
and then choose Add permissions.

Step 2: Create your APl Gateway API

After you create your IAM role, you can create your custom APl Gateway API.
To create the API

1. Open the Amazon API Gateway console, and then choose Create API.

2. Onthe Choose an API type page, in the REST API pane, choose Build.

3. Onthe Create REST API page, select New API, and then enter StartExecutionAPI for the
APl name.

4. Keep API endpoint type as Regional, and then choose Create API.

To create a resource

1. On the Resources page of StartExecutionAPI, choose Create resource.

2. On the Create resource page, enter execution for Resource name, and then choose Create
resource.

To create a POST method

1. Choose the /execution resource, and then choose Create method.
For Method type, choose POST.

For Integration type, choose AWS service.

For AWS Region, choose a Region from the list.

For AWS service, choose Step Functions from the list.

Keep AWS subdomain blank.

N o u B W N

For HTTP method, choose POST from the list.

Step 2: Create your API Gateway API 221

https://console.aws.amazon.com/apigateway/

AWS Step Functions Developer Guide

10.

11.

® Note
All Step Functions API actions use the HTTP POST method.

For Action type, select Use action name.
For Action name, enter StartExecution.

For Execution role, enter the role ARN of the IAM role that you created earlier, as shown in the
following example.

arn:aws:iam::123456789012:ro0le/APIGatewayToStepFunctions

Keep the default options for Credential cache and Default timeout, and then choose Save.

The visual mapping between APl Gateway and Step Functions is displayed on the /execution -
POST - Method execution page.

Step 3: Test and Deploy the API Gateway API

Once you have created the API, test and deploy it.

To test the communication between APl Gateway and Step Functions

1.

On the /execution - POST - Method Execution page, choose the Test tab. You might need to
choose the right arrow button to show the tab.

On the /execution - POST - Method Test tab, copy the following request parameters into
the Request body section using the ARN of an existing state machine (or create a new state

machine that uses a Lambda function), and then choose Test.

{

"input": "{3}",

"name": "MyExecution",

"stateMachineArn": "arn:aws:states:region:123456789012:stateMachine:HelloWorld"
}

For more information, see the StartExecution Request Syntax in the AWS Step Functions
API Reference.

Step 3: Test and Deploy the API Gateway API 222

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax

AWS Step Functions Developer Guide

® Note

If you don't want to include the ARN of your state machine in the body of your API
Gateway call, you can configure a mapping template in the Integration request tab, as
shown in the following example.

"input": "$util.escapelavaScript($input.json('$'))",
"stateMachineArn": "$util.escapelavaScript($stageVariables.arn)"

With this approach, you can specify ARNs of different state machines based on your
development stage (for example, dev, test, and prod). For more information about
specifying stage variables in a mapping template, see $stageVariables in the API

Gateway Developer Guide.

3. The execution starts and the execution ARN and its epoch date are displayed under Response
body.

"executionArn":
"arn:aws:states:region:123456789012:execution:HelloWorld:MyExecution",
"startDate": 1486768956.878

(@ Note

You can view the execution by choosing your state machine on the AWS Step Functions

console.

To deploy your API

1. On the Resources page of StartExecutionAPI, choose Deploy API.
2. For Stage, select New stage.

3. For Stage name, enter alpha.

Step 3: Test and Deploy the API Gateway API 223

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html#stagevariables-template-reference
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

4. (Optional) For Description, enter a description.

5. Choose Deploy.

To test your deployment

1. Onthe Stages page of StartExecutionAPI, expand alpha, /, /execution, POST, and then
choose the POST method.

2. Under Method overrides, choose the copy icon to copy your API's invoke URL. The full URL
should look like the following example.

https://alb2c3d4e5.execute-api.region.amazonaws.com/alpha/execution

3. From the command line, run the curl command using the ARN of your state machine, and
then invoke the URL of your deployment, as shown in the following example.

curl -X POST -d '{"input": "{3}","name": "MyExecution", "stateMachineArn":
"arn:aws:states:region:123456789012:stateMachine:HelloWorld"}"' https://
alb2c3d4e5.execute-api.region.amazonaws.com/alpha/execution

The execution ARN and its epoch date are returned, as shown in the following example.

{"executionArn":"arn:aws:states:region:123456789012:execution:HelloWorld:MyExecution", "stax

(® Note

If you get a "Missing Authentication Token" error, make sure that the invoke URL ends
with /execution.

Creating an Activity state machine using Step Functions

This tutorial shows you how to create an activity-based state machine using Java and AWS Step
Functions. Activities allow you to control worker code that runs somewhere else from your state
machine. For an overview, see Learn about Activities in Step Functions in Learn about state

machines in Step Functions.

To complete this tutorial, you need the following:

Create an Activity state machine 224

AWS Step Functions Developer Guide

« The SDK for Java. The example activity in this tutorial is a Java application that uses the AWS
SDK for Java to communicate with AWS.

o AWS credentials in the environment or in the standard AWS configuration file. For more
information, see Set Up Your AWS Credentials in the AWS SDK for Java Developer Guide.

Step 1: Create an Activity

You must make Step Functions aware of the activity whose worker (a program) you want to create.
Step Functions responds with an Amazon Resource Name(ARN) that establishes an identity for the
activity. Use this identity to coordinate the information passed between your state machine and
worker.

/A Important

Ensure that your activity task is under the same AWS account as your state machine.

1. Inthe Step Functions console, in the navigation pane on the left, choose Activities.

Choose Create activity.

Enter a Name for the activity, for example, get-greeting, and then choose Create activity.

WD

When your activity task is created, make a note of its ARN, as shown in the following example.

arn:aws:states:region:123456789012:activity:get-greeting

Step 2: Create a state machine

Create a state machine that determines when your activity is invoked and when your worker should
perform its primary work, collect its results, and return them. To create the state machine, you'll
use the Code editor of Workflow Studio.

1. Inthe Step Functions console, in the navigation pane on the left, choose State machines.
2. On the State machines page, choose Create state machine.

3. Choose Create from blank.

4. Name your state machine, then choose Continue to edit your state machine in Workflow

Studio.

Step 1: Create an Activity 225

https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html
https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

5. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the code editor. To do this, choose Code.

6. Remove the existing boilerplate code and paste the following code. Remember to replace the
example ARN in the Resource field with the ARN of the activity task that you created earlier
in Step 1: Create an Activity.

{
"Comment": "An example using a Task state.",
"StartAt": "getGreeting",
"Version": "1.0",
"TimeoutSeconds": 300,
"States":
{
"getGreeting": {
"Type": "Task",
"Resource": "arn:aws:states:region:123456789012:activity:get-greeting",
"End": true
}
}
}

This is a description of your state machine using the Amazon States Language (ASL). It defines

a single Task state named getGreeting. For more information, see State Machine Structure.

7. On the Graph visualization, make sure the workflow graph for the ASL definition you added

looks similar to the following graph.

Step 2: Create a state machine 226

AWS Step Functions Developer Guide

Step Functions: Run Activity
getGreeting

8. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ActivityStateMachine.

9. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

Step 2: Create a state machine 227

AWS Step Functions Developer Guide

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

10. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Implement a Worker

Create a worker. A worker is a program that is responsible for:

 Polling Step Functions for activities using the GetActivityTask API action.

» Performing the work of the activity using your code, (for example, the getGreeting() method
in the following code).

» Returning the results using the SendTaskSuccess, SendTaskFailure, and
SendTaskHeartbeat API actions.

® Note

For a more complete example of an activity worker, see Example: Activity Worker in Ruby.
This example provides an implementation based on best practices, which you can use as a
reference for your activity worker. The code implements a consumer-producer pattern with
a configurable number of threads for pollers and activity workers.

To implement the worker

1. Create a file named GreeterActivities. java.

2. Add the following code to it.

Step 3: Implement a Worker 228

AWS Step Functions Developer Guide

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.EnvironmentVariableCredentialsProvider;

import com.amazonaws.regions.Regions;

import com.amazonaws.services.stepfunctions.AWSStepFunctions;

import com.amazonaws.services.stepfunctions.AWSStepFunctionsClientBuilder;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskRequest;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskResult;
import com.amazonaws.services.stepfunctions.model.SendTaskFailureRequest;
import com.amazonaws.services.stepfunctions.model.SendTaskSuccessRequest;
import com.amazonaws.util.json.Jackson;

import com.fasterxml.jackson.databind.JsonNode;

import java.util.concurrent.TimeUnit;

public class GreeterActivities {

public String getGreeting(String who) throws Exception {
IetUIn Il{\llHello\ll: \IIII + WhO + II\II}II;

public static void main(final String[] args) throws Exception {
GreeterActivities greeterActivities = new GreeterActivities();
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setSocketTimeout((int)TimeUnit.SECONDS.toMillis(70));

AWSStepFunctions client = AWSStepFunctionsClientBuilder.standard()
.withRegion(Regions.US_EAST_1)
.withCredentials(new EnvironmentVariableCredentialsProvider())
.withClientConfiguration(clientConfiguration)
.build();

while (true) {
GetActivityTaskResult getActivityTaskResult =
client.getActivityTask(
new
GetActivityTaskRequest().withActivityArn(ACTIVITY_ARN));

if (getActivityTaskResult.getTaskToken() != null) {
try {
JsonNode json =
Jackson.jsonNodeOf (getActivityTaskResult.getInput());
String greetingResult =

Step 3: Implement a Worker 229

AWS Step Functions Developer Guide

greeterActivities.getGreeting(json.get("who").textValue());
client.sendTaskSuccess(
new SendTaskSuccessRequest().withOutput(

greetingResult).withTaskToken(getActivityTaskResult.getTaskToken()));
} catch (Exception e) {
client.sendTaskFailure(new
SendTaskFailureRequest().withTaskToken(
getActivityTaskResult.getTaskToken()));

}
} else {
Thread.sleep(1000);
}
}
}
}
(@ Note

The EnvironmentVariableCredentialsProvider class in this example assumes
that the AWS_ACCESS_KEY_ID (or AWS_ACCESS_KEY) and AWS_SECRET_KEY (or
AWS_SECRET_ACCESS_KEY) environment variables are set. For more information
about providing the required credentials to the factory, see AWSCredentialsProvider
in the AWS SDK for Java API Reference and Set Up AWS Credentials and Region for
Development in the AWS SDK for Java Developer Guide.

By default the AWS SDK will wait up to 50 seconds to receive data from the server

for any operation. The GetActivityTask operation is a long-poll operation
that will wait up to 60 seconds for the next available task. To prevent receiving a
SocketTimeoutException error, set SocketTimeout to 70 seconds.

3. In the parameter list of the GetActivityTaskRequest().withActivityArn()
constructor, replace the ACTIVITY_ARN value with the ARN of the activity task that you
created earlier in Step 1: Create an Activity.

Step 4: Run the state machine

When you start the execution of the state machine, your worker polls Step Functions for activities,
performs its work (using the input that you provide), and returns its results.

Step 4: Run the state machine 230

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS Step Functions Developer Guide

1.

Onthe ActivityStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

In the Start execution dialog box, do the following:

(Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

In the Input box, enter the following JSON input to run your workflow.

"who": "AWS Step Functions"

Choose Start execution.

The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 5: Run and Stop the Worker

To have the worker poll your state machine for activities, you must run the worker.

1.

On the command line, navigate to the directory in which you created
GreeterActivities.java.

Step 5: Run and Stop the Worker 231

AWS Step Functions Developer Guide

2. To use the AWS SDK, add the full path of the 1ib and third-paxrty directories to the
dependencies of your build file and to your Java CLASSPATH. For more information, see
Downloading and Extracting the SDK in the AWS SDK for Java Developer Guide.

3. Compile the file.

$ javac GreeterActivities.java

4. Run the file.

$ java GreeterActivities

5. On the Step Functions console, navigate to the Execution Details page.

6. When the execution completes, examine the results of your execution.

7. Stop the worker.

View X-Ray traces in Step Functions

In this tutorial, you will learn how to use X-Ray to trace errors that occur when running a state
machine. You can use AWS X-Ray to visualize the components of your state machine, identify
performance bottlenecks, and troubleshoot requests that resulted in an error. In this tutorial, you
will create several Lambda functions that randomly produce errors, which you can then trace and
analyze using X-Ray.

The Creating a Step Functions state machine that uses Lambda tutorial walks you though creating
a state machine that calls a Lambda function. If you have completed that tutorial, skip to Step 2
and use the AWS Identity and Access Management (IAM) role that you previously created.

Step 1: Create an IAM role for Lambda

Both AWS Lambda and AWS Step Functions can run code and access AWS resources (for example,
data stored in Amazon S3 buckets). To maintain security, you must grant Lambda and Step
Functions access to these resources.

Lambda requires you to assign an AWS Identity and Access Management (IAM) role when you
create a Lambda function, in the same way Step Functions requires you to assign an IAM role when
you create a state machine.

You use the |IAM console to create a service-linked role.

View X-Ray traces 232

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html#download-and-extract-sdk
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

AWS Step Functions Developer Guide

To create a role (console)

1. Signin to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Inthe navigation pane of the IAM console, choose Roles. Then choose Create role.
3. Choose the AWS Service role type, and then choose Lambda.

4. Choose the Lambda use case. Use cases are defined by the service to include the trust policy
required by the service. Then choose Next: Permissions.

5. Choose one or more permissions policies to attach to the role (for example,
AwWSLambdaBasicExecutionRole). See AWS Lambda Permissions Model.

Select the box next to the policy that assigns the permissions that you want the role to have,
and then choose Next: Review.

6. Enter a Role name.
7. (Optional) For Role description, edit the description for the new service-linked role.

8. Review the role, and then choose Create role.

Step 2: Create a Lambda function

Your Lambda function will randomly throw errors or time out, producing example data to view in
X-Ray.

/A Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the Lambda console and choose Create function.

2. Inthe Create function section, choose Author from scratch.

3. Inthe Basic information section, configure your Lambda function:

a. For Function name, enter TestFunctionl.
b. For Runtime, choose Node.js 18.x.

c. For Role, select Choose an existing role.

Step 2: Create a Lambda function 233

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

d. For Existing role, select the Lambda role that you created earlier.

® Note

If the IAM role that you created doesn't appear in the list, the role might still need
a few minutes to propagate to Lambda.

e. Choose Create function.

When your Lambda function is created, note its Amazon Resource Name (ARN) in the
upper-right corner of the page. For example:

arn:aws:lambda:region:123456789012:function:TestFunctionl

4. Copy the following code for the Lambda function into the Function code section of the
TestFunctionl page.

function getRandomSeconds(max) {
return Math.floor(Math.random() * Math.floor(max)) * 1000;
}

function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));

}
export const handler = async (event) => {
if(getRandomSeconds(4) === 0) {
throw new Error("Something went wrong!");
}
let wait_time = getRandomSeconds(5);
await sleep(wait_time);
return { 'response': true }
};

This code creates randomly timed failures, which will be used to generate example errors in
your state machine that can be viewed and analyzed using X-Ray traces.

5. Choose Save.

Step 3: Create two more Lambda functions

Create two more Lambda functions.

Step 3: Create two more Lambda functions 234

AWS Step Functions Developer Guide

1. Repeat Step 2 to create two more Lambda functions. For the next function, in Function name,
enter TestFunction?2. For the last function, in Function name, enter TestFunction3.

2. Inthe Lambda console, check that you now have three Lambda functions, TestFunctionl,
TestFunction2, and TestFunction3.

Step 4: Create a state machine

In this step, you'll use the Step Functions console to create a state machine with three Task states.

Each Task state will a reference one of your three Lambda functions.

1. Open the Step Functions console, choose State machines from the menu, then choose Create
state machine.

/A Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda functions you created earlier in Step 2 and Step 3.

2. Choose Create from blank.

3. Name your state machine, then choose Continue to edit your state machine in Workflow
Studio.

4. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following code. In the Task state definition,
remember to replace the example ARNs with the ARNs of the Lambda functions you created.

{
"StartAt": "CallTestFunctionl",
"States": {
"CallTestFunctionl": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:123456789012:function:test-functionl",
"Catch": [
{

"ErrorEquals": [
"States.TaskFailed"

1,
"Next": "AfterTaskFailed"

Step 4: Create a state machine 235

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

}
1,
"Next": "CallTestFunction2"

I
"CallTestFunction2": {
"Type": "Task",
"Resource": "arn:aws:lambda:region:123456789012:function:test-function2",
"Catch": [
{
"ErrorEquals": [
"States.TaskFailed"
1,
"Next": "AfterTaskFailed"
}
1,
"Next": "CallTestFunction3"
},
"CallTestFunction3": {
"Type": "Task",

"Resource": "arn:aws:lambda:region:123456789012:function:test-function3",
"TimeoutSeconds": 5,
"Catch": [

{

"ErrorEquals": [
"States.Timeout"
1,
"Next": "AfterTimeout"
I
{
"ErrorEquals": [
"States.TaskFailed"
1,
"Next": "AfterTaskFailed"
}
1,
"Next": "Succeed"
},
"Succeed": {
"Type": "Succeed"

iy
"AfterTimeout": {

IlTypell: IlFailll
iy

"AfterTaskFailed": {

Step 4: Create a state machine 236

AWS Step Functions Developer Guide

"Type": "Fail"
}
}
}

This is a description of your state machine using the Amazon States Language. It defines three
Task states named CallTestFunctionl, CallTestFunction2 and CallTestFunction3.
Each calls one of your three Lambda functions. For more information, see State Machine

Structure.

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name TraceFunctions.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, under Additional configuration, choose Enable X-Ray tracing. Keep all the
other default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(@ Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 5: Run the state machine
State machine executions are instances where you run your workflow to perform tasks.

1. Onthe TraceFunctions page, choose Start execution.

Step 5: Run the state machine 237

AWS Step Functions Developer Guide

The New execution page is displayed.

2. Inthe Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

(@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Run several (at least three) executions.

3. After the executions have finished, follow the X-Ray trace map link. You can view the trace
while an execution is still running, but you may want to see the execution results before
viewing the X-Ray trace map.

4. View the service map to identify where errors are occurring, connections with high latency,
or traces for requests that were unsuccessful. In this example, you can see how much traffic
each function is receiving. TestFunction2 was called more often than TestFunction3, and
TestFunctionl was called more than twice as often as TestFunction2.

The service map indicates the health of each node by coloring it based on the ratio of
successful calls to errors and faults:

« Green for successful calls
« Red for server faults (500 series errors)

» Yellow for client errors (400 series errors)

Step 5: Run the state machine 238

AWS Step Functions Developer Guide

« Purple for throttling errors (429 Too Many Requests)

avg. 2.05s
0 8 t/min
TestFunction2
AWS::Lambda
. avg. 205‘; L
- 2 timin
_ TestFunctionl
Client TraceFunctions AWS-Lambda

AWS: StepFunctions: StateMachine

1.09¢

0.2 ymin

TestFunction3

AWS:Lambda

You can also choose a service node to view requests for that node, or an edge between two
nodes to view requests that traveled that connection.

5. View the X-Ray trace map to see what has happened for each execution. The Timeline view
shows a hierarchy of segments and subsegments. The first entry in the list is the segment,
which represents all data recorded by the service for a single request. Below the segment are
subsegments. This example shows subsegments recorded by the Lambda functions.

Name Res. Duration Status 0.0ms 200ms iwnlma Sﬂl}ms aﬂﬁlms l.lﬂs 12s 1ds 165 18s 2.05 225 24s
I 1 1 1 I 1 I 1 I

* TraceFunctions AwS::StepFunctions:StateMachine

TraceFunctions

=

CallTestFunctionl
Lambda 200

a

Q:
=
i

CallTestFunction2
Lambda 200
AfterTaskFailed

voke: TestFunction?

P Lambda aws::Lambda [Client Response)

For more information on understanding X-Ray traces and using X-Ray with Step Functions, see
the Trace Step Functions request data in AWS X-Ray

Step 5: Run the state machine 239

AWS Step Functions Developer Guide

Gather Amazon S3 bucket info using AWS SDK service
integrations

This tutorial shows you how to perform an AWS SDK integration with Amazon Simple Storage

Service. The state machine you create in this tutorial gathers information about your Amazon
S3 buckets, then list your buckets along with version information for each bucket in the current
region.

Step 1: Create the state machine

Using the Step Functions console, you'll create a state machine that includes a Task state to list all
the Amazon S3 buckets in the current account and region. Then, you'll add another Task state that
invokes the HeadBucket API to verify if the returned bucket is accessible in the current region. If
the bucket isn't accessible, the HeadBucket API call returns the S3.S3Exception error. You'll
include a Catch block to catch this exception and a Pass state as the fallback state.

1. Open the Step Functions console, choose State machines from the menu, then choose Create
state machine.

2. Choose Create from blank.

3. Name your state machine, then choose Continue to edit your state machine in Workflow
Studio.

4. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following state machine definition.

{
"Comment": "A description of my state machine",
"StartAt": "ListBuckets",
"States": {
"ListBuckets": {
"Type": "Task",
"Parameters": {3},
"Resource": "arn:aws:states:::aws-sdk:s3:1listBuckets",
"Next": "Map"
},
"Map": {
"Type": "Map",

"ItemsPath": "$.Buckets",

Gather Amazon S3 bucket info 240

https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadBucket.html
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

"ItemProcessor": {
"ProcessorConfig": {
"Mode": "INLINE"

I
"StartAt": "HeadBucket",
"States": {
"HeadBucket": {
"Type": "Task",
"ResultPath": null,
"Parameters": {
"Bucket.$": "$.Name"
I
"Resource": "arn:aws:states:::aws-sdk:s3:headBucket",
"Catch": [
{
"ErrorEquals": [
"S3.S3Exception”
1,
"ResultPath": null,
"Next": "Pass"
}
1,
"Next": "GetBucketVersioning"
I
"GetBucketVersioning": {
"Type": "Task",
"End": true,
"Parameters": {
"Bucket.$": "$.Name"
I
"ResultPath": "$.BucketVersioningInfo",
"Resource'": "arn:aws:states:::aws-sdk:s3:getBucketVersioning"
},
"Pass": {
"Type": "Pass",
"End": true,
"Result": {
"Status": "Unknown"
},
"ResultPath": "$.BucketVersioningInfo"
}
}
},
"End": true

Step 1: Create the state machine 241

AWS Step Functions Developer Guide

}
}

}

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name Gathexr-S3-Bucket-Info-Standaxd.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

Keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine

and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. Inthe Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(@ Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

In Step 2, you'll add the missing permissions to the state machine role.

Step 2: Add the necessary IAM role permissions

To gather information about the Amazon S3 buckets in your current region, you must provide your
state machine the necessary permissions to access the Amazon S3 buckets.

1. On the state machine page, choose IAM role ARN to open the Roles page for the state
machine role.

2. Choose Add permissions and then choose Create inline policy.

Step 2: Add the necessary IAM role permissions 242

AWS Step Functions

Developer Guide

3. Choose the JSON tab, and then paste the following permissions into the JSON editor.

"Version": "2012-10-17",
"Statement": [
{

"Sid": "VisualEditorQ@",

"Effect": "Allow",
"Action": [

"s3:ListAl1MyBuckets",

"s3:ListBucket",

"s3:GetBucketVersioning

1,

"Resource": "*"

4. Choose Review policy.

5. Under Review policy, for the policy Name, enter s3-bucket-permissions.

6. Choose Create policy.

Step 3: Run a Standard state machine execution

1. On the Gather-S3-Bucket-Info-Standard page, choose Start execution.

2. Inthe Start execution dialog box, do the following:

a.

b.

(Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track

metrics in CloudWatch.

Choose Start execution.

Step 3: Run a Standard state machine execution

243

AWS Step Functions Developer Guide

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Step 4: Run an Express state machine execution

1. Create an Express state machine using the state machine definition provided in Step 1. Make
sure that you also include the necessary IAM role permissions as explained in Step 2.

® Tip
To distinguish from the Standard machine you created earlier, name the Express state
machine as Gather-S3-Bucket-Info-Express.

2. On the Gather-S3-Bucket-Info-Standard page, choose Start execution.

3. In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

Step 4: Run an Express state machine execution 244

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

Continue long-running workflows using Step Functions API
(recommended)
AWS Step Functions is designed to run workflows with a finite duration and number of steps.

Standard workflow executions have a maximum duration of one year and 25,000 events (see Step
Functions service quotas).

For long-running executions, you can avoid reaching the hard quota by starting a new workflow
execution from the Task state. You need to break your workflows up into smaller state machines
which continue ongoing work in a new execution.

To start new workflow executions, you will call the StartExecution API action from your Task
state and pass the necessary parameters.

Step Functions can start workflow executions by calling its own API as an integrated service.

We recommend that you use this approach to avoid exceeding service quotas for long-running
executions.

Step 1: Create a long-running state machine

Create a long-running state machine that you want to start from the Task state of a different state
machine. For this tutorial, use the state machine that uses a Lambda function.

(® Note

Make sure to copy the name and Amazon Resource Name of this state machine in a text file
for later use.

Continue long-running workflows using Step Functions APl (recommended) 245

AWS Step Functions Developer Guide

Step 2: Create a state machine to call the Step Functions API action

To start workflow executions from a Task state

1. Open the Step Functions console, choose State machines from the menu, then choose Create
state machine.

2. Choose Create from blank.

3. Name your state machine, then choose Continue to edit your state machine in Workflow
Studio.

4. From the Actions tab, drag the StartExecution API action and drop it on the empty state
labelled Drag first state here.

5. Choose the StartExecution state and do the following in the Configuration tab in Design
mode:

a. Rename the state to Start nested execution.
b. For Integration type, choose AWS SDK - new from the dropdown list.
c. In APl Parameters, do the following:
i. ForStateMachineArn, replace the sample Amazon Resource Name with the ARN

of your state machine. For example, enter the ARN of the state machine that uses
Lambda.

ii. For Input node, replace the existing placeholder text with the following value:

"Comment": "Starting workflow execution using a Step Functions API action"

iii. Make sure your inputs in APl Parameters look similar to the following:

{
"StateMachineArn": "arn:aws:states:us-
east-2:123456789012:stateMachine:LambdaStateMachine",
"Input": {
"Comment": "Starting workflow execution using a Step Functions API
action",
"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
}

6. (Optional) Choose Definition on the Inspector panel panel to view the automatically-
generated Amazon States Language (ASL) definition of your workflow.

Step 2: Create a state machine to call the Step Functions APl action 246

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

® Tip
You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

7. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ParentStateMachine.
8. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

9. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

(® Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Update the IAM policy

To make sure your state machine has permissions to start the execution of the state machine that
uses a Lambda function, you need to attach an inline policy to your state machine's IAM role. For
more information, see Embedding Inline Policies in the IAM User Guide.

1. On the ParentStateMachine page, choose the IAM role ARN to navigate to the IAM Roles
page for your state machine.

Step 3: Update the IAM policy 247

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

AWS Step Functions Developer Guide

2.

Assign an appropriate permission to the IAM role of the ParentStateMachine for it to be able
to start execution of another state machine. To assign the permission, do the following:

a. On the IAM Roles page, choose Add permissions, and then choose Create inline policy.
b. On the Create policy page, choose the JSON tab.

c. Replace the existing text with the following policy.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"states:StartExecution"
1,
"Resource": [
"arn:aws:states:us-
east-1:123456789012:stateMachine:LambdaStateMachine"

]

d. Choose Review policy.

e. Specify a name for the policy, and then choose Create policy.

Step 4: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1.

On the ParentStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

In the Start execution dialog box, do the following:

a. (Optional) Enter a custom execution name to override the generated default.

Step 4: Run the state machine 248

AWS Step Functions Developer Guide

@ Non-ASCIl names and logging

Step Functions accepts names for state machines, executions, activities, and labels
that contain non-ASCII characters. Because such characters will not work with
Amazon CloudWatch, we recommend using only ASCII characters so you can track
metrics in CloudWatch.

b. (Optional) In the Input box, enter input values in JSON format to run your workflow.
c. Choose Start execution.

d. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution details overview.

3. Open the LambdaStateMachine page and notice a new execution triggered by the
ParentStateMachine.

Using a Lambda function to continue a new execution in Step
Functions

® Tip
The following approach uses a Lambda function to start a new workflow execution. We
recommend using a Step Functions Task state to start new workflow executions. See how
in the following tutorial: the section called “Continue long-running workflows using
Step Functions APl (recommended)” .

You can create a state machine that uses a Lambda function to start a new execution before the
current execution terminates. With this approach to continue ongoing work in a new execution, you
can break large jobs into smaller workflows, or run a workflow indefinitely.

Using Lambda to continue a workflow 249

AWS Step Functions Developer Guide

This tutorial builds on the concept of using an external Lambda function to modify your workflow,
which was demonstrated in the Iterate a loop with a Lambda function in Step Functions tutorial.
You use the same Lambda function (Iterator) to iterate a loop for a specific number of times. In
addition, you create another Lambda function to start a new execution of your workflow, and to
decrement a count each time it starts a new execution. By setting the number of executions in the
input, this state machine ends and restarts an execution a specified number of times.

The state machine you'll create implements the following states.

State Purpose

ConfigureCount A Pass state that configures the count, index, and step
values that the Iterator Lambda function uses to step through
iterations of work.

Iterator A Task state that references the Iterator Lambda function.

IsCountReached A Choice state that uses a Boolean value from the Iterator
function to decide whether the state machine should continue the
example work, or move to the ShouldRestart state.

ExampleWork A Pass state that represents the Task state that would perform
work in an actual implementation.

ShouldRestart A Choice state that uses the executionCount value to decide
whether it should end one execution and start another, or simply
end.

Restart A Task state that uses a Lambda function to start a new

execution of your state machine. Like the Iteratoxr function, this
function also decrements a count. The Restart state passes the
decremented value of the count to the input of the new execution.

Prerequisites

Before you begin, go through the Creating a Step Functions state machine that uses Lambda

tutorial to ensure that you're familiar with using Lambda and Step Functions together.

Prerequisites 250

AWS Step Functions Developer Guide

Step 1: Create a Lambda function to iterate a count

(® Note

If you have completed the Iterate a loop with a Lambda function in Step Functions tutorial,

you can skip this step and use that Lambda function.

This section and the Iterate a loop with a Lambda function in Step Functions tutorial show how you

can use a Lambda function to track a count, for example, the number of iterations of a loop in your
state machine.

The following Lambda function receives input values for count, index, and step. It returns
these values with an updated index and a Boolean named continue. The Lambda function sets
continue to true if the index is less than count.

Your state machine then implements a Choice state that executes some application logic if
continue is true, or moves on to ShouldRestart if continueis false.

Create the Iterate Lambda function

1. Open the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Iterator.
b. For Runtime, choose Node.js 16.x.

c. Keep all the default selections on the page, and then choose Create function.

When your Lambda function is created, make a note of its Amazon Resource Name (ARN)
in the upper-right corner of the page, for example:

arn:aws:lambda:region:123456789012:function:Iterator

4. Copy the following code for the Lambda function into the Code source section of the
Iterator page in the Lambda console.

exports.handler = function iterator (event, context, callback) {

Step 1: Create a Lambda function to iterate a count 251

https://console.aws.amazon.com/lambda/home

AWS Step Functions

Developer Guide

let index = event.iterator.index;
let step = event.iterator.step;
let count = event.iterator.count;

index = index + step;

callback(null, {
index,
step,
count,
continue: index < count

1)

This code accepts input values for count, index, and step. It increments the index by the

value of step and returns these values, and the Boolean value of continue. The value of

continueis true if index is less than count.

5. Choose Deploy to deploy the code.

Test the Iterate Lambda function

To see your Iterate function working, run it with numeric values. You can provide input values
for your Lambda function that mimic an iteration to see what output you get with specific input

values.

To test your Lambda function

1. Inthe Configure test event dialog box, choose Create new test event, and then type

TestIterator for Event name.

2. Replace the example data with the following.

{
"Comment": "Test my Iterator function",
"iterator": {
"count": 10,
"index": 5,
"step": 1
}
}

Step 1: Create a Lambda function to iterate a count

252

AWS Step Functions Developer Guide

These values mimic what would come from your state machine during an iteration. The
Lambda function increments the index and returns continue as true. When the index is
not less than the count, it returns continue as false. For this test, the index has already
incremented to 5. The results should increment the index to 6 and set continue to true.

3. Choose Create.

4. Onthe Iterator page in your Lambda console, be sure Testlterator is listed, and then choose
Test.

The results of the test are displayed a