Table of Contents

What Is Amazon Mobile Analytics? ... 1
 Incorporating Mobile Analytics ... 1
 Using the Mobile SDK ... 2
 Mobile Analytics Pricing ... 2
Getting Started .. 4
 Step 1: Sign Up ... 4
 Step 2: Follow the Steps to Add an App ... 4
 Step 3: Integrate Mobile Analytics in to Your App 4
 Step 4: Review the Data in Amazon Mobile Analytics Reports 5
Adding and Managing Apps ... 6
 Accessing Mobile Analytics .. 6
 Adding an App .. 6
 If You Have No Existing Identity Pools .. 6
 Adding Additional Apps with the Default Cognito Identity Pool 9
 If You Have Existing Identity Pools but No Default Cognito Identity Pool .. 11
 If You Have Existing Identity Pools and a Default Cognito Identity Pool ... 14
 Renaming an App ... 16
Viewing Integration Steps ... 17
Using the Mobile SDK ... 19
 Platforms Supported by the Mobile SDK .. 19
 Enabling SDK Logging .. 19
 Enabling Logging for iOS Apps .. 19
 Enabling Logging for Android Apps .. 20
 Enabling Logging for JavaScript Apps .. 20
 Enabling Logging for Unity Apps ... 21
 Enabling Logging for Xamarin Apps .. 21
 Identifying the App ... 21
Managing Sessions ... 21
 Managing Sessions in iOS or Android Apps .. 22
 Managing Sessions in JavaScript Apps .. 22
 Managing Sessions in Unity or Xamarin Apps ... 23
Generating Events ... 23
 Creating a Monetization Event ... 24
 Creating a Custom Event ... 26
Adding Attributes and Metrics .. 28
 Reporting Detailed Data Points ... 28
 Adding Attributes and Metrics in iOS or Android Apps 28
 Adding Attributes and Metrics in JavaScript Apps 29
 Adding Attributes and Metrics in Unity or Xamarin Apps 29
Submitting Events ... 30
 Submitting Events in iOS Apps ... 30
 Submitting Events in Android Apps ... 30
 Submitting Events in JavaScript Apps .. 31
 Submitting Events in Unity or Xamarin Apps ... 31
Using the REST API .. 32
 Identifying the App in Mobile Analytics ... 32
 Tying Analytics to Users ... 32
 Managing Sessions ... 33
 Users Engage in Sessions .. 33
 Collecting KPI Data .. 33
 Starting a Session .. 33
 Stopping a Session .. 34
 Generating Events ... 35
 Types of Analytics Events .. 36
What Is Amazon Mobile Analytics?

Amazon Mobile Analytics is a service for collecting, visualizing, understanding, and extracting app usage data at scale. Mobile Analytics easily captures both standard device data and custom events and automatically calculates reports on your behalf.

The following reports on key performance indicators are provided in the Mobile Analytics console:

- Daily Active Users (DAU), Monthly Active Users (MAU), and New Users
- Sticky Factor (DAU divided by MAU)
- Session Count and Average Sessions per Daily Active User
- Average Revenue per Daily Active User (ARPDAU) and Average Revenue per Paid Daily Active User (ARPPDAU)
- Day 1, 3, and 7 Retention and Week 1, 2, and 3 Retention
- Custom Events

In addition to these aggregated reports, you can also set up your data to be exported automatically to Amazon Redshift and Amazon S3 for further analysis. For more information, see Auto Export.

These reports are provided through six reporting tabs in the console:

- **Overview** – Track nine preselected reports in a simple-to-review dashboard to get a quick idea of engagement: MAU, DAU, New Users, Daily Sessions, Sticky Factor, 1-Day Retention, ARPDAU, Daily Paying Users, ARPPDAU.
- **Active Users** – Track how many users engage with your app daily and monthly and monitor its stickiness to gauge engagement, appeal, and monetization.
- **Sessions** – Track how often your app is used on a given day and how often each user opens your app during a day.
- **Retention** – Track the rate at which customers come back to your app on a daily and weekly basis.
- **Revenue** – Track in-app revenue trends to identify areas for monetization improvement.
- **Custom events** – Track custom, defined user actions specific to your app.

Incorporating Mobile Analytics

Mobile Analytics can be used by developers to capture information, through analytics events created in the application logic, about how their applications are used. Individual bits of data called *attributes* and *metrics* are added to an event created in the application.
After attributes or metrics have been added, the event is then recorded so a copy of the data is preserved in the device’s file storage. When an application is sent to the background by the user, recorded events are then submitted to the Mobile Analytics service; this data contributes to the reports available in the console.

There are two ways to incorporate Mobile Analytics into the code of your app:

• The Mobile Analytics web service provides a REST API your app can invoke using HTTP PUT requests. The REST API is platform- and language-independent; it requires a properly formed HTTP request only.
• For mobile app developers, the AWS Mobile SDK provides APIs that enable easier and more robust interaction with Mobile Analytics for apps running on Android, iOS, JavaScript, Unity, or Xamarin.

Using the Mobile SDK

If you want to use Mobile Analytics in an Android, iOS, JavaScript, Unity, or Xamarin application, you will probably want to make API calls through the AWS Mobile SDK. For information about working with Mobile Analytics using the AWS Mobile SDK, see:

• Android Developer Guide
• iOS Developer Guide
• Mobile Analytics SDK for JavaScript
• Unity Developer Guide
• Xamarin Developer Guide

Mobile Analytics Pricing

With AWS services, you pay only for what you use, with no contracts or monthly active user charges.

Mobile Analytics is free up to 100 million events per month, and costs just $1.00 per million events above the free tier. If you enable the Auto Export (p. 85) options to Amazon Simple Storage Service (Amazon S3) or Amazon Redshift (Amazon Redshift), there may be additional charges for the use of those services.

Important
If you use the Mobile SDK, Mobile Analytics automatically generates and submits two system events per session in addition to custom events you may create and submit. These events are required to enable collection of data compiled into the standard console charts on key performance indicators.
If you use the REST API, you submit these system events (_system.start and _system.stop) manually. For more information, see Managing Sessions (p. 33).

Whether submitted automatically by the Mobile SDK or manually using the REST API, these system events are included in the count of total events submitted and therefore count toward the 100 million free events each month.
Getting Started

Before you can visualize the data in the console at https://console.aws.amazon.com/mobileanalytics/home, sign up for an AWS account, create a Cognito identity pool or an AWS Identity and Access Management (IAM) account, and then download the AWS Mobile SDK so that you can integrate it into your app.

Topics
• Step 1: Sign Up for an AWS Account (p. 4)
• Step 2: Follow the Steps to Add an App (p. 4)
• Step 3: Integrate Mobile Analytics into Your App (p. 4)
• Step 4: Review the Data in Amazon Mobile Analytics Reports (p. 5)

Step 1: Sign Up for an AWS Account

If you already have an AWS account, sign in to your account and go to the next step.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS
2. Follow the online instructions.

Step 2: Follow the Steps to Add an App

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. If this is the first time you are using Amazon Mobile Analytics, follow the on-screen instructions to add an app.
 If you have already added an app, select the settings icon.
4. Follow the instructions.

Step 3: Integrate Mobile Analytics into Your App

To integrate Mobile Analytics, use the SDK for platforms appropriate to your app:
• Using Mobile Analytics in an Android app
• Using Mobile Analytics in an iOS app
• Using Mobile Analytics in a JavaScript app
• Using Mobile Analytics in a Unity app
• Using Mobile Analytics in a Xamarin app
Step 4: Review the Data in Amazon Mobile Analytics Reports

You can see your data in the console at https://console.aws.amazon.com/mobileanalytics/home for events reported on iOS and Android platforms. It can take up to an hour for data sent to Mobile Analytics to appear in the console reports.
Adding and Managing Apps

The steps you follow to create an app that uses Mobile Analytics will depend on the platforms you target and the tools and programming languages associated with each. But generally speaking, to use Mobile Analytics, you must do two things:

- Add and set up your app in the console at https://console.aws.amazon.com/mobileanalytics/home.
- Add the code to your app that accesses the Mobile Analytics service as determined by the platforms your app will support.

Topics

- Accessing Mobile Analytics (p. 6)
- Adding an App to Mobile Analytics (p. 6)
- Renaming an App (p. 16)
- Viewing Integration Steps (p. 17)

Accessing Mobile Analytics

In order for your app to directly access AWS it must have credentials, which you obtain through Amazon Cognito Identity. An Amazon Cognito identity pool defines user identities used with your account.

When you create your first app, the console creates a Cognito identity pool you can use to authenticate your apps with Mobile Analytics. The console also provides, for each platform, integration code snippets that include the Cognito identity pool ID your apps need to communicate with Mobile Analytics. If you select a different Cognito identity pool to use in your apps, these code snippets will be updated to reflect it.

Adding an App to Mobile Analytics

To use Mobile Analytics with an app, you must use the console to add the app to the Mobile Analytics service. The steps to add your first app to Mobile Analytics are different from the steps to add additional apps.

If You Have No Existing Identity Pools

Use the following procedure if you are adding your first app in the Mobile Analytics console but do not yet have any Cognito identity pools defined.

To add an app for the first time

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Choose **Get Started**.

3. In **App Name**, type a name for your app, and then choose **Create App**.
4. In the IAM role creation wizard, choose **Allow** to generate an IAM role for the Cognito identity pool.

5. In the displayed integration steps, choose the tab that corresponds to the platform targeted by your app. The Cognito identity pool ID generated by the wizard in the previous step appears in the sample code. You can easily copy and paste the code into your app.
Adding Additional Apps with the Default Cognito Identity Pool

Use the following procedure to add a new app if you have already added your first app and have a default Cognito identity pool.

To add an app if you have existing apps

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Click the Settings icon.
4. In **App Name**, type a name for your app, and then choose **Create App** to add the app using your default identity pool. This name will appear in the console.

5. Choose the tab that corresponds to the platform targeted by your app for details about how to integrate Mobile Analytics. The ID for your default identity pool appears in the sample code. You can easily copy and paste the code into your app.
If You Have Existing Identity Pools but No Default Cognito Identity Pool

Use this procedure to add a new app if you used Mobile Analytics before July 6, 2015 or have an Cognito identity pool but have not selected a default :

To add an app if you have existing identity pools, but no default identity pool

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Click the Settings icon.
4. In **App Name**, type a name for your app. This name will appear in the console.

5. To use an existing identity pool, choose it from the **Amazon Cognito Identity Pool** drop-down list. To create a new identity pool, choose **Create a new Amazon Cognito Identity Pool**.
6. Choose **Create App**.

7. If you chose to create a new identity pool, the IAM role creation wizard will appear. Choose **Allow** to generate an IAM role for the Cognito identity pool.

8. Choose the tab for each platform targeted by your app for instructions and sample code. The ID for the Cognito identity pool you created or chose appears in the sample code. You can easily copy and paste the code into your app.
If You Have Existing Identity Pools and a Default Cognito Identity Pool

Use this procedure if you are Amazon Cognito user who would like to start using Mobile Analytics.

To add an app if you have existing identity pools and a default identity pool

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Click the Settings icon.
4. In **App Name**, type a name for your app, and then choose **Create App**. This name will appear in the console.

5. Choose the tab for each platform targeted by your app for instructions and sample code to use. The ID for your default Cognito identity pool is automatically associated with the new app, but you can select another identity pool from the drop-down list. The sample code contains the values appropriate to your app. You can easily copy and paste the values into your app's source code.
Renaming an App

You can rename an app in the **App Management** section of the console at https://console.aws.amazon.com/mobileanalytics/home.

Note
Renaming an app can currently only be done by the root account.

To rename an app
1. In the Mobile Analytics console, go to **App Management**.
2. In the Manage Apps list, select the check box next to the app you want to rename.
4. In the App Name box, type the new name for the app, and then choose Rename App.

Viewing Integration Steps

Mobile Analytics helps you integrate the service into the source code for your app. It provides blocks of code you can copy and paste into your source code as well as information about where in your app to add it. Where an integration step requires it, the code includes the appID to connect the data sent by the app to Mobile Analytics for generating reports and stats.

To view the integration steps for an app
1. From the Dashboard, choose Manage Apps in the application list in the toolbar.
2. In the Manage Apps list, choose View Integration Steps next to the app whose details you want to view.
3. If you have additional non-default identity pools, you can change the identity pool associated with this app. Simply choose it from the drop-down menu.
Using Mobile Analytics with the Mobile SDK

To take advantage of Mobile Analytics, your mobile app must incorporate code that generates, records, and submits events to the Mobile Analytics service. This section describes concepts you need to know to incorporate Mobile Analytics into a mobile app.

To integrate Mobile Analytics features that make data collection possible, use the APIs provided by the AWS Mobile SDK for the platforms you plan to support. When working on platforms other than those supported by the AWS Mobile SDK, use the REST API to access Mobile Analytics.

Topics
- Platforms Supported by the Mobile SDK (p. 19)
- Enabling SDK Logging (p. 19)
- Identifying the App in Mobile Analytics (p. 21)
- Managing Sessions (p. 21)
- Generating Mobile Analytics Events (p. 23)
- Adding Attributes and Metrics (p. 28)
- Submitting Events (p. 30)

Platforms Supported by the Mobile SDK

Mobile Analytics is supported by the AWS Mobile SDK, providing an API for each of these platforms:

- **iOS**: Track App Usage Data with Amazon Mobile Analytics.
- **Android**: Amazon Mobile Analytics.
- **JavaScript**: Mobile Analytics SDK for JavaScript.
- **Unity**: Amazon Mobile Analytics.
- **Xamarin**: Amazon Mobile Analytics.

If you are working on platforms other than those supported by the AWS Mobile SDK, use the REST API to access the Mobile Analytics service.

Enabling SDK Logging

A very useful tool for troubleshooting issues with Mobile Analytics is a log of the interactions between your app and the Mobile SDK. How you switch on SDK logging depends on which SDK you use.

Enabling Logging for iOS Apps

To turn on verbose logging of the AWS Mobile SDK for iOS, call the following line in the `application:didFinishLaunchingWithOptions: application delegate`.

Swift:

```swift
def main()
{
    // Enable verbose logging
    let options = [AWSMobileAnalyticsConfiguration.LogLevel.verbose]
    AWSMobileAnalyticsConfiguration.sharedInstance LogLevel: options)
}
```
Enabling Logging for Android Apps

To turn on verbose logging of the AWS Mobile SDK for Android, include the following line of code in the `onCreate` method of the main activity of the app.

```java
java.util.logging.Logger.getLogger("com.amazonaws").setLevel(Level.ALL);
```

Enabling Logging for JavaScript Apps

The Amazon Mobile Analytics SDK for JavaScript enables logging by passing a `Logger` object to the `AMA.Client.Options` object. The Logger object uses Javascript-style log levels with a separate function for each logging level. Because the console object adheres to the logger interface (`.log`, `.error`, `.info`, `.debug`) you can pass it directly to the Manager constructor.

```javascript
var options = {
    appid : MOBILE_ANALYTICS_APP_ID, //Required e.g. 'c5d69c75a92646b8953126437d92c0'
    platform : DEVICE_PLATFORM, //Optional valid values: 'Android', 'iPhoneOS'
    logger : console //Specifying logger
};
mobileAnalyticsClient = new AMA.Manager(options);
```

For more information, see the Amazon Mobile Analytics SDK for JavaScript.
Enabling Logging for Unity Apps

For information on how to switch on logging in apps using the AWS Mobile SDK for Unity, see Set Logging Information in the AWS Mobile SDK Unity Developer Guide.

Enabling Logging for Xamarin Apps

For information on how to switch on logging in apps using the AWS Mobile SDK for Xamarin, see Set Logging in the AWS Mobile SDK Xamarin Developer Guide.

Identifying the App in Mobile Analytics

Before Mobile Analytics can collect and present any analytic data about your application, you must identify your app to Mobile Analytics by providing the following information:

- The Amazon Cognito identity pool created to authenticate users of your app.
- The AppID created in the Mobile Analytics console when you added your app to Mobile Analytics.

For information about providing the Mobile Analytics app ID and the Cognito identity pool ID in the source code of your app, see the AWS Mobile SDK for your platform.

- AWS Mobile SDK Android Developer Guide
- AWS Mobile SDK iOS Developer Guide
- Mobile Analytics SDK for JavaScript
- AWS Mobile SDK Unity Developer Guide
- AWS Mobile SDK Xamarin Developer Guide

Managing Sessions

Mobile Analytics reports app usage data based on activity captured within sessions. A session is a period of time during which the app is active on the device. A session begins when an app is launched or
brought to the foreground, and ends when the app is terminated or goes to the background. There is an inactivity period of up to 5 seconds, so a brief interruption, like receiving a text message, does not count as a new session.

Mobile Analytics tracks sessions and events submitted during each session to generate the reports displayed in the console. Total Daily Sessions shows the number of sessions your app has each day. Average Sessions per Daily Active User shows the mean number of sessions per user per day.

Managing Sessions in iOS or Android Apps

Apps that use the AWS Mobile SDK for iOS or AWS Mobile SDK for Android to access Mobile Analytics start a session when they create the service object for their platform. To manage a running session, the app must additionally create the session object. This session object gives your app access to session management.

For information about managing sessions in iOS or Android apps, see:

- AWS Mobile SDK iOS Developer Guide
- AWS SDK for iOS Reference
- AWS Mobile SDK Android Developer Guide
- AWS SDK for Android Reference

Managing Sessions in JavaScript Apps

JavaScript apps must include the AWS Mobile SDK for JavaScript in the Browser as well as the Amazon Mobile Analytics SDK for JavaScript. When your app starts, it must create an `AMA.Manager` object, which starts a session and gives your app access to session management.
Managing Sessions in Unity or Xamarin Apps

When your app starts, it should start a session that Mobile Analytics can then begin to track. Apps that use the AWS Mobile SDK for Unity or Xamarin to access Mobile Analytics automatically start a session when they create the service object. The service object gives your app access to session management.

For information about session management in Unity and Xamarin apps, refer to

- AWS Mobile SDK Unity Developer Guide
- AWS SDK for Unity Reference
- AWS Mobile SDK Xamarin Developer Guide
- AWS SDK for Xamarin Reference

Generating Mobile Analytics Events

Information about user engagement in your app is sent to the Mobile Analytics service using events. The events needed to produce the basic analytics reports in the console are collected and sent automatically as long as a session is active. There are two types of events your app can generate in addition to those generated automatically:
Monetization events are specialized events used to report on monetization activities in the app, such as in-app purchases. Custom events are those you create to monitor activities specific to your app, such as completing a level in a game, posting to social media, or setting particular app preferences. An app can have up to 1,500 unique custom events.

Naming Custom Events
When naming custom events, do not begin event names with an underscore (_). Events with names beginning with an underscore are filtered out.

Topics
- Creating a Monetization Event (p. 24)
- Creating a Custom Event (p. 26)

Creating a Monetization Event
When a user of your app makes a purchase, the app code handling the purchase sends a monetization event. Data from monetization events are used to enable and populate revenue-focused reports in the console such as Average Revenue Per User (ARPU) and others.

Creating a Monetization Event in iOS Apps
When a user of your app makes an in-app purchase, you can create a monetization event that helps you track the monetary performance of the app. To do this in an iOS app using the AWS Mobile SDK create a builder object to hold data returned by the Apple App Store. You then use the builder object to build a monetization event you submit with the event client object (p. 26).

For information about creating monetization events in iOS apps, see:
- AWS Mobile SDK iOS Developer Guide
- AWS SDK for iOS Reference
Creating a Monetization Event in Android Apps

When a user makes an in-app purchase, you can create a monetization event to help you track the app's monetary performance. To do this in an Android app using the AWS Mobile SDK, create a builder object to hold data returned by the online store. There are distinct builder object classes to handle purchases from the Amazon store, the Google Play store, and from an IAP framework not defined by a specific builder. You then use the builder object to build a monetization event you submit with the event client object (p. 26).

For information about creating monetization events in Android apps, see:

- AWS Mobile SDK Android Developer Guide
- AWS SDK for Android Reference

Creating a Monetization Event in JavaScript Apps

When a user of your app makes an in-app purchase, you can create a monetization event to help you track the app's monetary performance. To do this in a JavaScript app using the Mobile Analytics SDK for JavaScript, you call a method on the manager object, passing the purchase data as parameters.

For information about creating monetization events in JavaScript apps, see Mobile Analytics SDK for JavaScript.
Creating a Monetization Event in Unity or Xamarin Apps

When a user of your app makes an in-app purchase, you can create a monetization event to help you track the app’s monetary performance. To do this in a Unity app using the AWS Mobile SDK for Unity or a Xamarin app using the AWS Mobile SDK for Xamarin, create a monetization event object to hold data from the online store. Populate the purchase data, and then submit the monetization object to a method on the service object.

For information about creating monetization events in Unity or Xamarin apps, see:

- AWS Mobile SDK Unity Developer Guide
- AWS SDK for Unity Reference
- AWS Mobile SDK Xamarin Developer Guide
- AWS SDK for Xamarin Reference

Creating a Custom Event

You assign an eventType to your custom event. As a best practice, we recommend you give a general name to a custom event and specific names to attributes or metrics. For example, using “Item Bought” instead of “Item XYZ” as a custom event name helps keep the report from having too many distinct event names that are hard to read and aggregate.

Creating a Custom Event in iOS or Android Apps

Custom events in iOS and Android apps are created and defined using an event object that the app submits to Mobile Analytics. To create these event objects, the app must first create an event client object, and then request individual event objects from the event client.

After the app has used an event client object to obtain a single event object, the app customizes the event object by adding attributes and metrics (p. 28) that specify data values to report. After the event object is customized, the app calls the event client object to record the event.
Creating a Custom Event

For information about creating custom events in iOS or Android apps, see:

- AWS Mobile SDK iOS Developer Guide
- AWS SDK for iOS Reference
- AWS Mobile SDK Android Developer Guide
- AWS SDK for Android Reference

Creating a Custom Event in JavaScript Apps

To create a custom event in a JavaScript app, call the manager object to record a custom event, passing the attributes and metrics you want to capture as parameters.

Creating a Custom Event in Unity or Xamarin Apps

Custom events in Unity or Xamarin apps are created and defined using an event object the app submits to Mobile Analytics. After the app has created an event object, the app customizes the event object by adding attributes and metrics (p. 28) that specify data values to report. After the event object is customized, the app calls the manager object to record the event.
Adding Attributes and Metrics

Attributes are data that provides context for the submitted event. For example, a game that submits an event to Mobile Analytics when the player collects a power-up bonus might include an attribute named for the type of bonus collected. You add attributes to an event as a collection of key-value pairs.

Metrics are data that gives measurable context to the event. For example, a photo-sharing app that submits an event when selected photos are uploaded might include a metric for the total amount of data being uploaded, in megabytes. You add metrics to an event as a collection of key-value pairs.

Reporting Detailed Data Points

Individual data values sent to Mobile Analytics are specified by adding one or more attributes or metrics to an event before you submit it. An event can include any combination of up to 40 total attributes and metrics. As a best practice, we recommend you give a general name to a custom event and specific names to attributes or metrics. For example, using "Item Bought" instead of "Item XYZ" as a custom event name helps keep the report from having too many distinct event names that are hard to read and aggregate. This example demonstrates how to define a custom event.

Adding Attributes and Metrics in iOS or Android Apps

Attributes and metrics are added to events in iOS and Android apps by creating a custom event object (p. 26) and then adding the required key-value pairs using the `addAttribute` or `addMetrics` methods.
Adding Attributes and Metrics in JavaScript Apps

Attributes and metrics are added to custom events in JavaScript apps (p. 27) as parameter values.

Adding Attributes and Metrics in Unity or Xamarin Apps

Attributes and metrics are added to events in Unity or Xamarin apps by creating a custom event object and then adding the required key-value pairs using the addAttribute or addMetrics methods.
Submitting Events

Each app can have up to 1,500 unique custom events, up to 40 attributes and metrics per custom event, and an infinite number of attribute or metrics values.

Submitting Events in iOS Apps

When you create event objects in an iOS app, you call the `recordEvent` method on the event client object to record those events in the device's local persistent storage. The client stores a maximum of 5 megabytes of event data. By default, recorded events are submitted to Mobile Analytics at the end of the current session. However you can manually submit events at any time during a session. You can call the `submitEvents` method on the event client object to submit events manually. This removes data from the client file store.

For information about submitting events in iOS apps, see:

- AWS Mobile SDK iOS Developer Guide
- AWS SDK for iOS Reference

Submitting Events in Android Apps

When you create event objects in an Android app, you call the `recordEvent` method on the event client object to record those events in the device's local persistent storage. By default, recorded events are submitted to Mobile Analytics at the end of the current session. However you can manually submit events at any time during a session. The client will store a maximum of 5 megabytes of event data. You can call the `submitEvents` method on the event client object to submit events manually. This removes data from the client file store.

For information about submitting events in Android apps, see:

- AWS Mobile SDK Xamarin Developer Guide
- AWS SDK for Xamarin Reference
For information about submitting events in Android apps, see:

- AWS Mobile SDK Android Developer Guide
- AWS SDK for Android Reference

Submitting Events in JavaScript Apps

When you create event objects in a JavaScript app, you call the `recordEvent` method on the manager object to record those events in the device's local persistent storage. You can call the `submitEvents` method on the manager object to submit events manually. This removes data from the client file store. As long as there is an active session, session events are submitted to Mobile Analytics every 10 seconds.

For information about submitting events in JavaScript apps, see Mobile Analytics SDK for JavaScript.

Submitting Events in Unity or Xamarin Apps

When you create event objects in a Unity or Xamarin app, you call the `recordEvent` method on the manager object to record those events in the device's local persistent storage. All events are submitted to Mobile Analytics in a background thread.

For information about submitting events in Unity or Xamarin apps, see:

- AWS Mobile SDK Unity Developer Guide
- AWS SDK for Unity Reference
- AWS Mobile SDK Xamarin Developer Guide
- AWS SDK for Xamarin Reference
Amazon Mobile Analytics User Guide
Identifying the App in Mobile Analytics

Using the Mobile Analytics REST API

To take advantage of Mobile Analytics, your app must include code that records and submits events you want reported in the console.

App developers working on platforms supported by the AWS Mobile SDK will likely use the APIs provided for their platforms. You can use the REST API to integrate with Mobile Analytics without incorporating the AWS Mobile SDK in your app. The REST API lets you submit events from a back-end service.

The topics in this section cover key Mobile Analytics concepts, including Mobile Analytics event types and common tasks you perform with the REST API.

Topics

• Identifying the App in Mobile Analytics (p. 32)
• Managing Sessions (p. 33)
• Generating Mobile Analytics Events (p. 35)
• Adding Attributes and Metrics (p. 39)
• Providing a Client Context (p. 40)
• Signing Requests (p. 41)
• Submitting Events (p. 41)
• Querying Analytics Data (p. 42)

Identifying the App in Mobile Analytics

Before you identify your app, you must:

• Add your app in the Mobile Analytics console. (p. 4)
• Create an Amazon Cognito identity pool or use an identity pool created for you by Mobile Analytics.

Tying Analytics to Users

Before Mobile Analytics can collect and present any analytic data about your app, you must identify it to Mobile Analytics. Once an app has been identified in the service, it can begin to collect data about the users of your app. There are two pieces of information you need so your application can identify itself with Mobile Analytics:

• The Amazon Cognito identity pool created to authenticate users of your application.
• The AppID created in the Mobile Analytics console when you added your app to Mobile Analytics.
When you use the Mobile Analytics REST API, your app provides the AppID as part of the client context header (p. 40) you include when calling the PutEvents action. Your app provides the Amazon Cognito identity pool ID as part of initializing Amazon Cognito Identity.

Managing Sessions

Before you manage sessions in your app, you must:

- Add your app in the Mobile Analytics console (p. 4)
- Create an Amazon Cognito identity pool or use an identity pool created for you by Mobile Analytics.

Users Engage in Sessions

Mobile Analytics reports app usage data based on activity captured in sessions. A session is a period of time during which the application is active on the device. A session begins when an app is launched or brought to the foreground, and ends when the app is terminated or goes to the background. To accommodate brief interruptions, like a text message, an inactivity period of up to 5 seconds does not count as a new session.

Collecting KPI Data

Mobile Analytics tracks sessions and events submitted during each session to generate the collection of standard charts in the console reporting on key performance indicators (KPIs). Total Daily Sessions shows the number of sessions your app has each day. Average Sessions per Daily Active User shows the mean number of sessions per user per day.

Starting a Session

When your app starts, a session tracked by Mobile Analytics should begin. The code that initializes the app calls the PutEvents action, sending a session start event.
A session start event has an eventType of "_session.start" as shown in the following example.

```
POST /2014-06-05/events HTTP/1.1
Host: mobileanalytics.us-east-1.amazonaws.com
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<access_key>/20140709/us-east-1/mobileanalytics/
aws4_request, SignedHeaders=content-length;content-type;host;user-agent;x-amz-client-context;x-amz-date;x-amz-security-token;x-amz-target, Signature=<signature>
User-Agent: <User agent string>
x-amz-Client-Context: {"client":
{"client_id":<client_id>"app_title":<app_title>"app_version_name":<app_version_name>"app_version_code":<app_version_code>"app_package_name":<app_package_name>"env":
{"platform":<platform>"model":<model>"make":<make>"platform_version":<platform_version>"locale":<locale>
x-amz-security-token: <Security token>
Content-Type: application/json
Content-Length: <Payload size bytes>
Connection: Keep-Alive

{ "events": [
{"eventType": "_session.start",
"session": {
"startTimestamp": "<ISO 8601 date>",
"id": "<session id>"
},
"timestamp": "<ISO 8601 date>",
"attributes": {
<optional>
},
"metrics": {
<optional>
}
] }
```

Stopping a Session

When your app closes or is sent to the background, it should end the current session. To end a session, the application code that responds to notification to shut down or pause calls the PutEvents action, sending a session end event.
A session end event has an eventType of "_session.stop" as shown in the following example.

```json
{
    "eventType": "_session.stop",
    "timestamp": "2014-07-09T03:26:38.719Z",
    "session": {
        "id": "<session id>",
        "duration": 497516,
        "startTimestamp": "2014-07-09T03:17:20.041Z",
        "stopTimestamp": "2014-07-09T03:25:37.557Z"
    },
    "attributes": {},
    "metrics": {}
}
```

Generating Mobile Analytics Events

Before generating analytics events in your app, you must:

- Add your app in the Mobile Analytics console (p. 4)
- Create an Amazon Cognito identity pool or use an identity pool created for you by Mobile Analytics.
- Start a session (p. 33)
Types of Analytics Events

Information about user engagement in your app is sent to the Mobile Analytics service using events. Generally speaking, there are two types of mobile analytics events:

- Standard events
- Custom events

Standard events include those you send to start or stop a session. They also include specialized events used to report on monetization activities in the app, such as in-app purchases. Custom events are those you create to monitor activities specific to your app, such as completing a level in a game, posting to social media, or setting particular app preferences. An app can have up to 1,500 unique custom events.

Session Events

Standard events include those that allow the app to start and end a session (p. 33) in Mobile Analytics. Sessions enable Mobile Analytics to provide the analytics data in the console reports.

To start a session, the app calls the PutEvents action with a session start event. A session start event has an eventType of "_session.start". To end a session, the app sends an HTTP PutEvents request with a session end event. A session end event has an eventType of "_session.stop".

Defining a Monetization Event

When a user of your app makes a purchase, the code that handles the purchase calls the PutEvents action to send a monetization event.

A monetization event has an eventType of "_monetization.purchase", as shown in the following example. It demonstrates how to monetize an event with a price that does not include the currency symbol.

```
POST /2014-06-05/events HTTP/1.1
Host: mobileanalytics.us-east-1.amazonaws.com
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<access_key>/20140709/us-east-1/mobileanalytics/aws4_request, SignedHeaders=content-length;content-type;host;user-agent;x-amz-client-context;x-amz-date;x-amz-security-token;x-amz-target, Signature=<signature>
User-Agent: <User agent string>
x-amz-Client-Context: {"client": {"client_id":"<client_id>"}, "app_title": "<app_title>", "app_version_name": "<app_version_name>"}, "app_version": {}, "env": {"platform": "<platform>", "model": "<model>", "make": "<make>", "platform_version": "<platform_version>", "locale": "<locale>", "app_id": "<app_id>"}, "app_version_code": "<app_version_code>", "app_package_name": "<app_package_name>", "app_title": "<app_title>", "app_version_name": "<app_version_name>", "app_version": {}, "env": {"platform": "<platform>", "model": "<model>", "make": "<make>", "platform_version": "<platform_version>", "locale": "<locale>"}
```
This example demonstrates how to monetize an event with a price that includes the currency symbol. You can use this example with a formatted price.

```
POST /2014-06-05/events HTTP/1.1
Host: mobileanalytics.us-east-1.amazonaws.com
X-Amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<access_key>/20140709/us-east-1/mobileanalytics/
aws4_request, SignedHeaders=content-length;content-type;host;user-agent;x-amz-client-context;x-amz-date;x-amz-security-token;x-amz-target, Signature=<signature>
User-Agent: <User agent string>
x-amz-Context-Client: {"client":
{"client_id":"<client_id>"},"app_title":"<app_title>"},"app_version_name":"<app_version_name>"},"app_version_code": <app_version_code>"
"locale": <locale>"
"platform": <platform>"
"model": <model>"
"make": <make>"},"platform_version": "<platform_version>"},"locale": <locale>"
Content-Type: application/json
Content-Length: <Payload size bytes>
Connection: Keep-Alive

{"events": [
{"eventType": "_monetization.purchase", "session": {
"startTimestamp": "<ISO 8601 date>"},
"id": "<session id>"
},
"timestamp": "<ISO 8601 date>",
"attributes": {
"_currency": "<ISO 4217 currency code>"},
"_product_id": "<User specified string>"
},
"metrics": {
"_quantity": <Purchase quantity, defaults to 1>,
"_item_price": <Decimal price>
}
]
```

```
{"events": [
{"eventType": "_monetization.purchase", "session": {
"startTimestamp": "<ISO 8601 date>"},
"id": "<session id>"
},
"timestamp": "<ISO 8601 date>",
"attributes": {
"_item_price_formatted": "<Price prefixed with currency symbol ($1.99)>",
"_product_id": "<User specified string>"
},
"metrics": {
"_quantity": <Purchase quantity, defaults to 1>
}
]
```

Creating a Custom Event

In addition to the standard events, you can also define your own custom events to report on types of interaction specific to your app, such as finishing levels of a game.

You assign an eventType to your custom event. As a best practice, we recommend you give a general name to a custom event and specific names to attributes or metrics. For example, using "Item Bought" instead of "Item XYZ" as a custom event name helps keep the report from having too many distinct event names that are hard to read and aggregate. This example demonstrates how to define a custom event.

```
POST /2014-06-05/events HTTP/1.1
Host: mobileanalytics.us-east-1.amazonaws.com
Authorization: AWS4-HMAC-SHA256 Credential=<access_key>/20140709/us-east-1/mobileanalytics/aws4_request, SignedHeaders=content-length;content-type;host;user-agent;x-amz-client-context;x-amz-date;x-amz-security-token;x-amz-target, Signature=<signature>
User-Agent: <User agent string>
x-amz-Client-Context: {"client": {"client_id": "<client_id>", "app_title": "<app_title>", "app_version_name": "<app_version_name>", "app_version_code": "<app_version_code>", "app_package_name": "<app_package_name>"}, "custom": {}}, "env": {"platform": "<platform>", "model": "<model>", "make": "<make>", "platform_version": "<platform_version>", "locale": "<locale>"}, x-amz-security-token: <Security token>
Content-Type: application/json
Content-Length: <Payload size bytes>
Connection: Keep-Alive

{
  "events": [
    {
      "eventType": "sampleEvent",
      "timestamp": "2014-07-09T03:17:20.041Z",
      "session": {
        "id": "<Session id>",
        "startTimestamp": "2014-07-09T03:15:31.041Z"
      },
      "attributes": {},
      "metrics": {}
    },
    {
      "eventType": "otherEvent",
      "timestamp": "2014-07-09T03:17:42.772Z",
      "session": {
        "id": "<Session id>",
        "startTimestamp": "2014-07-09T03:15:31.041Z"
      }
    }
  ]
```
Adding Attributes and Metrics

Before you add attributes or metrics to events in your app, you must:

- Add your app in the Mobile Analytics console (p. 4)
- Create an Amazon Cognito identity pool or use an identity pool created for you by Mobile Analytics.
- Start a session (p. 33)
- Create an event (p. 35)

Reporting Detailed Data Points

You specify individual data values sent to Mobile Analytics by adding one or more attributes or metrics to an event before you submit it. An event can include any combination of up to 40 total attributes and metrics.

As a best practice, we recommend that names given to custom event names be broad and those given to attributes or metrics be specific. For example, using "Item Bought" instead of "Item XYZ" as the custom event name helps keep the report from having too many distinct event names that are hard to read and aggregate.

Adding Attributes

Attributes are data that provide context for the submitted event. For example, a game that submits an event to Mobile Analytics when the player collects a power-up bonus might include an attribute named for the type of bonus collected.
Adding Metrics

You add attributes to an event as a collection of key-value pairs. When you use the REST API, you add each key-value pair to the attributes section of the event and then submit the event with the PutEvents action. For example:

```
"attributes": {
  "bonusType": "Bonus Avatar",
  "bonusSelection": "Spaceman"
}
```

Adding Metrics

Metrics are data that provides measurable context to the event. For example, a photo-sharing app that submits an event when selected photos are uploaded might include a metric for the total amount of data being uploaded, in megabytes.

You add metrics to an event as a collection of key-value pairs. When you use the REST API, you add each key-value pair to the metrics section of the event and then submit the event with the PutEvents action. For example:

```
"metrics": {
  "finishedLevel": "3",
  "totalCoins": "135500"
}
```

Providing a Client Context

Before you use a client context to submit events from your app, you must:

- Add your app in the Mobile Analytics console (p. 4)
- Create an Amazon Cognito identity pool or use an identity pool created for you by Mobile Analytics.

Giving Details of Application Context

Data in a client context provides information about the client interaction with an application service; it describes the app and the environment in which the app runs. When your mobile app communicates with Mobile Analytics, your app must provide the client context for the application and device. To do this, create a JSON-formatted string with the data to include as a header (p. 120) when using the PutEvents action.

Client context contains at least two sets of properties:

- **Client properties**
- **Environment properties**

In addition to these two sets of properties, a client context can also contain custom values that provide context about the app or environment.

The client context is where you provide the values required by Mobile Analytics to identify your app. In the services section, you must include `mobile-analytics` as a key with the AppID you generated for your app in the Mobile Analytics console as the value.
Signing Requests

The method to use to sign your request depends on where the request originates. If the request comes from a server, use AWS Identity and Access Management. If the request comes from a mobile device, use Amazon Cognito or IAM.

All requests to the Amazon Mobile Analytics REST API must be signed and the following headers must be present.

```
Accept: application/hal+json
X-Amz-Date: <TIMESTAMP in format of YYYYMMDDTHHmmSSZ e.g. 20151208T063435Z>
Authorization: AWS4-HMAC-SHA256 Credential=<YOUR ACCESS KEY ID>/20151208/us-east-1/mobileanalytics/aws4_request,
    SignedHeaders=accept;host;x-amz-date, Signature=<Sig V4 signature>
```

Both IAM and Amazon Cognito support signature version 4. For more information, see Signature Version 4 Signing Process.

Submitting Events

Before you submit events from your app, you must:

- Add your app in the Mobile Analytics console (p. 4)
- Create an Amazon Cognito identity pool or use an identity pool created for you by Mobile Analytics.
- Start a session (p. 33)
- Create an event to submit (p. 35)
- Add relevant attributes and metrics to events (p. 39)

Event-Based Interaction

The interaction between a mobile app and Mobile Analytics takes place through a single PutEvents action in the REST API. You use the PutEvents action to:

- Start and stop sessions to collect the standard analytics displayed in the console reports.
- Send monetization data.
- Collect custom analytics specific to your app.

The following diagram shows how a mobile app sends events to Mobile Analytics at different points in the execution of the app. This interaction enables the collection of data used to produce the analytics reports.
You can have up to 1,500 unique custom events per app, up to 40 attributes and metrics per custom event, and an infinite number of attribute or metrics values.

Querying Analytics Data

Mobile Analytics provides actions in its REST API to enable querying the accumulated analytics for your apps.

Topics

- Setting IAM Policy (p. 42)
- Getting a List of Apps (p. 43)
- Querying Key Performance Indicators (KPIs) (p. 44)
- Querying Custom Events (p. 49)
- Using a ResultSet (p. 61)
- Filtering Query Results (p. 62)

Setting IAM Policy

To query the analytics data, you must have the correct permissions set up for the IAM user or role accessing Mobile Analytics. You can define the necessary permissions using the IAM policy generator or by adding the following policy to grant access to both standard and financial metrics for an app.
Getting a List of Apps

This query returns a list of all your apps. The URL for this query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps

Example Response

Here is an example of the JSON returned in the response. The list of apps returned is in the item attribute.

```json
{
   "_links": {
      "curies": [
         {
            "href": "http://docs.aws.amazon.com/mobileanalytics/latest/ug/server-reference.html#event:{rel}",
            "name": "app",
            "templated": true
         }
      ],
      "self": {
         "href": "/2014-06-05/apps?page-size=3",
         "name": "apps",
         "title": "Apps Collection"
      },
      "app:by-id": [
         {
            "href": "/2014-06-05/apps/{appId}",
            "name": "app-by-id",
            "title": "App By Id",
            "templated": true
         }
      ],
      "app:create": [
         {
            "href": "/2014-06-05/apps"
         }
      ],
      "item": [
         {
            "href": "/2014-06-05/apps/<YOUR APP ID>",
            "name": "<YOUR APP NAME>",
            "title": "app_1"
         },
         
```
Querying Key Performance Indicators (KPIs)

Using the REST API, you can query your analytics data to obtain details about a variety of key performance indicators (KPIs).

Topics

- Querying Lifetime User Count (p. 44)
- Querying Active User Counts (p. 45)
- Querying Session Count (p. 46)
- Querying Revenue Data (p. 48)
- Querying Retention Data (p. 48)

Querying Lifetime User Count

This KPI returns the count of all users and devices that have ever used your app. The URL for this KPI is:

Example Response

Here is an example of the JSON returned in the response. The value in the rows attribute contains the KPI value.

```json
{
    "_links": {
        "self": {
            "name": "lifetime-count"
        },
        "example": [{
            "name": "lifetime-count-all-platforms",
            "title": "Lifetime Count All Platforms"
        }],
        "up": [{
            "href": "/2014-06-05/apps/<YOUR APP ID>/kpis/new-users",
            "name": "new-users"
        }]
    }
}
```
Querying Active User Counts

These KPIs return the number of unique users/devices that have launched your app in a particular day or month as well as the number of first-time users of your app in that time period.

The URL for the Daily Active Users (DAU) KPI is:

The URL for the Monthly Active Users (MAU) KPI is:

The URL for the New Users KPI is:

Example Response

Here is an example of the JSON returned in the response for the daily active users query. The value in the rows attribute contains the KPI values by day.

```json
{
   "_links" : {
      "self" : {
         "name" : "count"
      },
      "example" : [{
         "href" : "/2014-06-05/apps/<YOUR APP ID>/kpis/dau/count?start=7-days-ago&end=today",
         "name" : "last-7-days-all-platforms",
         "title" : "Last 7 Days All Platforms"
      }, {
         "name" : "last-30-days-all-platforms",
         "title" : "Last 30 Days All Platforms"
      }, {
         "href" : "/2014-06-05/apps/<YOUR APP ID>/kpis/dau/count?start=60-days-ago&end=today",
         "name" : "last-60-days-all-platforms",
         "title" : "Last 60 Days All Platforms"
      }]
   }
}
```
Querying Session Count

This KPI returns the number of sessions for your app. The URL for this KPI is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/sessions/count

Example Response

Here is an example of the JSON returned in the response. The value in the rows attribute contains the KPI value.

```json
{
  "_links": {
    "self": {
      "name": "sessions/count",
      "type": "application/vnd.amazonaws+json",
      "title": "https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/sessions/count"
    }
  }
}
```
"name" : "count"
},
"example" : [{
"href" : "/2014-06-05/apps/<YOUR APP ID>/kpis/sessions/count?start=7-days-ago&end=today",
"name" : "last-7-days-all-platforms",
"title" : "Last 7 Days All Platforms"
}, {
"href" : "/2014-06-05/apps/<YOUR APP ID>/kpis/sessions/count?start=30-days-ago&end=today",
"name" : "last-30-days-all-platforms",
"title" : "Last 30 Days All Platforms"
}, {
"href" : "/2014-06-05/apps/<YOUR APP ID>/kpis/sessions/count?start=60-days-ago&end=today",
"name" : "last-60-days-all-platforms",
"title" : "Last 60 Days All Platforms"
}]
],
"up" : [{
"href" : "/2014-06-05/apps/<YOUR APP ID>/kpis/sessions",
"name" : "sessions"
}]
],
"columns" : {
"day" : {
"colIndex" : 0,
"type" : "Qualitative",
"dataType" : "ISODateTime",
"unit" : null,
"name" : "day",
"displayName" : "Date"
},
"Sessions" : {
"colIndex" : 1,
"type" : "Quantitative",
"dataType" : "Double",
"unit" : null,
"name" : "Sessions",
"displayName" : "Sessions"
}
},
"rows" : [["2014-11-20", 403.0],
["2014-11-21", 455.0],
["2014-11-22", 453.0],
["2014-11-23", 432.0],
["2014-11-24", 503.0],
["2014-11-25", 564.0],
["2014-11-26", 574.0],
["2014-11-27", 532.0],
["2014-11-28", 495.0],
["2014-11-29", 486.0],
["2014-11-30", 529.0],
["2014-12-01", 520.0]],
"scope" : {
"appId" : "<YOUR APP ID>",
"kpiName" : "sessions",
"aggregate" : "count"}
Amazon Mobile Analytics User Guide

Querying KPIs

Querying Revenue Data

These KPIs return revenue data for an app.

The URL for daily revenue KPI is:

The URL for Daily Paying Active Users (PDAU) KPI is:

The URL for Monthly Paying Active Users (PMAU) KPI is:

Querying Retention Data

These KPIs return retention data for an app.

The URLs for week 1, week 2, and week 3 retention KPIs are:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/week-3-retention/count

The URLs for day 1, day 3, day 5, and day 7 retention KPIs are:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/day-1-retention/count
https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/day-3-retention/count
https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/day-5-retention/count
https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/day-7-retention/count

Example Response

Here is an example of the JSON returned in the response for the day 7 retention count query. The value in the rows attribute contains the KPI values by day.

```json
{
   "_links" : {
      "self" : {
         "href" : "https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/day-7-retention-per-user/count?start=2015-12-01&end=2015-12-08",
         "name" : "count"
      },
      "example" : [
         "href" : "https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/kpis/day-7-retention-per-user/count?start=7-days-ago&end=today",
         "value" : 48
      ]
   }
}
```
Querying Custom Events

Using the REST API, you can query your analytics data to obtain details about custom events submitted by your app. The following topics show how to obtain various data about the custom events your app submits to Mobile Analytics.

Topics

- Listing Custom Event Names (p. 50)
- Listing Custom Event Attribute Names (p. 51)
Listing Custom Event Names

This query lists the valid custom event names for an app. The URL for this query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events

Example Response

Here is an example of the JSON returned in the response of a query for the names of the custom events for an app.

```json
{
    _links : {
        curies : [
            {
                name : event,
                templated : true
            }
        ],
        self : {
            href : /2014-06-05/apps/<YOUR APP ID>/events,
            name : events,
            title : Events Collection
        },
        event:by-name : [
            {
                href : /2014-06-05/apps/<YOUR APP ID>/events/LevelComplete,
                name : LevelComplete,
                title : Event By Name,
                templated : true
            }
        ],
        item : [
            {
                href : /2014-06-05/apps/<YOUR APP ID>/events/LevelComplete,
                name : LevelComplete
            }
        ],
        up : {
            href : /2014-06-05/apps/<YOUR APP ID>,
            name : <YOUR APP ID>
        }
    }
}```
Listing Custom Event Attribute Names

This query lists the valid attribute names for a custom event. The URL for this query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/attributes

Example Response

Here is an example of the JSON returned in the response of a query for attribute names for a "LevelComplete" custom event. It returns three example attribute names in the item attribute.

```json
{
 "_links": {
 "curies": [{
 "name": "attribute",
 "templated": true
 }],
 "self": {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes",
 "name": "attributes",
 "title": "Attributes Collection"
 },
 "attribute:by-name": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/{attributeName}",
 "name": "attribute-by-name",
 "title": "Attribute By Name",
 "templated": true
 }],
 "item": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/Difficulty",
 "name": "Difficulty"
 }, {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState",
 "name": "EndState"
 }, {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/LevelName",
 "name": "LevelName"
 }],
 "up": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete",
 "name": "LevelComplete"
 }]
 },
 "appId": "<YOUR APP ID>",
 "eventName": "LevelComplete",
 "itemCount": 2,
 "pageCount": 1
}
```
Listing Custom Event Attribute Values

This query returns the valid attribute values for a specific custom event and attribute. The URL for this query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/attributes/<ATTRIBUTE NAME>/values

Example Response

Here is an example of the JSON returned in the response of a query for values of the "EndState" attribute of the "LevelComplete" custom event. It returns two example attribute values in the item attribute.

```json
{
 "_links": {
 "curies": [{
 "name": "attributevalue",
 "templated": true
 }]
 },
 "self": {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values",
 "name": "values",
 "title": "Attribute Values Collection"
 },
 "attributevalue:by-name": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/{attributeValueName}"
 },
],
 "item": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/Lose",
 "name": "Lose"
 }, {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/Win",
 "name": "Win"
 }],
 "up": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState",
 "name": "EndState"
 }]
},
"appId": "<YOUR APP ID>",
"attributeName": "EndState",
"eventName": "LevelComplete",
"itemCount": 2,
"pageCount": 1
}
Listing Custom Event Metrics Names

This query lists the valid names of metrics available for a custom event. The URL for this query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<ATTRIBUTE NAME>/values/<ATTRIBUTE NAME>/count

Example Response

Here is an example of the JSON returned in the response of a query for the names of the metrics available on the LevelComplete event. The URL for this query is https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/c4e4c37a4f304496a03d69951126af4c/events/LevelComplete/attributes/EndState/values/Lose/count.

```
{
    "_links" : {
        "self" : {
            "name" : "count"
        },
        "example" : [{
            "name" : "last-7-days-all-platforms",
            "title" : "Last 7 Days All Platforms"
        }, {
            "name" : "last-30-days-all-platforms",
            "title" : "Last 30 Days All Platforms"
        }, {
            "name" : "last-60-days-all-platforms",
            "title" : "Last 60 Days All Platforms"
        }],
        "up" : [{
            "href" : "https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/Lose",
            "name" : "Lose"
        }],
    },
    "columns" : {
        "day" : {
            "colIndex" : 0,
            "type" : "Qualitative",
            "dataType" : "ISODateTime",
            "unit" : null,
            "name" : "day",
            "displayName" : "Date"
        },
        "count" : {
            "colIndex" : 1,
            "type" : "Quantitative",
            "dataType" : "Double",
            "unit" : null,
```
Querying Counts of Event Occurrences

To query the number of occurrences of custom events you must know the name of the custom event. The URL to query counts of custom events is:

```
https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/count
```

Example Response

Here is an example of the JSON returned in the response of a query for a "LevelComplete" custom event. The value in the rows attribute contains the KPI value.

```json
{
  "_links" : {
  },
  "example" : [{
    "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/count?start=7-days-ago&end=today", "name" : "last-7-days-all-platforms", "title" : "Last 7 Days All Platforms"
  }, {
    "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/count?start=30-days-ago&end=today", "name" : "last-30-days-all-platforms", "title" : "Last 30 Days All Platforms"
  }, {
    "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/count?start=60-days-ago&end=today", "name" : "last-60-days-all-platforms", "title" : "Last 60 Days All Platforms"
  }
  ],
  "up" : [{
    "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete", "name" : "LevelComplete"
  }]
}
```
Querying Custom Events

This query returns the number of event occurrences containing a specific attribute name. The URL for this query is:

Example Response

Here is an example of the JSON returned in the response of a query for the number of event occurrences containing a specified attribute name. This example shows the response for a request for the daily number of "LevelComplete" events where the "EndState" attribute had a "Lose" value:

```json
{
    _links : {
        self : {
            href : /2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/count,
            name : count
        },
        example : [
```

55
```json
{
  "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/count?platform=all&start=7-days-ago&end=today&group-by=none,
  "name": "last-7-days-all-platforms",
  "title": "Last 7 Days All Platforms",
},
{
  "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/count?platform=all&start=30-days-ago&end=today&group-by=none,
  "name": "last-30-days-all-platforms",
  "title": "Last 30 Days All Platforms",
},
{
  "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/count?platform=&start=60-days-ago&end=today&group-by=none,
  "name": "last-60-days-all-platforms",
  "title": "Last 60 Days All Platforms"
}
],
"up": [
  {
    "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState",
    "name": "EndState"
  }
],
"columns": {
  "day": {
    "colIndex": 0,
    "type": "Qualitative",
    "dataType": "ISODateTIme",
    "unit": null,
    "name": "day",
    "displayName": "Date"
  },
  "count": {
    "colIndex": 1,
    "type": "Quantitative",
    "dataType": "Double",
    "unit": null,
    "name": "count",
    "displayName": "Count"
  }
},
"rows": [
  [2015-11-29, 134],
  [2015-11-30, 175],
  [2015-12-01, 190],
  [2015-12-02, 143],
  [2015-12-03, 212]
]
```
Querying Custom Events

```
[  
  [  
    2015-12-04,  
    254  
  ],  
  [  
    2015-12-05,  
    237  
  ],  
  [  
    2015-12-06,  
    275  
  ],  
  [  
    2015-12-07,  
    289  
  ],  
  [  
    2015-12-08,  
    282  
  ]  
],  
scope : {  
  appId : <YOUR APP ID>,  
  eventName : LevelComplete,  
  attributeName : EndState,  
  aggregate : count  
}
```

Querying Counts of Event Occurrences with Specified Attribute Value

This query returns the number of events containing a specific attribute value. The URL for this query is:

```
```

Example Response

Here is an example of the JSON returned in the response of a query for the daily number of LevelComplete events where the EndState attribute has a Lose value.

```
{
  "_links" : {
    "self" : {
      "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/Lose/count?start=2015-12-01&end=2015-12-08",  
      "name" : "count"
    },
    "example" : [{
      "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/Lose/count?start=7-days-ago&end=today",  
      "name" : "last-7-days-all-platforms",  
      "title" : "Last 7 Days All Platforms"
    }, {
      "href" : "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/attributes/EndState/values/Lose/count?start=30-days-ago&end=today",  
      "name" : "last-30-days-all-platforms",  
      "title" : "Last 30 Days All Platforms"
    }]
}
```
Querying Counts of Event Occurrences with Specified Metric Name

This query returns the number of event occurrences containing a specific metric name. The URL for this query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<METRIC NAME>/count

Example Response

Here is an example of the JSON returned in the response of a query of the average of the TimeToComplete metric of the LevelComplete custom event. The query URL used was https://

{
 "__links": {
 "self": {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg?start=2015-12-01&end=2015-12-08",
 "name": "avg"
 },
 "example": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg?start=7-days-ago&end=today",
 "name": "last-7-days-all-platforms",
 "title": "Last 7 Days All Platforms"
 }, {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg?start=30-days-ago&end=today",
 "name": "last-30-days-all-platforms",
 "title": "Last 30 Days All Platforms"
 }, {
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg?start=60-days-ago&end=today",
 "name": "last-60-days-all-platforms",
 "title": "Last 60 Days All Platforms"
 }],
 "up": [{
 "href": "/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete",
 "name": "TimeToComplete"
 }]
 },
 "columns": {
 "day": {
 "colIndex": 0,
 "type": "Qualitative",
 "dataType": "ISODateTime",
 "unit": null,
 "name": "day",
 "displayName": "Date"
 },
 "avg": {
 "colIndex": 1,
 "type": "Quantitative",
 "dataType": "Double",
 "unit": null,
 "name": "avg",
 "displayName": "Avg"
 }
 },
 "rows": [
 ["2015-12-01", 32.2],
 ["2015-12-02", 35.4],
 ["2015-12-03", 32.5],
 ["2015-12-04", 40.3],
 ["2015-12-05", 36.6],
 ["2015-12-06", 31.3],
 ["2015-12-07", 35.2],
 ["2015-12-08", 34.7]],
 "scope": {
 "metricName": "LevelComplete",
 "appId": "<YOUR APP ID>",
 "eventName": "LevelComplete",
 "aggregate": "avg"}
Querying Daily Metric Aggregates for Custom Events

These queries return daily metric aggregates for your app.

The URL for the **average** query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<METRIC NAME>/avg

The URL for the **sum** query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<METRIC NAME>/sum

The URL for the **minimum** query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<METRIC NAME>/min

The URL for the **maximum** query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<METRIC NAME>/max

The URL for the **count** query is:

https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/<CUSTOM EVENT NAME>/metrics/<METRIC NAME>/count

The count metric contains the number of event occurrences where the metric was specified on the event.

Example Response

Here is an example of the JSON returned in the response of a query of the average of the TimeToComplete metric of the LevelComplete custom event. The query URL used was https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg.

```json
{
    "_links": {
        "self": {
            "href": "https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg?start=2015-12-01&end=2015-12-08",
            "name": "avg"
        },
        "example": [{
            "href": "https://mobileanalytics.us-east-1.amazonaws.com/2014-06-05/apps/<YOUR APP ID>/events/LevelComplete/metrics/TimeToComplete/avg?start=7-days-ago&end=today",
            "name": "last-7-days-all-platforms",
            "title": "Last 7 Days All Platforms"
        }],
```
Using a ResultSet

The REST API actions you can use to query the analytics for an app return that data as a ResultSet resource. A ResultSet has these properties you can use to access the data it contains:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>columns</td>
<td>A map of column names to metadata about the column.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>column.colIndex</td>
<td>The index of the column this metadata describes.</td>
</tr>
<tr>
<td>column.dataType</td>
<td>The data type of the column.</td>
</tr>
<tr>
<td>column.name</td>
<td>A unique name that identifies the column.</td>
</tr>
<tr>
<td>column.displayName</td>
<td>A friendly display name for the column.</td>
</tr>
<tr>
<td>column.unit</td>
<td>The unit of measurement for the column.</td>
</tr>
<tr>
<td>column.type</td>
<td>One of these values:</td>
</tr>
<tr>
<td></td>
<td>• Quantitative, which indicates the column value is numeric.</td>
</tr>
<tr>
<td></td>
<td>• Qualitative, which indicates the column value is a string.</td>
</tr>
<tr>
<td>rows</td>
<td>A two-dimensional array containing ResultSet values. Values can have different data types as described by metadata in the column property.</td>
</tr>
</tbody>
</table>

Filtering Query Results

You can filter the data provided in a ResultSet based on optional parameters you specify when querying the data.

Filtering Query Results by Platform

You can filter the query results to include only the data for a particular app platform, such as Android, by including the following filter parameter in your URL:

```
platform=<filter>
```

You can use the following values for the filter:

- android
- iphoneos
- kindle
- windowsphone
- blackberry
- macos
- windows
- linux

For example, here is a query URL you would use to filter the data in the returned ResultSet for the iOS platform:

```
```

You can filter on more than one platform at a time by using a query parameter like this one:
Filtering Query Results by Date Range

You can filter the query results to include only the data for a range of dates by including the following filter parameter in your URL:

```
?start=<start date>&end=<end date>
```

Here is an example of filtering a query by specifying a date range:

```
```

Not specifying a date range applies a default filter that includes data for the last 30 days. Lifetime KPIs ignore this filter and will have no effect on the result.

Filtering Query Results by Relative Date

You can filter the query results to include only the data for a relative date. Here are the filter patterns you can use when specifying relative dates:

- n-days-ago
- n-weeks-ago
- n-months-ago
- today

Here is an example of filtering a query by specifying a relative start date and the current date for the end date:

```
```

Combining Query Parameters

You can combine different query parameters using the ampersand (&) symbol, as shown in this example:

```
```

Grouping Data Per Platform

To group the ResultSet by platform, you can append the following query parameter to the end of the URL:

```
?group-by=platform
```

Here is an example of a query that returns data values per platform:

```
```
Mobile Analytics Console Reports Overview

You can view or download Mobile Analytics reports from the AWS Management Console. Reports are available for metrics on active users, sessions, retention, in-app revenue, and custom events. Go to the Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.

Topics
- Toolbar (p. 64)
- Using the Console Reports (p. 64)
- Overview Tab (p. 66)
- Active Users Tab (p. 67)
- Sessions Tab (p. 67)
- Revenue Tab (p. 68)
- Retention Tab (p. 69)
- Custom Events Tab (p. 70)
- Working with Charts (p. 71)

Toolbar

You can use the controls on the toolbar in the Mobile Analytics console to filter on the following:

- **Application list** – Provides a list of all apps that have submitted data to Mobile Analytics.
- **Date range** – Allows you to specify date ranges for the data to be displayed in the reports. By default, the date range is the last 30 days.
- **Platforms** – Lets you select which platform data to display in the console reports. You can choose to show data from all platforms together or data from a specific platform only.

Using the Console Reports

After you have integrated Mobile Analytics into your apps, they will relay data about user engagement to the service. You can view the currently compiled data in the console. Data reported by your apps is incorporated into the compiled data about 60 minutes after it was sent.

To view the current reports for an app, select it from the applications drop-down menu in the toolbar. The reports are organized into a set of tabs, each of which is described in this section.

Filtering Data Shown by Date Range

You can change the date range used to filter the data shown in the reports.
Selecting the Platform Displayed

You can view the data for all platforms supported by your app or for specific platforms only.

To change the platforms displayed in the reports

1. Choose the All Platforms menu in the toolbar.
2. From the drop-down list, choose All Platforms to display data reported by the app on all platforms or choose any of the following platforms:
 - iOS
 - Android
 - Fire OS
 - Windows Phone
 - Blackberry
 - Windows (browser-based apps)
 - Mac (browser-based apps)
• Linux (browser-based apps)

Browser-based apps that run under one of the mobile operating systems are reported under the appropriate operating system.

Overview Tab

The Overview tab displays at-a-glance summaries of:

• **Daily Active Users (DAU)** – Users who used your app on a particular day.
• **Monthly Active Users (MAU)** – Users who used your app in the previous 30 days.
• **New Users** – New users who used your app on a particular day.
• **Sticky Factor** – Fraction of monthly users who used your app on a particular day (DAU/MAU).
• **Total Sessions** – Number of times your app was used on a particular day.
• **Day 1 Retention** – Percentage of new users who used your app on a specific day and then again the following day.
• **Average Revenue Per Paid Daily Active User (ARPPDAU)** – Gross revenue for in-app items per daily active user who purchased in-app items.
Active Users Tab

The Active Users tab displays trend charts for the following:

- **Daily Active Users (DAU)** – Users who used your app on a particular day.
- **Monthly Active Users (MAU)** – Users who used your app in the previous 30 days.
- **New Users** – New users who used your app on a particular day.
- **Sticky Factor** – Fraction of monthly users using your app on a particular day. For example, a Sticky Factor of .25 means that on a particular day, 25% of your users from the previous 30 days used your app.

Sessions Tab

The Sessions tab displays trend charts for the following:

- **Total Sessions** – Number of times your app was used on a particular day.
- **Average Number of Sessions Per Daily Active User** – Average of the number of sessions per daily active user who used your app on a particular day.
Revenue Tab

The Revenues tab displays trend charts for the following:

- **Average Revenue Per Daily Active User (ARPDAU)** – Gross revenue for in-app items per daily active user.
- **Average Revenue Per Paying Daily Active User (ARPPDAU)** – Gross revenue for in-app items per daily active user who purchased in-app items.
- **Paying Daily Active Users** – Users who bought an in-app item on a particular day.
Gross revenue does not include taxes, product returns, reimbursements, subscriptions or revenue from the purchase of the app.

Revenue for in-app purchases per monthly active user:

- **Average Revenue Per Monthly Active User (ARPMAU)** – The gross revenue divided by the number of users who bought an item from your app in the last 30 days.
- **Average Revenue Per Paid Daily Active User (ARPPMAU)** – Gross revenue for in-app items per monthly active user who purchased in-app items.
- **Paying Monthly Active Users** – Users who bought an in-app item in a particular month.

Gross revenue does not include taxes, product returns, reimbursements, subscriptions or revenue from the purchase of the app.

Retention Tab

The **Retention** tab displays trend charts for the following:

- **Daily Retention for New Users—Percentage** – Percentage of new users who used your app on a specific day and then again on the following day, the third day, and the seventh day.
- **Weekly Retention for New Users—Percentage** – Percentage of users who used your app on a specific day and then at least once during the next 7 days inclusive (1-week retention); between 8 and 14 days inclusive (2-week retention); and between 15 and 21 days inclusive (3-week retention).
- **Daily Retention for New Users—Count** – New users who used your app on a specific day and then again on the following day, the third day, and the seventh day. This chart also shows the number of new users who used your app on a particular day.
• **Weekly Retention for New Users—Count** – New users who used your app on a specific day and then at least once during the next seven days inclusive (1-week retention); between 8 and 14 days inclusive (2-week retention); and between 15 and 21 days inclusive (3-week retention). This chart also shows the number of new users who used your app on a particular day.

![Graphs showing weekly retention for new users](image)

Custom Events Tab

The **Custom Events** tab displays charts for metrics that you define.

- **Lifetime Event Occurrences** – Aggregate number of custom events received for your app to date.
- **Lifetime Event Occurrences Per Session** – Average number of custom events received per session to date.
- **Events Count Per Session** – Average number of custom events received per session.
- **Breakdown of Metric Values** – Average, minimum, and maximum of metric values.
Working with Charts

Many of the tabs on the Mobile Analytics console include controls for displaying or downloading data:

- **Click to download the currently displayed data to a comma-separated values file.**
- **Click to display the current data as a line chart.**
<table>
<thead>
<tr>
<th></th>
<th>Click to display the current data as a bar chart.</th>
</tr>
</thead>
</table>

Amazon Mobile Analytics User Guide
Working with Charts
Using Custom Dashboards

You can create custom dashboards in the Mobile Analytics console to help you quickly and easily monitor the particular metrics and analytics that are most beneficial for measuring the performance of your app.

You can have multiple custom dashboards, each of which can include up to four charts to display details of how users interact with your app. The charts are customizable, allowing you to include standard or custom data points as well as choose whether to use line chart, bar chart, or tabular presentation formats depending on the type of chart.

You can try custom dashboards in a fully interactive demo mode. For more information, see Custom Dashboards Demo.

Types of Dashboard Charts

There are two types of charts you can add to a custom dashboard:
- **Summary** charts, which display their data per series aggregated over the displayed date range. Summary charts can be viewed either as a bar chart or in tabular format.

- **Trended** charts, which display their data per day over the displayed date range. Trended charts can be viewed as a trendline chart, a bar chart, or in tabular format.

Viewing Dashboards

Custom dashboards are available in their own tab in the Mobile Analytics console.

To view any of your custom dashboards

2. In the main console dashboard, select the **Custom Dashboards** tab.

A custom dashboard displays from one to four charts. By default, each chart has one of three views, either bar chart, or line chart, or a table. You can switch among the available views at any time to see the data presented in different ways.

3. To display a particular custom dashboard, select its name from the **Dashboard** list.
4. Select the date range you want to see from the Date filter in the Mobile Analytics toolbar.

Filtering Charts by Platform

You can filter the data displayed in a custom dashboard using the Platform filter in the Mobile Analytics toolbar.
Switching Chart Display

Each chart in a custom dashboard has a default display that was selected when the dashboard was initially created. However, you can switch between the available displays at any time when viewing a dashboard by selecting from the display options provided in the chart title bar. The options for chart display are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data presented in bar chart format. Available in summary charts and trending charts.</td>
</tr>
<tr>
<td></td>
<td>Data presented in tabular format. Available in summary charts and trending charts.</td>
</tr>
<tr>
<td></td>
<td>Data presented in trendline format. Available in trending charts.</td>
</tr>
</tbody>
</table>
Viewing Bar Chart Details

You can display details about any metric in a bar chart by selecting that bar.

Viewing Line Chart Details

You can display details about any date in a line chart by selecting that date.
Creating Dashboards

You can create one or more custom dashboards to provide a variety of views into the analytics reported by your apps. A custom dashboard has at least one but can have up to four charts. Each chart can display one or more series of data values, including values from standard series analytics provided by Mobile Analytics as well as custom series you define to meet the particular needs of your app and organization.

For example, tracking the financial performance of your app can be facilitated by a custom dashboard that includes data from monetization events along with data about new users.

To create a custom dashboard

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. In the main console dashboard, select the Custom Dashboards tab.
3. Select Create new dashboard from Actions.
4. Type the name for the new dashboard in **Name** then select ✗ to save the blank dashboard with the name provided or ✗ to cancel.

5. Add the individual charts you want to include in this dashboard. To add a chart, select the large icon in the center of one of the four blank chart positions in the dashboard.

6. In the chart editing dialog, type a name for the new chart in **Chart Name**.
7. Select either Summary or Trending to specify the type of this chart.

8. Add one or more series of values you want to display in the chart. You can add any of the values from the standard series provided by Mobile Analytics or values from the custom series created from your custom events.

 Select Add Standard Series to add one of the standard data values from Mobile Analytics.

9. In the Series List item that appears, you can replace the default series name with a name more appropriate for your dashboard.

10. In the KPI drop-down list, select the data value you want to chart. The KPIs are organized into categories for your convenience.
11. In the **Aggregation** drop-down list, select the aggregation method you want to apply to the data values from this KPI. The selections in this list vary depending on the KPI selected for this data series.

12. Select the color you want to use to show this data series from the drop-down color swatch palette.
13. When you finish defining this data series for the chart, select Back to add this item to the chart.

14. You can add additional data series to the chart by selecting Standard Series for one of the Mobile Analytics KPIs or Custom Series for one of your custom events.

15. After you have added several data series to the chart, you can change their order by dragging and dropping them within the editor or by selecting the up or down arrows to move a data series up or down one position.
16. After you finish setting up the new chart, select **Save Chart** to save the chart to your dashboard.

Editing Dashboards

You can edit your dashboards to add or delete charts as needed. You can also edit individual charts in a dashboard in order to:

- Add new standard or custom data series and delete a data series
- Change the colors used to display a data series
- Reorder the presentation of data series
- Rename the chart or any of the data series in a chart
- Change the KPIs or custom event attributes displayed

To edit a custom dashboard chart

1. In the **Custom Dashboards** tab, display the dashboard you want to edit.
2. Select the edit chart icon in the title bar of the chart you want to edit.
3. In the **Edit chart** dialog, make any changes to the data series (display color, name, order, and so on) as needed.
4. Select **Update Chart** whenever you want to save the changes you've made. Select **Cancel** to leave the editor without saving any unsaved changes. Select **Remove chart** to delete the chart from the dashboard.
Amazon Mobile Analytics Auto Export

You can use Amazon Mobile Analytics to collect, visualize, and understand app usage data at scale. Mobile Analytics can automatically export event data from your apps to an Amazon S3 bucket or an Amazon Redshift cluster using an AWS CloudFormation stack created in your account. This data auto export makes it possible for you to analyze app usage in detail and combine this information with other business intelligence data.

Amazon S3 buckets provide secure, durable, highly scalable object storage. Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse solution that makes it simple and cost-effective to efficiently analyze all of your data using your existing business intelligence tools. AWS CloudFormation provides an easy way to create and manage a collection of related AWS resources.

If you have not already done so, first create an app and generate events before setting up auto export. For more information about creating an app and generating events, see Getting Started (p. 4).

Auto Export Overview

The analytics collected by Mobile Analytics result from events sent by your app that are collected, aggregated, and then used to populate the console reports and custom dashboards. Mobile Analytics retains this data for 25 months; however, you can't directly access this data for custom analysis. To keep this data for longer than 25 months or to perform custom analysis using your own custom queries and tools, you must export the data for storage.

Mobile Analytics provides an auto export capability that stores your incoming data, either to an Amazon S3 bucket alone or to both an Amazon S3 bucket and an Amazon Redshift cluster. Mobile Analytics will create the Amazon S3 bucket or Amazon Redshift cluster when you set up auto export, or you can use an existing Amazon S3 bucket or Amazon Redshift cluster.
By default, auto export of your data is not enabled. You can choose to enable auto export any time, either for specific apps individually or for all of your apps. Data export for an app begins when auto export is enabled for that app, retaining your data from that time forward.

Mobile Analytics auto exports using a single configuration, so when you set up auto export for the first time you must choose between export to Amazon S3 alone or to both Amazon S3 and Amazon Redshift. That configuration, including the destination Amazon S3 bucket or Amazon Redshift cluster, then applies to the auto export of all apps for which you have enabled auto export.

When exporting to Amazon Redshift, an Amazon EC2 instance is created. This instance reads the data that is written to the Amazon S3 bucket and then loads that data into the Amazon Redshift cluster.

Writing Events to Amazon S3

For each hour that Mobile Analytics receives event data, it writes the data as a gzip (.gz) archive file to your Amazon S3 bucket. If the volume of data for an hour is high, Mobile Analytics might write the file for that hour in multiple parts.

Mobile Analytics writes the files to Amazon S3 with the following naming convention:

```
bucket-name/awsma/events/appId/YYYY/MM/DD.hh/appId-mm-part-partNum-hexCode.gz
```

bucket-name

The name of the destination Amazon S3 bucket.
appId

The application ID GUID.

YYYY

The four-digit year.

MM

The two-digit month.

DD

The two-digit day.

hh

The two-digit hour of day.

mm

The two-digit minute.

partNum

The four-digit part number of the event archive.

hexCode

An opaque 32 character hexadecimal string.

The files are written at least once, which means that Mobile Analytics will usually write each file once, but in some cases it will rewrite a file with the same name and contents. Consequently, if Amazon S3 event notifications are enabled, you might receive multiple notifications for a file that is written multiple times. To handle these cases, design all processes that consume these files to handle repeated notifications.

Getting Started with Auto Export to Amazon Redshift or Amazon S3

The S3 bucket and Amazon Redshift cluster must be in the US East (N. Virginia) Region.

Step 1: Go to Manage Apps

From the Amazon Mobile Analytics console, choose App Management, and then choose Manage Apps.

Step 2: Launch the Auto Export Wizard

Choose the apps for which you would like to enable auto export, and choose Enable Auto Export. Alternatively, you can select Enable Auto Export for All Apps to export all apps.

Step 3: Choose Export to Amazon Redshift + Amazon S3

Under Amazon S3, choose Get Started.
Step 4: Configure an Amazon S3 Bucket

Choose Create a new S3 bucket or use the Select an existing bucket drop-down list to choose an existing bucket. Regardless of which option you choose, you will own the S3 bucket and will be responsible for all charges incurred. For more information, see S3 Pricing. You can go to the S3 console at any time to delete the data in your S3 bucket.

Step 5: Configure S3 and S3 to Amazon Redshift Permissions

Mobile Analytics uses AWS Identity and Access Management (IAM) roles to securely access your S3 bucket through a cross account role. Choose Select/Create Role. By default, Mobile Analytics creates a new IAM role and policy with write access to the S3 bucket you selected in the previous step. We recommend you use the default setting to create a new IAM role. If you want to specify a different role or policy, choose View Details, and then choose the IAM role or policy. If you choose an existing policy, be sure it provides access to the S3 bucket you will be exporting to. Choose Allow to allow access to your Amazon S3 bucket.

Choose Create Export. Upon confirmation, your auto export setup will be complete. It can take up to one hour for events to appear in your S3 bucket.

In addition to S3, auto export to Amazon Redshift requires an EC2 IAM role. This role is used by the EC2 instance created in your account to read data from S3, and communicate with other AWS resources, such as CloudWatch and Amazon Redshift. Choose Select/Create Role. By default, Mobile Analytics creates a new IAM role and policy that allows an EC2 instance in your account to access the S3 bucket you selected in the previous step, as well as other AWS resources. We recommend that you use the default setting to create a new IAM role. If you want to specify a different role or policy, choose View Details and choose the IAM role or policy. If you choose an existing policy, be sure it provides the following:

- Read and write access to the S3 bucket you will be exporting to.
- Access to "cloudwatch:PutMetricData".
- Access to "logs:*".

Choose Allow to use the EC2 role.

Step 6: Configure Auto Export to Use Amazon Redshift

Amazon Mobile Analytics uses AWS CloudFormation to create a new Amazon Redshift cluster and EC2 instance in your account. Enter a password for the "master" user, which will have full administrative permissions to your Amazon Redshift cluster. Keep this password safe. Enter a password for the "eventreader" user, which will have read-only permissions to your Amazon Redshift cluster. Distribute these credentials to anyone who needs read-only access to your data. To prevent accidental changes, we recommend you use the eventreader user when you query Amazon Redshift.

If your app records custom attributes or metrics, type the name for each attribute or metric, and press Enter. Alternatively, you can paste a newline-separated or comma-separated list of values.

Note
You must include the names of any custom attributes or metrics when you create the auto export for their data to appear in Amazon Redshift. Any attributes or metrics you add after creating the auto export may require recreating the auto export in order to appear in Amazon Redshift, thereby losing any event data already stored in Amazon Redshift.
The EC2 instance created in your account can record metrics, such as the length of time to load events into Amazon Redshift or whether the load was successful. In addition, the EC2 instance copies all logs to CloudWatch Logs. You can enable CloudWatch Metrics and Logs by selecting Enable CloudWatch Metrics and Logs.

Choosing Advanced Options allows you to specify settings to connect to your Amazon Redshift cluster and EC2 instance:

- **IP access rules** - By default, your Amazon Redshift cluster and EC2 instance will be accessible from your machine only. To make your Amazon Redshift cluster and EC2 instance available to all internet addresses, choose Accessible from any IP Address. You can also specify a custom Classless Inter-Domain Routing (CIDR) rule to allow access to addresses from within your organization. For more information about CIDR notation, see Classless Inter-Domain Routing on Wikipedia.
- **Port number** - The port number used by Amazon Redshift to communicate.
- **Password for the etl_user account used for loading your data from S3 to Amazon Redshift** - This is the write-only password used by the EC2 instance to load data into Amazon Redshift. We recommend you use the generated password.
- **An EC2 key pair used for connecting to the EC2 instance using SSH** - If you want to connect to the EC2 instance by using SSH (for example, to do custom log pulling), you must specify an EC2 key pair. You can create one in the EC2 console. You cannot change the key pair after the EC2 instance has started.

Each of the advanced options has a default value, so you do not need to specify a value unless you want a value different than the default. You can choose Advanced Options to see the default values.

Choose Create Export. It can take up to 15 minutes for your Amazon Redshift cluster to be provisioned.

Note
The EC2 instance will run continuously (and incur charges) regardless of whether new event data is being sent by your app.

Connecting to Amazon Redshift

Amazon Redshift provides multiple ways to connect to an Amazon Redshift cluster, including programmatic access via a JDBC connection, or querying Amazon Redshift directly on your workstation using SQLWorkbench/J. For more information, see Connecting to an Amazon Redshift Cluster.

When logging in to your Amazon Redshift cluster, use the Amazon Redshift connection string which is located in the Amazon Redshift console on your cluster’s configuration page. For more information, see Configuring Amazon Redshift Connections. Then use the eventreader user name and the eventreader password you specified in the auto export configuration to connect to the cluster.

Adding New Metrics and Attributes to an Auto Export to Amazon Redshift

Event data exported to Amazon S3 contains all of the attributes and metrics that were sent to the service. There are two options you can use to manage changes to event attributes and metrics in your Amazon Redshift cluster:

- Recreate auto export to a new Amazon Redshift cluster.
- Add or remove attributes that are loaded to your existing Amazon Redshift cluster with AWS CloudFormation.
Option 1: To recreate auto export to a new Amazon Redshift cluster

Warning
Using this method results in loss of any other data loaded into Amazon Redshift. Do not stop
the auto export feature in the Mobile Analytics console while completing this method.

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at https://
 console.aws.amazon.com/cloudformation.
2. Select the stack containing the Amazon Redshift cluster. This stack is named
 “MobileAnalyticsAutoExportToRedshift” in most cases.
3. Choose Delete Stack.
4. Navigate to the Mobile Analytics console and configure the auto export to Amazon Redshift
 feature (p. 87). After completing this step, your Amazon Redshift cluster is created and populated
 with existing data in your Amazon S3 bucket.

Option 2: To add or remove attributes being loaded into your existing Amazon Redshift
cluster with AWS CloudFormation

This method updates the tables in your Amazon Redshift cluster to include new attributes and metrics
columns. It also updates the AWS CloudFormation stack to include these new attributes and metrics so
they are loaded into these new columns in the Amazon Redshift cluster. Any new attributes and metrics
are loaded into the Amazon Redshift cluster for new events received after completing these steps.
Existing events in your Amazon Redshift cluster are not updated.

Note
Using this method requires you to terminate the EC2 instance that was created with the auto
export to Amazon Redshift feature.

1. Connect to your Amazon Redshift cluster with a user account that has sufficient privileges (for
 example, master privileges) using your SQL client of choice. For more information about connecting
to an Amazon Redshift cluster using third-party tools, see Connecting to Clusters From Client Tools
 and Code.
2. For each new attribute column you add for the event attribute (for example, “myNewAttribute”), run
 these commands:

   ```
   alter table awsma.event_staging
   add column a_myNewAttribute VARCHAR(4000) NULL ENCODE LZO;
   alter table awsma.event
   add column a_myNewAttribute VARCHAR(4000) NULL ENCODE LZO;
   ```
3. For each new metric column you add for the event metric (for example, “myNewMetric”), run these
 commands:

   ```
   alter table awsma.event_staging
   add column m_myNewMetric FLOAT8 NULL;
   alter table awsma.event
   add column m_myNewMetric FLOAT8 NULL;
   ```
4. After all attributes and metrics are added, run these commands to update the v_event view so it
 contains the new columns.

   ```
   drop view AWSMA.v_event;
   CREATE OR REPLACE VIEW AWSMA.v_event AS select * from AWSMA.event;
   ALTER TABLE AWSMA.v_event OWNER to etl_user;
   grant select on AWSMA.v_event to group eventReaders;
   ```
5. Update configuration with AWS CloudFormation:
a. In the AWS CloudFormation console, choose the stack containing the Amazon Redshift Cluster (usually named "MobileAnalyticsAutoExportToRedshift").

b. Choose Update Stack.

c. Choose Next.

d. Find the EventCustomMetrics and EventCustomAttributes parameters then add your new attributes and metrics as comma separated values.

e. Find RedshiftEtlPassword, RedshiftMasterPassword and RedshiftReadPassword and then select Use Existing Value for each.

f. Complete the rest of the update wizard.

6. Terminate your Amazon EC2 instance so the Auto Scaling group creates a new instance with the updated configuration:

a. In the Amazon EC2 console, choose Auto Scaling Groups.

b. Choose the “MobileAnalyticsAutoExportToRedshift” Auto Scaling group.

c. In the detail view select the Instances tab.

d. Choose Instance ID.

e. In Actions first choose Instance State and then choose Terminate.

The Auto Scaling group creates a new instance.

Managing Auto Export

After you set up auto export, you may want to enable export for additional apps or disable auto export for an app. You may also want to add new metrics and attributes to an AutoExport to Amazon Redshift.

Enabling Auto Export for Additional Apps

After you set up auto export, you can automatically export data from other apps. Go to the App Management page, choose the apps to enable, choose the Configure Auto Export to S3 or the Configure Auto Export to Amazon Redshift + S3 drop-down list (depending on how you configured auto export), and choose Enable Auto Export. The apps will be added to your auto export configuration and their data will begin appearing in your S3 bucket or Amazon Redshift cluster.

Note
Only one auto export configuration can be used at one time. If you chose the Amazon Redshift + Amazon S3 option, all of your apps configured to use auto export will write event data to Amazon Redshift and Amazon S3.

Disabling Auto Export

You can disable auto export for one or more apps. From the App Management page, choose the apps to disable, choose Configure Auto Export to S3 or Configure Auto Export to Redshift + S3 (depending on how you configured auto export), and choose Disable Auto Export. After you've confirmed the action, data for the selected apps will stop flowing to your S3 bucket. Disabling auto export will not delete your S3 bucket, the data contained in it, your Amazon Redshift cluster, or your EC2 instance. You will continue to incur charges until you delete or terminate each resource.

To remove your Amazon Redshift cluster and EC2 instance so that you no longer incur charges, go to the CloudFormation console and delete the stack Mobile Analytics created on your behalf. This operation will delete all resources and cannot be reversed.

To remove data in S3, go to the S3 console and remove it manually.
Exporting to an Existing Amazon Redshift Cluster

By default, Mobile Analytics auto export to Amazon Redshift creates an Amazon Redshift cluster specifically to receive exported analytics data. However, if you have an existing Amazon Redshift cluster you would rather use instead of the cluster created by Mobile Analytics, you can auto export to that cluster.

Make sure you complete the steps to set up export of your app’s events to Amazon Redshift (p. 87) except for the creation of a new Amazon Redshift cluster. You don’t need to create a new Amazon Redshift cluster if you plan to use an existing cluster.

The process of setting up auto export to an existing Amazon Redshift cluster has these parts:

Topics
- Part 1: Configure Security Roles for Auto Export to Amazon Redshift (p. 92)
- Part 2: Gather Details About the Amazon Redshift Cluster (p. 94)
- Part 3: Create and Configure an Amazon EC2 Loader Instance (p. 95)
- Part 4: Configure Amazon EC2 Access to the Amazon Redshift Cluster (p. 99)
- Part 5: Connect to Amazon EC2 and Configure the Event Loader (p. 100)
- Part 6: Create the Schema in Amazon Redshift (p. 101)
- Part 7: Loading Events from Amazon S3 to Amazon Redshift (p. 101)
- Part 8: Configure CloudWatch (p. 102)

Part 1: Configure Security Roles for Auto Export to Amazon Redshift

The first thing you need to do to auto export your app analytics to an existing Amazon Redshift cluster is configure the auto export security roles.

1. Open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Choose Manage Apps from the app drop-down menu.
3. Enable auto export for all apps by selecting Enable Auto Export For All Apps. You can enable auto export for a single app by choosing the app in the Manage Apps list and then choosing Enable Auto Export.
4. In **Choose Auto Export**, choose **Get Started** in **Amazon Redshift + Amazon S3**.

5. In **Configure Auto Export**, choose **Create a new Amazon S3 bucket** or select an existing Amazon S3 bucket from the drop-down list.
6. In **IAM Role Information**, choose **Select/Create Role**.

7. Select **View Details** and make a note of the name generated for the IAM role. Then choose **Allow**.

Part 2: Gather Details About the Amazon Redshift Cluster

After you configure the auto export security roles, you must gather details about your Amazon Redshift cluster. You will need these details later.
1. Open the Amazon Redshift console at https://console.aws.amazon.com/redshift/home.
2. Under Clusters, find and choose the existing Amazon Redshift cluster you want to use for auto export from Mobile Analytics to display the details of that cluster.
3. Make note of the VPC ID, Endpoint, Port, and Database Name values for use later.

Part 3: Create and Configure an Amazon EC2 Loader Instance

After gathering the details on your Amazon Redshift cluster, you must create and configure your Amazon EC2 loader instance.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/v2/home.
2. Ensure that you have created a key pair.
3. Name the key pair.
4. Download the credentials for the key pair.

5. Choose **Instances** from the Amazon EC2 console navigation. Then choose **Launch Instance** and choose **Amazon Linux AMI** from the list of available AMIs.

6. Choose the **t2.micro** instance type.
7. Configure your new Amazon EC2 loader instance. Choose a VPC, ideally the VPC you set up in Part 2: Gather Details About the Amazon Redshift Cluster (p. 94). Choose Enable from the Auto-assign Public IP list. Choose the IAM role you created in Part 1: Configure Security Roles for Auto Export to Amazon Redshift (p. 92).

8. Expand Advanced Details and then copy and paste the following text into the User data section:

```bash
#!/bin/bash
# Log data to: /var/log/syslog, /var/log/user-data.log, and console output
echo -n > >(tee /var/log/user-data.log|logger -t user-data -s 2>/dev/console) 2>&1
DataExportDir=/home/ec2-user/DataExport
yum -y update
yum -y install python-pip
yum -y install python27
pip install virtualenv
Virtualenv --pythons=/usr/bin/python27 $DataExportDir
chown -R ec2-user:ec2-user $DataExportDir/
```
9. On **Add Storage** and **Tag Instance** tabs, choose **Next**, accepting their default settings.

10. On the **Configure Security Group** tab, configure the Security Group CIDR rule to let your IP addresses connect to the Amazon EC2 instance on port 22. You can use an existing security group instead or change the **Source** to permit your IP address only.

11. Choose **Review and Launch the Amazon EC2 instance**.

12. For **Select a key pair**, choose the key pair you created previously.
13. Choose **Launch Instances**.

14. After the Amazon EC2 instance is created, make note of the value for **Public DNS**, which is required to access the Amazon EC2 instance using SSH or similar tools.

Part 4: Configure Amazon EC2 Access to the Amazon Redshift Cluster

After creating and configuring your Amazon EC2 loader instance, you must configure Amazon EC2 access.

Configure your security groups so that the new Amazon EC2 instance can access the Amazon Redshift host and port. The ports that are accessible vary based on the configuration of your security groups.

An easy way to provide access to the Amazon Redshift cluster is to add a new inbound rule to the Amazon Redshift security group. This rule provides the Amazon EC2 instance security group access to the Amazon Redshift port. In the following example, the second of the two rules listed is a new rule that was created to give access to Amazon Redshift.
Part 5: Connect to Amazon EC2 and Configure the Event Loader

After configuring your Amazon EC2 access, you must connect to Amazon EC2.

1. Log in to the Amazon EC2 instance through the AWS Management Console or through a terminal shell. For more information, see Connecting to Your Linux Instance Using SSH.

2. Using a terminal shell, enter the following:

```bash
$ chmod 400 YOUR_KEY_FILE.pem
$ ssh -i YOUR_KEY_FILE.pem ec2-user@PUBLIC_DNS
```

3. Configure the event loader on Amazon EC2 with the correct settings. Run the following commands, providing values for each of the properties:

```bash
$ ~/DataExport/bin/configure
Enter value for key: (DataReaderUser.password) -> a_password
Enter value for key: (Redshift.host) -> redshift_host
Enter value for key: (Redshift.database) -> redshift_database
Enter value for key: (Redshift.port) -> redshift_port
Enter value for key: (DataBackfill.startdate) -> s3_export_date
Enter value for key: (CloudWatch.record_duration_metric) -> True
Enter value for key: (EventDetails.custom_attributes) -> attr1,attr2
Enter value for key: (EventDetails.custom_metrics) -> metric1,metric2
Enter value for key: (S3Source.bucketname) -> s3_bucket_name
Enter value for key: (ETLUser.password) -> a_password
```

Notes

- In the event the configure script is not present in ~/DataExport/bin, you will need to log in to your Amazon EC2 instance and check the contents of /var/log/user-data.log to determine why the configure script was not downloaded during setup of the Amazon EC2 instance. For example, Python might not have installed correctly.
- Amazon Redshift passwords must contain at least 1 upper case letter and 1 number.
- DataReaderUser.password is the password for the eventreader Amazon Redshift user that’s auto-created in the next step.
- The Redshift.host, Redshift.database, and Redshift.port are found on the Amazon Redshift console from Step 2.
Part 6: Create the Schema in Amazon Redshift

Create the schema, tables, views, and users in your Amazon Redshift cluster. Run bootstrap to create the Mobile Analytics tables and users in your Amazon Redshift cluster. The master_username and master_password are the master username and password for your Amazon Redshift cluster.

```
$ ~/DataExport/bin/bootstrap -u master_username -P master_password
```

Here is an example of the output:

```
Indo:~# @DataExport/bin/bootstrap -u master_username -P master_password
```

Part 7: Loading Events from Amazon S3 to Amazon Redshift

To manually load events into the Amazon Redshift cluster from your Amazon S3 bucket, run the loadevents command at the command line.

```
$ DataExport/bin/loadevents
```

Watch the logs for errors. Here is an example of the output:

```
[ec2-user@ip-123-34-45-67 ~]$ DataExport/bin/loadevents
```

Once all of the events have successfully loaded, set up a crontab to execute the loadevents command every hour and write to the logs directory. Enter this at the command line:

```
1 0 * * * /opt/AWS/loadevents.sh
```

101
Verify that the `loadevents` command runs every hour with the following command:

```sh
$ crontab -l
```

Here is an example of the output:

```
0 * * * * /usr/bin/flock -n -E 0 /tmp/lockfile /home/ec2-user/DataExport/bin/loadevents -l /home/ec2-user/DataExport/logs/ || rm /tmp/lockfile' | crontab -
```

Part 8: Configure CloudWatch

Configure Amazon CloudWatch to monitor the event loader command.

Create an Agent Configuration File

The following example shows how to create an agent configuration file on the Amazon EC2 instance using Nano:

```sh
$ nano /tmp/cwlogs/application.conf
```

Add the following to the configuration file:

```yaml
[general]
state_file = /var/awslogs/agent-state

[application.log]
file = /home/ec2-user/DataExport/logs/application.log
log_group_name = MobileAnalytics.application.log
log_stream_name = {instance_id}/application.log
datetime_format = %a %b %d %H:%M:%S %Y
```

Start the CloudWatch Agent

Start the CloudWatch agent with this command:

```sh
$ sudo python /awslogs-agent-setup.py -n -r us-east-1 -c /tmp/cwlogs/application.conf
```

Here is an example of the output:

```
Step 1 of 5: Installing pip ... DONE
Step 2 of 5: Downloading the latest CloudWatch Logs Agent bits ... DONE
Step 5 of 5: Setting up agent as a daemon ... DONE

Configuration file successfully saved at: /var/awslogs/etc/awslogs.conf
You can begin seeing new log events after a few moments at: https://console.aws.amazon.com/cloudwatch/home?region=us-east-1:logs
You can use `sudo service awslogs start/stop/status/restart` to control the daemon.
To see diagnostic information for the CloudWatch Logs Agent, see /var/log/awslogs.log
You can run interactive setup using `sudo python /awslogs-agent-setup.py --region us-east-1 --only-generate-config`
```

Logs appear in the CloudWatch console after each run of the `loadevents` scripts.
Create a Metric Filter to Detect Errors

Next, you must create a CloudWatch metric filter to catch errors.

1. Navigate to the CloudWatch console and choose Logs.
2. Choose the MobileAnalytics.application.log.
3. Choose Create Metric Filter.
4. Choose ERROR as the filter pattern.
5. Type a name for the Metric Namespace; for example, MobileAnalytics.
6. Type the name of the Metric; for example, ApplicationLogError.
7. For Metric Value, type 1.
8. Choose Create Filter.

Exported Event JSON

Example

The following JSON shows the data written for a hypothetical event that contains all elements and attributes. Not all elements are valid for all event types.

```json
{
    "event_type": "hypothetical_event",
```
The following table describes each element.
JSON Event Schema Data

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>amount</td>
<td>The numerical price value. Used only in a monetization event.</td>
</tr>
<tr>
<td>app_id</td>
<td>The app ID that was used to identify the app. This ID was assigned on the App Management page of the console.</td>
</tr>
<tr>
<td>arrival_timestamp</td>
<td>The time when the event was received by Amazon Mobile Analytics servers, expressed as an epoch time with milliseconds.</td>
</tr>
<tr>
<td>client_id</td>
<td>Used to correlate events from the same app instance (app on a specific device).</td>
</tr>
<tr>
<td>code</td>
<td>The locale code.</td>
</tr>
<tr>
<td>code</td>
<td>Currency code for the purchase. Used only in a monetization event.</td>
</tr>
<tr>
<td>cognito_id</td>
<td>If Amazon Cognito was used, this is the Amazon Cognito client ID. If not using Amazon Cognito, this attribute will not exist.</td>
</tr>
<tr>
<td>cognito_identity-pool_id</td>
<td>If Amazon Cognito was used, this is the Amazon Cognito identity pool ID. If not using Amazon Cognito, this attribute will not exist.</td>
</tr>
<tr>
<td>country</td>
<td>The country part of the locale.</td>
</tr>
<tr>
<td>event_timestamp</td>
<td>The time the event occurred, expressed as an epoch time with milliseconds.</td>
</tr>
<tr>
<td>event_type</td>
<td>The name that was specified when the event was created. Events such as _session.start and _session.stop are generated by the system.</td>
</tr>
<tr>
<td>event_version</td>
<td>Version of the schema of the event.</td>
</tr>
<tr>
<td>item_id</td>
<td>An identifier for the item purchased. Used only in a monetization event.</td>
</tr>
<tr>
<td>language</td>
<td>The language part of the locale.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>make</td>
<td>The make of the device.</td>
</tr>
<tr>
<td>model</td>
<td>The model of the device.</td>
</tr>
<tr>
<td>name</td>
<td>The name of the AWS Mobile SDK used by the app.</td>
</tr>
<tr>
<td>name</td>
<td>If the Mobile SDK was used, this is the Android or iPhone OS () or the value you specified when using the PutEvents API.</td>
</tr>
<tr>
<td>package_name</td>
<td>The package name.</td>
</tr>
<tr>
<td>quantity</td>
<td>The quantity of items purchased. Used only in a monetization event.</td>
</tr>
<tr>
<td>reported_price</td>
<td>A string representation of the price reported by the purchasing library. Used only in a monetization event.</td>
</tr>
<tr>
<td>session_id</td>
<td>An ID for all events that occurred in the same session.</td>
</tr>
<tr>
<td>start_timestamp</td>
<td>Time when the session began, expressed as an epoch timestamp with milliseconds. Used only on _session.start events.</td>
</tr>
<tr>
<td>stop_timestamp</td>
<td>Time when the session ended, expressed as an epoch timestamp with milliseconds. Used only on _session.stop events.</td>
</tr>
<tr>
<td>store</td>
<td>The name of the store where the transaction took place. Used only in a monetization event.</td>
</tr>
<tr>
<td>symbol</td>
<td>Currency symbol for the purchase. Used only in a monetization event.</td>
</tr>
<tr>
<td>title</td>
<td>The title of the app.</td>
</tr>
<tr>
<td>transaction_id</td>
<td>An identifier for the transaction. Used only in a monetization event.</td>
</tr>
<tr>
<td>version</td>
<td>The platform version.</td>
</tr>
<tr>
<td>version</td>
<td>The version of the Mobile SDK used by the app.</td>
</tr>
<tr>
<td>version_code</td>
<td>The version code.</td>
</tr>
</tbody>
</table>
Amazon Redshift Schema for Event Data

A new schema called AWSMA is created to contain the tables and views to access the data. To access events, use the AWSMA.v_event view. You can sign in to your Amazon Redshift cluster using the eventreader user and the password configured in the auto export feature. This user will have full select access to the AWSMA.v_event view.

The following table describes schema for the AWSMA.v_event view. Custom attributes and custom metric columns appear at the end.

JSON Amazon Redshift Schema for Event Data

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event_type</td>
<td>varchar(256)</td>
<td>The name that was specified when the event was recorded in the SDK or the name of a system event that was recorded by the SDK (for example, _session.start, _session.stop).</td>
</tr>
<tr>
<td>event_timestamp</td>
<td>timestamp</td>
<td>The UTC timestamp (of the device) when the event occurred.</td>
</tr>
<tr>
<td>arrival_timestamp</td>
<td>timestamp</td>
<td>The UTC timestamp (of the server) when the event was received by the AWS server.</td>
</tr>
<tr>
<td>event_version</td>
<td>char(12)</td>
<td>The version of the event structure (typically 3.0).</td>
</tr>
<tr>
<td>application_app_id</td>
<td>varchar(64)</td>
<td>The ID used to identify the app.</td>
</tr>
<tr>
<td>application_package_name</td>
<td>varchar(256)</td>
<td>The package name of the app.</td>
</tr>
<tr>
<td>application_version_name</td>
<td>varchar(256)</td>
<td>The version name associated with the app.</td>
</tr>
<tr>
<td>application_version_code</td>
<td>varchar(256)</td>
<td>The version code associated with the app.</td>
</tr>
<tr>
<td>application_title</td>
<td>varchar(256)</td>
<td>The title of the app.</td>
</tr>
<tr>
<td>application_cognito_identity_pool_id</td>
<td>varchar(64)</td>
<td>This is populated if you are using Amazon Cognito authentication. It is the Amazon Cognito identity pool ID.</td>
</tr>
<tr>
<td>application_sdk_name</td>
<td>varchar(256)</td>
<td>The AWS SDK that sent the event.</td>
</tr>
<tr>
<td>application_sdk_version</td>
<td>varchar(256)</td>
<td>The version of the AWS SDK that sent the event.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Data Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>client_id</td>
<td>varchar(64)</td>
<td>An ID used to identify other events sent from the same app instance. If you used the AWS Mobile SDK to record events, all events from the same app on a device will have the same client_id. This is a GUID string. You can use this value to sample events from a random set of users.</td>
</tr>
<tr>
<td>client_cognito_id</td>
<td>varchar(64)</td>
<td>The Amazon Cognito client ID, this column is populated if you are using Amazon Cognito authentication. This is useful to correlate different users if you are using non-anonymous users.</td>
</tr>
<tr>
<td>device_model</td>
<td>varchar(256)</td>
<td>The device model.</td>
</tr>
<tr>
<td>device_make</td>
<td>varchar(256)</td>
<td>The device make.</td>
</tr>
<tr>
<td>device_platform_name</td>
<td>varchar(256)</td>
<td>The device platform (for example, iPhoneOS or Android).</td>
</tr>
<tr>
<td>device_platform_version</td>
<td>varchar(256)</td>
<td>The device platform version.</td>
</tr>
<tr>
<td>device_locale_code</td>
<td>varchar(256)</td>
<td>The locale of the device (for example, en_US).</td>
</tr>
<tr>
<td>device_locale_language</td>
<td>varchar(64)</td>
<td>The language part of the locale (for example, "en").</td>
</tr>
<tr>
<td>device_locale_country</td>
<td>varchar(64)</td>
<td>The country part of the locale (for example, "US").</td>
</tr>
<tr>
<td>session_id</td>
<td>varchar(64)</td>
<td>A GUID string used to identify events that came from the same app and device in the same session.</td>
</tr>
<tr>
<td>session_start_timestamp</td>
<td>timestamp</td>
<td>The timestamp when the session started.</td>
</tr>
<tr>
<td>session_end_timestamp</td>
<td>timestamp</td>
<td>The timestamp when the session stopped. Populated for _session.stop events only.</td>
</tr>
<tr>
<td>monetization_transaction_id</td>
<td>varchar(64)</td>
<td>An identifier for the transaction.</td>
</tr>
<tr>
<td>monetization_transaction_store</td>
<td>varchar(64)</td>
<td>The name of the app store used for the transaction.</td>
</tr>
<tr>
<td>monetization_transaction_item_id</td>
<td>varchar(64)</td>
<td>An identifier for the item purchased.</td>
</tr>
<tr>
<td>monetization_transaction_quantity</td>
<td>FLOAT8</td>
<td>The quantity of items purchased.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Data Type</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>monetization_transaction_price_reported</td>
<td>varchar(64)</td>
<td>A string representation of the price reported by the purchasing library. This is different for each store.</td>
</tr>
<tr>
<td>monetization_transaction_price_amount</td>
<td>FLOAT8</td>
<td>The numerical price value.</td>
</tr>
<tr>
<td>monetization_transaction_price_currency_code</td>
<td>varchar(16)</td>
<td>The currency code for the purchase.</td>
</tr>
<tr>
<td>monetization_transaction_price_currency_symbol</td>
<td>varchar(32)</td>
<td>The currency symbol for the purchase.</td>
</tr>
<tr>
<td>a_levelName</td>
<td>varchar(4000)</td>
<td>All custom attributes start with "a_".</td>
</tr>
<tr>
<td>a_playerClass</td>
<td>varchar(4000)</td>
<td>All custom attributes start with "a_".</td>
</tr>
<tr>
<td>m_score</td>
<td>FLOAT8</td>
<td>All custom metrics start with "m_".</td>
</tr>
<tr>
<td>m_timeToCompleteMinutes</td>
<td>FLOAT8</td>
<td>All custom metrics start with "m_".</td>
</tr>
</tbody>
</table>

Example Amazon Redshift Queries

The "users" columns in the following queries count distinct client_cognito_id values only when users are authenticated with Amazon Cognito. For unauthenticated use cases, use the client_id for app-device counts.

Top item purchases, by store (last 30 days):

```
SELECT
    application_app_id AS"app id",
    monetization_transaction_item_id AS"item id",
    monetization_transaction_store AS"store",
    COUNT(DISTINCT client_id) AS"devices",
    COUNT(DISTINCT client_cognito_id) AS"users",
    SUM(monetization_transaction_quantity) AS"quantity",
    SUM(monetization_transaction_price_amount) AS"amount (Apple only)",
    monetization_transaction_price_currency_code AS"currency (Apple only)"
FROM
    AWSMA.v_event
WHERE
    event_type = '_monetization.purchase' AND
    event_timestamp BETWEEN getdate() - 30 AND getdate() + 1
GROUP BY
    "app id",
    "item id",
    "currency (Apple only)",
    "store"
ORDER BY
    "app id"ASC,
    "item id"ASC,
    "quantity"DESC,
    "store",
    "devices"DESC
```

109
30 day active users and devices, by device language code:

```sql
SELECT
  application_app_id AS "app id",
  COUNT(DISTINCT client_id) AS "devices",
  COUNT(DISTINCT client_cognito_id) AS "users",
  device_locale_language AS "language"
FROM
AWSMA.v_event
WHERE
  event_type = '_session.start' AND
  event_timestamp BETWEEN getdate() - 30 AND getdate() + 1
GROUP BY
  "app id",
  "language"
ORDER BY
  "app id" ASC,
  "devices" DESC,
  "language";
```

30 day active users and devices, by app version:

```sql
SELECT
  application_app_id AS "app id",
  device_platform_name AS "platform",
  application_version_name AS "version name",
  application_version_code AS "version code",
  COUNT(DISTINCT client_id) AS "devices",
  COUNT(DISTINCT client_cognito_id) AS "users"
FROM
AWSMA.v_event
WHERE
  event_type = '_session.start' AND
  event_timestamp BETWEEN getdate() - 30 AND getdate() + 1
GROUP BY
  "app id",
  "platform",
  "version name",
  "version code"
ORDER BY
  "app id" ASC,
  "platform" ASC,
  "devices" DESC,
  "version name" DESC,
  "version code" DESC;
```

Explanation of Infrastructure

The Mobile Analytics and Amazon Redshift combination includes the following components:

- An Amazon Redshift cluster that holds all auto export events. It can start small and scale up to petabytes of information. For more information, see Amazon Redshift.
- A VPC to isolate network resources to control access. There is no additional charge for using Amazon Virtual Private Cloud (Amazon VPC), aside from the standard Amazon EC2 usage charges. For more information, see Amazon VPC.
• A t2.micro EC2 instance to facilitate the transfer of data from your S3 subscription bucket into Amazon Redshift. For more information, see Amazon EC2.
• Amazon CloudWatch Logs and metrics for information about the health of the data transfer to Amazon Redshift.
• Python scripts that run on your EC2 instance and allow you to interact with the Amazon Redshift cluster.

Amazon Redshift Cluster

Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse solution that makes it simple and cost-effective to efficiently analyze all of your data using your existing business intelligence tools. For more information, see Amazon Redshift.

Virtual Private Cloud

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically isolated section of the AWS cloud where you can launch AWS resources in a virtual network that you define. You have complete control over your virtual networking environment, including selection of your own IP address range, creation of subnets, and configuration of route tables and network gateways. For more information, see Amazon Virtual Private Cloud.

EC2 Instance

When the EC2 instance is provisioned, it downloads the Mobile Analytics Python scripts. After the EC2 instance starts, these scripts connect to the Amazon Redshift cluster and set up the users and tables required to process Mobile Analytics events. The scripts are invoked every hour to load all new event data into your Amazon Redshift cluster.

You can connect to the console using SSH with the EC2 keyname specified in the advanced settings: ssh -i your-keyname.pem ec2-user@public-dns-of-instance

Note
Your pem file must be set to read-only permissions. Run the following command to ensure the file will be accepted: chmod 400 your-keyname.pem.

For more information about EC2 instances, see Amazon EC2.

CloudWatch Metrics and Logs

The EC2 instance records CloudWatch metrics and logs for debugging and monitoring of the EC2 instance. For more information, see Amazon CloudWatch Logs. To view metrics about the execution of the EC2 loadevents operation:

1. Go to the CloudWatch console.
2. In the left navigation pane, choose Custom Metrics.
3. Choose the LoadEventsDuration metric.

To view logs about the invocation of the EC2 instance:

1. Go to the CloudWatch console.
2. Choose Logs.
3. Choose the LogGroup for the EC2 instance.
4. Choose the application log stream.
Troubleshooting

If you encounter issues or difficulties when working with Mobile Analytics, consult the topics in this section.

Using the Mobile SDK
When using the Mobile SDK to incorporate Mobile Analytics into your app, you may find it useful when troubleshooting to enable logging through the SDK. For more information, see Enabling SDK Logging (p. 19).

Topics
- If Default IAM Role Creation Fails (p. 112)
- If Auto Export to S3 Fails (p. 114)
- If New Attributes or Metrics Don't Appear in Auto Export to Amazon Redshift (p. 114)
- If Data Does Not Appear in Amazon Redshift Cluster (p. 115)

If Default IAM Role Creation Fails

The following error message is displayed if Mobile Analytics is unable to create a default IAM role and Cognito identity pool when you add an app:

To correct a failed attempt to create a default IAM role and Cognito identity pool
1. Open the Amazon Cognito console.
2. Click Mobile_Analytics_shared_pool_do_not_modify.
3. Choose **Click here to fix it.**

4. For **Unauthenticated role** and **Authenticated role**, choose an existing role or create a new role.
5. Return to the Mobile Analytics console and the integration steps for your app.

If Auto Export to S3 Fails

If you set up Auto Export to Amazon S3 but are not getting exported data in the S3 bucket, it could be the S3 IAM access role being used to export the data does not grant access to the correct Amazon S3 bucket. For example, if you initially set up Auto Export to Amazon Redshift and Amazon S3 but later disable that choice to set up Auto Export to S3 alone, make sure when choosing the S3 bucket that you either:

- Select the S3 bucket created originally when you set up the original Auto Export, which uses the S3 IAM access role created at the time, or
- Create a new S3 bucket, making sure to create a new S3 IAM access role for it.

If New Attributes or Metrics Don't Appear in Auto Export to Amazon Redshift

Event data exported to Amazon S3 has all attributes and metrics that were sent to the service. However, Amazon Redshift only contains attributes or metrics that were specified when the Auto Export was created. If you expect to find particular attributes or metrics in the Auto Export to Amazon Redshift that aren’t there, those attributes or metrics were likely not included in the original setup of the Auto Export.

You can resolve this circumstance in either of these ways:
If Data Does Not Appear in Amazon Redshift Cluster

First check to see if your data is being exported to the Amazon S3 bucket set up by Mobile Analytics. Successful export of data to your Amazon S3 bucket is a prerequisite for proper auto-export to Amazon Redshift. If your data is not appearing in Amazon S3, see If Auto Export to S3 Fails (p. 114).

If you have just set up the auto-export to Amazon Redshift, make sure you wait at least an hour before you query Amazon Redshift. By default, the Amazon EC2 instance loads events from Amazon S3 into Amazon Redshift every hour. To load events sooner than one hour, you can log into the Amazon EC2 instance and adjust the crontab settings. Amazon Redshift export can be attempted at any rate by the Amazon EC2 instance, but won’t be picked up for auto-export to Amazon Redshift until the data is exported to the Amazon S3 bucket.

If you enabled CloudWatch metrics and logs when setting up the auto-export, follow these steps to investigate:

1. Navigate to the CloudWatch console.
2. Look at the log group with `MobileAnalyticsAutoExportToRedshift` as the prefix. If you have multiple of these log groups, look for the one with a uuid at the end matching the uuid in your latest AWS CloudFormation stack name.
3. In the selected log group, look at the latest log stream. This shows the logs produced by the Amazon EC2 instance when loading events into Amazon Redshift. Because the Amazon EC2 instance loads events every hour by default, expect to see logs on the hour boundaries. Review these logs for any errors.
4. Look at the CloudWatch metrics in the `AWSMobileAnalyticsDataExport` namespace. Look specifically at the `LoadEventsDuration` metric to see any trending errors or gaps in event loading to Amazon Redshift.
5. If you need assistance after reviewing these logs, you can send snippets or screenshots of these logs to Support for additional debugging help.

If you did not enable CloudWatch metrics and logs when setting up the auto-export, it will be harder to determine what the Amazon EC2 instance might experience when loading events. You will have to rely on the information found in the Amazon Redshift load logs. Connect to your Amazon Redshift cluster and query the `stl_load_errors` table as follows:

```
select * from stl_load_errors;
```

For more information, see System Tables for Troubleshooting Data Loads.
Limits

Aggregated Custom Events

The following is a list of limits for Mobile Analytics custom events that are aggregated into console reports or reportable values returned by direct query. Any additional values submitted beyond these limits are not aggregated, however they are still included in raw event data exported to Amazon S3 and Amazon Redshift using the Auto Export feature.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of custom event types per application.</td>
<td>1,500</td>
</tr>
<tr>
<td>Total number of unique attribute or metric names per custom event type.</td>
<td>2,000</td>
</tr>
<tr>
<td>Total number of unique attribute values per custom event type/attribute name combination.</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Other Custom Events Limits

The following is a list of additional limits for a Mobile Analytics custom event.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of attributes and metrics per event submitted.</td>
<td>40</td>
</tr>
<tr>
<td>Number of characters in the key of an attribute or metric.</td>
<td>50</td>
</tr>
<tr>
<td>Number of characters in the value of an attribute.</td>
<td>200</td>
</tr>
<tr>
<td>Number of apps per AWS account. Contact AWS support to request an increase in this limit.</td>
<td>100</td>
</tr>
</tbody>
</table>

Custom Dashboards

The following is a list of limits for a Mobile Analytics custom dashboard.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of custom dashboards.</td>
<td>25</td>
</tr>
<tr>
<td>Maximum number of data series in a chart.</td>
<td>10</td>
</tr>
</tbody>
</table>
REST API Reference

This is the Amazon Mobile Analytics REST API reference. It contains examples of the following events, requests, and operations.

Topics
- Making HTTP Requests to Mobile Analytics (p. 118)
- PutEvents (p. 120)
- Examples (p. 126)

Making HTTP Requests to Mobile Analytics

If you don't use the AWS Mobile SDK, you can perform Mobile Analytics operations over HTTP using the POST request method. The POST method requires you to specify the operation in the header of the request and provide the data for the operation in JSON format in the body of the request.

HTTP Header Contents

Mobile Analytics requires the following information in the header of an HTTP request:

Host

The Mobile Analytics endpoint. This value must be https://mobileanalytics.us-east-1.amazonaws.com

X-Amz-Date

The date. Must be specified in ISO 8601 standard format, in UTC time. For example:

20130315T092054Z

Authorization

The set of authorization parameters that AWS uses to ensure the validity and authenticity of the request. For more information, see Signature Version 4 Signing Process.

User Agent

Information about the user agent originating the request.

X-Amz-Client-Context

Information about the client interacting with Mobile Analytics. Data in a client context describes the app and the environment in which it runs. For details about the contents of the client context, see PutEvents (p. 120).

X-Amz-Security-Token

If you sign your request using temporary security credentials, you must include the corresponding security token in your request by adding the X-Amz-Security-Token header.

For information on signing requests using temporary security credentials in your REST API requests, see Signing and Authenticating REST Requests.
HTTP Body Content

The body of an HTTP request contains the data for the operation specified in the header of the HTTP request. The data must be formatted according to the JSON data schema for Mobile Analytics. For the PutEvents operation, the body content of the HTTP request consists of an array of one or more events.

HTTP Body Example

The following is an example of the body for an HTTP request for Mobile Analytics.

```json
{
    "events": [
        {
            "eventType": "<Event type>",
            "timestamp": "<ISO 8601 date>",
            "session": {
                "id": "<Session id>",
                "startTimestamp": "<ISO 8601 date>"
            },
            "attributes": {
                "<Optional string name>": "<Optional string value>",
                "<Optional string name>": "<Optional string value>
            },
            "metrics": {
                "<Optional string name>": <Optional numeric value>,
                "<Optional string name>": <Optional numeric value>
            }
        }
    ]
}
```
PutEvents

The PutEvents operation records one or more events. You can have up to 1,500 unique custom events per app, any combination of up to 40 attributes and metrics per custom event, and an infinite number of attribute or metrics values.

Topics
- Requests (p. 120)
- Responses (p. 125)

Requests

Client Context Header

Syntax

```xml
x-amz-Client-Context: {
    "client": {
        "client_id": "<client_id>",
        "app_title": "<app_title>",
        "app_version_name": "<app_version_name>",
        "app_version_code": "<app_version_code>",
        "app_package_name": "<app_package_name>"
    },
    "custom": {},
    "env": {
        "platform": "<platform>",
        "model": "<model>",
        "make": "<make>",
        "platform_version": "<platform_version>",
        "locale": "<locale>"
    },
    "services": {
        "mobile_analytics": {
            "app_id": "<mobile_analytics_app_id>"
        }
    }
}
```

Description

The operation takes the following request header.

`x-amz-client-context`

The request header.

`client`

Name-value pairs that describes the client application.
client_id

A unique identifier representing this installation instance of your app.
Type: String
Default: None
Required: Yes

app_title

The title of your app. For example, My App.
Type: String
Default: None
Required: Yes

app_version_name

The version of your app. For example, V2.0.
Type: String
Default: None
Required: No

app_version_code

The version code for your app. For example, 3.
Type: String
Default: None
Required: No

app_package_name

The name of your package. For example, com.example.my_app.
Type: String
Default: None
Required: No

custom

User defined name-value pairs that describe this installation of the application.
Type: Map
Default: None
Required: No

e

Name-value pair that describes the device that runs the event.

platform

The operating system of the device. For example, iphoneos.
Type: String
Valid values: iphoneos, android, windowsphone, blackberry, macos, windows, linux
Default: None
Required: Yes

model
The model of the device. For example, Nexus.
Type: String
Default: None
Required: No

make
The manufacturer of the device. For example, Samsung.
Type: String
Default: None
Required: No

platform_version
The version of the operating system of the device. For example, 4.0.4.
Type: String
Default: None
Required: No

locale
The locale of the device. For example, en_US.
Type: String
Default: None
Required: No

services
Name-value pair that contains service specific sections.

mobile_analytics
Name-value pair that describes service specific attributes.

app_id
The value obtained from the Mobile Analytics console to record data to.
Type: String
Default: None
Required: Yes
Request Body

Syntax

```json
{
    "events": [
        {
            "eventType": "<Event type>",
            "timestamp": "<ISO 8601 date>",
            "version": "v2.0",
            "session": {
                "id": "<Session id>",
                "startTimestamp": "<ISO 8601 date>"
            },
            "attributes": {
                "<Optional string name>": "<Optional string value>",
                ...
            },
            "metrics": {
                "<Optional string name>": <Optional numeric value>,
                ...
            }
        },
        ...
    ]
}
```

Description

This operation takes the following request content.

Events

An array of JSON objects representing a batch of unique event occurrences in your app. Each JSON object in the array consists of the following:

eventType

A name signifying an event that occurred in your app. This is used for grouping and aggregating like events together for reporting purposes.

Type: String

Default: None

Required: Yes

timestamp

The time the event occurred in ISO 8601 standard date time format. For example, 2014-06-30T19:07:47.885Z

Type: String

Constraints: Must follow ISO 8601 format

Default: None

Required: Yes
attributes

A collection of key-value pairs that give additional context to the event. The key-value pairs are specified by the developer.

This collection can be empty or the attribute object can be omitted.

Type: JSON object of key-value pairs (String:String)

Constraints: Key can be up to 50 characters or less and the value can be up to 200 characters.

Default: None

Required: No

metrics

A collection of key-value pairs that gives additional measurable context to the event. This key has the following key-values pairs. The pairs specified by the developer.

This collection can be empty or the attribute object can be omitted.

Type: JSON object of key value pairs (String:Number)

Constraints: Key can be up to 50 characters.

Default: None

Required: No

session

Describes the session. Session information is required on events to be aggregated in console reports. Events submitted without session information are still exported to S3 or Redshift but are not aggregated for inclusion in reports. This key has the following key-value pairs.

id

A unique identifier for the session.

Type: String

Default: None

Required: Yes

startTimestamp

The time the event occurred in ISO 8601 standard date time format. For example, 2014-06-30T19:07:47.885Z

Type: String

Constraints: Must follow ISO 8601 format

Default: None

Required: Yes

version

Describes the version. This value must always be v2.0.

Type: String
Constraints: Must always be v2.0.
Default: None
Required: Yes

JSON Example

```json
{"events": [
  {
    "metrics": {
      "Score": 12345,
      "TimeInLevel": 64
    },
    "session": {
      "id": "<session id>",
      "startTimestamp": "2014-06-30T19:07:47.885Z"
    },
    "attributes": {
      "LevelName": "Level1",
      "CharacterClass": "Warrior",
      "Successful": "True"
    },
    "eventType": "LevelComplete",
    "version": "v2.0",
    "timestamp": "2014-06-30T19:07:47.885Z"
  }
]}
```

Responses

Syntax

HTTP/1.1 202
x-amzn-RequestId: <A request id>
Content-Type: application/json

Response Headers

This operation has the following response codes.

202 Accepted

The request has been accepted for processing, however the events have not been fully processed.

400 Bad Request

The x-amz-client-context header is missing or invalid.

OR

The event payload is missing or invalid.

403 Forbidden

The request is not authorized to perform this action.

413 Request Entity Too Large

The payload is too large. The payload cannot exceed 1024 KB.
Examples

For examples of typical tasks performed with the PutEvents operation, see Using the REST API (p. 32).
Migrating from Amazon Mobile Analytics to Amazon Pinpoint

After April 30, 2018, features supported by Amazon Mobile Analytics will be supported and available exclusively on Amazon Pinpoint.

Like Mobile Analytics, you can use Amazon Pinpoint to measure app usage and revenue. Amazon Pinpoint adds more analytics capabilities by allowing you to segment users based on your data. You can also run targeted messaging campaigns through push notifications, email, and SMS to increase user engagement. For more information, see [Amazon Pinpoint](#).

With Amazon Pinpoint, you can also export your data in real-time through [Amazon Kinesis Data Firehose](#), which provides additional features to transform, encrypt and deliver raw analytics data. With Kinesis Data Firehose delivery streams, you can choose various destinations for your data like Amazon Simple Storage Service (Amazon S3), Amazon Redshift, or Amazon Elasticsearch Service.

If you are new to Mobile Analytics, use Amazon Pinpoint instead. If you are currently using Mobile Analytics, migrate from Mobile Analytics to Amazon Pinpoint by April 30, 2018. Your existing Mobile Analytics apps are supported by Amazon Pinpoint, but certain Mobile Analytics workflows require you to switch to the corresponding Amazon Pinpoint features:

<table>
<thead>
<tr>
<th>Workflow</th>
<th>Migration details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Analytics REST API for events submission</td>
<td>Automatically redirected to the Amazon Pinpoint API. No action required.</td>
</tr>
<tr>
<td>Mobile Analytics in the AWS Mobile SDK</td>
<td>Supported via Amazon Pinpoint in the AWS Mobile SDK. Versions of the Mobile Analytics client in the SDK will continue to report events, but with limited support for issues. See Migrating to the Amazon Pinpoint SDK Client (p. 131).</td>
</tr>
<tr>
<td>Auto export to Amazon S3 and Amazon Redshift</td>
<td>Replaced by Amazon Pinpoint event streams. Events data from existing app integrations will be available for export via Amazon Pinpoint. Existing auto export setups will no longer function after April 30, 2018. See Migrating From Auto Export to Amazon Pinpoint Event Streams (p. 128).</td>
</tr>
<tr>
<td>Mobile Analytics console</td>
<td>Replaced by Amazon Pinpoint console.</td>
</tr>
<tr>
<td></td>
<td>Migrating to the Amazon Pinpoint Console (p. 135)</td>
</tr>
<tr>
<td>Mobile Analytics querying API</td>
<td>Not available after April 30, 2018. Mobile Analytics KPIs can be calculated from raw data from event streams.</td>
</tr>
</tbody>
</table>

Topics
Migrating From Auto Export to Amazon Pinpoint Event Streams

Starting April 30, 2018, Amazon Mobile Analytics no longer supports auto export, a feature that exports event data from your apps to an Amazon S3 bucket or an Amazon Redshift cluster. Auto export is replaced by Amazon Pinpoint event streams. With event streams, you can stream your event data in real-time to Amazon Kinesis Data Streams or Amazon Kinesis Data Firehose.

If you stream to Kinesis Data Firehose, you can use a delivery stream to send your data to AWS data stores, including Amazon Simple Storage Service (Amazon S3) or Amazon Redshift. You can replace auto export with event streams by streaming your event data to the same Amazon S3 bucket or Amazon Redshift cluster that receives your event data with auto export.

If your app reports events to Mobile Analytics using the AWS Mobile SDK, you can stream that data using Amazon Pinpoint.

For more information about event streams, see Streaming App and Campaign Events with Amazon Pinpoint in the Amazon Pinpoint User Guide.

Complete the following steps to migrate from using auto export to using event streams. To migrate, first, you create a Kinesis Data Firehose delivery stream. Then, you enable event streaming in Amazon Pinpoint. Finally, when you are ready to stop using auto export, you disable it.

This migration does not require you to update your app, but we recommend that you update your app to integrate Amazon Pinpoint by using the AWS Mobile SDK.

Step 1: Create a Kinesis Data Firehose Delivery Stream

Create a delivery stream that sends data to the same Amazon S3 bucket or Amazon Redshift cluster that receives your data from auto export.

Option A: Create a Delivery Stream With an Amazon S3 Destination

Complete the following steps if you use auto export to send your event data to an Amazon S3 bucket.

To create the delivery stream

1. Sign in the AWS Management Console and open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Choose Export Your Data.
3. Under Auto Export Settings, note the value provided in the Amazon S3 Bucket column. You will need this bucket name when you create your delivery stream.
4. Open the Kinesis Data Firehose console at https://console.aws.amazon.com/firehose/.
5. Choose Create delivery stream.
6. On Step 1: Name and source, specify a Delivery stream name.
7. Choose Next.
8. On Step 2: Transform record, choose Next.
9. On Step 3: Choose destination, for Destination, select Amazon S3.
10. Under S3 destination, for S3 bucket, select the bucket name that you obtained from the Mobile Analytics console.
11. (Optional) For Prefix, specify a prefix for the event data that is streamed by Amazon Pinpoint, such as pinpoint.
12. Choose Next.
13. (Optional) On Step 4: Configure settings, customize the buffer, compression, encryption, and error logging settings as needed. For more information, see Configure settings in the Amazon Kinesis Firehose Developer Guide.
14. For IAM role, choose Create new, or Choose.
15. On the role creation page, for IAM Role, select Create a new IAM Role. You can customize the Role Name to make the role easier to recognize. Then, choose Allow.
16. Choose Next.
17. On Step 5: Review, verify that your delivery stream settings are correct, and choose Create delivery stream.

Option B: Create a Delivery Stream With an Amazon Redshift Destination

Complete the following steps if you use auto export to send your event data to an Amazon Redshift cluster. First, you find the resources in your AWS account that are used by auto export. You provide this information when you create a delivery stream. Then, you update your cluster with a new table that receives the event data. Finally, you create the delivery stream.

To find the auto export resources in your AWS account

1. Sign in the AWS Management Console and open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Choose Export Your Data.
3. Under Auto Export Settings, note the value provided in the Amazon S3 Bucket column. You need this bucket name when you create your delivery stream.
4. Under Auto Export Settings, choose the Click Here to Open Stack in the CloudFormation Console link. The AWS CloudFormation console opens, and the stack that includes your auto export resources is selected.
5. Choose the Outputs tab.
6. Note the value for the RedshiftClusterId key. You need this ID when you create your delivery stream.

To create an Amazon Redshift database table for your event data

1. Using a SQL query tool (for example, SQL Workbench/J), connect to your Amazon Redshift cluster. For more information, see Connecting to Clusters from Client Tools and Code in the Amazon Redshift Cluster Management Guide.

 Note
 To connect to your cluster, you require the master user password. You provided this password to Mobile Analytics when you originally enabled auto export.

2. Use the CREATE TABLE SQL command to create a table in the events database. In your command, use the LIKE parameter to copy the AWSMA.event table, which is the table to which Mobile Analytics writes your event data. Your new table will hold the event data that you stream with Amazon Pinpoint. Note the table name because you need it when you create your delivery stream.
3. Use the CREATE USER SQL command to create a database user account. Kinesis Data Firehose will use this account to connect to your cluster and add event data to the table you created. Note the user name and password because you provide these values when you create your delivery stream.

 Note
 You must grant the user INSERT permissions so that the delivery stream can add data to your table.

To create the delivery stream

1. Open the Kinesis Data Firehose console at https://console.aws.amazon.com/firehose/.
2. Choose **Create delivery stream**.
3. On **Step 1: Name and source**, specify a name for **Delivery stream name**.
4. Choose **Next**.
5. On **Step 2: Transform record**, choose **Next**.
6. On **Step 3: Choose destination**, for **Destination**, select **Amazon Redshift**.
7. Under **Amazon Redshift destination**, for **Cluster**, select the cluster ID that you obtained from the AWS CloudFormation console.
8. For **User name** and **Password**, provide the user name and password for the database user account that you created.
9. For **Database**, type **events**.
10. For **Table**, specify the table that you created.
11. Under **Intermediate S3 destination**, for **Intermediate S3 bucket**, select the name of the Amazon S3 bucket that you obtained from the Mobile Analytics console.
12. (Optional) For **Prefix**, specify a prefix for the event data that is streamed by Amazon Pinpoint, such as `pinpoint`.
13. Under **Amazon Redshift COPY command**, for **COPY options**, enter the following:

 JSON 's3://s3-bucket/jsonpaths/awseventexportjsonpaths.json'
 TRUNCATECOLUMNS
 TIMEFORMAT 'epochmillisecs'

 For `s3-bucket`, provide the bucket name that you obtained in the Mobile Analytics console.
14. Choose **Next**.
15. (Optional) On **Step 4: Configure settings**, customize the buffer, compression, encryption, and error logging settings as needed. For more information, see Configure settings in the Amazon Kinesis Firehose Developer Guide.
16. For **IAM role**, choose **Create new**, or **Choose**.
17. On the role creation page, for **I AM Role**, select **Create a new IAM Role**. You can customize the **Role Name** to make the role easier to recognize. Then, choose **Allow**.
18. Choose **Next**.
19. On **Step 5: Review**, verify that your delivery stream settings are correct, and choose **Create delivery stream**.

Step 2: Enable Event Streaming With Amazon Pinpoint

Amazon Pinpoint receives the event data that is reported by your app. Enable event streaming in Amazon Pinpoint, and send your data to the delivery stream that you created.
1. Open the Amazon Pinpoint console at https://console.aws.amazon.com/pinpoint/.
2. The console opens on the Projects page, which lists your Amazon Pinpoint projects. These projects include the apps that you defined in Mobile Analytics. Choose the app that you are migrating off of auto export.
3. In the navigation pane on the left, choose Settings.
5. Select Enable streaming of events to Amazon Kinesis.
6. Under Stream to Amazon Kinesis, select Send events to an Amazon Kinesis delivery stream.
7. For Amazon Kinesis Firehose delivery stream, select the delivery stream that you created.
8. For IAM role, select Automatically create a role, and specify a name for the role.
9. Choose Save. Your event stream is enabled. As Amazon Pinpoint receives events from your app, it sends the event data to your delivery stream.

Step 3: Disable Auto Export With Mobile Analytics

After you verify that Amazon Pinpoint is streaming the data that you expect, and after you are ready to stop using auto export, disable it.

1. Sign in the AWS Management Console and open the Amazon Mobile Analytics console at https://console.aws.amazon.com/mobileanalytics/home.
2. Choose Export Your Data.
3. Under Manage Apps, select the app for which you are disabling auto export.
4. Choose Configure Auto Export to S3 or Configure Auto Export to Redshift + S3 (depending on how you configured auto export), and select Disable Auto Export.

After you've confirmed the action, data for the selected apps will stop flowing to your S3 bucket and Amazon Redshift cluster. Disabling auto export will not delete your S3 bucket, the data contained in it, your Amazon Redshift cluster, or your Amazon EC2 instance.

Migrating to the Amazon Pinpoint SDK Client

After April 30, 2018, the Amazon Mobile Analytics client in the AWS Mobile SDK will no longer be updated. Support for existing versions of the Mobile Analytics client will no longer be offered.

If you are currently using Mobile Analytics with the AWS Mobile SDK, your apps will continue to report events to Mobile Analytics after this date. However, we strongly recommend that you switch to the Amazon Pinpoint client in the SDK, which offers matching functionality. New features and issues support will only be available via the SDK clients for Amazon Pinpoint after this date.

Migrating to the Amazon Pinpoint API

After April 30, 2018, the Mobile Analytics REST API will automatically redirect requests to the Amazon Pinpoint API. App events reported to Mobile Analytics are automatically sent to Amazon Pinpoint.

Migrating Off of the Mobile Analytics Querying API

After April 30, 2018, the Mobile Analytics Querying API will no longer be supported. Amazon Pinpoint offers an event streams feature, which lets you stream events data in real-time to Amazon Kinesis Data Streams or Amazon Kinesis Data Firehose. Through a Kinesis Data Firehose delivery stream, this data can
KPI Metrics Based on Event Data

Use the following table for guidance when calculating KPI metrics based on the event data that is streamed by Amazon Pinpoint.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mobile Analytics KPI</th>
<th>How to calculate with Amazon Pinpoint events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime user count</td>
<td>/kpis/new-users/lifetime-count</td>
<td>Obtain the total unique number of client_id values.</td>
</tr>
<tr>
<td>Daily active users (DAU)</td>
<td>/kpis/dau/count</td>
<td>For each day, obtain the count of events that have an event_type of _session.start and a unique value for client_id.</td>
</tr>
<tr>
<td>Monthly active users (MAU)</td>
<td>/kpis/mau/count</td>
<td>For each 30 day interval, obtain the count of events that have an event_type of _session.start and a unique value for client_id.</td>
</tr>
<tr>
<td>New users</td>
<td>/kpis/new-users/count</td>
<td>For each day, obtain the count of events that have an event_type of _session.start and a value for client_id that was not reported previously.</td>
</tr>
<tr>
<td>Session count</td>
<td>/kpis/sessions/count</td>
<td>For each day, obtain the count of events that have an event_type of _session.start.</td>
</tr>
<tr>
<td>Daily revenue</td>
<td>/kpis/daily-revenue/sum</td>
<td>For each day, obtain the events that have an event_type of _monetization.purchase, and compute the sum of the values reported for the _item_price attribute.</td>
</tr>
<tr>
<td>Paying daily active users (PDAU)</td>
<td>/kpis/pdau/count</td>
<td>For each day, calculate the DAU metric, but include only those devices that have made one or more purchases in the past. A purchase is indicated by an event_type of _monetization.purchase.</td>
</tr>
<tr>
<td>Paying monthly active users (PMAU)</td>
<td>/kpis/pmau/count</td>
<td>For each day, calculate the MAU metric, but include only those devices that have made one or more purchases in the past. A purchase is</td>
</tr>
<tr>
<td>Metric</td>
<td>Mobile Analytics KPI</td>
<td>How to calculate with Amazon Pinpoint events</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Custom events count</td>
<td>/events/<code>custom-event-name</code>/count</td>
<td>For each day, obtain the count of events that have an event_type that matches the name you that you assigned to the custom event. Calculate max, min, and sum values by parsing the values assigned to metrics and custom attributes.</td>
</tr>
<tr>
<td>Week 1, week 2, and week 3 retention</td>
<td>/kpis/week-1-retention/count</td>
<td>To calculate the retention for a specific day:</td>
</tr>
<tr>
<td></td>
<td>/kpis/week-2-retention/count</td>
<td>1. Obtain the original active users for that day. Active users are indicated by events that have an event_type of _session.start and a unique value for client_id.</td>
</tr>
<tr>
<td></td>
<td>/kpis/week-3-retention/count</td>
<td>2. Obtain the subsequent active users from the weeks that followed the day you are measuring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Compare the original active users with the subsequent active users. The retention equals the number of subsequent active users that match one of the original active users. Identify matches by comparing client_id values.</td>
</tr>
</tbody>
</table>
Metric

<table>
<thead>
<tr>
<th>Day 1, day 3, day 5, and day 7 retention</th>
<th>/kpis/day-1-retention/count</th>
<th># kpis/day-3-retention/count</th>
<th>How to calculate with Amazon Pinpoint events</th>
</tr>
</thead>
</table>

To calculate the retention for a specific day:

1. Obtain the original active users for that day. Active users are indicated by events that have an `event_type` of `_session.start` and a unique value for `client_id`.
2. Obtain the subsequent active users from the days that followed the day you are measuring.
3. Compare the original active users with the subsequent active users. The retention equals the number of subsequent active users that match one of the original active users. Identify matches by comparing `client_id` values.

Example Events

The following examples demonstrate the JSON attributes that you can parse when you query the datastore that holds your event data.

Example Example Session Start Event

```
{
    "application_key": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6",
    "account_id": "111122223333",
    "event_type": "_session.start",
    "timestamp": 1517537724812,
    "arrival_timestamp": 1517537778048,
    "unique_id": "A1B2C3D4-E5F6-G7H8-I9J0-K1L2M3N4O5P6",
    "cognito_id": "us-east-1:a1b2c3d4-e5f6-g7h8-i9j0-k1l2m3n4o5p6",
    "cognito_identity_pool_id": "us-east-1:a1b2c3d4-e5f6-g7h8-i9j0-k1l2m3n4o5p6",
    "platform": "iOS",
    "model": "iPhone",
    "platform_version": "11.2.2",
    "make": "apple",
    "locale": "en_US",
    "sdk_version": "2.4.16",
    "sdk_name": "aws-sdk-iOS",
    "app_package_name": "com.example.package",
    "app_version_name": "11.02.0",
    "app_version_code": "28198.0",
    "user_agent": "aws-sdk-iOS/2.4.16 iOS/11.2.2 en_US",
    "app_title": "ExampleApp",
    "attributes": {
        "_clientContext": "<client context>",
```
Example Example Monetization Event

```json
{
    "application_key": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6",
    "account_id": "111122223333",
    "event_type": "_monetization.purchase",
    "timestamp": 1517537662978,
    "arrival_timestamp": 1517537778020,
    "unique_id": "A1B2C3D4-E5F6-G7H8-I9J0-K1L2M3N4O5P6",
    "cognito_id": "us-east-1:a1b2c3d4-e5f6-g7h8-i9j0-k1l2m3n4o5p6",
    "cognito_identity_pool_id": "us-east-1:a1b2c3d4-e5f6-g7h8-i9j0-k1l2m3n4o5p6",
    "platform": "iOS",
    "model": "iPhone",
    "platform_version": "11.2.5",
    "make": "apple",
    "locale": "zh_CN",
    "sdk_version": "2.6.5",
    "sdk_name": "aws-sdk-iOS",
    "app_package_name": "com.example.package",
    "app_version_name": "5.03",
    "app_version_code": "5.03.1",
    "user_agent": "aws-sdk-ios/2.6.5 iOS/11.2.5 zh_CN",
    "app_title": "ExampleApp",
    "attributes": {
        "_currency": "CNY",
        "_product_id": "product_id",
        "_transaction_id": "123456789012345",
        "_clientContext": "<client context>",
        "_session.duration": "152021",
        "_session.id": "e79da94c-9BD1DF63-20180202-021345277",
        "_session.startTime": "1517537625277",
        "_item_price_formatted": "$128.00"
    },
    "metrics": {
        "_item_price": 76.5811965811966,
        "_quantity": 1.0
    }
}
```

In these examples, `<client context>` is the `x-amz-client-context` request header that you provide when you submit a `PutEvents` request to the Mobile Analytics REST API. For more information, see `PutEvents` (p. 120).

Migrating to the Amazon Pinpoint Console

After April 30, 2018, the Mobile Analytics console will automatically redirect to the Amazon Pinpoint console. After this date, the Amazon Pinpoint console will also show all data from apps which report events using the Mobile Analytics client in the AWS Mobile SDK. In addition to analytics reports, the Amazon Pinpoint console offers functionality to create user segments and set up targeted messaging campaigns. Your campaigns can message your audience through channels for email, mobile push, and SMS. After you launch a campaign, you can monitor its performance through campaign analytics.
Document History

The following table describes the important changes to the documentation since the last release of Mobile Analytics.

- **API version:** 2014-06-05
- **Latest documentation update:** January 26, 2018

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date Changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Pinpoint migration details added</td>
<td>Migrate from deprecated Amazon Mobile Analytics features to the corresponding features in Amazon Pinpoint. For more information, see Migrating from Amazon Mobile Analytics to Amazon Pinpoint (p. 127).</td>
<td>January 26, 2018</td>
</tr>
<tr>
<td>Getting a List of Apps Added</td>
<td>Using the REST API to get a list of your apps is now detailed. For more information, see Getting a List of Apps (p. 43).</td>
<td>April 6, 2016</td>
</tr>
<tr>
<td>Service Limits Revised</td>
<td>Several limits affecting custom events have been revised. For more information, see Limits (p. 117).</td>
<td>March 22, 2016</td>
</tr>
<tr>
<td>Auto Export Overview Added</td>
<td>The auto export of analytics data to Amazon S3 or Amazon Redshift is now described in an overview. For more information, see Auto Export Overview (p. 85).</td>
<td>March 22, 2016</td>
</tr>
<tr>
<td>Enhanced Custom Dashboards</td>
<td>You can create custom dashboards to easily monitor analytics that are most useful for measuring the performance of an app. For more information, see Using Custom Dashboards (p. 73).</td>
<td>March 8, 2016</td>
</tr>
<tr>
<td>Additional Auto Export Documentation</td>
<td>Additional topics were added to document how to auto export analytics to an existing Amazon Redshift cluster instead of one created by Mobile Analytics. For more information, see Exporting to an Existing Amazon Redshift Cluster (p. 92).</td>
<td>March 8, 2016</td>
</tr>
<tr>
<td>Querying App Analytics</td>
<td>Using the REST API, you can run queries to obtain data details</td>
<td>December 30, 2015</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date Changed</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Change of the analytics for an app. For</td>
<td>For more information, see Querying Analytics Data.</td>
<td></td>
</tr>
<tr>
<td>more information, see [Querying Analytics</td>
<td>Date Changed</td>
<td></td>
</tr>
<tr>
<td>Data](#).</td>
<td>Date Changed</td>
<td></td>
</tr>
<tr>
<td>Additional Troubleshooting Tips</td>
<td>Information has been added on how to activate SDK logging to help with troubleshooting. For more information, see Enabling SDK Logging. Details provided on various options to add new metrics and attributes to an Auto Export to Amazon Redshift. For more information, see Adding New Metrics and Attributes to an Auto Export to Amazon Redshift.</td>
<td>October 27, 2015</td>
</tr>
<tr>
<td>Auto Export to Amazon S3 Troubleshooting</td>
<td>Troubleshooting information has been added to help in cases when Auto Export to Amazon S3 does not produce data in the Amazon S3 bucket. For more information, see If Auto Export to S3 Fails.</td>
<td>September 15, 2015</td>
</tr>
<tr>
<td>Added</td>
<td>The User Guide has been expanded and reorganized in parts. Examples of using the REST API have been moved from the reference to a series of topics that describe them in more detail.</td>
<td>September 4, 2015</td>
</tr>
<tr>
<td>Xamarin Support Added</td>
<td>The AWS Mobile SDK adds support for Xamarin, including Mobile Analytics. The Mobile Analytics User Guide now includes links to the Xamarin SDK Developer Guide regarding Mobile Analytics. Displayed integration steps now include sample code and steps for integration with a Xamarin app.</td>
<td>July 29, 2015</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date Changed</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Streamlined New App Workflow</td>
<td>The process for creating a new app now includes a one-click wizard for generating the necessary IAM role and Cognito identity pool for users with no existing identity pools to use. Users with existing identity pools have the ability to create a new identity pool or use one of their existing identity pools with new apps. For more information, see Adding an App to Mobile Analytics. (p. 6)</td>
<td>July 14, 2015</td>
</tr>
<tr>
<td>New Supported Platforms</td>
<td>The Mobile Analytics console now displays reports on an expanded set of platforms. You can now filter the events that are compiled into the console reports to display the following platform choices: All Platforms, iOS, Android, Fire OS, Windows Phone, Blackberry, Windows, Mac, and Linux. Screen shots have been updated.</td>
<td>June 30, 2015</td>
</tr>
<tr>
<td>Auto Export</td>
<td>Added a topic on how to auto export app data to an Amazon S3 bucket. For more information, see Amazon Mobile Analytics Auto Export.</td>
<td>December 17, 2014</td>
</tr>
</tbody>
</table>