기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.
Amazon Textract Textract를 사용하여 문서 텍스트 감지
문서에서 텍스트를 검색하려면DetectDocumentText작업을 수행하고 문서 파일을 입력으로 전달합니다.DetectDocumentText
검색된 텍스트의 줄과 단어, 문서의 텍스트 위치 및 감지된 텍스트 간의 관계를 포함하는 JSON 구조를 반환합니다. 자세한 정보는 텍스트 감지을 참조하십시오.
입력 문서를 이미지 바이트 어레이 (base64 인코딩 이미지 바이트) 또는 Amazon S3 객체로 제공할 수 있습니다. 이 절차에서는 S3 버킷에 이미지 파일을 업로드하고 파일 이름을 지정합니다.
문서에서 텍스트를 감지하려면 (API)
아직 설정하지 않았다면 다음과 같이 하십시오.
을 사용하여 IAM 사용자를 생성 또는 업데이트합니다.
AmazonTextractFullAccess
과AmazonS3ReadOnlyAccess
권한. 자세한 정보는 1단계: AWS 계정 설정 및 IAM 사용자 만들기을 참조하십시오.AWS CLI와 AWS SDK를 설치하고 구성합니다. 자세한 정보는 2단계: 설정AWS CLI과AWSSDK을 참조하십시오.
-
S3 버킷에 문서를 업로드합니다.
지침은 단원을 참조하십시오.Amazon S3 객체 업로드의Amazon Simple Storage Service.
-
다음 예제를 사용하여
DetectDocumentText
작업을 호출합니다.- Java
-
다음 예제 코드는 검색된 텍스트 줄 주위에 문서와 상자를 표시합니다.
함수에서 수행
main
의 값을 바꿉니다.bucket
과document
Amazon S3 버킷의 이름 및 2단계에서 사용한 문서 이름이 표시됩니다.//Calls DetectDocumentText. //Loads document from S3 bucket. Displays the document and bounding boxes around detected lines/words of text. package com.amazonaws.samples; import java.awt.*; import java.awt.image.BufferedImage; import java.util.List; import javax.imageio.ImageIO; import javax.swing.*; import com.amazonaws.services.s3.AmazonS3; import com.amazonaws.services.s3.AmazonS3ClientBuilder; import com.amazonaws.services.s3.model.S3ObjectInputStream; import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.BoundingBox; import com.amazonaws.services.textract.model.DetectDocumentTextRequest; import com.amazonaws.services.textract.model.DetectDocumentTextResult; import com.amazonaws.services.textract.model.Document; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.Point; import com.amazonaws.services.textract.model.Relationship; public class DocumentText extends JPanel { private static final long serialVersionUID = 1L; BufferedImage image; DetectDocumentTextResult result; public DocumentText(DetectDocumentTextResult documentResult, BufferedImage bufImage) throws Exception { super(); result = documentResult; // Results of text detection. image = bufImage; // The image containing the document. } // Draws the image and text bounding box. public void paintComponent(Graphics g) { int height = image.getHeight(this); int width = image.getWidth(this); Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g. // Draw the image. g2d.drawImage(image, 0, 0, image.getWidth(this) , image.getHeight(this), this); // Iterate through blocks and display polygons around lines of detected text. List<Block> blocks = result.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); if ((block.getBlockType()).equals("LINE")) { ShowPolygon(height, width, block.getGeometry().getPolygon(), g2d); /* ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d); */ } else { // its a word, so just show vertical lines. ShowPolygonVerticals(height, width, block.getGeometry().getPolygon(), g2d); } } } // Show bounding box at supplied location. private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(new Color(0, 212, 0)); g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } // Shows polygon at supplied location private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 0, 0)); Polygon polygon = new Polygon(); // Construct polygon and display for (Point point : points) { polygon.addPoint((Math.round(point.getX() * imageWidth)), Math.round(point.getY() * imageHeight)); } g2d.drawPolygon(polygon); } // Draws only the vertical lines in the supplied polygon. private void ShowPolygonVerticals(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 212, 0)); Object[] parry = points.toArray(); g2d.setStroke(new BasicStroke(2)); g2d.drawLine(Math.round(((Point) parry[0]).getX() * imageWidth), Math.round(((Point) parry[0]).getY() * imageHeight), Math.round(((Point) parry[3]).getX() * imageWidth), Math.round(((Point) parry[3]).getY() * imageHeight)); g2d.setColor(new Color(255, 0, 0)); g2d.drawLine(Math.round(((Point) parry[1]).getX() * imageWidth), Math.round(((Point) parry[1]).getY() * imageHeight), Math.round(((Point) parry[2]).getX() * imageWidth), Math.round(((Point) parry[2]).getY() * imageHeight)); } //Displays information from a block returned by text detection and text analysis private void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println(" Detected text: " + block.getText()); System.out.println(" Type: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println(" Confidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println(" Cell information:"); System.out.println(" Column: " + block.getColumnIndex()); System.out.println(" Row: " + block.getRowIndex()); System.out.println(" Column span: " + block.getColumnSpan()); System.out.println(" Row span: " + block.getRowSpan()); } System.out.println(" Relationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println(" Type: " + relationship.getType()); System.out.println(" IDs: " + relationship.getIds().toString()); } } else { System.out.println(" No related Blocks"); } System.out.println(" Geometry"); System.out.println(" Bounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println(" Polygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println(" Entity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println(" Entity Type: " + entityType); } } else { System.out.println(" No entity type"); } if(block.getPage()!=null) System.out.println(" Page: " + block.getPage()); System.out.println(); } public static void main(String arg[]) throws Exception { // The S3 bucket and document String document = ""; String bucket = ""; AmazonS3 s3client = AmazonS3ClientBuilder.standard() .withEndpointConfiguration( new EndpointConfiguration("https://s3.amazonaws.com","us-east-1")) .build(); // Get the document from S3 com.amazonaws.services.s3.model.S3Object s3object = s3client.getObject(bucket, document); S3ObjectInputStream inputStream = s3object.getObjectContent(); BufferedImage image = ImageIO.read(inputStream); // Call DetectDocumentText EndpointConfiguration endpoint = new EndpointConfiguration( "https://textract.us-east-1.amazonaws.com", "us-east-1"); AmazonTextract client = AmazonTextractClientBuilder.standard() .withEndpointConfiguration(endpoint).build(); DetectDocumentTextRequest request = new DetectDocumentTextRequest() .withDocument(new Document().withS3Object(new S3Object().withName(document).withBucket(bucket))); DetectDocumentTextResult result = client.detectDocumentText(request); // Create frame and panel. JFrame frame = new JFrame("RotateImage"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); DocumentText panel = new DocumentText(result, image); panel.setPreferredSize(new Dimension(image.getWidth() , image.getHeight() )); frame.setContentPane(panel); frame.pack(); frame.setVisible(true); } }
- AWS CLI
-
이 AWS CLI 명령은
detect-document-text
CLI 작업에 대한 JSON 출력을 표시합니다.다음 값 바꾸기
Bucket
과Name
Amazon S3 버킷의 이름 및 2단계에서 사용한 문서 이름이 표시됩니다.aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"
bucket
","Name":"document
"}}' - Python
-
다음 예제 코드는 감지된 텍스트 줄 주위에 문서와 상자를 표시합니다.
함수에서 수행
main
의 값을 바꿉니다.bucket
과document
Amazon S3 버킷의 이름 및 2단계에서 사용한 문서 이름이 표시됩니다.#Detects text in a document stored in an S3 bucket. Display polygon box around text and angled text import boto3 import io from io import BytesIO import sys import psutil import time import math from PIL import Image, ImageDraw, ImageFont # Displays information about a block returned by text detection and text analysis def DisplayBlockInformation(block): print('Id: {}'.format(block['Id'])) if 'Text' in block: print(' Detected: ' + block['Text']) print(' Type: ' + block['BlockType']) if 'Confidence' in block: print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") if block['BlockType'] == 'CELL': print(" Cell information") print(" Column: " + str(block['ColumnIndex'])) print(" Row: " + str(block['RowIndex'])) print(" ColumnSpan: " + str(block['ColumnSpan'])) print(" RowSpan: " + str(block['RowSpan'])) if 'Relationships' in block: print(' Relationships: {}'.format(block['Relationships'])) print(' Geometry: ') print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print(' Polygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == "KEY_VALUE_SET": print (' Entity Type: ' + block['EntityTypes'][0]) if 'Page' in block: print('Page: ' + block['Page']) print() def process_text_detection(bucket, document): #Get the document from S3 s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket,document) s3_response = s3_object.get() stream = io.BytesIO(s3_response['Body'].read()) image=Image.open(stream) # Detect text in the document client = boto3.client('textract') #process using image bytes #image_binary = stream.getvalue() #response = client.detect_document_text(Document={'Bytes': image_binary}) #process using S3 object response = client.detect_document_text( Document={'S3Object': {'Bucket': bucket, 'Name': document}}) #Get the text blocks blocks=response['Blocks'] width, height =image.size draw = ImageDraw.Draw(image) print ('Detected Document Text') # Create image showing bounding box/polygon the detected lines/text for block in blocks: print('Type: ' + block['BlockType']) if block['BlockType'] != 'PAGE': print('Detected: ' + block['Text']) print('Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") print('Id: {}'.format(block['Id'])) if 'Relationships' in block: print('Relationships: {}'.format(block['Relationships'])) print('Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('Polygon: {}'.format(block['Geometry']['Polygon'])) print() draw=ImageDraw.Draw(image) # Draw WORD - Green - start of word, red - end of word if block['BlockType'] == "WORD": draw.line([(width * block['Geometry']['Polygon'][0]['X'], height * block['Geometry']['Polygon'][0]['Y']), (width * block['Geometry']['Polygon'][3]['X'], height * block['Geometry']['Polygon'][3]['Y'])],fill='green', width=2) draw.line([(width * block['Geometry']['Polygon'][1]['X'], height * block['Geometry']['Polygon'][1]['Y']), (width * block['Geometry']['Polygon'][2]['X'], height * block['Geometry']['Polygon'][2]['Y'])], fill='red', width=2) # Draw box around entire LINE if block['BlockType'] == "LINE": points=[] for polygon in block['Geometry']['Polygon']: points.append((width * polygon['X'], height * polygon['Y'])) draw.polygon((points), outline='black') # Uncomment to draw bounding box #box=block['Geometry']['BoundingBox'] #left = width * box['Left'] #top = height * box['Top'] #draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],outline='black') # Display the image image.show() # display image for 10 seconds return len(blocks) def main(): bucket = '' document = '' block_count=process_text_detection(bucket,document) print("Blocks detected: " + str(block_count)) if __name__ == "__main__": main()
- Node.js
-
다음 Node.js 예제 코드는 검색된 텍스트 줄 주위에 문서와 상자를 표시하여 결과 이미지를 코드를 실행하는 디렉터리로 출력합니다. 그것은 다음을 사용합니다.
image-size
과images
패키지.함수에서 수행
main
의 값을 바꿉니다.bucket
과document
Amazon S3 버킷의 이름 및 2단계에서 사용한 문서 이름이 표시됩니다. 값 바꾸기regionConfig
계정이 있는 리전의 이름을 사용합니다.async function main(){ // Import AWS const AWS = require("aws-sdk") // Use Image-Size to get const sizeOf = require('image-size'); // Image tool to draw buffers const images = require("images"); // Create a canvas and get the context const { createCanvas } = require('canvas') const canvas = createCanvas(200, 200) const ctx = canvas.getContext('2d') // Set variables const bucket = 'bucket-name' // the s3 bucket name const photo = 'image-name' // the name of file const regionConfig = 'region' // Set region if needed AWS.config.update({region:regionConfig}); // Connect to Textract const client = new AWS.Textract(); // Connect to S3 to display image const s3 = new AWS.S3(); // Define paramaters const params = { Document: { S3Object: { Bucket: bucket, Name: photo }, }, } // Function to display image async function getImage(){ const imageData = s3.getObject( { Bucket: bucket, Key: photo } ).promise(); return imageData; } // get image var imageData = await getImage() // Get the height, width of the image const dimensions = sizeOf(imageData.Body) const width = dimensions.width const height = dimensions.height console.log(imageData.Body) console.log(width, height) canvas.width = width; canvas.height = height; try{ // Call API and log response const res = await client.detectDocumentText(params).promise(); var image = images(imageData.Body).size(width, height) //console.log the type of block, text, text type, and confidence res.Blocks.forEach(block => { console.log(`Block Type: ${block.BlockType}`), console.log(`Text: ${block.Text}`) console.log(`TextType: ${block.TextType}`) console.log(`Confidence: ${block.Confidence}`) // Draw box around detected text using polygons ctx.strokeStyle = 'rgba(0,0,0,0.5)'; ctx.beginPath(); block.Geometry.Polygon.forEach(({X, Y}) => ctx.lineTo(width * X - 10, height * Y - 10) ); ctx.closePath(); ctx.stroke(); console.log("-----") }) // render image var buffer = canvas.toBuffer("image/png"); image.draw(images(buffer), 10, 10) image.save("output-image.jpg"); } catch (err){ console.error(err);} } main()
예제를 실행합니다. 파이썬과 Java 예제는 문서 이미지를 표시합니다. 검은색 상자는 감지된 텍스트의 각 줄을 둘러싸고 있습니다. 녹색 세로선은 감지된 단어의 시작입니다. 빨간색 세로선은 감지된 단어의 끝입니다. 이AWS CLI예제는 에 대한 JSON 출력만 표시합니다.
DetectDocumentText
작업을 수행합니다.