AWS Migration Hub

User Guide
Table of Contents

What Is AWS Migration Hub? ... 1
Are you a first-time user of AWS Migration Hub? 1

Setting up ... 3
Sign up for AWS .. 3
Create an IAM user .. 3

Getting started .. 5
Assumptions ... 5
Access to AWS Migration Hub .. 6
Two ways to get started .. 6
Get started with discovery .. 7
Get started migrating ... 9

Walkthroughs ... 12
Perform discovery and then migrate ... 12
 Phase 1: Discover .. 13
 Phase 2: Migrate ... 17
 Phase 3: Track .. 19
Migrate without performing discovery ... 19
 Phase 1: Migrate ... 20
 Phase 2: Track .. 22

Tracking, tagging, and navigating ... 24
Tracking migration updates ... 24
 Tracking when you perform discovery first and then migrate 24
 Tracking when you migrate without performing discovery 25
 Troubleshooting and manually mapping migration updates 25
Tracking metrics using the dashboards .. 25
 Main dashboard ... 26
Tagging migration resources ... 26
Navigating from the dashboard and the navigation pane 26

Home Region ... 28
Choose a Migration Hub Home Region ... 28
Set a Home Region for discovery ... 28
Set a Home Region for migration reporting ... 29
Changing your Migration Hub Home Region 29
Working with the Migration Hub Home Region APIs 29

Amazon EC2 recommendations ... 31
Prerequisites ... 31
How Amazon EC2 instance recommendations work 31
Generating Amazon EC2 recommendations ... 32
Understanding your Amazon EC2 recommendations 33
Additional considerations ... 37

Viewing network connections ... 39
Use the network diagram to view connections 39
Prerequisites ... 39
How to use the network diagram .. 40
 Toolbar ... 41
 Diagram ... 41
 Server details and selected server list ... 41
Troubleshooting ... 44
 Message that you need to install Discovery Agent 44
 Problems when adding servers or expanding diagram 44

Security ... 45
Identity and Access Management ... 45
 Authentication ... 45
 Access Control .. 46
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migration Hub Roles & Policies</td>
<td>47</td>
</tr>
<tr>
<td>Migration Hub API Permissions Reference</td>
<td>50</td>
</tr>
<tr>
<td>Authentication & Access Explained</td>
<td>53</td>
</tr>
<tr>
<td>Using Service-Linked Roles</td>
<td>58</td>
</tr>
<tr>
<td>Logging and monitoring in AWS Migration Hub</td>
<td>64</td>
</tr>
<tr>
<td>Quotas</td>
<td>65</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>66</td>
</tr>
<tr>
<td>Migrations not appearing in AWS Migration Hub</td>
<td>66</td>
</tr>
<tr>
<td>Authentication</td>
<td>66</td>
</tr>
<tr>
<td>Migration status matching</td>
<td>66</td>
</tr>
<tr>
<td>Migrations not appearing in application</td>
<td>66</td>
</tr>
<tr>
<td>Servers' Application Grouping</td>
<td>67</td>
</tr>
<tr>
<td>Check Update Status</td>
<td>67</td>
</tr>
<tr>
<td>Check Update/Server mapping</td>
<td>67</td>
</tr>
<tr>
<td>Errors Enabling Data Collection</td>
<td>67</td>
</tr>
<tr>
<td>AWS Migration Hub API</td>
<td>68</td>
</tr>
<tr>
<td>Reporting migration status updates</td>
<td>68</td>
</tr>
<tr>
<td>Creating a ProgressUpdateStream for your migration tool</td>
<td>68</td>
</tr>
<tr>
<td>Importing a migration task</td>
<td>68</td>
</tr>
<tr>
<td>Associating a migration task with a previously discovered server</td>
<td>68</td>
</tr>
<tr>
<td>Auto-Mapping explained</td>
<td>69</td>
</tr>
<tr>
<td>Sending migration status updates</td>
<td>69</td>
</tr>
<tr>
<td>Migration tool expected behavior</td>
<td>69</td>
</tr>
<tr>
<td>API endpoints</td>
<td>70</td>
</tr>
<tr>
<td>API version</td>
<td>70</td>
</tr>
<tr>
<td>AWS CloudTrail</td>
<td>70</td>
</tr>
<tr>
<td>Related topics</td>
<td>70</td>
</tr>
<tr>
<td>Actions</td>
<td>71</td>
</tr>
<tr>
<td>AssociateCreatedArtifact</td>
<td>72</td>
</tr>
<tr>
<td>AssociateDiscoveredResource</td>
<td>75</td>
</tr>
<tr>
<td>CreateProgressUpdateStream</td>
<td>78</td>
</tr>
<tr>
<td>DeleteProgressUpdateStream</td>
<td>81</td>
</tr>
<tr>
<td>DescribeApplicationState</td>
<td>84</td>
</tr>
<tr>
<td>DescribeMigrationTask</td>
<td>87</td>
</tr>
<tr>
<td>DisassociateCreatedArtifact</td>
<td>90</td>
</tr>
<tr>
<td>DisassociateDiscoveredResource</td>
<td>93</td>
</tr>
<tr>
<td>ImportMigrationTask</td>
<td>96</td>
</tr>
<tr>
<td>ListApplicationStates</td>
<td>99</td>
</tr>
<tr>
<td>ListCreatedArtifacts</td>
<td>102</td>
</tr>
<tr>
<td>ListDiscoveredResources</td>
<td>106</td>
</tr>
<tr>
<td>ListMigrationTasks</td>
<td>110</td>
</tr>
<tr>
<td>ListProgressUpdateStreams</td>
<td>114</td>
</tr>
<tr>
<td>NotifyApplicationState</td>
<td>117</td>
</tr>
<tr>
<td>NotifyMigrationTaskState</td>
<td>120</td>
</tr>
<tr>
<td>PutResourceAttributes</td>
<td>124</td>
</tr>
<tr>
<td>Data Types</td>
<td>127</td>
</tr>
<tr>
<td>ApplicationState</td>
<td>128</td>
</tr>
<tr>
<td>CreatedArtifact</td>
<td>129</td>
</tr>
<tr>
<td>DiscoveredResource</td>
<td>130</td>
</tr>
<tr>
<td>MigrationTask</td>
<td>131</td>
</tr>
<tr>
<td>MigrationTaskSummary</td>
<td>133</td>
</tr>
<tr>
<td>ProgressUpdateStreamSummary</td>
<td>135</td>
</tr>
<tr>
<td>ResourceAttribute</td>
<td>136</td>
</tr>
<tr>
<td>Task</td>
<td>138</td>
</tr>
<tr>
<td>Logging Migration Hub API calls with AWS CloudTrail</td>
<td>139</td>
</tr>
<tr>
<td>Migration Hub information in CloudTrail</td>
<td>139</td>
</tr>
</tbody>
</table>
What Is AWS Migration Hub?

AWS Migration Hub (Migration Hub) provides a single place to discover your existing servers, plan migrations, and track the status of each application migration. The Migration Hub provides visibility into your application portfolio and streamlines planning and tracking. You can visualize the connections and the status of the servers and databases that make up each of the applications you are migrating, regardless of which migration tool you are using.

Migration Hub gives you the choice to start migrating right away and group servers while migration is underway, or to first discover servers and then group them into applications. Either way, you can migrate each server in an application and track progress from each tool in the AWS Migration Hub.

Migration Hub supports migration status updates from the following tools:

- **AWS Application Migration Service (AWS MGN)**–AWS Application Migration Service is the primary migration service recommended for lift-and-shift migrations to AWS. For more information about AWS MGN, see AWS Application Migration Service and AWS MGN Documentation.
- **AWS Server Migration Service (AWS SMS)**–For more information about AWS SMS, see AWS Server Migration Service and AWS SMS Documentation.
- **AWS Database Migration Service (AWS DMS)**–For more information about AWS DMS, see AWS Database Migration Service and AWS DMS Documentation.
- The **ATADATA ATAmotion partner tool**–For more information about ATAmotion, see AWS Migration Hub Partners.

To access these tools, open the AWS Migration Hub console at https://console.aws.amazon.com/migrationhub/, and in the navigation pane under Migrate, choose Tools. (You must first have an AWS account and credentials to access the Migration Hub console. For information about signing up for AWS, see Setting up (p. 3).)

Are you a first-time user of AWS Migration Hub?

On your first use of the AWS Migration Hub console, you’re prompted to select a Migration Hub home region where your migration tracking data will be stored. You can choose a home region on the Settings page of the console. After you select a home region, you are redirected automatically to the console in that AWS Region. You must make a selection before you can perform any write action from the console, SDK, or CLI interfaces.

If you are a first-time user of AWS Migration Hub, we recommend that you read the following sections in order:

- Getting started (p. 5)
- Home Region (p. 28)
- Walkthroughs (p. 12)

To learn about sending status to or querying status from AWS Migration Hub using the AWS SDK or AWS CLI, see the following API references:

- **AWS Migration Hub API** (p. 68)
- **AWS Migration Hub Home Region API**
Note
Only your migration tracking data is stored in your home region. You can migrate into any AWS Region that is supported by the migration tool that you use.

If you have a tool that you want to integrate with AWS Migration Hub, contact us by choosing Feedback in the lower left-hand corner of the footer in the AWS Migration Hub console. For all support issues, contact us here.
Setting up

Before you use AWS Migration Hub for the first time, if you have not done so, complete the following tasks:

1. Sign up for AWS (p. 3)
2. Create an IAM user (p. 3)

Sign up for AWS

When you sign up for Amazon Web Services (AWS), you are charged only for the services that you use. If you already have an AWS account, you can skip this step.

If you have an AWS account already, skip to the next task. If you don’t have an AWS account, use the following procedure to create one.

To create an AWS account

2. Follow the online instructions.
 Part of the sign-up procedure involves receiving a phone call and entering a verification code on the phone keypad.

 Note your AWS account number, because you'll need it for the next task.

Create an IAM user

Services in AWS, such as AWS Migration Hub, require that you provide credentials when you access them, so that the service can determine whether you have permissions to access its resources. AWS recommends that you do not use the root credentials of your AWS account to make requests. Instead, create an IAM user, and grant that user full access. We refer to these users as administrator users. You can use the administrator user credentials, instead of root credentials of your account, to interact with AWS and perform tasks, such as create a bucket, create users, and grant them permissions. For more information, see Root Account Credentials vs. IAM User Credentials in the AWS General Reference and IAM Best Practices in the IAM User Guide.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the IAM console.

To create an administrator user for yourself and add the user to an administrators group (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS account email address. On the next page, enter your password.

 Note

 We strongly recommend that you adhere to the best practice of using the Administrator IAM user that follows and securely lock away the root user credentials. Sign in as the root user only to perform a few account and service management tasks.
2. In the navigation pane, choose **Users** and then choose **Add user**.
3. For **User name**, enter **Administrator**.
4. Select the check box next to **AWS Management Console access**. Then select **Custom password**, and then enter your new password in the text box.
5. (Optional) By default, AWS requires the new user to create a new password when first signing in. You can clear the check box next to **User must create a new password at next sign-in** to allow the new user to reset their password after they sign in.
6. Choose **Next: Permissions**.
7. Under **Set permissions**, choose **Add user to group**.
8. Choose **Create group**.
9. In the **Create group** dialog box, for **Group name** enter **Administrators**.
10. Choose **Filter policies**, and then select **AWS managed - job function** to filter the table contents.
11. In the policy list, select the check box for **AdministratorAccess**. Then choose **Create group**.

Note
You must activate IAM user and role access to Billing before you can use the **AdministratorAccess** permissions to access the AWS Billing and Cost Management console. To do this, follow the instructions in step 1 of the tutorial about delegating access to the billing console.

12. Back in the list of groups, select the check box for your new group. Choose **Refresh** if necessary to see the group in the list.
13. Choose **Next: Tags**.
14. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information about using tags in IAM, see Tagging IAM entities in the **IAM User Guide**.
15. Choose **Next: Review** to see the list of group memberships to be added to the new user. When you are ready to proceed, choose **Create user**.

You can use this same process to create more groups and users and to give your users access to your AWS account resources. To learn about using policies that restrict user permissions to specific AWS resources, see **Access management** and **Example policies**.

To sign in as this new IAM user, sign out of the AWS Management Console, and then use the following URL, where **your_aws_account_id** is your AWS account number without the hyphens (for example, if your AWS account number is 1234-5678-9012, your AWS account ID is 123456789012):

```
https://your_aws_account_id.signin.aws.amazon.com/console/
```

Enter the IAM user name and password that you just created. When you're signed in, the navigation bar displays **your_user_name@your_aws_account_id**.

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an account alias. From the IAM dashboard, click **Create Account Alias** and enter an alias, such as your company name. To sign in after you create an account alias, use the following URL:

```
https://your_account_alias.signin.aws.amazon.com/console/
```

To verify the sign-in link for IAM users for your account, open the IAM console and check under **AWS Account Alias** on the dashboard.
Getting started with AWS Migration Hub

In this section, you can find information about how to get started with AWS Migration Hub. Included are steps to introduce you to the initial console pages that Migration Hub presents to a new user.

Before you begin, be sure to set your home region, either from the console or by using commands in the CLI. The first time you view the Migration Hub console, you'll be prompted to choose a home region. You can choose and view your current home region on the Migration Hub Settings page. To navigate to the Settings page, choose Settings in the left navigation pane. After the home region is set, it cannot be changed.

Topics
- Assumptions (p. 5)
- Access to AWS Migration Hub (p. 6)
- Two ways to get started (p. 6)
- Get started with discovery (p. 7)
- Get started migrating (p. 9)

Note
If you are a developer or are interested in sending migration status from a migration tool, script, or custom code, see AWS Migration Hub API (p. 68) and AWS Migration Hub Home Region API reference. All Migration Hub and Application Discovery Service API commands must be called from within the home region only, and they require you to call GetHomeRegion at least once before you call any other API, to obtain the account's Migration Hub home region. Calls originating from outside your home region are rejected.

Assumptions

For the Migration Hub walkthroughs, we make the following assumptions:

- You have signed up for AWS. For more information, see Setting up (p. 3).
- You have selected your Migration Hub home region.

Here's what to expect:

- Migration Hub monitors the status of your migrations in all AWS Regions, provided that your migration tools are available in each region.
- The migration status of every AWS Region undergoing migration is shown in your home region console.
- The migration tools that integrate with Migration Hub store all data about your migration status in Migration Hub. The data is stored in your selected home region.
- The migration tools do not send status unless you have authorized (that is, connected) them.
- For a list of AWS Regions where you can use Migration Hub, see the Amazon Web Services General Reference.
- For more information about working with your home region, see the section about Home regions.
Access to AWS Migration Hub

AWS Migration Hub tracks the status of application migrations on the AWS Migration Hub console in your home region. The Getting Started section and other sections of this guide use the console to illustrate migration functionality. Open the AWS Migration Hub console at https://console.aws.amazon.com/migrationhub/.

Additionally, you can use the AWS Migration Hub API to track the status of your migrations from other tools or to send custom migration status to AWS Migration Hub. For more information about the Migration Hub API, see AWS Migration Hub API (p. 68). You'll also need to call the GetHomeRegion API from the Migration Hub home region API when working with Migration Hub programmatically.

The AWS SDKs assist you to develop applications that interact with Migration Hub. The AWS SDKs for Java, .NET, and PHP wrap the underlying Migration Hub API to simplify your programming tasks. For information about downloading the SDK libraries, see Sample Code Libraries.

Two ways to get started

If this is the first time you are using Migration Hub, you will be prompted to choose your home region in the console before beginning a migration.

To begin your migration, open the AWS Migration Hub console at https://console.aws.amazon.com/migrationhub/, and in the navigation pane choose Dashboard.

If you have not sent any data to Migration Hub yet, you’ll see the AWS Migration Hub page where you’re given the option to choose one of the two migration workflows. Choose either Get started with discovery (p. 7) or Get started migrating (p. 9).
Get started with discovery

You can get data about your servers and applications into the AWS Migration Hub console for migration tracking in three ways; Migration Hub import, the AWS Agentless Discovery Connector, and the AWS Application Discovery Agent.

- **Migration Hub import** – With Migration Hub import, you can import information about your on-premises servers and applications into Migration Hub, including server specifications and utilization data. You can also use this data to track the status of application migrations. For more information, see Migration Hub import in the Application Discovery Service User Guide.

- **AWS Agentless Discovery Connector** – The Discovery Connector is a VMware appliance that can collect information about VMware virtual machines (VMs). You install the Discovery Connector as a VM in your VMware vCenter Server environment using an Open Virtualization Archive (OVA) file. Using the Discovery Connector minimizes the time required for initial on-premises infrastructure assessment. For more information, see AWS Agentless Discovery Connector in the Application Discovery Service User Guide.

- **AWS Application Discovery Agent** – The Discovery Agent is AWS software that you install on your on-premises servers and VMs to capture system configuration, system performance, running processes, and details of the network connections between systems. Agents support most Linux and Windows operating systems, and you can deploy them on physical on-premises servers, Amazon EC2 instances, and virtual machines. For more information, see AWS Application Discovery Agent in the Application Discovery Service User Guide.

Discovering your servers first is an optional starting point for migrations by gathering detailed server information and then grouping the discovered servers into applications to be migrated and tracked.

Use this section to guide you through the console pages that Migration Hub presents to the first-time user to view, compare, and download AWS discovery tools. To help you decide whether to choose a Discovery Connector or a Discovery Agent, see Compare Connectors and Agents in the Application Discovery Service User Guide.

To perform discovery and then migrate

1. Choose Get started with discovery on the AWS Migration Hub page as described in Two ways to get started (p. 6).
2. In the Get started with discovery dialog box, choose Use discovery tools.

 (Optionally, you can choose Import. For information about importing data, see Migration Hub import in the Application Discovery Service User Guide.)
3. On the **Discovery Tools** page, you can download AWS discovery tools or import data.
4. To proceed with next steps, see Phase 1: Discover (p. 13) of the Option 1: Perform discovery and then migrate (p. 12) walkthrough.

Get started migrating

Directly migrating servers is efficient because your servers are migrating while you simultaneously group them into applications.

Use this section to guide you through the initial console pages that AWS Migration Hub presents to the first-time user to view, compare, and connect the migration tools to Migration Hub.

Remember that if you haven’t selected a Migration Hub home region, the first time you view the console, you’ll be required to select one.

It is important to understand that connecting a migration tool to Migration Hub is how you authorize that tool to communicate migration status to Migration Hub in your home region. Without this authorization, Migration Hub will not track your migration.

To start migrating without performing discovery

1. Choose Get started migrating on the AWS Migration Hub page, as described in Two ways to get started (p. 6).
2. In the Get started migrating dialog box, choose Connect migration tools.
3. On the **Migration Tools** page you can choose and authorize AWS migration tools or partner tools.
4. To proceed with next steps, see Phase 1: Migrate (p. 20) of the Option 2: Migrate without performing discovery (p. 19) walkthrough.
AWS Migration Hub Walkthroughs

Use these walkthroughs to guide you through either of the two workflows of starting your migration:

- Discovery of servers' detail and then migration.
- Directly with migration without performing discovery.

Topics
- Option 1: Perform discovery and then migrate (p. 12)
- Option 2: Migrate without performing discovery (p. 19)

Option 1: Perform discovery and then migrate

Discover

This section guides you through the workflow of starting your migration by first discovering your existing infrastructure using AWS discovery tools. You can download and deploy discovery connectors and/or discovery agents to discover your existing infrastructure. When one of these is deployed, you start data collection from the AWS Migration Hub console.

Migration Hub's discovery process collects data about your existing environment using AWS discovery tools such as the AWS Agentless Discovery Connector and the AWS Application Discovery Agent. These discovery tools store their collected data in the Application Discovery Service's repository providing details about each server and the processes running on them. Application Discovery Service is another AWS service that is integrated with Migration Hub so that you can view your discovery data inside Migration Hub.

When you have discovered your servers and their respective data has been collected into the repository, you can view details about any server by choosing the server host name on the Servers page.

You can logically define and group all the discovered servers that comprise the applications you want to migrate.

Migrate

Migration happens outside Migration Hub and uses the supported migration tools. These tools include both AWS migration tools and partner migration tools. You can also group more servers into either an existing or a new application at a later time.

Track

Migration Hub helps you monitor the status of your migrations in all AWS Regions, provided your migration tools are available in that Region. The migration tools that integrate with the Migration Hub (for example, AWS Server Migration Service, and AWS Database Migration Service) send migration status to the Migration Hub in your home region. There, the status is aggregated and visible in a single location. These tools do not send status unless they have been authorized (that is, connected) by you.

The steps in this walkthrough follow the outline of the Perform discovery and then migrate workflow:
The following topics guide you through the three major steps of a discovery based migration workflow.

Topics

- Phase 1: Discover (p. 13)
- Phase 2: Migrate (p. 17)
- Phase 3: Track (p. 19)

Phase 1: Discover

This section describes the discovery phase in the following topics.

Topics

- Discover Step 1: Choose and deploy AWS discovery tools (p. 13)
- Discover Step 2: View server details and dependencies (p. 15)
- Discover Step 3: Group servers as applications (p. 15)

Discover Step 1: Choose and deploy AWS discovery tools

If you landed here from Step 4 of Get started with discovery (p. 7), or if you already have AWS discovery tools implemented and want to deploy more, the following steps show you how to deploy either an AWS Agentless Discovery Connector (p. 14) or an AWS Application Discovery Agent (p. 14).

If you have already performed discovery using an AWS Migration Partner discovery tool or have existing data from data sources such as a Configuration Management Database (CMDB) or IT Asset Management System (ITAM), you can use Migration Hub import to upload them. For more information, see Migration Hub Import in the Application Discovery Service User Guide.
To help you decide whether to choose a Discovery Connector or a Discovery Agent, see Compare Connectors and Agents in the Application Discovery Service User Guide.

Discovery using the AWS Agentless Discovery Connector

These steps walk you through the discovery process using an AWS Agentless Discovery Connector for collecting data about your on-premises resources.

The Discovery Connector is a VMWare appliance (OVA) and can only collect information about VMWare VMs.

You use a Discovery Connector because it lets you quickly assess your infrastructure using a tool that isn’t specific to any operating system, without having to install anything on the servers themselves.

To discover resources using an agentless connector

1. If you are proceeding from Step 4 of Get started with discovery (p. 7), choose Download connector; else, in the navigation pane, under Discover, choose Tools, and then choose Download connector.
2. Deploy and configure the agentless connector by following the instructions specified in Setting up Agentless Discovery from the AWS Application Discovery Service User Guide.
3. After you have successfully installed the agentless connector, return to the Data Collectors page on the Migration Hub console and choose the refresh icon.
4. Select the check box of the connector(s) you want to start.
5. Choose Start data collection.

 • To install additional connectors, repeat the above procedure.

Discovery using the AWS Application Discovery Agent

These steps walk you through the discovery process using an AWS Application Discovery Agent for collecting data about your on-premises resources.

You can install Discovery Agents on both your VMs and physical servers to not only discover your on-premises servers, but also to capture technical specifications, system performance, network dependencies, and process information. Network dependency and process information is available, but only for export. Use the Application Discovery Service CLI to export the data and analyze it outside of the Migration Hub. For more information, see describe-export-tasks.

The benefit of using a Discovery Agent is that it provides more detailed information than using the agentless Discovery Connector. This information includes system performance and resource utilization. In contrast, the benefit of using a discovery connector is that it provides a more efficient and faster on-premises infrastructure assessment.

To discover resources using an agent

1. If you are proceeding from Step 3 of Get started with discovery (p. 7), choose Download agent, then in the dropdown, select either Windows or Linux; else, the Download agent button can be accessed by choosing Tools under Discover in the navigation pane.
2. Deploy and configure the agent by following the instructions specified in Setting up Agent Based Discovery from the AWS Application Discovery Service User Guide.
3. After you have successfully installed the agent, return to the Data Collectors page on the Migration Hub console and choose the refresh icon.
4. Select the check box of the agent(s) you want to start.
5. Choose Start data collection.
Discover Step 2: View server details and dependencies

The following procedures describe how to view detailed information about servers discovered with AWS discovery tools.

Viewing server details

The following procedure describes how to view information about the servers discovered by using any of the AWS discovery tools described in Discover Step 1: Choose and deploy AWS discovery tools (p. 13).

To view details about a discovered server

1. In the navigation pane, under Discover, choose Servers.
2. To view details about the server, choose the hostname of the server from the Server info column. The server's detail page displays information about the server, such as hostname, IP address, performance metrics, and so on.

Exploring server network connections

If you use AWS Application Discovery Agent for discovery, you can explore server network connections by using the network diagram in AWS Migration Hub.

Start exploring by choosing a single server or by choosing multiple servers at the same time. Use the network diagram to explore your discovered servers and their connections to help you decide on how to group them together to assist in your migration planning.

To explore network connections starting with a single server

1. In the navigation pane, under Discover, choose Servers.
2. To view details about the server, choose the hostname of the server from the Server info column. The server's detail page displays information about the server, such as hostname, IP address, performance metrics, and so on.
3. Choose Network. The icon for the server you choose is centered in the network diagram. Connections fan out from the center server to servers that are directly connected to the server you choose.
4. Choose a server icon to see details about the server. For information about how to work with the network diagram, see Viewing network connections in Migration Hub (p. 39).

To explore network connections starting with multiple servers

1. In the navigation pane, under Discover, choose Servers.
2. To see the network connections for multiple servers, select the check box for each of the servers you want in the network diagram, and then choose Visualize network.
3. You can modify the network diagram for the servers you chose. For information on how to work with the network diagram, see Viewing network connections in Migration Hub (p. 39).

Discover Step 3: Group servers as applications

The following procedures describe how to group servers as applications. Because applications can have multiple servers, it can help simplify migration tracking to group them into logical units.
Grouping servers as applications from the servers list

The following procedure shows you how to select the servers you want to group for your application, how to create your application and name it, and how to add identifying tags.

Tip
You can import application groups in bulk using the AWS CLI for Application Discovery Service and calling the `CreateApplication` API. For more information, see `CreateApplication` in the [Application Discovery Service API Reference](#).

To group servers into a new or existing application from the servers list

1. In the navigation pane, choose **Servers**.
2. In the servers list, select the check box for each of the servers you want to group into a new or existing application.
 a. You can also search and filter on any of the criteria specified in the headers of the server list. In the search box choose an item from the dropdown, then choose an operator from the next dropdown, and then type in your criteria.
 b. Optionally, for each selected server, you can add a descriptive tag by choosing **Add tag** from the **Actions** menu. Doing so shows a dialog box where you can type a value for **Key**, and optionally a value for **Value**.
3. Create your application, or add to an existing one, by choosing **Group as application**.
4. In the **Group as application** dialog box, choose either **Group as a new application** or **Add to an existing application**.
 a. If you chose **Group as a new application**, type a name in the **Application name** field. Optionally, you can type a description for **Application description**.
 b. If you chose **Add to an existing application**, choose the option next to the application name in the list box.
5. Choose **Save**. A green confirmation message is displays at the top of the page.

Grouping servers as applications from the network diagram

You must select the servers in the network diagram that you want to group into a new or existing application.

The following procedure shows you how to select the servers you want to group for your application from the network diagram, how to create your application and name it, and how to add identifying tags.

To group servers into a new or existing application from the network diagram

1. Set up a network diagram following one of the procedures in the [Exploring server network connections](#) section.
2. You can use the following options to select servers from the network diagram:
 * Choose a server node icon. Details about the server show in the server details pane, where you choose **Select server**.
 * Open the context (right-click) menu on the server node icon, and then choose **Select server**.
 * Choose **Select all** to select all the servers for grouping that are in your diagram. Only the servers with the Discovery Agent running on them can be selected.
 * Hold **shift** to select/unselect multiple servers at the same time.

Selected servers are shown in a list in the same pane as the server details. You can toggle back and forth between the server details view and the selected server list view by choosing the server icon.
After you select one or more servers, create your application, or add to an existing one, by choosing `Group as application`.

In the `Group as application` dialog box, choose either `Group as a new application` or `Add to an existing application`.

- If you chose `Group as a new application`, type a name in the `Application name` field. The servers that are members of the group are labeled on the diagram with the application name. Optionally, you can type a description for `Application description`.
- If you chose `Add to an existing application`, choose the option next to the application name in the list box.

Choose `Save`. A green confirmation message displays at the top of the page.

Optionally, you can add a descriptive tag to the selected servers by choosing `Add tag` from the `Actions` menu. Doing so shows a dialog box where you can type a value for `Key`, and optionally a value for `Value`.

Next steps

Once you have completed the three steps of the Discover phase, proceed to

- **Phase 2: Migrate (p. 17)**

Phase 2: Migrate

The migrate phase has the following steps:

- Connect migration tools to Migration Hub.
- Migrate using the connected migration tools.

Topics

- Migrate Step 1: Connect migration tools to Migration Hub (p. 17)
- Migrate Step 2: Migrate using the connected migration tools (p. 18)

Migrate Step 1: Connect migration tools to Migration Hub

Migration happens outside AWS Migration Hub using AWS migration tools or partner migration tools. To access these tools, in the Migration Hub console navigation pane under `Migrate`, choose `Tools`.

The table following lists the supported tools.

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Migration tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>AWS Application Migration Service (AWS MGN)—AWS Application Migration Service is the primary migration service recommended for lift-and-shift migrations to AWS. For more information about AWS MGN, see AWS Application Migration Service and Using the AWS Migration Hub with MGN.</td>
</tr>
<tr>
<td></td>
<td>AWS Server Migration Service (AWS SMS)—For more information about AWS SMS, see</td>
</tr>
</tbody>
</table>
The preceding tools communicate directly to Migration Hub giving an aggregated view of their migrated progress and status so they can be tracked through Migration Hub.

The following steps walk you through connecting (authorizing) your selected migration tool.

To connect (authorize) a migration tool

1. In the Migration Hub console navigation pane under Migrate, choose Tools.
2. Decide upon which AWS migration tool or integrated partners' tool to migrate your application.
3. Choose Connect in the box to authorize the migration tool you selected to communicate with Migration Hub.
 a. AWS migration tools utilize a one-click authorization process that automatically adds the required AWS Identity and Access Management (IAM) permissions role once you choose Connect.
 b. Integrated partners' tools take you to their website when you choose Connect where you will be instructed on how to complete authorization.

Note
Note that if you are using API’s or do not want to authorize through Migration Hub's console, you can learn about manual role creation in New User IAM Setup (p. 47).

Migrate Step 2: Migrate using the connected migration tools

The following steps walk you through the migration of a previously defined application.

To migrate an application

1. In the Migration Hub console navigation pane under Migrate, choose Tools.
2. If you connected (authorized) an AWS migration tool, choose the console link. If you connected (authorized) an integrated partner’s tool, choose the website link.
3. When you have been linked to either the tool's console or website, follow the migration instructions for your selected migration tool as migration happens outside of Migration Hub.
4. After your application's migration has started, return to Migration Hub.

Next steps

Once you have completed the two steps of the Migrate phase, proceed to

- Phase 3: Track (p. 19)
Phase 3: Track

In the track phase, you track the status of migrations.

- Track status of migrations.

Topics
- Track Step 1: Track status of migrations (p. 19)

Track Step 1: Track status of migrations

To track an application's migration status

1. When your application's migration has started, return to Migration Hub and choose Dashboard.
2. In the top pane labeled Most recently updated applications, click inside the donut chart labeled with the name of your migrating application. This displays the application's detail screen.
 - If you do not see all of your application's servers listed in the application's details page, it might be because you have not grouped those servers into this application yet. If you do not see the migration status of a server, automapping to discovered servers may have mapped to the wrong server and you need to manually edit the mapping. See Updates About My Migrations Don’t Appear Inside an Application (p. 66).
3. The first time a migration task is started for a server associated with the application, applications with this status will change to the in-progress status, automatically. After verifying the in-progress migration status from the application's detail screen, if the status is still Not started, you can manually change it to In-progress. Choose Change status in the upper, right-hand corner.
4. Select the radio button next to In-progress in the dialog box.
5. Choose Save. A green confirmation message appears at the top of the screen, and the status label changes to In-progress.
6. Continue to monitor the application's migration status from the data presented in the application's detail screen by refreshing your browser or by clicking the refresh button preceding the server table on the application details page.
7. When the data in the application's detail screen indicates migration has completed, and you've performed testing and verification, you will want to change the status from "In-progress" to "Completed". Choose Change status in the top right corner of the page.
8. Select the radio button next to Completed in the pop-up list box.
9. Choose Save. A green confirmation message displays at the top of the page, and the status label changes to Completed.

Option 2: Migrate without performing discovery

Following, you can find the workflow of starting your migration by directly using integrated AWS migration tools or integrated partners' migration tools without performing discovery with AWS discovery tools. Migration happens outside AWS Migration Hub using these integrated migration tools.

Migrate

As you perform the migration, the servers you are migrating appear in the servers page in the discover section so that you can logically define and group all the servers that comprise the applications you are migrating. You can also group more servers into either an existing or a new application at a later time.

Track
With a migration underway, you can track its progress status as well as details for each server grouped to the application. This status is communicated to Migration Hub from the migration tool at key points during the migration.

The steps in this walkthrough follow the outline of the **Migrate without performing discovery**.

Phase 1: Migrate

The migrate phase has the following steps:

- Connect migration tools to Migration Hub.
- Migrate using the connected migration tools.
- Group servers as applications.

Migrate Step 1: Connect migration tools to Migration Hub

If you landed here from Step 4 of Get started migrating (p. 9), the following steps show you how to authorize a migration tool and begin migrating.

Migration happens outside AWS Migration Hub using AWS migration tools or partner migration tools. To access these tools, in the Migration Hub console navigation pane under **Migrate**, choose **Tools**.

The table following lists the supported tools.
AWS Migration Hub User Guide
Phase 1: Migrate

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Migration tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>AWS Application Migration Service (AWS MGN)—AWS Application Migration Service is the primary migration service recommended for lift-and-shift migrations to AWS. For more information about AWS MGN, see AWS Application Migration Service and Using the AWS Migration Hub with MGN.</td>
</tr>
<tr>
<td></td>
<td>AWS Server Migration Service (AWS SMS)—For more information about AWS SMS, see AWS Server Migration Service and AWS SMS Documentation.</td>
</tr>
<tr>
<td></td>
<td>The ATADATA ATAmotion partner tool—For more information about ATAmotion, see AWS Migration Hub Partners.</td>
</tr>
<tr>
<td>Database</td>
<td>AWS Database Migration Service (AWS DMS)—For more information about AWS DMS, see AWS Database Migration Service and AWS DMS Documentation.</td>
</tr>
</tbody>
</table>

The preceding tools communicate directly to Migration Hub giving an aggregated view of their migrated progress and status so they can be tracked through Migration Hub.

The following steps walk you through connecting (authorizing) your selected migration tool.

To connect (authorize) a migration tool

1. In the Migration Hub console navigation pane under **Migrate**, choose **Tools**.
2. Decide upon which AWS migration tool or integrated partners' tool to migrate your application.
3. Choose **Connect** in the box to authorize the migration tool you selected to communicate with Migration Hub.
 a. AWS migration tools utilize a one-click authorization process that automatically adds the required AWS Identity and Access Management (IAM) permissions role once you choose **Connect**.
 b. Integrated partners' tools take you to their website when you choose **Connect** where you will be instructed on how to complete authorization.

Note
Note that if you are using API's or do not want to authorize through Migration Hub's console, you can learn about manual role creation in [New User IAM Setup (p. 47)](https).

Migrate Step 2: Migrate using the connected migration tools

The following steps walk you through the migration of a previously defined application.

To migrate an application

1. In the Migration Hub console navigation pane under **Migrate**, choose **Tools**.
2. If you connected (authorized) an AWS migration tool, choose the console link. If you connected (authorized) an integrated partner's tool, choose the website link.
3. When you have been linked to either the tool's console or website, follow the migration instructions for your selected migration tool as migration happens outside of Migration Hub.

4. After your application's migration has started, return to Migration Hub.

Migrate Step 3: Group servers as applications

These steps walk you through the process of grouping servers as applications when directly migrating with a migration tool without performing discovery first.

When the migration tool has started, you will see the servers listed in Migration Hub from the migration updates sent from the migration tool. You can select the servers and group them as applications. Keep in mind that the server information communicated to Migration Hub from the migration tool is not as detailed as what is collected from a discovery tool.

The following steps will show you how to select the server or servers you want to group for your application, how to create your application and name it, and how to add identifying tags.

To group servers into a new or existing application

1. In the Migration Hub console navigation pane, select **Servers**.

2. In the servers list, select the checkbox for each of the servers you want to group into a new or existing application.

 a. You can also search and filter on any of the criteria specified in the headers of the server list. Click inside the search bar and choose an item from the dropdown, then choose an operator from the next dropdown, and then type in your criteria.

 b. Optionally, for each selected server, you can add a descriptive tag by choosing **Add tag**. A dialog box appears where you can type a value for **Key**, and optionally, a value for **Value**.

3. Create your application, or add to an existing one, by choosing **Group as application**.

4. In the **Group as application** dialog box, select either **Group as a new application** or **Add to an existing application**.

 a. If you chose **Group as a new application**, type a name for **Application name**. Optionally, you can type a description for **Application description**.

 b. If you chose **Add to an existing application**, select the radio button next to the application name in the list box.

5. Choose **Save**. A green confirmation message appears at the top of the screen.

Next steps

Once you have completed the three steps of the Migrate phase, proceed to

- **Phase 2: Track** (p. 22)

Phase 2: Track

In the track phase, you track the status of migrations.

- Track status of migrations.

Topics

- **Track Step 1: Track status of migrations** (p. 23)
Track Step 1: Track status of migrations

To track an application's migration status

1. Because you started your migration after you connected (authorized) your migration tool(s) and also grouped servers as applications in prior steps, your applications will already be present in Migration Hub's dashboard.

2. In the top pane labeled Most recently updated applications, click inside the donut chart labeled with the name of your migrating application. Doing this displays the application's detail screen.
 - If you do not see all of your application's servers listed in the application's details page, it could be because you have not grouped those servers into this application yet. See Updates About My Migrations Don't Appear Inside an Application (p. 66).

3. The first time a migration task is started for a server associated with the application, applications with this status will change to the in-progress status, automatically. After verifying the in-progress migration status from the application's detail screen, if the status is still Not started, you can manually change it to In-progress. Choose Change status in the upper, right-hand corner.

4. Select the radio button next to In-progress in the dialog box.

5. Choose Save. A green confirmation message appears at the top of the screen, and the status label changes to In-progress.

6. When the data in the application's detail screen indicates migration has completed, and you've performed testing and verification, change the status from "In-progress" to "Completed" by choosing Change status in the top right corner of the page.

7. Select the radio button next to Completed in the box.

8. Choose Save. A green confirmation message appears at the top of the screen, and the status label changes to Completed.
Migration Hub tracking, tagging, and console navigation tips

This section describes how to track migrations, tag migration resources, and navigate the AWS Migration Hub console.

Topics

- Tracking migration updates (p. 24)
- Tracking metrics using the dashboards (p. 25)
- Tagging migration resources (p. 26)
- Navigating from the dashboard and the navigation pane (p. 26)

Tracking migration updates

In order to better understand how Migration Hub helps you monitor progress of a migration, there are three concepts to understand in the Migration Hub:

- Applications
- Resources (for example, servers)
- Updates

Migration tools like AWS SMS, AWS DMS, and integrated partners' tools send updates to AWS Migration Hub. These updates include information about how a particular resource migration (for example, server or database) is progressing. One or more resources are grouped together to make an application. Each application has a dedicated page in Migration Hub where you can go to see the updates for all the resources in the application.

When Migration Hub receives an update, it is displayed on the updates page. There can be a delay of up to five minutes for the initial update to appear in the updates page.

Tracking when you perform discovery first and then migrate

If you started performing discovery using AWS discovery tools, the servers list will likely be populated before you start migrating. Migration Hub attempts to automatically map updates from migration tools to servers in the servers list. If it cannot find a match in the discovered servers list, then Migration Hub will add a server corresponding to the migration update to the servers list and automatically map the update to the server.

Sometimes, when using AWS discovery tools, the automatic mapping of migration updates to servers can be incorrect. You can see updates and their mappings on the Updates page and can correct the mapping by choosing Edit.

See Step 2.a in To determine if a migration update must be manually mapped to a discovered server procedures below. If you have to frequently correct mappings after performing discovery, please contact AWS Support.
To determine if a migration update must be manually mapped to a discovered server

1. In the navigation pane, under Migrate, select Updates.
2. Verify if the Mapped servers column is populated for every row of migration updates.
 a. If the Mapped servers column is populated for every row of migration updates, this means auto-mapping was supported by the migration tool and manual mapping is not required. You can edit the server mapping by choosing Edit next to the server name.
 b. If one or more rows of the Mapped servers columns is not populated and there is a Map button present in that row's Action column, this is an indication that manual mapping is required. Proceed to the next set of procedures.

Tracking when you migrate without performing discovery

If you did not perform discovery with an AWS discovery tool, then Migration Hub will add a server corresponding to the migration update to the servers list and automatically map the update to the server. You can group servers to applications and then start tracking the migration on the application’s details page in the Migrate section of the console. See, Group servers as applications (p. 22) and Track status of migrations (p. 23).

Troubleshooting and manually mapping migration updates

You can verify that the migration update is mapped to a server by viewing the update on the Updates page. If a server has not been mapped to a migration and you just started the migration task, see if it appears as mapped after waiting five minutes and refreshing the page.

If after an initial wait of five minutes the update is still not mapped to a server, then you can manually map the update to a server by selecting the Map button. For more information, see the following procedure, To manually map a migration update to a discovered server. For officially supported migration tools, you should not need to manually map migration updates. If this happens frequently, please contact AWS Support.

The following steps show you how to manually map a migration update to a discovered server that was not able to be automapped.

To manually map a migration update to a discovered server

1. In the navigation pane, under Migrate, select Updates.
2. For each migration update row that has a Map button present in the Action column, select the Map button.
3. In the Map to discovered server box, select the radio button of the server you want to map to the migration update.
4. Choose Save. A green confirmation message appears at the top of the screen.
5. Verify that the server name of the server you just mapped is now present in the Mapped servers column.

Tracking metrics using the dashboards

Dashboards provide a way to quickly see status and progress summary data, and also help you navigate to more detailed data.
Main dashboard

The main dashboard gathers data from the Discover and Migrate dashboards in a central location.

The main dashboard consists of four at-a-glance status and information panes as well as a consolidated list of links for quick access. These panes allow you to understand the summary status of most recently updated applications and also get quick access to any of them, to get an overview of applications in different states, and to track the migration progress over time.

To reach the main dashboard, choose Dashboard from the navigation pane.

Tagging migration resources

Migrated resources (Amazon EC2 instances or Amazon Machine Images (AMIs)) reported to Migration Hub by migration tools—like AWS Application Migration Service—are automatically tagged with Application Discovery Service server IDs.

If you turn on cost allocation tagging, you can view the cost of the AWS resources that are tagged by Migration Hub in the AWS Cost Explorer Service. Resource tagging by Migration Hub can't be turned off. This tagging is implemented automatically and doesn't count against your limit of 50 tags per resource.

These resources have the `aws:migrationhub:source-id` tag, and the `source-id` matches the `server.configurationId` server asset field from Application Discovery Service. For more information, see the following topics:

- Querying Discovered Configuration Items in the Application Discovery Service User Guide.

Navigating from the dashboard and the navigation pane

After viewing dashboard data summaries, you might want to retrieve more detail without interrupting your workflow. You do this by navigating directly from the relevant status or information pane on the dashboard.

In the table following, you can find instructions on how to navigate from a dashboard to the information you want to see. You can also find instructions on how to get to this information by using the navigation pane.

<table>
<thead>
<tr>
<th>To See</th>
<th>Do This</th>
<th>Which Is the Same As</th>
</tr>
</thead>
<tbody>
<tr>
<td>All servers</td>
<td>From the total number of servers inside the Discovery summary box in the Main dashboard, choose View all servers.</td>
<td>1. In the navigation pane, choose Servers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Choose the Servers tab.</td>
</tr>
<tr>
<td>All agents</td>
<td>From the total number of agents in the Discovery summary box in the Main Dashboard, choose View all agents.</td>
<td>1. In the navigation pane, choose Data Collectors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Choose the Agents tab.</td>
</tr>
<tr>
<td>All connectors</td>
<td>From the total number of connectors in the Discovery summary box in the Main dashboard, choose View all connectors.</td>
<td>1. In the navigation pane, choose Data Collectors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Choose the Connectors tab.</td>
</tr>
</tbody>
</table>
Navigating from the dashboard and the navigation pane

<table>
<thead>
<tr>
<th>To See</th>
<th>Do This</th>
<th>Which Is the Same As</th>
</tr>
</thead>
<tbody>
<tr>
<td>All applications</td>
<td>From either the Main dashboard or Migrate dashboard, in the Most recently updated applications pane, choose View all applications. Or, from the Discover dashboard in the Servers & Applications pane, choose View all applications.</td>
<td>1. In the navigation pane, under Migrate, choose Applications.
2. Choose Applications.</td>
</tr>
<tr>
<td>Application details...</td>
<td>From either the Main dashboard or Migrate dashboard in the Most recently updated applications box, choose the application's status box.</td>
<td>1. In the navigation pane, choose Migrate.
2. Choose Applications.
3. In the Application Name column, choose the application name.</td>
</tr>
<tr>
<td>Server details...</td>
<td>From either the Main dashboard or Migrate dashboard, in the Most recently updated applications pane, choose the application. Then choose the server name in the Server ID column.</td>
<td>1. In the navigation pane, choose Servers.
2. In the Server ID column, choose the server name.</td>
</tr>
</tbody>
</table>
The AWS Migration Hub Home Region

Your AWS Migration Hub data is stored in your home region for purposes of discovery, planning, and migration tracking. The status of migrations for your entire portfolio appears in your selected home region. You can specify a home region from the Migration Hub Settings page or from the Migration Hub Home Region API Reference. For information about changing the Migration Hub home region after it is set, see Changing your Migration Hub Home Region (p. 29).

Choose a Migration Hub Home Region

On your first use of the AWS Migration Hub console, select a Migration Hub home region. If you haven't selected a home region, you'll be prompted to make a selection before you can perform any write action from the console, SDK, or CLI. After you select a home region, you are redirected automatically to the console in that AWS Region.

You can choose and view your current home region on the AWS Migration Hub Settings page. To navigate to the Settings page, choose Settings from the left navigation.

For a list of the available AWS Migration Hub home regions, see AWS Migration Hub endpoints in the AWS General Reference.

The Migration Hub console in your home region gives you detailed visibility into discovery and migration, regardless of whether you are moving applications into one AWS Region or ten. From your Migration Hub home region, you can track your migration into any AWS Region.

All of the discovery and migration tracking data sent from AWS tools or partner migration tools is stored and processed in your home region, regardless of the migrating application’s target region.

For example, you can select US West (Oregon) as your AWS Migration Hub home region, then perform discovery of your datacenters, and analyze and identify your applications. Then if you use AWS Application Migration Service (AWS MGN) to migrate into the Oregon and Frankfurt AWS Regions, you can track your AWS MGN migrations at the application level in Migration Hub. Throughout each step in this example, your migration team uses Migration Hub in one AWS Region only: the home region you selected, which is the US West (Oregon) Region.

Set a Home Region for discovery

To start discovery and planning, you can deploy data collectors, such as AWS Application Discovery Agent or AWS Agentless Discovery Connector, into your data centers. These tools send data to the AWS Migration Hub service in your home region, and the information is displayed on your home region console.

Before you install your data collectors, your home region must be set. Before collecting data, you must register your collectors in your home region. If you're using the AWS CLI, you must set up your AWS CLI to use the home region as the default region. Instructions for how to set your home region in the AWS CLI are provided in the AWS CLI sections of this guide.
AWS Application Discovery Agent discovers data for many types of hardware, hypervisors, and operating systems including Linux and Windows. An agent must be installed on each host that is targeted for migration. For specific information about the data fields that are returned by AWS Application Discovery Agent, see the AWS Application Discovery Agent user guide.

AWS Agentless Discovery Connector discovers data for VMWare vCenter hosts and systems, using VMWare metadata. For specific information about the data fields that are returned by AWS Agentless Discovery Connector, see the AWS Agentless Discovery Connector user guide

Alternatively, you can import a .csv file by means of the AWS Migration Hub Import capability.

Set a Home Region for migration reporting

When you're ready to migrate, use the migration tools that best fit your needs. Options include AWS Server Migration Service (AWS SMS), AWS Database Migration Service (AWS DMS), or one of many third-party tools. Migrate your servers and applications into any AWS Region, and the migration progress reported by each tool is stored in your home region. Stored data provides a single discovery and migration planning repository for your entire portfolio, and a single view of your migrations in multiple AWS Regions.

Authorize your migration tools, such as AWS SMS, to read discovery data from and send migration status to Migration Hub in your home region. The migration tools read application groupings and send basic identifying information for each resource. For example, the hostname, IP address, MAC address, and VMware or hypervisor identifiers are sent, along with the resource's migration status, from the migration's destination region to the Migration Hub home region.

Changing your Migration Hub Home Region

After it is set, the Migration Hub home region can only be changed by contacting AWS Support. If you change the Migration Hub home region, data collected in the old home region doesn't migrate to the new home region. You'll need to recollect the data in the new home region.

Working with the Migration Hub Home Region APIs

You can call the AWS Migration Hub, AWS Application Discovery Service, and AWS Migration Hub home region APIs from within your home region only. API calls for write actions (create, notify, associate, disassociate, import, or put) originating from outside your home region are rejected, except for the ability to register your agents and connectors. API calls for read actions (list, describe, stop, and delete) are permitted outside of your home region.

Note
You can register agents and collectors outside your home region. However, the StartDataCollection API call in AWS Application Discovery Service prevents you from enabling data collection from outside the home region.

The AWS Migration Hub home region APIs are available specifically for working with your Migration Hub home region. A general description of each API is provided next. For specific API usage, see the AWS Migration Hub Home Region API reference.

CreateHomeRegionControl
This API sets up the home region. It applies to the calling account only.

GetHomeRegion

Returns the calling account's home region, if configured. This API is used by other AWS services to determine the regional endpoint for calling AWS Application Discovery Service and Migration Hub.

You must call `GetHomeRegion` at least once before you call any other Application Discovery Service and Migration Hub APIs, to obtain the account's Migration Hub home region.

DescribeHomeRegionControls

This API permits filtering on the `ControlId`, `HomeRegion`, and `RegionControlScope` fields.
Amazon EC2 instance recommendations

Amazon EC2 instance recommendations provide you with the ability to estimate the cost of running your existing servers in AWS. This feature analyzes the details about each server, including server specification, CPU, and memory utilization data. The compiled data is then used to recommend the least expensive Amazon EC2 instance type that can handle the existing performance workload. Recommendations are returned along with per-hour instance pricing.

Based on your business needs, you can choose additional preferences such as billing options, region, Amazon EC2 instance type exclusions and the CPU/RAM sizing (average, peak, percentile) to further optimize your Amazon EC2 instance recommendations and associated costs.

Topics
- Prerequisites (p. 31)
- How Amazon EC2 instance recommendations work (p. 31)
- Generating Amazon EC2 recommendations (p. 32)
- Understanding your Amazon EC2 recommendations (p. 33)
- Additional considerations (p. 37)

Prerequisites

Before you can get Amazon EC2 instance recommendations, you must have data about your on-premises servers in Migration Hub. This data can come from the discovery tools (Discovery Connector or Discovery Agent) or from Migration Hub import. For more information on using these tools and features, see the following links:

- Migration Hub import – This allows you to import details of your on-premises environment directly into Migration Hub using a pre-defined CSV template.
- Discovery Connector – This is a VMware appliance that can collect information only about VMware virtual machines (VMs).
- Discovery Agent – This is AWS software that you install on on-premises servers and VMs targeted for discovery and migration.

Note
Percentage-based recommendations are only generated for servers with data collected by a Discovery Connector from March 12th, 2019 onwards, or by a Discovery Agent.

How Amazon EC2 instance recommendations work

This feature recommends the most cost-effective Amazon Elastic Compute Cloud instance type that can satisfy your existing server specifications and utilization requirements while taking into account your selected instance preferences. The server specifications that are used to generate your recommendations are:

- Number of processors
- Number of logical cores
- Total amount of RAM
• Operating system family
• Usage data including peak, average, and percentiles of CPU and RAM

Amazon EC2 instance recommendations returns the best Amazon EC2 instance type match based on server specification as well as the performance dimensions you provided. To match the performance dimensions, the service adjusts the server’s specification by multiplying the original CPU and RAM values by the usage percentage.

Generating Amazon EC2 recommendations

In the Export Amazon EC2 instance recommendations page of the Migration Hub console, you’ll choose your recommendation preferences. These preferences include resource sizing, instance type preferences, and instance type exclusions. Use the following procedure to generate your Amazon EC2 instance recommendations.

To generate Amazon EC2 instance recommendations

1. Open a browser and sign into the Migration Hub console at https://console.aws.amazon.com/migrationhub.
2. On the left-side navigation, from Assess, choose Amazon EC2 instance recommendations.
3. Choose your Amazon EC2 instance size preferences for your discovered servers. You can choose one of the following options.
 • Current server specification – You have the two options of Direct match or Custom match.
 • Custom match – Scales the CPU and RAM specifications for your instances relative to the collected specification data. For example setting CPU to 50% and RAM to 60% will generate recommendations that assume 50% utilization of your discovered CPU usage and 60% utilization of your total RAM usage.
 • Direct match – Matches the recommendations based off of the exact CPU and RAM specification data collected by the discovery tools you used to get the data into Migration Hub.
 • Maximum utilization – This option sizes your instance recommendations based off of the maximum (peak) CPU and RAM utilization data that was collected by the discovery tools.
 • Average utilization – This option sizes your instance recommendations based off of the average CPU and RAM utilization data that was imported or collected by the discovery tools.
 • Percentile of utilization – If you used an AWS Application Discovery Agent or an AWS Agentless Discovery Connector to collect your server data, you can generate your recommendations using percentiles of time-series utilization data. Percentile-based recommendations are only generated for servers with data collected by a Discovery Connector from March 12th, 2019 onwards, or by a Discovery Agent.

 For all the data points collected for CPU and RAM utilization, a percentile is a value that exists below a given percentage of utilization since data has been discovered. For example, the 75th percentile represents the value under 75 percent of all the RAM and CPU utilization data that has been discovered.

4. Choose your Amazon EC2 instance type preferences, including AWS Region, tenancy, and pricing model.
 • Region – Your AWS Region selection affects Amazon EC2 instance availability and pricing.
 • Tenancy – This defines how EC2 instances are distributed across physical hardware and affects pricing.
 • Shared – Multiple customers may share the same physical hardware.
 • Dedicated – Only your instances will run on the same physical hardware.
• **Pricing Model** – This defines the kind of billing and commitment you intend to use for your instances.
 - **On-Demand** – Requires no long-term commitment.
 - **Reserved** – requires 1-3 year commitment and provides discounts and additional confidence in your ability to launch instances when needed. For more information on reserved instance pricing model information, see Reserved Instances in the Amazon EC2 User Guide for Linux Instances

5. Optionally, choose any Amazon EC2 instance type exclusions to prevent specific types of instances from appearing in your recommendations.
6. When you’re done setting your preferences, choose **Export recommendations**. This will begin generating your recommendations.

When the process is complete, your browser will automatically download a compressed archive (ZIP) file, containing a comma-separated values (CSV) file with your recommendations. The file is named `EC2InstanceRecommendations-sizing-preferences-year-month-day-hour-minute.csv`.

Large datasets can take a few minutes to generate recommendations. You can generate new recommendations at any time by repeating this procedure with a different set of preferences.

Understanding your Amazon EC2 recommendations

The downloaded CSV file has the following categories of information within it:

- **Server identification** – This information identifies each server. Each row of the CSV file contains information specific to a single server identified by a `ServerID`, `HostName`, and/or `ExternalId`.
- **Requested recommendations** – These are your generated results based on your CPU/RAM sizing preferences.
- **User preferences** – These are the preferences that were specified while requesting recommendations. This information can be used to track and compare different results from generating multiple recommendations for the same set of servers.
- **Server configuration** – This information defines the set of on-premises servers that were used to generate your recommendations.

The following table defines the different columns for an Amazon EC2 recommendations CSV file:

<table>
<thead>
<tr>
<th>Import Field Name</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServerId</td>
<td>A unique ID created by AWS and applied to a server after it's been discovered.</td>
<td>d-server-00qag3caex2sjm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d-server-01op2h5rnypwjy</td>
</tr>
<tr>
<td>Server.ExternalId</td>
<td>A custom identifier that allows you to mark each record as unique. For example, <code>ExternalId</code> can be the inventory ID for the server in your data center.</td>
<td>Inventory Id 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Server 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMBD Id 3</td>
</tr>
<tr>
<td>Server.HostName</td>
<td>The host name of the server. We recommend using the fully qualified domain name (FQDN) for this value.</td>
<td>ip-1-2-3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>localhost.domain</td>
</tr>
<tr>
<td>Import Field Name</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Server.VMware.VMName</td>
<td>The name of the virtual machine.</td>
<td>Corp1</td>
</tr>
<tr>
<td>Recommendation.EC2. Remarks</td>
<td>Error messages and other important information about a specific server's Amazon EC2 instance recommendation.</td>
<td>Server.OS.Name wasn't recognized. "Linux" was used as the default operating system for this instance recommendation.</td>
</tr>
<tr>
<td>Server.OS.Name</td>
<td>The name of the operating system.</td>
<td>Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows.Hat</td>
</tr>
<tr>
<td>Server.OS.Version</td>
<td>The version of the operating system.</td>
<td>16.04.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NT 6.2.8</td>
</tr>
<tr>
<td>Server.CPU.NumberOfProcessors</td>
<td>For bare hardware servers discovered by an agent, this is the number of Physical CPUs. For data collected by agents running in virtualized environments, this can be the number of vCPUs allocated. However this varies depending on the virtualization platform.</td>
<td>4</td>
</tr>
<tr>
<td>Server.CPU.NumberOfCores</td>
<td>For bare hardware servers discovered by an agent, this is the total number of physical cores for all processors. For data collected by agents in virtualized environments, this varies depending on the virtualization platform.</td>
<td>8</td>
</tr>
<tr>
<td>Server.CPU.NumberOfLogicalCores</td>
<td>The total number of threads that can run concurrently on all CPUs in a server. Some CPUs support multiple threads to run concurrently on a single CPU core. In those cases, this number will be larger than the number of physical (or virtual) cores.</td>
<td>16</td>
</tr>
<tr>
<td>Recommendation.EC2. RequestedCPU.UsagePct</td>
<td>The percent of Server.CPU.NumberOfCores used to create the recommendation.</td>
<td>0.9</td>
</tr>
<tr>
<td>Recommendation.EC2. RequestedvCPU</td>
<td>The Server.CPU.NumberOfLogicalCores value multiplied by the Recommendation.EC2. RequestedCPUPercentUse value, rounded up to the next integer.</td>
<td>16</td>
</tr>
<tr>
<td>Server.RAM.TotalSizeInMB</td>
<td>The total RAM, in MB, available on the server.</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128</td>
</tr>
</tbody>
</table>
Import Field Name Description Examples

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation.EC2.RequestedRAM.UsagePct</td>
<td>The percent of the RAM usage for a discovered server. This is used if you chose Current server specification with a Custom match when you chose your sizing preferences.</td>
<td>0.8</td>
</tr>
<tr>
<td>Recommendation.EC2.RequestedRAMinMB</td>
<td>The <code>Server.RAM.TotalSizeInMB</code> value multiplied by the <code>Recommendation.EC2.RequestedRAMPercentUse</code> value.</td>
<td>800</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.Model</td>
<td>The recommended Amazon EC2 instance model.</td>
<td>c5.18xlarge</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.vCPUCount</td>
<td>The number of vCPUs in the recommended Amazon EC2 instance model.</td>
<td>12</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.RAM.TotalSizeinMB</td>
<td>The amount of memory for the recommended Amazon EC2 instance model.</td>
<td>1000</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.Price.UpfrontCost</td>
<td>This is the upfront cost to reserve the instance, in US dollars.</td>
<td>1343.50</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.Price.HourlyRate</td>
<td>The hourly rate for the instance, in US dollars.</td>
<td>1.32</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.Price.AmoritzedHourlyRate</td>
<td>The hourly price based on the instance type preferences you chose, in US dollars. For long term contracts this value includes the upfront cost plus the hourly cost averaged over the contract. For all upfront pricing, this value is zero.</td>
<td>2.12</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.Price.EffectiveDate.UTC</td>
<td>The effective date for an hourly instance price, recorded in the UTC time zone.</td>
<td>2019-04-23 14:23:00</td>
</tr>
<tr>
<td>Recommendation.EC2.Instance.OSType</td>
<td>The operating system used to create the recommendation and pricing. Currently only Linux, Windows, RHEL, and SLES are supported.</td>
<td>Red Hat Enterprise Linux</td>
</tr>
<tr>
<td>UserPreference.Recommendation.CPUSizing</td>
<td>The CPU preference you chose for CPU/RAM sizing on the sizing preferences.</td>
<td>Custom Match - 50% of CPU Spec</td>
</tr>
<tr>
<td>UserPreference.Recommendation.RAMSizing</td>
<td>The RAM preference you chose for CPU/RAM sizing on the preferences.</td>
<td>Custom Match - 70% of RAM Spec</td>
</tr>
<tr>
<td>UserPreference.Region</td>
<td>The region you selected for the price and availability of Amazon EC2 recommendations.</td>
<td>US West (Oregon)</td>
</tr>
<tr>
<td>UserPreference.EC2.Tenancy</td>
<td>Tenancy used to determine instance type and instance price per hour.</td>
<td>Shared</td>
</tr>
<tr>
<td>Import Field Name</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UserPreference.EC2.PricingModel</td>
<td>Pricing model to determine the instance price per model. This value can be either On Demand or Reserved.</td>
<td>On Demand</td>
</tr>
<tr>
<td>UserPreference.EC2.PricingModel.ContractTerm</td>
<td>Contract term to determine instance price per hour.</td>
<td>3-year Standard "ONE_YEAR"</td>
</tr>
<tr>
<td>UserPreference.EC2.PricingModel.Payment</td>
<td>Payment model to determine instance price per hour.</td>
<td>"ALL_UPFRONT"</td>
</tr>
<tr>
<td>UserPreference.EC2.ExcludedInstances</td>
<td>The instances that you chose to exclude from your recommendations.</td>
<td>t2.large, m4 family</td>
</tr>
<tr>
<td>Applications</td>
<td>A comma-delimited list of applications that include this server, in quotes. This value can include existing applications and/or new applications that are created upon import.</td>
<td>Application1 "Application2, Application3"</td>
</tr>
<tr>
<td>Tags</td>
<td>A comma-delimited list of tags formatted as name:value.</td>
<td>"zone:1, critical:yes"</td>
</tr>
<tr>
<td>Server.SMBiosId</td>
<td>System management BIOS (SMBIOS) ID.</td>
<td></td>
</tr>
<tr>
<td>Server.VMware.MoRefId</td>
<td>The managed object reference ID. Must be provided with a VMware.VCenterId.</td>
<td></td>
</tr>
<tr>
<td>Server.VMware.VCenterId</td>
<td>Virtual machine unique identifier. Must be provided with a VMware.MoRefId.</td>
<td></td>
</tr>
<tr>
<td>Server.VMware.vCenterName</td>
<td>The name of the Center where the VM is managed.</td>
<td></td>
</tr>
<tr>
<td>Server.VMware.vmFolderPath</td>
<td>The directory path of the VM files.</td>
<td></td>
</tr>
<tr>
<td>Server.CPU.UsagePct.Avg</td>
<td>The average CPU utilization when the discovery tool was collecting data.</td>
<td>45 23.9</td>
</tr>
<tr>
<td>Server.CPU.UsagePct.Max</td>
<td>The maximum CPU utilization when the discovery tool was collecting data.</td>
<td>55.34 24</td>
</tr>
<tr>
<td>Server.RAM.UsedSizeInMB.Avg</td>
<td>The average amount of RAM used in the given server, in MB.</td>
<td></td>
</tr>
<tr>
<td>Server.RAM.UsedSizeInMB.Max</td>
<td>The maximum amount of RAM used in the given server, in MB.</td>
<td></td>
</tr>
<tr>
<td>Server.RAM.UsagePct.Avg</td>
<td>The average RAM utilization when the discovery tool was collecting data.</td>
<td></td>
</tr>
<tr>
<td>Server.RAM.UsagePct.Max</td>
<td>The maximum RAM utilization when the discovery tool was collecting data.</td>
<td></td>
</tr>
<tr>
<td>Server.NumberOfDisks</td>
<td>The number of physical hard disks on a host.</td>
<td>36</td>
</tr>
</tbody>
</table>
Import Field Name | Description | Examples
--- | --- | ---
Server. DiskReadsPerSecondInKB.Avg | The average number of disk reads per second, in KB. | 1159
| | | 84506
Server. DiskWritesPerSecondInKB.Avg | The average number of disk writes per second, in KB. | 199
| | | 6197
Server. DiskReadsPerSecondInKB.Max | The maximum number of disk reads per second, in KB. | 37892
| | | 869962
Server. DiskWritesPerSecondInKB.Max | The maximum number of disk writes per second, in KB. | 18436
| | | 1808
Server. DiskReadsOpsPerSecond.Avg | The average number of disk read operations per second. | 45
| | | 28
Server. DiskWritesOpsPerSecond.Avg | The average number of disk write operations per second. | 8
| | | 3
Server. DiskReadsOpsPerSecond.Max | The maximum number of disk read operations per second. | 1083
| | | 176
Server. DiskWritesOpsPerSecond.Max | The maximum number of disk write operations per second. | 535
| | | 71
Server. NetworkReadsPerSecondInKB.Avg | The average number of network read operations per second, in KB. | 45
| | | 28
Server. NetworkWritesPerSecondInKB.Avg | The average number of network write operations per second, in KB. | 8
| | | 3
Server. NetworkReadsPerSecondInKB.Max | The maximum number of network read operations per second, in KB. | 1083
| | | 176
Server. NetworkWritesPerSecondInKB.Max | The maximum number of network write operations per second, in KB. | 535
| | | 71

Additional considerations

Keep the following considerations in mind when generating Amazon EC2 instance recommendations.

- Burstable instances (T2 and T3) have an additional pricing mechanism that is computed based on CPU credits. For the burstable instances, we use the provided average and peak CPU data points to compute an estimated number of consumed CPU credits. This is translated into an adjusted overall recommendation.
• Only current generation instances are recommended. The following types of instances are excluded from recommendations:
 • Previous generation instances (C3, for example)
 • Bare Metal instances
 • ARM instances (A1, for example)
 • 32-bit instances
• If the operating system for a server is not supported by Amazon EC2, that server's returned recommendation will be Linux. Additional information can be found in the Recommendation.EC2.Remarks column for each affected server.
Viewing network connections in Migration Hub

Viewing network connections in AWS Migration Hub allows you to visualize a server’s dependencies. The visualization of these dependencies helps you verify all of the resources required to successfully migrate each of your applications to Amazon Web Services.

You view network connections by using the network diagram. When using the network diagram, you can visually review large amounts of data to understand what server dependencies exist. Understanding these server dependencies helps you plan how to group together the needed resources to support an application for migration to AWS.

The following topics provide information about using the network diagram.

Topics
- Use the network diagram to view connections (p. 39)
- Prerequisites for using the network diagram in Migration Hub (p. 39)
- How to use the network diagram in Migration Hub (p. 40)
- Troubleshooting the network diagram (p. 44)

Use the network diagram to view connections

Using network connectivity data from Application Discovery Service, the network diagram in Migration Hub reduces the time it takes to plan your migration by helping you quickly determine which of your servers are included in an application.

Server connections are visually mapped for you in the network diagram, which you can modify to organize your server inventory into groups for application migration.

The network diagram provides the following capabilities:

- Viewing detailed server information discovered by Application Discovery Service.
- Viewing server dependency information.
- Viewing detailed network connection information between servers.
- Applying filters to narrow the search for specific servers.
- Validating existing application groups.
- Exporting application information for use in migration planning.

Prerequisites for using the network diagram in Migration Hub

The following are the prerequisites for using the network diagram in AWS Migration Hub:

- AWS Application Discovery Service Discovery Agent must be running on all of the on-premises servers that you want mapped in the diagram. For more information, see Setting up Agent Based Discovery in the Application Discovery Service User Guide.
How to use the network diagram in Migration Hub

This section describes how to use the network diagram in Migration Hub.

To use the network diagram

1. In the navigation pane, under Discover, choose Servers.
2. To view details about the server, choose the hostname of the server from the Server info column. The server's detail page displays information about the server, such as hostname, IP address, performance metrics, and so on.
3. Choose Network. The icon for the server you choose is centered in the network diagram. Connections fan out from the center server to servers that are directly connected to the server you choose.

The following screenshot shows the parts of the network diagram.

The network diagram console is divided into three panes: toolbar, diagram, and the server detail/selected server list pane.

The following topics describe the network diagram console panes.

Topics
• Toolbar (p. 41)
 • Diagram (p. 41)
 • Server details and selected server list (p. 43)

Toolbar

Choosing an icon on the toolbar performs an action or opens a pane with more choices. Only one of these panes can be open at any one time.

The toolbar icons are described in the following table.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collapse toolbar</td>
<td>To collapse the toolbar, choose 📦.</td>
</tr>
<tr>
<td></td>
<td>Expand toolbar</td>
<td>To expand the toolbar, choose 🔽.</td>
</tr>
<tr>
<td>🗼</td>
<td>Settings</td>
<td>To change your settings, choose 🛠.</td>
</tr>
<tr>
<td>🔰</td>
<td>Filters</td>
<td>To filter server connections, choose 🔰 and then clear the check box next to each port number that you do not want to display connections for.</td>
</tr>
<tr>
<td>🔫</td>
<td>Zoom in</td>
<td>To zoom in on the diagram, choose 🔫.</td>
</tr>
<tr>
<td>🔫</td>
<td>Zoom out</td>
<td>To zoom out, choose 🔫.</td>
</tr>
<tr>
<td>🔫</td>
<td>Zoom to fit</td>
<td>To zoom to fit the entire diagram in the current view, choose 🔫.</td>
</tr>
<tr>
<td>🔫</td>
<td>View full screen</td>
<td>To view the diagram full screen, choose 🔫.</td>
</tr>
<tr>
<td>🔫</td>
<td>Opens Interactive dialog</td>
<td>To show ways to interact with the diagram, choose 🔫.</td>
</tr>
<tr>
<td>🔫</td>
<td>Show legend</td>
<td>To show the diagram icon legend, choose 🔫.</td>
</tr>
</tbody>
</table>

Diagram

This section describes the icons used in the diagram to show network server nodes and how to interact with the diagram.

• Diagram Icons (p. 42)
• Adding a server to a diagram (p. 43)
• Interacting with the diagram (p. 43)

Diagram Icons

The icons used in the diagram are shown in the following table.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Server</td>
<td>Represents a server that is running a discovery agent that is part of your network. To view details about a server, right-click and then choose View server details. To select a server for a group application, right-click and then choose Select Server.</td>
</tr>
<tr>
<td></td>
<td>Selected Server</td>
<td>Represents a server that you selected for group application. To deselect a server, choose and then choose Unselect server in the server details pane. To select a server for a group application, right-click and then choose Select Server.</td>
</tr>
<tr>
<td></td>
<td>Server with application label</td>
<td>Represents a server that belongs to a group application. The name of the application is displayed under the server icon. The names of all the applications the server belongs to are displayed.</td>
</tr>
<tr>
<td></td>
<td>Server without agent</td>
<td>Represents a server in your network that doesn't have Discovery Agent installed. To view details about the server, choose .</td>
</tr>
<tr>
<td></td>
<td>Plus sign on upper right corner of server icon</td>
<td>Represents that the server has servers connected to it that aren't shown in the diagram. To expand the network from the server node, choose on the server icon. To collapse the network back to the server node, choose on the server icon.</td>
</tr>
</tbody>
</table>
Adding a server to a diagram

You can search for servers to add to the diagram by searching by hostname or by IP address. You'll get results after adding your search criteria and pressing Enter.

To search for servers to add to the network diagram
1. Choose Hostname or IP address from the dropdown next to the search box at the top of the diagram.
2. Type the criteria for your search in the search box, and then press Enter.
 For example, to search for servers that contain IAM in their hostname, enter IAM, and then press Enter. Or, enter 0.0.0. to search for servers that contain 0.0.0. in their IP address.
3. From the result, select the servers to add to the diagram, and then choose + to add them to the diagram.

Interacting with the diagram

You can interact with the diagram in the following ways:

- To pan around, choose and drag on empty areas in the diagram.
- To zoom in and out, scroll up and down, respectively.
- To highlight all the connections to and from a server on the diagram, hover over a server icon.
- To see a server’s details in the server detail pane, choose a server icon.
 - Inbound ports only shows ports that are being opened on the server.
 - Outbound ports aren't displayed.
 - Hovering over a port highlights all the connections that open that port on the diagram.
- Hold shift and choose servers to select them for grouping applications or other actions.

Server details and selected server list

Server details and the list of selected servers share the pane right of the diagram. You can toggle back and forth between the server details view and the selected server list view by choosing the server icon.

To see details about a server on the diagram, choose the server icon. Details about the server display in the pane to the right of the diagram.

You can use the following options to select servers from the network diagram:

- On the network diagram, choose a server node icon. Details about the server show in the server details pane, where you choose Select server.
- On the network diagram, open the context (right-click) menu on the server node icon, and then choose Select server from the dropdown.
- Choose Select all to select all the servers for grouping that are in your diagram. Only the servers with the Discovery Agent running on them are selected.
- Hold shift to select/unselect multiple servers at the same time.

Selected servers are shown in a list in the same pane as the server details. You can toggle back and forth between the server details view and the selected server list view by choosing the server icon.

After you select one or more servers, you can create an application, or add to an existing one, by choosing Group as application. You can add a descriptive tag to the selected servers by choosing Add tag from the Actions menu. Doing so shows a dialog box where you can type a value for Key,
and optionally a value for Value. For more information, see Grouping servers as applications from the network diagram (p. 16).

Troubleshooting the network diagram

Use the information here to help you troubleshoot and fix issues that you might encounter when working with the network diagram in AWS Migration Hub.

Topics

- Message that you need to install Discovery Agent (p. 44)
- Problems when adding servers or expanding diagram (p. 44)

Message that you need to install Discovery Agent

The following topics describe scenarios when you get a message that you need to install Discovery Agent.

After choosing one or more servers on the server list page, and then choosing **Visualize network**, you get a message that you need to install a discovery agent on the server.

Add AWS Application Discovery Service Discovery Agent to the servers that you want mapped in the network diagram. For more information, see Setting up Agent Based Discovery the Application Discovery Service User Guide.

When trying add a server that doesn't have discovery agent installed to a group, you get a message that you need to install discovery agent on the server.

Add the Discovery Agent to the servers that you that want to be able to add to a group.

Problems when adding servers or expanding diagram

The following topics describe scenarios when you get a message when adding new servers or expanding existing servers.

When adding new servers or expanding existing servers on the network diagram, you get a message that your choices will cause the diagram to exceed its visual limit of 1,500 server nodes.

Retry adding fewer servers.

When adding new servers or expanding existing servers on the network diagram, you experience high latency that leads to a time out.

Retry adding fewer servers.
Security in AWS Migration Hub

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and network architecture that are built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this as security of the cloud and security in the cloud:

• **Security of the cloud** – AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS also provides you with services that you can use securely. The effectiveness of our security is regularly tested and verified by third-party auditors as part of the AWS compliance programs.

• **Security in the cloud** – Your responsibility is determined by the AWS service that you use. You are also responsible for other factors including the sensitivity of your data, your organization’s requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when using Migration Hub. The following topics show you how to configure Migration Hub to meet your security and compliance objectives. You’ll also learn how to use other AWS services that can help you to monitor and secure your Migration Hub resources.

Topics

• Identity and Access Management in AWS Migration Hub (p. 45)
• Logging and monitoring in AWS Migration Hub (p. 64)

Identity and Access Management in AWS Migration Hub

Access to AWS Migration Hub requires credentials that AWS can use to authenticate your requests. Those credentials must have permissions to access AWS resources, such as an AWS Migration Hub ProgressUpdateStream or an Amazon EC2 instance. The following sections provide details on how you can use AWS Identity and Access Management (IAM) and Migration Hub to help secure your resources by controlling who can access them:

• **Authentication** (p. 45)
• **Access Control** (p. 46)

Authentication

You can access AWS as any of the following types of identities:

• **AWS account root user** – When you first create an AWS account, you begin with a single sign-in identity that has complete access to all AWS services and resources in the account. This identity is called the AWS account root user and is accessed by signing in with the email address and password that you used to create the account. We strongly recommend that you do not use the root user for your everyday tasks, even the administrative ones. Instead, adhere to the best practice of using the
root user only to create your first IAM user. Then securely lock away the root user credentials and use them to perform only a few account and service management tasks.

- **IAM user** – An IAM user is an identity within your AWS account that has specific custom permissions (for example, permissions to create a function in AWS Migration Hub). You can use an IAM user name and password to sign in to secure AWS webpages like the AWS Management Console, AWS Discussion Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You can use these keys when you access AWS services programmatically, either through one of the several SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the access keys to cryptographically sign your request. If you don’t use AWS tools, you must sign the request yourself. AWS Migration Hub supports **Signature Version 4**, a protocol for authenticating inbound API requests. For more information about authenticating requests, see **Signature Version 4 signing process** in the AWS General Reference.

- **IAM role** – An IAM role is an IAM identity that you can create in your account that has specific permissions. An IAM role is similar to an IAM user in that it is an AWS identity with permissions policies that determine what the identity can and cannot do in AWS. However, instead of being uniquely associated with one person, a role is intended to be assumable by anyone who needs it. Also, a role does not have standard long-term credentials such as a password or access keys associated with it. Instead, when you assume a role, it provides you with temporary security credentials for your role session. IAM roles with temporary credentials are useful in the following situations:

 - **Federated user access** – Instead of creating an IAM user, you can use existing identities from AWS Directory Service, your enterprise user directory, or a web identity provider. These are known as federated users. AWS assigns a role to a federated user when access is requested through an identity provider. For more information about federated users, see **Federated users and roles** in the IAM User Guide.

 - **AWS service access** – A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see **Creating a role to delegate permissions to an AWS service** in the IAM User Guide.

 - **Applications running on Amazon EC2** – You can use an IAM role to manage temporary credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2 instance and make it available to all of its applications, you create an instance profile that is attached to the instance. An instance profile contains the role and enables programs that are running on the EC2 instance to get temporary credentials. For more information, see **Using an IAM role to grant permissions to applications running on Amazon EC2 instances** in the IAM User Guide.

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions you cannot create or access AWS Migration Hub resources. For example, you must have permissions to create a Migration Hub API type, `ProgressUpdateStream`, to use the AWS Application Discovery Service, and to use AWS migration tools.

The following sections describe how to manage permissions for AWS Migration Hub.
AWS Migration Hub Roles and Policies

Access to AWS Migration Hub requires credentials that AWS can use to authenticate your requests as well as have permissions to access AWS resources. The following sections demonstrate how the various permissions policies can be attached to IAM identities (that is, users, groups, and roles) and thereby grant permissions to perform actions on AWS Migration Hub resources.

The various types of permission policies referenced in this section have been explained in Using Identity-Based Policies (IAM Policies) for AWS Migration Hub (p. 56). If you have not yet read that section, it is recommended that you do to gain a thorough understanding of the different types of polices before proceeding to use the policy templates in this section.

The policy templates have been organized in the following hierarchy as shown below. You can click on any policy to go directly to its template.

Topics
- New User IAM Setup (p. 47)
- Custom Policies for Migration Tools (p. 49)

New User IAM Setup

This section provides an overview of the four managed policies that can be used with AWS Migration Hub as well as instructions on how to setup access to either the Migration Hub console or its APIs for users or migration tools.

Required Managed Policies

The following AWS managed policies, which you can attach to users in your account, are specific to Migration Hub and are grouped by use case scenario:

- **AWSMigrationHubDiscoveryAccess** – (Included in the migrationhub-discovery role) – Grants permission to allow the Migration Hub service to call Application Discovery Service.
- **AWSMigrationHubFullAccess** – Grants access to the Migration Hub console and API/CLI for a user who's not an administrator.
- **AWSMigrationHubSMSAccess** – Grants permission for Migration Hub to receive notifications from the AWS Server Migration Service migration tool.
- **AWSMigrationHubDMSAccess** – Grants permission for Migration Hub to receive notifications from the AWS Database Migration Service migration tool.

If you want to grant Migration Hub rights to non-admin IAM users, then see Migration Hub Service API and Console Managed Access (p. 47).

If you want to authorize (that is, connect) AWS migration tools, see AWS Server Migration Service (SMS) (p. 48) or AWS Database Migration Service (DMS) (p. 49).

Migration Hub Service API and Console Managed Access

An administrator can create users and grant them permission to access the Migration Hub console using managed policies.
1. Navigate to the IAM console.
2. Create a user.
3. Once the user is created, on the permissions tab select "Add Permissions".
4. Select "Attach existing policies directly".
5. Search for and attach the policy "AWSMigrationHubFullAccess".

migrationhub-discovery Role

To use Migration Hub, the migrationhub-discovery role (which contains the AWSMigrationHubDiscoveryAccess policy) must be added to your AWS account. It allows Migration Hub to access the Application Discovery Service on your behalf.

The AWS Migration Hub console creates the migrationhub-discovery role that is automatically attached to your AWS account when you use the Migration Hub console as an administrator. If you use the AWS Command Line Interface (AWS CLI) or the AWS Migration Hub API without also using the console, you need to manually add this role to your account.

1. Navigate to the IAM console Roles section.
2. Choose Create new role.
3. Select "Amazon EC2" from AWS Service Role.
4. Attach the "AWSApplicationDiscoveryServiceFullAccess" managed policy.
5. Name the role "migrationhub-discovery" (required role name using exact case and spelling).
6. Access the new role and on the Trust Relationships tab, choose Edit Trust Relationship.
7. Add the trust policy below.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": {
            "Service": "migrationhub.amazonaws.com"
         },
         "Action": "sts:AssumeRole"
      }
   ]
}
```

Migration Tools (Managed Policies)

Roles and policies are needed for each migration tool in order for the Migration Hub to receive notifications from migration tools. These permissions allow AWS services like SMS and DMS to send updates to Migration Hub.

AWS Server Migration Service (SMS)

1. Navigate to the IAM console Roles section.
2. Choose Create new role.
3. Select "Amazon EC2" from AWS Service Role.
4. Attach the "AWSMigrationHubSMSAccess" managed policy.
5. Name the role "migrationhub-sms" (required role name using exact case and spelling).
6. Access the new role, and on the Trust Relationships tab, choose Edit Trust Relationship.
7. Add the trust policy below.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": ["sms.amazonaws.com"]
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

AWS Database Migration Service (DMS)

1. Navigate to the IAM console Roles section.
2. Choose Create new role.
3. Select "Amazon EC2" from AWS Service Role.
4. Attach the "AWSMigrationHubDMSAccess" managed policy.
5. Name the role "migrationhub-dms" (required role name using exact case and spelling).
6. Access the new role, and on the Trust Relationships tab, choose Edit Trust Relationship.
7. Add the trust policy below.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": ["dms.amazonaws.com"]
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

Custom Policies for Migration Tools

This is an example role for use by an integrated partner or developer when using the AWS Migration Hub API or CLI.

Integrated Partner Role Policy

```json
{
  "Version": "2012-10-17",
  "Statement": [
```
AWS Migration Hub User Guide
Migration Hub API Permissions Reference

Integrated Partner Policy Trust Policy

```
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Principal": {
            "AWS": "arn:aws:iam::vendor_account_num:root"
         },
         "Action": "sts:AssumeRole"
      }
   ]
}
```

AWS Migration Hub API Permissions: Actions and Resources Reference

When you are setting up Access Control (p. 46) and writing a permissions policy that you can attach to an IAM identity (identity-based policies), you can use the following list as a reference. The list includes
each Migration Hub API operation, the corresponding actions for which you can grant permissions to perform the action, and the AWS resource for which you can grant the permissions. You specify the actions in the policy's Action field, and you specify the resource value in the policy's Resource field.

Note
To specify an action, use the `mgh:` prefix followed by the API operation name (for example, `mgh:CreateProgressUpdateStream`).

Migration Hub API Permissions: Actions and Resources Reference

AssociateCreatedArtifact

Action(s): `mgh:AssociateCreatedArtifact`

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

AssociateDiscoveredResource

Action(s): `mgh:AssociateDiscoveredResource`

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

CreateProgressUpdateStream

Action(s): `mgh:CreateProgressUpdateStream`

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

DeleteProgressUpdateStream

Action(s): `mgh:DeleteProgressUpdateStream`

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

DescribeMigrationTask

Action(s): `mgh:DescribeMigrationTask`

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```
DisassociateCreatedArtifact

Action(s): mgh:DisassociateCreatedArtifact

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

DisassociateDiscoveredResource

Action(s): mgh:DisassociateDiscoveredResource

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

ImportMigrationTask

Action(s): mgh:ImportMigrationTask

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

ListCreatedArtifacts

Action(s): mgh:ListCreatedArtifacts

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

ListDiscoveredResources

Action(s): mgh:ListDiscoveredResources

Resource:

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
```

or

```
arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
```

ListMigrationTasks

Action(s): mgh:ListMigrationTasks
Resource:
* ListProgressUpdateStreams
 Action(s): mgh:ListProgressUpdateStreams
 Resource:
 *
 NotifyApplicationState
 Action(s): mgh:NotifyApplicationState
 Resource:
 arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
 or
 arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
 NotifyMigrationTaskState
 Action(s): mgh:NotifyMigrationTaskState
 Resource:
 arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
 or
 arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*
 PutResourceAttributes
 Action(s): mgh:PutResourceAttributes
 Resource:
 arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id
 or
 arn:aws:mgh:region:account-id:ProgressUpdateStreamName/resource-id/*

Related Topics
* Access Control (p. 46)

AWS Migration Hub Authentication and Access Control Explained

Overview of Managing Access Permissions to Your AWS Migration Hub Resources

Every AWS resource is owned by an AWS account, and permissions to create or access a resource are governed by permissions policies. An account administrator can attach permissions policies to IAM identities (that is, users, groups, and roles), as well as attaching permissions policies to resources.
Note
An account administrator (or administrator user) is a user with administrator privileges. For more information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get permissions for, and the specific actions that you want to allow on those resources.

Topics
• AWS Migration Hub Resources and Operations (p. 54)
• Understanding Resource Ownership (p. 54)
• Managing Access to Resources (p. 54)
• Specifying Policy Elements: Actions, Effects, and Principals (p. 56)
• Specifying Conditions in a Policy (p. 56)

AWS Migration Hub Resources and Operations

In AWS Migration Hub, the primary resource is a Migration Hub ProgressUpdateStream. This resource has an unique Amazon Resource Name (ARN) associated with it as shown in the following table.

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>ARN Format</th>
</tr>
</thead>
</table>

AWS Migration Hub provides a set of operations to work with the Migration Hub resources. For a list of available operations, see Actions (p. 71).

Understanding Resource Ownership

A resource owner is the AWS account that created the resource. That is, the resource owner is the AWS account of the principal entity (the root account, an IAM user, or an IAM role) that authenticates the request that creates the resource. The following examples illustrate how this works:

• If you use the root account credentials of your AWS account to create a Migration Hub ProgressUpdateStream, your AWS account is the owner of the resource (in Migration Hub, the resource is a ProgressUpdateStream).
• If you create an IAM user in your AWS account and grant permissions to create a Migration Hub ProgressUpdateStream to that user, the user can create a ProgressUpdateStream. However, your AWS account, to which the user belongs, owns the ProgressUpdateStream resource.
• If you create an IAM role in your AWS account with permissions to create a Migration Hub ProgressUpdateStream, anyone who can assume the role can create a ProgressUpdateStream. Your AWS account, to which the role belongs, owns the ProgressUpdateStream resource.

Managing Access to Resources

A permissions policy describes who has access to what. The following section explains the available options for creating permissions policies.

Note
This section discusses using IAM in the context of AWS Migration Hub. It doesn't provide detailed information about the IAM service. For complete IAM documentation, see What Is IAM?
Policies attached to an IAM identity are referred to as **identity-based policies** (IAM policies) and policies attached to a resource are referred to as **resource-based policies**. AWS Migration Hub does not support resource-based policies, see Resource-Based Policies (p. 55).

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

- **Attach a permissions policy to a user or a group in your account** – An account administrator can use a permissions policy that is associated with a particular user to grant permissions for that user to create a Migration Hub resource.

- **Attach a permissions policy to a role (grant cross-account permissions)** – You can attach an identity-based permissions policy to an IAM role to grant cross-account permissions. For example, the administrator in Account A can create a role to grant cross-account permissions to another AWS account (for example, Account B) or an AWS service as follows:
 1. Account A administrator creates an IAM role and attaches a permissions policy to the role that grants permissions on resources in Account A.
 2. Account A administrator attaches a trust policy to the role identifying Account B as the principal who can assume the role.
 3. Account B administrator can then delegate permissions to assume the role to any users in Account B. Doing this allows users in Account B to create or access resources in Account A. The principal in the trust policy can also be an AWS service principal if you want to grant an AWS service permissions to assume the role.

For more information about using IAM to delegate permissions, see Access Management in the IAM User Guide.

The following is an example policy that grants permissions for the Migration Hub action `mgh:NotifyMigrationTaskState` on all resources.

```
{
  "Version": "2017-03-31",
  "Statement": {
    "Effect": "Allow",
    "Action": [
      "mgh:NotifyMigrationTaskState"
    ],
    "Resource": "*
  }
}
```

For more information about using identity-based policies with Migration Hub, see Using Identity-Based Policies (IAM Policies) for AWS Migration Hub (p. 56). For more information about users, groups, roles, and permissions, see Identities (Users, Groups, and Roles) in the IAM User Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example, you can attach a policy to an S3 bucket to manage access permissions to that bucket. Migration Hub does
not support resource-based policies. However, keep in mind that you will still see references made to resources. This is because there is a difference between resource-based permissions and resource-level permissions.

Resource-based permissions are permissions that attach directly to a resource, whereas a resource-level permission simply specifies, within an identity-based permission, on which resource a user or a role can perform actions on. Therefore, when references to resources are made discussing Migration Hub permissions, it is within this context of resource-level permissions.

Specifying Policy Elements: Actions, Effects, and Principals

For each Migration Hub resource, the service defines a set of API operations. To grant permissions for these API operations, Migration Hub defines a set of actions that you can specify in a policy. Some API operations can require permissions for more than one action in order to perform the API operation. For more information about resources and API operations, see AWS Migration Hub Resources and Operations (p. 54) and Migration Hub Actions (p. 71).

The following are the most basic policy elements:

- **Resource** – You use an Amazon Resource Name (ARN) to identify the resource that the policy applies to. For more information, see AWS Migration Hub Resources and Operations (p. 54).
- **Action** – You use action keywords to identify resource operations that you want to allow or deny. For example, you can use mgh:AssociateDiscoveredResource to allow the user permission to perform the Migration Hub AssociateDiscoveredResource operation.
- **Effect** – You specify the effect, either allow or deny, when the user requests the specific action. If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also explicitly deny access to a resource, which you might do to make sure that a user cannot access it, even if a different policy grants access.
- **Principal** – In identity-based policies (IAM policies), the user that the policy is attached to is the implicit principal. For resource-based policies, you specify the user, account, service, or other entity that you want to receive permissions (applies to resource-based policies only). Migration Hub doesn't support resource-based policies.

To learn more about IAM policy syntax and descriptions, see AWS IAM Policy Reference in the IAM User Guide.

For a table showing all of the AWS Migration Hub API actions and the resources that they apply to, see AWS Migration Hub API Permissions: Actions and Resources Reference (p. 50).

Specifying Conditions in a Policy

When you grant permissions, you can use the IAM policy language to specify the conditions when a policy should take effect. For example, you might want a policy to be applied only after a specific date. For more information about specifying conditions in a policy language, see Condition in the IAM User Guide.

To express conditions, you use predefined condition keys. There are no condition keys specific to Migration Hub. However, there are AWS-wide condition keys that you can use as appropriate. For a complete list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide.

Using Identity-Based Policies (IAM Policies) for AWS Migration Hub

This topic provides explanations of identity-based policies in which an account administrator can attach permissions policies to IAM identities (that is, users, groups, and roles).
Important
We recommend that you first review the introductory topics that explain the basic concepts and options available for you to manage access to your AWS Migration Hub resources. For more information, see Overview of Managing Access Permissions to Your AWS Migration Hub Resources (p. 53).

The sections in this topic cover the following:

- Permissions Required to Use the AWS Migration Hub Console and API (p. 58)
- AWS Managed (Predefined) Policies for AWS Migration Hub (p. 58)
- AWS Migration Hub Trust Policies (p. 58)

The following shows an example of a permissions policy:

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "mgh:AssociateCreatedArtifact",
                "mgh:NotifyApplicationState",
                "mgh:ListDiscoveredResources"
            ],
            "Effect": "Allow",
        }
    ]
}
```

Next, you must define a trust policy that authorizes the migration tool, in this example, AWS Database Migration Service (DMS), to assume the role:

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "dms.amazonaws.com"
            },
            "Action": "sts:AssumeRole"
        }
    ]
}
```

This policy is implemented in two parts, the permission policy and the trust policy:

- The permission policy grants permissions for the Migration Hub actions
 (mgh:AssociateCreatedArtifact, mgh:NotifyApplicationState, and mgh:ListDiscoveredResources) on any resources identified by the Amazon Resource Name (ARN) for the AWS DMS migration tool. The wildcard character (*) specified at the end of the resource name means that the migration tool can act on any migration tasks the tool creates under the particular ProgressUpdateStream name.
- The trust policy authorizes the AWS DMS migration tool to assume the role's permission policy. Migration Hub policies always require a trust policy to be associated with them.
For a table showing all of the AWS Migration Hub API actions and the resources and conditions that they apply to, see AWS Migration Hub API Permissions: Actions and Resources Reference (p. 50).

Permissions Required to Use the AWS Migration Hub Console and API

The AWS Migration Hub console provides an integrated environment for users and APIs to create Migration Hub resources and to manage migrations. The console provides many features and workflows that require specific permissions in order to access. The best way to implement these permissions is through managed policies. See Console & API Managed Access (p. 47).

In addition, there are API-specific permissions documented in AWS Migration Hub API Permissions: Actions and Resources Reference (p. 50).

AWS Managed (Predefined) Policies for AWS Migration Hub

AWS addresses many common use cases by providing standalone IAM policies that are created and administered by AWS. These AWS managed policies grant necessary permissions for common use cases so that you can avoid having to investigate what permissions are needed.

The following AWS managed policies, which you can attach to users in your account, are specific to Migration Hub and are grouped by use case scenario:

- **AWSMigrationHubDiscoveryAccess** – Grants permission to allow the Migration Hub service to call Application Discovery Service.
- **AWSMigrationHubFullAccess** – Grants access to the Migration Hub console and API/CLI for a user who's not an administrator.
- **AWSMigrationHubSMSAccess** – Grants permission for Migration Hub to receive notifications from the AWS Server Migration Service migration tool.
- **AWSMigrationHubDMSAccess** – Grants permission for Migration Hub to receive notifications from the AWS Database Migration Service migration tool.

Note
You can review these permissions policies by signing in to the IAM console and searching for these specific policies there.

You can also create your own custom IAM policies to allow permissions for Migration Hub actions and resources. You can attach these custom policies to the IAM users or groups that require those permissions.

AWS Migration Hub Trust Policies

A trust policy simply authorizes the principal to assume, or use, the role's permission policy. A principal can be an AWS account (the "root" user), an IAM user, or a role. In Migration Hub, the trust policy must be manually added to the permission policy.

Therefore, each IAM role requires two separate policies that must be created for it:

- A permissions policy, which defines what actions and resources the principal is allowed to use.
- A trust policy, which specifies who is allowed to assume the role (the trusted entity, or principal).

Using Service-Linked Roles for Migration Hub

AWS Migration Hub uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to Migration Hub. Service-linked roles are predefined by Migration Hub and include all the permissions that the service requires to call other AWS services on your behalf.
A service-linked role makes setting up Migration Hub easier because you don't have to manually add the necessary permissions. Migration Hub defines the permissions of its service-linked roles, and the services that can assume its roles. The permissions include the trust policy and the permissions policy, which cannot be attached to any other IAM entity.

For information about other services that support service-linked roles, see AWS Services That Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked role documentation for that service.

Topics
- Using Roles to Connect Migration Hub to Application Discovery Service (p. 59)
- Using Roles to Connect Migration Hub to AWS DMS (p. 60)
- Using Roles to Connect Migration Hub to AWS SMS (p. 62)

Using Roles to Connect Migration Hub to Application Discovery Service

Migration Hub uses the service-linked role named **AWSServiceRoleForMigrationHub**. The role allows Migration Hub to call the Application Discovery Service on your behalf. This enables AWS Migration Hub to match migration tracking updates to servers and applications that you've discovered.

Service-Linked Role Permissions for Migration Hub

The AWSServiceRoleForMigrationHub service-linked role trusts the following services to assume the role:

- migrationhub.amazonaws.com

The role permissions policy is as follows:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "discovery:ListConfigurations",
        "discovery:DescribeConfigurations"
      ],
      "Resource": ["**"]
    },
    {
      "Effect": "Allow",
      "Action": "ec2:CreateTags",
      "Resource": [
        "arn:aws:ec2:*:*:instance/**",
        "arn:aws:ec2:*:*:image/**"
      ],
      "Condition": {
        "ForAllValues:StringEquals": {
          "aws:TagKeys": "aws:migrationhub:source-id"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": "dms:AddTagsToResource",
      "Resource": ["**"]
    }
  ]
}
```
To allow an IAM entity such as a user, group, or role, to create, edit, or delete a service-linked role, configure permissions that allow it. For more information, see Service-Linked Role Permissions in the IAM User Guide.

Creating a Service-Linked Role for Migration Hub

You're not required to manually create a service-linked role. When you access the Migration Hub console, Migration Hub creates the service-linked role for you.

Important
This service-linked role can appear in your account if you completed an action in another service that uses the features supported by this role. To learn more, see A New Role Appeared in My IAM Account.

Creating a Service-Linked Role in Migration Hub (Console)

Use the Migration Hub console to create this service-linked role. Open a web browser and navigate to the Migration Hub console at console.aws.amazon.com/migrationhub.

You can also use the IAM console to create a service-linked role for use with the AWS CLI or the AWS API. For more information, see Creating a Service-Linked Role in the IAM User Guide.

If you delete this role and then want to create it again, use the same process. When you access the Migration Hub console, Migration Hub creates the service-linked role for you again.

Editing a Service-Linked Role for Migration Hub

Migration Hub does not allow you to edit the AWSServiceRoleForMigrationHub service-linked role. After you create a service-linked role, you cannot change the name of the role because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for Migration Hub

Manually Delete the Service-Linked Role

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForMigrationHub service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Migration Hub Service-Linked Roles

Migration Hub supports using service-linked roles in the US West (Oregon) AWS Region, where the service is available.

Using Roles to Connect Migration Hub to AWS DMS

Migration Hub uses the service-linked role named AWSServiceRoleForMigrationHubDMSAccess – Allows AWS Database Migration Service (AWS DMS) to send migration tracking information from any supported AWS Region to Migration Hub in US West (Oregon).
Service-Linked Role Permissions for Migration Hub

The AWSServiceRoleForMigrationHubDMSAccess service-linked role trusts the following services to assume the role:

- dms.amazonaws.com

The role permissions policy is as follows:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "mgh:CreateProgressUpdateStream",
      "Resource": "arn:aws:mgh:*::*:progressUpdateStream/DMS"
    },
    {
      "Effect": "Allow",
      "Action": [
        "mgh:DescribeMigrationTask",
        "mgh:AssociateDiscoveredResource",
        "mgh:ListDiscoveredResources",
        "mgh:ImportMigrationTask",
        "mgh:ListCreatedArtifacts",
        "mgh:DisassociateDiscoveredResource",
        "mgh:AssociateCreatedArtifact",
        "mgh:NotifyMigrationTaskState",
        "mgh:DisassociateCreatedArtifact",
        "mgh:PutResourceAttributes"
      ],
      "Resource": "arn:aws:mgh:*::*:progressUpdateStream/DMS/migrationTask/*"
    },
    {
      "Effect": "Allow",
      "Action": [
        "mgh:ListMigrationTasks",
        "mgh:NotifyApplicationState",
        "mgh:DescribeApplicationState"
      ],
      "Resource": "*"
    }
  ]
}
```

To allow an IAM entity such as a user, group, or role to create, edit, or delete a service-linked role, configure permissions to allow this. For more information, see Service-Linked Role Permissions in the IAM User Guide.

Creating a Service-Linked Role for Migration Hub

You're not required to manually create a service-linked role. When you connect to AWS DMS in the Migration Hub console, Migration Hub creates the service-linked role for you.

Important

This service-linked role can appear in your account if you completed an action in another service that uses the features supported by this role. To learn more, see A New Role Appeared in My IAM Account.

Creating a Service-Linked Role in Migration Hub (Console)

Use the Migration Hub console to create a service-linked role.
To create a service-linked role (console)

1. Open a web browser and navigate to the Migration Hub console at console.aws.amazon.com/migrationhub.
2. From the left navigation, under Migrate choose Tools
3. Scroll down to Database migration tools.
4. In the Database Migration Service box, choose Connect.

You can also use the IAM console to create a service-linked role for use with the AWS CLI or the AWS API. For more information, see Creating a Service-Linked Role in the IAM User Guide.

If you delete this service-linked role, and want need to create it again, use the same process. When you connect to AWS DMS in the Migration Hub console, Migration Hub creates the service-linked role for you again.

Editing a Service-Linked Role for Migration Hub

Migration Hub does not allow you to edit the AWSServiceRoleForMigrationHubDMSAccess service-linked role. After you create a service-linked role, you cannot change the name of the role because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for Migration Hub

Manually Delete the Service-Linked Role

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForMigrationHubDMSAccess service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Migration Hub Service-Linked Roles

Migration Hub supports using service-linked roles in the US West (Oregon) AWS Region, where the service is available.

Using Roles to Connect Migration Hub to AWS SMS

Migration Hub uses the service-linked role named AWSServiceRoleForMigrationHubSMSAccess – Allows AWS Server Migration Service (AWS SMS) to send migration tracking information from any supported AWS Region to Migration Hub in US West (Oregon).

Service-Linked Role Permissions for Migration Hub

The AWSServiceRoleForMigrationHubSMSAccess service-linked role trusts the following services to assume the role:

* sms.amazonaws.com

The role permissions policy is as follows:

```json
{
   "Version": "2012-10-17",
   "Statement": [
   {
      "Effect": "Allow",
```
"Action": "mgh:CreateProgressUpdateStream",
"Resource": "arn:aws:mgh:*::*:progressUpdateStream/SMS"
},
{
"Effect": "Allow",
"Action": [
"mgh:DescribeMigrationTask",
"mgh:AssociateDiscoveredResource",
"mgh:ListDiscoveredResources",
"mgh:ImportMigrationTask",
"mgh:ListCreatedArtifacts",
"mgh:DisassociateDiscoveredResource",
"mgh:AssociateCreatedArtifact",
"mgh:NotifyMigrationTaskState",
"mgh:DisassociateCreatedArtifact",
"mgh:PutResourceAttributes"
],
"Resource": "arn:aws:mgh:*::*:progressUpdateStream/SMS/migrationTask/*"
},
{
"Effect": "Allow",
"Action": [
"mgh:ListMigrationTasks",
"mgh:NotifyApplicationState",
"mgh:DescribeApplicationState"
],
"Resource": "*
}

To allow an IAM entity such as a user, group, or role to create, edit, or delete a service-linked role, configure permissions to allow this. For more information, see Service-Linked Role Permissions in the IAM User Guide.

Creating a Service-Linked Role for Migration Hub

You’re not required to manually create a service-linked role. When you connect to AWS SMS in the Migration Hub console, Migration Hub creates the service-linked role for you.

Important
This service-linked role can appear in your account if you completed an action in another service that uses the features supported by this role. To learn more, see A New Role Appeared in My IAM Account.

Creating a Service-Linked Role in Migration Hub (Console)

Use the Migration Hub console to create a service-linked role.

1. Open a web browser and navigate to the Migration Hub console at console.aws.amazon.com/migrationhub.
2. From the left navigation, under Migrate choose Tools.
3. In the Server Migration Service box, choose Connect.

You can also use the IAM console to create a service-linked role for use with the AWS CLI or the AWS API. For more information, see Creating a Service-Linked Role in the IAM User Guide.

If you delete this service-linked role, and then want to create it again, use the same process. When you connect to AWS SMS in the Migration Hub console, Migration Hub creates the service-linked role for you again.
Editing a Service-Linked Role for Migration Hub

Migration Hub does not allow you to edit the AWSServiceRoleForMigrationHubSMSAccess service-linked role. After you create a service-linked role, you cannot change the name of the role because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for Migration Hub

Manually Delete the Service-Linked Role

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForMigrationHubSMSAccess service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Migration Hub Service-Linked Roles

Migration Hub supports using service-linked roles in the US West (Oregon) AWS Region, where the service is available.

Logging and monitoring in AWS Migration Hub

Migration Hub is integrated with AWS CloudTrail. You can use CloudTrail to log, continuously monitor, and retain account activity for troubleshooting and auditing purposes. CloudTrail provides an event history of your AWS account activity, including actions taken through the AWS Management Console, AWS SDKs, command line tools.

To learn more about using CloudTrail with Migration Hub, see Logging Migration Hub API calls with AWS CloudTrail (p. 139).
AWS Migration Hub quotas

The quotas associated with AWS Migration Hub are AWS Application Discovery Service quotas. For more information, see AWS Application Discovery Service Quotas.
Troubleshooting AWS Migration Hub

Following, you can find information on how to troubleshoot issues for AWS Migration Hub.

Topics
- My Migrations Do Not Appear in Migration Hub (p. 66)
- Updates About My Migrations Don't Appear Inside an Application (p. 66)
- My API Call Failed (p. 67)
- Errors Enabling Data Collection (p. 67)

My Migrations Do Not Appear in Migration Hub

If you are not seeing your applications' migration status updates on the Updates page in Migration Hub, it could be due to one of the following reasons:

- You have not selected a home region or you are not currently viewing the home region console.
- Migration tools are not authorized to communicate with Migration Hub.
- You do not have the necessary policies and roles set up in IAM.
- Migration status mapping is incorrect or needs to be done manually.

Authentication

To make sure authentication is occurring correctly:

- Check whether the migration tools you are using have been authorized to communicate with Migration Hub. For more information, see steps to authorize a migration tool (p. 21).
- Check the Tools page to see the status of connected tools. Learn more about setting up necessary policies and roles in Required Managed Policies (p. 47).

Migration Status Matching When Using AWS Discovery Tools

- Check whether a migration update must be manually mapped or was incorrectly mapped to a discovered server, see Tracking migration updates (p. 24).

Updates About My Migrations Don't Appear Inside an Application

If you are not seeing your migration updates associated with an application, it could be due to one of the following reasons:

- Servers not being grouped as an application.
- Migration update status not being refreshed.
• Migration updates are not mapped or are incorrectly mapped to a server.

Servers' Application Grouping

• Check whether all your servers have been grouped into an application. See steps to group servers into applications (p. 22).

Update Status

• The application details page requires you to refresh the page in order to see the latest status. See steps to track status of migrations (p. 23).

Update and Server Mapping

• Check whether the update is present on **Updates** page.
• If not on the **Updates** page, then check whether the migration tool was authorized by looking on the **Migration Tools** page - in the navigation pane, under **Migrate**, choose **Tools**.
• On the **Updates** page, verify that the update is mapped to the correct server (it will show "Edit" in "Mapped servers" column).
• If mapped to a server on the **Updates** page, then verify whether the server is grouped into an application on the **Servers** page with an application name present in the "Applications" column.

My API Call Failed

• Check whether you called **GetHomeRegion** before your call, if required.
• You can use the AWS Migration Hub home region APIs within your home region only. API calls originating from outside your home region are rejected, except for the ability to register your agents and connectors.

Errors Enabling Data Collection

Although you can register discovery agents and connectors outside of your AWS Migration Hub home region, you cannot start data collection outside the home region. The Application Discovery Service **StartDataCollection** API call prevents you from enabling data collection outside the home region.
AWS Migration Hub API

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub.

Note

- Remember that you must set your AWS Migration Hub home region before you call write actions (create, notify, associate, disassociate, import, or put), or a HomeRegionNotSetException error is returned.
- You must make the API calls while in your home region.
- Although it is unlikely, the Migration Hub home region could change. If you call APIs outside the home region, an InvalidInputException is returned.
- You must call GetHomeRegion to obtain the latest Migration Hub home region.

See the AWS Migration Hub Config API Reference for details about the home region API calls.

Reporting migration status updates

Creating a ProgressUpdateStream for your migration tool

To send status to Migration Hub, you must first create a ProgressUpdateStream corresponding to your migration tool using CreateProgressUpdateStream and ProgressUpdateStreamName is the namespace for your migration tool. ProgressUpdateStreamName is scoped to the current AWS account, so it can be the same across all accounts. ProgressUpdateStreamName will be displayed as-is throughout the Migration Hub console as the name representing your migration tool. For example, Server Migration Service uses ProgressUpdateStreamName “SMS” and it is displayed as the “Migration Tool” on the application's page under the Migrate section.

Importing a migration task

After you've created a ProgressUpdateStream, you can start importing migration tasks from your migration tool by calling ImportMigrationTask. It is recommended to call ImportMigrationTask as early as possible to inform the Migration Hub user about the existence of the task, even if the task has yet to be started.

Associating a migration task with a previously discovered server

To add migration task detail to the console, the task must be associated with a resource. The resource represents the existing or source server for the migration. This association can be made in two ways:

- **Auto-mapping (recommended):** A migration tool can associate (Put) identifiable information (for example, IP address, MAC address, and fully qualified domain name, and in a VMware environment, vCenter ID, MoRef ID, VM name, and VM folder path) by calling PutResourceAttributes with a
migration task. With this information, AWS Migration Hub can correctly map the server being migrated to a server in the AWS Application Discovery Service (ADS) server repository. If Migration Hub does not find a matching server in the ADS server repository, it adds the server to the repository, automatically.

- **Manual-mapping**: Alternatively, a migration tool can allow the user to make this association manually. The tool can provide a mapping experience within the migration tool’s workflow that displays a list of existing AWS Application Discovery Service (ADS) servers.

 Note
 This manual approach is not recommended. It is rarely necessary, because auto-mapping automatically adds and maps the server from your tool to the AWS Application Discovery Service repository when calling `PutResourceAttributes`.

Auto-Mapping explained

- A migration tool uses the `PutResourceAttributes` API to provide information about the resource that’s being migrated. The tool makes an association asynchronously with the resource, after the `PutResourceAttributes` call is returned. If no matching server is returned, `PutResourceAttributes` adds a server to the ADS repository, automatically, and it maps the migration task to the new server. This association can be verified by calling `ListDiscoveredResource`.

 Note
 This manual approach is not recommended. It is rarely necessary, because auto-mapping automatically adds and maps the server from your tool to the AWS Application Discovery Service repository when calling `PutResourceAttributes`.

- It is called with `MigrationTaskName` and `ResourceAttributes`. The `MigrationTaskName` is an identifier provided by the migration tool. This name uniquely identifies a migration task within your `ProgressUpdateStream`.

- The `ResourceAttributes` call returns descriptive information about the resource that’s being migrated, such as a MAC address, IP address, fully qualified domain name, and so forth, for servers, or in a VMware environment it may return a VM name, vCenter ID or MoRef ID. It can be used to associate the migration task with a server in the Application Discovery Service (ADS).

Sending migration status updates

Now that a migration task exists, you can send migration status updates for display on the Migration Hub. Call AWS Migration Hub's `NotifyMigrationTaskState` API to share the latest task status. The information returned from this call contains the migration task’s progress and status. This is the information that customers see displayed in Migration Hub.

The `MigrationTaskName` input parameter includes arguments used for addressing updates to the correct target task, and the `ProgressUpdateStream` parameter is used for access control and to provide a unique namespace scoped to the AWS account. API parameters are described in detail later in this section.

Migration tool expected behavior

The following points are important information regarding the interaction between the migration tool you use and AWS Migration Hub.

- The migration tool is expected to retry on Migration Hub API failures.

- The migration tool is expected to publish updates as often as possible. A migration tool must specify its own update expectations with every call to `NotifyMigrationTaskState` API. It is recommended to send updates as soon as they are available.

- The migration tool should call `PutResourceAttributes`. If during the course of migration, the migration tool detects any change to the resource, or finds additional information, it can resend `PutResourceAttributes` data and Migration Hub will use the new values, overwriting old ones, and attempt to re-map to a resource in the Application Discovery Service.
API endpoints

The API endpoint is the DNS name used as a host in the HTTP URI for the API calls. These API endpoints are region-specific and service-specific. To find an endpoint, you combine the service prefix with the AWS Region, so you know where to call the service.

To call the Migration Hub service, the endpoint always uses the `mgh` prefix, so endpoints have the following form:

- `https://mgh.Region_Name.amazonaws.com`
- For example, to call Migration Hub in region `us-west-2` the API endpoint is: `https://mgh.us-west-2.amazonaws.com`

To call the Migration Hub Config service, the prefix is `migrationhub-config`, and endpoints have the following form:

- `https://migrationhub-config.Region_Name.amazonaws.com`
- Therefore, to call Migration Hub Config service (that is, the home region APIs) in region `eu-central-1`, the API endpoint is: `https://migrationhub-config.eu-central-1.amazonaws.com`

For more details about the Migration Hub Config service, see the API reference.

API version

The version of the API being used for a call is identified by the first path segment of the request URI, and its form is an ISO 8601 date.

The documentation describes API version 2017-05-31.

AWS CloudTrail

Migration Hub is integrated with CloudTrail, a service that captures API calls from the Migration Hub console or from your code to the Migration Hub API operations. Using the information collected by CloudTrail, you can determine the request that was made to Migration Hub, the source IP address from which the request was made, who made the request, when it was made, and so on. See Logging Migration Hub API calls with AWS CloudTrail (p. 139).

Related topics

The following sections provide descriptions of the API operations, how to create a signature for request authentication, and how to grant permissions for these API operations using the IAM policies.

- Identity and Access Management in AWS Migration Hub (p. 45)
- Actions (p. 71)
- Data Types (p. 127)
- Logging Migration Hub API calls with AWS CloudTrail (p. 139)
Actions

The following actions are supported:

- AssociateCreatedArtifact (p. 72)
- AssociateDiscoveredResource (p. 75)
- CreateProgressUpdateStream (p. 78)
- DeleteProgressUpdateStream (p. 81)
- DescribeApplicationState (p. 84)
- DescribeMigrationTask (p. 87)
- DisassociateCreatedArtifact (p. 90)
- DisassociateDiscoveredResource (p. 93)
- ImportMigrationTask (p. 96)
- ListApplicationStates (p. 99)
- ListCreatedArtifacts (p. 102)
- ListDiscoveredResources (p. 106)
- ListMigrationTasks (p. 110)
- ListProgressUpdateStreams (p. 114)
- NotifyApplicationState (p. 117)
- NotifyMigrationTaskState (p. 120)
- PutResourceAttributes (p. 124)
AssociateCreatedArtifact

 Associates a created artifact of an AWS cloud resource, the target receiving the migration, with the migration task performed by a migration tool. This API has the following traits:

- Migration tools can call the `AssociateCreatedArtifact` operation to indicate which AWS artifact is associated with a migration task.
- The created artifact name must be provided in ARN (Amazon Resource Name) format which will contain information about type and region; for example: `arn:aws:ec2:us-east-1:488216288981:image/ami-6d0ba87b`.
- Examples of the AWS resource behind the created artifact are, AMI's, EC2 instance, or DMS endpoint, etc.

Request Syntax

```json
{
  "CreatedArtifact": {
    "Description": "string",
    "Name": "string"
  },
  "DryRun": boolean,
  "MigrationTaskName": "string",
  "ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

CreatedArtifact (p. 72)

An ARN of the AWS resource related to the migration (e.g., AMI, EC2 instance, RDS instance, etc.)

Type: `CreatedArtifact (p. 129)` object

Required: Yes

DryRun (p. 72)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName (p. 72)

Unique identifier that references the migration task. *Do not store personal data in this field.*

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: `[^[]]+`

Required: Yes
ProgressUpdateStream (p. 72)
The name of the ProgressUpdateStream.
Type: String
Pattern: [^/:|\000-\037]+ Required: Yes

Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors
AccessDeniedException
You do not have sufficient access to perform this action.
HTTP Status Code: 400
DryRunOperation
Exception raised to indicate a successfully authorized action when the DryRun flag is set to "true".
HTTP Status Code: 400
HomeRegionNotSetException
The home region is not set. Set the home region to continue.
HTTP Status Code: 400
InternalServerError
Exception raised when an internal, configuration, or dependency error is encountered.
HTTP Status Code: 500
InvalidInputException
Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.
HTTP Status Code: 400
ResourceNotFoundException
Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.
HTTP Status Code: 400
ServiceUnavailableException
Exception raised when there is an internal, configuration, or dependency error encountered.
HTTP Status Code: 500
ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

UnauthorizedOperation

Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Associate a created artifact

The following example associates an AWS resource to the migration task identified by the values passed to the required parameters of MigrationTaskName and ProgressUpdateStream in the request.

Sample Request

```json
{
  "CreatedArtifact": [
    {
      "Description": "Using SMS to migrate server to EC2",
      "Name": "arn:aws:ec2:us-east-1:488216288981:image/ami-6d0ba87b"
    }
  ],
  "DryRun": false,
  "MigrationTaskName": "sms-12de3cf1a",
  "ProgressUpdateStream": "SMS"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
AssociateDiscoveredResource

 Associates a discovered resource ID from Application Discovery Service with a migration task.

 Request Syntax

```json
{
   "DiscoveredResource": {
      "ConfigurationId": "string",
      "Description": "string"
   },
   "DryRun": boolean,
   "MigrationTaskName": "string",
   "ProgressUpdateStream": "string"
}
```

 Request Parameters

The request accepts the following data in JSON format.

DiscoveredResource (p. 75)

Object representing a Resource.

Type: DiscoveredResource (p. 130) object

Required: Yes

DryRun (p. 75)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName (p. 75)

The identifier given to the MigrationTask. Do not store personal data in this field.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: [^:/\000-\037]+

Required: Yes

ProgressUpdateStream (p. 75)

The name of the ProgressUpdateStream.

Type: String

Pattern: [^:/\000-\037]+

Required: Yes
Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

DryRunOperation

Exception raised to indicate a successfully authorized action when the `DryRun` flag is set to "true".

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerException

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

PolicyErrorException

Exception raised when there are problems accessing Application Discovery Service (Application Discovery Service); most likely due to a misconfigured policy or the `migrationhub-discovery` role is missing or not configured correctly.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub’s repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400
UnauthorizedOperation

Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Associate a discovered resource

The following example associates an AWS Application Discovery Service discovered resource specified by its configuration id and description to the migration task identified by the values passed to the required parameters of MigrationTaskName and ProgressUpdateStream in the request.

Sample Request

```
{
  "ProgressUpdateStream": "SMS",
  "MigrationTaskName": "sms-12de3cf1a",
  "DiscoveredResource": {
    "ConfigurationId": "d-server-0025db43a885966c8",
    "Description": "Amazon Linux AMI release 2016.09"
  }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateProgressUpdateStream

Creates a progress update stream which is an AWS resource used for access control as well as a namespace for migration task names that is implicitly linked to your AWS account. It must uniquely identify the migration tool as it is used for all updates made by the tool; however, it does not need to be unique for each AWS account because it is scoped to the AWS account.

Request Syntax

```
{
    "DryRun": boolean,
    "ProgressUpdateStreamName": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

DryRun (p. 78)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

ProgressUpdateStreamName (p. 78)

The name of the ProgressUpdateStream. *Do not store personal data in this field.*

Type: String

Pattern: `[^/:\000-\037]+`

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

- **AccessDeniedException**

 You do not have sufficient access to perform this action.

 HTTP Status Code: 400

- **DryRunOperation**

 Exception raised to indicate a successfully authorized action when the `DryRun` flag is set to "true".

 HTTP Status Code: 400

- **HomeRegionNotSetException**

 The home region is not set. Set the home region to continue.
HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

UnauthorizedOperation

Exception raised to indicate a request was not authorized when the `DryRun` flag is set to "true".

HTTP Status Code: 400

Examples

Create a progress update stream

The following example creates a progress update stream identified by the values passed to the required parameter `ProgressUpdateStreamName` in the request.

Sample Request

```json
{
   "ProgressUpdateStreamName": "SMS",
   "DryRun": false
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteProgressUpdateStream

Deletes a progress update stream, including all of its tasks, which was previously created as an AWS resource used for access control. This API has the following traits:

- The only parameter needed for DeleteProgressUpdateStream is the stream name (same as a CreateProgressUpdateStream call).
- The call will return, and a background process will asynchronously delete the stream and all of its resources (tasks, associated resources, resource attributes, created artifacts).
- If the stream takes time to be deleted, it might still show up on a ListProgressUpdateStreams call.
- CreateProgressUpdateStream, ImportMigrationTask, NotifyMigrationTaskState, and all Associate[*] APIs related to the tasks belonging to the stream will throw "InvalidInputException" if the stream of the same name is in the process of being deleted.
- Once the stream and all of its resources are deleted, CreateProgressUpdateStream for a stream of the same name will succeed, and that stream will be an entirely new logical resource (without any resources associated with the old stream).

Request Syntax

```
{
    "DryRun": boolean,
    "ProgressUpdateStreamName": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

DryRun (p. 81)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

ProgressUpdateStreamName (p. 81)

The name of the ProgressUpdateStream. Do not store personal data in this field.

Type: String

Pattern: [^/:\000-\037]+

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.
Errors

AccessDeniedException
You do not have sufficient access to perform this action.
HTTP Status Code: 400

DryRunOperation
Exception raised to indicate a successfully authorized action when the DryRun flag is set to "true".
HTTP Status Code: 400

HomeRegionNotSetException
The home region is not set. Set the home region to continue.
HTTP Status Code: 400

InternalServerError
Exception raised when an internal, configuration, or dependency error is encountered.
HTTP Status Code: 500

InvalidInputException
Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.
HTTP Status Code: 400

ResourceNotFoundException
Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.
HTTP Status Code: 400

ServiceUnavailableException
Exception raised when there is an internal, configuration, or dependency error encountered.
HTTP Status Code: 500

ThrottlingException
The request was denied due to request throttling.
HTTP Status Code: 400

UnauthorizedOperation
Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".
HTTP Status Code: 400

Examples

Delete a progress update stream

The following example deletes a progress update stream identified by the values passed to the required parameter ProgressUpdateStreamName in the request.
Sample Request

```json
{
    "ProgressUpdateStreamName": "SMS",
    "DryRun": false
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeApplicationState

Gets the migration status of an application.

Request Syntax

```json
{
   "ApplicationId": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

ApplicationId (p. 84)

The configurationId in Application Discovery Service that uniquely identifies the grouped application.

Type: String

Pattern: ^.{1,1600}$

Required: Yes

Response Syntax

```json
{
   "ApplicationStatus": "string",
   "LastUpdatedTime": number
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ApplicationStatus (p. 84)

Status of the application - Not Started, In-Progress, Complete.

Type: String

Valid Values: NOT_STARTED | IN_PROGRESS | COMPLETED

LastUpdatedTime (p. 84)

The timestamp when the application status was last updated.

Type: Timestamp
Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerException

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

PolicyErrorException

Exception raised when there are problems accessing Application Discovery Service (Application Discovery Service); most likely due to a misconfigured policy or the migrationhub-discovery role is missing or not configured correctly.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

Examples

Describe a migration task by listing all associated attributes

The following example lists all of the attributes associated with the values passed to the required parameters of `MigrationTaskName` and `ProgressUpdateStream`.

Sample Request
DescribeApplicationState

```json
{
   "ApplicationId": "d-application-0039038d504694533"
}
```

Sample Response

```json
{
   "ApplicationStatus": "IN_PROGRESS",
   "LastUpdatedTime": 1493405005.639
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeMigrationTask

Retrieves a list of all attributes associated with a specific migration task.

Request Syntax

```
{
    "MigrationTaskName": "string",
    "ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

MigrationTaskName (p. 87)

The identifier given to the MigrationTask. *Do not store personal data in this field.*

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: `[^:|]+`

Required: Yes

ProgressUpdateStream (p. 87)

The name of the ProgressUpdateStream.

Type: String

Pattern: `[^/:|000-037]+`

Required: Yes

Response Syntax

```
{
    "MigrationTask": {
        "MigrationTaskName": "string",
        "ProgressUpdateStream": "string",
        "ResourceAttributeList": [
            {
                "Type": "string",
                "Value": "string"
            }
        ],
        "Task": {
            "ProgressPercent": number,
            "Status": "string",
            "StatusDetail": "string"
        },
        "UpdateDateTime": number
    }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

MigrationTask (p. 87)

Object encapsulating information about the migration task.

Type: MigrationTask (p. 131) object

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400
Examples

Describe a migration task by listing all associated attributes

The following example lists all of the attributes associated with the values passed to the required parameters of `MigrationTaskName` and `ProgressUpdateStream`.

Sample Request

```json
{
    "ProgressUpdateStream": "SMS",
    "MigrationTaskName": "sms-12de3cf1a"
}
```

Sample Response

```json
{
    "MigrationTask": {
        "ProgressUpdateStream": "SMS",
        "Task": {
            "Status": "IN_PROGRESS",
            "StatusDetail": "Migration: Copying image data",
            "ProgressPercent": 77
        },
        "UpdateDateTime": 1493750385.0,
        "MigrationTaskName": "sms-12de3cf1a"
    }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DisassociateCreatedArtifact

Disassociates a created artifact of an AWS resource with a migration task performed by a migration tool that was previously associated. This API has the following traits:

- A migration user can call the DisassociateCreatedArtifacts operation to disassociate a created AWS Artifact from a migration task.
- The created artifact name must be provided in ARN (Amazon Resource Name) format which will contain information about type and region; for example: `arn:aws:ec2:us-east-1:488216288981:image/ami-6d0ba87b`.
- Examples of the AWS resource behind the created artifact are, AMI's, EC2 instance, or RDS instance, etc.

Request Syntax

```json
{
    "CreatedArtifactName": "string",
    "DryRun": boolean,
    "MigrationTaskName": "string",
    "ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

CreatedArtifactName (p. 90)

An ARN of the AWS resource related to the migration (e.g., AMI, EC2 instance, RDS instance, etc.)

Type: String

Pattern: `arn:([a-z-]+:[a-z0-9-]+:(?:[a-z0-9-]+|):(?:[0-9]{12}|):.*`.

Required: Yes

DryRun (p. 90)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName (p. 90)

Unique identifier that references the migration task to be disassociated with the artifact. *Do not store personal data in this field.*

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: `[^:|]+`
Required: Yes

ProgressUpdateStream (p. 90)

The name of the ProgressUpdateStream.

Type: String

Pattern: \[^/:\000-\037]+\]

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

DryRunOperation

Exception raised to indicate a successfully authorized action when the `DryRun` flag is set to "true".

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500
ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

UnauthorizedOperation

Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Disassociate a created artifact

The following example disassociates an AWS resource from the migration task d-server-0025db43a885966c8 using its ARN formatted name geaws:ec2:us-east-1:488216288981:image/ami-6d0ba87b.

Sample Request

```json
{
    "CreatedArtifactName": "arn:aws:ec2:us-east-1:488216288981:image/ami-6d0ba87b",
    "MigrationTaskName": "sms-12de3cf1a",
    "ProgressUpdateStream": "SMS"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DisassociateDiscoveredResource

Disassociate an Application Discovery Service discovered resource from a migration task.

Request Syntax

```json
{
"ConfigurationId": "string",
"DryRun": boolean,
"MigrationTaskName": "string",
"ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

ConfigurationId (p. 93)

ConfigurationId of the Application Discovery Service resource to be disassociated.

Type: String

Pattern: ^.{1,1600}$

Required: Yes

DryRun (p. 93)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName (p. 93)

The identifier given to the MigrationTask. Do not store personal data in this field.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: [^:]+

Required: Yes

ProgressUpdateStream (p. 93)

The name of the ProgressUpdateStream.

Type: String

Pattern: [^/:|\000-\037]+
Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

- **AccessDeniedException**

 You do not have sufficient access to perform this action.

 HTTP Status Code: 400

- **DryRunOperation**

 Exception raised to indicate a successfully authorized action when the `DryRun` flag is set to "true".

 HTTP Status Code: 400

- **HomeRegionNotSetException**

 The home region is not set. Set the home region to continue.

 HTTP Status Code: 400

- **InternalServerException**

 Exception raised when an internal, configuration, or dependency error is encountered.

 HTTP Status Code: 500

- **InvalidInputException**

 Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

 HTTP Status Code: 400

- **ResourceNotFoundException**

 Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

 HTTP Status Code: 400

- **ServiceUnavailableException**

 Exception raised when there is an internal, configuration, or dependency error encountered.

 HTTP Status Code: 500

- **ThrottlingException**

 The request was denied due to request throttling.

 HTTP Status Code: 400

- **UnauthorizedOperation**

 Exception raised to indicate a request was not authorized when the `DryRun` flag is set to "true".

 HTTP Status Code: 400
Examples

Disassociate a discovered resource from the repository

The following example removes the association between the Application Discovery Service ConfigurationId and the MigrationTaskName by passing its name value to the required parameter ConfigurationId as well as the required parameters MigrationTaskName and ProgressUpdateStreamName which specify the created artifact to disassociate from.

Sample Request

```
{
  "DryRun": false,
  "MigrationTaskName": "sms-12de3cf1a",
  "ProgressUpdateStream": "SMS",
  "ConfigurationId": "d-server-0025db43a885966c8"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ImportMigrationTask

Registers a new migration task which represents a server, database, etc., being migrated to AWS by a migration tool.

This API is a prerequisite to calling the `NotifyMigrationTaskState` API as the migration tool must first register the migration task with Migration Hub.

Request Syntax

```json
{
    "DryRun": boolean,
    "MigrationTaskName": "string",
    "ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

DryRun (p. 96)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName (p. 96)

Unique identifier that references the migration task. *Do not store personal data in this field.*

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: `[^/:|]+`

Required: Yes

ProgressUpdateStream (p. 96)

The name of the ProgressUpdateStream. >

Type: String

Pattern: `[^/:\000-\037]+`

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.
Errors

AccessDeniedException
You do not have sufficient access to perform this action.

HTTP Status Code: 400

DryRunOperation
Exception raised to indicate a successfully authorized action when the DryRun flag is set to "true".

HTTP Status Code: 400

HomeRegionNotSetException
The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerError
Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException
Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ResourceNotFoundException
Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException
Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException
The request was denied due to request throttling.

HTTP Status Code: 400

UnauthorizedOperation
Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Import a migration task to register it with Migration Hub

The following example registers a new migration task with Migration Hub identified by the values passed to the required parameters MigrationTaskName and ProgressUpdateStreamName in the request.
Sample Request

```json
{
    "MigrationTaskName": "sms-12de3cf1a",
    "ProgressUpdateStream": "SMS"
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListApplicationStates

Lists all the migration statuses for your applications. If you use the optional ApplicationIds parameter, only the migration statuses for those applications will be returned.

Request Syntax

```
{
    "ApplicationIds": [ "string" ],
    "MaxResults": number,
    "NextToken": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

ApplicationIds (p. 99)

The configurationIds from the Application Discovery Service that uniquely identifies your applications.

Type: Array of strings

Array Members: Minimum number of 1 item. Maximum number of 100 items.

Pattern: `^.{1,1600}$`

Required: No

MaxResults (p. 99)

Maximum number of results to be returned per page.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

NextToken (p. 99)

If a NextToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in NextToken.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: `^[a-zA-Z0-9\-\s_\=]{0,2048}$`

Required: No

Response Syntax

```
{
    "ApplicationStateList": [  
```
{
 "ApplicationId": "string",
 "ApplicationStatus": "string",
 "LastUpdatedTime": number
}
",
"NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ApplicationStateList (p. 99)

A list of Applications that exist in Application Discovery Service.

Type: Array of ApplicationState (p. 128) objects

Array Members: Minimum number of 0 items. Maximum number of 1000 items.

NextToken (p. 99)

If a NextToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in NextToken.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: ^[a-zA-Z0-9\-0-9\/\+\=]{0,2048}$

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.
HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListCreatedArtifacts

Lists the created artifacts attached to a given migration task in an update stream. This API has the following traits:

- Gets the list of the created artifacts while migration is taking place.
- Shows the artifacts created by the migration tool that was associated by the AssociateCreatedArtifact API.
- Lists created artifacts in a paginated interface.

Request Syntax

```
{
  "MaxResults": number,
  "MigrationTaskName": "string",
  "NextToken": "string",
  "ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

MaxResults (p. 102)

- Maximum number of results to be returned per page.
- Type: Integer
- Required: No

MigrationTaskName (p. 102)

- Unique identifier that references the migration task. Do not store personal data in this field.
- Type: String
- Pattern: [^: |]+
- Required: Yes

NextToken (p. 102)

- If a NextToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in NextToken.
- Type: String
- Length Constraints: Minimum length of 0. Maximum length of 2048.
- Pattern: ^[a-zA-Z0-9|\|\+=]{0,2048}$
- Required: No
ProgressUpdateStream (p. 102)

The name of the ProgressUpdateStream.
Type: String
Pattern: [^/:\|\000-\037]+
Required: Yes

Response Syntax

```
{
   "CreatedArtifactList": [
      {
         "Description": "string",
         "Name": "string"
      }
   ],
   "NextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

CreatedArtifactList (p. 103)

List of created artifacts up to the maximum number of results specified in the request.
Type: Array of CreatedArtifact (p. 129) objects

NextToken (p. 103)

If there are more created artifacts than the max result, return the next token to be passed to the next call as a bookmark of where to start from.
Type: String
Length Constraints: Minimum length of 0. Maximum length of 2048.
Pattern: ^[a-zA-Z0-9\-_]{0,2048}$

Errors

AccessDeniedException

You do not have sufficient access to perform this action.
HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.
HTTP Status Code: 400
InternalServerException

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

Examples

List created artifacts associated with a migration task and update stream

The following example lists the created artifact name and its description that is associated with the values passed to the required parameters of MigrationTaskName and ProgressUpdateStream in the request.

Sample Request

```json
{
    "ProgressUpdateStream": "SMS",
    "MigrationTaskName": "sms-12de3cf1a",
    "MaxResults": 1
}
```

Sample Response

```json
{
    "CreatedArtifactList": [
      {
        "Name": "arn:aws:ec2:us-east-1:488216288981:image/ami-6d0ba87b",
        "Description": "Using SMS to migrate server to EC2"
      }
    ]
}
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListDiscoveredResources

Lists discovered resources associated with the given MigrationTask.

Request Syntax

```
{
    "MaxResults": number,
    "MigrationTaskName": "string",
    "NextToken": "string",
    "ProgressUpdateStream": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

MaxResults (p. 106)

The maximum number of results returned per page.

Type: Integer

Required: No

MigrationTaskName (p. 106)

The name of the MigrationTask. Do not store personal data in this field.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: [^:/\|] *

Required: Yes

NextToken (p. 106)

If a NextToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in NextToken.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: ^[a-zA-Z0-9\/-]+[0-248]$

Required: No

ProgressUpdateStream (p. 106)

The name of the ProgressUpdateStream.

Type: String

Pattern: [^/:|\000-\037]+
ListDiscoveredResources

Required: Yes

Response Syntax

```json
{
   "DiscoveredResourceList": [
      {
         "ConfigurationId": "string",
         "Description": "string"
      }
   ],
   "NextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

DiscoveredResourceList (p. 107)

Returned list of discovered resources associated with the given MigrationTask.

Type: Array of DiscoveredResource (p. 130) objects

NextToken (p. 107)

If there are more discovered resources than the max result, return the next token to be passed to the next call as a bookmark of where to start from.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: ^[a-zA-Z0-9\-\s\+\=]{0,2048}$

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.
HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub’s repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

Examples

List discovered resources associated with the given MigrationTask

The following example lists the discovered resource name and its description that is associated with the values passed to the required parameters of MigrationTaskName and ProgressUpdateStream in the request.

Sample Request

```
{
    "ProgressUpdateStream": "SMS",
    "MigrationTaskName": "sms-l2de3cfla",
    "NextToken": "",
    "MaxResults": 1
}
```

Sample Response

```
{
    "DiscoveredResourceList": [
        {
            "ConfigurationId": "d-server-0025db43a885966c8",
            "Description": "Amazon Linux AMI release 2016.09"
        }
    ]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
ListMigrationTasks

Lists all, or filtered by resource name, migration tasks associated with the user account making this call. This API has the following traits:

- Can show a summary list of the most recent migration tasks.
- Can show a summary list of migration tasks associated with a given discovered resource.
- Lists migration tasks in a paginated interface.

Request Syntax

```json
{
    "MaxResults": number,
    "NextToken": "string",
    "ResourceName": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

MaxResults (p. 110)

Value to specify how many results are returned per page.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

NextToken (p. 110)

If a NextToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in NextToken.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: ^[a-zA-Z0-9\/%\+\=]{0,2048}$

Required: No

ResourceName (p. 110)

Filter migration tasks by discovered resource name.

Type: String

Pattern: ^.{1,1600}$

Required: No

Response Syntax

```json
{
```
"MigrationTaskSummaryList": [
 {
 "MigrationTaskName": "string",
 "ProgressPercent": number,
 "ProgressUpdateStream": "string",
 "Status": "string",
 "StatusDetail": "string",
 "UpdateDateTime": number
 },
],
"NextToken": "string"
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

MigrationTaskSummaryList (p. 110)

Lists the migration task's summary which includes: MigrationTaskName, ProgressPercent, ProgressUpdateStream, Status, and the UpdateDateTime for each task.

Type: Array of MigrationTaskSummary (p. 133) objects

NextToken (p. 110)

If there are more migration tasks than the max result, return the next token to be passed to the next call as a bookmark of where to start from.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: ^[a-zA-Z0-9\-_\/@\=]{0,2048}$

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400
PolicyErrorException

Exception raised when there are problems accessing Application Discovery Service (Application Discovery Service); most likely due to a misconfigured policy or the migrationhub-discovery role is missing or not configured correctly.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

Examples

List a summary of all the migration tasks

The following example lists a summary of the migration tasks associated with the values passed to the optional parameters of ResourceName and MaxResults.

Sample Request

```json
{
    "MaxResults": 1,
    "ResourceName": "d-server-0025db43a885966c8"
}
```

Sample Response

```json
{
    "MigrationTaskSummaryList": [
    {
        "Status": "COMPLETED",
        "ProgressUpdateStream": "SMS",
        "StatusDetail": "Replication finished",
        "UpdateDateTime": 1487858882.0,
        "MigrationTaskName": "sms-12de3cf1a"
    }
    ]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
ListProgressUpdateStreams

Lists progress update streams associated with the user account making this call.

Request Syntax

```
{
    "MaxResults": number,
    "NextToken": "string"
}
```

Request Parameters

The request accepts the following data in JSON format.

MaxResults (p. 114)

Filter to limit the maximum number of results to list per page.

- Type: Integer
- Valid Range: Minimum value of 1. Maximum value of 100.
- Required: No

NextToken (p. 114)

If a NextToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in `NextToken`.

- Type: String
- Length Constraints: Minimum length of 0. Maximum length of 2048.
- Pattern: ^[a-zA-Z0-9\-/_\+\=]{0,2048}$
- Required: No

Response Syntax

```
{
    "NextToken": "string",
    "ProgressUpdateStreamSummaryList": [
        {  
            "ProgressUpdateStreamName": "string"
        }
    ]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

NextToken (p. 114)

If there are more streams created than the max result, return the next token to be passed to the next call as a bookmark of where to start from.
Type: String

Length Constraints: Minimum length of 0. Maximum length of 2048.

Pattern: ^[a-zA-Z0-9\-0-9\/\+\=]{0,2048}$

ProgressUpdateStreamSummaryList (p. 114)

List of progress update streams up to the max number of results passed in the input.

Type: Array of ProgressUpdateStreamSummary (p. 135) objects

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerException

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

Examples

List progress update streams

The following example lists the progress update streams associated with the account invoking the request and uses the value passed to the optional parameter MaxResults.

Sample Request

```json
{
```

115
"MaxResults": 2
}

Sample Response

{
 "ProgressUpdateStreamSummaryList": [
 {
 "ProgressUpdateStreamName": "DMS"
 },
 {
 "ProgressUpdateStreamName": "SMS"
 }
],
 "NextToken": "AYADeDJG11y1YuQBWp87zGdqAkkAxwABAVh3MtY3J5cHRvLXB1YmpxyY1rZ
XkAREFWm0s3ME1DWDI4NVJ3RG4vQUVnWfZk2a2zNQV11a2RJZXNQXZnN2Y4M0pMjdJ6Ujhka2VE
201ZEFnQ2tUE1Rds09AAEAB2F3cy1rbXMAS2Fyvbjd3M6a2lzOnZbLXlIc3QMrjo2MzEZOTQ
0NDa2MDg6a2VS520zNmUxtc5LTYuYTUuNDhzi05YMZlMWxZDY2MjMyNZe0MwhCnAQEBABHieuD
Sjgl6GpFfFVv6L98g173HcNP7jNyhyIMdUHA6a4wAAAH4wfAYJKoZIhvcNAcqGoGw8bQIBADBoB
gkghk1GwuyoBwWwWgYJYI1ZAWDBABuMBEEDGKeYqZVoDwBo0EDwIBEIA7KbgCu4laSTObEqAu9
B0chD8z6NGrh3AztXygwJGCsB7PiO02ZUPiPy12ZDQSwLh/Exbkkm5c1UF3V0kCAAAAAwABABA
Ac1MGNKEY/ySGk6KJmVlSLU6r6n/okwmmQCymv///8AAABvAPlwO2bHxI3B4nsQAAAAAbabhcb
uug7vytB05aobE5AWiEJEAEEz5kYQJt7DfzwmX8h9GS8kX7yodcfw0yLCMM9/aLa5JaagY3yVh
K3m9SwqxBSlBBnha7jPM0zFVBMB2UCG5CW/Qo2rrzqPA/dVrCIweoabABVrxuX97kv7gm67ns
IGQM8SHocfcRAGcwQZIwElspH+HhwsxYb659e6a3juJvgbHBNKwIH72N3t3TaTyiskL6QUPH5
Y9PlmtXI7jEaI2aqz550+EUmaxIiZH76sVuWoCMReEgFJtSm5NM3trucfj20AI2Z6/MG3baJ43
fZ"
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
NotifyApplicationState

Sets the migration state of an application. For a given application identified by the value passed to ApplicationId, its status is set or updated by passing one of three values to Status: NOT_STARTED | IN_PROGRESS | COMPLETED.

Request Syntax

```json
{
    "ApplicationId": "string",
    "DryRun": boolean,
    "Status": "string",
    "UpdateDateTime": number
}
```

Request Parameters

The request accepts the following data in JSON format.

ApplicationId *(p. 117)*

The configurationId in Application Discovery Service that uniquely identifies the grouped application.

Type: String

Pattern: ^.{1,1600}$

Required: Yes

DryRun *(p. 117)*

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

Status *(p. 117)*

Status of the application - Not Started, In-Progress, Complete.

Type: String

Valid Values: NOT_STARTED | IN_PROGRESS | COMPLETED

Required: Yes

UpdateDateTime *(p. 117)*

The timestamp when the application state changed.

Type: Timestamp

Required: No
Response Elements
If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

AccessDeniedException
You do not have sufficient access to perform this action.
HTTP Status Code: 400

DryRunOperation
Exception raised to indicate a successfully authorized action when the DryRun flag is set to "true".
HTTP Status Code: 400

HomeRegionNotSetException
The home region is not set. Set the home region to continue.
HTTP Status Code: 400

InternalServerError
Exception raised when an internal, configuration, or dependency error is encountered.
HTTP Status Code: 500

InvalidInputException
Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.
HTTP Status Code: 400

PolicyErrorException
Exception raised when there are problems accessing Application Discovery Service (Application Discovery Service); most likely due to a misconfigured policy or the migrationhub-discovery role is missing or not configured correctly.
HTTP Status Code: 400

ResourceNotFoundException
Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.
HTTP Status Code: 400

ServiceUnavailableException
Exception raised when there is an internal, configuration, or dependency error encountered.
HTTP Status Code: 500

ThrottlingException
The request was denied due to request throttling.
HTTP Status Code: 400
UnauthorizedOperation

Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Notify the application state to Migration Hub

The following example communicates the migration status to Migration Hub using the values passed to the required parameters ApplicationId and Status.

Note
In this example, the DryRun parameter is used and set to "true" in order to show the output of the DryRunOperation when the user has appropriate permissions to run the command.

Sample Request

```json
{
    "ApplicationId": "d-application-0039038d504694533",
    "Status": "IN_PROGRESS",
    "DryRun": true
}
```

Sample Response

An error occurred (DryRunOperation) when calling the NotifyApplicationState operation: Dry Run was a success!

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
NotifyMigrationTaskState

Notifies Migration Hub of the current status, progress, or other detail regarding a migration task. This API has the following traits:

- Migration tools will call the NotifyMigrationTaskState API to share the latest progress and status.
- MigrationTaskName is used for addressing updates to the correct target.
- ProgressUpdateStream is used for access control and to provide a namespace for each migration tool.

Request Syntax

```
{
  "DryRun": boolean,
  "MigrationTaskName": "string",
  "NextUpdateSeconds": number,
  "ProgressUpdateStream": "string",
  "Task": {
    "ProgressPercent": number,
    "Status": "string",
    "StatusDetail": "string"
  },
  "UpdateDateTime": number
}
```

Request Parameters

The request accepts the following data in JSON format.

DryRun (p. 120)

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName (p. 120)

Unique identifier that references the migration task. *Do not store personal data in this field.*

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: [^: |]+

Required: Yes

NextUpdateSeconds (p. 120)

Number of seconds after the UpdateDateTime within which the Migration Hub can expect an update. If Migration Hub does not receive an update within the specified interval, then the migration task will be considered stale.

Type: Integer

Valid Range: Minimum value of 0.
Required: Yes

ProgressUpdateStream (p. 120)

The name of the ProgressUpdateStream.
Type: String
Pattern: \[^/:|\000-\037\]+
Required: Yes

Task (p. 120)

Information about the task's progress and status.
Type: Task (p. 138) object
Required: Yes

UpdateDateTime (p. 120)

The timestamp when the task was gathered.
Type: Timestamp
Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

DryRunOperation

Exception raised to indicate a successfully authorized action when the **DryRun** flag is set to "true".

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.

HTTP Status Code: 400

InternalServerException

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.
HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

UnauthorizedOperation

Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Notify the migration task state to Migration Hub

The following example communicates the latest progress and updates to Migration Hub using the values passed to the required parameters MigrationTaskName and ProgressUpdateStream to tag the correct target and its migration tool. The other parameters in the example are also required to provide details of the task state.

Sample Request

```json
{
    "MigrationTaskName": "sms-12de3cf1a",
    "NextUpdateSeconds": 60,
    "ProgressUpdateStream": "SMS",
    "Task": {
        "ProgressPercent": 77,
        "Status": "IN_PROGRESS",
        "StatusDetail": "Migration: Copying image data"
    },
    "UpdateDateTime": 1493660853
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutResourceAttributes

Provides identifying details of the resource being migrated so that it can be associated in the Application Discovery Service repository. This association occurs asynchronously after PutResourceAttributes returns.

Important

- Keep in mind that subsequent calls to PutResourceAttributes will override previously stored attributes. For example, if it is first called with a MAC address, but later, it is desired to add an IP address, it will then be required to call it with both the IP and MAC addresses to prevent overriding the MAC address.
- Note the instructions regarding the special use case of the ResourceAttributeList parameter when specifying any "VM" related value.

Note

Because this is an asynchronous call, it will always return 200, whether an association occurs or not. To confirm if an association was found based on the provided details, call ListDiscoveredResources.

Request Syntax

```
{
  "DryRun": boolean,
  "MigrationTaskName": "string",
  "ProgressUpdateStream": "string",
  "ResourceAttributeList": [
    {
      "Type": "string",
      "Value": "string"
    }
  ]
}
```

Request Parameters

The request accepts the following data in JSON format.

DryRun *(p. 124)*

Optional boolean flag to indicate whether any effect should take place. Used to test if the caller has permission to make the call.

Type: Boolean

Required: No

MigrationTaskName *(p. 124)*

Unique identifier that references the migration task. *Do not store personal data in this field.*

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: \[^:|\]+\n
Required: Yes
ProgressUpdateStream (p. 124)

The name of the ProgressUpdateStream.

Type: String

Pattern: [^/:|\000-\037]+

Required: Yes

ResourceAttributeList (p. 124)

Information about the resource that is being migrated. This data will be used to map the task to a resource in the Application Discovery Service repository.

Note

Takes the object array of ResourceAttribute where the Type field is reserved for the following values: IPV4_ADDRESS | IPV6_ADDRESS | MAC_ADDRESS | FQDN | VM_MANAGER_ID | VM_MANAGED_OBJECT_REFERENCE | VM_NAME | VM_PATH | BIOS_ID | MOTHERBOARD_SERIAL_NUMBER where the identifying value can be a string up to 256 characters.

Important

- If any "VM" related value is set for a ResourceAttribute object, it is required that VM_MANAGER_ID, as a minimum, is always set. If VM_MANAGER_ID is not set, then all "VM" fields will be discarded and "VM" fields will not be used for matching the migration task to a server in Application Discovery Service repository. See the Example section below for a use case of specifying "VM" related values.
- If a server you are trying to match has multiple IP or MAC addresses, you should provide as many as you know in separate type/value pairs passed to the ResourceAttributeList parameter to maximize the chances of matching.

Type: Array of ResourceAttribute (p. 136) objects

Array Members: Minimum number of 1 item. Maximum number of 100 items.

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

DryRunOperation

Exception raised to indicate a successfully authorized action when the DryRun flag is set to "true".

HTTP Status Code: 400

HomeRegionNotSetException

The home region is not set. Set the home region to continue.
PutResourceAttributes

HTTP Status Code: 400

InternalServerError

Exception raised when an internal, configuration, or dependency error is encountered.

HTTP Status Code: 500

InvalidInputException

Exception raised when the provided input violates a policy constraint or is entered in the wrong format or data type.

HTTP Status Code: 400

ResourceNotFoundException

Exception raised when the request references a resource (Application Discovery Service configuration, update stream, migration task, etc.) that does not exist in Application Discovery Service (Application Discovery Service) or in Migration Hub's repository.

HTTP Status Code: 400

ServiceUnavailableException

Exception raised when there is an internal, configuration, or dependency error encountered.

HTTP Status Code: 500

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

UnauthorizedOperation

Exception raised to indicate a request was not authorized when the DryRun flag is set to "true".

HTTP Status Code: 400

Examples

Put migration resource attributes to associate with resource in repository

The following example sends identifying details of the resource being migrated so that it can be associated with a resource in the Application Discovery Service's repository using the values passed to the required parameters MigrationTaskName and ProgressUpdateStream to tag the correct target and its migration tool.

The ResourceAttributeList parameter is also required to define the resource type and its identifying value. Its Type field is reserved for the following values: IPV4_ADDRESS | IPV6_ADDRESS | MAC_ADDRESS | FQDN | VM_MANAGER_ID | VM_MANAGED_OBJECT_REFERENCE | VM_NAME | VM_PATH | BIOS_ID | MOTHERBOARD_SERIAL_NUMBER where the identifying value can be a string up to 256 characters.

In this particular example, the user wants to define the resource type by VM_NAME, but also has to set the VM_MANAGER_ID field as it is always required when setting any other "VM" related fields.

Sample Request

```python
{
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3

Data Types

The following data types are supported:

- ApplicationState (p. 128)
- CreatedArtifact (p. 129)
- DiscoveredResource (p. 130)
- MigrationTask (p. 131)
- MigrationTaskSummary (p. 133)
- ProgressUpdateStreamSummary (p. 135)
- ResourceAttribute (p. 136)
- Task (p. 138)
ApplicationState

The state of an application discovered through Migration Hub import, the AWS Agentless Discovery Connector, or the AWS Application Discovery Agent.

Contents

ApplicationId

The configurationId from the Application Discovery Service that uniquely identifies an application.

Type: String

Pattern: ^.{1,1600}$

Required: No

ApplicationStatus

The current status of an application.

Type: String

Valid Values: NOT_STARTED | IN_PROGRESS | COMPLETED

Required: No

LastUpdatedTime

The timestamp when the application status was last updated.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
CreatedArtifact

An ARN of the AWS cloud resource target receiving the migration (e.g., AMI, EC2 instance, RDS instance, etc.).

Contents

Description

A description that can be free-form text to record additional detail about the artifact for clarity or for later reference.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 500.

Pattern: ^.{0,500}$

Required: No

Name

An ARN that uniquely identifies the result of a migration task.

Type: String

Pattern: arn:[a-z-]+:[a-z0-9-]+:(?:[a-z0-9-]+|):(?:[0-9]{12}|):.*

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DiscoveredResource

Object representing the on-premises resource being migrated.

Contents

ConfigurationId

The configurationId in Application Discovery Service that uniquely identifies the on-premise resource.

Type: String

Pattern: ^.{1,1600}$

Required: Yes

Description

A description that can be free-form text to record additional detail about the discovered resource for clarity or later reference.

Type: String

Length Constraints: Minimum length of 0. Maximum length of 500.

Pattern: ^.{0,500}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
MigrationTask

Represents a migration task in a migration tool.

Contents

MigrationTaskName

Unique identifier that references the migration task. Do not store personal data in this field.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: \[^:\|\+\]

Required: No

ProgressUpdateStream

A name that identifies the vendor of the migration tool being used.

Type: String

Pattern: \[^/:|\000-\037]+\]

Required: No

ResourceAttributeList

Information about the resource that is being migrated. This data will be used to map the task to a resource in the Application Discovery Service repository.

Type: Array of ResourceAttribute (p. 136) objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.

Required: No

Task

Task object encapsulating task information.

Type: Task (p. 138) object

Required: No

UpdateDateTime

The timestamp when the task was gathered.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
MigrationTaskSummary

MigrationTaskSummary includes MigrationTaskName, ProgressPercent, ProgressUpdateStream, Status, and UpdateDateTime for each task.

Contents

MigrationTaskName

Unique identifier that references the migration task. *Do not store personal data in this field.*

Type: String
Length Constraints: Minimum length of 1. Maximum length of 256.
Pattern: \[^:\s]+\]
Required: No

ProgressPercent

Indication of the percentage completion of the task.

Type: Integer
Valid Range: Minimum value of 0. Maximum value of 100.
Required: No

ProgressUpdateStream

An AWS resource used for access control. It should uniquely identify the migration tool as it is used for all updates made by the tool.

Type: String
Pattern: \[^/:\s]+\]
Required: No

Status

Status of the task.

Type: String
Valid Values: NOT_STARTED | IN_PROGRESS | FAILED | COMPLETED
Required: No

StatusDetail

Detail information of what is being done within the overall status state.

Type: String
Length Constraints: Minimum length of 0. Maximum length of 500.
Pattern: ^\.(0,500)$
Required: No
UpdateDateTime

The timestamp when the task was gathered.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ProgressUpdateStreamSummary

Summary of the AWS resource used for access control that is implicitly linked to your AWS account.

Contents

ProgressUpdateStreamName

The name of the ProgressUpdateStream. *Do not store personal data in this field.*

Type: String

Pattern: \[^/:|\000-\037\]+

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ResourceAttribute

Attribute associated with a resource.

Note the corresponding format required per type listed below:

IPV4

\[x.x.x.x\]

\textit{where }x\textit{ is an integer in the range }[0,255]\textit{ }

IPV6

\[y:y:y:y:y:y\]

\textit{where }y\textit{ is a hexadecimal between }0\textit{ and } FFFF. [0, FFFF]

MAC_ADDRESS

\[^{\text{(}[0-9A-Fa-f]{2}[\text{-}]}{5}([0-9A-Fa-f]{2})\$\]

FQDN

\[^{\text{[^<>{}\\/?,=\p{Cntrl}\{1,256\}}}$

Contents

Type

Type of resource.

Type: String

Valid Values: IPV4_ADDRESS | IPV6_ADDRESS | MAC_ADDRESS | FQDN | VM_MANAGER_ID | VM_MANAGED_OBJECT_REFERENCE | VM_NAME | VM_PATH | BIOS_ID | MOTHERBOARD_SERIAL_NUMBER

Required: Yes

Value

Value of the resource type.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Pattern: \^\{1,256\}$

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Task
Task object encapsulating task information.

Contents

ProgressPercent
Indication of the percentage completion of the task.
Type: Integer
Valid Range: Minimum value of 0. Maximum value of 100.
Required: No

Status
Status of the task - Not Started, In-Progress, Complete.
Type: String
Valid Values: NOT_STARTED | IN_PROGESS | FAILED | COMPLETED
Required: Yes

StatusDetail
Details of task status as notified by a migration tool. A tool might use this field to provide clarifying information about the status that is unique to that tool or that explains an error state.
Type: String
Length Constraints: Minimum length of 0. Maximum length of 500.
Pattern: ^\.{0,500}$
Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Logging Migration Hub API calls with AWS CloudTrail

Migration Hub is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in Migration Hub. CloudTrail captures all API calls for Migration Hub as events. The calls captured include calls from the Migration Hub console and code calls to the Migration Hub API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Migration Hub. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in Event history.

Using the information collected by CloudTrail, you can determine the request that was made to Migration Hub, the IP address from which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Migration Hub information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Migration Hub, that activity is recorded in a CloudTrail event along with other AWS service events in Event history. You can view, search, and download recent events in your AWS account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Migration Hub, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more information, see the following:

- Overview for Creating a Trail
- CloudTrail Supported Services and Integrations
- Configuring Amazon SNS Notifications for CloudTrail
- Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple Accounts

All Migration Hub actions are logged by CloudTrail and are documented in the AWS Migration Hub API (p. 68). For example, calls to the AssociateDiscoveredResource, ListCreatedArtifacts and PutResourceAttributes actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity information helps you determine the following:

- Whether the request was made with root or AWS Identity and Access Management (IAM) user credentials.
- Whether the request was made with temporary security credentials for a role or federated user.
- Whether the request was made by another AWS service.
For more information, see the CloudTrail userIdentity Element.

Understanding Migration Hub log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you specify. CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the DescribeApplicationState action.

```
{
    "eventVersion": "1.05",
    "userIdentity": {
        "type": "AssumedRole",
        "principalId": "AROAIGZQV3RRQMO4RQZCI:sally-90b99f9f-2fffd-4187-9ef1-26b9f22d6419",
        "arn": "arn:aws:sts::123456789012:assumed-role/Sally/sally-90b99f9f-2fffd-4187-9ef1-26b9f22d6419",
        "accountId": "123456789012",
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
        "sessionContext": {
            "attributes": {
                "mfaAuthenticated": "false",
                "creationDate": "2017-05-23T23:54:04Z"
            },
            "sessionIssuer": {
                "type": "Role",
                "principalId": "AROAIGZQV3RRQMO4RQZCI",
                "arn": "arn:aws:iam::123456789012:role/Sally",
                "accountId": "123456789012",
                "userName": "Sally"
            }
        }
    },
    "eventTime": "2017-05-24T00:03:06Z",
    "eventSource": "migrationhub.amazonaws.com",
    "eventName": "DescribeApplicationState",
    "awsRegion": "us-west-2",
    "sourceIPAddress": "34.223.252.133",
    "userAgent": "aws-internal/3, sally-generated exec-env/AWS_Lambda_java8",
    "requestParameters": {
        "applicationId": "d-application-05d4e9901fa320fa0"
    },
    "responseElements": null,
    "requestID": "5d4eacdc-4014-11e7-925d-65290d4fc127",
    "eventType": "AwsApiCall",
    "recipientAccountId": "123456789012"
}
```
Document history

- **API version**: 2017-05-31
- **Latest User Guide documentation update**: June 30, 2021

The following table describes important changes to the *AWS Migration Hub User Guide* after January 18, 2019. For notifications about documentation updates, you can subscribe to the RSS feed.

<table>
<thead>
<tr>
<th>update-history-change</th>
<th>update-history-description</th>
<th>update-history-date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS MGN added to Migration Hub migration tools (p. 141)</td>
<td>AWS Application Migration Service (AWS MGN) is integrated with the AWS Management Console and is the primary migration service recommended for lift-and-shift migrations to AWS. For information on how to connect to AWS MGN from Migration Hub, see Connect migration tools to Migration Hub. For more information about AWS MGN, see AWS Application Migration Service and Using the AWS Migration Hub with MGN.</td>
<td>June 30, 2021</td>
</tr>
<tr>
<td>View network connections in the network diagram (p. 141)</td>
<td>The network diagram in Migration Hub reduces the time it takes to plan your migration by visually helping you quickly determine which of your servers are included in an application. For more information, see Viewing Network Connections.</td>
<td>November 16, 2020</td>
</tr>
<tr>
<td>Introducing the Migration Hub home region feature (p. 141)</td>
<td>The Migration Hub home region provides a single repository of discovery and migration planning information for your entire portfolio, and it gives you a single view of migrations into multiple AWS regions. From your home region, you can track your migration into any AWS Region.</td>
<td>November 14, 2019</td>
</tr>
<tr>
<td>Introducing the Amazon EC2 instance recommendation feature (p. 141)</td>
<td>You can use the Amazon EC2 instance recommendation feature to get the most out of your discovery by allowing you to configure, generate, and export Amazon EC2 instance recommendations that you can use to plan your migrations</td>
<td>May 8, 2019</td>
</tr>
</tbody>
</table>
Introducing the Migration Hub import feature (p. 141)

Migration Hub import allows you to import information about your on-premises servers and applications into Migration Hub, including server specifications and utilization data. You can also use this data to track the status of application migrations. For more information, see Perform Discovery and Then Migrate.

The following table describes documentation releases for the *AWS Migration Hub User Guide* before January 18, 2019:

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date Changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery walkthrough</td>
<td>Updated to reflect removal of "Deploy agents/ connectors" and "Deploy new agents/connectors" from console.</td>
<td>March 06, 2018</td>
</tr>
<tr>
<td>New guide</td>
<td>This is the first release of the AWS Migration Hub User Guide.</td>
<td>August 11, 2017</td>
</tr>
</tbody>
</table>