쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

Distributed tracing - Serverless Applications Lens
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

Distributed tracing

Similar to non-serverless applications, anomalies can occur at larger scale in distributed systems. Due to the nature of serverless architectures, it’s fundamental to have distributed tracing.

Making changes to your serverless application entails many of the same principles of deployment, change, and release management used in traditional workloads. However, there are subtle changes in how you use existing tools to accomplish these principles.

Active tracing with AWS X-Ray should be enabled to provide distributed tracing capabilities as well as to enable visual service maps for faster troubleshooting. X-Ray helps you identify performance degradation and quickly understand anomalies, including latency distributions.

Diagram showing AWS X-Ray Service Map visualizing a workload using AWS Lambda, Amazon DynamoDB and Amazon EventBridge

Figure 9: AWS X-Ray Service Map visualizing a workload using AWS Lambda, Amazon DynamoDB and Amazon EventBridge

Service Maps are helpful to understand integration points that need attention and resiliency practices. For integration calls, retries, backoffs, and possibly circuit breakers are necessary to prevent faults from propagating to downstream services.

Another example is networking anomalies. You should not rely on default timeouts and retry settings. Instead, tune them to fail fast if a socket read/write timeout happens where the default can be seconds, if not minutes, in certain clients.

X-Ray also provides two powerful features that can improve the efficiency on identifying anomalies within applications: annotations and subsegments.

Subsegments are helpful to understand how application logic is constructed and what external dependencies it has to talk to. Annotations are key-value pairs with string, number, or Boolean values that are automatically indexed by AWS X-Ray.

Combined, subsegments and annotations can help you quickly identify performance statistics on specific operations and business transactions. Examples are a database query duration, or the durations of a supporting function which parses an image.

Screen shot showing AWS X-Ray Trace with subsegments beginning with ##

Figure 10: AWS X-Ray Trace with subsegments beginning with ##

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.