
Developer Guide

Amazon Managed Streaming for Apache
Kafka

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon Managed Streaming for Apache Kafka: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Managed Streaming for Apache Kafka Developer Guide

Table of Contents

Welcome ... 1
What is Amazon MSK? .. 1

Setting up .. 3
Sign up for AWS ... 3
Download libraries and tools ... 3

Getting started .. 5
Step 1: Create a cluster .. 5
Step 2: Create an IAM role ... 6
Step 3: Create a client machine .. 8
Step 4: Create a topic ... 9
Step 5: Produce and consume data ... 11
Step 6: View metrics ... 12
Step 7: Delete the resources ... 13

How it works .. 14
Creating a cluster ... 14

Broker sizes .. 15
Creating a cluster using the AWS Management Console ... 16
Creating a cluster using the AWS CLI ... 18
Creating a cluster with a custom Amazon MSK configuration using the AWS CLI 20
Creating a cluster using the API .. 20

Deleting a cluster ... 21
Deleting a cluster using the AWS Management Console ... 21
Deleting a cluster using the AWS CLI ... 21
Deleting a cluster using the API .. 21

Getting the bootstrap brokers .. 21
Getting the bootstrap brokers using the AWS Management Console 21
Getting the bootstrap brokers using the AWS CLI ... 22
Getting the bootstrap brokers using the API .. 23

Listing clusters .. 23
Listing clusters using the AWS Management Console .. 23
Listing clusters using the AWS CLI .. 23
Listing clusters using the API ... 23

Metadata management ... 23
ZooKeeper mode ... 24

iii

Amazon Managed Streaming for Apache Kafka Developer Guide

KRaft mode .. 26
Storage management .. 27

Tiered storage .. 27
Scaling up broker storage ... 36
Provisioning storage throughput ... 40

Updating the broker size .. 45
Updating the broker size using the AWS Management Console ... 45
Updating the broker size using the AWS CLI .. 46
Updating the broker size using the API ... 47

Updating the configuration of a cluster ... 47
Updating the configuration of a cluster using the AWS CLI .. 48
Updating the configuration of a cluster using the API ... 50

Expanding a cluster ... 50
Expanding a cluster using the AWS Management Console .. 51
Expanding a cluster using the AWS CLI ... 51
Expanding a cluster using the API .. 53

Remove a broker .. 53
Remove broker partitions ... 54
Remove a broker with the Console ... 56
Remove a broker with the CLI ... 56
Remove a broker with the API ... 58

Updating security ... 58
Updating a cluster's security settings using the AWS Management Console 58
Updating a cluster's security settings using the AWS CLI .. 59
Updating a cluster's security settings using the API ... 60

Rebooting a broker for a cluster .. 61
Rebooting a broker using the AWS Management Console .. 61
Rebooting a broker using the AWS CLI .. 61
Rebooting a broker using the API ... 61

Patching .. 63
Tagging a cluster .. 63

Tag basics ... 64
Tracking costs using tagging .. 64
Tag restrictions .. 64
Tagging resources using the Amazon MSK API .. 65

Configuration ... 66

iv

Amazon Managed Streaming for Apache Kafka Developer Guide

Custom configurations .. 66
Dynamic configuration ... 75
Topic-level configuration ... 76
States ... 76

Default configuration .. 76
Guidelines for tiered storage topic-level configuration ... 88
Configuration operations .. 89

Create configuration ... 90
To update an MSK configuration .. 91
To delete an MSK configuration .. 91
To describe an MSK configuration .. 92
To describe an MSK configuration revision ... 92
To list all MSK configurations in your account for the current Region 94

MSK Serverless .. 96
Getting started tutorial .. 97

Step 1: Create a cluster ... 97
Step 2: Create an IAM role ... 99
Step 3: Create a client machine .. 101
Step 4: Create a topic ... 103
Step 5: Produce and consume data .. 103
Step 6: Delete resources ... 104

Configuration .. 105
Monitoring ... 106

MSK Connect .. 108
What is MSK Connect? .. 108
Getting started ... 108

Step 1: Set up required resources ... 109
Step 2: Create custom plugin .. 112
Step 3: Create client machine and Apache Kafka topic .. 113
Step 4: Create connector .. 116
Step 5: Send data ... 117

Connectors ... 117
Capacity .. 118
Creating a connector ... 119

Plugins .. 120
Workers .. 121

v

Amazon Managed Streaming for Apache Kafka Developer Guide

Default worker configuration ... 122
Supported worker configuration properties ... 122
Creating a custom configuration ... 124
Managing connector offsets ... 124

Configuration providers .. 128
Step 1: Create custom plugin and upload to S3 ... 129
Step 2: Configure providers ... 130
Step 3: Create custom worker config ... 135
Step 4: Create the connector ... 136
Considerations ... 136

IAM roles and policies ... 137
Service execution role ... 137
Example policies ... 140
Cross-service confused deputy prevention ... 142
AWS managed policies .. 143
Using service-linked roles ... 147

Enabling internet access ... 148
Setting up a NAT gateway for Amazon MSK Connect .. 149

Private DNS hostnames .. 151
Configuring .. 152
DNS attributes ... 152
Failure handling .. 153

Logging .. 153
Preventing secrets from appearing in connector logs .. 155

Monitoring ... 155
Examples .. 158

Amazon S3 sink connector ... 158
Debezium source connector ... 160

Best practices .. 170
Connecting from connectors .. 170

Migration guide .. 170
Amazon MSK Connect benefits ... 170
Migrating .. 172

Troubleshooting ... 176
MSK Replicator .. 177

What is Amazon MSK Replicator? .. 177

vi

Amazon Managed Streaming for Apache Kafka Developer Guide

How Amazon MSK Replicator works .. 178
Requirements and considerations for creating an Amazon MSK Replicator 180

Permissions required to create an MSK Replicator .. 180
Supported cluster types and versions .. 181
MSK Serverless cluster configuration ... 182
Cluster configuration changes ... 182

Getting started tutorial .. 183
Step 1: Prepare the Amazon MSK source cluster .. 183
Step 2: Prepare the Amazon MSK target cluster ... 186
Step 3: Create an Amazon MSK Replicator ... 186

Edit MSK Replicator settings ... 194
Delete an MSK Replicator .. 195
Monitor replication .. 195

MSK Replicator metrics ... 195
Using replication to increase the resiliency of a Kafka streaming application across regions ... 204

.. 204

.. 204
Creating an active-passive Kafka cluster setup and replicated topic naming 205
When to failover to the secondary AWS Region .. 205
Performing a planned failover to the secondary AWS Region .. 205
Performing an unplanned failover to the secondary AWS Region ... 206
Performing failback to the primary AWS Region .. 207
Creating an active-active setup using MSK Replicator ... 209

Troubleshooting MSK Replicator .. 209
MSK Replicator state goes from CREATING to FAILED ... 210
MSK Replicator appears stuck in the CREATING state .. 210
MSK Replicator is not replicating data or replicating only partial data 210
Message offsets in the target cluster are different than the source cluster 211
MSK Replicator is not syncing consumer groups offsets or consumer group does not exist
on target cluster ... 212
Replication latency is high or keeps increasing ... 213

Best practices for using MSK Replicator ... 214
Managing MSK Replicator throughput using Kafka quotas ... 214
Setting cluster retention period .. 215

Cluster states ... 216
Security .. 218

vii

Amazon Managed Streaming for Apache Kafka Developer Guide

Data protection .. 219
Encryption .. 220
How do I get started with encryption? .. 221

Authentication and authorization for Amazon MSK APIs .. 223
How Amazon MSK works with IAM .. 224
Identity-based policy examples ... 228
Service-linked roles .. 232
AWS managed policies .. 235
Troubleshooting .. 243

Authentication and authorization for Apache Kafka APIs ... 244
IAM access control .. 244
Mutual TLS authentication ... 262
SASL/SCRAM authentication .. 267
Apache Kafka ACLs ... 272

Changing security groups .. 274
Controlling access to Apache ZooKeeper ... 275

To place your Apache ZooKeeper nodes in a separate security group 275
Using TLS security with Apache ZooKeeper ... 276

Logging .. 278
Broker logs ... 278
CloudTrail events .. 280

Compliance validation .. 285
Resilience ... 285
Infrastructure security ... 286

Connecting to an MSK cluster .. 287
Public access ... 287
Access from within AWS ... 291

Amazon VPC peering ... 291
AWS Direct Connect ... 291
AWS Transit Gateway ... 292
VPN connections ... 292
REST proxies .. 292
Multiple Region multi-VPC connectivity .. 292
Single Region multi-VPC private connectivity .. 292
EC2-Classic networking is retired .. 292
Multi-VPC private connectivity in a single Region .. 293

viii

Amazon Managed Streaming for Apache Kafka Developer Guide

Port information ... 307
Migration .. 308

Migrating your Apache Kafka cluster to Amazon MSK .. 308
Migrating from one Amazon MSK cluster to another .. 309
MirrorMaker 1.0 best practices ... 310
MirrorMaker 2.* advantages .. 311

Monitoring a cluster .. 313
Amazon MSK metrics for monitoring with CloudWatch .. 313

DEFAULT Level monitoring .. 314
PER_BROKER Level monitoring ... 322
PER_TOPIC_PER_BROKER Level monitoring ... 330
PER_TOPIC_PER_PARTITION Level monitoring .. 332

Viewing Amazon MSK metrics using CloudWatch .. 332
Consumer-lag monitoring .. 333
Open monitoring with Prometheus ... 334

Creating an Amazon MSK cluster with open monitoring enabled ... 334
Enabling open monitoring for an existing Amazon MSK cluster .. 335
Setting up a Prometheus host on an Amazon EC2 instance ... 335
Prometheus metrics ... 338
Storing Prometheus metrics in Amazon Managed Service for Prometheus 338

Amazon MSK storage capacity alerts .. 339
Monitoring Amazon MSK storage capacity alerts .. 339

Cruise Control .. 341
Cruise Control ... 343

Quota .. 344
Amazon MSK quota ... 344
MSK Replicator quotas ... 345
Quota for serverless clusters ... 345
MSK Connect quota ... 347

Resources .. 348
MSK integrations ... 349

Athena .. 349
Redshift .. 349
Firehose .. 349
Accessing EventBridge pipes ... 350

Apache Kafka versions .. 352

ix

Amazon Managed Streaming for Apache Kafka Developer Guide

Supported Apache Kafka versions ... 352
Apache Kafka version 3.7.x (with production-ready tiered storage) .. 353
Apache Kafka version 3.6.0 (with production-ready tiered storage) .. 354
Amazon MSK version 3.5.1 ... 354
Amazon MSK version 3.4.0 ... 355
Amazon MSK version 3.3.2 ... 355
Amazon MSK version 3.3.1 ... 355
Amazon MSK version 3.1.1 ... 356
Amazon MSK tiered storage version 2.8.2.tiered ... 356
Apache Kafka version 2.5.1 .. 356
Amazon MSK bug-fix version 2.4.1.1 ... 357
Apache Kafka version 2.4.1 (use 2.4.1.1 instead) .. 357

Amazon MSK version support ... 358
Amazon MSK version support policy ... 358
Updating the Apache Kafka version ... 359
Best practices for version upgrades ... 362

Troubleshooting ... 364
Volume replacement causes disk saturation due to replication overload 364
Consumer group stuck in PreparingRebalance state ... 365

Static membership protocol ... 365
Identify and reboot .. 366

Error delivering broker logs to Amazon CloudWatch Logs ... 366
No default security group .. 367
Cluster appears stuck in the CREATING state .. 367
Cluster state goes from CREATING to FAILED ... 367
Cluster state is ACTIVE but producers cannot send data or consumers cannot receive data 367
AWS CLI doesn't recognize Amazon MSK ... 368
Partitions go offline or replicas are out of sync .. 368
Disk space is running low .. 368
Memory running low ... 368
Producer gets NotLeaderForPartitionException .. 368
Under-replicated partitions (URP) greater than zero ... 368
Cluster has topics called __amazon_msk_canary and __amazon_msk_canary_state 369
Partition replication fails .. 369
Unable to access cluster that has public access turned on ... 369
Unable to access cluster from within AWS: Networking issues .. 370

x

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon EC2 client and MSK cluster in the same VPC ... 371
Amazon EC2 client and MSK cluster in different VPCs ... 371
On-premises client ... 371
AWS Direct Connect ... 372

Failed authentication: Too many connects ... 372
MSK Serverless: Cluster creation fails ... 372

Best practices ... 373
Right-size your cluster: Number of partitions per broker .. 373
Right-size your cluster: Number of brokers per cluster ... 374
Optimize cluster throughput for m5.4xl, m7g.4xl or larger instances .. 374
Use latest Kafka AdminClient to avoid topic ID mismatch issue .. 375
Build highly available clusters .. 376
Monitor CPU usage .. 376
Monitor disk space ... 378
Adjust data retention parameters .. 378
Speeding up log recovery after unclean shutdown .. 379
Monitor Apache Kafka memory .. 379
Don't add non-MSK brokers .. 379
Enable in-transit encryption .. 380
Reassign partitions .. 380

Document history .. 381
AWS Glossary ... 389

xi

Amazon Managed Streaming for Apache Kafka Developer Guide

Welcome to the Amazon MSK Developer Guide

Welcome to the Amazon MSK Developer Guide. The following topics can help you get started using
this guide, based on what you're trying to do.

• Create an Amazon MSK cluster by following the Getting started using Amazon MSK tutorial.

• Dive deeper into the functionality of Amazon MSK in Amazon MSK: How it works.

• Run Apache Kafka without having to manage and scale cluster capacity with MSK Serverless.

• Use MSK Connect to stream data to and from your Apache Kafka cluster.

• Use MSK Replicator to reliably replicate data across Amazon MSK clusters in different or the
same AWS region(s).

For highlights, product details, and pricing, see the service page for Amazon MSK.

What is Amazon MSK?

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that
enables you to build and run applications that use Apache Kafka to process streaming data.
Amazon MSK provides the control-plane operations, such as those for creating, updating,
and deleting clusters. It lets you use Apache Kafka data-plane operations, such as those for
producing and consuming data. It runs open-source versions of Apache Kafka. This means existing
applications, tooling, and plugins from partners and the Apache Kafka community are supported
without requiring changes to application code. You can use Amazon MSK to create clusters that
use any of the Apache Kafka versions listed under the section called “Supported Apache Kafka
versions”.

These components describe the architecture of Amazon MSK:

• Broker nodes — When creating an Amazon MSK cluster, you specify how many broker nodes
you want Amazon MSK to create in each Availability Zone. The minimum is one broker per
Availability Zone. Each Availability Zone has its own virtual private cloud (VPC) subnet.

• ZooKeeper nodes — Amazon MSK also creates the Apache ZooKeeper nodes for you. Apache
ZooKeeper is an open-source server that enables highly reliable distributed coordination.

• KRaft controllers —The Apache Kafka community developed KRaft to replace Apache
ZooKeeper for metadata management in Apache Kafka clusters. In KRaft mode, cluster metadata

What is Amazon MSK? 1

https://aws.amazon.com/msk

Amazon Managed Streaming for Apache Kafka Developer Guide

is propagated within a group of Kafka controllers, which are part of the Kafka cluster, instead of
across ZooKeeper nodes. KRaft controllers are included at no additional cost to you, and require
no additional setup or management from you.

Note

From Apache Kafka version 3.7.x on MSK, you can create clusters that use KRaft mode
instead of ZooKeeper mode.

• Producers, consumers, and topic creators — Amazon MSK lets you use Apache Kafka data-
plane operations to create topics and to produce and consume data.

• Cluster Operations You can use the AWS Management Console, the AWS Command Line
Interface (AWS CLI), or the APIs in the SDK to perform control-plane operations. For example,
you can create or delete an Amazon MSK cluster, list all the clusters in an account, view the
properties of a cluster, and update the number and type of brokers in a cluster.

Amazon MSK detects and automatically recovers from the most common failure scenarios for
clusters so that your producer and consumer applications can continue their write and read
operations with minimal impact. When Amazon MSK detects a broker failure, it mitigates the
failure or replaces the unhealthy or unreachable broker with a new one. In addition, where possible,
it reuses the storage from the older broker to reduce the data that Apache Kafka needs to replicate.
Your availability impact is limited to the time required for Amazon MSK to complete the detection
and recovery. After a recovery, your producer and consumer apps can continue to communicate
with the same broker IP addresses that they used before the failure.

What is Amazon MSK? 2

Amazon Managed Streaming for Apache Kafka Developer Guide

Setting up Amazon MSK

Before you use Amazon MSK for the first time, complete the following tasks.

Tasks

• Sign up for AWS

• Download libraries and tools

Sign up for AWS

When you sign up for AWS, your Amazon Web Services account is automatically signed up for all
services in AWS, including Amazon MSK. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use
the following procedure to create one.

To sign up for an Amazon Web Services account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Download libraries and tools

The following libraries and tools can help you work with Amazon MSK:

• The AWS Command Line Interface (AWS CLI) supports Amazon MSK. The AWS CLI enables
you to control multiple Amazon Web Services from the command line and automate them
through scripts. Upgrade your AWS CLI to the latest version to ensure that it has support for
the Amazon MSK features that are documented in this user guide. For detailed instructions on

Sign up for AWS 3

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Managed Streaming for Apache Kafka Developer Guide

how to upgrade the AWS CLI, see Installing the AWS Command Line Interface. After you install
the AWS CLI, you must configure it. For information on how to configure the AWS CLI, see aws
configure.

• The Amazon Managed Streaming for Kafka API Reference documents the API operations that
Amazon MSK supports.

• The Amazon Web Services SDKs for Go, Java, JavaScript, .NET, Node.js, PHP, Python, and Ruby
include Amazon MSK support and samples.

Download libraries and tools 4

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/reference/configure/index.html
https://docs.aws.amazon.com/cli/latest/reference/configure/index.html
https://docs.aws.amazon.com//msk/1.0/apireference/what-is-msk.html
https://docs.aws.amazon.com/sdk-for-go/api/service/kafka/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/developers/getting-started/php/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/developers/getting-started/ruby/

Amazon Managed Streaming for Apache Kafka Developer Guide

Getting started using Amazon MSK

This tutorial shows you an example of how you can create an MSK cluster, produce and consume
data, and monitor the health of your cluster using metrics. This example doesn't represent all
the options you can choose when you create an MSK cluster. In different parts of this tutorial, we
choose default options for simplicity. This doesn't mean that they're the only options that work for
setting up an MSK cluster or client instances.

Topics

• Step 1: Create an Amazon MSK cluster

• Step 2: Create an IAM role

• Step 3: Create a client machine

• Step 4: Create a topic

• Step 5: Produce and consume data

• Step 6: Use Amazon CloudWatch to view Amazon MSK metrics

• Step 7: Delete the AWS resources created for this tutorial

Step 1: Create an Amazon MSK cluster

In this step of Getting Started Using Amazon MSK, you create an Amazon MSK cluster.

To create an Amazon MSK cluster using the AWS Management Console

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. Choose Create cluster.

3. For Creation method, leave the Quick create option selected. The Quick create option lets
you create a cluster with default settings.

4. For Cluster name, enter a descriptive name for your cluster. For example,
MSKTutorialCluster.

5. For General cluster properties, choose Provisioned as the Cluster type.

6. From the table under All cluster settings, copy the values of the following settings and save
them because you need them later in this tutorial:

Step 1: Create a cluster 5

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

• VPC

• Subnets

• Security groups associated with VPC

7. Choose Create cluster.

8. Check the cluster Status on the Cluster summary page. The status changes from Creating to
Active as Amazon MSK provisions the cluster. When the status is Active, you can connect to
the cluster. For more information about cluster status, see Cluster states.

Next Step

Step 2: Create an IAM role

Step 2: Create an IAM role

In this step, you perform two tasks. The first task is to create an IAM policy that grants access to
create topics on the cluster and to send data to those topics. The second task is to create an IAM
role and associate this policy with it. In a later step, you create a client machine that assumes this
role and uses it to create a topic on the cluster and to send data to that topic.

To create an IAM policy that makes it possible to create topics and write to them

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation pane, choose Policies.

3. Choose Create Policy.

4. Choose the JSON tab, then replace the JSON in the editor window with the following JSON.

Replace region with the code of the AWS region where you created your cluster. Replace
Account-ID with your account ID. Replace MSKTutorialCluster with the name of your
cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Step 2: Create an IAM role 6

https://console.aws.amazon.com/iam/

Amazon Managed Streaming for Apache Kafka Developer Guide

 "kafka-cluster:Connect",
 "kafka-cluster:AlterCluster",
 "kafka-cluster:DescribeCluster"
],
 "Resource": [
 "arn:aws:kafka:region:Account-ID:cluster/MSKTutorialCluster/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:*Topic*",
 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData"
],
 "Resource": [
 "arn:aws:kafka:region:Account-ID:topic/MSKTutorialCluster/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup"
],
 "Resource": [
 "arn:aws:kafka:region:Account-ID:group/MSKTutorialCluster/*"
]
 }
]
}

For instructions on how to write secure policies, see the section called “IAM access control”.

5. Choose Next: Tags.

6. Choose Next: Review.

7. For the policy name, enter a descriptive name, such as msk-tutorial-policy.

8. Choose Create policy.

To create an IAM role and attach the policy to it

1. On the navigation pane, choose Roles.

Step 2: Create an IAM role 7

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Choose Create role.

3. Under Common use cases, choose EC2, then choose Next: Permissions.

4. In the search box, enter the name of the policy that you previously created for this tutorial.
Then select the box to the left of the policy.

5. Choose Next: Tags.

6. Choose Next: Review.

7. For the role name, enter a descriptive name, such as msk-tutorial-role.

8. Choose Create role.

Next Step

Step 3: Create a client machine

Step 3: Create a client machine

In this step of Getting Started Using Amazon MSK, you create a client machine. You use this client
machine to create a topic that produces and consumes data. For simplicity, you'll create this client
machine in the VPC that is associated with the MSK cluster so that the client can easily connect to
the cluster.

To create a client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch instances.

3. Enter a Name for your client machine, such as MSKTutorialClient.

4. Leave Amazon Linux 2 AMI (HVM) - Kernel 5.10, SSD Volume Type selected for Amazon
Machine Image (AMI) type.

5. Leave the t2.micro instance type selected.

6. Under Key pair (login), choose Create a new key pair. Enter MSKKeyPair for Key pair name,
and then choose Download Key Pair. Alternatively, you can use an existing key pair.

7. Expand the Advanced details section and choose the IAM role that you created in Step 2:
Create an IAM role.

8. Choose Launch instance.

Step 3: Create a client machine 8

https://console.aws.amazon.com/ec2/

Amazon Managed Streaming for Apache Kafka Developer Guide

9. Choose View Instances. Then, in the Security Groups column, choose the security group that
is associated with your new instance. Copy the ID of the security group, and save it for later.

10. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

11. In the navigation pane, choose Security Groups. Find the security group whose ID you saved in
the section called “Step 1: Create a cluster”.

12. In the Inbound Rules tab, choose Edit inbound rules.

13. Choose Add rule.

14. In the new rule, choose All traffic in the Type column. In the second field in the Source
column, select the security group of your client machine. This is the group whose name you
saved after you launched the client machine instance.

15. Choose Save rules. Now the cluster's security group can accept traffic that comes from the
client machine's security group.

Next Step

Step 4: Create a topic

Step 4: Create a topic

In this step of Getting Started Using Amazon MSK, you install Apache Kafka client libraries and
tools on the client machine, and then you create a topic.

Warning

Apache Kafka version numbers used in this tutorial are examples only. We recommend that
you use the same version of the client as your MSK cluster version. An older client version
may be missing certain features and critical bug fixes.

To find the version of your MSK cluster

1. Go to https://eu-west-2.console.aws.amazon.com/msk/

2. Select the MSK cluster.

3. Note the version of Apache Kafka used on the cluster.

4. Replace instances of Amazon MSK version numbers in this tutorial with the version obtained in
Step 3.

Step 4: Create a topic 9

https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for Apache Kafka Developer Guide

To create a topic on the client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances. Then select the check box beside the name of the
client machine that you created in Step 3: Create a client machine.

3. Choose Actions, and then choose Connect. Follow the instructions in the console to connect to
your client machine.

4. Install Java on the client machine by running the following command:

sudo yum -y install java-11

5. Run the following command to download Apache Kafka.

wget https://archive.apache.org/dist/kafka/{YOUR MSK VERSION}/kafka_2.13-{YOUR MSK
 VERSION}.tgz

Note

If you want to use a mirror site other than the one used in this command, you can
choose a different one on the Apache website.

6. Run the following command in the directory where you downloaded the TAR file in the
previous step.

tar -xzf kafka_2.13-{YOUR MSK VERSION}.tgz

7. Go to the kafka_2.13-{YOUR MSK VERSION}/libs directory, then run the following
command to download the Amazon MSK IAM JAR file. The Amazon MSK IAM JAR makes it
possible for the client machine to access the cluster.

wget https://github.com/aws/aws-msk-iam-auth/releases/download/v1.1.1/aws-msk-iam-
auth-1.1.1-all.jar

8. Go to the kafka_2.13-{YOUR MSK VERSION}/bin directory. Copy the following property
settings and paste them into a new file. Name the file client.properties and save it.

security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;

Step 4: Create a topic 10

https://console.aws.amazon.com/ec2/
https://www.apache.org/dyn/closer.cgi?path=/kafka/1.1.1/kafka_2.11-1.1.1.tgz

Amazon Managed Streaming for Apache Kafka Developer Guide

sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

9. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

10. Wait for the status of your cluster to become Active. This might take several minutes. After
the status becomes Active, choose the cluster name. This takes you to a page containing the
cluster summary.

11. Choose View client information.

12. Copy the connection string for the private endpoint.

You will get three endpoints for each of the brokers. You only need one broker endpoint for
the following step.

13. Run the following command, replacing BootstrapServerString with one of the broker
endpoints that you obtained in the previous step.

<path-to-your-kafka-installation>/bin/kafka-topics.sh --create --bootstrap-server
 BootstrapServerString --command-config client.properties --replication-factor 3 --
partitions 1 --topic MSKTutorialTopic

If the command succeeds, you see the following message: Created topic
MSKTutorialTopic.

Next Step

Step 5: Produce and consume data

Step 5: Produce and consume data

In this step of Getting Started Using Amazon MSK, you produce and consume data.

To produce and consume messages

1. Run the following command to start a console producer. Replace BootstrapServerString
with the plaintext connection string that you obtained in Create a topic. For instructions on
how to retrieve this connection string, see Getting the bootstrap brokers for an Amazon MSK
cluster.

Step 5: Produce and consume data 11

https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --
broker-list BootstrapServerString --producer.config client.properties --
topic MSKTutorialTopic

2. Enter any message that you want, and press Enter. Repeat this step two or three times. Every
time you enter a line and press Enter, that line is sent to your Apache Kafka cluster as a
separate message.

3. Keep the connection to the client machine open, and then open a second, separate connection
to that machine in a new window.

4. In the following command, replace BootstrapServerString with the plaintext connection
string that you saved earlier. Then, to create a console consumer, run the following command
with your second connection to the client machine.

<path-to-your-kafka-installation>/bin/kafka-console-consumer.sh --bootstrap-
server BootstrapServerString --consumer.config client.properties --
topic MSKTutorialTopic --from-beginning

You start seeing the messages you entered earlier when you used the console producer
command.

5. Enter more messages in the producer window, and watch them appear in the consumer
window.

Next Step

Step 6: Use Amazon CloudWatch to view Amazon MSK metrics

Step 6: Use Amazon CloudWatch to view Amazon MSK metrics

In this step of Getting Started Using Amazon MSK, you look at the Amazon MSK metrics in Amazon
CloudWatch.

To view Amazon MSK metrics in CloudWatch

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. Choose the All metrics tab, and then choose AWS/Kafka.

Step 6: View metrics 12

https://console.aws.amazon.com/cloudwatch/

Amazon Managed Streaming for Apache Kafka Developer Guide

4. To view broker-level metrics, choose Broker ID, Cluster Name. For cluster-level metrics, choose
Cluster Name.

5. (Optional) In the graph pane, select a statistic and a time period, and then create a
CloudWatch alarm using these settings.

Next Step

Step 7: Delete the AWS resources created for this tutorial

Step 7: Delete the AWS resources created for this tutorial

In the final step of Getting Started Using Amazon MSK, you delete the MSK cluster and the client
machine that you created for this tutorial.

To delete the resources using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the name of your cluster. For example, MSKTutorialCluster.

3. Choose Actions, then choose Delete.

4. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

5. Choose the instance that you created for your client machine, for example,
MSKTutorialClient.

6. Choose Instance state, then choose Terminate instance.

To delete the IAM policy and role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation pane, choose Roles.

3. In the search box, enter the name of the IAM role that you created for this tutorial.

4. Choose the role. Then choose Delete role, and confirm the deletion.

5. On the navigation pane, choose Policies.

6. In the search box, enter the name of the policy that you created for this tutorial.

7. Choose the policy to open its summary page. On the policy's Summary page, choose Delete
policy.

8. Choose Delete.

Step 7: Delete the resources 13

https://console.aws.amazon.com/msk/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/iam/

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK: How it works

An Amazon MSK cluster is the primary Amazon MSK resource that you can create in your account.
The topics in this section describe how to perform common Amazon MSK operations. For a list of
all the operations that you can perform on an MSK cluster, see the following:

• The AWS Management Console

• The Amazon MSK API Reference

• The Amazon MSK CLI Command Reference

Topics

• Creating an Amazon MSK cluster

• Deleting an Amazon MSK cluster

• Getting the bootstrap brokers for an Amazon MSK cluster

• Listing Amazon MSK clusters

• Metadata management

• Storage management

• Updating the broker size

• Updating the configuration of an Amazon MSK cluster

• Expanding an Amazon MSK cluster

• Remove a broker from an Amazon MSK cluster

• Updating security settings of a cluster

• Rebooting a broker for an Amazon MSK cluster

• Impact of broker restarts during patching and other maintenance

• Tagging an Amazon MSK cluster

Creating an Amazon MSK cluster

Important

You can't change the VPC for an Amazon MSK cluster after you create the cluster.

Creating a cluster 14

https://console.aws.amazon.com/msk
https://docs.aws.amazon.com/msk/1.0/apireference
https://docs.aws.amazon.com/cli/latest/reference/kafka/index.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Before you can create an Amazon MSK cluster you need to have an Amazon Virtual Private Cloud
(VPC) and set up subnets within that VPC.

You need two subnets in two different Availability Zones in the US West (N. California) Region.
In all other Regions where Amazon MSK is available, you can specify either two or three subnets.
Your subnets must all be in different Availability Zones. When you create a cluster, Amazon MSK
distributes the broker nodes evenly over the subnets that you specify.

Broker sizes

When you create an Amazon MSK cluster, you specify the size of brokers that you want it to have.
Amazon MSK supports the following broker sizes:

• kafka.t3.small

• kafka.m5.large, kafka.m5.xlarge, kafka.m5.2xlarge, kafka.m5.4xlarge, kafka.m5.8xlarge,
kafka.m5.12xlarge, kafka.m5.16xlarge, kafka.m5.24xlarge

• kafka.m7g.large, kafka.m7g.xlarge, kafka.m7g.2xlarge, kafka.m7g.4xlarge, kafka.m7g.8xlarge,
kafka.m7g.12xlarge, kafka.m7g.16xlarge

M7g brokers use AWS Graviton processors (custom Arm-based processors built by Amazon Web
Services). M7g brokers offer improved price performance relative to comparable M5 instances. M7g
brokers consume less power than comparable M5 instances.

M7g Graviton brokers are not available in these regions: CDG (Paris), CGK (Jakarta), CPT (Cape
Town), DXB (Dubai), HKG (Hong Kong), KIX (Osaka), LHR (London), MEL (Melbourne), MXP (Milan),
OSU (US-East), PDT (US-West), TLV (Tel Aviv), YYC (Calgary), ZRH (Zurich).

MSK supports M7g brokers on clusters running one of the following Kafka versions:

• 2.8.2.tiered

• 3.3.2

• 3.4.0

• 3.5.1

• 3.6.0 with tiered storage

• 3.7.x

• 3.7.x.kraft

Broker sizes 15

Amazon Managed Streaming for Apache Kafka Developer Guide

M7g and M5 brokers have higher baseline throughput performance than T3 brokers and are
recommended for production workloads. M7g and M5 brokers can also have more partitions
per broker than T3 brokers. Use M7g or M5 brokers if you are running larger production-grade
workloads or require a greater number of partitions. To learn more about M7g and M5 instance
sizes, see Amazon EC2 General Purpose Instances.

T3 brokers have the ability to use CPU credits to temporarily burst performance. Use T3 brokers for
low-cost development, if you are testing small to medium streaming workloads, or if you have low-
throughput streaming workloads that experience temporary spikes in throughput. We recommend
that you run a proof-of-concept test to determine if T3 brokers are sufficient for production or
critical workload. To learn more about T3 broker sizes, see Amazon EC2T3 Instances.

For more information on how to choose broker sizes, see Best practices.

Creating a cluster using the AWS Management Console

This process describes the common task of creating a provisioned cluster using custom create
options. You can select other options in the MSK console to create a serverless cluster.

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose Create cluster.

3. For Cluster creation method, choose Custom create.

4. Specify a Cluster name that is unique and no more than 64 characters.

5. For Cluster type, choose Provisioned, which allows you to specify the number of brokers,
broker size, and cluster storage capacity.

6. Select the Apache Kafka version that you want to run on the brokers. To see a comparison
of MSK features that are supported by each Apache Kafka version, select View version
compatibility.

7. Depending on the Apache Kafka version you select, you may have the option to choose the
cluster’s Metadata mode: ZooKeeper or KRaft.

8. Select a broker size to use for the cluster based on the cluster’s compute, memory, and
storage needs. See ???,

9. Select the Number of zones across which brokers are distributed.

10. Specify the number of brokers you want MSK to create in each Availability Zone. The minimum
is one broker per Availability Zone and the maximum is 30 brokers per cluster for ZooKeeper-
based clusters and 60 brokers per cluster for KRaft-based clusters.

Creating a cluster using the AWS Management Console 16

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/t3/
https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/msk/latest/developerguide/metadata-management.html

Amazon Managed Streaming for Apache Kafka Developer Guide

11. Select the initial amount of Storage you want your cluster to have. You can't decrease storage
capacity after you create the cluster.

12. Depending on the broker size (instance size) you selected, you can specify Provisioned
storage throughput per broker. To enable this option, choose broker size (instance size)
kafka.m5.4xlarge or larger for x86, and kafka.m7g.2xlarge or larger for Graviton-based
instances. See ???.

13. Select a Cluster storage mode option, either EBS storage only or tiered storage and EBS
storage.

14. If you want to create and use a custom Cluster configuration (or if you already have a
cluster configuration saved), choose a configuration. Otherwise, you can create the cluster
using the Amazon MSK default cluster configuration. For information about Amazon MSK
configurations, see Configuration.

15. Select Next.

16. For Networking settings, choose the VPC you want to use for the cluster.

17. Based on the Number of zones you previously selected, specify the Availability Zones and
subnets where brokers will deploy. The subnets must be in different Availability Zones.

18. You can select one or more security groups that you want to give access to your cluster (for
example, the security groups of client machines). If you specify security groups that are shared
with you, you must ensure that you have permissions to use them. Specifically, you need the
ec2:DescribeSecurityGroups permission. Connecting to an Amazon MSK cluster.

19. Select Next.

20. Select the cluster's Access control methods and Encryption settings for encrypting data as it
transits between clients and brokers. For more information, see the section called “Encryption
in transit”.

21. Choose the kind of KMS key that you want to use for encrypting data at rest. For more
information, see the section called “Encryption at rest”.

22. Select Next.

23. Choose the Monitoring and tags you want. This determines the set of metrics you get. For
more information, see Monitoring a cluster. Amazon CloudWatch, Prometheus, Broker log
delivery, or Cluster tags, then select Next.

24. Review the settings for your cluster. You can go back and change settings by selecting
Previous to go back to the previous console screen, or Edit to change specific cluster settings.
If the settings are correct, select Create cluster.

Creating a cluster using the AWS Management Console 17

https://docs.aws.amazon.com/msk/latest/developerguide/client-access.html#public-access
https://docs.aws.amazon.com/msk/latest/developerguide/monitoring.html#monitoring-level
https://docs.aws.amazon.com/msk/latest/developerguide/open-monitoring.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-logging.html#broker-logs
https://docs.aws.amazon.com/msk/latest/developerguide/msk-logging.html#broker-logs
https://docs.aws.amazon.com/msk/latest/developerguide/msk-tagging.html

Amazon Managed Streaming for Apache Kafka Developer Guide

25. Check the cluster Status on the Cluster summary page. The status changes from Creating to
Active as Amazon MSK provisions the cluster. When the status is Active, you can connect to
the cluster. For more information about cluster status, see Cluster states.

Creating a cluster using the AWS CLI

1. Copy the following JSON and save it to a file. Name the file brokernodegroupinfo.json.
Replace the subnet IDs in the JSON with the values that correspond to your subnets. These
subnets must be in different Availability Zones. Replace "Security-Group-ID" with
the ID of one or more security groups of the client VPC. Clients associated with these
security groups get access to the cluster. If you specify security groups that were shared
with you, you must ensure that you have permissions to them. Specifically, you need the
ec2:DescribeSecurityGroups permission. For an example, see Amazon EC2: Allows
Managing Amazon EC2 Security Groups Associated With a Specific VPC, Programmatically and
in the Console. Finally, save the updated JSON file on the computer where you have the AWS
CLI installed.

{
 "InstanceType": "kafka.m5.large",
 "ClientSubnets": [
 "Subnet-1-ID",
 "Subnet-2-ID"
],
 "SecurityGroups": [
 "Security-Group-ID"
]
}

Important

Specify exactly two subnets if you are using the US West (N. California) Region. For
other Regions where Amazon MSK is available, you can specify either two or three
subnets. The subnets that you specify must be in distinct Availability Zones. When you
create a cluster, Amazon MSK distributes the broker nodes evenly across the subnets
that you specify.

Creating a cluster using the AWS CLI 18

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Run the following AWS CLI command in the directory where you saved the
brokernodegroupinfo.json file, replacing "Your-Cluster-Name" with a name of
your choice. For "Monitoring-Level", you can specify one of the following three values:
DEFAULT, PER_BROKER, or PER_TOPIC_PER_BROKER. For information about these three
different levels of monitoring, see ???. The enhanced-monitoring parameter is optional.
If you don't specify it in the create-cluster command, you get the DEFAULT level of
monitoring.

aws kafka create-cluster --cluster-name "Your-Cluster-Name" --broker-node-group-
info file://brokernodegroupinfo.json --kafka-version "2.8.1" --number-of-broker-
nodes 3 --enhanced-monitoring "Monitoring-Level"

The output of the command looks like the following JSON:

{
 "ClusterArn": "...",
 "ClusterName": "AWSKafkaTutorialCluster",
 "State": "CREATING"
}

Note

The create-cluster command might return an error stating that one or more
subnets belong to unsupported Availability Zones. When this happens, the error
indicates which Availability Zones are unsupported. Create subnets that don't use the
unsupported Availability Zones and try the create-cluster command again.

3. Save the value of the ClusterArn key because you need it to perform other actions on your
cluster.

4. Run the following command to check your cluster STATE. The STATE value changes from
CREATING to ACTIVE as Amazon MSK provisions the cluster. When the state is ACTIVE, you
can connect to the cluster. For more information about cluster status, see Cluster states.

aws kafka describe-cluster --cluster-arn <your-cluster-ARN>

Creating a cluster using the AWS CLI 19

Amazon Managed Streaming for Apache Kafka Developer Guide

Creating a cluster with a custom Amazon MSK configuration using the
AWS CLI

For information about custom Amazon MSK configurations and how to create them, see
Configuration.

1. Save the following JSON to a file, replacing configuration-arn with the ARN of the
configuration that you want to use to create the cluster.

{
 "Arn": configuration-arn,
 "Revision": 1
}

2. Run the create-cluster command and use the configuration-info option to point to
the JSON file you saved in the previous step. The following is an example.

aws kafka create-cluster --cluster-name ExampleClusterName --broker-node-group-
info file://brokernodegroupinfo.json --kafka-version "2.8.1" --number-of-broker-
nodes 3 --enhanced-monitoring PER_TOPIC_PER_BROKER --configuration-info file://
configuration.json

The following is an example of a successful response after running this command.

{
 "ClusterArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
CustomConfigExampleCluster/abcd1234-abcd-dcba-4321-a1b2abcd9f9f-2",
 "ClusterName": "CustomConfigExampleCluster",
 "State": "CREATING"
}

Creating a cluster using the API

To create a cluster using the API, see CreateCluster.

Creating a cluster with a custom Amazon MSK configuration using the AWS CLI 20

https://docs.aws.amazon.com//msk/1.0/apireference/clusters.html#CreateCluster

Amazon Managed Streaming for Apache Kafka Developer Guide

Deleting an Amazon MSK cluster

Note

If your cluster has an auto-scaling policy, we recommend that you remove the policy before
you delete the cluster. For more information, see Automatic scaling.

Deleting a cluster using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster that you want to delete by selecting the check box next to it.

3. Choose Delete, and then confirm deletion.

Deleting a cluster using the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster. If you don't have the ARN for your cluster, you can
find it by listing all clusters. For more information, see the section called “Listing clusters”.

aws kafka delete-cluster --cluster-arn ClusterArn

Deleting a cluster using the API

To delete a cluster using the API, see DeleteCluster.

Getting the bootstrap brokers for an Amazon MSK cluster

Getting the bootstrap brokers using the AWS Management Console

The term bootstrap brokers refers to a list of brokers that an Apache Kafka client can use as a
starting point to connect to the cluster. This list doesn't necessarily include all of the brokers in a
cluster.

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

Deleting a cluster 21

https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn.html#DeleteCluster
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

2. The table shows all the clusters for the current region under this account. Choose the name of
a cluster to view its description.

3. On the Cluster summary page, choose View client information. This shows you the bootstrap
brokers, as well as the Apache ZooKeeper connection string.

Getting the bootstrap brokers using the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster. If you don't have the ARN for your cluster, you can
find it by listing all clusters. For more information, see the section called “Listing clusters”.

aws kafka get-bootstrap-brokers --cluster-arn ClusterArn

For an MSK cluster that uses the section called “IAM access control”, the output of this command
looks like the following JSON example.

{
 "BootstrapBrokerStringSaslIam": "b-1.myTestCluster.123z8u.c2.kafka.us-
west-1.amazonaws.com:9098,b-2.myTestCluster.123z8u.c2.kafka.us-
west-1.amazonaws.com:9098"
}

The following example shows the bootstrap brokers for a cluster that has public access
turned on. Use the BootstrapBrokerStringPublicSaslIam for public access, and the
BootstrapBrokerStringSaslIam string for access from within AWS.

{
 "BootstrapBrokerStringPublicSaslIam": "b-2-public.myTestCluster.v4ni96.c2.kafka-
beta.us-east-1.amazonaws.com:9198,b-1-public.myTestCluster.v4ni96.c2.kafka-
beta.us-east-1.amazonaws.com:9198,b-3-public.myTestCluster.v4ni96.c2.kafka-beta.us-
east-1.amazonaws.com:9198",
 "BootstrapBrokerStringSaslIam": "b-2.myTestCluster.v4ni96.c2.kafka-
beta.us-east-1.amazonaws.com:9098,b-1.myTestCluster.v4ni96.c2.kafka-beta.us-
east-1.amazonaws.com:9098,b-3.myTestCluster.v4ni96.c2.kafka-beta.us-
east-1.amazonaws.com:9098"
}

The bootstrap brokers string should contain three brokers from across the Availability Zones in
which your MSK cluster is deployed (unless only two brokers are available).

Getting the bootstrap brokers using the AWS CLI 22

Amazon Managed Streaming for Apache Kafka Developer Guide

Getting the bootstrap brokers using the API

To get the bootstrap brokers using the API, see GetBootstrapBrokers.

Listing Amazon MSK clusters

Listing clusters using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. The table shows all the clusters for the current region under this account. Choose the name of
a cluster to view its details.

Listing clusters using the AWS CLI

Run the following command.

aws kafka list-clusters

Listing clusters using the API

To list clusters using the API, see ListClusters.

Metadata management

Amazon MSK supports Apache ZooKeeper or KRaft metadata management modes.

From Apache Kafka version 3.7.x on Amazon MSK, you can create clusters that use KRaft mode
instead of ZooKeeper mode. KRaft-based clusters rely on controllers within Kafka to manage
metadata.

Topics

• ZooKeeper mode

• KRaft mode

Getting the bootstrap brokers using the API 23

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#GetBootstrapBrokers
https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com//msk/1.0/apireference/clusters.html#ListClusters

Amazon Managed Streaming for Apache Kafka Developer Guide

ZooKeeper mode

Apache ZooKeeper is "a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. All of these kinds of services
are used in some form or another by distributed applications," including Apache Kafka.

If your cluster is using ZooKeeper mode, you can use the steps below to get the Apache ZooKeeper
connection string. However, we recommend that you use the BootstrapServerString to
connect to your cluster and perfom admin operations as the --zookeeper flag has been
deprecated in Kafka 2.5 and is removed from Kafka 3.0.

Getting the Apache ZooKeeper connection string using the AWS Management
Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. The table shows all the clusters for the current region under this account. Choose the name of
a cluster to view its description.

3. On the Cluster summary page, choose View client information. This shows you the bootstrap
brokers, as well as the Apache ZooKeeper connection string.

Getting the Apache ZooKeeper connection string using the AWS CLI

1. If you don't know the Amazon Resource Name (ARN) of your cluster, you can find it by listing
all the clusters in your account. For more information, see the section called “Listing clusters”.

2. To get the Apache ZooKeeper connection string, along with other information about your
cluster, run the following command, replacing ClusterArn with the ARN of your cluster.

aws kafka describe-cluster --cluster-arn ClusterArn

The output of this describe-cluster command looks like the following JSON example.

{
 "ClusterInfo": {
 "BrokerNodeGroupInfo": {
 "BrokerAZDistribution": "DEFAULT",
 "ClientSubnets": [
 "subnet-0123456789abcdef0",
 "subnet-2468013579abcdef1",

ZooKeeper mode 24

https://zookeeper.apache.org/
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

 "subnet-1357902468abcdef2"
],
 "InstanceType": "kafka.m5.large",
 "StorageInfo": {
 "EbsStorageInfo": {
 "VolumeSize": 1000
 }
 }
 },
 "ClusterArn": "arn:aws:kafka:us-east-1:111122223333:cluster/
testcluster/12345678-abcd-4567-2345-abcdef123456-2",
 "ClusterName": "testcluster",
 "CreationTime": "2018-12-02T17:38:36.75Z",
 "CurrentBrokerSoftwareInfo": {
 "KafkaVersion": "2.2.1"
 },
 "CurrentVersion": "K13V1IB3VIYZZH",
 "EncryptionInfo": {
 "EncryptionAtRest": {
 "DataVolumeKMSKeyId": "arn:aws:kms:us-
east-1:555555555555:key/12345678-abcd-2345-ef01-abcdef123456"
 }
 },
 "EnhancedMonitoring": "DEFAULT",
 "NumberOfBrokerNodes": 3,
 "State": "ACTIVE",
 "ZookeeperConnectString": "10.0.1.101:2018,10.0.2.101:2018,10.0.3.101:2018"
 }
}

The previous JSON example shows the ZookeeperConnectString key in the output of the
describe-cluster command. Copy the value corresponding to this key and save it for when
you need to create a topic on your cluster.

Important

Your Amazon MSK cluster must be in the ACTIVE state for you to be able to
obtain the Apache ZooKeeper connection string. When a cluster is still in the
CREATING state, the output of the describe-cluster command doesn't include
ZookeeperConnectString. If this is the case, wait a few minutes and then run the
describe-cluster again after your cluster reaches the ACTIVE state.

ZooKeeper mode 25

Amazon Managed Streaming for Apache Kafka Developer Guide

Getting the Apache ZooKeeper connection string using the API

To get the Apache ZooKeeper connection string using the API, see DescribeCluster.

KRaft mode

Amazon MSK introduced support for KRaft (Apache Kafka Raft) in Kafka version 3.7.x. The Apache
Kafka community developed KRaft to replace Apache ZooKeeper for metadata management
in Apache Kafka clusters. In KRaft mode, cluster metadata is propagated within a group of
Kafka controllers, which are part of the Kafka cluster, instead of across ZooKeeper nodes.
KRaft controllers are included at no additional cost to you, and require no additional setup or
management from you. See KIP-500 for more information about KRaft.

Here are some points to note about KRaft mode on MSK:

• KRaft mode is only available for new clusters. You cannot switch metadata modes once the
cluster is created.

• On the MSK console, you can create a Kraft-based cluster by choosing Kafka version 3.7.x and
selecting the KRaft checkbox in the cluster creation window.

• To create a cluster in KRaft mode using the MSK API CreateCluster or CreateClusterV2
operations, you should use 3.7.x.kraft as the version. Use 3.7.x as the version to create a
cluster in ZooKeeper mode.

• The number of partitions per broker is the same on KRaft and ZooKeeper based clusters.
However, KRaft allows you to host more partitions per cluster by provisioning more brokers in a
cluster.

• There are no API changes required to use KRaft mode on Amazon MSK. However, if your clients
still use the --zookeeper connection string today, you should update your clients to use the
--bootstrap-server connection string to connect to your cluster. The --zookeeper flag
is deprecated in Apache Kafka version 2.5 and is removed starting with Kafka version 3.0. We
therefore recommend you use recent Apache Kafka client versions and the --bootstrap-
server connection string for all connections to your cluster.

• ZooKeeper mode continues to be available for all released versions where zookeeper is also
supported by Apache Kafka. See Supported Apache Kafka versions for details on the end of
support for Apache Kafka versions and future updates.

• You should check that any tools you use are capable of using Kafka Admin APIs without
ZooKeeper connections. Refer to Using LinkedIn's Cruise Control for Apache Kafka with Amazon

KRaft mode 26

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#CreateCluster
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters.html#CreateClusterV2
https://docs.aws.amazon.com/msk/latest/developerguide/limits.html
https://docs.aws.amazon.com/msk/latest/developerguide/limits.html

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK for updated steps to connect your cluster to Cruise Control. Cruise Control also has
instructions for running Cruise Control without ZooKeeper.

• You do not need to access your cluster's KRaft controllers directly for any administrative actions.
However, if you are using open monitoring to collect metrics, you also need the DNS endpoints
of your controllers in order to collect some non-controller related metrics about your cluster. You
can get these DNS endpoints from the MSK Console or using the ListNodes API operation. See
Open monitoring with Prometheus for updated steps for setting up open-monitoring for KRaft-
based clusters.

• There are no additional CloudWatch metrics you need to monitor for KRaft mode clusters over
ZooKeeper mode clusters. MSK manages the KRaft controllers used in your clusters.

• You can continue managing ACLs using in KRaft mode clusters using the --bootstrap-server
connection string. You should not use the --zookeeper connection string to manage ACLs. See
Apache Kafka ACLs.

• In KRaft mode, your cluster’s metadata is stored on KRaft controllers within Kafka and not
external ZooKeeper nodes. Therefore, you don't need to control access to controller nodes
separately as you do with ZooKeeper nodes.

Storage management

Amazon MSK provides features to help you with storage management on your MSK clusters.

Topics

• Tiered storage

• Scaling up broker storage

• Provisioning storage throughput

Tiered storage

Tiered storage is a low-cost storage tier for Amazon MSK that scales to virtually unlimited storage,
making it cost-effective to build streaming data applications.

You can create an Amazon MSK cluster configured with tiered storage that balances performance
and cost. Amazon MSK stores streaming data in a performance-optimized primary storage tier until
it reaches the Apache Kafka topic retention limits. Then, Amazon MSK automatically moves data
into the new low-cost storage tier.

Storage management 27

https://github.com/linkedin/cruise-control/wiki/Run-without-ZooKeeper
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-nodes.html#ListNodes
https://docs.aws.amazon.com/msk/latest/developerguide/metrics-details.html
https://docs.aws.amazon.com/msk/latest/developerguide/zookeeper-security.html

Amazon Managed Streaming for Apache Kafka Developer Guide

When your application starts reading data from the tiered storage, you can expect an increase in
read latency for the first few bytes. As you start reading the remaining data sequentially from the
low-cost tier, you can expect latencies that are similar to the primary storage tier. You don't need
to provision any storage for the low-cost tiered storage or manage the infrastructure. You can
store any amount of data and pay only for what you use. This feature is compatible with the APIs
introduced in KIP-405: Kafka Tiered Storage.

Here are some of the features of tiered storage:

• You can scale to virtually unlimited storage. You don't have to guess how to scale your Apache
Kafka infrastructure.

• You can retain data longer in your Apache Kafka topics, or increase your topic storage, without
the need to increase the number of brokers.

• It provides a longer duration safety buffer to handle unexpected delays in processing.

• You can reprocess old data in its exact production order with your existing stream processing
code and Kafka APIs.

• Partitions rebalance faster because data on secondary storage doesn't require replication across
broker disks.

• Data between brokers and the tiered storage moves within the VPC and doesn't travel through
the internet.

• A client machine can use the same process to connect to new clusters with tiered storage
enabled as it does to connect to a cluster without tiered storage enabled. See Create a client
machine.

Tiered storage requirements

• You must use Apache Kafka client version 3.0.0 or higher to create a new topic with tiered
storage enabled. To transition an existing topic to tiered storage, you can reconfigure a client
machine that uses a Kafka client version lower than 3.0.0 (minimum supported Apache Kafka
version is 2.8.2.tiered) to enable tiered storage. See Step 4: Create a topic.

• The Amazon MSK cluster with tiered storage enabled must use version 3.6.0 or higher, or
2.8.2.tiered.

Tiered storage constraints and limitations

Tiered storage has the following constraints and limitations:

Tiered storage 28

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://docs.aws.amazon.com/msk/latest/developerguide/create-client-machine.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-client-machine.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• Tiered storage applies only to provisioned mode clusters.

• Tiered storage doesn’t support broker size t3.small.

• The minimum retention period in low-cost storage is 3 days. There is no minimum retention
period for primary storage.

• Tiered storage doesn’t support Multiple Log directories on a broker (JBOD related features).

• Tiered storage does not support compacted topics. Ensure that all topics that have tiered storage
turned on have their cleanup.policy configured to 'DELETE' only.

• Tiered Storage can be disabled for individual topics but not for the entire cluster. Once disabled,
tiered storage cannot be re-enabled for a topic.

• If you use Amazon MSK version 2.8.2.tiered, you can migrate only to another tiered storage-
supported Apache Kafka version. If you don't want to continue using a tiered storage-supported
version, create a new MSK cluster and migrate your data to it.

• The kafka-log-dirs tool can't report tiered storage data size. The tool only reports the size of the
log segments in primary storage.

How log segments are copied to tiered storage

When you enable tiered storage for a new or existing topic, Apache Kafka copies closed log
segments from primary storage to tiered storage.

• Apache Kafka only copies closed log segments. It copies all messages within the log segment to
tiered storage.

• Active segments are not eligible for tiering. The log segment size (segment.bytes) or the
segment roll time (segment.ms) controls the rate of segment closure, and the rate Apache Kafka
then copies them to tiered storage.

Retention settings for a topic with tiered storage enabled are different from settings for a topic
without tiered storage enabled. The following rules control the retention of messages in topics
with tiered storage enabled:

• You define retention in Apache Kafka with two settings: log.retention.ms (time) and
log.retention.bytes (size). These settings determine the total duration and size of the data that
Apache Kafka retains in the cluster. Whether or not you enable tiered storage mode, you set
these configurations at the cluster level. You can override the settings at the topic level with
topic configurations.

Tiered storage 29

Amazon Managed Streaming for Apache Kafka Developer Guide

• When you enable tiered storage, you can additionally specify how long the primary
high-performance storage tier stores data. For example, if a topic has overall retention
(log.retention.ms) setting of 7 days and local retention (local.retention.ms) of 12 hours, then the
cluster primary storage retains data for only the first 12 hours. The low-cost storage tier retains
the data for the full 7 days.

• The usual retention settings apply to the full log. This includes its tiered and primary parts.

• The local.retention.ms or local.retention.bytes settings control the retention of messages
in primary storage. When data has reached primary storage retention setting thresholds
(local.retention.ms/bytes) on a full log, Apache Kafka copies the data in primary storage to tiered
storage. The data is then eligible for expiration.

• When Apache Kafka copies a message in a log segment to tiered storage, it removes the message
from the cluster based on retention.ms or retention.bytes settings.

Example tiered storage scenario

This scenario illustrates how an existing topic that has messages in primary storage
behaves when tiered storage is enabled. You enable tiered storage on this topic by when
you set remote.storage.enable to true. In this example, retention.ms is set to 5 days and
local.retention.ms is set to 2 days. The following is the sequence of events when a segment expires.

Time T0 - Before you enable tiered storage.

Before you enable tiered storage for this topic, there are two log segments. One of the segments is
active for an existing topic partition 0.

Tiered storage 30

Amazon Managed Streaming for Apache Kafka Developer Guide

Time T1 (< 2 days) - Tiered storage enabled. Segment 0 copied to tiered storage.

After you enable tiered storage for this topic, Apache Kafka copies log segment 0 to tiered storage
after the segment meets initial retention settings. Apache Kafka also retains the primary storage
copy of segment 0. The active segment 1 is not eligible to copy over to tiered storage yet. In this
timeline, Amazon MSK doesn't apply any of the rerention settings yet for any of the messages in
segment 0 and segment 1. (local.retention.bytes/ms, retention.ms/bytes)

Time T2 - Local retention in effect.

Tiered storage 31

Amazon Managed Streaming for Apache Kafka Developer Guide

After 2 days, primary retention settings take effect for the segment 0 that Apache Kafka copied
to the tiered storage. The setting of local.retention.ms as 2 days determines this. Segment 0 now
expires from the primary storage. Active segment 1 is neither eligible for expiration nor eligible to
copy over to tiered storage yet.

Time T3 - Overall retention in effect.

After 5 days, retention settings take effect, and Kafka clears log segment 0 and associated
messages from tiered storage. Segment 1 is neither eligible for expiration nor eligible to copy over
to tiered storage yet because it is active. Segment 1 is not yet closed, so it is ineligible for segment
roll.

Creating a Amazon MSK cluster with tiered storage with the AWS Management
Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

Tiered storage 32

https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Choose Create cluster.

3. Choose Custom create for tiered storage.

4. Specify a name for the cluster.

5. In the Cluster type, select Provisioned.

6. Choose an Amazon Kafka version that supports tiered storage for Amazon MSK to use to
create the cluster.

7. Specify a size of broker other than kafka.t3.small.

8. Select the number of brokers that you want Amazon MSK to create in each Availability Zone.
The minimum is one broker per Availability Zone, and the maximum is 30 brokers per cluster.

9. Specify the number of zones that brokers are distributed across.

10. Specify the number of Apache Kafka brokers that are deployed per zone.

11. Select Storage options. This includes Tiered storage and EBS storage to enable tiered storage
mode.

12. Follow the remaining steps in the cluster creation wizard. When complete, Tiered storage and
EBS storage appears as the cluster storage mode in the Review and create view.

13. Select Create cluster.

Creating an Amazon MSK cluster with tiered storage with the AWS CLI

To enable tiered storage on a cluster, create the cluster with the correct Apache Kafka version and
attribute for tiered storage. Follow the code example below. Also, complete the steps in the next
section to Creating a Kafka topic with tiered storage enabled.

See create-cluster for a complete list of supported attributes for cluster creation.

aws tiered-storage create-cluster \
 —cluster-name "MessagingCluster" \
 —broker-node-group-info file://brokernodegroupinfo.json \
 —number-of-broker-nodes 3 \
--kafka-version "3.6.0" \
--storage-mode "TIERED"

Tiered storage 33

https://docs.aws.amazon.com//cli/latest/reference/kafka/create-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Creating a Kafka topic with tiered storage enabled

To complete the process that you started when you created a cluster with the tiered storage
enabled, also create a topic with tiered storage enabled with the attributes in the later code
example. The attributes specifically for tiered storage are the following:

• local.retention.ms (for example, 10 mins) for time-based retention settings or
local.retention.bytes for log segment size limits.

• remote.storage.enable set to true to enable tiered storage.

The following configuration uses local.retention.ms, but you can replace this attribute with
local.retention.bytes. This attribute controls the amount of time that can pass or number of bytes
that Apache Kafka can copy before Apache Kafka copies the data from primary to tiered storage.
See Topic-level configuration for more details on supported configuration attributes.

Note

You must use the Apache Kafka client version 3.0.0 and above. These versions support
a setting called remote.storage.enable only in those client versions of kafka-
topics.sh. To enable tiered storage on an existing topic that uses an earlier version of
Apache Kafka, see the section Enabling tiered storage on an existing topic.

bin/kafka-topics.sh --create --bootstrap-server $bs --replication-factor 2
 --partitions 6 --topic MSKTutorialTopic --config remote.storage.enable=true
 --config local.retention.ms=100000 --config retention.ms=604800000 --config
 segment.bytes=134217728

Enabling and disabling tiered storage on an existing topic

These sections cover how to enable and disable tiered storage on a topic that you've already
created. To create a new cluster and topic with tiered storage enabled, see Creating a cluster with
tiered storage using the AWS Management Console.

Enabling tiered storage on an existing topic

To enable tiered storage on an existing topic, use the alter command syntax in the following
example. When you enable tiered storage on an already existing topic, you aren't restricted to a
certain Apache Kafka client version.

Tiered storage 34

https://docs.aws.amazon.com//msk/latest/developerguide/msk-configuration-properties.html#msk-topic-confinguration
https://docs.aws.amazon.com//msk/latest/developerguide/msk-create-cluster-tiered-storage-console
https://docs.aws.amazon.com//msk/latest/developerguide/msk-create-cluster-tiered-storage-console

Amazon Managed Streaming for Apache Kafka Developer Guide

bin/kafka-configs.sh --bootstrap-server $bsrv --alter --entity-type topics
 --entity-name msk-ts-topic --add-config 'remote.storage.enable=true,
 local.retention.ms=604800000, retention.ms=15550000000'

Disabling tiered storage on an existing topic

To disable tiered storage on an existing topic, use the alter command syntax in the same order as
when you enable tiered storage.

bin/kafka-configs.sh --bootstrap-server $bs --alter --entity-type topics --
entity-name MSKTutorialTopic --add-config 'remote.log.msk.disable.policy=Delete,
 remote.storage.enable=false'

Note

When you disable tiered storage, you completely delete the topic data in tiered storage.
Apache Kafka retains primary storage data , but it still applies the primary retention rules
based on local.retention.ms. After you disable tiered storage on a topic, you can't re-
enable it. If you want to disable tiered storage on an existing topic, you aren't restricted to
a certain Apache Kafka client version.

Enabling tiered storage on an existing cluster using AWS CLI

Note

You can enable tiered storage only if your cluster's log.cleanup.policy is set to delete,
as compacted topics are not supported on tiered storage. Later, you can configure an
individual topic's log.cleanup.policy to compact if tiered storage is not enabled on that
particular topic. See Topic-level configuration for more details on supported configuration
attributes.

1. Update the Kafka version – Cluster versions aren't simple integers. To find the current version
of the cluster, use the DescribeCluster operation or the describe-cluster AWS CLI
command. An example version is KTVPDKIKX0DER.

Tiered storage 35

https://docs.aws.amazon.com//msk/latest/developerguide/msk-configuration-properties.html#msk-topic-confinguration

Amazon Managed Streaming for Apache Kafka Developer Guide

aws kafka update-cluster-kafka-version --cluster-arn ClusterArn --current-version
 Current-Cluster-Version --target-kafka-version 3.6.0

2. Edit cluster storage mode. The following code example shows editing the cluster storage mode
to TIERED using the update-storage API.

aws kafka update-storage --current-version Current-Cluster-Version --cluster-arn
 Cluster-arn --storage-mode TIERED

Updating tiered storage on an existing cluster using the console

Note

You can enable tiered storage only if your cluster's log.cleanup.policy is set to delete,
as compacted topics are not supported on tiered storage. Later, you can configure an
individual topic's log.cleanup.policy to compact if tiered storage is not enabled on that
particular topic. See Topic-level configuration for more details on supported configuration
attributes.

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Go to the cluster summary page and choose Properties.

3. Go to the Storage section and choose Edit cluster storage mode.

4. Choose Tiered storage and EBS storage and Save changes.

Scaling up broker storage

You can increase the amount of EBS storage per broker. You can't decrease the storage.

Storage volumes remain available during this scaling-up operation.

Important

When storage is scaled for an MSK cluster, the additional storage is made available right
away. However, the cluster requires a cool-down period after every storage scaling event.
Amazon MSK uses this cool-down period to optimize the cluster before it can be scaled

Scaling up broker storage 36

https://docs.aws.amazon.com/cli/latest/reference/kafka/update-storage.html
https://docs.aws.amazon.com//msk/latest/developerguide/msk-configuration-properties.html#msk-topic-confinguration
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

again. This period can range from a minimum of 6 hours to over 24 hours, depending
on the cluster's storage size and utilization and on traffic. This is applicable for both
auto scaling events and manual scaling using the UpdateBrokerStorage operation. For
information about right-sizing your storage, see Best practices.

You can use tiered storage to scale up to unlimited amounts of storage for your broker. See, Tiered
storage.

Topics

• Automatic scaling

• Manual scaling

Automatic scaling

To automatically expand your cluster's storage in response to increased usage, you can configure
an Application Auto-Scaling policy for Amazon MSK. In an auto-scaling policy, you set the target
disk utilization and the maximum scaling capacity.

Before you use automatic scaling for Amazon MSK, you should consider the following:

•
Important

A storage scaling action can occur only once every six hours.

We recommend that you start with a right-sized storage volume for your storage demands. For
guidance on right-sizing your cluster, see Right-size your cluster: Number of brokers per cluster.

• Amazon MSK does not reduce cluster storage in response to reduced usage. Amazon MSK does
not support decreasing the size of storage volumes. If you need to reduce the size of your cluster
storage, you must migrate your existing cluster to a cluster with smaller storage. For information
about migrating a cluster, see Migration.

• Amazon MSK does not support automatic scaling in the Asia Pacific (Osaka) and Africa (Cape
Town) Regions.

• When you associate an auto-scaling policy with your cluster, Amazon EC2 Auto Scaling
automatically creates an Amazon CloudWatch alarm for target tracking. If you delete a cluster

Scaling up broker storage 37

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-nodes-storage.html#UpdateBrokerStorage

Amazon Managed Streaming for Apache Kafka Developer Guide

with an auto-scaling policy, this CloudWatch alarm persists. To delete the CloudWatch alarm, you
should remove an auto-scaling policy from a cluster before you delete the cluster. To learn more
about target tracking, see Target tracking scaling policies for Amazon EC2 Auto Scaling in the
Amazon EC2 Auto Scaling User Guide.

Auto-scaling policy details

An auto-scaling policy defines the following parameters for your cluster:

• Storage Utilization Target: The storage utilization threshold that Amazon MSK uses to trigger
an auto-scaling operation. You can set the utilization target between 10% and 80% of the
current storage capacity. We recommend that you set the Storage Utilization Target between
50% and 60%.

• Maximum Storage Capacity: The maximum scaling limit that Amazon MSK can set for your
broker storage. You can set the maximum storage capacity up to 16 TiB per broker. For more
information, see Amazon MSK quota.

When Amazon MSK detects that your Maximum Disk Utilization metric is equal to or greater
than the Storage Utilization Target setting, it increases your storage capacity by an
amount equal to the larger of two numbers: 10 GiB or 10% of current storage. For example, if you
have 1000 GiB, that amount is 100 GiB. The service checks your storage utilization every minute.
Further scaling operations continue to increase storage by an amount equal to the larger of two
numbers: 10 GiB or 10% of current storage.

To determine if auto-scaling operations have occurred, use the ListClusterOperations operation.

Setting up automatic scaling for your Amazon MSK cluster

You can use the Amazon MSK console, the Amazon MSK API, or AWS CloudFormation to implement
automatic scaling for storage. CloudFormation support is available through Application Auto
Scaling.

Note

You can't implement automatic scaling when you create a cluster. You must first create the
cluster, and then create and enable an auto-scaling policy for it. However, you can create
the policy while Amazon MSK service creates your cluster.

Scaling up broker storage 38

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-operations.html#ListClusterOperations
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Setting up automatic scaling using the AWS Management Console

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. In the list of clusters, choose your cluster. This takes you to a page that lists details about the
cluster.

3. In the Auto scaling for storage section, choose Configure.

4. Create and name an auto-scaling policy. Specify the storage utilization target, the maximum
storage capacity, and the target metric.

5. Choose Save changes.

When you save and enable the new policy, the policy becomes active for the cluster. Amazon MSK
then expands the cluster's storage when the storage utilization target is reached.

Setting up automatic scaling using the CLI

1. Use the RegisterScalableTarget command to register a storage utilization target.

2. Use the PutScalingPolicy command to create an auto-expansion policy.

Setting up automatic-scaling using the API

1. Use the RegisterScalableTarget API to register a storage utilization target.

2. Use the PutScalingPolicy API to create an auto-expansion policy.

Manual scaling

To increase storage, wait for the cluster to be in the ACTIVE state. Storage scaling has a cool-down
period of at least six hours between events. Even though the operation makes additional storage
available right away, the service performs optimizations on your cluster that can take up to 24
hours or more. The duration of these optimizations is proportional to your storage size.

Scaling up broker storage using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster for which you want to update broker storage.

3. In the Storage section, choose Edit.

Scaling up broker storage 39

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/#available-commands
https://docs.aws.amazon.com/cli/latest/reference/application-autoscaling/#available-commands
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

4. Specify the storage volume you want. You can only increase the amount of storage, you can't
decrease it.

5. Choose Save changes.

Scaling up broker storage using the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster. If you don't have the ARN for your cluster, you can
find it by listing all clusters. For more information, see the section called “Listing clusters”.

Replace Current-Cluster-Version with the current version of the cluster.

Important

Cluster versions aren't simple integers. To find the current version of the cluster, use the
DescribeCluster operation or the describe-cluster AWS CLI command. An example version is
KTVPDKIKX0DER.

The Target-Volume-in-GiB parameter represents the amount of storage that you want each
broker to have. It is only possible to update the storage for all the brokers. You can't specify
individual brokers for which to update storage. The value you specify for Target-Volume-in-
GiB must be a whole number that is greater than 100 GiB. The storage per broker after the update
operation can't exceed 16384 GiB.

aws kafka update-broker-storage --cluster-arn ClusterArn --current-version Current-
Cluster-Version --target-broker-ebs-volume-info '{"KafkaBrokerNodeId": "All",
 "VolumeSizeGB": Target-Volume-in-GiB}'

Scaling up broker storage using the API

To update a broker storage using the API, see UpdateBrokerStorage.

Provisioning storage throughput

Amazon MSK brokers persist data on storage volumes. Storage I/O is consumed when producers
write to the cluster, when data is replicated between brokers, and when consumers read data that
isn't in memory. The volume storage throughput is the rate at which data can be written into and

Provisioning storage throughput 40

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-nodes-storage.html#UpdateBrokerStorage

Amazon Managed Streaming for Apache Kafka Developer Guide

read from a storage volume. Provisioned storage throughput is the ability to specify that rate for
the brokers in your cluster.

You can specify the provisioned throughput rate in MiB per second for clusters whose brokers
are of size kafka.m5.4xlarge or larger and if the storage volume is 10 GiB or greater. It is
possible to specify provisioned throughput during cluster creation. You can also enable or disable
provisioned throughput for a cluster that is in the ACTIVE state.

Throughput bottlenecks

There are multiple causes of bottlenecks in broker throughput: volume throughput, Amazon EC2 to
Amazon EBS network throughput, and Amazon EC2 egress throughput. You can enable provisioned
storage throughput to adjust volume throughput. However, broker throughput limitations can be
caused by Amazon EC2 to Amazon EBS network throughput and Amazon EC2 egress throughput.

Amazon EC2 egress throughput is impacted by the number of consumer groups and consumers per
consumer groups. Also, both Amazon EC2 to Amazon EBS network throughput and Amazon EC2
egress throughput are higher for larger broker sizes.

For volume sizes of 10 GiB or larger, you can provision storage throughput of 250 MiB per second
or greater. 250 MiB per second is the default. To provision storage throughput, you must choose
broker size kafka.m5.4xlarge or larger (or kafka.m7g.2xlarge or larger), and you can specify
maximum throughput as shown in the following table.

broker size Maximum storage throughput (MiB/second)

kafka.m5.4xlarge 593

kafka.m5.8xlarge 850

kafka.m5.12xlarge 1000

kafka.m5.16xlarge 1000

kafka.m5.24xlarge 1000

kafka.m7g.2xlarge 312.5

kafka.m7g.4xlarge 625

kafka.m7g.8xlarge 1000

Provisioning storage throughput 41

Amazon Managed Streaming for Apache Kafka Developer Guide

broker size Maximum storage throughput (MiB/second)

kafka.m7g.12xlarge 1000

kafka.m7g.16xlarge 1000

Measuring storage throughput

You can use the VolumeReadBytes and VolumeWriteBytes metrics to measure the average
storage throughput of a cluster. The sum of these two metrics gives the average storage
throughput in bytes. To get the average storage throughput for a cluster, set these two metrics to
SUM and the period to 1 minute, then use the following formula.

Average storage throughput in MiB/s = (Sum(VolumeReadBytes) + Sum(VolumeWriteBytes)) /
 (60 * 1024 * 1024)

For information about the VolumeReadBytes and VolumeWriteBytes metrics, see the section
called “PER_BROKER Level monitoring”.

Configuration update

You can update your Amazon MSK configuration either before or after you turn on provisioned
throughput. However, you won't see the desired throughput until you perform both actions: update
the num.replica.fetchers configuration parameter and turn on provisioned throughput.

In the default Amazon MSK configuration, num.replica.fetchers has a value of 2. To update
your num.replica.fetchers, you can use the suggested values from the following table. These
values are for guidance purposes. We recommend that you adjust these values based on your use
case.

broker size num.replica.fetchers

kafka.m5.4xlarge 4

kafka.m5.8xlarge 8

kafka.m5.12xlarge 14

Provisioning storage throughput 42

Amazon Managed Streaming for Apache Kafka Developer Guide

broker size num.replica.fetchers

kafka.m5.16xlarge 16

kafka.m5.24xlarge 16

Your updated configuration may not take effect for up to 24 hours, and may take longer when a
source volume is not fully utilized. However, transitional volume performance at least equals the
performance of source storage volumes during the migration period. A fully-utilized 1 TiB volume
typically takes about six hours to migrate to an updated configuration.

Provisioning storage throughput using the AWS Management Console

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. Choose Create cluster.

3. Choose Custom create.

4. Specify a name for the cluster.

5. In the Storage section, choose Enable.

6. Choose a value for storage throughput per broker.

7. Choose a VPC, zones and subnets, and a security group.

8. Choose Next.

9. At the bottom of the Security step, choose Next.

10. At the bottom of the Monitoring and tags step, choose Next.

11. Review the cluster settings, then choose Create cluster.

Provisioning storage throughput using the AWS CLI

This section shows an example of how you can use the AWS CLI to create a cluster with provisioned
throughput enabled.

1. Copy the following JSON and paste it into a file. Replace the subnet IDs and security group ID
placeholders with values from your account. Name the file cluster-creation.json and
save it.

Provisioning storage throughput 43

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

{
 "Provisioned": {
 "BrokerNodeGroupInfo":{
 "InstanceType":"kafka.m5.4xlarge",
 "ClientSubnets":[
 "Subnet-1-ID",
 "Subnet-2-ID"
],
 "SecurityGroups":[
 "Security-Group-ID"
],
 "StorageInfo": {
 "EbsStorageInfo": {
 "VolumeSize": 10,
 "ProvisionedThroughput": {
 "Enabled": true,
 "VolumeThroughput": 250
 }
 }
 }
 },
 "EncryptionInfo": {
 "EncryptionInTransit": {
 "InCluster": false,
 "ClientBroker": "PLAINTEXT"
 }
 },
 "KafkaVersion":"2.8.1",
 "NumberOfBrokerNodes": 2
 },
 "ClusterName": "provisioned-throughput-example"
}

2. Run the following AWS CLI command from the directory where you saved the JSON file in the
previous step.

aws kafka create-cluster-v2 --cli-input-json file://cluster-creation.json

Provisioning storage throughput using the API

To configure provisioned storage throughput while creating a cluster, use CreateClusterV2.

Provisioning storage throughput 44

https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters.html#CreateClusterV2

Amazon Managed Streaming for Apache Kafka Developer Guide

Updating the broker size

You can scale your MSK cluster on demand by changing the size of your brokers without
reassigning Apache Kafka partitions. Changing the size of your brokers gives you the flexibility
to adjust your MSK cluster's compute capacity based on changes in your workloads, without
interrupting your cluster I/O. Amazon MSK uses the same broker size for all the brokers in a given
cluster.

This section describes how to update the broker size for your MSK cluster. You can update your
cluster broker size from M5 or T3 to M7g, or from M7g to M5. Be aware that migrating to a smaller
broker size can decrease performance and reduce maxiumum achievable throughput per broker.
Migrating to a larger broker size can increase performance but may cost more.

The broker-size update happens in a rolling fashion while the cluster is up and running. This
means that Amazon MSK takes down one broker at a time to perform the broker-size update.
For information about how to make a cluster highly available during a broker-size update, see
the section called “Build highly available clusters”. To further reduce any potential impact on
productivity, you can perform the broker-size update during a period of low traffic.

During a broker-size update, you can continue to produce and consume data. However, you must
wait until the update is done before you can reboot brokers or invoke any of the update operations
listed under Amazon MSK operations.

If you want to update your cluster to a smaller broker size, we recommend that you try the update
on a test cluster first to see how it affects your scenario.

Important

You can't update a cluster to a smaller broker size if the number of partitions per broker
exceeds the maximum number specified in the section called “ Right-size your cluster:
Number of partitions per broker”.

Updating the broker size using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster for which you want to update the broker size.

3. On the details page for the cluster, find the Brokers summary section, and choose Edit broker
size.

Updating the broker size 45

https://docs.aws.amazon.com/msk/1.0/apireference/operations.html
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

4. Choose the broker size you want from the list.

5. Save changes.

Updating the broker size using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN)
that you obtained when you created your cluster. If you don't have the ARN for your cluster,
you can find it by listing all clusters. For more information, see the section called “Listing
clusters”.

Replace Current-Cluster-Version with the current version of the cluster and
TargetType with the new size that you want the brokers to be. To learn more about broker
sizes, see the section called “Broker sizes”.

aws kafka update-broker-type --cluster-arn ClusterArn --current-version Current-
Cluster-Version --target-instance-type TargetType

The following is an example of how to use this command:

aws kafka update-broker-type --cluster-arn "arn:aws:kafka:us-
east-1:0123456789012:cluster/exampleName/abcd1234-0123-abcd-5678-1234abcd-1" --
current-version "K1X5R6FKA87" --target-instance-type kafka.m5.large

The output of this command looks like the following JSON example.

{
 "ClusterArn": "arn:aws:kafka:us-east-1:0123456789012:cluster/exampleName/
abcd1234-0123-abcd-5678-1234abcd-1",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"
}

2. To get the result of the update-broker-type operation, run the following command,
replacing ClusterOperationArn with the ARN that you obtained in the output of the
update-broker-type command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

Updating the broker size using the AWS CLI 46

Amazon Managed Streaming for Apache Kafka Developer Guide

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "982168a3-939f-11e9-8a62-538df00285db",
 "ClusterArn": "arn:aws:kafka:us-east-1:0123456789012:cluster/exampleName/
abcd1234-0123-abcd-5678-1234abcd-1",
 "CreationTime": "2021-01-09T02:24:22.198000+00:00",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-operation/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "UPDATE_COMPLETE",
 "OperationType": "UPDATE_BROKER_TYPE",
 "SourceClusterInfo": {
 "InstanceType": "t3.small"
 },
 "TargetClusterInfo": {
 "InstanceType": "m5.large"
 }
 }
}

If OperationState has the value UPDATE_IN_PROGRESS, wait a while, then run the
describe-cluster-operation command again.

Updating the broker size using the API

To update the broker size using the API, see UpdateBrokerType.

You can use UpdateBrokerType to update your cluster broker size from M5 or T3 to M7g, or from
M7g to M5.

Updating the configuration of an Amazon MSK cluster

To update the configuration of a cluster, make sure that the cluster is in the ACTIVE state. You
must also ensure that the number of partitions per broker on your MSK cluster is under the limits
described in the section called “ Right-size your cluster: Number of partitions per broker”. You can't
update the configuration of a cluster that exceeds these limits.

Updating the broker size using the API 47

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-nodes-type.html#UpdateBrokerType

Amazon Managed Streaming for Apache Kafka Developer Guide

For information about MSK configuration, including how to create a custom configuration, which
properties you can update, and what happens when you update the configuration of an existing
cluster, see Configuration.

Updating the configuration of a cluster using the AWS CLI

1. Copy the following JSON and save it to a file. Name the file configuration-info.json.
Replace ConfigurationArn with the Amazon Resource Name (ARN) of the configuration that
you want to use to update the cluster. The ARN string must be in quotes in the following JSON.

Replace Configuration-Revision with the revision of the configuration that you want to
use. Configuration revisions are integers (whole numbers) that start at 1. This integer mustn't
be in quotes in the following JSON.

{
 "Arn": ConfigurationArn,
 "Revision": Configuration-Revision
}

2. Run the following command, replacing ClusterArn with the ARN that you obtained when
you created your cluster. If you don't have the ARN for your cluster, you can find it by listing all
clusters. For more information, see the section called “Listing clusters”.

Replace Path-to-Config-Info-File with the path to your configuration info file. If you
named the file that you created in the previous step configuration-info.json and
saved it in the current directory, then Path-to-Config-Info-File is configuration-
info.json.

Replace Current-Cluster-Version with the current version of the cluster.

Important

Cluster versions aren't simple integers. To find the current version of the cluster, use
the DescribeCluster operation or the describe-cluster AWS CLI command. An example
version is KTVPDKIKX0DER.

Updating the configuration of a cluster using the AWS CLI 48

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

aws kafka update-cluster-configuration --cluster-arn ClusterArn --configuration-
info file://Path-to-Config-Info-File --current-version Current-Cluster-Version

The following is an example of how to use this command:

aws kafka update-cluster-configuration --cluster-arn "arn:aws:kafka:us-
east-1:0123456789012:cluster/exampleName/abcd1234-0123-abcd-5678-1234abcd-1" --
configuration-info file://c:\users\tester\msk\configuration-info.json --current-
version "K1X5R6FKA87"

The output of this update-cluster-configuration command looks like the following
JSON example.

{
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"
}

3. To get the result of the update-cluster-configuration operation, run the following
command, replacing ClusterOperationArn with the ARN that you obtained in the output of
the update-cluster-configuration command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "982168a3-939f-11e9-8a62-538df00285db",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2019-06-20T21:08:57.735Z",

Updating the configuration of a cluster using the AWS CLI 49

Amazon Managed Streaming for Apache Kafka Developer Guide

 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "UPDATE_COMPLETE",
 "OperationType": "UPDATE_CLUSTER_CONFIGURATION",
 "SourceClusterInfo": {},
 "TargetClusterInfo": {
 "ConfigurationInfo": {
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/
ExampleConfigurationName/abcdabcd-abcd-1234-abcd-abcd123e8e8e-1",
 "Revision": 1
 }
 }
 }
}

In this output, OperationType is UPDATE_CLUSTER_CONFIGURATION. If OperationState
has the value UPDATE_IN_PROGRESS, wait a while, then run the describe-cluster-
operation command again.

Updating the configuration of a cluster using the API

To use the API to update the configuration of a cluster, see UpdateClusterConfiguration.

Expanding an Amazon MSK cluster

Use this Amazon MSK operation when you want to increase the number of brokers in your MSK
cluster. To expand a cluster, make sure that it is in the ACTIVE state.

Important

If you want to expand an MSK cluster, make sure to use this Amazon MSK operation . Don't
try to add brokers to a cluster without using this operation.

For information about how to rebalance partitions after you add brokers to a cluster, see the
section called “Reassign partitions”.

Updating the configuration of a cluster using the API 50

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-configuration.html#UpdateClusterConfiguration

Amazon Managed Streaming for Apache Kafka Developer Guide

Expanding a cluster using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster whose number of brokers you want to increase.

3. On the cluster details page, choose the Edit button next to the Cluster-Level Broker Details
heading.

4. Enter the number of brokers that you want the cluster to have per Availability Zone and then
choose Save changes.

Expanding a cluster using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN)
that you obtained when you created your cluster. If you don't have the ARN for your cluster,
you can find it by listing all clusters. For more information, see the section called “Listing
clusters”.

Replace Current-Cluster-Version with the current version of the cluster.

Important

Cluster versions aren't simple integers. To find the current version of the cluster, use
the DescribeCluster operation or the describe-cluster AWS CLI command. An example
version is KTVPDKIKX0DER.

The Target-Number-of-Brokers parameter represents the total number of broker nodes
that you want the cluster to have when this operation completes successfully. The value you
specify for Target-Number-of-Brokers must be a whole number that is greater than
the current number of brokers in the cluster. It must also be a multiple of the number of
Availability Zones.

aws kafka update-broker-count --cluster-arn ClusterArn --current-version Current-
Cluster-Version --target-number-of-broker-nodes Target-Number-of-Brokers

The output of this update-broker-count operation looks like the following JSON.

Expanding a cluster using the AWS Management Console 51

https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

{

 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"
}

2. To get the result of the update-broker-count operation, run the following command,
replacing ClusterOperationArn with the ARN that you obtained in the output of the
update-broker-count command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "c0b7af47-8591-45b5-9c0c-909a1a2c99ea",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2019-09-25T23:48:04.794Z",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "UPDATE_COMPLETE",
 "OperationType": "INCREASE_BROKER_COUNT",
 "SourceClusterInfo": {
 "NumberOfBrokerNodes": 9
 },
 "TargetClusterInfo": {
 "NumberOfBrokerNodes": 12
 }
 }
}

Expanding a cluster using the AWS CLI 52

Amazon Managed Streaming for Apache Kafka Developer Guide

In this output, OperationType is INCREASE_BROKER_COUNT. If OperationState has the
value UPDATE_IN_PROGRESS, wait a while, then run the describe-cluster-operation
command again.

Expanding a cluster using the API

To increase the number of brokers in a cluster using the API, see UpdateBrokerCount.

Remove a broker from an Amazon MSK cluster

Use this Amazon MSK operation when you want to remove brokers from Amazon Managed
Streaming for Apache Kafka (MSK) provisioned clusters. You can reduce your cluster’s storage and
compute capacity by removing sets of brokers, with no availability impact, data durability risk, or
disruption to your data streaming applications.

You can add more brokers to your cluster to handle increase in traffic, and remove brokers when
the traffic subsides. With broker addition and removal capability, you can best utilize your cluster
capacity and optimize your MSK infrastructure costs. Broker removal gives you broker-level control
over existing cluster capacity to fit your workload needs and avoid migration to another cluster.

Use the AWS Console, Command Line Interface (CLI), SDK, or AWS CloudFormation to reduce
broker count of your provisioned cluster. MSK picks the brokers that do not have any partitions on
them (except for canary topics) and prevents applications from producing data to those brokers,
while safely removing those brokers from the cluster.

You should remove one broker per Availability Zone, if you want to reduce a cluster’s storage and
compute. For example, you can remove two brokers from a two Availability Zone cluster, or three
brokers from a three Availability Zone cluster in a single broker removal operation.

For information about how to rebalance partitions after you remove brokers from a cluster, see the
section called “Reassign partitions”.

You can remove brokers from all M5 and M7g based MSK provisioned clusters, regardless of the
instance size.

Broker removal is supported on Kafka versions 2.8.1 and above, including on KRaft mode clusters.

Topics

Expanding a cluster using the API 53

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-nodes-count.html#UpdateBrokerCount

Amazon Managed Streaming for Apache Kafka Developer Guide

• Prepare to remove brokers by removing all partitions

• Remove a broker with the AWS Management Console

• Remove a broker with the AWS CLI

• Remove a broker with the AWS API

Prepare to remove brokers by removing all partitions

Before you start the broker removal process, first move all partitions, except ones for topics
__amazon_msk_canary and __amazon_msk_canary_state from the brokers you plan to
remove. These are internal topics that Amazon MSK creates for cluster health and diagnostic
metrics.

You can use Kafka admin APIs or Cruise Control to move partitions to other brokers that you intend
to retain in the cluster. See Reassign partitions.

Example process to remove partitions

This section is an example of how to remove partitions from the broker you intend to remove.
Assume you have a cluster with 6 brokers, 2 brokers in each AZ, and it has four topics:

• __amazon_msk_canary

• __consumer_offsets

• __amazon_msk_connect_offsets_my-mskc-connector_12345678-09e7-
c657f7e4ff32-2

• msk-brk-rmv

1. Create a client machine as described in Create a client machine.

2. After configuring the client machine, run the following command to list all the available topics
in your cluster.

./bin/kafka-topics.sh --bootstrap-server “CLUSTER_BOOTSTRAP_STRING” --list

In this example, we see four topic names, __amazon_msk_canary, __consumer_offsets,
__amazon_msk_connect_offsets_my-mskc-connector_12345678-09e7-
c657f7e4ff32-2, and msk-brk-rmv.

Remove broker partitions 54

https://docs.aws.amazon.com/msk/latest/developerguide/bestpractices.html#bestpractices-balance-cluster
https://docs.aws.amazon.com/msk/latest/developerguide/create-client-machine.html

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Create a json file called topics.json on the client machine and add all the user topic names
as in the following code example. You don’t need to include the __amazon_msk_canary topic
name as this is a service managed topic that will be automatically moved when necessary.

{
"topics": [
{"topic": "msk-brk-rmv"},
{"topic": "__consumer_offsets"},
{"topic": "__amazon_msk_connect_offsets_my-mskc-connector_12345678-09e7-
c657f7e4ff32-2"}
],
"version":1
}

4. Run the following command to generate a proposal to move partitions to only 3 brokers out of
6 brokers on the cluster.

./bin/kafka-reassign-partitions.sh --bootstrap-server “CLUSTER_BOOTSTRAP_STRING” --
topics-to-move-json-file topics.json --broker-list 1,2,3 --generate

5. Create a file called reassignment-file.json and copy the proposed partition
reassignment configuration you got from above command.

6. Run the following command to move partitions that you specified in the reassignment-
file.json.

./bin/kafka-reassign-partitions.sh --bootstrap-server “CLUSTER_BOOTSTRAP_STRING” --
reassignment-json-file reassignment-file.json --execute

The output looks similar to the following:

Successfully started partition reassignments for morpheus-test-topic-1-0,test-
topic-1-0

7. Run the following command to verify all partitions have moved.

./bin/kafka-reassign-partitions.sh --bootstrap-server “CLUSTER_BOOTSTRAP_STRING” --
reassignment-json-file reassignment-file.json --verify

The output looks similar to the following. Monitor the status until all partitions in your
requested topics have been reassignmed successfully:

Remove broker partitions 55

Amazon Managed Streaming for Apache Kafka Developer Guide

Status of partition reassignment:
Reassignment of partition msk-brk-rmv-0 is completed.
Reassignment of partition msk-brk-rmv-1 is completed.
Reassignment of partition __consumer_offsets-0 is completed.
Reassignment of partition __consumer_offsets-1 is completed.

8. When the status indicates that the partition reassignment for each partition is completed,
monitor the UserPartitionExists metrics for 5 minutes to ensure it displays 0 for the
brokers from which you moved the partitions. After confirming this, you can proceed to
remove the broker from the cluster.

Remove a broker with the AWS Management Console

To remove brokers with the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster that contains brokers you want to remove.

3. On the cluster details page, choose the Actions button and select the Edit number of brokers
option.

4. Enter the number of brokers that you want the cluster to have per Availability Zone. The
console summarizes the number of brokers across availability zones that will be removed.
Make sure this what you want.

5. Choose Save changes.

To prevent accidental broker removal, the console asks you to confirm that you want to delete
brokers.

Remove a broker with the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN)
that you obtained when you created your cluster. If you don't have the ARN for your cluster, you
can find it by listing all clusters. For more information, Listing Amazon MSK clusters. Replace
Current-Cluster-Version with the current version of the cluster.

Remove a broker with the Console 56

https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/msk/latest/developerguide/msk-list-clusters.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Important

Cluster versions aren't simple integers. To find the current version of the cluster, use the
DescribeCluster operation or the describe-cluster AWS CLI command. An example version is
KTVPDKIKX0DER.

The Target-Number-of-Brokers parameter represents the total number of broker nodes that
you want the cluster to have when this operation completes successfully. The value you specify for
Target-Number-of-Brokers must be a whole number that is less than the current number of
brokers in the cluster. It must also be a multiple of the number of Availability Zones.

aws kafka update-broker-count --cluster-arn ClusterArn --current-version Current-
Cluster-Version --target-number-of-broker-nodes Target-Number-of-Brokers

The output of this update-broker-count operation looks like the following JSON.

{
"ClusterOperationInfo": {
"ClientRequestId": "c0b7af47-8591-45b5-9c0c-909a1a2c99ea",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2019-09-25T23:48:04.794Z",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "UPDATE_COMPLETE",
 "OperationType": "DECREASE_BROKER_COUNT",
 "SourceClusterInfo": {
"NumberOfBrokerNodes": 12
 },
 "TargetClusterInfo": {
"NumberOfBrokerNodes": 9
 }
 }
}

In this output, OperationType is DECREASE_BROKER_COUNT. If OperationState has the value
UPDATE_IN_PROGRESS, wait a while, then run the describe-cluster-operation command
again.

Remove a broker with the CLI 57

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Remove a broker with the AWS API

To remove brokers in a cluster using the API, see UpdateBrokerCount in the Amazon Managed
Streaming for Apache Kafka API Reference.

Updating security settings of a cluster

Use this Amazon MSK operation to update the authentication and client-broker encryption settings
of your MSK cluster. You can also update the Private Security Authority used to sign certificates for
mutual TLS authentication. You can't change the in-cluster (broker-to-broker) encryption setting.

The cluster must be in the ACTIVE state for you to update its security settings.

If you turn on authentication using IAM, SASL, or TLS, you must also turn on encryption between
clients and brokers. The following table shows the possible combinations.

Authentication Client-broker encryption
options

Broker-broker encryption

Unauthenticated TLS, PLAINTEXT, TLS_PLAIN
TEXT

Can be on or off.

mTLS TLS, TLS_PLAINTEXT Must be on.

SASL/SCRAM TLS Must be on.

SASL/IAM TLS Must be on.

When client-broker encryption is set to TLS_PLAINTEXT and client-authentication is set to mTLS,
Amazon MSK creates two types of listeners for clients to connect to: one listener for clients to
connect using mTLS authentication with TLS Encryption, and another for clients to connect
without authentication or encryption (plaintext).

For more information about security settings, see Security.

Updating a cluster's security settings using the AWS Management
Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

Remove a broker with the API 58

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-nodes-count.html#clusters-clusterarn-nodes-count-url
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Choose the MSK cluster that you want to update.

3. In the Security settings section, choose Edit.

4. Choose the authentication and encryption settings that you want for the cluster, then choose
Save changes.

Updating a cluster's security settings using the AWS CLI

1. Create a JSON file that contains the encryption settings that you want the cluster to have. The
following is an example.

Note

You can only update the client-broker encryption setting. You can't update the in-
cluster (broker-to-broker) encryption setting.

{"EncryptionInTransit":{"ClientBroker": "TLS"}}

2. Create a JSON file that contains the authentication settings that you want the cluster to have.
The following is an example.

{"Sasl":{"Scram":{"Enabled":true}}}

3. Run the following AWS CLI command:

aws kafka update-security --cluster-arn ClusterArn --current-version Current-
Cluster-Version --client-authentication file://Path-to-Authentication-Settings-
JSON-File --encryption-info file://Path-to-Encryption-Settings-JSON-File

The output of this update-security operation looks like the following JSON.

{

 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"

Updating a cluster's security settings using the AWS CLI 59

Amazon Managed Streaming for Apache Kafka Developer Guide

}

4. To see the status of the update-security operation, run the following command, replacing
ClusterOperationArn with the ARN that you obtained in the output of the update-
security command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "c0b7af47-8591-45b5-9c0c-909a1a2c99ea",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2021-09-17T02:35:47.753000+00:00",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "PENDING",
 "OperationType": "UPDATE_SECURITY",
 "SourceClusterInfo": {},
 "TargetClusterInfo": {}
 }
}

If OperationState has the value PENDING or UPDATE_IN_PROGRESS, wait a while, then run
the describe-cluster-operation command again.

Updating a cluster's security settings using the API

To update the security settings for a cluster using the API, see UpdateSecurity.

Note

The AWS CLI and API operations for updating the security settings of a cluster are
idempotent. This means that if you invoke the security update operation and specify an

Updating a cluster's security settings using the API 60

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-security.html#UpdateSecurity

Amazon Managed Streaming for Apache Kafka Developer Guide

authentication or encryption setting that is the same setting that the cluster currently has,
that setting won't change.

Rebooting a broker for an Amazon MSK cluster

Use this Amazon MSK operation when you want to reboot a broker for your MSK cluster. To reboot
a broker for a cluster, make sure that the cluster in the ACTIVE state.

The Amazon MSK service may reboot the brokers for your MSK cluster during system maintenance,
such as patching or version upgrades. Rebooting a broker manually lets you test resilience of your
Kafka clients to determine how they respond to system maintenance.

Rebooting a broker using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster whose broker you want to reboot.

3. Scroll down to the Broker details section, and choose the broker you want to reboot.

4. Choose the Reboot broker button.

Rebooting a broker using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN)
that you obtained when you created your cluster, and the BrokerId with the ID of the broker
that you want to reboot.

Note

The reboot-broker operation only supports rebooting one broker at a time.

If you don't have the ARN for your cluster, you can find it by listing all clusters. For more
information, see the section called “Listing clusters”.

If you don't have the broker IDs for your cluster, you can find them by listing the broker nodes.
For more information, see list-nodes.

Rebooting a broker for a cluster 61

https://console.aws.amazon.com/msk/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/list-nodes.html

Amazon Managed Streaming for Apache Kafka Developer Guide

aws kafka reboot-broker --cluster-arn ClusterArn --broker-ids BrokerId

The output of this reboot-broker operation looks like the following JSON.

{

 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"
}

2. To get the result of the reboot-broker operation, run the following command, replacing
ClusterOperationArn with the ARN that you obtained in the output of the reboot-
broker command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "c0b7af47-8591-45b5-9c0c-909a1a2c99ea",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2019-09-25T23:48:04.794Z",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "REBOOT_IN_PROGRESS",
 "OperationType": "REBOOT_NODE",
 "SourceClusterInfo": {},
 "TargetClusterInfo": {}
 }
}

When the reboot operation is complete, the OperationState is REBOOT_COMPLETE.

Rebooting a broker using the AWS CLI 62

Amazon Managed Streaming for Apache Kafka Developer Guide

Rebooting a broker using the API

To reboot a broker in a cluster using the API, see RebootBroker.

Impact of broker restarts during patching and other
maintenance

Periodically, Amazon MSK updates software on your brokers. These updates have no impact on
your applications' writes and reads if you follow best practices.

Amazon MSK uses rolling updates for software to maintain high availability of your clusters. During
this process, brokers are rebooted one at a time, and Kafka automatically moves leadership to
another online broker. Kafka clients have built-in mechanisms to automatically detect the change
in leadership for the partitions and continue to write and read data into a MSK cluster.

Following a broker going offline, it is normal to see transient disconnect errors on your clients. You
will also observe for a brief window (up to 2 mins, typically less) some spikes in p99 read and write
latency (typically high milliseconds, up to ~2 seconds). These spikes are expected and are caused by
the client re-reconnecting to a new leader broker; it does not impact your produce or consume and
will resolve following the re-connect.

You will also observe an increase in the metric UnderReplicatedPartitions, which is expected
as the partitions on the broker that was shutdown are no longer replicating data. This has no
impact on applications' writes and reads as replicas for these partitions that are hosted on other
brokers are now serving the requests.

After the software update, when the broker comes back online, it needs to "catch up" on the
messages produced while it was offline. During catch up, you may also observe an increase in usage
of the volume throughput and CPU. These should have no impact on writes and reads into the
cluster if you have enough CPU, memory, network, and volume resources on your brokers.

Tagging an Amazon MSK cluster

You can assign your own metadata in the form of tags to an Amazon MSK resource, such as an
MSK cluster. A tag is a key-value pair that you define for the resource. Using tags is a simple yet
powerful way to manage AWS resources and organize data, including billing data.

Topics

Rebooting a broker using the API 63

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-reboot-broker.html#RebootBroker

Amazon Managed Streaming for Apache Kafka Developer Guide

• Tag basics

• Tracking costs using tagging

• Tag restrictions

• Tagging resources using the Amazon MSK API

Tag basics

You can use the Amazon MSK API to complete the following tasks:

• Add tags to an Amazon MSK resource.

• List the tags for an Amazon MSK resource.

• Remove tags from an Amazon MSK resource.

You can use tags to categorize your Amazon MSK resources. For example, you can categorize your
Amazon MSK clusters by purpose, owner, or environment. Because you define the key and value for
each tag, you can create a custom set of categories to meet your specific needs. For example, you
might define a set of tags that help you track clusters by owner and associated application.

The following are several examples of tags:

• Project: Project name

• Owner: Name

• Purpose: Load testing

• Environment: Production

Tracking costs using tagging

You can use tags to categorize and track your AWS costs. When you apply tags to your AWS
resources, including Amazon MSK clusters, your AWS cost allocation report includes usage and
costs aggregated by tags. You can organize your costs across multiple services by applying tags
that represent business categories (such as cost centers, application names, or owners). For more
information, see Use Cost Allocation Tags for Custom Billing Reports in the AWS Billing User Guide.

Tag restrictions

The following restrictions apply to tags in Amazon MSK.

Tag basics 64

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Basic restrictions

• The maximum number of tags per resource is 50.

• Tag keys and values are case-sensitive.

• You can't change or edit tags for a deleted resource.

Tag key restrictions

• Each tag key must be unique. If you add a tag with a key that's already in use, your new tag
overwrites the existing key-value pair.

• You can't start a tag key with aws: because this prefix is reserved for use by AWS. AWS creates
tags that begin with this prefix on your behalf, but you can't edit or delete them.

• Tag keys must be between 1 and 128 Unicode characters in length.

• Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - @.

Tag value restrictions

• Tag values must be between 0 and 255 Unicode characters in length.

• Tag values can be blank. Otherwise, they must consist of the following characters: Unicode
letters, digits, white space, and any of the following special characters: _ . / = + - @.

Tagging resources using the Amazon MSK API

You can use the following operations to tag or untag an Amazon MSK resource or to list the current
set of tags for a resource:

• ListTagsForResource

• TagResource

• UntagResource

Tagging resources using the Amazon MSK API 65

https://docs.aws.amazon.com//msk/1.0/apireference/tags-resourcearn.html#ListTagsForResource
https://docs.aws.amazon.com//msk/1.0/apireference/tags-resourcearn.html#TagResource
https://docs.aws.amazon.com//msk/1.0/apireference/tags-resourcearn.html#UntagResource

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK configuration

Amazon Managed Streaming for Apache Kafka provides a default configuration for brokers,
topics, and Apache ZooKeeper nodes. You can also create custom configurations and use them to
create new MSK clusters or to update existing clusters. An MSK configuration consists of a set of
properties and their corresponding values.

Topics

• Custom MSK configurations

• The default Amazon MSK configuration

• Guidelines for tiered storage topic-level configuration

• Amazon MSK configuration operations

Custom MSK configurations

You can use Amazon MSK to create a custom MSK configuration where you set the following
properties. Properties that you don't set explicitly get the values they have in the section called
“Default configuration”. For more information about configuration properties, see Apache Kafka
Configuration.

Apache Kafka configuration properties

Name Description

allow.everyone.if.no.acl.found If you want to set this property tofalse,
first make sure you define Apache Kafka ACLs
for your cluster. If you set this property to
falseand you don't first define Apache Kafka
ACLs, you lose access to the cluster. If that
happens, you can update the configuration
again and set this property to true to regain
access to the cluster.

auto.create.topics.enable Enables topic auto-creation on the server.

compression.type The final compression type for a given topic.
You can set this property to the standard

Custom configurations 66

https://kafka.apache.org/documentation/#configuration
https://kafka.apache.org/documentation/#configuration

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

compression codecs (gzip, snappy, lz4, and
zstd). It additionally accepts uncompres
sed . This value is equivalent to no compressi
on. If you set the value to producer, it means
retain the original compression codec that the
producer sets.

connections.max.idle.ms Idle connections timeout in milliseconds. The
server socket processor threads close the
connections that are idle for more than the
value that you set for this property.

default.replication.factor The default replication factor for automatic
ally created topics.

delete.topic.enable Enables the delete topic operation. If you
turn off this setting, you can't delete a topic
through the admin tool.

group.initial.rebalance.delay.ms Amount of time the group coordinator waits
for more data consumers to join a new group
before the group coordinator performs the
first rebalance. A longer delay means potential
ly fewer rebalances, but this increases the time
until processing begins.

group.max.session.timeout.ms Maximum session timeout for registered
consumers. Longer timeouts give consumers
more time to process messages between
heartbeats at the cost of a longer time to
detect failures.

Custom configurations 67

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

group.min.session.timeout.ms Minimum session timeout for registered
consumers. Shorter timeouts result in quicker
failure detection at the cost of more frequent
consumer heartbeats. This can overwhelm
broker resources.

leader.imbalance.per.broker.percentage The ratio of leader imbalance allowed per
broker. The controller triggers a leader balance
if it exceeds this value per broker. This value is
specified in percentage.

log.cleaner.delete.retention.ms Amount of time that you want Apache Kafka
to retain deleted records. The minimum value
is 0.

log.cleaner.min.cleanable.ratio This configuration property can have values
between 0 and 1. This value determines how
frequently the log compactor attempts to
clean the log (if log compaction is enabled).
By default, Apache Kafka avoids cleaning a
log if more than 50% of the log has been
compacted. This ratio bounds the maximum
space that the log wastes with duplicates (at
50%, this means at most 50% of the log could
be duplicates). A higher ratio means fewer,
more efficient cleanings, but more wasted
space in the log.

log.cleanup.policy The default cleanup policy for segments
beyond the retention window. A comma-sep
arated list of valid policies. Valid policies are
delete and compact. For Tiered Storage
enabled clusters, valid policy is delete only.

log.flush.interval.messages Number of messages that accumulate on a log
partition before messages are flushed to disk.

Custom configurations 68

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

log.flush.interval.ms Maximum time in milliseconds that a message
in any topic remains in memory before flushed
to disk. If you don't set this value, the value
in log.flush.scheduler.interval.ms is used. The
minimum value is 0.

log.message.timestamp.difference.max.ms The maximum time difference between the
timestamp when a broker receives a message
and the timestamp specified in the message.
If log.message.timestamp.type=CreateTim
e, a message is rejected if the difference
in timestamp exceeds this threshold. This
configuration is ignored if log.message.timest
amp.type=LogAppendTime.

log.message.timestamp.type Specifies if the timestamp in the message is
the message creation time or the log append
time. The allowed values are CreateTime
and LogAppendTime .

log.retention.bytes Maximum size of the log before deleting it.

log.retention.hours Number of hours to keep a log file before
deleting it, tertiary to the log.retention.ms
property.

log.retention.minutes Number of minutes to keep a log file before
deleting it, secondary to log.retention.ms
property. If you don't set this value, the value
in log.retention.hours is used.

log.retention.ms Number of milliseconds to keep a log file
before deleting it (in milliseconds), If not set,
the value in log.retention.minutes is used.

Custom configurations 69

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

log.roll.ms Maximum time before a new log segment is
rolled out (in milliseconds). If you don't set
this property, the value in log.roll.hours is
used. The minimum possible value for this
property is 1.

log.segment.bytes Maximum size of a single log file.

max.incremental.fetch.session.cache.slots Maximum number of incremental fetch
sessions that are maintained.

message.max.bytes Largest record batch size that Kafka allows.
If you increase this value and there are
consumers older than 0.10.2, you must also
increase the fetch size of the consumers so
that they can fetch record batches this large.

The latest message format version always
groups messages into batches for efficiency.
Previous message format versions don't group
uncompressed records into batches, and in
such a case, this limit only applies to a single
record.

You can set this value per topic with the topic
level max.message.bytes config.

Custom configurations 70

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

min.insync.replicas When a producer sets acks to "all" (or "-1"),
the value in min.insync.replicas specifies
the minimum number of replicas that must
acknowledge a write for the write to be
considered successful. If this minimum cannot
be met, the producer raises an exception
(either NotEnoughReplicas or NotEnough
ReplicasAfterAppend).

You can use values in min.insync.replicas and
acks to enforce greater durability guarantees.
For example, you might create a topic with a
replication factor of 3, set min.insync.replica
s to 2, and produce with acks of "all". This
ensures that the producer raises an exception
if a majority of replicas don't receive a write.

num.io.threads The number of threads that the server uses for
processing requests, which may include disk I/
O.

num.network.threads The number of threads that the server uses to
receive requests from the network and send
responses to it.

num.partitions Default number of log partitions per topic.

num.recovery.threads.per.data.dir The number of threads per data directory to
be used to recover logs at startup and and to
flush them at shutdown.

num.replica.fetchers The number of fetcher threads used to
replicate messages from a source broker.
If you increase this value, you can increase
the degree of I/O parallelism in the follower
broker.

Custom configurations 71

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

offsets.retention.minutes After a consumer group loses all its consumers
(that is, it becomes empty) its offsets are
kept for this retention period before getting
discarded. For standalone consumers (that
is,those that use manual assignment), offsets
expire after the time of the last commit plus
this retention period.

offsets.topic.replication.factor The replication factor for the offsets topic. Set
this value higher to ensure availability. Internal
topic creation fails until the cluster size meets
this replication factor requirement.

replica.fetch.max.bytes Number of bytes of messages to attempt to
fetch for each partition. This is not an absolute
maximum. If the first record batch in the first
non-empty partition of the fetch is larger
than this value, the record batch is returned
to ensure progress. The message.max.bytes
(broker config) or max.message.bytes (topic
config) defines the maximum record batch size
that the broker accepts.

replica.fetch.response.max.bytes The maximum number of bytes expected for
the entire fetch response. Records are fetched
in batches, and if the first record batch in the
first non-empty partition of the fetch is larger
than this value, the record batch will still be
returned to ensure progress. This isn't an
absolute maximum. The message.max.bytes
(broker config) or max.message.bytes (topic
config) properties specify the maximum record
batch size that the broker accepts.

Custom configurations 72

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

replica.lag.time.max.ms If a follower hasn't sent any fetch requests or
hasn't consumed up to the leader's log end
offset for at least this number of milliseconds,
the leader removes the follower from the ISR.

MinValue: 10000

MaxValue = 30000

replica.selector.class The fully-qualified class name that implement
s ReplicaSelector. The broker uses this value
to find the preferred read replica. If you
use Apache Kafka version 2.4.1 or higher,
and want to allow consumers to fetch
from the closest replica, set this property
to org.apache.kafka.common.rep
lica.RackAwareReplicaSelector .
For more information, see the section called
“Apache Kafka version 2.4.1 (use 2.4.1.1
instead)”.

replica.socket.receive.buffer.bytes The socket receive buffer for network
requests.

socket.receive.buffer.bytes The SO_RCVBUF buffer of the socket server
sockets. The minimum value that you can
set for this property is -1. If the value is -1,
Amazon MSK uses the OS default.

socket.request.max.bytes The maximum number of bytes in a socket
request.

socket.send.buffer.bytes The SO_SNDBUF buffer of the socket server
sockets. The minimum value that you can
set for this property is -1. If the value is -1,
Amazon MSK uses the OS default.

Custom configurations 73

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

transaction.max.timeout.ms Maximum timeout for transactions. If the
requested transaction time of a client exceeds
this value, the broker returns an error in
InitProducerIdRequest. This prevents a client
from too large of a timeout, and this can stall
consumers that read from topics included in
the transaction.

transaction.state.log.min.isr Overridden min.insync.replicas configuration
for the transaction topic.

transaction.state.log.replication.factor The replication factor for the transaction
topic. Set this property to a higher value to
increase availability. Internal topic creation
fails until the cluster size meets this replicati
on factor requirement.

transactional.id.expiration.ms The time in milliseconds that the transacti
on coordinator waits to receive any transacti
on status updates for the current transaction
before the coordinator expires its transacti
onal ID. This setting also influences producer
ID expiration because it causes producer IDs
expire when this time elapses after the last
write with the given producer ID. Producer
IDs might expire sooner if the last write from
the producer ID is deleted because of the
retention settings for the topic. The minimum
value for this property is 1 millisecond.

unclean.leader.election.enable Indicates if replicas not in the ISR set should
serve as leader as a last resort, even though
this might result in data loss.

Custom configurations 74

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description

zookeeper.connection.timeout.ms ZooKeeper mode clusters. Maximum time that
the client waits to establish a connection to
ZooKeeper. If you don't set this value, the
value in zookeeper.session.timeout.ms is used.

MinValue = 6000

MaxValue (inclusive) = 18000

zookeeper.session.timeout.ms ZooKeeper mode clusters. The Apache
ZooKeeper session timeout in milliseconds.

MinValue = 6000

MaxValue (inclusive) = 18000

To learn how you can create a custom MSK configuration, list all configurations, or describe them,
see the section called “Configuration operations”. To create an MSK cluster with a custom MSK
configuration, or to update a cluster with a new custom configuration, see How it works.

When you update your existing MSK cluster with a custom MSK configuration, Amazon MSK does
rolling restarts when necessary, and uses best practices to minimize customer downtime. For
example, after Amazon MSK restarts each broker, Amazon MSK tries to let the broker catch up on
data that the broker might have missed during the configuration update before it moves to the
next broker.

Dynamic configuration

In addition to the configuration properties that Amazon MSK provides, you can dynamically set
cluster-level and broker-level configuration properties that don't require a broker restart. You
can dynamically set some configuration properties. These are the properties not marked as read-
only in the table under Broker Configs in the Apache Kafka documentation. For information on
dynamic configuration and example commands, see Updating Broker Configs in the Apache Kafka
documentation.

Dynamic configuration 75

https://kafka.apache.org/documentation/#brokerconfigs
https://kafka.apache.org/documentation/#dynamicbrokerconfigs

Amazon Managed Streaming for Apache Kafka Developer Guide

Note

You can set the advertised.listeners property, but not the listeners property.

Topic-level configuration

You can use Apache Kafka commands to set or modify topic-level configuration properties for new
and existing topics. For more information on topic-level configuration properties and examples on
how to set them, see Topic-Level Configs in the Apache Kafka documentation.

Configuration states

An Amazon MSK configuration can be in one of the following states. To perform an operation on a
configuration, the configuration must be in the ACTIVE or DELETE_FAILED state:

• ACTIVE

• DELETING

• DELETE_FAILED

The default Amazon MSK configuration

When you create an MSK cluster and don't specify a custom MSK configuration, Amazon MSK
creates and uses a default configuration with the values shown in the following table. For
properties that aren't in this table, Amazon MSK uses the defaults associated with your version of
Apache Kafka. For a list of these default values, see Apache Kafka Configuration.

Default configuration values

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

allow.everyone.if.
no.acl.found

If no resource
patterns match a
specific resource,
the resource has no
associated ACLs.

true true

Topic-level configuration 76

https://kafka.apache.org/documentation/#topicconfigs
https://kafka.apache.org/documentation/#configuration

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

In this case, if you
set this property to
true, all users can
access the resource,
not just the super
users.

auto.create.topics
.enable

Enables autocreat
ion of a topic on the
server.

false false

auto.leader.rebala
nce.enable

Enables auto
leader balancing. A
background thread
checks and initiates
leader balance at
regular intervals, if
necessary.

true true

default.replicatio
n.factor

Default replication
factors for automatic
ally created topics.

3 for clusters in 3
Availability Zones,
and 2 for clusters in 2
Availability Zones.

3 for clusters in 3
Availability Zones,
and 2 for clusters in 2
Availability Zones.

Default configuration 77

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

local.retention.bytes The maximum size of
local log segments
for a partition before
it deletes the old
segments. If you
don't set this value,
the value in log.reten
tion.bytes is used.
The effective value
should always be less
than or equal to the
log.retention.byte
s value. The default
value of -2 indicates
that there is no limit
on local retention
. This corresponds
to the retention
.ms/bytes setting
of -1. The propertie
s local.retention.ms
and local.retention.by
tes are similar to
log.retention as
they are used to
determine how long
the log segments
should remain
in local storage.
Existing log.reten
tion.* configura
tions are retention

-2 for unlimited -2 for unlimited

Default configuration 78

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

configurations for the
topic partition. This
includes both local
and remote storage.
Valid values: integers
in [-2; +Inf]

Default configuration 79

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

local.retention.ms The number of
milliseconds to retain
the local log segment
before deletion. If
you don't set this
value, Amazon MSK
uses the value in
log.retention.ms.
The effective value
should always be less
than or equal to the
log.retention.byte
s value. The default
value of -2 indicates
that there is no limit
on local retention.
This corresponds to
the retention.ms/
bytes setting of -1.
The values local.ret
ention.ms and
local.retention.by
tes are similar to
log.retention. MSK
uses this configura
tion to determine
how long the log
segments should
remain in local
storage. Existing
log.retention.*
configurations are

-2 for unlimited -2 for unlimited

Default configuration 80

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

retention configura
tions for the topic
partition. This
includes both local
and remote storage.
Valid values are
integers greater than
0.

Default configuration 81

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

log.message.timest
amp.difference.max
.ms

The maximum
difference allowed
between the
timestamp when
a broker receives a
message and the
timestamp specified
in the message. If
log.message.timest
amp.type=CreateTim
e, a message will
be rejected if
the difference in
timestamp exceeds
this threshold. This
configuration is
ignored if log.messa
ge.timestamp.type=
LogAppendTime. The
maximum timestamp
difference allowed
should be no greater
than log.retention.ms
to avoid unnecessa
rily frequent log
rolling.

922337203
6854775807

86400000 for Kafka
2.8.2.tiered

log.segment.bytes The maximum size of
a single log file.

1073741824 134217728

Default configuration 82

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

min.insync.replicas When a producer
sets the value of acks
(acknowledgement
producer gets from
Kafka broker) to
"all" (or "-1"), the
value in min.insyn
c.replicas specifies
the minimum number
of replicas that must
acknowledge a write
for the write to be
considered successfu
l. If this value doesn't
meet this minimum,
the producer raises
an exception (either
NotEnoughReplicas
or NotEnough
ReplicasAfterAppen
d).

When you use the
values in min.insyn
c.replicas and acks
together, you can
enforce greater
durability guarantee
s. For example,
you might create a
topic with a replicati
on factor of 3, set
min.insync.replica

2 for clusters in 3
Availability Zones,
and 1 for clusters in 2
Availability Zones.

2 for clusters in 3
Availability Zones,
and 1 for clusters in 2
Availability Zones.

Default configuration 83

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

s to 2, and produce
with acks of "all".
This ensures that
the producer raises
an exception if a
majority of replicas
don't receive a write.

num.io.threads Number of threads
that the server uses
to produce requests,
 which may include
disk I/O.

8 max(8, vCPUs) where
vCPUs depends on
the instance size of
broker

num.network.threads Number of threads
that the server uses
to receive requests
from the network
andsend responses to
the network.

5 max(5, vCPUs /
2) where vCPUs
depends on the
instance size of
broker

num.partitions Default number of
log partitions per
topic.

1 1

num.replica.fetchers Number of fetcher
threads used to
replicate messages
from a source
broker.If you increase
this value, you can
increase the degree
of I/O parallelism in
the follower broker.

2 max(2, vCPUs /
4) where vCPUs
depends on the
instance size of
broker

Default configuration 84

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

remote.log.msk.dis
able.policy

Used with remote.st
orage.enable to
disable tiered
storage. Set this
policy to Delete, to
indicate that data
in tiered storage is
deleted when you set
remote.storage.ena
ble to false.

N/A DELETE

remote.log.reader.
threads

Remote log reader
thread pool size,
which is used in
scheduling tasks
to fetch data from
remote storage.

N/A max(10, vCPUs *
0.67) where vCPUs
depends on the
instance size of
broker

Default configuration 85

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

remote.storage.ena
ble

Enables tiered
(remote) storage
for a topic if set to
true. Disables topic
level tiered storage
if set to false and
remote.log.msk.dis
able.policy is set
to Delete. When
you disable tiered
storage, you delete
data from remote
storage. When you
disable tiered storage
for a topic, you can't
enable it again.

false true

replica.lag.time.m
ax.ms

If a follower hasn't
sent any fetch
requests or hasn't
consumed up to
the leader's log end
offset for at least this
number of milliseco
nds, the leader
removes the follower
from the ISR.

30000 30000

Default configuration 86

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

retention.ms Mandatory field.
Minimum time is
3 days. There is no
default because the
setting is mandatory.

Amazon MSK
uses the retention
.ms value with
local.retention.ms to
determine when data
moves from local to
tiered storage. The
local.retention.ms
 value specifies
when to move
data from local to
tiered storage. The
retention.ms value
specifies when to
remove data ifrom
tiered storage (that
is, removed from the
cluster). Valid values:
integers in [-1; +Inf]

Minimum 259,200,0
00 milliseconds (3
days). -1 for infinite
retention.

Minimum 259,200,0
00 milliseconds (3
days). -1 for infinite
retention.

socket.receive.buf
fer.bytes

The SO_RCVBUF
buffer of the socket
sever sockets. If the
value is -1, the OS
default is used.

102400 102400

Default configuration 87

Amazon Managed Streaming for Apache Kafka Developer Guide

Name Description Default value for
non-tiered storage
cluster

Default value for
tiered storage-e
nabled cluster

socket.request.max
.bytes

Maximum number
of bytes in a socket
request.

104857600 104857600

socket.send.buffer
.bytes

The SO_SNDBUF
buffer of the socket
sever sockets. If the
value is -1, the OS
default is used.

102400 102400

unclean.leader.ele
ction.enable

Indicates if you want
replicas not in the ISR
set to serve as leader
as a last resort, even
though this might
result in data loss.

true false

zookeeper.session.
timeout.ms

The Apache
ZooKeeper session
timeout in milliseco
nds.

18000 18000

zookeeper.set.acl The set client to use
secure ACLs.

false false

For information on how to specify custom configuration values, see the section called “Custom
configurations”.

Guidelines for tiered storage topic-level configuration

The following are default settings and limitations when you configure tiered storage at the topic
level.

Guidelines for tiered storage topic-level configuration 88

Amazon Managed Streaming for Apache Kafka Developer Guide

• Amazon MSK doesn't support smaller log segment sizes for topics with tiered storage activated.
If you want to create a segment, there is a minimum log segment size of 48 MiB, or a minimum
segment roll time of 10 minutes. These values map to the segment.bytes and segment.ms
properties.

• The value of local.retention.ms/bytes can't equal or exceed the retention.ms/bytes. This is the
tiered storage retention setting.

• The default value for for local.retention.ms/bytes is -2. This means that the retention.ms value
is used for local.retention.ms/bytes. In this case, data remains in both local storage and tiered
storage (one copy in each), and they expire together. For this option, a copy of the local data is
persisted to the remote storage. In this case, the data read from consume traffic comes from the
local storage.

• The default value for retention.ms is 7 days. There is no default size limit for retention.bytes.

• The minimum value for retention.ms/bytes is -1. This means infinite retention.

• The minimum value for local.retention.ms/bytes is -2. This means infinite retention for local
storage. It matches with the retention.ms/bytes setting as -1.

• The topic level configuration retention.ms is mandatory for topics with tiered storage activated.
The minimum retention.ms is 3 days.

Amazon MSK configuration operations

This topic describes how to create custom MSK configurations and how to perform operations on
them. For information about how to use MSK configurations to create or update clusters, see How
it works.

This topic contains the following sections:

• To create an MSK configuration

• To update an MSK configuration

• To delete an MSK configuration

• To describe an MSK configuration

• To describe an MSK configuration revision

• To list all MSK configurations in your account for the current Region

Configuration operations 89

Amazon Managed Streaming for Apache Kafka Developer Guide

To create an MSK configuration

1. Create a file where you specify the configuration properties that you want to set and the
values that you want to assign to them. The following are the contents of an example
configuration file.

auto.create.topics.enable = true

log.roll.ms = 604800000

2. Run the following AWS CLI command, and replace config-file-path with the path to the
file where you saved your configuration in the previous step.

Note

The name that you choose for your configuration must match the following regex:
"^[0-9A-Za-z][0-9A-Za-z-]{0,}$".

aws kafka create-configuration --name "ExampleConfigurationName" --description
 "Example configuration description." --kafka-versions "1.1.1" --server-properties
 fileb://config-file-path

The following is an example of a successful response after you run this command.

{
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-1234-abcd-1234-abcd123e8e8e-1",
 "CreationTime": "2019-05-21T19:37:40.626Z",
 "LatestRevision": {
 "CreationTime": "2019-05-21T19:37:40.626Z",
 "Description": "Example configuration description.",
 "Revision": 1
 },
 "Name": "ExampleConfigurationName"
}

3. The previous command returns an Amazon Resource Name (ARN) for your new configuration.
Save this ARN because you need it to refer to this configuration in other commands. If you lose
your configuration ARN, you can list all the configurations in your account to find it again.

Create configuration 90

Amazon Managed Streaming for Apache Kafka Developer Guide

To update an MSK configuration

1. Create a file where you specify the configuration properties that you want to update and
the values that you want to assign to them. The following are the contents of an example
configuration file.

auto.create.topics.enable = true

min.insync.replicas = 2

2. Run the following AWS CLI command, and replace config-file-path with the path to the
file where you saved your configuration in the previous step.

Replace configuration-arn with the ARN that you obtained when you created the
configuration. If you didn't save the ARN when you created the configuration, you can use the
list-configurations command to list all configuration in your account. The configuration
that you want in the list appears in the response. The ARN of the configuration also appears in
that list.

aws kafka update-configuration --arn configuration-arn --description "Example
 configuration revision description." --server-properties fileb://config-file-path

3. The following is an example of a successful response after you run this command.

{
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-1234-abcd-1234-abcd123e8e8e-1",
 "LatestRevision": {
 "CreationTime": "2020-08-27T19:37:40.626Z",
 "Description": "Example configuration revision description.",
 "Revision": 2
 }
}

To delete an MSK configuration

The following procedure shows how to delete a configuration that isn't attached to a cluster. You
can't delete a configuration that's attached to a cluster.

To update an MSK configuration 91

Amazon Managed Streaming for Apache Kafka Developer Guide

1. To run this example, replace configuration-arn with the ARN that you obtained when you
created the configuration. If you didn't save the ARN when you created the configuration, you
can use the list-configurations command to list all configuration in your account. The
configuration that you want in the list appears in the response. The ARN of the configuration
also appears in that list.

aws kafka delete-configuration --arn configuration-arn

2. The following is an example of a successful response after you run this command.

{
 "arn": " arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-1234-abcd-1234-abcd123e8e8e-1",
 "state": "DELETING"
}

To describe an MSK configuration

1. The following command returns metadata about the configuration. To get a detailed
description of the configuration, run the describe-configuration-revision.

To run this example, replace configuration-arn with the ARN that you obtained when you
created the configuration. If you didn't save the ARN when you created the configuration, you
can use the list-configurations command to list all configuration in your account. The
configuration that you want in the list appears in the response. The ARN of the configuration
also appears in that list.

aws kafka describe-configuration --arn configuration-arn

2. The following is an example of a successful response after you run this command.

{
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabcd-
abcd-1234-abcd-abcd123e8e8e-1",
 "CreationTime": "2019-05-21T00:54:23.591Z",
 "Description": "Example configuration description.",
 "KafkaVersions": [
 "1.1.1"
],

To describe an MSK configuration 92

Amazon Managed Streaming for Apache Kafka Developer Guide

 "LatestRevision": {
 "CreationTime": "2019-05-21T00:54:23.591Z",
 "Description": "Example configuration description.",
 "Revision": 1
 },
 "Name": "SomeTest"
}

To describe an MSK configuration revision

If you use the describe-configuration command to describe an MSK configuration, you see
the metadata of the configuration. To get a description of the configuration, use the command,
describe-configuration-revision.

• Run the following command and replace configuration-arn with the ARN that you
obtained when you created the configuration. If you didn't save the ARN when you created
the configuration, you can use the list-configurations command to list all configuration
in your account. The configuration that you want in the list that appears in the response. The
ARN of the configuration also appears in that list.

aws kafka describe-configuration-revision --arn configuration-arn --revision 1

The following is an example of a successful response after you run this command.

{
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabcd-
abcd-1234-abcd-abcd123e8e8e-1",
 "CreationTime": "2019-05-21T00:54:23.591Z",
 "Description": "Example configuration description.",
 "Revision": 1,
 "ServerProperties":
 "YXV0by5jcmVhdGUudG9waWNzLmVuYWJsZSA9IHRydWUKCgp6b29rZWVwZXIuY29ubmVjdGlvbi50aW1lb3V0Lm1zID0gMTAwMAoKCmxvZy5yb2xsLm1zID0gNjA0ODAwMDAw"
}

The value of ServerProperties is encoded with base64. If you use a base64 decoder (for
example, https://www.base64decode.org/) to decode it manually, you get the contents of the
original configuration file that you used to create the custom configuration. In this case, you
get the following:

To describe an MSK configuration revision 93

Amazon Managed Streaming for Apache Kafka Developer Guide

auto.create.topics.enable = true

log.roll.ms = 604800000

To list all MSK configurations in your account for the current Region

• Run the following command.

aws kafka list-configurations

The following is an example of a successful response after you run this command.

{
 "Configurations": [
 {
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-abcd-1234-abcd-abcd123e8e8e-1",
 "CreationTime": "2019-05-21T00:54:23.591Z",
 "Description": "Example configuration description.",
 "KafkaVersions": [
 "1.1.1"
],
 "LatestRevision": {
 "CreationTime": "2019-05-21T00:54:23.591Z",
 "Description": "Example configuration description.",
 "Revision": 1
 },
 "Name": "SomeTest"
 },
 {
 "Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-1234-abcd-1234-abcd123e8e8e-1",
 "CreationTime": "2019-05-03T23:08:29.446Z",
 "Description": "Example configuration description.",
 "KafkaVersions": [
 "1.1.1"
],
 "LatestRevision": {
 "CreationTime": "2019-05-03T23:08:29.446Z",
 "Description": "Example configuration description.",

To list all MSK configurations in your account for the current Region 94

Amazon Managed Streaming for Apache Kafka Developer Guide

 "Revision": 1
 },
 "Name": "ExampleConfigurationName"
 }
]
}

To list all MSK configurations in your account for the current Region 95

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK Serverless

Note

MSK Serverless is available in the US East (Ohio), US East (N. Virginia), US West (Oregon),
Canada (Central), Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia Pacific (Sydney),
Asia Pacific (Tokyo), Asia Pacific (Seoul), Europe (Frankfurt), Europe (Stockholm), Europe
(Ireland), Europe (Paris), and Europe (London) Regions.

MSK Serverless is a cluster type for Amazon MSK that makes it possible for you to run Apache
Kafka without having to manage and scale cluster capacity. It automatically provisions and scales
capacity while managing the partitions in your topic, so you can stream data without thinking
about right-sizing or scaling clusters. MSK Serverless offers a throughput-based pricing model, so
you pay only for what you use. Consider using a serverless cluster if your applications need on-
demand streaming capacity that scales up and down automatically.

MSK Serverless is fully compatible with Apache Kafka, so you can use any compatible client
applications to produce and consume data. It also integrates with the following services:

• AWS PrivateLink to provide private connectivity

• AWS Identity and Access Management (IAM) for authentication and authorization using Java and
non-Java languages. For instruction on configuring clients for IAM, see Configure clients for IAM
access control.

• AWS Glue Schema Registry for schema management

• Amazon Managed Service for Apache Flink for Apache Flink-based stream processing

• AWS Lambda for event processing

Note

MSK Serverless requires IAM access control for all clusters. Apache Kafka access control lists
(ACLs) are not supported. For more information, see the section called “IAM access control”.
For information about the service quota that apply to MSK Serverless, see the section
called “Quota for serverless clusters”.

96

Amazon Managed Streaming for Apache Kafka Developer Guide

To help you get started with serverless clusters, and to learn more about configuration and
monitoring options for serverless clusters, see the following.

Topics

• Getting started using MSK Serverless clusters

• Configuration for serverless clusters

• Monitoring serverless clusters

Getting started using MSK Serverless clusters

This tutorial shows you an example of how you can create an MSK Serverless cluster, create a client
machine that can access it, and use the client to create topics on the cluster and to write data to
those topics. This exercise doesn't represent all the options that you can choose when you create
a serverless cluster. In different parts of this exercise, we choose default options for simplicity.
This doesn't mean that they're the only options that work for setting up a serverless cluster. You
can also use the AWS CLI or the Amazon MSK API. For more information, see the Amazon MSK API
Reference 2.0.

Topics

• Step 1: Create an MSK Serverless cluster

• Step 2: Create an IAM role

• Step 3: Create a client machine

• Step 4: Create an Apache Kafka topic

• Step 5: Produce and consume data

• Step 6: Delete resources

Step 1: Create an MSK Serverless cluster

In this step, you perform two tasks. First, you create an MSK Serverless cluster with default
settings. Second, you gather information about the cluster. This is information that you need in
later steps when you create a client that can send data to the cluster.

Getting started tutorial 97

https://docs.aws.amazon.com/MSK/2.0/APIReference/what-is-msk.html
https://docs.aws.amazon.com/MSK/2.0/APIReference/what-is-msk.html

Amazon Managed Streaming for Apache Kafka Developer Guide

To create a serverless cluster

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home.

2. Choose Create cluster.

3. For Creation method, leave the Quick create option selected. The Quick create option lets
you create a serverless cluster with default settings.

4. For Cluster name, enter a descriptive name, such as msk-serverless-tutorial-cluster.

5. For General cluster properties, choose Serverless as the Cluster type. Use the default values
for the remaining General cluster properties.

6. Note the table under All cluster settings. This table lists the default values for important
settings such as networking and availability, and indicates whether you can change each
setting after you create the cluster. To change a setting before you create the cluster, you
should choose the Custom create option under Creation method.

Note

You can connect clients from up to five different VPCs with MSK Serverless clusters.
To help client applications switch over to another Availability Zone in the event of an
outage, you must specify at least two subnets in each VPC.

7. Choose Create cluster.

To gather information about the cluster

1. In the Cluster summary section, choose View client information. This button remains grayed
out until Amazon MSK finishes creating the cluster. You might need to wait a few minutes until
the button becomes active so you can use it.

2. Copy the string under the label Endpoint. This is your bootstrap server string.

3. Choose the Properties tab.

4. Under the Networking settings section, copy the IDs of the subnets and the security group
and save them because you need this information later to create a client machine.

5. Choose any of the subnets. This opens the Amazon VPC Console. Find the ID of the Amazon
VPC that is associated with the subnet. Save this Amazon VPC ID for later use.

Step 1: Create a cluster 98

https://console.aws.amazon.com/msk/home
https://console.aws.amazon.com/msk/home

Amazon Managed Streaming for Apache Kafka Developer Guide

Next Step

Step 2: Create an IAM role

Step 2: Create an IAM role

In this step, you perform two tasks. The first task is to create an IAM policy that grants access to
create topics on the cluster and to send data to those topics. The second task is to create an IAM
role and associate this policy with it. In a later step, we create a client machine that assumes this
role and uses it to create a topic on the cluster and to send data to that topic.

To create an IAM policy that makes it possible to create topics and write to them

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation pane, choose Policies.

3. Choose Create Policy.

4. Choose the JSON tab, then replace the JSON in the editor window with the following JSON.

Replace region with the code of the AWS Region where you created your cluster. Replace
Account-ID with your account ID. Replace msk-serverless-tutorial-cluster with the
name of your serverless cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:AlterCluster",
 "kafka-cluster:DescribeCluster"
],
 "Resource": [
 "arn:aws:kafka:region:Account-ID:cluster/msk-serverless-tutorial-
cluster/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:*Topic*",

Step 2: Create an IAM role 99

https://console.aws.amazon.com/iam/

Amazon Managed Streaming for Apache Kafka Developer Guide

 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData"
],
 "Resource": [
 "arn:aws:kafka:region:Account-ID:topic/msk-serverless-tutorial-
cluster/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup"
],
 "Resource": [
 "arn:aws:kafka:region:Account-ID:group/msk-serverless-tutorial-
cluster/*"
]
 }
]
}

For instructions on how to write secure policies, see the section called “IAM access control”.

5. Choose Next: Tags.

6. Choose Next: Review.

7. For the policy name, enter a descriptive name, such as msk-serverless-tutorial-policy.

8. Choose Create policy.

To create an IAM role and attach the policy to it

1. On the navigation pane, choose Roles.

2. Choose Create role.

3. Under Common use cases, choose EC2, then choose Next: Permissions.

4. In the search box, enter the name of the policy that you previously created for this tutorial.
Then select the box to the left of the policy.

5. Choose Next: Tags.

6. Choose Next: Review.

7. For the role name, enter a descriptive name, such as msk-serverless-tutorial-role.

Step 2: Create an IAM role 100

Amazon Managed Streaming for Apache Kafka Developer Guide

8. Choose Create role.

Next Step

Step 3: Create a client machine

Step 3: Create a client machine

In the step, you perform two tasks. The first task is to create an Amazon EC2 instance to use as
an Apache Kafka client machine. The second task is to install Java and Apache Kafka tools on the
machine.

To create a client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch instance.

3. Enter a descriptive Name for your client machine, such as msk-serverless-tutorial-
client.

4. Leave the Amazon Linux 2 AMI (HVM) - Kernel 5.10, SSD Volume Type selected for Amazon
Machine Image (AMI) type.

5. Leave the t2.micro instance type selected.

6. Under Key pair (login), choose Create a new key pair. Enter MSKServerlessKeyPair for
Key pair name. Then choose Download Key Pair. Alternatively, you can use an existing key
pair.

7. For Network settings, choose Edit.

8. Under VPC, enter the ID of the virtual private cloud (VPC) for your serverless cluster . This is
the VPC based on the Amazon VPC service whose ID you saved after you created the cluster.

9. For Subnet, choose the subnet whose ID you saved after you created the cluster.

10. For Firewall (security groups), select the security group associated with the cluster. This value
works if that security group has an inbound rule that allows traffic from the security group to
itself. With such a rule, members of the same security group can communicate with each other.
For more information, see Security group rules in the Amazon VPC Developer Guide.

11. Expand the Advanced details section and choose the IAM role that you created in Step 2:
Create an IAM role.

12. Choose Launch.

Step 3: Create a client machine 101

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules

Amazon Managed Streaming for Apache Kafka Developer Guide

13. In the left navigation pane, choose Instances. Then choose the check box in the row that
represents your newly created Amazon EC2 instance. From this point forward, we call this
instance the client machine.

14. Choose Connect and follow the instructions to connect to the client machine.

To set up Apache Kafka client tools on the client machine

1. To install Java, run the following command on the client machine:

sudo yum -y install java-11

2. To get the Apache Kafka tools that we need to create topics and send data, run the following
commands:

wget https://archive.apache.org/dist/kafka/2.8.1/kafka_2.12-2.8.1.tgz

tar -xzf kafka_2.12-2.8.1.tgz

3. Go to the kafka_2.12-2.8.1/libs directory, then run the following command to download
the Amazon MSK IAM JAR file. The Amazon MSK IAM JAR makes it possible for the client
machine to access the cluster.

wget https://github.com/aws/aws-msk-iam-auth/releases/download/v1.1.1/aws-msk-iam-
auth-1.1.1-all.jar

4. Go to the kafka_2.12-2.8.1/bin directory. Copy the following property settings and paste
them into a new file. Name the file client.properties and save it.

security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

Next Step

Step 4: Create an Apache Kafka topic

Step 3: Create a client machine 102

Amazon Managed Streaming for Apache Kafka Developer Guide

Step 4: Create an Apache Kafka topic

In this step, you use the previously created client machine to create a topic on the serverless
cluster.

To create a topic and write data to it

1. In the following export command, replace my-endpoint with the bootstrap-server string
you that you saved after you created the cluster. Then, go to the kafka_2.12-2.8.1/bin
directory on the client machine and run the export command.

export BS=my-endpoint

2. Run the following command to create a topic called msk-serverless-tutorial.

<path-to-your-kafka-installation>/bin/kafka-topics.sh --bootstrap-server $BS
 --command-config client.properties --create --topic msk-serverless-tutorial --
partitions 6

Next Step

Step 5: Produce and consume data

Step 5: Produce and consume data

In this step, you produce and consume data using the topic that you created in the previous step.

To produce and consume messages

1. Run the following command to create a console producer.

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --broker-list $BS
 --producer.config client.properties --topic msk-serverless-tutorial

2. Enter any message that you want, and press Enter. Repeat this step two or three times. Every
time you enter a line and press Enter, that line is sent to your cluster as a separate message.

3. Keep the connection to the client machine open, and then open a second, separate connection
to that machine in a new window.

Step 4: Create a topic 103

Amazon Managed Streaming for Apache Kafka Developer Guide

4. Use your second connection to the client machine to create a console consumer with the
following command. Replace my-endpoint with the bootstrap server string that you saved
after you created the cluster.

<path-to-your-kafka-installation>/bin/kafka-console-consumer.sh --bootstrap-
server my-endpoint --consumer.config client.properties --topic msk-serverless-
tutorial --from-beginning

You start seeing the messages you entered earlier when you used the console producer
command.

5. Enter more messages in the producer window, and watch them appear in the consumer
window.

Next Step

Step 6: Delete resources

Step 6: Delete resources

In this step, you delete the resources that you created in this tutorial.

To delete the cluster

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/home.

2. In the list of clusters, choose the cluster that you created for this tutorial.

3. For Actions, choose Delete cluster.

4. Enter delete in the field, then choose Delete.

To stop the client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the list of Amazon EC2 instances, choose the client machine that you created for this
tutorial.

3. Choose Instance state, then choose Terminate instance.

4. Choose Terminate.

Step 6: Delete resources 104

https://console.aws.amazon.com/msk/home
https://console.aws.amazon.com/ec2/

Amazon Managed Streaming for Apache Kafka Developer Guide

To delete the IAM policy and role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation pane, choose Roles.

3. In the search box, enter the name of the IAM role that you created for this tutorial.

4. Choose the role. Then choose Delete role, and confirm the deletion.

5. On the navigation pane, choose Policies.

6. In the search box, enter the name of the policy that you created for this tutorial.

7. Choose the policy to open its summary page. On the policy's Summary page, choose Delete
policy.

8. Choose Delete.

Configuration for serverless clusters

Amazon MSK sets broker configuration properties for serverless clusters. You can't change these
broker configuration property settings. However, you can set the following topic configuration
properties.

Configuration
property

Default Editable Maximum allowed
value

cleanup.policy Delete Yes, but only at topic
creation time

compression.type Producer Yes

max.message.bytes 1048588 Yes 8 MiB

message.timestamp.
difference.max.ms

long.max Yes

message.timestamp.
type

CreateTime Yes

retention.bytes 250 GiB Yes 250 GiB

retention.ms 7 days Yes Unlimited

Configuration 105

https://console.aws.amazon.com/iam/
https://kafka.apache.org/documentation/#topicconfigs_cleanup.policy
https://kafka.apache.org/documentation/#topicconfigs_compression.type
https://kafka.apache.org/documentation/#topicconfigs_max.message.bytes
https://kafka.apache.org/documentation/#topicconfigs_message.timestamp.difference.max.ms
https://kafka.apache.org/documentation/#topicconfigs_message.timestamp.difference.max.ms
https://kafka.apache.org/documentation/#topicconfigs_message.timestamp.type
https://kafka.apache.org/documentation/#topicconfigs_message.timestamp.type
https://kafka.apache.org/documentation/#topicconfigs_retention.bytes
https://kafka.apache.org/documentation/#topicconfigs_retention.ms

Amazon Managed Streaming for Apache Kafka Developer Guide

You can also use Apache Kafka commands to set or modify topic-level configuration properties
for new or existing topics. For more information about topic-level configuration properties and
examples of how to set them, see Topic-Level Configs in the official Apache Kafka documentation.

Monitoring serverless clusters

Amazon MSK integrates with Amazon CloudWatch so that you can collect, view, and analyze
metrics for your MSK Serverless cluster. The metrics shown in the following table are available for
all serverless clusters. As these metrics are published as individual data points for each partition in
the topic, we recommend viewing them as a 'SUM' statistic to get the topic-level view.

Amazon MSK publishes PerSec metrics to CloudWatch at a frequency of once per minute. This
means that the 'SUM' statistic for a one-minute period accurately represents per-second data
for PerSec metrics. To collect per-second data for a period of longer than one minute, use the
following CloudWatch math expression: m1 * 60/PERIOD(m1).

Metrics available at the DEFAULT monitoring level

Name When visible Dimensions Description

BytesInPerSec After a
producer writes
to a topic

Cluster
Name, Topic

The number of bytes per second
received from clients. This metric is
available for each topic.

BytesOutPerSec After a
consumer
group
consumes from
a topic

Cluster
Name, Topic

The number of bytes per second
sent to clients. This metric is
available for each topic.

FetchMess
ageConver
sionsPerSec

After a
consumer
group
consumes from
a topic

Cluster
Name, Topic

The number of fetch message
conversions per second for the topic.

Estimated
MaxTimeLag

After a
consumer
group

Cluster
Name,

A time estimate of the MaxOffsetLag
metric.

Monitoring 106

https://kafka.apache.org/documentation/#topicconfigs

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimensions Description

consumes from
a topic

Consumer
Group, Topic

MaxOffsetLag After a
consumer
group
consumes from
a topic

Cluster
Name,
Consumer
Group, Topic

The maximum offset lag across all
partitions in a topic.

MessagesI
nPerSec

After a
producer writes
to a topic

Cluster
Name, Topic

The number of incoming messages
per second for the topic.

ProduceMe
ssageConv
ersionsPerSec

After a
producer writes
to a topic

Cluster
Name, Topic

The number of produce message
conversions per second for the topic.

SumOffsetLag After a
consumer
group
consumes from
a topic

Cluster
Name,
Consumer
Group, Topic

The aggregated offset lag for all the
partitions in a topic.

To view MSK Serverless metrics

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, under Metrics, choose All metrics.

3. In the metrics search for the term kafka.

4. Choose AWS/Kafka / Cluster Name, Topic or AWS/Kafka / Cluster Name, Consumer Group,
Topic to see different metrics.

Monitoring 107

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK Connect

What is MSK Connect?

MSK Connect is a feature of Amazon MSK that makes it easy for developers to stream data to
and from their Apache Kafka clusters. MSK Connect uses Kafka Connect 2.7.1, an open-source
framework for connecting Apache Kafka clusters with external systems such as databases, search
indexes, and file systems. With MSK Connect, you can deploy fully managed connectors built for
Kafka Connect that move data into or pull data from popular data stores like Amazon S3 and
Amazon OpenSearch Service. You can deploy connectors developed by 3rd parties like Debezium
for streaming change logs from databases into an Apache Kafka cluster, or deploy an existing
connector with no code changes. Connectors automatically scale to adjust for changes in load and
you pay only for the resources that you use.

Use source connectors to import data from external systems into your topics. With sink connectors,
you can export data from your topics to external systems.

MSK Connect supports connectors for any Apache Kafka cluster with connectivity to an Amazon
VPC, whether it is an MSK cluster or an independently hosted Apache Kafka cluster.

MSK Connect continuously monitors connector health and delivery state, patches and manages the
underlying hardware, and autoscales the connectors to match changes in throughput.

To get started using MSK Connect, see the section called “Getting started”.

To learn about the AWS resources that you can create with MSK Connect, see the section called
“Connectors”, the section called “Plugins”, and the section called “Workers”.

For information about the MSK Connect API, see the Amazon MSK Connect API Reference.

Getting started using MSK Connect

This is a step-by-step tutorial that uses the AWS Management Console to create an MSK cluster
and a sink connector that sends data from the cluster to an S3 bucket.

Topics

• Step 1: Set up required resources

What is MSK Connect? 108

https://docs.aws.amazon.com/MSKC/latest/mskc/Welcome.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• Step 2: Create custom plugin

• Step 3: Create client machine and Apache Kafka topic

• Step 4: Create connector

• Step 5: Send data

Step 1: Set up required resources

In this step you create the following resources that you need for this getting-started scenario:

• An S3 bucket to serve as the destination that receives data from the connector.

• An MSK cluster to which you will send data. The connector will then read the data from this
cluster and send it to the destination S3 bucket.

• An IAM role that allows the connector to write to the destination S3 bucket.

• An Amazon VPC endpoint to make it possible to send data from the Amazon VPC that has the
cluster and the connector to Amazon S3.

To create the S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Choose Create bucket.

3. For the name of the bucket, enter a descriptive name such as mkc-tutorial-destination-
bucket.

4. Scroll down and choose Create bucket.

5. In the list of buckets, choose the newly created bucket.

6. Choose Create folder.

7. Enter tutorial for the name of the folder, then scroll down and choose Create folder.

To create the cluster

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/home?region=us-
east-1#/home/.

2. In the left pane, under MSK Clusters, choose Clusters.

Step 1: Set up required resources 109

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Choose Create cluster.

4. Choose Custom create.

5. For the cluster name enter mkc-tutorial-cluster.

6. Under General cluster properties, choose Provisioned for the cluster type.

7. Under Networking, choose an Amazon VPC. Then select the Availability Zones and subnets
that you want to use. Remember the IDs of the Amazon VPC and subnets that you selected
because you need them later in this tutorial.

8. Under Access control methods ensure that only Unauthenticated access is selected.

9. Under Encryption ensure that only Plaintext is selected.

10. Continue through the wizard and then choose Create cluster. This takes you to the details
page for the cluster. On that page, under Security groups applied, find the security group ID.
Remember that ID because you need it later in this tutorial.

To create the IAM role that can write to the destination bucket

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left pane, under Access management, choose Roles.

3. Choose Create role.

4. Under Or select a service to view its use cases, choose S3.

5. Scroll down and under Select your use case, again choose S3.

6. Choose Next: Permissions.

7. Choose Create policy. This opens a new tab in your browser where you will create the policy.
Leave the original role-creation tab open because we'll get back to it later.

8. Choose the JSON tab, and then replace the text in the window with the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": "arn:aws:s3:::*"
 },

Step 1: Set up required resources 110

https://console.aws.amazon.com/iam/

Amazon Managed Streaming for Apache Kafka Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::<my-tutorial-destination-bucket>"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts",
 "s3:ListBucketMultipartUploads"
],
 "Resource": "*"
 }
]
}

9. Choose Next: Tags.

10. Choose Next: Review.

11. Enter mkc-tutorial-policy for the policy name, then scroll down and choose Create
policy.

12. Back in the browser tab where you were creating the role, choose the refresh button.

13. Find the mkc-tutorial-policy and select it by choosing the button to its left.

14. Choose Next: Tags.

15. Choose Next: Review.

16. Enter mkc-tutorial-role for the role name, and delete the text in the description box.

17. Choose Create role.

To allow MSK Connect to assume the role

1. In the IAM console, in the left pane, under Access management, choose Roles.

2. Find the mkc-tutorial-role and choose it.

Step 1: Set up required resources 111

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Under the role's Summary, choose the Trust relationships tab.

4. Choose Edit trust relationship.

5. Replace the existing trust policy with the following JSON.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kafkaconnect.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

6. Choose Update Trust Policy.

To create an Amazon VPC endpoint from the cluster's VPC to Amazon S3

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the left pane, choose Endpoints.

3. Choose Create endpoint.

4. Under Service Name choose the com.amazonaws.us-east-1.s3 service and the Gateway type.

5. Choose the cluster's VPC and then select the box to the left of the route table that is
associated with the cluster's subnets.

6. Choose Create endpoint.

Next Step

Step 2: Create custom plugin

Step 2: Create custom plugin

A plugin contains the code that defines the logic of the connector. In this step you create a custom
plugin that has the code for the Lenses Amazon S3 Sink Connector. In a later step, when you create

Step 2: Create custom plugin 112

https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for Apache Kafka Developer Guide

the MSK connector, you specify that its code is in this custom plugin. You can use the same plugin
to create multiple MSK connectors with different configurations.

To create the custom plugin

1. Download the S3 connector.

2. Upload the ZIP file to an S3 bucket to which you have access. For information on how to
upload files to Amazon S3, see Uploading objects in the Amazon S3 user guide.

3. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

4. In the left pane expand MSK Connect, then choose Custom plugins.

5. Choose Create custom plugin.

6. Choose Browse S3.

7. In the list of buckets find the bucket where you uploaded the ZIP file, and choose that bucket.

8. In the list of objects in the bucket, select the radio button to the left of the ZIP file, then
choose the button labeled Choose.

9. Enter mkc-tutorial-plugin for the custom plugin name, then choose Create custom
plugin.

It might take AWS a few minutes to finish creating the custom plugin. When the creation process is
complete, you see the following message in a banner at the top of the browser window.

Custom plugin mkc-tutorial-plugin was successfully created
The custom plugin was created. You can now create a connector using this custom plugin.

Next Step

Step 3: Create client machine and Apache Kafka topic

Step 3: Create client machine and Apache Kafka topic

In this step you create an Amazon EC2 instance to use as an Apache Kafka client instance. You then
use this instance to create a topic on the cluster.

To create a client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Step 3: Create client machine and Apache Kafka topic 113

https://www.confluent.io/hub/confluentinc/kafka-connect-s3
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/msk/
https://console.aws.amazon.com/ec2/

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Choose Launch instances.

3. Enter a Name for your client machine, such as mkc-tutorial-client.

4. Leave Amazon Linux 2 AMI (HVM) - Kernel 5.10, SSD Volume Type selected for Amazon
Machine Image (AMI) type.

5. Choose the t2.xlarge instance type.

6. Under Key pair (login), choose Create a new key pair. Enter mkc-tutorial-key-pair for
Key pair name, and then choose Download Key Pair. Alternatively, you can use an existing key
pair.

7. Choose Launch instance.

8. Choose View Instances. Then, in the Security Groups column, choose the security group that
is associated with your new instance. Copy the ID of the security group, and save it for later.

To allow the newly created client to send data to the cluster

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the left pane, under SECURITY, choose Security Groups. In the Security group ID column,
find the security group of the cluster. You saved the ID of this security group when you created
the cluster in the section called “Step 1: Set up required resources”. Choose this security
group by selecting the box to the left of its row. Make sure no other security groups are
simultaneously selected.

3. In the bottom half of the screen, choose the Inbound rules tab.

4. Choose Edit inbound rules.

5. In the bottom left of the screen, choose Add rule.

6. In the new rule, choose All traffic in the Type column. In the field to the right of the Source
column, enter the ID of the security group of the client machine. This is the security group ID
that you saved after you created the client machine.

7. Choose Save rules. Your MSK cluster will now accept all traffic from the client you created in
the previous procedure.

To create a topic

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the table of instances choose mkc-tutorial-client.

Step 3: Create client machine and Apache Kafka topic 114

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/ec2/

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Near the top of the screen, choose Connect, then follow the instructions to connect to the
instance.

4. Install Java on the client instance by running the following command:

sudo yum install java-1.8.0

5. Run the following command to download Apache Kafka.

wget https://archive.apache.org/dist/kafka/2.2.1/kafka_2.12-2.2.1.tgz

Note

If you want to use a mirror site other than the one used in this command, you can
choose a different one on the Apache website.

6. Run the following command in the directory where you downloaded the TAR file in the
previous step.

tar -xzf kafka_2.12-2.2.1.tgz

7. Go to the kafka_2.12-2.2.1 directory.

8. Open the Amazon MSK console at https://console.aws.amazon.com/msk/home?region=us-
east-1#/home/.

9. In the left pane choose Clusters, then choose the name mkc-tutorial-cluster.

10. Choose View client information.

11. Copy the Plaintext connection string.

12. Choose Done.

13. Run the following command on the client instance (mkc-tutorial-client), replacing
bootstrapServerString with the value that you saved when you viewed the cluster's client
information.

<path-to-your-kafka-installation>/bin/kafka-topics.sh --create --bootstrap-
server bootstrapServerString --replication-factor 2 --partitions 1 --topic mkc-
tutorial-topic

If the command succeeds, you see the following message: Created topic mkc-tutorial-
topic.

Step 3: Create client machine and Apache Kafka topic 115

https://www.apache.org/dyn/closer.cgi?path=/kafka/1.1.1/kafka_2.11-1.1.1.tgz
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

Next Step

Step 4: Create connector

Step 4: Create connector

To create the connector

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. In the left pane, expand MSK Connect, then choose Connectors.

3. Choose Create connector.

4. In the list of plugins, choose mkc-tutorial-plugin, then choose Next.

5. For the connector name enter mkc-tutorial-connector.

6. In the list of clusters, choose mkc-tutorial-cluster.

7. Copy the following configuration and paste it into the connector configuration field.

connector.class=io.confluent.connect.s3.S3SinkConnector
s3.region=us-east-1
format.class=io.confluent.connect.s3.format.json.JsonFormat
flush.size=1
schema.compatibility=NONE
tasks.max=2
topics=mkc-tutorial-topic
partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartitioner
storage.class=io.confluent.connect.s3.storage.S3Storage
s3.bucket.name=<my-tutorial-destination-bucket>
topics.dir=tutorial

8. Under Access permissions choose mkc-tutorial-role.

9. Choose Next. On the Security page, choose Next again.

10. On the Logs page choose Next.

11. Under Review and create choose Create connector.

Next Step

Step 5: Send data

Step 4: Create connector 116

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

Step 5: Send data

In this step you send data to the Apache Kafka topic that you created earlier, and then look for that
same data in the destination S3 bucket.

To send data to the MSK cluster

1. In the bin folder of the Apache Kafka installation on the client instance, create a text file
named client.properties with the following contents.

security.protocol=PLAINTEXT

2. Run the following command to create a console producer. Replace BootstrapBrokerString
with the value that you obtained when you ran the previous command.

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --broker-
list BootstrapBrokerString --producer.config client.properties --topic mkc-
tutorial-topic

3. Enter any message that you want, and press Enter. Repeat this step two or three times. Every
time you enter a line and press Enter, that line is sent to your Apache Kafka cluster as a
separate message.

4. Look in the destination Amazon S3 bucket to find the messages that you sent in the previous
step.

Connectors

A connector integrates external systems and Amazon services with Apache Kafka by continuously
copying streaming data from a data source into your Apache Kafka cluster, or continuously copying
data from your cluster into a data sink. A connector can also perform lightweight logic such as
transformation, format conversion, or filtering data before delivering the data to a destination.
Source connectors pull data from a data source and push this data into the cluster, while sink
connectors pull data from the cluster and push this data into a data sink.

The following diagram shows the architecture of a connector. A worker is a Java virtual machine
(JVM) process that runs the connector logic. Each worker creates a set of tasks that run in parallel
threads and do the work of copying the data. Tasks don't store state, and can therefore be started,
stopped, or restarted at any time in order to provide a resilient and scalable data pipeline.

Step 5: Send data 117

Amazon Managed Streaming for Apache Kafka Developer Guide

Connector capacity

The total capacity of a connector depends on the number of workers that the connector has, as
well as on the number of MSK Connect Units (MCUs) per worker. Each MCU represents 1 vCPU
of compute and 4 GiB of memory. The MCU memory pertains to the total memory of a worker
instance and not the heap memory in use.

MSK Connect workers consume IP addresses in the customer-provided subnets. Each worker uses
one IP address from one of the customer-provided subnets. You should ensure that you have
enough available IP addresses in the subnets provided to a CreateConnector request to account for
their specified capacity, especially when autoscaling connectors where the number of workers can
fluctuate.

To create a connector, you must choose between one of the following two capacity modes.

• Provisioned - Choose this mode if you know the capacity requirements for your connector. You
specify two values:

• The number of workers.

• The number of MCUs per worker.

Capacity 118

Amazon Managed Streaming for Apache Kafka Developer Guide

• Autoscaled - Choose this mode if the capacity requirements for your connector are variable
or if you don't know them in advance. When you use autoscaled mode, Amazon MSK Connect
overrides your connector's tasks.max property with a value that is proportional to the number
of workers running in the connector and the number of MCUs per worker.

You specify three sets of values:

• The minimum and maximum number of workers.

• The scale-in and scale-out percentages for CPU utilization, which is determined by the
CpuUtilization metric. When the CpuUtilization metric for the connector exceeds
the scale-out percentage, MSK Connect increases the number of workers that are running in
the connector. When the CpuUtilization metric goes below the scale-in percentage, MSK
Connect decreases the number of workers. The number of workers always remains within the
minimum and maximum numbers that you specify when you create the connector.

• The number of MCUs per worker.

For more information about workers, see the section called “Workers”. To learn about MSK Connect
metrics, see the section called “Monitoring”.

Creating a connector

Creating a connector using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. In the left pane, under MSK Connect, choose Connectors.

3. Choose Create connector.

4. You can choose between using an existing custom plugin to create the connector, or creating
a new custom plugin first. For information on custom plugins and how to create them, see
the section called “Plugins”. In this procedure, let's assume you have a custom plugin that you
want to use. In the list of custom plugins, find the one that you want to use, and select the box
to its left, then choose Next.

5. Enter a name and, optionally, a description.

6. Choose the cluster that you want to connect to.

7. Specify the connector configuration. The configuration parameters that you need to specify
depend on the type of connector that you want to create. However, some parameters are

Creating a connector 119

https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

common to all connectors, for example, the connector.class and tasks.max parameters.
The following is an example configuration for the Confluent Amazon S3 Sink Connector.

connector.class=io.confluent.connect.s3.S3SinkConnector
tasks.max=2
topics=my-example-topic
s3.region=us-east-1
s3.bucket.name=my-destination-bucket
flush.size=1
storage.class=io.confluent.connect.s3.storage.S3Storage
format.class=io.confluent.connect.s3.format.json.JsonFormat
partitioner.class=io.confluent.connect.storage.partitioner.DefaultPartitioner
key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=org.apache.kafka.connect.storage.StringConverter
schema.compatibility=NONE

8. Next, you configure your connector capacity. You can choose between two capacity modes:
provisioned and auto scaled. For information about these two options, see the section called
“Capacity”.

9. Choose either the default worker configuration or a custom worker configuration. For
information about creating custom worker configurations, see the section called “Workers”.

10. Next, you specify the service execution role. This must be an IAM role that MSK Connect can
assume, and that grants the connector all the permissions that it needs to access the necessary
AWS resources. Those permissions depend on the logic of the connector. For information
about how to create this role, see the section called “Service execution role”.

11. Choose Next, review the security information, then choose Next again.

12. Specify the logging options that you want, then choose Next. For information about logging,
see the section called “Logging”.

13. Choose Create connector.

To use the MSK Connect API to create a connector, see CreateConnector.

Plugins

A plugin is an AWS resource that contains the code that defines your connector logic. You upload a
JAR file (or a ZIP file that contains one or more JAR files) to an S3 bucket, and specify the location
of the bucket when you create the plugin. When you create a connector, you specify the plugin that

Plugins 120

https://www.confluent.io/hub/confluentinc/kafka-connect-s3
https://docs.aws.amazon.com/MSKC/latest/mskc/API_CreateConnector.html

Amazon Managed Streaming for Apache Kafka Developer Guide

you want MSK Connect to use for it. The relationship of plugins to connectors is one-to-many: You
can create one or more connectors from the same plugin.

For information on how to develop the code for a connector, see the Connector Development
Guidein the Apache Kafka documentation.

Creating a custom plugin using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. In the left pane, under MSK Connect, choose Custom plugins.

3. Choose Create custom plugin.

4. Choose Browse S3.

5. In the list of S3 buckets, choose the bucket that has the JAR or ZIP file for the plugin.

6. In the list of object, select the box to the left of the JAR or ZIP file for the plugin, then choose
Choose.

7. Choose Create custom plugin.

To use the MSK Connect API to create a custom plugin, see CreateCustomPlugin.

Workers

A worker is a Java virtual machine (JVM) process that runs the connector logic. Each worker creates
a set of tasks that run in parallel threads and do the work of copying the data. Tasks don't store
state, and can therefore be started, stopped, or restarted at any time in order to provide a resilient
and scalable data pipeline. Changes to the number of workers, whether due to a scaling event or
due to unexpected failures, are automatically detected by the remaining workers. They coordinate
to rebalance tasks across the set of remaining workers. Connect workers use Apache Kafka's
consumer groups to coordinate and rebalance.

If your connector's capacity requirements are variable or difficult to estimate, you can let MSK
Connect scale the number of workers as needed between a lower limit and an upper limit that
you specify. Alternatively, you can specify the exact number of workers that you want to run your
connector logic. For more information, see the section called “Capacity”.

MSK Connect workers consume IP addresses

MSK Connect workers consume IP addresses in the customer-provided subnets. Each worker uses
one IP address from one of the customer-provided subnets. You should ensure that you have

Workers 121

https://kafka.apache.org/documentation/#connect_development
https://kafka.apache.org/documentation/#connect_development
https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/MSKC/latest/mskc/API_CreateCustomPlugin.html

Amazon Managed Streaming for Apache Kafka Developer Guide

enough available IP addresses in the subnets provided to a CreateConnector request to account for
their specified capacity, especially when autoscaling connectors where the number of workers can
fluctuate.

Topics

• Default worker configuration

• Supported worker configuration properties

• Creating a custom worker configuration

• Managing source connector offsets using offset.storage.topic

Default worker configuration

MSK Connect provides the following default worker configuration:

key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=org.apache.kafka.connect.storage.StringConverter

Supported worker configuration properties

MSK Connect provides a default worker configuration. You also have the option to create a custom
worker configuration to use with your connectors. The following list includes information about the
worker configuration properties that Amazon MSK Connect does or does not support.

• The key.converter and value.converter properties are required.

• MSK Connect supports the following producer. configuration properties.

producer.acks
producer.batch.size
producer.buffer.memory
producer.compression.type
producer.enable.idempotence
producer.key.serializer
producer.max.request.size
producer.metadata.max.age.ms
producer.metadata.max.idle.ms
producer.partitioner.class
producer.reconnect.backoff.max.ms
producer.reconnect.backoff.ms

Default worker configuration 122

Amazon Managed Streaming for Apache Kafka Developer Guide

producer.request.timeout.ms
producer.retry.backoff.ms
producer.value.serializer

• MSK Connect supports the following consumer. configuration properties.

consumer.allow.auto.create.topics
consumer.auto.offset.reset
consumer.check.crcs
consumer.fetch.max.bytes
consumer.fetch.max.wait.ms
consumer.fetch.min.bytes
consumer.heartbeat.interval.ms
consumer.key.deserializer
consumer.max.partition.fetch.bytes
consumer.max.poll.records
consumer.metadata.max.age.ms
consumer.partition.assignment.strategy
consumer.reconnect.backoff.max.ms
consumer.reconnect.backoff.ms
consumer.request.timeout.ms
consumer.retry.backoff.ms
consumer.session.timeout.ms
consumer.value.deserializer

• All other configuration properties that don't start with the producer. or consumer. prefixes
are supported except for the following properties.

access.control.
admin.
admin.listeners.https.
client.
connect.
inter.worker.
internal.
listeners.https.
metrics.
metrics.context.
rest.
sasl.
security.
socket.
ssl.

Supported worker configuration properties 123

Amazon Managed Streaming for Apache Kafka Developer Guide

topic.tracking.
worker.
bootstrap.servers
config.storage.topic
connections.max.idle.ms
connector.client.config.override.policy
group.id
listeners
metric.reporters
plugin.path
receive.buffer.bytes
response.http.headers.config
scheduled.rebalance.max.delay.ms
send.buffer.bytes
status.storage.topic

For more information about worker configuration properties and what they represent, see Kafka
Connect Configs in the Apache Kafka documentation.

Creating a custom worker configuration

Creating a custom worker configuration using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. In the left pane, under MSK Connect, choose Worker configurations.

3. Choose Create worker configuration.

4. Enter a name and an optional description, then add the properties and values that you want to
set them to.

5. Choose Create worker configuration.

To use the MSK Connect API to create a worker configuration, see CreateWorkerConfiguration.

Managing source connector offsets using offset.storage.topic

This section provides information to help you manage source connector offsets using the offset
storage topic. The offset storage topic is an internal topic that Kafka Connect uses to store
connector and task configuration offsets.

Creating a custom configuration 124

https://kafka.apache.org/documentation/#connectconfigs
https://kafka.apache.org/documentation/#connectconfigs
https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/MSKC/latest/mskc/API_CreateWorkerConfiguration.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Using the default offset storage topic

By default, Amazon MSK Connect generates a new offset storage topic on your Kafka
cluster for each connector that you create. MSK constructs the default topic name using
parts of the connector ARN. For example, __amazon_msk_connect_offsets_my-mskc-
connector_12345678-09e7-4abc-8be8-c657f7e4ff32-2.

Specifying your own offset storage topic

To provide offset continuity between source connectors, you can use an offset storage topic of your
choice instead of the default topic. Specifying an offset storage topic helps you accomplish tasks
like creating a source connector that resumes reading from the last offset of a previous connector.

To specify an offset storage topic, you supply a value for the offset.storage.topic property
in your worker configuration before you create a connector. If you want to reuse the offset storage
topic to consume offsets from a previously created connector, you must give the new connector
the same name as the old connector. If you create a custom offset storage topic, you must set
cleanup.policy to compact in your topic configuration.

Note

If you specify an offset storage topic when you create a sink connector, MSK Connect
creates the topic if it does not already exist. However, the topic will not be used to store
connector offsets.
Sink connector offsets are instead managed using the Kafka consumer group protocol.
Each sink connector creates a group named connect-{CONNECTOR_NAME}. As long as
the consumer group exists, any successive sink connectors that you create with the same
CONNECTOR_NAME value will continue from the last committed offset.

Example : Specifying an offset storage topic to recreate a source connector with an updated
configuration

Suppose you have a change data capture (CDC) connector and you want to modify the connector
configuration without losing your place in the CDC stream. You can't update the existing connector
configuration, but you can delete the connector and create a new one with the same name.
To tell the new connector where to start reading in the CDC stream, you can specify the old
connector's offset storage topic in your worker configuration. The following steps demonstrate
how to accomplish this task.

Managing connector offsets 125

https://kafka.apache.org/27/documentation.html#topicconfigs_cleanup.policy

Amazon Managed Streaming for Apache Kafka Developer Guide

1. On your client machine, run the following command to find the name of your connector's
offset storage topic. Replace <bootstrapBrokerString> with your cluster's bootstrap
broker string. For instructions on getting your bootstrap broker string, see Getting the
bootstrap brokers for an Amazon MSK cluster.

<path-to-your-kafka-installation>/bin/kafka-topics.sh --list --bootstrap-
server <bootstrapBrokerString>

The following output shows a list of all cluster topics, including any default internal
connector topics. In this example, the existing CDC connector uses the default offset
storage topic created by MSK Connect. This is why the offset storage topic is called
__amazon_msk_connect_offsets_my-mskc-connector_12345678-09e7-4abc-8be8-
c657f7e4ff32-2.

__consumer_offsets
__amazon_msk_canary
__amazon_msk_connect_configs_my-mskc-connector_12345678-09e7-4abc-8be8-
c657f7e4ff32-2
__amazon_msk_connect_offsets_my-mskc-connector_12345678-09e7-4abc-8be8-
c657f7e4ff32-2
__amazon_msk_connect_status_my-mskc-connector_12345678-09e7-4abc-8be8-
c657f7e4ff32-2
my-msk-topic-1
my-msk-topic-2

2. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

3. Choose your connector from the Connectors list. Copy and save the contents of the Connector
configuration field so that you can modify it and use it to create the new connector.

4. Choose Delete to delete the connector. Then enter the connector name in the text input field
to confirm deletion.

5. Create a custom worker configuration with values that fit your scenario. For instructions, see
Creating a custom worker configuration.

In your worker configuration, you must specify the name of the offset storage topic that
you previously retrieved as the value for offset.storage.topic like in the following
configuration.

config.providers.secretManager.param.aws.region=us-east-1
key.converter=<org.apache.kafka.connect.storage.StringConverter>

Managing connector offsets 126

https://console.aws.amazon.com/msk

Amazon Managed Streaming for Apache Kafka Developer Guide

value.converter=<org.apache.kafka.connect.storage.StringConverter>
config.providers.secretManager.class=com.github.jcustenborder.kafka.config.aws.SecretsManagerConfigProvider
config.providers=secretManager
offset.storage.topic=__amazon_msk_connect_offsets_my-mskc-
connector_12345678-09e7-4abc-8be8-c657f7e4ff32-2

6.
Important

You must give your new connector the same name as the old connector.

Create a new connector using the worker configuration that you set up in the previous step.
For instructions, see Creating a connector.

Considerations

Consider the following when you manage source connector offsets.

• To specify an offset storage topic, provide the name of the Kafka topic where connector offsets
are stored as the value for offset.storage.topic in your worker configuration.

• Use caution when you make changes to a connector configuration. Changing configuration
values may result in unintended connector behavior if a source connector uses values from
the configuration to key offset records. We recommend that you refer to your plugin's
documentation for guidance.

• Customize default number of partitions – In addition to customizing the worker configuration
by adding offset.storage.topic, you can customize the number of partitions for the offset
and status storage topics. Default partitions for internal topics are as follows.

• config.storage.topic: 1, not configurable, must be single partition topic

• offset.storage.topic: 25, configurable by providing offset.storage.partitions

• status.storage.topic: 5, configurable by providing status.storage.partitions

• Manually deleting topics – Amazon MSK Connect creates new Kafka connect internal topics
(topic name starts with __amazon_msk_connect) on every deployment of connectors.
Old topics that are attached to deleted connectors are not automatically removed because
internal topics, such as offset.storage.topic, can be reused among connectors. However,
you can manually delete unused internal topics created by MSK Connect. The internal
topics are named following the format __amazon_msk_connect_<offsets|status|
configs>_connector_name_connector_id.

Managing connector offsets 127

Amazon Managed Streaming for Apache Kafka Developer Guide

The regular expression __amazon_msk_connect_<offsets|status|
configs>_connector_name_connector_id can be used to delete the internal topics. You
should not delete an internal topic that is currently in use by a running connector.

• Using the same name for the internal topics created by MSK Connect – If you want to reuse
the offset storage topic to consume offsets from a previously created connector, you must
give the new connector the same name as the old connector. The offset.storage.topic
property can be set using the worker configuration to assign the same name to the
offset.storage.topic and reused between different connectors. This configuration is
described in Managing connector offsets. MSK Connect does not allow different connectors to
share config.storage.topic and status.storage.topic. Those topics are created each
time you create a new connector in MSKC. They are automatically named following the format
__amazon_msk_connect_<status|configs>_connector_name_connector_id, and so
are different across the different connectors that you create.

Externalizing sensitive information using config providers

This example shows how to externalize sensitive information for Amazon MSK Connect using an
open source configuration provider. A configuration providers lets you specify variables instead of
plaintext in a connector or worker configuration, and workers running in your connector resolve
these variables at runtime. This prevents credentials and other secrets from being stored in
plaintext. The configuration provider in the example supports retrieving configuration parameters
from AWS Secrets Manager, Amazon S3 and Systems Manager (SSM). In Step 2, you can see how to
set up storage and retrieval of sensitive information for the service that you want to configure.

Topics

• Step 1: Create a custom plugin and upload to S3

• Step 2: Configure parameters and permissions for different providers

• Step 3: Create a custom worker configuration with information about your configuration
provider

• Step 4: Create the connector

• Considerations

Configuration providers 128

https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-workers.html#msk-connect-create-custom-worker-config

Amazon Managed Streaming for Apache Kafka Developer Guide

Step 1: Create a custom plugin and upload to S3

To create a custom-plugin, create a zip file that contains the connector and the msk-config-
provider by running the following commands on your local machine.

To create a custom plugin using a terminal window and Debezium as the connector

Use the AWS CLI to run commands as a superuser with credentials that allow you to access your
AWS S3 bucket. For information on installing and setting up the AWS CLI, see Getting started with
the AWS CLI in the AWS Command Line Interface User Guide. For information on using the AWS CLI
with Amazon S3, see Using Amazon S3 with the AWS CLI in the AWS Command Line Interface User
Guide.

1. In a terminal window, create a folder named custom-plugin in your workspace using the
following command.

mkdir custom-plugin && cd custom-plugin

2. Download the latest stable release of the MySQL Connector Plug-in from the Debezium site
using the following command.

wget https://repo1.maven.org/maven2/io/debezium/debezium-connectormysql/
2.2.0.Final/debezium-connector-mysql-2.2.0.Final-plugin.tar.gz

Extract the downloaded gzip file in the custom-plugin folder using the following command.

tar xzf debezium-connector-mysql-2.2.0.Final-plugin.tar.gz

3. Download the MSK config provider zip file using the following command.

wget https://github.com/aws-samples/msk-config-providers/releases/download/r0.1.0/
msk-config-providers-0.1.0-with-dependencies.zip

Extract the downloaded zip file in the custom-plugin folder using the follwoing command.

unzip msk-config-providers-0.1.0-with-dependencies.zip

4. Zip the contents of the MSK config provider from the above step and the custom connector
into a single file named custom-plugin.zip.

Step 1: Create custom plugin and upload to S3 129

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3.html
https://debezium.io/releases/
https://github.com/aws-samples/msk-config-providers/releases/download/r0.1.0/msk-config-providers-0.1.0-with-dependencies.zip

Amazon Managed Streaming for Apache Kafka Developer Guide

zip -r ../custom-plugin.zip *

5. Upload the file to S3 to be referenced later.

aws s3 cp ../custom-plugin.zip s3:<S3_URI_BUCKET_LOCATION>

6. On the Amazon MSK console, under the MSK Connect section, choose Custom Plugin, then
choose Create custom plugin and browse the s3:<S3_URI_BUCKET_LOCATION> S3 bucket to
select the custom plugin ZIP file you just uploaded.

7. Enter debezium-custom-plugin for the plugin name. Optionally, enter a description and
choose Create Custom Plugin.

Step 2: Configure parameters and permissions for different providers

You can configure parameter values in these three services:

Step 2: Configure providers 130

Amazon Managed Streaming for Apache Kafka Developer Guide

• Secrets Manager

• Systems Manager Parameter Store

• S3 - Simple Storage Service

Select one of the tabs below for instructions on setting up parameters and relevant permissions for
that service.

Configure in Secrets Manager

To configure parameter values in Secrets Manager

1. Open the Secrets Manager console.

2. Create a new secret to store your credentials or secrets. For instructions, see Create an AWS
Secrets Manager secret in the AWS Secrets Manager User Guide.

3. Copy your secret's ARN.

4. Add the Secrets Manager permissions from the following example policy
to your Service execution role. Replace <arn:aws:secretsmanager:us-
east-1:123456789000:secret:MySecret-1234> with the ARN of your secret.

5. Add worker configuration and connector instructions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": [
 "<arn:aws:secretsmanager:us-
east-1:123456789000:secret:MySecret-1234>"
]
 }
]
 }

Step 2: Configure providers 131

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-service-execution-role.html

Amazon Managed Streaming for Apache Kafka Developer Guide

6. For using the Secrets Manager configuration provider, copy the following lines of code to
the worker configuration textbox in Step 3:

define name of config provider:

config.providers = secretsmanager

provide implementation classes for secrets manager:

config.providers.secretsmanager.class =
 com.amazonaws.kafka.config.providers.SecretsManagerConfigProvider

configure a config provider (if it needs additional initialization), for
 example you can provide a region where the secrets or parameters are located:

config.providers.secretsmanager.param.region = us-east-1

7. For the secrets manager configuration provider, copy the following lines of code in the
connector configuration in Step 4.

#Example implementation for secrets manager variable
database.hostname=${secretsmanager:MSKAuroraDBCredentials:username}

database.password=${secretsmanager:MSKAuroraDBCredentials:password}

You may also use the above step with more configuration providers.

Configure in Systems Manager Parameter Store

To configure parameter values in Systems Manager Parameter Store

1. Open the Systems Manager console.

2. In the navigation pane, choose Parameter Store.

3. Create a new parameter to store in the Systems Manager. For instructions, see Create a
Systems Manager parameter (console) in the AWS Systems Manager User Guide.

4. Copy your parameter's ARN.

5. Add the Systems Manager permissions from the following example policy to your Service
execution role. Replace <arn:aws:ssm:us-east-1:123456789000:parameter/
MyParameterName> with the ARN of your parameter.

Step 2: Configure providers 132

https://console.aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-create-console.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-service-execution-role.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-service-execution-role.html

Amazon Managed Streaming for Apache Kafka Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameterHistory",
 "ssm:GetParametersByPath",
 "ssm:GetParameters",
 "ssm:GetParameter"
],
 "Resource": "arn:aws:ssm:us-east-1:123456789000:parameter/
MyParameterName"
 }
]
 }

6. For using the parameter store configuration provider, copy the following lines of code to
the worker configuration textbox in Step 3:

define name of config provider:

config.providers = ssm

provide implementation classes for parameter store:

config.providers.ssm.class =
 com.amazonaws.kafka.config.providers.SsmParamStoreConfigProvider

configure a config provider (if it needs additional initialization), for
 example you can provide a region where the secrets or parameters are located:

config.providers.ssm.param.region = us-east-1

7. For the parameter store configuration provider copy the following lines of code in the
connector configuration in Step 5.

#Example implementation for parameter store variable
schema.history.internal.kafka.bootstrap.servers=
${ssm::MSKBootstrapServerAddress}

Step 2: Configure providers 133

Amazon Managed Streaming for Apache Kafka Developer Guide

You may also bundle the above two steps with more configuration providers.

Configure in Amazon S3

To configure objects/files in Amazon S3

1. Open the Amazon S3 console.

2. Upload your object to a bucket in S3. For instructions, see Uploading objects.

3. Copy your object's ARN.

4. Add the Amazon S3 Object Read permissions from the following example policy to your
Service execution role. Replace <arn:aws:s3:::MY_S3_BUCKET/path/to/custom-
plugin.zip> with the ARN of your object.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "<arn:aws:s3:::MY_S3_BUCKET/path/to/custom-
plugin.zip>"
 }
]
 }

5. For using the Amazon S3 configuration provider, copy the following lines of code to the
worker configuration text-box in Step 3:

define name of config provider:

config.providers = s3import
provide implementation classes for S3:

config.providers.s3import.class =
 com.amazonaws.kafka.config.providers.S3ImportConfigProvider

Step 2: Configure providers 134

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-service-execution-role.html

Amazon Managed Streaming for Apache Kafka Developer Guide

6. For the Amazon S3 configuration provider, copy the following lines of code to the
connector configuration in Step 4.

#Example implementation for S3 object

database.ssl.truststore.location = ${s3import:us-west-2:my_cert_bucket/path/to/
trustore_unique_filename.jks}

You may also bundle the above two steps with more configuration providers.

Step 3: Create a custom worker configuration with information about
your configuration provider

1. Select Worker configurations under the Amazon MSK Connect section.

2. Select Create worker configuration.

3. Enter SourceDebeziumCustomConfig in the Worker Configuration Name textbox. The
Description is optional.

4. Copy the relevant configuration code based on the providers desired, and paste it in the
Worker configuration textbox.

5. This is an example of the worker configuration for all the three providers:

key.converter=org.apache.kafka.connect.storage.StringConverter
key.converter.schemas.enable=false
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false
offset.storage.topic=offsets_my_debezium_source_connector

define names of config providers:

config.providers=secretsmanager,ssm,s3import

provide implementation classes for each provider:

config.providers.secretsmanager.class =
 com.amazonaws.kafka.config.providers.SecretsManagerConfigProvider
config.providers.ssm.class =
 com.amazonaws.kafka.config.providers.SsmParamStoreConfigProvider
config.providers.s3import.class =
 com.amazonaws.kafka.config.providers.S3ImportConfigProvider

Step 3: Create custom worker config 135

Amazon Managed Streaming for Apache Kafka Developer Guide

configure a config provider (if it needs additional initialization), for example
 you can provide a region where the secrets or parameters are located:

config.providers.secretsmanager.param.region = us-east-1
config.providers.ssm.param.region = us-east-1

6. Click on Create worker configuration.

Step 4: Create the connector

1. Create a new connector using the instructions in Create a new connector.

2. Choose the custom-plugin.zip file that you uploaded to your S3 bucket in ??? as the source
for the custom plugin.

3. Copy the relevant configuration code based on the providers desired, and paste them in the
Connector configuration field.

4. This is an example for the connector configuration for all the three providers:

#Example implementation for parameter store variable
schema.history.internal.kafka.bootstrap.servers=${ssm::MSKBootstrapServerAddress}

#Example implementation for secrets manager variable
database.hostname=${secretsmanager:MSKAuroraDBCredentials:username}

database.password=${secretsmanager:MSKAuroraDBCredentials:password}

#Example implementation for Amazon S3 file/object
database.ssl.truststore.location = ${s3import:us-west-2:my_cert_bucket/path/to/
trustore_unique_filename.jks}

5. Select Use a custom configuration and choose SourceDebeziumCustomConfig from the
Worker Configuration dropdown.

6. Follow the remaining steps from instructions in Create connector.

Considerations

Consider the following while using the MSK config provider with Amazon MSK Connect:

Step 4: Create the connector 136

https://docs.aws.amazon.com/msk/latest/developerguide/mkc-create-connector.html
https://docs.aws.amazon.com/msk/latest/developerguide/mkc-create-connector.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• Assign appropriate permissions when using the config providers to the IAM Service Execution
Role.

• Define the config providers in worker configurations and their implementation in the connector
configuration.

• Sensitive configuration values can appear in connector logs if a plugin does not define those
values as secret. Kafka Connect treats undefined configuration values the same as any other
plaintext value. To learn more, see Preventing secrets from appearing in connector logs.

• By default, MSK Connect frequently restarts a connector when the connector
uses a configuration provider. To turn off this restart behavior, you can set the
config.action.reload value to none in your connector configuration.

IAM roles and policies for MSK Connect

Topics

• Service execution role

• Examples of IAM policies for MSK Connect

• Cross-service confused deputy prevention

• AWS managed policies for MSK Connect

• Using service-linked roles for MSK Connect

Service execution role

Note

Amazon MSK Connect does not support using the Service-linked role as the service
execution role. You must create a separate service execution role. For instructions on how
to create a custom IAM role, see Creating a role to delegate permissions to an AWS service
in the IAM User Guide.

When you create a connector with MSK Connect, you are required to specify an AWS Identity and
Access Management (IAM) role to use with it. Your service execution role must have the following
trust policy so that MSK Connect can assume it. For information about the condition context keys
in this policy, see the section called “Cross-service confused deputy prevention”.

IAM roles and policies 137

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Managed Streaming for Apache Kafka Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kafkaconnect.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "Account-ID"
 },
 "ArnLike": {
 "aws:SourceArn": "MSK-Connector-ARN"
 }
 }
 }
]
}

If the Amazon MSK cluster that you want to use with your connector is a cluster that uses IAM
authentication, then you must add the following permissions policy to the connector's service
execution role. For information on how to find your cluster's UUID and how to construct topic
ARNs, see the section called “Resources”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:DescribeCluster"
],
 "Resource": [
 "cluster-arn"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Service execution role 138

Amazon Managed Streaming for Apache Kafka Developer Guide

 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeTopic"
],
 "Resource": [
 "ARN of the topic that you want a sink connector to read from"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:WriteData",
 "kafka-cluster:DescribeTopic"
],
 "Resource": [
 "ARN of the topic that you want a source connector to write to"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:CreateTopic",
 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeTopic"
],
 "Resource": [
 "arn:aws:kafka:region:account-id:topic/cluster-name/cluster-uuid/
__amazon_msk_connect_*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup"
],
 "Resource": [
 "arn:aws:kafka:region:account-id:group/cluster-name/cluster-uuid/
__amazon_msk_connect_*",
 "arn:aws:kafka:region:account-id:group/cluster-name/cluster-uuid/
connect-*"
]
 }
]

Service execution role 139

Amazon Managed Streaming for Apache Kafka Developer Guide

}

Depending on the kind of connector, you might also need to attach to the service execution role
a permissions policy that allows it to access AWS resources. For example, if your connector needs
to send data to an S3 bucket, then the service execution role must have a permissions policy that
grants permission to write to that bucket. For testing purposes, you can use one of the pre-built
IAM policies that give full access, like arn:aws:iam::aws:policy/AmazonS3FullAccess.
However, for security purposes, we recommend that you use the most restrictive policy that allows
your connector to read from the AWS source or write to the AWS sink.

Examples of IAM policies for MSK Connect

To give a non-admin user full access to all MSK Connect functionality, attach a policy like the
following one to the user's IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafkaconnect:*",
 "ec2:CreateNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeSecurityGroups",
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/
kafkaconnect.amazonaws.com/AWSServiceRoleForKafkaConnect*",
 "Condition": {

Example policies 140

Amazon Managed Streaming for Apache Kafka Developer Guide

 "StringLike": {
 "iam:AWSServiceName": "kafkaconnect.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/
kafkaconnect.amazonaws.com/AWSServiceRoleForKafkaConnect*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/
delivery.logs.amazonaws.com/AWSServiceRoleForLogDelivery*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "delivery.logs.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutBucketPolicy",
 "s3:GetBucketPolicy"
],
 "Resource": "ARN of the Amazon S3 bucket to which you want MSK Connect to
 deliver logs"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "ARN of the service execution role"
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "ARN of the Amazon S3 object that corresponds to the custom
 plugin that you want to use for creating connectors"

Example policies 141

Amazon Managed Streaming for Apache Kafka Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": "firehose:TagDeliveryStream",
 "Resource": "ARN of the Firehose delivery stream to which you want MSK
 Connect to deliver logs"
 }
]
}

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that MSK Connect gives another service to
the resource. If the aws:SourceArn value does not contain the account ID (for example, an
Amazon S3 bucket ARN doesn't contain the account ID), you must use both global condition
context keys to limit permissions. If you use both global condition context keys and the
aws:SourceArn value contains the account ID, the aws:SourceAccount value and the account
in the aws:SourceArn value must use the same account ID when used in the same policy
statement. Use aws:SourceArn if you want only one resource to be associated with the cross-
service access. Use aws:SourceAccount if you want to allow any resource in that account to be
associated with the cross-service use.

In the case of MSK Connect, the value of aws:SourceArn must be an MSK connector.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,

Cross-service confused deputy prevention 142

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Managed Streaming for Apache Kafka Developer Guide

arn:aws:kafkaconnect:us-east-1:123456789012:connector/* represents all connectors
that belong to the account with ID 123456789012 in the US East (N. Virginia) Region.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in MSK Connect to prevent the confused deputy problem. Replace
Account-ID and MSK-Connector-ARN with your information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": " kafkaconnect.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "Account-ID"
 },
 "ArnLike": {
 "aws:SourceArn": "MSK-Connector-ARN"
 }
 }
 }
]
}

AWS managed policies for MSK Connect

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,

AWS managed policies 143

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Amazon Managed Streaming for Apache Kafka Developer Guide

groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonMSKConnectReadOnlyAccess

This policy grants the user the permissions that are needed to list and describe MSK Connect
resources.

You can attach the AmazonMSKConnectReadOnlyAccess policy to your IAM identities.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafkaconnect:ListConnectors",
 "kafkaconnect:ListCustomPlugins",
 "kafkaconnect:ListWorkerConfigurations"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafkaconnect:DescribeConnector"
],
 "Resource": [
 "arn:aws:kafkaconnect:*:*:connector/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafkaconnect:DescribeCustomPlugin"
],
 "Resource": [
 "arn:aws:kafkaconnect:*:*:custom-plugin/*"
]
 },

AWS managed policies 144

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Managed Streaming for Apache Kafka Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "kafkaconnect:DescribeWorkerConfiguration"
],
 "Resource": [
 "arn:aws:kafkaconnect:*:*:worker-configuration/*"
]
 }
]
}

AWS managed policy: KafkaConnectServiceRolePolicy

This policy grants the MSK Connect service the permissions that are needed to create and manage
network interfaces that have the tag AmazonMSKConnectManaged:true. These network
interfaces give MSK Connect network access to resources in your Amazon VPC, such as an Apache
Kafka cluster or a source or a sink.

You can't attach KafkaConnectServiceRolePolicy to your IAM entities. This policy is attached to a
service-linked role that allows MSK Connect to perform actions on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/AmazonMSKConnectManaged": "true"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": "AmazonMSKConnectManaged"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [

AWS managed policies 145

Amazon Managed Streaming for Apache Kafka Developer Guide

 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeNetworkInterfaces",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:AttachNetworkInterface",
 "ec2:DetachNetworkInterface",
 "ec2:DeleteNetworkInterface"
],
 "Resource": "arn:aws:ec2:*:*:network-interface/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/AmazonMSKConnectManaged": "true"
 }
 }
 }
]
}

MSK Connect updates to AWS managed policies

View details about updates to AWS managed policies for MSK Connect since this service began
tracking these changes.

AWS managed policies 146

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

MSK Connect updated read-
only policy

MSK Connect updated the
AmazonMSKConnectRe
adOnlyAccess policy to
remove the restrictions on
listing operations.

October 13, 2021

MSK Connect started tracking
changes

MSK Connect started tracking
changes for its AWS managed
policies.

September 14, 2021

Using service-linked roles for MSK Connect

Amazon MSK Connect uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to MSK Connect. Service-
linked roles are predefined by MSK Connect and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up MSK Connect easier because you don't have to manually add
the necessary permissions. MSK Connect defines the permissions of its service-linked roles, and
unless defined otherwise, only MSK Connect can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for MSK Connect

MSK Connect uses the service-linked role named AWSServiceRoleForKafkaConnect – Allows
Amazon MSK Connect to access Amazon resources on your behalf.

The AWSServiceRoleForKafkaConnect service-linked role trusts the
kafkaconnect.amazonaws.com service to assume the role.

Using service-linked roles 147

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Streaming for Apache Kafka Developer Guide

For information about the permissions policy that the role uses, see the section called
“KafkaConnectServiceRolePolicy”.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a service-linked role for MSK Connect

You don't need to manually create a service-linked role. When you create a connector in the AWS
Management Console, the AWS CLI, or the AWS API, MSK Connect creates the service-linked role
for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a connector, MSK Connect creates the
service-linked role for you again.

Editing a service-linked role for MSK Connect

MSK Connect does not allow you to edit the AWSServiceRoleForKafkaConnect service-linked
role. After you create a service-linked role, you can't change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for MSK Connect

You can use the IAM console, the AWS CLI or the AWS API to manually delete the service-linked
role. To do this, you must first manually delete all of your MSK Connect connectors, and then you
can manually delete the role. For more information, see Deleting a Service-Linked Role in the IAM
User Guide.

Supported Regions for MSK Connect service-linked roles

MSK Connect supports using service-linked roles in all of the regions where the service is available.
For more information, see AWS Regions and Endpoints.

Enabling internet access for Amazon MSK Connect

If your connector for Amazon MSK Connect needs access to the internet, we recommend that you
use the following Amazon Virtual Private Cloud (VPC) settings to enable that access.

Enabling internet access 148

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• Configure your connector with private subnets.

• Create a public NAT gateway or NAT instance for your VPC in a public subnet. For more
information, see the Connect subnets to the internet or other VPCs using NAT devices page in
the Amazon Virtual Private Cloud User Guide.

• Allow outbound traffic from your private subnets to your NAT gateway or instance.

Setting up a NAT gateway for Amazon MSK Connect

The following steps show you how to set up a NAT gateway to enable internet access for a
connector. You must complete these steps before you create a connector in a private subnet.

Prerequisites

Make sure you have the following items.

• The ID of the Amazon Virtual Private Cloud (VPC) associated with your cluster. For example,
vpc-123456ab.

• The IDs of the private subnets in your VPC. For example, subnet-a1b2c3de, subnet-f4g5h6ij, etc.
You must configure your connector with private subnets.

To enable internet access for your connector

1. Open the Amazon Virtual Private Cloud console at https://console.aws.amazon.com/vpc/.

2. Create a public subnet for your NAT gateway with a descriptive name, and note the subnet ID.
For detailed instructions, see Create a subnet in your VPC.

3. Create an internet gateway so that your VPC can communicate with the internet, and note the
gateway ID. Attach the internet gateway to your VPC. For instructions, see Create and attach
an internet gateway.

4. Provision a public NAT gateway so that hosts in your private subnets can reach your public
subnet. When you create the NAT gateway, select the public subnet that you created earlier.
For instructions, see Create a NAT gateway.

5. Configure your route tables. You must have two route tables in total to complete this setup.
You should already have a main route table that was automatically created at the same time as
your VPC. In this step you create an additional route table for your public subnet.

Setting up a NAT gateway for Amazon MSK Connect 149

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_NAT_Instance.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Attach_Gateway
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Attach_Gateway
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-creating

Amazon Managed Streaming for Apache Kafka Developer Guide

a. Use the following settings to modify your VPC's main route table so that your private
subnets route traffic to your NAT gateway. For instructions, see Work with route tables in
the Amazon Virtual Private Cloud User Guide.

Private MSKC route table

Property Value

Name tag We recommend that you give this route
table a descriptive name tag to help you
identify it. For example, Private MSKC.

Associated subnets Your private subnets

A route to enable internet access for MSK
Connect

• Destination: 0.0.0.0/0

• Target: Your NAT gateway ID. For
example, nat-12a345bc6789efg1h.

A local route for internal traffic • Destination: 10.0.0.0/16. This value
may differ depending on your VPC's
CIDR block.

• Target: Local

b. Follow the instructions in Create a custom route table to create a route table for your
public subnet. When you create the table, enter a descriptive name in the Name tag field
to help you identify which subnet the table is associated with. For example, Public MSKC.

c. Configure your Public MSKC route table using the following settings.

Property Value

Name tag Public MSKC or a different descriptive
name that you choose

Associated subnets Your public subnet with NAT gateway

Setting up a NAT gateway for Amazon MSK Connect 150

https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Routing

Amazon Managed Streaming for Apache Kafka Developer Guide

Property Value

A route to enable internet access for MSK
Connect

• Destination: 0.0.0.0/0

• Target: Your internet gateway ID. For
example, igw-1a234bc5.

A local route for internal traffic • Destination: 10.0.0.0/16. This value
may differ depending on your VPC's
CIDR block.

• Target: Local

Private DNS hostnames

With Private DNS hostname support in MSK Connect, you can configure connectors to reference
public or private domain names. Support depends on the DNS servers specified in the VPC DHCP
option set.

A DHCP option set is a group of network configurations that EC2 instances use in a VPC to
communicate over the VPC network. Each VPC has a default DHCP option set, but you can create
a custom DHCP option set if you want instances in a VPC to use a different DNS server for domain
name resolution, instead of the Amazon-provided DNS server. See DHCP option sets in Amazon
VPC.

Before the Private DNS resolution capability/feature was included with MSK Connect, connectors
used the service VPC DNS resolvers for DNS queries from a customer connector. Connectors did not
use the DNS servers defined in the customer VPC DHCP option sets for DNS resolution.

Connectors could only reference hostnames in customer connector configurations or plugins that
were publicly resolvable. They couldn't resolve private hostnames defined in a privately-hosted
zone or use DNS servers in another customer network.

Without Private DNS, customers who chose to make their databases, data warehouses, and systems
like the Secrets Manager in their own VPC inaccessible to the internet, couldn't work with MSK
connectors. Customers often use private DNS hostnames to comply with corporate security
posture.

Topics

Private DNS hostnames 151

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• Configuring a VPC DHCP option set for your connector

• DNS attributes for your VPC

• Failure handling

Configuring a VPC DHCP option set for your connector

Connectors automatically use the DNS servers defined in their VPC DHCP option set when the
connector is created. Before you create a connector, make sure that you configure the VPC DHCP
option set for your connector's DNS hostname resolution requirements.

Connectors that you created before the Private DNS hostname feature was available in MSK
Connect continue to use the previous DNS resolution configuration with no modification required.

If you need only publicly resolvable DNS hostname resolution in your connector, for easier setup
we recommend using the default VPC of your account when you create the connector. See Amazon
DNS Server in the Amazon VPC User Guide for more information on the Amazon-provided DNS
server or Amazon Route 53 Resolver.

If you need to resolve private DNS hostnames, make sure the VPC that is passed during connector
creation has its DHCP options set correctly configured. For more information, see Work with DHCP
option sets in the Amazon VPC User Guide.

When you configure a DHCP option set for private DNS hostname resolution, ensure that the
connector can reach the custom DNS servers that you configure in the DHCP option set. Otherwise,
your connector creation will fail.

After you customize the VPC DHCP option set, connectors subsequently created in that VPC use
the DNS servers that you specified in the option set. If you change the option set after you create a
connector, the connector adopts the settings in the new option set within a couple of minutes.

DNS attributes for your VPC

Make sure you have the VPC DNS attributes correctly configured as described in DNS attributes in
your VPC and DNS hostnames in the Amazon VPC User Guide.

See Resolving DNS queries between VPCs and your network in the Amazon Route 53 Developer
Guide for information on using inbound and outbound resolver endpoints to connect other
networks to your VPC to work with your connector.

Configuring 152

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#AmazonDNS
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#AmazonDNS
https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/vpc/latest/userguide/DHCPOptionSet.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-hostnames
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Failure handling

This section describes possible connector creation failures associated with DNS resolution and
suggested actions to resolve the issues.

Failure Suggested action

Connector creation fails if a DNS resolution
query fails, or if DNS servers are unreachable
from the connector.

You can see connector creation failures due to
unsuccessful DNS resolution queries in your
CloudWatch logs, if you've configured these
logs for your connector.

Check the DNS server configurations and
ensure network connectivity to the DNS
servers from the connector.

If you change the DNS servers configuration in
your VPC DHCP option set while a connector
is running, DNS resolution queries from the
connector can fail. If the DNS resolution fails,
some of the connector tasks can enter a failed
state.

You can see connector creation failures due to
unsuccessful DNS resolution queries in your
CloudWatch logs, if you've configured these
logs for your connector.

The failed tasks should automatically restart
to bring the connector back up. If that does
not happen, you can contact support to restart
the failed tasks for their connector or you can
recreate the connector.

Logging for MSK Connect

MSK Connect can write log events that you can use to debug your connector. When you create a
connector, you can specify zero or more of the following log destinations:

• Amazon CloudWatch Logs: You specify the log group to which you want MSK Connect to send
your connector's log events. For information on how to create a log group, see Create a log
group in the CloudWatch Logs User Guide.

Failure handling 153

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#Create-Log-Group
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#Create-Log-Group

Amazon Managed Streaming for Apache Kafka Developer Guide

• Amazon S3: You specify the S3 bucket to which you want MSK Connect to send your connector's
log events. For information on how to create an S3 bucket, see Creating a bucket in the Amazon
S3 User Guide.

• Amazon Data Firehose: You specify the delivery stream to which you want MSK Connect to send
your connector's log events. For information on how to create a delivery stream, see Creating an
Amazon Data Firehose delivery stream in the Firehose User Guide.

To learn more about setting up logging, see Enabling logging from certain AWS services in the
Amazon CloudWatch Logs User Guide.

MSK Connect emits the following types of log events:

Level Description

INFO Runtime events of interest at startup and
shutdown.

WARN Runtime situations that aren't errors but are
undesirable or unexpected.

FATAL Severe errors that cause premature terminati
on.

ERROR Unexpected conditions and runtime errors
that aren't fatal.

The following is an example of a log event sent to CloudWatch Logs:

[Worker-0bb8afa0b01391c41] [2021-09-06 16:02:54,151] WARN [Producer
 clientId=producer-1] Connection to node 1 (b-1.my-test-cluster.twwhtj.c2.kafka.us-
east-1.amazonaws.com/INTERNAL_IP) could not be established. Broker may not be
 available. (org.apache.kafka.clients.NetworkClient:782)

Logging 154

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Preventing secrets from appearing in connector logs

Note

Sensitive configuration values can appear in connector logs if a plugin does not define
those values as secret. Kafka Connect treats undefined configuration values the same as
any other plaintext value.

If your plugin defines a property as secret, Kafka Connect redacts the property's value from
connector logs. For example, the following connector logs demonstrate that if a plugin defines
aws.secret.key as a PASSWORD type, then its value is replaced with [hidden].

 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b] [2022-01-11
 15:18:55,150] INFO SecretsManagerConfigProviderConfig values:
 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b] aws.access.key =
 my_access_key
 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b] aws.region = us-east-1
 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b] aws.secret.key
 = [hidden]
 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b] secret.prefix =
 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b] secret.ttl.ms = 300000
 2022-01-11T15:18:55.000+00:00 [Worker-05e6586a48b5f331b]
 (com.github.jcustenborder.kafka.config.aws.SecretsManagerConfigProviderConfig:361)

To prevent secrets from appearing in connector log files, a plugin developer must use the Kafka
Connect enum constant ConfigDef.Type.PASSWORD to define sensitive properties. When a
property is type ConfigDef.Type.PASSWORD, Kafka Connect excludes its value from connector
logs even if the value is sent as plaintext.

Monitoring MSK Connect

Monitoring is an important part of maintaining the reliability, availability, and performance of MSK
Connect and your other AWS solutions. Amazon CloudWatch monitors your AWS resources and the
applications that you run on AWS in real time. You can collect and track metrics, create customized
dashboards, and set alarms that notify you or take actions when a specified metric reaches a
threshold that you specify. For example, you can have CloudWatch track CPU usage or other
metrics of your connector, so that you can increase its capacity if needed. For more information,
see the Amazon CloudWatch User Guide.

Preventing secrets from appearing in connector logs 155

https://kafka.apache.org/27/javadoc/org/apache/kafka/common/config/ConfigDef.Type.html#PASSWORD
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Managed Streaming for Apache Kafka Developer Guide

The following table shows the metrics that MSK Connect sends to CloudWatch under the
ConnectorName dimension. MSK Connect delivers these metrics by default and at no additional
cost. CloudWatch keeps these metrics for 15 months, so that you can access historical information
and gain a better perspective on how your connectors are performing. You can also set alarms that
watch for certain thresholds, and send notifications or take actions when those thresholds are met.
For more information, see the Amazon CloudWatch User Guide.

MSK Connect metrics

Metric name Description

BytesInPerSec The total number of bytes received by the
connector.

BytesOutPerSec The total number of bytes delivered by the
connector.

CpuUtilization The percentage of CPU consumption by
system and user.

ErroredTaskCount The number of tasks that have errored out.

MemoryUtilization The percentage of the total memory on a
worker instance, not just the Java virtual
machine (JVM) heap memory currently in
use. JVM doesn't typically release memory
back to the operational system. So, JVM
heap size (MemoryUtilization) usually starts
with a minimum heap size that increment
ally increases to a stable maximum of about
80-90%. JVM heap usage might increase or
decrease as the connector's actual memory
usage changes.

RebalanceCompletedTotal The total number of rebalances completed by
this connector.

RebalanceTimeAvg The average time in milliseconds spent by the
connector on rebalancing.

Monitoring 156

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric name Description

RebalanceTimeMax The maximum time in milliseconds spent by
the connector on rebalancing.

RebalanceTimeSinceLast The time in milliseconds since this connector
completed the most recent rebalance.

RunningTaskCount The running number of tasks in the connector.

SinkRecordReadRate The average per-second number of records
read from the Apache Kafka or Amazon MSK
cluster.

SinkRecordSendRate The average per-second number of records
that are output from the transformations and
sent to the destination. This number doesn't
include filtered records.

SourceRecordPollRate The average per-second number of records
produced or polled.

SourceRecordWriteRate The average per-second number of records
output from the transformations and written
to the Apache Kafka or Amazon MSK cluster.

TaskStartupAttemptsTotal The total number of task startups that the
connector has attempted. You can use this
metric to identify anomalies in task startup
attempts.

TaskStartupSuccessPercentage The average percentage of successful task
starts for the connector. You can use this
metric to identify anomalies in task startup
attempts.

WorkerCount The number of workers that are running in the
connector.

Monitoring 157

Amazon Managed Streaming for Apache Kafka Developer Guide

Examples

This section includes examples to help you set up Amazon MSK Connect resources such as common
third-party connectors and configuration providers.

Topics

• Amazon S3 sink connector

• Debezium source connector with configuration provider

Amazon S3 sink connector

This example shows how to use the Confluent Amazon S3 sink connector and the AWS CLI to
create an Amazon S3 sink connector in MSK Connect.

1. Copy the following JSON and paste it in a new file. Replace the placeholder strings with
values that correspond to your Amazon MSK cluster's bootstrap servers connection string
and the cluster's subnet and security group IDs. For information about how to set up a service
execution role, see the section called “IAM roles and policies”.

{
 "connectorConfiguration": {
 "connector.class": "io.confluent.connect.s3.S3SinkConnector",
 "s3.region": "us-east-1",
 "format.class": "io.confluent.connect.s3.format.json.JsonFormat",
 "flush.size": "1",
 "schema.compatibility": "NONE",
 "topics": "my-test-topic",
 "tasks.max": "2",
 "partitioner.class":
 "io.confluent.connect.storage.partitioner.DefaultPartitioner",
 "storage.class": "io.confluent.connect.s3.storage.S3Storage",
 "s3.bucket.name": "my-test-bucket"
 },
 "connectorName": "example-S3-sink-connector",
 "kafkaCluster": {
 "apacheKafkaCluster": {
 "bootstrapServers": "<cluster-bootstrap-servers-string>",
 "vpc": {
 "subnets": [
 "<cluster-subnet-1>",

Examples 158

https://www.confluent.io/hub/confluentinc/kafka-connect-s3

Amazon Managed Streaming for Apache Kafka Developer Guide

 "<cluster-subnet-2>",
 "<cluster-subnet-3>"
],
 "securityGroups": ["<cluster-security-group-id>"]
 }
 }
 },
 "capacity": {
 "provisionedCapacity": {
 "mcuCount": 2,
 "workerCount": 4
 }
 },
 "kafkaConnectVersion": "2.7.1",
 "serviceExecutionRoleArn": "<arn-of-a-role-that-msk-connect-can-assume>",
 "plugins": [
 {
 "customPlugin": {
 "customPluginArn": "<arn-of-custom-plugin-that-contains-connector-
code>",
 "revision": 1
 }
 }
],
 "kafkaClusterEncryptionInTransit": {"encryptionType": "PLAINTEXT"},
 "kafkaClusterClientAuthentication": {"authenticationType": "NONE"}
}

2. Run the following AWS CLI command in the folder where you saved the JSON file in the
previous step.

aws kafkaconnect create-connector --cli-input-json file://connector-info.json

The following is an example of the output that you get when you run the command
successfully.

{
 "ConnectorArn": "arn:aws:kafkaconnect:us-east-1:123450006789:connector/example-
S3-sink-connector/abc12345-abcd-4444-a8b9-123456f513ed-2",
 "ConnectorState": "CREATING",
 "ConnectorName": "example-S3-sink-connector"
}

Amazon S3 sink connector 159

Amazon Managed Streaming for Apache Kafka Developer Guide

Debezium source connector with configuration provider

This example shows how to use the Debezium MySQL connector plugin with a MySQL-compatible
Amazon Aurora database as the source. In this example, we also set up the open-source AWS
Secrets Manager Config Provider to externalize database credentials in AWS Secrets Manager. To
learn more about configuration providers, see Externalizing sensitive information using config
providers.

Important

The Debezium MySQL connector plugin supports only one task and does not work with
autoscaled capacity mode for Amazon MSK Connect. You should instead use provisioned
capacity mode and set workerCount equal to one in your connector configuration. To
learn more about the capacity modes for MSK Connect, see Connector capacity.

Before you begin

Your connector must be able to access the internet so that it can interact with services such as AWS
Secrets Manager that are outside of your Amazon Virtual Private Cloud. The steps in this section
help you complete the following tasks to enable internet access.

• Set up a public subnet that hosts a NAT gateway and routes traffic to an internet gateway in your
VPC.

• Create a default route that directs your private subnet traffic to your NAT gateway.

For more information, see Enabling internet access for Amazon MSK Connect.

Prerequisites

Before you can enable internet access, you need the following items:

• The ID of the Amazon Virtual Private Cloud (VPC) associated with your cluster. For example,
vpc-123456ab.

• The IDs of the private subnets in your VPC. For example, subnet-a1b2c3de, subnet-f4g5h6ij, etc.
You must configure your connector with private subnets.

Debezium source connector 160

https://aws.amazon.com/rds/aurora/
https://github.com/jcustenborder/kafka-config-provider-aws
https://github.com/jcustenborder/kafka-config-provider-aws
https://debezium.io/documentation/reference/stable/connectors/mysql.html#mysql-property-tasks-max

Amazon Managed Streaming for Apache Kafka Developer Guide

To enable internet access for your connector

1. Open the Amazon Virtual Private Cloud console at https://console.aws.amazon.com/vpc/.

2. Create a public subnet for your NAT gateway with a descriptive name, and note the subnet ID.
For detailed instructions, see Create a subnet in your VPC.

3. Create an internet gateway so that your VPC can communicate with the internet, and note the
gateway ID. Attach the internet gateway to your VPC. For instructions, see Create and attach
an internet gateway.

4. Provision a public NAT gateway so that hosts in your private subnets can reach your public
subnet. When you create the NAT gateway, select the public subnet that you created earlier.
For instructions, see Create a NAT gateway.

5. Configure your route tables. You must have two route tables in total to complete this setup.
You should already have a main route table that was automatically created at the same time as
your VPC. In this step you create an additional route table for your public subnet.

a. Use the following settings to modify your VPC's main route table so that your private
subnets route traffic to your NAT gateway. For instructions, see Work with route tables in
the Amazon Virtual Private Cloud User Guide.

Private MSKC route table

Property Value

Name tag We recommend that you give this route
table a descriptive name tag to help you
identify it. For example, Private MSKC.

Associated subnets Your private subnets

A route to enable internet access for MSK
Connect

• Destination: 0.0.0.0/0

• Target: Your NAT gateway ID. For
example, nat-12a345bc6789efg1h.

A local route for internal traffic • Destination: 10.0.0.0/16. This value
may differ depending on your VPC's
CIDR block.

• Target: Local

Debezium source connector 161

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Attach_Gateway
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Attach_Gateway
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-creating
https://docs.aws.amazon.com/vpc/latest/userguide/WorkWithRouteTables.html

Amazon Managed Streaming for Apache Kafka Developer Guide

b. Follow the instructions in Create a custom route table to create a route table for your
public subnet. When you create the table, enter a descriptive name in the Name tag field
to help you identify which subnet the table is associated with. For example, Public MSKC.

c. Configure your Public MSKC route table using the following settings.

Property Value

Name tag Public MSKC or a different descriptive
name that you choose

Associated subnets Your public subnet with NAT gateway

A route to enable internet access for MSK
Connect

• Destination: 0.0.0.0/0

• Target: Your internet gateway ID. For
example, igw-1a234bc5.

A local route for internal traffic • Destination: 10.0.0.0/16. This value
may differ depending on your VPC's
CIDR block.

• Target: Local

Now that you have enabled internet access for Amazon MSK Connect you are ready to create a
connector.

Creating a Debezium source connector

1. Create a custom plugin

a. Download the MySQL connector plugin for the latest stable release from the Debezium
site. Make a note of the Debezium release version you download (version 2.x, or the older
series 1.x). Later in this procedure, you'll create a connector based on your Debezium
version.

b. Download and extract the AWS Secrets Manager Config Provider.

c. Place the following archives into the same directory:

• The debezium-connector-mysql folder

Debezium source connector 162

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#Add_IGW_Routing
https://debezium.io/releases/
https://www.confluent.io/hub/jcustenborder/kafka-config-provider-aws

Amazon Managed Streaming for Apache Kafka Developer Guide

• The jcusten-border-kafka-config-provider-aws-0.1.1 folder

d. Compress the directory that you created in the previous step into a ZIP file and then
upload the ZIP file to an S3 bucket. For instructions, see Uploading objects in the Amazon
S3 User Guide.

e. Copy the following JSON and paste it in a file. For example, debezium-source-custom-
plugin.json. Replace <example-custom-plugin-name> with the name that you
want the plugin to have, <arn-of-your-s3-bucket> with the ARN of the S3 bucket
where you uploaded the ZIP file, and <file-key-of-ZIP-object> with the file key of
the ZIP object that you uploaded to S3.

{
 "name": "<example-custom-plugin-name>",
 "contentType": "ZIP",
 "location": {
 "s3Location": {
 "bucketArn": "<arn-of-your-s3-bucket>",
 "fileKey": "<file-key-of-ZIP-object>"
 }
 }
}

f. Run the following AWS CLI command from the folder where you saved the JSON file to
create a plugin.

aws kafkaconnect create-custom-plugin --cli-input-json file://<debezium-source-
custom-plugin.json>

You should see output similar to the following example.

{
 "CustomPluginArn": "arn:aws:kafkaconnect:us-east-1:012345678901:custom-
plugin/example-custom-plugin-name/abcd1234-a0b0-1234-c1-12345678abcd-1",
 "CustomPluginState": "CREATING",
 "Name": "example-custom-plugin-name",
 "Revision": 1
}

Debezium source connector 163

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Amazon Managed Streaming for Apache Kafka Developer Guide

g. Run the following command to check the plugin state. The state should change from
CREATING to ACTIVE. Replace the ARN placeholder with the ARN that you got in the
output of the previous command.

aws kafkaconnect describe-custom-plugin --custom-plugin-arn "<arn-of-your-
custom-plugin>"

2. Configure AWS Secrets Manager and create a secret for your database credentials

a. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

b. Create a new secret to store your database sign-in credentials. For instructions, see Create
a secret in the AWS Secrets Manager User Guide.

c. Copy your secret's ARN.

d. Add the Secrets Manager permissions from the following example policy
to your Service execution role. Replace <arn:aws:secretsmanager:us-
east-1:123456789000:secret:MySecret-1234> with the ARN of your secret.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": [
 "<arn:aws:secretsmanager:us-east-1:123456789000:secret:MySecret-1234>"
]
 }
]
}

For instructions on how to add IAM permissions, see Adding and removing IAM identity
permissions in the IAM User Guide.

Debezium source connector 164

https://console.aws.amazon.com/secrets-manager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Create a custom worker configuration with information about your configuration provider

a. Copy the following worker configuration properties into a file, replacing the
placeholder strings with values that correspond to your scenario. To learn more
about the configuration properties for the AWS Secrets Manager Config Provider, see
SecretsManagerConfigProvider in the plugin's documentation.

key.converter=<org.apache.kafka.connect.storage.StringConverter>
value.converter=<org.apache.kafka.connect.storage.StringConverter>
config.providers.secretManager.class=com.github.jcustenborder.kafka.config.aws.SecretsManagerConfigProvider
config.providers=secretManager
config.providers.secretManager.param.aws.region=<us-east-1>

b. Run the following AWS CLI command to create your custom worker configuration.

Replace the following values:

• <my-worker-config-name> - a descriptive name for your custom worker
configuration

• <encoded-properties-file-content-string> - a base64-encoded version of the
plaintext properties that you copied in the previous step

aws kafkaconnect create-worker-configuration --name <my-worker-config-name> --
properties-file-content <encoded-properties-file-content-string>

4. Create a connector

a. Copy the following JSON that corresponds to your Debezium version (2.x or 1.x) and paste
it in a new file. Replace the <placeholder> strings with values that correspond to your
scenario. For information about how to set up a service execution role, see the section
called “IAM roles and policies”.

Note that the configuration uses variables like
${secretManager:MySecret-1234:dbusername} instead of plaintext to specify
database credentials. Replace MySecret-1234 with the name of your secret and then
include the name of the key that you want to retrieve. You must also replace <arn-of-
config-provider-worker-configuration> with the ARN of your custom worker
configuration.

Debezium source connector 165

https://jcustenborder.github.io/kafka-connect-documentation/projects/kafka-config-provider-aws/configProviders/SecretsManagerConfigProvider.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Debezium 2.x

For Debezium 2.x versions, copy the following JSON and paste it in a new file. Replace
the <placeholder> strings with values that correspond to your scenario.

{
 "connectorConfiguration": {
 "connector.class": "io.debezium.connector.mysql.MySqlConnector",
 "tasks.max": "1",
 "database.hostname": "<aurora-database-writer-instance-endpoint>",
 "database.port": "3306",
 "database.user": "<${secretManager:MySecret-1234:dbusername}>",
 "database.password": "<${secretManager:MySecret-1234:dbpassword}>",
 "database.server.id": "123456",
 "database.include.list": "<list-of-databases-hosted-by-specified-server>",
 "topic.prefix": "<logical-name-of-database-server>",
 "schema.history.internal.kafka.topic": "<kafka-topic-used-by-debezium-to-
track-schema-changes>",
 "schema.history.internal.kafka.bootstrap.servers": "<cluster-bootstrap-
servers-string>",
 "schema.history.internal.consumer.security.protocol": "SASL_SSL",
 "schema.history.internal.consumer.sasl.mechanism": "AWS_MSK_IAM",
 "schema.history.internal.consumer.sasl.jaas.config":
 "software.amazon.msk.auth.iam.IAMLoginModule required;",
 "schema.history.internal.consumer.sasl.client.callback.handler.class":
 "software.amazon.msk.auth.iam.IAMClientCallbackHandler",
 "schema.history.internal.producer.security.protocol": "SASL_SSL",
 "schema.history.internal.producer.sasl.mechanism": "AWS_MSK_IAM",
 "schema.history.internal.producer.sasl.jaas.config":
 "software.amazon.msk.auth.iam.IAMLoginModule required;",
 "schema.history.internal.producer.sasl.client.callback.handler.class":
 "software.amazon.msk.auth.iam.IAMClientCallbackHandler",
 "include.schema.changes": "true"
 },
 "connectorName": "example-Debezium-source-connector",
 "kafkaCluster": {
 "apacheKafkaCluster": {
 "bootstrapServers": "<cluster-bootstrap-servers-string>",
 "vpc": {
 "subnets": [
 "<cluster-subnet-1>",
 "<cluster-subnet-2>",

Debezium source connector 166

Amazon Managed Streaming for Apache Kafka Developer Guide

 "<cluster-subnet-3>"
],
 "securityGroups": ["<id-of-cluster-security-group>"]
 }
 }
 },
 "capacity": {
 "provisionedCapacity": {
 "mcuCount": 2,
 "workerCount": 1
 }
 },
 "kafkaConnectVersion": "2.7.1",
 "serviceExecutionRoleArn": "<arn-of-service-execution-role-that-msk-
connect-can-assume>",
 "plugins": [{
 "customPlugin": {
 "customPluginArn": "<arn-of-msk-connect-plugin-that-contains-connector-
code>",
 "revision": 1
 }
 }],
 "kafkaClusterEncryptionInTransit": {
 "encryptionType": "TLS"
 },
 "kafkaClusterClientAuthentication": {
 "authenticationType": "IAM"
 },
 "workerConfiguration": {
 "workerConfigurationArn": "<arn-of-config-provider-worker-configuration>",
 "revision": 1
 }
}

Debezium 1.x

For Debezium 1.x versions, copy the following JSON and paste it in a new file. Replace
the <placeholder> strings with values that correspond to your scenario.

{
 "connectorConfiguration": {
 "connector.class": "io.debezium.connector.mysql.MySqlConnector",
 "tasks.max": "1",

Debezium source connector 167

Amazon Managed Streaming for Apache Kafka Developer Guide

 "database.hostname": "<aurora-database-writer-instance-endpoint>",
 "database.port": "3306",
 "database.user": "<${secretManager:MySecret-1234:dbusername}>",
 "database.password": "<${secretManager:MySecret-1234:dbpassword}>",
 "database.server.id": "123456",
 "database.server.name": "<logical-name-of-database-server>",
 "database.include.list": "<list-of-databases-hosted-by-specified-server>",
 "database.history.kafka.topic": "<kafka-topic-used-by-debezium-to-track-
schema-changes>",
 "database.history.kafka.bootstrap.servers": "<cluster-bootstrap-servers-
string>",
 "database.history.consumer.security.protocol": "SASL_SSL",
 "database.history.consumer.sasl.mechanism": "AWS_MSK_IAM",
 "database.history.consumer.sasl.jaas.config":
 "software.amazon.msk.auth.iam.IAMLoginModule required;",
 "database.history.consumer.sasl.client.callback.handler.class":
 "software.amazon.msk.auth.iam.IAMClientCallbackHandler",
 "database.history.producer.security.protocol": "SASL_SSL",
 "database.history.producer.sasl.mechanism": "AWS_MSK_IAM",
 "database.history.producer.sasl.jaas.config":
 "software.amazon.msk.auth.iam.IAMLoginModule required;",
 "database.history.producer.sasl.client.callback.handler.class":
 "software.amazon.msk.auth.iam.IAMClientCallbackHandler",
 "include.schema.changes": "true"
 },
 "connectorName": "example-Debezium-source-connector",
 "kafkaCluster": {
 "apacheKafkaCluster": {
 "bootstrapServers": "<cluster-bootstrap-servers-string>",
 "vpc": {
 "subnets": [
 "<cluster-subnet-1>",
 "<cluster-subnet-2>",
 "<cluster-subnet-3>"
],
 "securityGroups": ["<id-of-cluster-security-group>"]
 }
 }
 },
 "capacity": {
 "provisionedCapacity": {
 "mcuCount": 2,
 "workerCount": 1
 }

Debezium source connector 168

Amazon Managed Streaming for Apache Kafka Developer Guide

 },
 "kafkaConnectVersion": "2.7.1",
 "serviceExecutionRoleArn": "<arn-of-service-execution-role-that-msk-
connect-can-assume>",
 "plugins": [{
 "customPlugin": {
 "customPluginArn": "<arn-of-msk-connect-plugin-that-contains-connector-
code>",
 "revision": 1
 }
 }],
 "kafkaClusterEncryptionInTransit": {
 "encryptionType": "TLS"
 },
 "kafkaClusterClientAuthentication": {
 "authenticationType": "IAM"
 },
 "workerConfiguration": {
 "workerConfigurationArn": "<arn-of-config-provider-worker-configuration>",
 "revision": 1
 }
}

b. Run the following AWS CLI command in the folder where you saved the JSON file in the
previous step.

aws kafkaconnect create-connector --cli-input-json file://connector-info.json

The following is an example of the output that you get when you run the command
successfully.

{
 "ConnectorArn": "arn:aws:kafkaconnect:us-east-1:123450006789:connector/
example-Debezium-source-connector/abc12345-abcd-4444-a8b9-123456f513ed-2",
 "ConnectorState": "CREATING",
 "ConnectorName": "example-Debezium-source-connector"
}

For a Debezium connector example with detailed steps, see Introducing Amazon MSK Connect -
Stream Data to and from Your Apache Kafka Clusters Using Managed Connectors.

Debezium source connector 169

https://aws.amazon.com/blogs/aws/introducing-amazon-msk-connect-stream-data-to-and-from-your-apache-kafka-clusters-using-managed-connectors/
https://aws.amazon.com/blogs/aws/introducing-amazon-msk-connect-stream-data-to-and-from-your-apache-kafka-clusters-using-managed-connectors/

Amazon Managed Streaming for Apache Kafka Developer Guide

Best practices

Use this as a reference to quickly find recommendations for maximizing performance with Amazon
MSK Connect.

Topics

• Connecting from connectors

Connecting from connectors

The following best practices can improve the performance of your connectivity to Amazon MSK
Connect.

Do not overlap IPs for Amazon VPC peering or Transit Gateway

If you are using Amazon VPC peering or Transit Gateway with Amazon MSK Connect, do not
configure your connector for reaching the peered VPC resources with IPs in the CIDR ranges:

• "10.99.0.0/16"

• "192.168.0.0/16"

• "172.21.0.0/16"

Amazon MSK Connect migration guide

This section describes how to migrate your Apache Kafka connector application to Amazon
Managed Streaming for Apache Kafka Connect (Amazon MSK Connect).

Topics

• Benefits of using Amazon MSK Connect

• Migrating to Amazon MSK Connect

Benefits of using Amazon MSK Connect

Apache Kafka is one of the most widely adopted open source streaming platforms for ingesting
and processing real-time data streams. With Apache Kafka, you can decouple and independently
scale your data-producing and data-consuming applications.

Best practices 170

Amazon Managed Streaming for Apache Kafka Developer Guide

Kafka Connect is an important component of building and running streaming applications with
Apache Kafka. Kafka Connect provides a standardized way of moving data between Kafka and
external systems. Kafka Connect is highly scalable and can handle large volumes of data Kafka
Connect provides a powerful set of API operations and tools for configuring, deploying, and
monitoring connectors that move data between Kafka topics and external systems. You can use
these tools to customize and extend the functionality of Kafka Connect to meet the specific needs
of your streaming application.

You might encounter challenges when you’re operating Apache Kafka Connect clusters on their
own, or when you’re trying to migrate open source Apache Kafka Connect applications to AWS.
These challenges include time required to setup infrastructure and deploying applications,
engineering obstacles when setting up self-managed Apache Kafka Connect clusters, and
administrative operational overhead.

To address these challenges, we recommend using Amazon Managed Streaming for Apache Kafka
Connect (Amazon MSK Connect) to migrate your open source Apache Kafka Connect applications
to AWS. Amazon MSK Connect simplifies using Kafka Connect to stream data to and from between
Apache Kafka clusters and external systems, such as databases, search indexes, and file systems.

Here are some of the benefits to migrating to Amazon MSK Connect:

• Elimination of operational overhead — Amazon MSK Connect takes away the operational
burden associated with patching, provisioning, and scaling of Apache Kafka Connect clusters.
Amazon MSK Connect continuously monitors the health of your Connect clusters and automates
patching and version upgrades without causing any disruptions to your workloads.

• Automatic restarting of Connect tasks — Amazon MSK Connect can automatically recover
failed tasks to reduce production disruptions. Task failures can be caused by temporary errors,
such as breaching the TCP connection limit for Kafka, and task rebalancing when new workers
join the consumer group for sink connectors.

• Automatic horizontal and vertical scaling — Amazon MSK Connect enables the connector
application to automatically scale to support higher throughputs. Amazon MSK Connect
manages scaling for you. You only need to specifying the number of workers in the auto scaling
group and the utilization thresholds. You can use the Amazon MSK Connect UpdateConnector
API operation to vertically scale up or scale down the vCPUs between 1 and 8 vCPUs for
supporting variable throughput.

• Private network connectivity — Amazon MSK Connect privately connects to source and sink
systems by using AWS PrivateLink and private DNS names.

Amazon MSK Connect benefits 171

Amazon Managed Streaming for Apache Kafka Developer Guide

Migrating to Amazon MSK Connect

This section briefly describes the state management topics used by Kafka Connect and Amazon
MSK Connect. This section also covers procedures for migrating source and sink connectors.

Topics

• Internal topics used by Kafka Connect

• State management of Amazon MSK Connect applications

• Migrating source connectors to Amazon MSK Connect

• Migrating sink connectors to Amazon MSK Connect

Internal topics used by Kafka Connect

An Apache Kafka Connect application that’s running in distributed mode stores its state by using
internal topics in the Kafka cluster and group membership. The following are the configuration
values that correspond to the internal topics that are used for Kafka Connect applications:

• Configuration topic, specified through config.storage.topic

In the configuration topic, Kafka Connect stores the configuration of all the connectors and tasks
that have been started by users. Each time users update the configuration of a connector or
when a connector requests a reconfiguration (for example, the connector detects that it can start
more tasks), a record is emitted to this topic. This topic is compaction enabled, so it always keeps
the last state for each entity.

• Offsets topic, specified through offset.storage.topic

In the offsets topic, Kafka Connect stores the offsets of the source connectors. Like the
configuration topic, the offsets topic is compaction enabled. This topic is used to write the source
positions only for source connectors that produce data to Kafka from external systems. Sink
connectors, which read data from Kafka and send to external systems, store their consumer
offsets by using regular Kafka consumer groups.

• Status topic, specified through status.storage.topic

In the status topic, Kafka Connect stores the current state of connectors and tasks. This topic is
used as the central place for the data that is queried by users of the REST API. This topic allows
users to query any worker and still get the status of all running plugins. Like the configuration
and offsets topics, the status topic is also compaction enabled.

Migrating 172

Amazon Managed Streaming for Apache Kafka Developer Guide

In addition to these topics, Kafka Connect makes extensive use of Kafka’s group membership API.
The groups are named after the connector name. For example, for a connector named file-sink,
the group is named connect-file-sink. Each consumer in the group provides records to a single
task. These groups and their offsets can be retrieved by using regular consumer groups tools, such
as Kafka-consumer-group.sh. For each sink connector, the Connect runtime runs a regular
consumer group that extracts records from Kafka.

State management of Amazon MSK Connect applications

By default, Amazon MSK Connect creates three separate topics in the Kafka cluster for each
Amazon MSK Connector to store the connector’s configuration, offset, and status. The default topic
names are structured as follows:

• __msk_connect_configs_connector-name_connector-id

• __msk_connect_status_connector-name_connector-id

• __msk_connect_offsets_connector-name_connector-id

Note

To provide the offset continuity between source connectors, you can use an offset storage
topic of your choice, instead of the default topic. Specifying an offset storage topic helps
you accomplish tasks like creating a source connector that resumes reading from the last
offset of a previous connector. To specify an offset storage topic, supply a value for the
offset.storage.topic property in the Amazon MSK Connect worker configuration before
creating the connector.

Migrating source connectors to Amazon MSK Connect

Source connectors are Apache Kafka Connect applications that import records from external
systems into Kafka. This section describes the process for migrating Apache Kafka Connect source
connector applications that are running on-premises or self-managed Kafka Connect clusters that
are running on AWS to Amazon MSK Connect.

The Kafka Connect source connector application stores offsets in a topic that’s named with the
value that’s set for the config property offset.storage.topic. The following are the sample
offset messages for a JDBC connector that’s running two tasks that import data from two different

Migrating 173

https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-workers.html#msk-connect-manage-connector-offsets

Amazon Managed Streaming for Apache Kafka Developer Guide

tables named movies and shows. The most recent row imported from the table movies has a
primary ID of 18343. The most recent row imported from the shows table has a primary ID of 732.

["jdbcsource",{"protocol":"1","table":"sample.movies"}] {"incrementing":18343}
["jdbcsource",{"protocol":"1","table":"sample.shows"}] {"incrementing":732}

To migrate source connectors to Amazon MSK Connect, do the following:

1. Create an Amazon MSK Connect custom plugin by pulling connector libraries from your on-
premises or self-managed Kafka Connect cluster.

2. Create Amazon MSK Connect worker properties and set the properties key.converter,
value.converter, and offset.storage.topic to the same values that are set for the
Kafka connector that’s running in your existing Kafka Connect cluster.

3. Pause the connector application on the existing cluster by making a PUT /
connectors/connector-name/pause request on the existing Kafka Connect cluster.

4. Make sure that all of the connector application’s tasks are completely stopped. You can stop
the tasks either by making a GET /connectors/connector-name/status request on the
existing Kafka Connect cluster or by consuming the messages from the topic name that’s set for
the property status.storage.topic.

5. Get the connector configuration from the existing cluster. You can get the connector
configuration either by making a GET /connectors/connector-name/config/ request
on the existing cluster or by consuming the messages from the topic name that’s set for the
property config.storage.topic.

6. Create a new Amazon MSK Connector with the same name as an existing cluster. Create
this connector by using the connector custom plugin that you created in step 1, the worker
properties that you created in step 2, and the connector configuration that you extracted in step
5.

7. When the Amazon MSK Connector status is active, view the logs to verify that the connector
has started importing data from the source system.

8. Delete the connector in the existing cluster by making a DELETE /connectors/connector-
name request.

Migrating sink connectors to Amazon MSK Connect

Sink connectors are Apache Kafka Connect applications that export data from Kafka to external
systems. This section describes the process for migrating Apache Kafka Connect sink connector

Migrating 174

https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-plugins.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-config-provider.html#msk-connect-config-providers-create-custom-config
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-connectors.html

Amazon Managed Streaming for Apache Kafka Developer Guide

applications that are running on-premises or self-managed Kafka Connect clusters that are running
on AWS to Amazon MSK Connect.

Kafka Connect sink connectors use the Kafka group membership API and store offsets in the same
__consumer_offset topics as a typical consumer application. This behavior simplifies migration
of the sink connector from a self-managed cluster to Amazon MSK Connect.

To migrate sink connectors to Amazon MSK Connect, do the following:

1. Create an Amazon MSK Connect custom plugin by pulling connector libraries from your on-
premises or self-managed Kafka Connect cluster.

2. Create Amazon MSK Connect worker properties and set the properties key.converter and
value.converter to the same values that are set for the Kafka connector that’s running in
your existing Kafka Connect cluster.

3. Pause the connector application on your existing cluster by making a PUT /
connectors/connector-name/pause request on the existing Kafka Connect cluster.

4. Make sure that all of the connector application’s tasks are completely stopped. You can stop
the tasks either by making a GET /connectors/connector-name/status request on the
existing Kafka Connect cluster, or by consuming the messages from the topic name that’s set for
the property status.storage.topic.

5. Get the connector configuration from the existing cluster. You can get the connector
configuration either by making a GET /connectors/connector-name/config request
on the existing cluster, or by consuming the messages from the topic name that’s set for the
property config.storage.topic.

6. Create a new Amazon MSK Connector with same name as the existing cluster. Create this
connector by using the connector custom plugin that you created in step 1, the worker
properties that you created in step 2, and the connector configuration that you extracted in step
5.

7. When the Amazon MSK Connector status is active, view the logs to verify that the connector
has started importing data from the source system.

8. Delete the connector in the existing cluster by making a DELETE /connectors/connector-
name request.

Migrating 175

https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-plugins.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-config-provider.html#msk-connect-config-providers-create-custom-config
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-connectors.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Troubleshooting Amazon MSK Connect

The following information can help you troubleshoot problems that you might have while using
MSK Connect. You can also post your issue to the AWS re:Post.

Connector is unable to access resources hosted on the public internet

See Enabling internet access for Amazon MSK Connect.

Connector's number of running tasks is not equal to the number of tasks specified in tasks.max

Here are some reasons a connector may use fewer tasks than the specified tasks.max configuration:

• Some connector implementations limit the number of tasks the can be used. For example, the
Debezium connector for MySQL is limited to using a single task.

• When using autoscaled capacity mode, Amazon MSK Connect overrides a connector's tasks.max
property with a value that is proportional to the number of workers running in the connector
and the number of MCUs per worker.

• For sink connectors, the level of parallelism (number of tasks) cannot be more than the number
of topic partitions. While you can set the tasks.max larger than that, a single partition is never
processed by more than a single task at a time.

• In Kafka Connect 2.7.x, the default consumer partition assignor is RangeAssignor. The behavior
of this assignor is to give the first partition of every topic to a single consumer, the second
partition of every topic to a single consumer, etc. This means that the maximum number of
active tasks for a sink connector using RangeAssignor is equal to the maximum number of
partitions in any single topic being consumed. If this doesn't work for your use case, you should
create a Worker Configuration in which the consumer.partition.assignment.strategy
property is set to a more suitable consumer partition assignor. See Kafka 2.7 Interface
ConsumerPartitionAssignor: All Known Implementing Classes.

Troubleshooting 176

https://repost.aws/
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-internet-access.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-connect-workers.html#msk-connect-create-custom-worker-config
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/ConsumerPartitionAssignor.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/ConsumerPartitionAssignor.html

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK Replicator

What is Amazon MSK Replicator?

Amazon MSK Replicator is an Amazon MSK feature that enables you to reliably replicate data
across Amazon MSK clusters in different or the same AWS region(s). With MSK Replicator,
you can easily build regionally resilient streaming applications for increased availability and
business continuity. MSK Replicator provides automatic asynchronous replication across MSK
clusters, eliminating the need to write custom code, manage infrastructure, or setup cross-region
networking.

MSK Replicator automatically scales the underlying resources so that you can replicate data on-
demand without having to monitor or scale capacity. MSK Replicator also replicates the necessary
Kafka metadata including topic configurations, Access Control Lists (ACLs), and consumer group
offsets. If an unexpected event occurs in a region, you can failover to the other AWS region and
seamlessly resume processing.

MSK Replicator supports both cross-region replication (CRR) and same-region replication (SRR). In
cross-region replication, the source and target MSK clusters are in different AWS Regions. In same-
region replication, both the source and target MSK clusters are in the same AWS Region. You need
to create source and target MSK clusters before using them with MSK Replicator.

Note

MSK Replicator supports the following AWS Regions: US East (us-east-1, N. Virginia);
US East (us-east-2, Ohio); US West (us-west-2, Oregon); Europe (eu-west-1, Ireland);
Europe (eu-central-1, Frankfurt); Asia Pacific (ap-southeast-1, Singapore); Asia Pacific
(ap-southeast-2, Sydney), Europe (eu-north-1, Stockholm), Asia Pacific (ap-south-1,
Mumbai), Europe (eu-west-3, Paris), South America (sa-east-1, São Paulo), Asia Pacific (ap-
northeast-2, Seoul), Europe (eu-west-2, London), Asia Pacific (ap-northeast-1, Tokyo), US
West (us-west-1, N. California), Canada (ca-central-1, Central).

Here are some common uses for Amazon MSK replicator.

• Build multi-region streaming applications: Build highly available and fault-tolerant streaming
applications for increased resiliency without setting up custom solutions.

What is Amazon MSK Replicator? 177

Amazon Managed Streaming for Apache Kafka Developer Guide

• Lower latency data access: Provide lower latency data access to consumers in different
geographic regions.

• Distribute data to your partners: Copy data from one Apache Kafka cluster to many Apache
Kafka clusters, so that different teams/partners have their own copies of data.

• Aggregate data for analytics: Copy data from multiple Apache Kafka clusters into one cluster for
easily generating insights on aggregated real-time data.

• Write locally, access your data globally: Set up multi-active replication to automatically
propagate writes performed in one AWS Region to other Regions for providing data at lower
latency and cost.

How Amazon MSK Replicator works

To get started with MSK Replicator, you need create a new Replicator in your target cluster’s AWS
Region. MSK Replicator automatically copies all data from the cluster in the primary AWS Region
called source to the cluster in the destination region called target. Source and target clusters can
be in the same or different AWS Regions. You will need to create the target cluster if it does not
already exist.

When you create a Replicator, MSK Replicator deploys all required resources in the target cluster’s
AWS Region to optimize for data replication latency. Replication latency varies based on many
factors, including the network distance between the AWS Regions of your MSK clusters, the
throughput capacity of your source and target clusters, and the number of partitions on your
source and target clusters. MSK Replicator automatically scales the underlying resources so that
you can replicate data on-demand without having to monitor or scale capacity.

Data Replication

By default, MSK Replicator copies all data asynchronously from the latest offset in the source
cluster topic partitions to the target cluster. If the "Detect and copy new topics" setting is turned
on, MSK Replicator automatically detects and copies new topics or topic partitions to the target
cluster. However, it may take up to 30 seconds for the Replicator to detect and create the new
topics or topic partitions on the target cluster. Any messages produced to the source topic before
the topic has been created on the target cluster will not be replicated. Alternatively, you can
configure your Replicator during creation to start replication from the earliest offset in the source
cluster topic partitions if you want to replicate existing messages on your topics to the target
cluster.

How Amazon MSK Replicator works 178

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK replicator does not store your data. Data is consumed from your source cluster, buffered in-
memory and written to the target cluster. The buffer is cleared automatically when the data is
either successfully written or fails after retries. All the communication and data between MSK
Replicator and your clusters are always encrypted in-transit. All MSK Replicator API calls like
DescribeClusterV2, CreateTopic, DescribeTopicDynamicConfiguration are captured in
AWS CloudTrail. Your MSK broker logs will also reflect the same.

MSK Replicator creates topics in the target cluster with a Replicator Factor of 3. If you need to, you
can modify the replication factor directly on the target cluster.

Metadata Replication

MSK Replicator also supports copying the metadata from the source cluster to the target cluster.
The metadata includes topic configuration, read Access Control Lists (ACLs), and consumer groups
offsets. Like data replication, metadata replication also happens asynchronously. For better
performance, MSK Replicator prioritizes data replication over metadata replication.

As part of consumer groups offsets syncing, MSK Replicator optimizes for your consumers on the
source cluster which are reading from a position closer to the tip of the stream (end of the topic
partition). If your consumer groups are lagging on the source cluster, you may see higher lag for
those consumer groups on the target as compared to the source. This means after failover to the
target cluster, your consumers will reprocess more duplicate messages. To reduce this lag, your
consumers on the source cluster would need to catch up and start consuming from the tip of the
stream (end of the topic partition). As your consumers catch up, MSK Replicator will automatically
reduce the lag.

How Amazon MSK Replicator works 179

Amazon Managed Streaming for Apache Kafka Developer Guide

Requirements and considerations for creating an Amazon MSK
Replicator

Note these MSK cluster requirements for running an Amazon MSK Replicator.

Topics

• Permissions required to create an MSK Replicator

• Supported cluster types and versions

• MSK Serverless cluster configuration

• Cluster configuration changes

Permissions required to create an MSK Replicator

Here is an example of the IAM policy required to create an MSK Replicator. The action
kafka:TagResource is only needed if tags are provided when creating the MSK Replicator.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:CreateServiceLinkedRole",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:CreateNetworkInterface",
 "ec2:DescribeVpcs",
 "kafka:CreateReplicator",
 "kafka:TagResource"
],
 "Resource": "*"
 }
]
}

Requirements and considerations for creating an Amazon MSK Replicator 180

Amazon Managed Streaming for Apache Kafka Developer Guide

The following is an example IAM policy to describe replicator. Either the
kafka:DescribeReplicator action or kafka:ListTagsForResource action is needed, not
both.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "kafka:DescribeReplicator",
 "kafka:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

Supported cluster types and versions

These are requirements for supported instance types, Kafka versions, and network configurations.

• MSK Replicator supports both MSK provisioned clusters and MSK Serverless clusters in any
combination as source and target clusters. Other types of Kafka clusters are not supported at
this time by MSK Replicator.

• MSK Serverless clusters require IAM access control, don't support Apache Kafka ACL replication
and with limited support on-topic configuration replication. See MSK Serverless.

• MSK Replicator is supported only on clusters running Apache Kafka 2.7.0 or higher, regardless of
whether your source and target clusters are in the same or in different AWS Regions.

• MSK Replicator supports clusters using instance types of m5.large or larger. t3.small clusters are
not supported.

• If you are using MSK Replicator with an MSK Provisioned cluster, you need a minimum of
three brokers in both source and target clusters. You can replicate data across clusters in two
Availability Zones, but you would need a minimum of four brokers in those clusters.

• Both your source and target MSK clusters must be in the same AWS account. Replication across
clusters in different accounts is not supported.

Supported cluster types and versions 181

Amazon Managed Streaming for Apache Kafka Developer Guide

• If the source and target MSK clusters are in different AWS Regions (cross-region), MSK Replicator
requires the source cluster to have multi-VPC private connectivity turned on for its IAM Access
Control method. Multi-VPC is not required for other authentication methods on the source
cluster. Multi-VPC is not required if you are replicating data between clusters in the same AWS
Region. See the section called “Multi-VPC private connectivity in a single Region”.

MSK Serverless cluster configuration

• MSK Serverless supports replication of these topic configurations for MSK Serverless target
clusters during topic creation: cleanup.policy, compression.type, max.message.bytes,
retention.bytes, retention.ms.

• MSK Serverless supports only these topic configurations during topic configuration sync:
compression.type, max.message.bytes, retention.bytes, retention.ms.

• Replicator uses 83 compacted partitions on target MSK Serverless clusters. Make sure that target
MSK Serverless clusters have a sufficient number of compacted partitions. See MSK Serverless
quota.

Cluster configuration changes

• It’s recommended that you do not turn tiered storage on or off after the MSK Replicator has
been created. If your target cluster is not tiered, then MSK won’t copy the tiered storage
configurations, regardless of whether your source cluster is tiered or not. If you turn on tiered
storage on the target cluster after Replicator is created, the Replicator needs to be recreated.
If you want to copy data from a non-tiered to a tiered cluster, you should not copy topic
configurations. See Enabling and disabling tiered storage on an existing topic.

• Don’t change cluster configuration settings after MSK Replicator creation. Cluster configuration
settings are validated during MSK Replicator creation. To avoid problems with the MSK
Replicator, don’t change the following settings after the MSK Replicator is created.

• Change MSK cluster to t3 instance type.

• Change service execution role permissions.

• Disable MSK multi-VPC private connectivity.

• Change the attached cluster resource-based policy.

• Change cluster security group rules.

MSK Serverless cluster configuration 182

https://docs.aws.amazon.com/msk/latest/developerguide/msk-enable-disable-topic-tiered-storage-cli.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Getting started using Amazon MSK Replicator

This tutorial shows you how to set up a source cluster and a target claster in the same AWS Region
or in different AWS Regions. You then use those clusters to create an Amazon MSK Replicator.

Step 1: Prepare the Amazon MSK source cluster

If you already have an MSK source cluster created for the MSK Replicator, make sure that it
meets the requirements described in this section. Otherwise, follow these steps to create an MSK
provisioned or serverless source cluster.

The process for creating a cross-region and same-region MSK Replicator source cluster are similar.
Differences are called out in the following procedures.

1. Create an MSK provisioned or serverless cluster with IAM access control turned on in the source
region. Your source cluster must have a minimum of three brokers.

2. For a cross-region MSK Replicator, if the source is a provisioned cluster, configure it with
multi-VPC private connectivity turned on for IAM access control schemes. Note that the
unauthenticated auth type is not supported when multi-VPC is turned on. You do not need
to turn on multi-VPC private connectivity for other authentication schemes (mTLS or SASL/
SCRAM). You can simultaneously use mTLS or SASL/SCRAM auth schemes for your other clients
connecting to your MSK cluster. You can configure multi-VPC private connectivity in the console
cluster details Network settings or with the UpdateConnectivity API. See Cluster owner
turns on multi-VPC. If your source cluster is an MSK Serverlesss cluster, you do not need to turn
on multi-VPC private connectivity.

For a same-region MSK Replicator, the MSK source cluster does not require multi-VPC private
connectivity and the cluster can still be accessed by other clients using the unauthenticated auth
type.

3. For cross-region MSK Replicators, you must attach a resource-based permissions policy to the
source cluster. This allows MSK to connect to this cluster for replicating data. You can do this
using the CLI or AWS Console procedures below. See also, Amazon MSK resource-based policies.
You do not need to perform this step for same-region MSK Replicators.

Console: create resource policy

Update the source cluster policy with the following JSON. Replace the placeholder with the ARN
of your source cluster.

Getting started tutorial 183

Amazon Managed Streaming for Apache Kafka Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "kafka.amazonaws.com"
]
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeClusterV2"
],
 "Resource": "<sourceClusterARN>"
 }
]
}

Use the Edit cluster policy option under the Actions menu on the cluster details page.

Step 1: Prepare the Amazon MSK source cluster 184

Amazon Managed Streaming for Apache Kafka Developer Guide

CLI: create resource policy

Note: If you use the AWS console to create a source cluster and choose the option to create
a new IAM role, AWS attaches the required trust policy to the role. If you want MSK to use
an existing IAM role or if you create a role on your own, attach the following trust policies to
that role so that MSK Replicator can assume it. For information about how to modify the trust
relationship of a role, see Modifying a Role.

1. Get the current version of the MSK cluster policy using this command. Replace placeholders
with the actual cluster ARN.

aws kafka get-cluster-policy —cluster-arn <Cluster ARN>
{
"CurrentVersion": "K1PA6795UKM GR7",
"Policy": "..."

Step 1: Prepare the Amazon MSK source cluster 185

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

Amazon Managed Streaming for Apache Kafka Developer Guide

}

2. Create a resource-based policy to allow MSK Replicator to access your source cluster. Use
the following syntax as a template, replacing the placeholder with the actual source cluster
ARN.

aws kafka put-cluster-policy --cluster-arn "<sourceClusterARN>" --policy '{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": [
"kafka.amazonaws.com"
]
},
"Action": [
"kafka:CreateVpcConnection",
"kafka:GetBootstrapBrokers",
"kafka:DescribeClusterV2"
],
"Resource": "<sourceClusterARN>"
}
]

Step 2: Prepare the Amazon MSK target cluster

Create an MSK target cluster (provisioned or serverless) with IAM access control turned on. The
target cluster doesn’t require multi-VPC private connectivity turned on. The target cluster can be
in the same AWS Region or a different Region as the source cluster. Both the source and target
clusters must be in the same AWS account. Your target cluster must have a minimum of three
brokers.

Step 3: Create an Amazon MSK Replicator

Before you create the Amazon MSK Replicator, make sure you have Permissions required to create
an MSK Replicator.

Topics

• Create replicator using the AWS console in the target cluster Region

Step 2: Prepare the Amazon MSK target cluster 186

Amazon Managed Streaming for Apache Kafka Developer Guide

• Choose your source cluster

• Choose your target cluster

• Configure replicator settings and permissions

Create replicator using the AWS console in the target cluster Region

1. In the AWS Region where your target MSK cluster is located, open the Amazon MSK console at
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. Choose Replicators to display the list of replicators in the account.

3. Choose Create replicator.

4. In the Replicator details pane, give the new replicator a unique name.

Choose your source cluster

The source cluster contains the data you want to copy to a target MSK cluster.

1. In the Source cluster pane, choose the AWS Region where the source cluster is located.

You can look up a cluster’s Region by going to MSK Clusters and looking at the Cluster details
ARN. The Region name is embedded in the ARN string. In the following example ARN, ap-
southeast-2 is the cluster region.

arn:aws:kafka:ap-southeast-2:123456789012:cluster/cluster-11/
eec93c7f-4e8b-4baf-89fb-95de01ee639c-s1

2. Enter the ARN of your source cluster or browse to choose your source cluster.

3. Choose subnet(s) for your source cluster.

The console displays the subnets available in the source cluster’s Region for you to select. You
must select a minimum of two subnets. For a same-region MSK Replicator, the subnets that
you select set to access the source cluster and the subnets to access the target cluster must be
in the same Availability Zone.

4. Choose security group(s) for the MSK replicator to access your source cluster.

• For cross-region replication (CRR), you do not need to provide security group(s) for your
source cluster.

Step 3: Create an Amazon MSK Replicator 187

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

• For same region replication (SRR), go to the Amazon EC2 console at https://
console.aws.amazon.com/ec2/ and ensure that the security groups you will provide for the
Replicator have outbound rules to allow traffic to your source cluster's security groups. Also,
ensure that your source cluster's security groups have inbound rules that allow traffic from
the Replicator security groups provided for the source.

To add inbound rules to your source cluster’s security group:

1. In the AWS console, go to your source cluster’s details by selecting the the Cluster
name.

2. Select the Properties tab, then scroll down to the Network settings pane to select the
name of the Security group applied.

3. Go to the inbound rules and select Edit inbound rules.

4. Select Add rule.

5. In the Type column for the new rule, select Custom TCP.

6. In the Port range column, type 9098. MSK Replicator uses IAM access control to connect
to your cluster which uses port 9098.

7. In the Source column, type the name of the security group that you will provide during
Replicator creation for the source cluster (this may be the same as the MSK source
cluster's security group), and then select Save rules.

To add outbound rules to Replicator’s security group provided for the source:

1. In the AWS console for Amazon EC2, go to the security group that you will provide
during Replicator creation for the source.

2. Go to the outbound rules and select Edit outbound rules.

3. Select Add rule.

4. In the Type column for the new rule, select Custom TCP.

5. In the Port range column, type 9098. MSK Replicator uses IAM access control to connect
to your cluster which uses port 9098.

6. In the Source column, type the name of the MSK source cluster’s security group, and
then select Save rules.

Step 3: Create an Amazon MSK Replicator 188

Amazon Managed Streaming for Apache Kafka Developer Guide

Note

Alternately, if you do not want to restrict traffic using your security groups, you can add
inbound and outbound rules allowing All Traffic.
1. Select Add rule.
2. In the Type column, select All Traffic.
3. In the Source column, type 0.0.0.0/0, and then select Save rules.

Choose your target cluster

The target cluster is the MSK provisioned or serverless cluster to which the source data is copied.

Note

MSK Replicator creates new topics in the target cluster with an auto-generated
prefix added to the topic name. For instance, MSK Replicator replicates data
in “topic” from the source cluster to a new topic in the target cluster called
<sourceKafkaClusterAlias>.topic. This is to distinguish topics that contain data
replicated from source cluster from other topics in the target cluster and to avoid data
being circularly replicated between the clusters. You can find the prefix that will be added
to the topic names in the target cluster under the sourceKafkaClusterAlias field using
DescribeReplicator API or the Replicator details page on the MSK Console. The prefix
in the target cluster is <sourceKafkaClusterAlias>.

1. In the Target cluster pane, choose the AWS Region where the target cluster is located.

2. Enter the ARN of your target cluster or browse to choose your target cluster.

3. Choose subnet(s) for your target cluster.

The console displays subnets available in the target cluster’s Region for you to select. Select a
minimum of two subnets.

4. Choose security group(s) for the MSK replicator to access your target cluster.

The security groups available in the target cluster’s Region are displayed for you to select. The
chosen security group is associated with each connection. For more information about using
security groups, see the Control traffic to your AWS resources using security groups in the
Amazon VPC User Guide.

Step 3: Create an Amazon MSK Replicator 189

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• For both cross region replication (CRR) and same region replication (SRR), go to the Amazon
EC2 console at https://console.aws.amazon.com/ec2/ and ensure that the security groups
you will provide to the Replicator have outbound rules to allow traffic to your target cluster's
security groups. Also ensure that your target cluster's security groups have inbound rules
that accept traffic from the Replicator security groups provided for the target.

To add inbound rules to your target cluster’s security group:

1. In the AWS console, go to your target cluster’s details by selecting the the Cluster name.

2. Select the Properties tab, then scroll down to the Network settings pane to select the
name of the Security group applied.

3. Go to the inbound rules and select Edit inbound rules.

4. Select Add rule.

5. In the Type column for the new rule, select Custom TCP.

6. In the Port range column, type 9098. MSK Replicator uses IAM access control to connect
to your cluster which uses port 9098.

7. In the Source column, type the name of the security group that you will provide during
Replicator creation for the target cluster (this may be the same as the MSK target cluster's
security group), and then select Save rules.

To add outbound rules to Replicator’s security group provided for the target:

1. In the AWS console, go to the security group that you will provide during Replicator
creation for the target.

2. Select the Properties tab, then scroll down to the Network settings pane to select the
name of the Security group applied.

3. Go to the outbound rules and select Edit outbound rules.

4. Select Add rule.

5. In the Type column for the new rule, select Custom TCP.

6. In the Port range column, type 9098. MSK Replicator uses IAM access control to connect
to your cluster which uses port 9098.

7. In the Source column, type the name of the MSK target cluster’s security group, and then
select Save rules.

Step 3: Create an Amazon MSK Replicator 190

https://console.aws.amazon.com/ec2/

Amazon Managed Streaming for Apache Kafka Developer Guide

Note

Alternately, if you do not want to restrict traffic using your security groups, you can add
inbound and outbound rules allowing All Traffic.
1. Select Add rule.
2. In the Type column, select All Traffic.
3. In the Source column, type 0.0.0.0/0, and then select Save rules.

Configure replicator settings and permissions

1. In the Replicator settings pane, specify the topics you want to replicate using regular
expressions in the allow and deny lists. By default, all topics are replicated.

Note

MSK Replicator only replicates up to 750 topics in sorted order. If you need to replicate
more topics, we recommend that you create a separate Replicator. Go to the AWS
console Support Center and create a support case if you need support for more than
750 topics per Replicator. You can monitor the number of topics being replicated using
the "TopicCount" metric. See Amazon MSK quota.

2. By default, MSK Replicator starts replication from the latest (most recent) offset in the selected
topics. Alternatively, you can start replication from the earliest (oldest) offset in the selected
topics if you want to replicate existing data on your topics. Once the replicator is created, you
can’t change this setting. This setting corresponds to the startingPosition field in the
CreateReplicator request and DescribeReplicator response APIs.

Note

MSK Replicator acts like a new consumer for your source cluster. Depending on the
amount of data you are replicating and the consume capacity you have in your source
cluster, this can cause other consumers on your source cluster to be throttled. If you
create a Replicator set to earliest starting position, MSK Replicator will read a burst
of data at the beginning which may consume all of your source cluster's consume
capacity. After your Replicator catches up, the consume rate should go down to
match the throughput of your source cluster topics. If you are replicating from earliest

Step 3: Create an Amazon MSK Replicator 191

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/msk/1.0/apireference-replicator/v1-replicators-replicatorarn.html#v1-replicators-replicatorarn-model-replicationstartingposition
https://docs.aws.amazon.com/msk/1.0/apireference-replicator/v1-replicators.html#CreateReplicator
https://docs.aws.amazon.com/msk/1.0/apireference-replicator/v1-replicators-replicatorarn.html#DescribeReplicator

Amazon Managed Streaming for Apache Kafka Developer Guide

position, we recommend that you manage Replicator throughput using Kafka quotas
to make sure other consumers are not throttled.

3. By default, MSK Replicator copies all metadata including topic configurations, Access Control
Lists (ACLs) and consumer group offsets for seamless failover. If you are not creating the
Replicator for failover, you can optionally choose to turn off one or more of these settings
available in the Additional settings section.

Note

MSK Replicator does not replicate write ACLs since your producers should not be
writing directly to the replicated topic in the target cluster. Your producers should write
to the local topic in the target cluster after failover. See Performing a planned failover
to the secondary AWS Region for details.

4. In the Consumer group replication pane, specify the consumer groups you want to replicate
using regular expressions in the allow and deny lists. By default, all consumer groups are
replicated.

5. In the Compression pane, you can optionally choose to compress the data written to the
target cluster. If you’re going to use compression, we recommend that you use the same
compression method as the data in your source cluster.

6. In the Access permissions pane do either of the following:

a. Select Create or update IAM role with required policies. MSK console will automatically
attach the necessary permissions and trust policy to the service execution role required to
read and write to your source and target MSK clusters.

Step 3: Create an Amazon MSK Replicator 192

https://docs.aws.amazon.com/msk/1.0/apireference-replicator/v1-replicators-replicatorarn.html#DescribeReplicator

Amazon Managed Streaming for Apache Kafka Developer Guide

b. Provide your own IAM role by selecting Choose from IAM roles that Amazon MSK can
assume. We recommend that you attach the AWSMSKReplicatorExecutionRole
managed IAM policy to your service execution role, instead of writing your own IAM policy.

• Create the IAM role that the replicator will use to read and write to your source
and target MSK clusters with the below JSON as part of the trust policy and the
AWSMSKReplicatorExecutionRole attached to the role. In the trust policy, replace
the placeholder <yourAccountID> with your actual account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kafka.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "<yourAccountID>"
 }
 }
 }
]
}

7. In the Replicator tags pane, you can optionally assign tags to the MSK Replicator resource. For
more information, see Tagging an Amazon MSK cluster. For a cross-region MSK Replicator, tags
are synced to the remote Region automatically when the Replicator is created. If you change
tags after the Replicator is created, the change is not automatically synced to the remote
Region, so you’ll need to sync local replicator and remote replicator references manually.

8. Select Create.

If you want to restrict kafka-cluster:WriteData permission, refer to the Create authorization
policies section of How IAM access control for Amazon MSK works. You'll need to add kafka-
cluster:WriteDataIdempotently permission to both the source and target cluster.

It takes approximately 30 minutes for the MSK Replicator to be successfully created and
transitioned to RUNNING status.

Step 3: Create an Amazon MSK Replicator 193

https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html#how-to-use-iam-access-control

Amazon Managed Streaming for Apache Kafka Developer Guide

If you create a new MSK Replicator to replace one that you deleted, the new Replicator starts
replication from the latest offset.

If your MSK Replicator has transitioned to a FAILED status, refer to the troubleshooting section
Troubleshooting MSK Replicator.

Edit MSK Replicator settings

You can’t change the source cluster, target cluster or Replicator starting position once the MSK
Replicator has been created. However, you can edit other Replicator settings, such as topics and
consumer groups to replicate.

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. In the left navigation pane, choose Replicators to display the list of replicators in the account
and select the MSK Replicator you want to edit.

3. Choose the Properties tab.

4. In the Replicator settings section, choose Edit replicator.

5. You can edit the MSK Replicator settings by changing any of these settings.

• Specify the topics you want to replicate using regular expressions in the allow and deny lists.
By default, MSK Replicator copies all metadata including topic configurations, Access Control
Lists (ACLs) and consumer group offsets for seamless failover. If you are not creating the
Replicator for failover, you can optionally choose to turn off one or more of these settings
available in the Additional settings section.

Note

MSK Replicator does not replicate write ACLs since your producers should not be
writing directly to the replicated topic in the target cluster. Your producers should
write to the local topic in the target cluster after failover. See Performing a planned
failover to the secondary AWS Region for details.

• For Consumer group replication, you can specify the consumer groups you want to
replicate using regular expressions in the allow and deny lists. By default, all consumer
groups are replicated. If allow and deny lists are empty, consumer group replication is turned
off.

Edit MSK Replicator settings 194

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

• Under Target compression type, you can choose whether to compress the data written to
the target cluster. If you’re going to use compression, we recommend that you use the same
compression method as the data in your source cluster.

6. Save your changes.

It takes approximately 30 minutes for the MSK Replicator to be successfully created and
transitioned to running state. If your MSK Replicator has transitioned to a FAILED status, refer
to the troubleshooting section ???.

Delete an MSK Replicator

You may need to delete a MSK Replicator if it fails to create (FAILED status). The source and target
clusters assigned to an MSK Replicator can’t be changed once the MSK Replicator is created. You
can delete an existing MSK Replicator and create a new one. If you create a new MSK Replicator to
replace the deleted one, the new Replicator starts replication from the latest offset.

1. In the AWS Region where your source cluster is located, sign in to the AWS Management
Console, and open the Amazon MSK console at https://console.aws.amazon.com/msk/home?
region=us-east-1#/home/.

2. In the navigation pane, select Replicators.

3. From the list of MSK Replicators, select the one you want to delete and choose Delete.

Monitor replication

You can use https://console.aws.amazon.com/cloudwatch/ in the target cluster Region to view
metrics for ReplicationLatency, MessageLag, and ReplicatorThroughput at a topic and
aggregate level for each Amazon MSK Replicator. Metrics are visible under ReplicatorName in the
“AWS/Kafka” namespace. You can also see ReplicatorFailure, AuthError and ThrottleTime
metrics to check for issues.

The MSK console displays a subset of CloudWatch metrics for each MSK Replicator. From the
console Replicator list, select the name of a Replicator and select the Monitoring tab.

MSK Replicator metrics

The following metrics describes performance or connection metrics for the MSK Replicator.

Delete an MSK Replicator 195

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/cloudwatch/

Amazon Managed Streaming for Apache Kafka Developer Guide

AuthError metrics do not cover topic-level auth errors. To monitor your MSK Replicator’s topic-level
auth errors, monitor Replicator’s ReplicationLatency metrics and the source cluster’s topic-level
metrics, MessagesInPerSec. If a topic’s ReplicationLatency dropped to 0 but the topic still has data
being produced to it, it indicates that the Replicator has an Auth issue with the topic. Check that
the Replicator’s service execution IAM role has sufficient permission to access the topic.

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

Replicato
rName

Milliseco
nds

Partition MaximumPerforman
ce

Replicati
onLatency

Time it takes
records to
replicate from
the source to
target cluster;
duration
between record
produce time
at source
and replicate
d to target.
If Replicati
onLatency
increases, check
if clusters have
enough partition
s to support
replication.
High replicati
on latency can
occur when the
partition count
is too low for

Replicato
rName,
Topic

Milliseco
nds

Partition Maximum

MSK Replicator metrics 196

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

high throughpu
t.

MSK Replicator metrics 197

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

Replicato
rName

Count Partition SumPerforman
ce

MessageLag Monitors the
sync between
the MSK
Replicato
r and the
source cluster.
MessageLag
indicates the
lag between
the messages
produced to the
source cluster
and messages
consumed by
the replicato
r. It is not the
lag between
the source and
target cluster.
Even if the
source cluster
is unavailable/
interrupted, the
replicator will
finish writing
the message it
has consumed
to the target
cluster. After
an outage,

Replicato
rName,
Topic

Count Partition Sum

MSK Replicator metrics 198

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

MessageLa
g shows an
increase
indicating the
number of
messages the
replicator is
behind the
source cluster
and this can be
monitored until
the number of
messages is 0,
showing that
the replicator
has caught up
with the source
cluster.

MSK Replicator metrics 199

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

Replicato
rName

BytesPerS
econd

Partition SumPerforman
ce

Replicato
rThroughput

Average
number of
bytes replicate
d per second.
If Replicato
rThroughput
drops for a
topic, check
KafkaClus
terPingSu
ccessCount
and AuthError
metrics to
ensure the
Replicator can
communicate
with clusters,
then check
cluster metrics
to ensure the
cluster is not
down.

Replicato
rName,
Topic

BytesPerS
econd

Partition Sum

MSK Replicator metrics 200

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

Debug AuthError The number
of connectio
ns with failed
authentication
per second. If
this metric is
above 0, you
can check if
the service
execution role
policy for the
replicator is
valid and make
sure there aren't
deny permissio
ns set for the
cluster permissio
ns. Based on
clusterAlias
dimension, you
can identify if
the source or
target cluster
is experiencing
auth errors.

Replicato
rName,
ClusterAl
ias

Count Worker Sum

MSK Replicator metrics 201

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

Debug ThrottleTime The average
time in ms a
request was
throttled by
brokers on the
cluster. Set
throttling to
avoid having the
MSK Replicato
r overwhelm
the cluster.
If this metric
is 0, replicati
onLatency
is not high,
and replicato
rThroughput
is as expected,
then throttlin
g is working
as expected. If
this metric is
above 0, you can
adjust throttling
accordingly.

Replicato
rName,
ClusterAl
ias

Milliseco
nds

Worker Maximum

Debug ReplicatorFailure Number of
failures that
the replicator is
experiencing.

Replicato
rName

Count Sum

MSK Replicator metrics 202

Amazon Managed Streaming for Apache Kafka Developer Guide

Metric
type

Metric Description Dimension
s

Unit Raw
Metric
Granulari
ty

Raw
Metric
Aggregati
on
Stat

Debug KafkaClus
terPingSu
ccessCount

Indicates the
health of the
replicator
connection
to the kafka
cluster. If this
value is 1, the
connection is
healthy. If the
value is 0 or
no datapoint,
the connectio
n is unhealthy
. If the value
is 0, you can
check network
or IAM permissio
n settings
for the Kafka
cluster. Based
on ClusterAl
ias dimension,
you can identify
whether this
metric is for
source or target
cluster.

Replicato
rName,
ClusterAl
ias

Count Sum

MSK Replicator metrics 203

Amazon Managed Streaming for Apache Kafka Developer Guide

Using replication to increase the resiliency of a Kafka
streaming application across regions

You can use MSK Replicator to set up active-active or active-passive cluster topologies to increase
resiliency of your Apache Kafka application across AWS Regions. In an active-active setup, both
MSK clusters are actively serving reads and writes. In an active-passive setup, only one MSK cluster
at a time is actively serving streaming data, while the other cluster is on standby.

Considerations for building multi-region Apache Kafka applications

Your consumers must be able to reprocess duplicate messages without downstream impact. MSK
Replicator replicates data at-least-once which may result in duplicates in the standby cluster.
When you switch over to the secondary AWS Region, your consumers may process the same
data more than once. MSK Replicator prioritizes copying data over consumer offsets for better
performance. After a failover, the consumer may start reading from earlier offsets resulting in
duplicate processing.

Producers and consumers must also tolerate losing minimal data. Since MSK Replicator replicates
data asynchronously, when the primary AWS Region starts experiencing failures, there is no
guarantee that all data is replicated to the secondary Region. You can use the replication latency to
determine maximum data that was not copied into the secondary Region.

Using active-active versus active-passive cluster topology

An active-active cluster topology offers near zero recovery time and the capability for your
streaming application to operate simultaneously in multiple AWS Regions. When a cluster in one
Region is impaired, applications connected to the cluster in the other Region continue processing
data.

Active-passive setups are suited to applications that can run in only one AWS Region at a time,
or when you need more control over the data processing order. Active-passive setups require
more recovery time than active-active setups, as you must start your entire active-passive setup,
including your producers and consumers, in the secondary Region to resume streaming data after a
failover.

Using replication to increase the resiliency of a Kafka streaming application across regions 204

Amazon Managed Streaming for Apache Kafka Developer Guide

Creating an active-passive Kafka cluster setup and replicated topic
naming

For an active-passive setup, we recommend you to operate a similar setup of producers, MSK
clusters, and consumers (with the same consumer group name) in two different AWS Regions. It is
important that the two MSK clusters have identical read and write capacity to ensure reliable data
replication. You need to create a MSK Replicator to continuously copy data from the primary to the
standby cluster. You also need to configure your producers to write data into topics on a cluster in
the same AWS Region.

To make sure your consumers can reliably restart processing from the standby cluster, you need to
configure your consumers to read data from the topics using a wildcard operator ‘.*’. For instance,
MSK Replicator replicates “topic1” from the primary cluster to a new topic in the standby cluster
called “<sourceKafkaClusterAlias>.topic1”. For example, you can configure your producers to write
to “topic1” and your consumers to consume using “.*topic1” in both Regions. This example would
also include a topic such as footopic1, so adjust the wildcard operator according to your needs.

When to failover to the secondary AWS Region

We recommend that you monitor replication latency in the secondary AWS Region using
CloudWatch. During a service event in the primary AWS Region, replication latency may suddenly
increase. If the latency keeps increasing, use the AWS Service Health Dashboard to check for service
events in the primary AWS Region. If there’s an event, you can failover to the secondary AWS
Region.

Performing a planned failover to the secondary AWS Region

You can conduct a planned failover to test the resiliency of your application against an unexpected
event in your primary AWS region which has your source MSK cluster. A planned failover should not
result in data loss.

1. Shutdown all producers and consumers connecting to your source cluster.

2. Create a new MSK Replicator to replicate data from your MSK cluster in the secondary Region
to your MSK cluster in the primary Region. This is required to copy the data that you will be
writing to the secondary region back to the primary Region so that you can failback to the
primary Region after the unexpected event has ended.

3. Start producers on target cluster in the secondary AWS Region.

Creating an active-passive Kafka cluster setup and replicated topic naming 205

Amazon Managed Streaming for Apache Kafka Developer Guide

4. Depending on your application’s message ordering requirements, follow the steps in one of
the following tabs.

No message ordering

If your application does not require message ordering, start consumers in the secondary AWS
Region that read from both the local (for example, topic) and replicated topics (for example,
<sourceKafkaClusterAlias>.topic) using a wildcard operator (for example, .*topic).

Message ordering

If your application requires message ordering, start consumers only for the replicated topics on
target cluster (for example, <sourceKafkaClusterAlias>.topic) but not the local topics
(for example, topic).

1. Wait for all the consumers of replicated topics on the target MSK cluster to finish processing
all data, so that consumer lag is 0 and the number of records processed is also 0. Then, stop
consumers for the replicated topics on target cluster. At this point, all records that were
replicated from the source MSK cluster to target MSK cluster have been consumed.

2. Start consumers for the local topics (for example, topic) on the target MSK cluster.

Performing an unplanned failover to the secondary AWS Region

You can conduct an unplanned failover when there is a service event in the primary AWS Region
which has your source MSK cluster and you want to temporarily redirect your traffic to the
secondary AWS Region which has your target MSK cluster. An unplanned failover could result in
some data loss.

1. Attempt to shut down all producers and consumers connecting to the source MSK cluster in
the primary Region. This might fail.

2. Start producers connecting to the target MSK cluster in the secondary Region.

3. Depending on your application’s message ordering requirements, follow the steps in one of
the following tabs.

No message ordering

If your application does not require message ordering, start consumers in the target AWS
Region that read from both the local (for example, topic) and replicated topics (for

Performing an unplanned failover to the secondary AWS Region 206

Amazon Managed Streaming for Apache Kafka Developer Guide

example, <sourceKafkaClusterAlias>.topic) using a wildcard operator (for example,
.*topic).

Message ordering

1. Start consumers only for the replicated topics on target cluster (for example,
<sourceKafkaClusterAlias>.topic) but not the local topics (for example, topic).

2. Wait for all the consumers of replicated topics on the target MSK cluster to finish
processing all data, so that offset lag is 0 and the number of records processed is also
0. Then, stop consumers for the replicated topics on target cluster. At this point, all
records that were replicated from the source MSK cluster to target MSK cluster have
been consumed.

3. Start consumers for the local topics (for example, topic) on the target MSK cluster.

4. Once the service event has ended in the primary Region, create a new MSK Replicator to
replicate data from your MSK cluster in the secondary Region to your MSK cluster in the
primary Region with Replicator starting position set to earliest. This is required to copy the
data that you will be writing to the secondary Region back to the primary Region so that
you can failback to the primary Region after the service event has ended. If you don't set the
Replicator starting position to earliest, any data you produced to the cluster in the secondary
region during the service event in the primary region will not be copied back to the cluster in
the primary region.

Performing failback to the primary AWS Region

You can failback to the primary AWS region after the service event in that region has ended. MSK
Replicator automatically skips topics which have the source cluster alias as prefix when replicating
data back to the primary Region during failback.

If you followed the unplanned failover steps, you should have already created the failback
Replicator as part of the last step of failing over from primary to secondary region.

If you didn't follow the unplanned failover steps, once the service event has ended in the primary
Region, create a new MSK Replicator to replicate data from your MSK cluster in the secondary
Region to your MSK cluster in the primary Region with Replicator starting position set to earliest.
This is required to copy the data that you will be writing to the secondary Region back to the
primary Region so that you can failback to the primary Region after the service event has ended.
If you do not change the Replicator starting position from its default value of latest to earliest, any

Performing failback to the primary AWS Region 207

https://docs.aws.amazon.com/msk/latest/developerguide/msk-replicator-perform-unplanned-failover.html

Amazon Managed Streaming for Apache Kafka Developer Guide

data you produced to the cluster in the secondary region during the service event in the primary
region will not be copied back to the cluster in the primary region.

You should initiate failback steps only after replication from the cluster in the secondary Region to
the cluster in the primary Region has caught up and the MessageLag metric in CloudWatch is close
to 0. A planned failback should not result in any data loss.

1. Shut down all producers and consumers connecting to the MSK cluster in the secondary
Region.

2. For active-passive topology, delete the Replicator that is replicating data from cluster in the
secondary Region to primary Region. You do not need to delete the Replicator for active-active
topology.

3. Start producers connecting to the MSK cluster in the primary Region.

4. Depending on your application’s message ordering requirements, follow the steps in one of
the following tabs.

No message ordering

If your application does not require message ordering, start consumers in the primary
AWS Region that read from both the local (for example, topic) and replicated topics (for
example, <sourceKafkaClusterAlias>.topic) using a wildcard operator (for example,
.*topic). The consumers on local topics (e.g.: topic) will resume from the last offset they
consumed before the failover. If there was any unprocessed data from before the failover, it
will get processed now. In the case of a planned failover, there should be no such record.

Message ordering

1. Start consumers only for the replicated topics on primary Region (for example,
<sourceKafkaClusterAlias>.topic) but not the local topics (for example, topic).

2. Wait for all the consumers of replicated topics on the cluster in the primary Region to
finish processing all data, so that offset lag is 0 and the number of records processed is
also 0. Then, stop consumers for the replicated topics on cluster in the primary Region.
At this point, all records that were produced in the secondary Region after failover have
been consumed in the primary Region.

3. Start consumers for the local topics (for example, topic) on the cluster in the primary
Region.

Performing failback to the primary AWS Region 208

Amazon Managed Streaming for Apache Kafka Developer Guide

5. Verify that the existing Replicator from cluster in primary to cluster in secondary Region is
in RUNNING state and working as expected using the ReplicatorThroughput and latency
metrics.

Creating an active-active setup using MSK Replicator

Follow these steps to set up active-active topology between source MSK cluster A and target MSK
cluster B.

1. Create a MSK Replicator with MSK cluster A as source and MSK cluster B as target.

2. After the above MSK Replicator has been successfully created, create a Replicator with cluster B
as source and cluster A as target.

3. Create two sets of producers, each writing data at the same time into the local topic (for
example, “topic”) in the cluster in the same region as the producer.

4. Create two sets of consumers, each reading data using a wildcard subscription (such as
“.*topic”) from the MSK cluster in the same AWS Region as the consumer. This way your
consumers will automatically read data produced locally in the Region from the local topic
(for example, topic), as well as data replicated from other Region in topic with the prefix
<sourceKafkaClusterAlias>.topic). These two sets of consumers should have different
consumer group IDs so that consumer group offsets are not overwritten when MSK Replicator
copies them to the other cluster.

Troubleshooting MSK Replicator

Topics

• MSK Replicator state goes from CREATING to FAILED

• MSK Replicator appears stuck in the CREATING state

• MSK Replicator is not replicating data or replicating only partial data

• Message offsets in the target cluster are different than the source cluster

• MSK Replicator is not syncing consumer groups offsets or consumer group does not exist on
target cluster

• Replication latency is high or keeps increasing

Creating an active-active setup using MSK Replicator 209

Amazon Managed Streaming for Apache Kafka Developer Guide

The following information can help you troubleshoot problems that you might have with MSK
Replicator. You can also post your issue to AWS re:Post.

MSK Replicator state goes from CREATING to FAILED

Here are some common causes for MSK Replicator creation failure.

1. Verify that the security groups you provided for the Replicator creation in the Target cluster
section have outbound rules to allow traffic to your target cluster's security groups. Also verify
that your target cluster's security groups have inbound rules that accept traffic from the security
groups you provide for the Replicator creation in the Target cluster section. See Choose your
target cluster.

2. If you are creating Replicator for cross-region replication, verify that your source cluster has
multi-VPC connectivity turned on for IAM Access Control authentication method. See Amazon
MSK multi-VPC private connectivity in a single Region. Also verify that the cluster policy is setup
on the source cluster so that the MSK Replicator can connect to the source cluster. See Step 1:
Prepare the Amazon MSK source cluster.

3. Verify that the IAM role that you provided during MSK Replicator creation has the permissions
required to read and write to your source and target clusters. Also, verify that the IAM role has
permissions to write to topics. See Configure replicator settings and permissions

4. Verify that your network ACLs are not blocking the connection between the MSK Replicator and
your source and target clusters.

5. It's possible that source or target clusters are not fully available when the MSK Replicator tried
to connect to them. This might be due to excessive load, disk usage or CPU usage, which causes
the Replicator to be unable to connect to the brokers. Fix the issue with the brokers and retry
Replicator creation.

After you have performed the validations above, create the MSK Replicator again.

MSK Replicator appears stuck in the CREATING state

Sometimes MSK Replicator creation can take up to 30 minutes. Wait for 30 minutes and check the
state of the Replicator again.

MSK Replicator is not replicating data or replicating only partial data

Follow these steps to troubleshoot data replication problems.

MSK Replicator state goes from CREATING to FAILED 210

https://repost.aws/

Amazon Managed Streaming for Apache Kafka Developer Guide

1. Verify that your Replicator is not running into any authentication errors using the AuthError
metric provided by MSK Replicator in CloudWatch. If this metric is above 0, check if the policy
of the IAM role you provided for the replicator is valid and there aren't deny permissions set for
the cluster permissions. Based on clusterAlias dimension, you can identify if the source or target
cluster is experiencing authentication errors.

2. Verify that your source and target clusters are not experiencing any issues. It is possible that the
Replicator is not able to connect to your source or target cluster. This might happen due to too
many connections, disk at full capacity or high CPU usage.

3. Verify that your source and target clusters are reachable from MSK Replicator using the
KafkaClusterPingSuccessCount metric in CloudWatch. Based on clusterAlias dimension, you can
identify if the source or target cluster is experiencing auth errors. If this metric is 0 or has no
datapoint, the connection is unhealthy. You should check network and IAM role permissions that
MSK Replicator is using to connect to your clusters.

4. Verify that your Replicator is not running into failures due to missing topic-level permissions
using the ReplicatorFailure metric in CloudWatch. If this metric is above 0, check the IAM role
you provided for topic-level permissions.

5. Verify that the regular expression you provided in the allow list while creating the Replicator
matches the names of the topics you want to replicate. Also, verify that the topics are not being
excluded from replication due to a regular expression in the deny list.

6. Note that it may take up to 30 seconds for the Replicator to detect and create the new topics
or topic partitions on the target cluster. Any messages produced to the source topic before the
topic has been created on the target cluster will not be replicated if replicator starting position
is latest (default). Alternatively, you can start replication from the earliest offset in the source
cluster topic partitions if you want to replicate existing messages on your topics on the target
cluster. See Configure replicator settings and permissions.

Message offsets in the target cluster are different than the source
cluster

As part of replicating data, MSK Replicator consumes messages from the source cluster and
produces them to the target cluster. This can lead to messages having different offsets on your
source and target clusters. However, if you have turned on consumer groups offsets syncing during
Replicator creation, MSK Replicator will automatically translate the offsets while copying the
metadata so that after failing over to the target cluster, your consumers can resume processing
from near where they left off in the source cluster.

Message offsets in the target cluster are different than the source cluster 211

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK Replicator is not syncing consumer groups offsets or consumer
group does not exist on target cluster

Follow these steps to troubleshoot metadata replication problems.

1. Verify that your data replication is working as expected. If not, see MSK Replicator is not
replicating data or replicating only partial data.

2. Verify that the regular expression you provided in the allow list while creating the Replicator
matches the names of the consumer groups you want to replicate. Also, verify that the
consumer groups are not being excluded from replication due to a regular expression in the deny
list.

3. Verify that MSK Replicator has created the topic on the target cluster. It may take up to 30
seconds for the Replicator to detect and create the new topics or topic partitions on the target
cluster. Any messages produced to the source topic before the topic has been created on the
target cluster will not be replicated if the replicator starting position is latest (default). If your
consumer group on the source cluster has only consumed the mesages that have not been
replicated by MSK Replicator, the consumer group will not be replicated to the target cluster.
After the topic is successfuly created on the target cluster, MSK Replicator will start replicating
newly written messages on the source cluster to the target. Once your consumer group starts
reading these messages from the source, MSK Replicator will automatically replicate the
consumer group to the target cluster. Alternatively, you can start replication from the earliest
offset in the source cluster topic partitions if you want to replicate existing messages on your
topics on the target cluster. See Configure replicator settings and permissions.

Note

MSK Replicator optimizes consumer groups offset syncing for your consumers on the
source cluster which are reading from a position closer to the end of the topic partition. If
your consumer groups are lagging on the source cluster, you may see higher lag for those
consumer groups on the target as compared to the source. This means after failover to the
target cluster, your consumers will reprocess more duplicate messages. To reduce this lag,
your consumers on the source cluster would need to catch up and start consuming from the
tip of the stream (end of the topic partition). As your consumers catch up, MSK Replicator
will automatically reduce the lag.

MSK Replicator is not syncing consumer groups offsets or consumer group does not exist on target
cluster

212

Amazon Managed Streaming for Apache Kafka Developer Guide

Replication latency is high or keeps increasing

Here are some common causes for high replication latency.

1. Verify that you have the right number of partitions on your source and target MSK clusters.
Having too few or too many partitions can impact performance. For guidance on choosing the
number of partitions, see Best practices for using MSK Replicator. The following table shows the
recommended minimum number of partitions for getting the throughput you want with MSK
Replicator.

Throughput and recommended minimum number of partitions

Throughput (MB/s) Minimum number of partitions required

50 167

100 334

250 833

500 1666

1000 3333

2. Verify that you have enough read and write capacity in your source and target MSK clusters
to support the replication traffic. MSK Replicator acts as a consumer for your source cluster
(egress) and as a producer for your target cluster (ingress). Therefore, you should provision
cluster capacity to support the replication traffic in addition to other traffic on your clusters. See
??? for guidance on sizing your MSK clusters.

3. Replication latency might vary for MSK clusters in different source and destination AWS Region
pairs, depending on how geographically far apart the clusters are from each other. For example,
Replication latency is typically lower when replicating between clusters in the Europe (Ireland)
and Europe (London) Regions compared to replication between clusters in the Europe (Ireland)
and Asia Pacific (Sydney) Regions.

4. Verify that your Replicator is not getting throttled due to overly aggressive quotas set on your
source or target clusters. You can use the ThrottleTime metric provided by MSK Replicator
in CloudWatch to see the average time in milliseconds a request was throttled by brokers on
your source/target cluster. If this metric is above 0, you should adjust Kafka quotas to reduce

Replication latency is high or keeps increasing 213

Amazon Managed Streaming for Apache Kafka Developer Guide

throttling so that Replicator can catch-up. See Managing MSK Replicator throughput using Kafka
quotas for information on managing Kafka quotas for the Replicator.

5. ReplicationLatency and MessageLag might increase when an AWS Region becomes degraded.
Use the AWS Service Health Dashboard to check for an MSK service event in the Region where
your primary MSK cluster is located. If there's a service event, you can temporarily redirect your
application reads and writes to the other Region.

Best practices for using MSK Replicator

This section covers common best practices and implementation strategies for using &MSK;
Replicator.

Topics

• Managing MSK Replicator throughput using Kafka quotas

• Setting cluster retention period

Managing MSK Replicator throughput using Kafka quotas

Since MSK Replicator acts as a consumer for your source cluster, replication can cause other
consumers to be throttled on your source cluster. The amount of throttling depends on the
read capacity you have on your source cluster and the throughput of data you’re replicating. We
recommend that your provision identical capacity for your source and target clusters, and account
for the replication throughput when calculating how much capacity you need.

You can also set Kafka quotas for the Replicator on your source and target clusters to control
how much capacity the MSK Replicator can use. A network bandwidth quota is recommended. A
network bandwidth quota defines a byte rate threshold, defined as bytes per second, for one or
more clients sharing a quota. This quota is defined on a per-broker basis.

Follow these steps to apply a quota.

1. Retrieve the bootstrap server string for the source cluster. See Getting the bootstrap brokers for
an Amazon MSK cluster.

2. Retrieve the service execution role (SER) used by the MSK Replicator. This is the SER you used for
a CreateReplicator request. You can also pull the SER from the DescribeReplicator response
from an existing Replicator.

Best practices for using MSK Replicator 214

https://health.aws.amazon.com/health/status

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Using Kafka CLI tools, run the following command against the source cluster.

./kafka-configs.sh --bootstrap-server <source-cluster-bootstrap-server> --alter --
add-config 'consumer_byte_
rate=<quota_in_bytes_per_second>' --entity-type users --entity-name
 arn:aws:sts::<customer-account-id>:assumed-role/<ser-role-name>/<customer-account-
id> --command-config <client-properties-for-iam-auth></programlisting>

4. After executing the above command, verify that the ReplicatorThroughput metric does not
cross the quota you have set.

Note that if you re-use a service execution role between multiple MSK Replicators they are all
subject to this quota. If you want to maintain separate quotas per Replicator, use separate service
execution roles.

For more information on using MSK IAM authentication with quotas, see Multi-tenancy Apache
Kafka clusters in Amazon MSK with IAM access control and Kafka Quotas – Part 1.

Warning

Setting an extremely low consumer_byte_rate may cause your MSK Replicator to act in
unexpected ways.

Setting cluster retention period

You can set the log retention period for MSK provisioned and serverless clusters. The
recommended retention period is 7 days. See Cluster configuration changes or MSK Serverless
cluster configuration.

Setting cluster retention period 215

https://aws.amazon.com/blogs/big-data/multi-tenancy-apache-kafka-clusters-in-amazon-msk-with-iam-access-control-and-kafka-quotas-part-1/
https://aws.amazon.com/blogs/big-data/multi-tenancy-apache-kafka-clusters-in-amazon-msk-with-iam-access-control-and-kafka-quotas-part-1/

Amazon Managed Streaming for Apache Kafka Developer Guide

Cluster states

The following table shows the possible states of a cluster and describes what they mean. It also
describes what actions you can and cannot perform when a cluster is in one of these states. To
find out the state of a cluster, you can visit the AWS Management Console. You can also use the
describe-cluster-v2 command or the DescribeClusterV2 operation to describe the cluster. The
description of a cluster includes its state.

Cluster state Meaning and possible actions

ACTIVE You can produce and consume data. You can
also perform Amazon MSK API and AWS CLI
operations on the cluster.

CREATING Amazon MSK is setting up the cluster. You
must wait for the cluster to reach the ACTIVE
state before you can use it to produce or
consume data or to perform Amazon MSK API
or AWS CLI operations on it.

DELETING The cluster is being deleted. You cannot
use it to produce or consume data. You also
cannot perform Amazon MSK API or AWS CLI
operations on it.

FAILED The cluster creation or deletion process failed.
You cannot use the cluster to produce or
consume data. You can delete the cluster but
cannot perform Amazon MSK API or AWS CLI
update operations on it.

HEALING Amazon MSK is running an internal operation
, like replacing an unhealthy broker. For
example, the broker might be unresponsive.
You can still use the cluster to produce and
consume data. However, you cannot perform
Amazon MSK API or AWS CLI update operation

216

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster-v2.html
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html#DescribeClusterV2

Amazon Managed Streaming for Apache Kafka Developer Guide

Cluster state Meaning and possible actions

s on the cluster until it returns to the ACTIVE
state.

MAINTENANCE Amazon MSK is performing routine maintenan
ce operations on the cluster. Such maintenan
ce operations include security patching.
You can still use the cluster to produce and
consume data. However, you cannot perform
Amazon MSK API or AWS CLI update operation
s on the cluster until it returns to the ACTIVE
state.

REBOOTING_BROKER Amazon MSK is rebooting a broker. You can
still use the cluster to produce and consume
data. However, you cannot perform Amazon
MSK API or AWS CLI update operations on the
cluster until it returns to the ACTIVE state.

UPDATING A user-initiated Amazon MSK API or AWS CLI
operation is updating the cluster. You can still
use the cluster to produce and consume data.
However, you cannot perform any additional
Amazon MSK API or AWS CLI update operation
s on the cluster until it returns to the ACTIVE
state.

217

Amazon Managed Streaming for Apache Kafka Developer Guide

Security in Amazon Managed Streaming for Apache
Kafka

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Managed
Streaming for Apache Kafka, see Amazon Web Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon MSK. The following topics show you how to configure Amazon MSK to meet your
security and compliance objectives. You also learn how to use other Amazon Web Services that
help you to monitor and secure your Amazon MSK resources.

Topics

• Data protection in Amazon Managed Streaming for Apache Kafka

• Authentication and authorization for Amazon MSK APIs

• Authentication and authorization for Apache Kafka APIs

• Changing an Amazon MSK cluster's security group

• Controlling access to Apache ZooKeeper

• Logging

• Compliance validation for Amazon Managed Streaming for Apache Kafka

• Resilience in Amazon Managed Streaming for Apache Kafka

• Infrastructure security in Amazon Managed Streaming for Apache Kafka

218

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Managed Streaming for Apache Kafka Developer Guide

Data protection in Amazon Managed Streaming for Apache
Kafka

The AWS shared responsibility model applies to data protection in Amazon Managed Streaming
for Apache Kafka. As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. You are also responsible for the security configuration
and management tasks for the AWS services that you use. For more information about data
privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS
Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon MSK or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Topics

• Amazon MSK encryption

Data protection 219

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Managed Streaming for Apache Kafka Developer Guide

• How do I get started with encryption?

Amazon MSK encryption

Amazon MSK provides data encryption options that you can use to meet strict data management
requirements. The certificates that Amazon MSK uses for encryption must be renewed every 13
months. Amazon MSK automatically renews these certificates for all clusters. It sets the state of the
cluster to MAINTENANCE when it starts the certificate-update operation. It sets it back to ACTIVE
when the update is done. While a cluster is in the MAINTENANCE state, you can continue to produce
and consume data, but you can't perform any update operations on it.

Encryption at rest

Amazon MSK integrates with AWS Key Management Service (KMS) to offer transparent server-
side encryption. Amazon MSK always encrypts your data at rest. When you create an MSK cluster,
you can specify the AWS KMS key that you want Amazon MSK to use to encrypt your data at rest.
If you don't specify a KMS key, Amazon MSK creates an AWS managed key for you and uses it on
your behalf. For more information about KMS keys, see AWS KMS keys in the AWS Key Management
Service Developer Guide.

Encryption in transit

Amazon MSK uses TLS 1.2. By default, it encrypts data in transit between the brokers of your MSK
cluster. You can override this default at the time you create the cluster.

For communication between clients and brokers, you must specify one of the following three
settings:

• Only allow TLS encrypted data. This is the default setting.

• Allow both plaintext, as well as TLS encrypted data.

• Only allow plaintext data.

Amazon MSK brokers use public AWS Certificate Manager certificates. Therefore, any truststore
that trusts Amazon Trust Services also trusts the certificates of Amazon MSK brokers.

While we highly recommend enabling in-transit encryption, it can add additional CPU overhead
and a few milliseconds of latency. Most use cases aren't sensitive to these differences, however, and
the magnitude of impact depends on the configuration of your cluster, clients, and usage profile.

Encryption 220

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys

Amazon Managed Streaming for Apache Kafka Developer Guide

How do I get started with encryption?

When creating an MSK cluster, you can specify encryption settings in JSON format. The following is
an example.

{
 "EncryptionAtRest": {
 "DataVolumeKMSKeyId": "arn:aws:kms:us-east-1:123456789012:key/abcdabcd-1234-
abcd-1234-abcd123e8e8e"
 },
 "EncryptionInTransit": {
 "InCluster": true,
 "ClientBroker": "TLS"
 }
}

For DataVolumeKMSKeyId, you can specify a customer managed key or the AWS managed key for
MSK in your account (alias/aws/kafka). If you don't specify EncryptionAtRest, Amazon MSK
still encrypts your data at rest under the AWS managed key. To determine which key your cluster is
using, send a GET request or invoke the DescribeCluster API operation.

For EncryptionInTransit, the default value of InCluster is true, but you can set it to false if
you don't want Amazon MSK to encrypt your data as it passes between brokers.

To specify the encryption mode for data in transit between clients and brokers, set ClientBroker
to one of three values: TLS, TLS_PLAINTEXT, or PLAINTEXT.

To specify encryption settings when creating a cluster

1. Save the contents of the previous example in a file and give the file any name that you want.
For example, call it encryption-settings.json.

2. Run the create-cluster command and use the encryption-info option to point to the
file where you saved your configuration JSON. The following is an example. Replace {YOUR
MSK VERSION} with a version that matches the Apache Kafka client version. For information
on how to find your MSK cluster version, see To find the version of your MSK cluster. Be aware
that using an Apache Kafka client version that is not the same as your MSK cluster version may
lead to Apache Kafka data corruption, loss and down time.

How do I get started with encryption? 221

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Streaming for Apache Kafka Developer Guide

aws kafka create-cluster --cluster-name "ExampleClusterName" --broker-node-group-
info file://brokernodegroupinfo.json --encryption-info file://encryptioninfo.json
 --kafka-version "{YOUR MSK VERSION}" --number-of-broker-nodes 3

The following is an example of a successful response after running this command.

{
 "ClusterArn": "arn:aws:kafka:us-east-1:123456789012:cluster/SecondTLSTest/
abcdabcd-1234-abcd-1234-abcd123e8e8e",
 "ClusterName": "ExampleClusterName",
 "State": "CREATING"
}

To test TLS encryption

1. Create a client machine following the guidance in the section called “Step 3: Create a client
machine”.

2. Install Apache Kafka on the client machine.

3. In this example we use the JVM truststore to talk to the MSK cluster. To do this, first create
a folder named /tmp on the client machine. Then, go to the bin folder of the Apache Kafka
installation, and run the following command. (Your JVM path might be different.)

cp /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.201.b09-0.amzn2.x86_64/jre/lib/security/
cacerts /tmp/kafka.client.truststore.jks

4. While still in the bin folder of the Apache Kafka installation on the client machine, create a
text file named client.properties with the following contents.

security.protocol=SSL
ssl.truststore.location=/tmp/kafka.client.truststore.jks

5. Run the following command on a machine that has the AWS CLI installed, replacing
clusterARN with the ARN of your cluster.

aws kafka get-bootstrap-brokers --cluster-arn clusterARN

How do I get started with encryption? 222

Amazon Managed Streaming for Apache Kafka Developer Guide

A successful result looks like the following. Save this result because you need it for the next
step.

{
 "BootstrapBrokerStringTls": "a-1.example.g7oein.c2.kafka.us-
east-1.amazonaws.com:0123,a-3.example.g7oein.c2.kafka.us-
east-1.amazonaws.com:0123,a-2.example.g7oein.c2.kafka.us-east-1.amazonaws.com:0123"
}

6. Run the following command, replacing BootstrapBrokerStringTls with one of the broker
endpoints that you obtained in the previous step.

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --broker-
list BootstrapBrokerStringTls --producer.config client.properties --topic
 TLSTestTopic

7. Open a new command window and connect to the same client machine. Then, run the
following command to create a console consumer.

<path-to-your-kafka-installation>/bin/kafka-console-consumer.sh --bootstrap-
server BootstrapBrokerStringTls --consumer.config client.properties --topic
 TLSTestTopic

8. In the producer window, type a text message followed by a return, and look for the same
message in the consumer window. Amazon MSK encrypted this message in transit.

For more information about configuring Apache Kafka clients to work with encrypted data, see
Configuring Kafka Clients.

Authentication and authorization for Amazon MSK APIs

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon MSK resources. IAM is an AWS service that you
can use with no additional charge.

Authentication and authorization for Amazon MSK APIs 223

https://kafka.apache.org/documentation/#security_configclients

Amazon Managed Streaming for Apache Kafka Developer Guide

This page describes how you can use IAM to control who can perform Amazon MSK operations on
your cluster. For information on how to control who can perform Apache Kafka operations on your
cluster, see the section called “Authentication and authorization for Apache Kafka APIs”.

Topics

• How Amazon MSK works with IAM

• Amazon MSK identity-based policy examples

• Using service-linked roles for Amazon MSK

• AWS managed policies for Amazon MSK

• Troubleshooting Amazon MSK identity and access

How Amazon MSK works with IAM

Before you use IAM to manage access to Amazon MSK, you should understand what IAM features
are available to use with Amazon MSK. To get a high-level view of how Amazon MSK and other
AWS services work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

• Amazon MSK identity-based policies

• Amazon MSK resource-based policies

• AWS managed policies

• Authorization based on Amazon MSK tags

• Amazon MSK IAM roles

Amazon MSK identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as
well as the conditions under which actions are allowed or denied. Amazon MSK supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a JSON
policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon MSK works with IAM 224

https://docs.aws.amazon.com/msk/1.0/apireference/operations.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Managed Streaming for Apache Kafka Developer Guide

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon MSK use the following prefix before the action: kafka:. For example, to
grant someone permission to describe an MSK cluster with the Amazon MSK DescribeCluster
API operation, you include the kafka:DescribeCluster action in their policy. Policy statements
must include either an Action or NotAction element. Amazon MSK defines its own set of actions
that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["kafka:action1", "kafka:action2"]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "kafka:Describe*"

To see a list of Amazon MSK actions, see Actions, resources, and condition keys for Amazon
Managed Streaming for Apache Kafka in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

How Amazon MSK works with IAM 225

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedstreamingforapachekafka.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonmanagedstreamingforapachekafka.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Managed Streaming for Apache Kafka Developer Guide

"Resource": "*"

The Amazon MSK instance resource has the following ARN:

arn:${Partition}:kafka:${Region}:${Account}:cluster/${ClusterName}/${UUID}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

For example, to specify the CustomerMessages instance in your statement, use the following
ARN:

"Resource": "arn:aws:kafka:us-east-1:123456789012:cluster/CustomerMessages/abcd1234-
abcd-dcba-4321-a1b2abcd9f9f-2"

To specify all instances that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:kafka:us-east-1:123456789012:cluster/*"

Some Amazon MSK actions, such as those for creating resources, cannot be performed on a specific
resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To specify multiple resources in a single statement, separate the ARNs with commas.

"Resource": ["resource1", "resource2"]

To see a list of Amazon MSK resource types and their ARNs, see Resources Defined by Amazon
Managed Streaming for Apache Kafka in the IAM User Guide. To learn with which actions you can
specify the ARN of each resource, see Actions Defined by Amazon Managed Streaming for Apache
Kafka.

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon MSK works with IAM 226

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions

Amazon Managed Streaming for Apache Kafka Developer Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Amazon MSK defines its own set of condition keys and also supports using some global condition
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User
Guide.

To see a list of Amazon MSK condition keys, see Condition Keys for Amazon Managed Streaming
for Apache Kafka in the IAM User Guide. To learn with which actions and resources you can use a
condition key, see Actions Defined by Amazon Managed Streaming for Apache Kafka.

Examples

To view examples of Amazon MSK identity-based policies, see Amazon MSK identity-based policy
examples.

Amazon MSK resource-based policies

Amazon MSK supports a cluster policy (also known as a resource-based policy) for use with
Amazon MSK clusters. You can use a cluster policy to define which IAM principals have cross-
account permissions to set up private connectivity to your Amazon MSK cluster. When used with
IAM client authentication, you can also use the cluster policy to granularly define Kafka data plane
permissions for the connecting clients.

How Amazon MSK works with IAM 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions

Amazon Managed Streaming for Apache Kafka Developer Guide

To view an example of how to configure a cluster policy, refer to Step 2: Attach a cluster policy to
the MSK cluster.

AWS managed policies

Authorization based on Amazon MSK tags

You can attach tags to Amazon MSK clusters. To control access based on tags, you provide tag
information in the condition element of a policy using the kafka:ResourceTag/key-name,
aws:RequestTag/key-name, or aws:TagKeys condition keys. For more information about
tagging Amazon MSK resources, see the section called “Tagging a cluster”.

To view an example identity-based policy for limiting access to a cluster based on the tags on that
cluster, see Accessing Amazon MSK clusters based on tags.

Amazon MSK IAM roles

An IAM role is an entity within your Amazon Web Services account that has specific permissions.

Using temporary credentials with Amazon MSK

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

Amazon MSK supports using temporary credentials.

Service-linked roles

Service-linked roles allow Amazon Web Services to access resources in other services to complete
an action on your behalf. Service-linked roles appear in your IAM account and are owned by the
service. An administrator can view but not edit the permissions for service-linked roles.

Amazon MSK supports service-linked roles. For details about creating or managing Amazon MSK
service-linked roles, the section called “Service-linked roles”.

Amazon MSK identity-based policy examples

By default, IAM users and roles don't have permission to execute Amazon MSK API actions. An
administrator must create IAM policies that grant users and roles permission to perform specific

Identity-based policy examples 228

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Managed Streaming for Apache Kafka Developer Guide

API operations on the specified resources they need. The administrator must then attach those
policies to the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Allow users to view their own permissions

• Accessing one Amazon MSK cluster

• Accessing Amazon MSK clusters based on tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon MSK
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies

Identity-based policy examples 229

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Managed Streaming for Apache Kafka Developer Guide

adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",

Identity-based policy examples 230

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Managed Streaming for Apache Kafka Developer Guide

 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Accessing one Amazon MSK cluster

In this example, you want to grant an IAM user in your Amazon Web Services account access to one
of your clusters, purchaseQueriesCluster. This policy allows the user to describe the cluster,
get its bootstrap brokers, list its broker nodes, and update it.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"UpdateCluster",
 "Effect":"Allow",
 "Action":[
 "kafka:Describe*",
 "kafka:Get*",
 "kafka:List*",
 "kafka:Update*"
],
 "Resource":"arn:aws:kafka:us-east-1:012345678012:cluster/
purchaseQueriesCluster/abcdefab-1234-abcd-5678-cdef0123ab01-2"
 }
]
}

Accessing Amazon MSK clusters based on tags

You can use conditions in your identity-based policy to control access to Amazon MSK resources
based on tags. This example shows how you might create a policy that allows the user to describe
the cluster, get its bootstrap brokers, list its broker nodes, update it, and delete it. However,
permission is granted only if the cluster tag Owner has the value of that user's user name.

{

Identity-based policy examples 231

Amazon Managed Streaming for Apache Kafka Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessClusterIfOwner",
 "Effect": "Allow",
 "Action": [
 "kafka:Describe*",
 "kafka:Get*",
 "kafka:List*",
 "kafka:Update*",
 "kafka:Delete*"
],
 "Resource": "arn:aws:kafka:us-east-1:012345678012:cluster/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "${aws:username}"
 }
 }
 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to update an MSK cluster, the cluster must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise, he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON Policy Elements: Condition in the IAM User Guide.

Using service-linked roles for Amazon MSK

Amazon MSK uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to Amazon MSK. Service-linked roles
are predefined by Amazon MSK and include all the permissions that the service requires to call
other AWS services on your behalf.

A service-linked role makes setting up Amazon MSK easier because you do not have to manually
add the necessary permissions. Amazon MSK defines the permissions of its service-linked roles.
Unless defined otherwise, only Amazon MSK can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

Service-linked roles 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Managed Streaming for Apache Kafka Developer Guide

For information about other services that support service-linked roles, see Amazon Web Services
That Work with IAM, and look for the services that have Yes in the Service-Linked Role column.
Choose a Yes with a link to view the service-linked role documentation for that service.

Topics

• Service-linked role permissions for Amazon MSK

• Creating a service-linked role for Amazon MSK

• Editing a service-linked role for Amazon MSK

• Supported Regions for Amazon MSK service-linked roles

Service-linked role permissions for Amazon MSK

Amazon MSK uses the service-linked role named AWSServiceRoleForKafka. Amazon MSK uses this
role to access your resources and perform operations such as:

• *NetworkInterface – create and manage network interfaces in the customer account that
make cluster brokers accessible to clients in the customer VPC.

• *VpcEndpoints – manage VPC endpoints in the customer account that make cluster brokers
accessible to clients in the customer VPC using AWS PrivateLink. Amazon MSK uses permissions
to DescribeVpcEndpoints, ModifyVpcEndpoint and DeleteVpcEndpoints.

• secretsmanager – manage client credentials with AWS Secrets Manager.

• GetCertificateAuthorityCertificate – retrieve the certificate for your private certificate
authority.

This service-linked role is attached to the following managed policy: KafkaServiceRolePolicy.
For updates to this policy, see KafkaServiceRolePolicy.

The AWSServiceRoleForKafka service-linked role trusts the following services to assume the role:

• kafka.amazonaws.com

The role permissions policy allows Amazon MSK to complete the following actions on resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Service-linked roles 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/msk/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-KafkaServiceRolePolicy

Amazon Managed Streaming for Apache Kafka Developer Guide

 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:AttachNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DetachNetworkInterface",
 "ec2:DescribeVpcEndpoints",
 "acm-pca:GetCertificateAuthorityCertificate",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:ModifyVpcEndpoint"
],
 "Resource": "arn:*:ec2:*:*:subnet/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteVpcEndpoints",
 "ec2:ModifyVpcEndpoint"
],
 "Resource": "arn:*:ec2:*:*:vpc-endpoint/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/AWSMSKManaged": "true"
 },
 "StringLike": {
 "ec2:ResourceTag/ClusterArn": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:PutResourcePolicy",
 "secretsmanager:DeleteResourcePolicy",
 "secretsmanager:DescribeSecret"

Service-linked roles 234

Amazon Managed Streaming for Apache Kafka Developer Guide

],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "secretsmanager:SecretId": "arn:*:secretsmanager:*:*:secret:AmazonMSK_*"
 }
 }
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a service-linked role for Amazon MSK

You don't need to create a service-linked role manually. When you create an Amazon MSK cluster
in the AWS Management Console, the AWS CLI, or the AWS API, Amazon MSK creates the service-
linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create an Amazon MSK cluster, Amazon MSK creates
the service-linked role for you again.

Editing a service-linked role for Amazon MSK

Amazon MSK does not allow you to edit the AWSServiceRoleForKafka service-linked role. After
you create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a Service-Linked Role in the IAM User Guide.

Supported Regions for Amazon MSK service-linked roles

Amazon MSK supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Regions and Endpoints.

AWS managed policies for Amazon MSK

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

AWS managed policies 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonMSKFullAccess

This policy grants administrative permissions that allow a principal full access to all Amazon MSK
actions. The permissions in this policy are grouped as follows:

• The Amazon MSK permissions allow all Amazon MSK actions.

• Amazon EC2 permissions – in this policy are required to validate the passed resources in an
API request. This is to make sure Amazon MSK is able to successfully use the resources with a
cluster. The rest of the Amazon EC2 permissions in this policy allow Amazon MSK to create AWS
resources that are needed to make it possible for you to connect to your clusters.

• AWS KMS permissions – are used during API calls to validate the passed resources in a request.
They are required for Amazon MSK to be able to use the passed key with the Amazon MSK
cluster.

• CloudWatch Logs, Amazon S3, and Amazon Data Firehose permissions – are required
for Amazon MSK to be able to ensure that the log delivery destinations are reachable, and that
they are valid for broker log use.

• IAM permissions – are required for Amazon MSK to be able to a create service-linked role in your
account and to allow you to pass a service execution role to Amazon MSK.

 {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "kafka:*",

AWS managed policies 236

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Managed Streaming for Apache Kafka Developer Guide

 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeRouteTables",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeVpcAttribute",
 "kms:DescribeKey",
 "kms:CreateGrant",
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups",
 "S3:GetBucketPolicy",
 "firehose:TagDeliveryStream"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpoint"
],
 "Resource": [
 "arn:*:ec2:*:*:vpc/*",
 "arn:*:ec2:*:*:subnet/*",
 "arn:*:ec2:*:*:security-group/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateVpcEndpoint"
],
 "Resource": [
 "arn:*:ec2:*:*:vpc-endpoint/*"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/AWSMSKManaged": "true"
 },

AWS managed policies 237

Amazon Managed Streaming for Apache Kafka Developer Guide

 "StringLike": {
 "aws:RequestTag/ClusterArn": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:*:ec2:*:*:vpc-endpoint/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateVpcEndpoint"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DeleteVpcEndpoints"
],
 "Resource": "arn:*:ec2:*:*:vpc-endpoint/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/AWSMSKManaged": "true"
 },
 "StringLike": {
 "ec2:ResourceTag/ClusterArn": "*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "kafka.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",

AWS managed policies 238

Amazon Managed Streaming for Apache Kafka Developer Guide

 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/kafka.amazonaws.com/
AWSServiceRoleForKafka*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "kafka.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/kafka.amazonaws.com/
AWSServiceRoleForKafka*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/delivery.logs.amazonaws.com/
AWSServiceRoleForLogDelivery*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "delivery.logs.amazonaws.com"
 }
 }
 }

]
 }

AWS managed policy: AmazonMSKReadOnlyAccess

This policy grants read-only permissions that allow users to view information in Amazon MSK.
Principals with this policy attached can't make any updates or delete exiting resources, nor can they
create new Amazon MSK resources. For example, principals with these permissions can view the list
of clusters and configurations associated with their account, but cannot change the configuration
or settings of any clusters. The permissions in this policy are grouped as follows:

AWS managed policies 239

Amazon Managed Streaming for Apache Kafka Developer Guide

• Amazon MSK permissions – allow you to list Amazon MSK resources, describe them, and get
information about them.

• Amazon EC2 permissions – are used to describe the Amazon VPC, subnets, security groups, and
ENIs that are associated with a cluster.

• AWS KMS permission – is used to describe the key that is associated with the cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "kafka:Describe*",
 "kafka:List*",
 "kafka:Get*",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "kms:DescribeKey"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AWS managed policy: KafkaServiceRolePolicy

You can't attach KafkaServiceRolePolicy to your IAM entities. This policy is attached to a service-
linked role that allows Amazon MSK to perform actions such as managing VPC endpoints
(connectors) on MSK clusters, managing network interfaces, and managing cluster credentials with
AWS Secrets Manager. For more information, see the section called “Service-linked roles”.

AWS managed policy: AWSMSKReplicatorExecutionRole

The AWSMSKReplicatorExecutionRole policy grants permissions to the Amazon MSK replicator
to replicate data between MSK clusters. The permissions in this policy are grouped as follows:

• cluster – Grants the Amazon MSK Replicator permissions to connect to the cluster using IAM
authentication. Also grants permissions to describe and alter the cluster.

AWS managed policies 240

Amazon Managed Streaming for Apache Kafka Developer Guide

• topic – Grants the Amazon MSK Replicator permissions to describe, create, and alter a topic,
and to alter the topic's dynamic configuration.

• consumer group – Grants the Amazon MSK Replicator permissions to describe and alter
consumer groups, to read and write date from an MSK cluster, and to delete internal topics
created by the replicator.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ClusterPermissions",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:DescribeCluster",
 "kafka-cluster:AlterCluster",
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:CreateTopic",
 "kafka-cluster:AlterTopic",
 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData",
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup",
 "kafka-cluster:DescribeTopicDynamicConfiguration",
 "kafka-cluster:AlterTopicDynamicConfiguration",
 "kafka-cluster:WriteDataIdempotently"
],
 "Resource": [
 "arn:aws:kafka:*:*:cluster/*"
]
 },
 {
 "Sid": "TopicPermissions",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:CreateTopic",
 "kafka-cluster:AlterTopic",
 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeTopicDynamicConfiguration",

AWS managed policies 241

Amazon Managed Streaming for Apache Kafka Developer Guide

 "kafka-cluster:AlterTopicDynamicConfiguration",
 "kafka-cluster:AlterCluster"
],
 "Resource": [
 "arn:aws:kafka:*:*:topic/*/*"
]
 },
 {
 "Sid": "GroupPermissions",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup"
],
 "Resource": [
 "arn:aws:kafka:*:*:group/*/*"
]
 }
]
}

Amazon MSK updates to AWS managed policies

View details about updates to AWS managed policies for Amazon MSK since this service began
tracking these changes.

Change Description Date

WriteDataIdempoten
tly permission added to
AWSMSKReplicatorEx
ecutionRole – Update to an
existing policy

Amazon MSK added
WriteDataIdempotently
permission to AWSMSKRep
licatorExecutionRole policy
to support data replication
between MSK clusters.

March 12, 2024

AWSMSKReplicatorEx
ecutionRole – New policy

Amazon MSK added
AWSMSKReplicatorEx
ecutionRole policy to support
Amazon MSK Replicator.

December 4, 2023

AWS managed policies 242

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

AmazonMSKFullAccess –
Update to an existing policy

Amazon MSK added permissio
ns to support Amazon MSK
Replicator.

September 28, 2023

KafkaServiceRolePolicy –
Update to an existing policy

Amazon MSK added permissio
ns to support multi-VPC
private connectivity.

March 8, 2023

AmazonMSKFullAccess –
Update to an existing policy

Amazon MSK added new
Amazon EC2 permissions to
make it possible to connect to
a cluster.

November 30, 2021

AmazonMSKFullAccess –
Update to an existing policy

Amazon MSK added a new
permission to allow it to
describe Amazon EC2 route
tables.

November 19, 2021

Amazon MSK started tracking
changes

Amazon MSK started tracking
changes for its AWS managed
policies.

November 19, 2021

Troubleshooting Amazon MSK identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon MSK and IAM.

Topics

• I Am not authorized to perform an action in Amazon MSK

I Am not authorized to perform an action in Amazon MSK

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

Troubleshooting 243

Amazon Managed Streaming for Apache Kafka Developer Guide

The following example error occurs when the mateojackson IAM user tries to use the console to
delete a cluster but does not have kafka:DeleteCluster permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 kafka:DeleteCluster on resource: purchaseQueriesCluster

In this case, Mateo asks his administrator to update his policies to allow him to access the
purchaseQueriesCluster resource using the kafka:DeleteCluster action.

Authentication and authorization for Apache Kafka APIs

You can use IAM to authenticate clients and to allow or deny Apache Kafka actions. Alternatively,
you can use TLS or SASL/SCRAM to authenticate clients, and Apache Kafka ACLs to allow or deny
actions.

For information on how to control who can perform Amazon MSK operations on your cluster, see
the section called “Authentication and authorization for Amazon MSK APIs”.

Topics

• IAM access control

• Mutual TLS authentication

• Sign-in credentials authentication with AWS Secrets Manager

• Apache Kafka ACLs

IAM access control

IAM access control for Amazon MSK enables you to handle both authentication and authorization
for your MSK cluster. This eliminates the need to use one mechanism for authentication and
another for authorization. For example, when a client tries to write to your cluster, Amazon MSK
uses IAM to check whether that client is an authenticated identity and also whether it is authorized
to produce to your cluster. IAM access control works for Java and non-Java clients, including Kafka
clients written in Python, Go, JavaScript, and .NET.

Amazon MSK logs access events so you can audit them. For more information, see the section
called “CloudTrail events”.

Authentication and authorization for Apache Kafka APIs 244

https://docs.aws.amazon.com/msk/1.0/apireference/operations.html

Amazon Managed Streaming for Apache Kafka Developer Guide

To make IAM access control possible, Amazon MSK makes minor modifications to Apache Kafka
source code. These modifications won't cause a noticeable difference in your Apache Kafka
experience.

Important

IAM access control doesn't apply to Apache ZooKeeper nodes. For information about how
you can control access to those nodes, see the section called “Controlling access to Apache
ZooKeeper”.

Important

The allow.everyone.if.no.acl.found Apache Kafka setting has no effect if your
cluster uses IAM access control.

Important

You can invoke Apache Kafka ACL APIs for an MSK cluster that uses IAM access control.
However, Apache Kafka ACLs have no effect on authorization for IAM roles. You must use
IAM policies to control access for IAM roles.

How IAM access control for Amazon MSK works

To use IAM access control for Amazon MSK, perform the following steps, which are described in
detail in the rest of this section.

• the section called “Create a cluster that uses IAM access control”

• the section called “Configure clients for IAM access control”

• the section called “Create authorization policies”

• the section called “Get the bootstrap brokers for IAM access control”

IAM access control 245

Amazon Managed Streaming for Apache Kafka Developer Guide

Create a cluster that uses IAM access control

This section explains how you can use the AWS Management Console, the API, or the AWS CLI to
create a cluster that uses IAM access control. For information about how to turn on IAM access
control for an existing cluster, see the section called “Updating security”.

Use the AWS Management Console to create a cluster that uses IAM access control

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose Create cluster.

3. Choose Create cluster with custom settings.

4. In the Authentication section, choose IAM access control.

5. Complete the rest of the workflow for creating a cluster.

Use the API or the AWS CLI to create a cluster that uses IAM access control

• To create a cluster with IAM access control enabled, use the CreateCluster API or the create-
cluster CLI command, and pass the following JSON for the ClientAuthentication
parameter: "ClientAuthentication": { "Sasl": { "Iam": { "Enabled":
true } }.

Configure clients for IAM access control

To enable clients to communicate with an MSK cluster that uses IAM access control, you can use
either of these mechanisms:

• Non-Java client configuration using SASL_OAUTHBEARER mechanism

• Java client configuration using SASL_OAUTHBEARER mechanism or AWS_MSK_IAM mechanism

Using the SASL_OAUTHBEARER mechanism to configure IAM

1. Edit your client.properties configuration file using the highlighted syntax in the example Python
Kafka client below as a guide. Configuration changes are similar in other languages.

#!/usr/bin/python3from kafka import KafkaProducer
from kafka.errors import KafkaError
import socket

IAM access control 246

https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#CreateCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/create-cluster.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/create-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

import time
from aws_msk_iam_sasl_signer import MSKAuthTokenProvider

class MSKTokenProvider():
 def token(self):
 token, _ = MSKAuthTokenProvider.generate_auth_token('<my aws region>')
 return token

tp = MSKTokenProvider()

producer = KafkaProducer(
 bootstrap_servers='<my bootstrap string>',
 security_protocol='SASL_SSL',
 sasl_mechanism='OAUTHBEARER',
 sasl_oauth_token_provider=tp,
 client_id=socket.gethostname(),
)

topic = "<my-topic>"
while True:
 try:
 inp=input(">")
 producer.send(topic, inp.encode())
 producer.flush()
 print("Produced!")
 except Exception:
 print("Failed to send message:", e)

producer.close()

2. Download the helper library for your chosen configuration language and follow the instructions
in the Getting started section on that language library’s homepage.

• JavaScript: https://github.com/aws/aws-msk-iam-sasl-signer-js#getting-started

• Python: https://github.com/aws/aws-msk-iam-sasl-signer-python#get-started

• Go: https://github.com/aws/aws-msk-iam-sasl-signer-go#getting-started

• .NET: https://github.com/aws/aws-msk-iam-sasl-signer-net#getting-started

• JAVA: SASL_OAUTHBEARER support for Java is available through the aws-msk-iam-auth jar
file

IAM access control 247

https://github.com/aws/aws-msk-iam-sasl-signer-js#getting-started
https://github.com/aws/aws-msk-iam-sasl-signer-python#get-started
https://github.com/aws/aws-msk-iam-sasl-signer-go#getting-started
https://github.com/aws/aws-msk-iam-sasl-signer-net#getting-started
https://github.com/aws/aws-msk-iam-auth/releases

Amazon Managed Streaming for Apache Kafka Developer Guide

Using the MSK custom AWS_MSK_IAM mechanism to configure IAM

1. Add the following to the client.properties file. Replace
<PATH_TO_TRUST_STORE_FILE> with the fully-qualified path to the trust store file on the
client.

Note

If you don't want to use a specific certificate, you can remove
ssl.truststore.location=<PATH_TO_TRUST_STORE_FILE> from
your client.properties file. When you don't specify a value for
ssl.truststore.location, the Java process uses the default certificate.

ssl.truststore.location=<PATH_TO_TRUST_STORE_FILE>
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

To use a named profile that you created for AWS credentials, include
awsProfileName="your profile name"; in your client configuration file. For information
about named profiles, see Named profiles in the AWS CLI documentation.

2. Download the latest stable aws-msk-iam-auth JAR file, and place it in the class path. If you use
Maven, add the following dependency, adjusting the version number as needed:

<dependency>
 <groupId>software.amazon.msk</groupId>
 <artifactId>aws-msk-iam-auth</artifactId>
 <version>1.0.0</version>
</dependency>

The Amazon MSK client plugin is open-sourced under the Apache 2.0 license.

Create authorization policies

Attach an authorization policy to the IAM role that corresponds to the client. In an authorization
policy, you specify which actions to allow or deny for the role. If your client is on an Amazon

IAM access control 248

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://github.com/aws/aws-msk-iam-auth/releases

Amazon Managed Streaming for Apache Kafka Developer Guide

EC2 instance, associate the authorization policy with the IAM role for that Amazon EC2 instance.
Alternatively, you can configure your client to use a named profile, and then you associate the
authorization policy with the role for that named profile. the section called “Configure clients for
IAM access control” describes how to configure a client to use a named profile.

For information about how to create an IAM policy, see Creating IAM policies.

The following is an example authorization policy for a cluster named MyTestCluster. To understand
the semantics of the Action and Resource elements, see the section called “Semantics of actions
and resources”.

Important

Changes that you make to an IAM policy are reflected in the IAM APIs and the AWS CLI
immediately. However, it can take noticeable time for the policy change to take effect.
In most cases, policy changes take effect in less than a minute. Network conditions may
sometimes increase the delay.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:AlterCluster",
 "kafka-cluster:DescribeCluster"
],
 "Resource": [
 "arn:aws:kafka:us-east-1:0123456789012:cluster/MyTestCluster/
abcd1234-0123-abcd-5678-1234abcd-1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:*Topic*",
 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData"
],

IAM access control 249

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Managed Streaming for Apache Kafka Developer Guide

 "Resource": [
 "arn:aws:kafka:us-east-1:0123456789012:topic/MyTestCluster/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup"
],
 "Resource": [
 "arn:aws:kafka:us-east-1:0123456789012:group/MyTestCluster/*"
]
 }
]
}

To learn how to create a policy with action elements that correspond to common Apache Kafka use
cases, like producing and consuming data, see the section called “Common use cases”.

For Kafka versions 2.8.0 and above, the WriteDataIdempotently permission is deprecated
(KIP-679). By default,enable.idempotence = true is set. Therefore, for Kafka versions
2.8.0 and above, IAM does not offer the same functionality as Kafka ACLs. It is not possible
to WriteDataIdempotently to a topic by only providing WriteData access to that topic.
This does not affect the case when WriteData is provided to ALL topics. In that case,
WriteDataIdempotently is allowed. This is due to differences in implementation of IAM logic
versus how the Kafka ACLs are implemented.

To work around this, we recommend using a policy similar to the sample below:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:AlterCluster",
 "kafka-cluster:DescribeCluster",
 "kafka-cluster:WriteDataIdempotently"
],
 "Resource": [

IAM access control 250

https://cwiki.apache.org/confluence/display/KAFKA/KIP-679%3A+Producer+will+enable+the+strongest+delivery+guarantee+by+default

Amazon Managed Streaming for Apache Kafka Developer Guide

 "arn:aws:kafka:us-east-1:0123456789012:cluster/MyTestCluster/
abcd1234-0123-abcd-5678-1234abcd-1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:*Topic*",
 "kafka-cluster:WriteData",
 "kafka-cluster:ReadData"
],
 "Resource": [
 "arn:aws:kafka:us-east-1:0123456789012:topic/MyTestCluster/
abcd1234-0123-abcd-5678-1234abcd-1/TestTopic"
]
 }
]
}

In this case, WriteData allows writes to TestTopic, while WriteDataIdempotently allows
idempotent writes to the cluster. It is important to note that WriteDataIdempotently is a
cluster level permission. It cannot be used at the topic level. If WriteDataIdempotently is
restricted to the topic level, this policy will not work.

Get the bootstrap brokers for IAM access control

See the section called “Getting the bootstrap brokers”.

Semantics of actions and resources

This section explains the semantics of the action and resource elements that you can use in an IAM
authorization policy. For an example policy, see the section called “Create authorization policies”.

Actions

The following table lists the actions that you can include in an authorization policy when you use
IAM access control for Amazon MSK. When you include in your authorization policy an action from
the Action column of the table, you must also include the corresponding actions from the Required
actions column.

IAM access control 251

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Conn
ect

Grants permissio
n to connect and
authenticate to
the cluster.

None cluster Yes

kafka-clu
ster:Desc
ribeClust
er

Grants permissio
n to describe
various aspects
of the cluster,
equivalent to
Apache Kafka's
DESCRIBE
CLUSTER ACL.

kafka-clu
ster:Conn
ect

cluster Yes

kafka-clu
ster:Alte
rCluster

Grants permissio
n to alter various
aspects of
the cluster,
equivalent to
Apache Kafka's
ALTER CLUSTER
ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeClust
er

cluster No

kafka-clu
ster:Desc
ribeClust
erDynamic
Configura
tion

Grants permissio
n to describe
the dynamic
configuration
of a cluster,
equivalent to
Apache Kafka's
DESCRIBE_
CONFIGS
CLUSTER ACL.

kafka-clu
ster:Conn
ect

cluster No

IAM access control 252

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Alte
rClusterD
ynamicCon
figuration

Grants permissio
n to alter
the dynamic
configuration
of a cluster,
equivalent to
Apache Kafka's
ALTER_CONFIGS
CLUSTER ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeClust
erDynamic
Configura
tion

cluster No

kafka-clu
ster:Writ
eDataIdem
potently

Grants permissio
n to write data
idempotently
on a cluster,
equivalent to
Apache Kafka's
IDEMPOTEN
T_WRITE
CLUSTER ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Writ
eData

cluster Yes

kafka-clu
ster:Crea
teTopic

Grants permissio
n to create
topics on
a cluster,
equivalen
t to Apache
Kafka's CREATE
CLUSTER/TOPIC
ACL.

kafka-clu
ster:Conn
ect

topic Yes

IAM access control 253

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Desc
ribeTopic

Grants permissio
n to describe
topics on
a cluster,
equivalent to
Apache Kafka's
DESCRIBE TOPIC
ACL.

kafka-clu
ster:Conn
ect

topic Yes

kafka-clu
ster:Alte
rTopic

Grants permissio
n to alter topics
on a cluster,
equivalent to
Apache Kafka's
ALTER TOPIC
ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeTopic

topic Yes

kafka-clu
ster:Dele
teTopic

Grants permissio
n to delete
topics on
a cluster,
equivalent to
Apache Kafka's
DELETE TOPIC
ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeTopic

topic Yes

IAM access control 254

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Desc
ribeTopic
DynamicCo
nfigurati
on

Grants permissio
n to describe
the dynamic
configura
tion of topics
on a cluster,
equivalent to
Apache Kafka's
DESCRIBE_
CONFIGS TOPIC
ACL.

kafka-clu
ster:Conn
ect

topic Yes

kafka-clu
ster:Alte
rTopicDyn
amicConfi
guration

Grants permissio
n to alter
the dynamic
configura
tion of topics
on a cluster,
equivalent to
Apache Kafka's
ALTER_CONFIGS
TOPIC ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeTopic
DynamicCo
nfigurati
on

topic Yes

IAM access control 255

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Read
Data

Grants permissio
n to read data
from topics
on a cluster,
equivalent to
Apache Kafka's
READ TOPIC
ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeTopic

kafka-clu
ster:Alte
rGroup

topic Yes

kafka-clu
ster:Writ
eData

Grants permissio
n to write
data to topics
on a cluster,
equivalent to
Apache Kafka's
WRITE TOPIC
ACL

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeTopic

topic Yes

kafka-clu
ster:Desc
ribeGroup

Grants permissio
n to describe
groups on
a cluster,
equivalent to
Apache Kafka's
DESCRIBE
GROUP ACL.

kafka-clu
ster:Conn
ect

group Yes

IAM access control 256

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Alte
rGroup

Grants permissio
n to join groups
on a cluster,
equivalent to
Apache Kafka's
READ GROUP
ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeGroup

group Yes

kafka-clu
ster:Dele
teGroup

Grants permissio
n to delete
groups on
a cluster,
equivalent to
Apache Kafka's
DELETE GROUP
ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeGroup

group Yes

kafka-clu
ster:Desc
ribeTrans
actionalId

Grants permissio
n to describe
transactional
IDs on a cluster,
equivalent to
Apache Kafka's
DESCRIBE
TRANSACTI
ONAL_ID ACL.

kafka-clu
ster:Conn
ect

transactional-id Yes

IAM access control 257

Amazon Managed Streaming for Apache Kafka Developer Guide

Action Description Required
actions

Required
resources

Applicable
to serverless
clusters

kafka-clu
ster:Alte
rTransact
ionalId

Grants permissio
n to alter
transactional
IDs on a cluster,
equivalen
t to Apache
Kafka's WRITE
TRANSACTI
ONAL_ID ACL.

kafka-clu
ster:Conn
ect

kafka-clu
ster:Desc
ribeTrans
actionalId

kafka-clu
ster:Writ
eData

transactional-id Yes

You can use the asterisk (*) wildcard any number of times in an action after the colon. The
following are examples.

• kafka-cluster:*Topic stands for kafka-cluster:CreateTopic,
kafka-cluster:DescribeTopic, kafka-cluster:AlterTopic,
and kafka-cluster:DeleteTopic. It doesn't include kafka-
cluster:DescribeTopicDynamicConfiguration or kafka-
cluster:AlterTopicDynamicConfiguration.

• kafka-cluster:* stands for all permissions.

Resources

The following table shows the four types of resources that you can use in an authorization policy
when you use IAM access control for Amazon MSK. You can get the cluster Amazon Resource
Name (ARN) from the AWS Management Console or by using the DescribeCluster API or the
describe-cluster AWS CLI command. You can then use the cluster ARN to construct topic, group,
and transactional ID ARNs. To specify a resource in an authorization policy, use that resource's ARN.

IAM access control 258

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Resource ARN format

Cluster arn:aws:kafka:region:account-id :cluster/cluster-name /cluster-u
uid

Topic arn:aws:kafka:region:account-id :topic/cluster-name /cluster-u
uid /topic-name

Group arn:aws:kafka:region:account-id :group/cluster-name /cluster-u
uid /group-name

Transacti
onal ID

arn:aws:kafka:region:account-id :transactional-id/cluster-n
ame /cluster-uuid /transactional-id

You can use the asterisk (*) wildcard any number of times anywhere in the part of the ARN that
comes after :cluster/, :topic/, :group/, and :transactional-id/. The following are some
examples of how you can use the asterisk (*) wildcard to refer to multiple resources:

• arn:aws:kafka:us-east-1:0123456789012:topic/MyTestCluster/*: all the topics in
any cluster named MyTestCluster, regardless of the cluster's UUID.

• arn:aws:kafka:us-east-1:0123456789012:topic/MyTestCluster/abcd1234-0123-
abcd-5678-1234abcd-1/*_test: all topics whose name ends with "_test" in the cluster whose
name is MyTestCluster and whose UUID is abcd1234-0123-abcd-5678-1234abcd-1.

• arn:aws:kafka:us-east-1:0123456789012:transactional-id/MyTestCluster/
*/5555abcd-1111-abcd-1234-abcd1234-1: all transactions whose transactional ID
is 5555abcd-1111-abcd-1234-abcd1234-1, across all incarnations of a cluster named
MyTestCluster in your account. This means that if you create a cluster named MyTestCluster, then
delete it, and then create another cluster by the same name, you can use this resource ARN to
represent the same transactions ID on both clusters. However, the deleted cluster isn't accessible.

Common use cases

The first column in the following table shows some common use cases. To authorize a client
to carry out a given use case, include the required actions for that use case in the client's
authorization policy, and set Effect to Allow.

IAM access control 259

Amazon Managed Streaming for Apache Kafka Developer Guide

For information about all the actions that are part of IAM access control for Amazon MSK, see the
section called “Semantics of actions and resources”.

Note

Actions are denied by default. You must explicitly allow every action that you want to
authorize the client to perform.

Use case Required actions

Admin kafka-cluster:*

Create a topic kafka-cluster:Connect

kafka-cluster:CreateTopic

Produce data kafka-cluster:Connect

kafka-cluster:DescribeTopic

kafka-cluster:WriteData

Consume data kafka-cluster:Connect

kafka-cluster:DescribeTopic

kafka-cluster:DescribeGroup

kafka-cluster:AlterGroup

kafka-cluster:ReadData

Produce data idempotently kafka-cluster:Connect

kafka-cluster:DescribeTopic

kafka-cluster:WriteData

kafka-cluster:WriteDataIdem
potently

IAM access control 260

Amazon Managed Streaming for Apache Kafka Developer Guide

Use case Required actions

Produce data transactionally kafka-cluster:Connect

kafka-cluster:DescribeTopic

kafka-cluster:WriteData

kafka-cluster:DescribeTrans
actionalId

kafka-cluster:AlterTransact
ionalId

Describe the configuration of a cluster kafka-cluster:Connect

kafka-cluster:DescribeClust
erDynamicConfiguration

Update the configuration of a cluster kafka-cluster:Connect

kafka-cluster:DescribeClust
erDynamicConfiguration

kafka-cluster:AlterClusterD
ynamicConfiguration

Describe the configuration of a topic kafka-cluster:Connect

kafka-cluster:DescribeTopic
DynamicConfiguration

Update the configuration of a topic kafka-cluster:Connect

kafka-cluster:DescribeTopic
DynamicConfiguration

kafka-cluster:AlterTopicDyn
amicConfiguration

IAM access control 261

Amazon Managed Streaming for Apache Kafka Developer Guide

Use case Required actions

Alter a topic kafka-cluster:Connect

kafka-cluster:DescribeTopic

kafka-cluster:AlterTopic

Mutual TLS authentication

You can enable client authentication with TLS for connections from your applications to your
Amazon MSK brokers. To use client authentication, you need an AWS Private CA. The AWS Private
CA can be either in the same AWS account as your cluster, or in a different account. For information
about AWS Private CAs, see Creating and Managing a AWS Private CA.

Note

TLS authentication is not currently available in the Beijing and Ningxia Regions.

Amazon MSK doesn't support certificate revocation lists (CRLs). To control access to your cluster
topics or block compromised certificates, use Apache Kafka ACLs and AWS security groups. For
information about using Apache Kafka ACLs, see the section called “Apache Kafka ACLs”.

This topic contains the following sections:

• To create a cluster that supports client authentication

• To set up a client to use authentication

• To produce and consume messages using authentication

To create a cluster that supports client authentication

This procedure shows you how to enable client authentication using a AWS Private CA.

Mutual TLS authentication 262

https://docs.aws.amazon.com/acm-pca/latest/userguide/create-CA.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Note

We highly recommend using independent AWS Private CA for each MSK cluster when you
use mutual TLS to control access. Doing so will ensure that TLS certificates signed by PCAs
only authenticate with a single MSK cluster.

1. Create a file named clientauthinfo.json with the following contents. Replace Private-
CA-ARN with the ARN of your PCA.

{
 "Tls": {
 "CertificateAuthorityArnList": ["Private-CA-ARN"]
 }
}

2. Create a file named brokernodegroupinfo.json as described in the section called
“Creating a cluster using the AWS CLI”.

3. Client authentication requires that you also enable encryption in transit between clients
and brokers. Create a file named encryptioninfo.json with the following contents.
Replace KMS-Key-ARN with the ARN of your KMS key. You can set ClientBroker to TLS or
TLS_PLAINTEXT.

{
 "EncryptionAtRest": {
 "DataVolumeKMSKeyId": "KMS-Key-ARN"
 },
 "EncryptionInTransit": {
 "InCluster": true,
 "ClientBroker": "TLS"
 }
}

For more information about encryption, see the section called “Encryption”.

4. On a machine where you have the AWS CLI installed, run the following command to create a
cluster with authentication and in-transit encryption enabled. Save the cluster ARN provided in
the response.

Mutual TLS authentication 263

Amazon Managed Streaming for Apache Kafka Developer Guide

aws kafka create-cluster --cluster-name "AuthenticationTest" --broker-node-group-
info file://brokernodegroupinfo.json --encryption-info file://encryptioninfo.json
 --client-authentication file://clientauthinfo.json --kafka-version "{YOUR KAFKA
 VERSION}" --number-of-broker-nodes 3

To set up a client to use authentication

1. Create an Amazon EC2 instance to use as a client machine. For simplicity, create this instance
in the same VPC you used for the cluster. See the section called “Step 3: Create a client
machine” for an example of how to create such a client machine.

2. Create a topic. For an example, see the instructions under the section called “Step 4: Create a
topic”.

3. On a machine where you have the AWS CLI installed, run the following command to get the
bootstrap brokers of the cluster. Replace Cluster-ARN with the ARN of your cluster.

aws kafka get-bootstrap-brokers --cluster-arn Cluster-ARN

Save the string associated with BootstrapBrokerStringTls in the response.

4. On your client machine, run the following command to use the JVM trust store to create your
client trust store. If your JVM path is different, adjust the command accordingly.

cp /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.201.b09-0.amzn2.x86_64/jre/lib/security/
cacerts kafka.client.truststore.jks

5. On your client machine, run the following command to create a private key for your client.
Replace Distinguished-Name, Example-Alias, Your-Store-Pass, and Your-Key-Pass
with strings of your choice.

keytool -genkey -keystore kafka.client.keystore.jks -validity 300 -storepass Your-
Store-Pass -keypass Your-Key-Pass -dname "CN=Distinguished-Name" -alias Example-
Alias -storetype pkcs12

6. On your client machine, run the following command to create a certificate request with the
private key you created in the previous step.

Mutual TLS authentication 264

Amazon Managed Streaming for Apache Kafka Developer Guide

keytool -keystore kafka.client.keystore.jks -certreq -file client-cert-sign-request
 -alias Example-Alias -storepass Your-Store-Pass -keypass Your-Key-Pass

7. Open the client-cert-sign-request file and ensure that it starts with -----BEGIN
CERTIFICATE REQUEST----- and ends with -----END CERTIFICATE REQUEST-----. If
it starts with -----BEGIN NEW CERTIFICATE REQUEST-----, delete the word NEW (and
the single space that follows it) from the beginning and the end of the file.

8. On a machine where you have the AWS CLI installed, run the following command to sign your
certificate request. Replace Private-CA-ARN with the ARN of your PCA. You can change the
validity value if you want. Here we use 300 as an example.

aws acm-pca issue-certificate --certificate-authority-arn Private-CA-ARN --csr
 fileb://client-cert-sign-request --signing-algorithm "SHA256WITHRSA" --validity
 Value=300,Type="DAYS"

Save the certificate ARN provided in the response.

Note

To retrieve your client certificate, use the acm-pca get-certificate command and
specify your certificate ARN. For more information, see get-certificate in the AWS CLI
Command Reference.

9. Run the following command to get the certificate that AWS Private CA signed for you. Replace
Certificate-ARN with the ARN you obtained from the response to the previous command.

aws acm-pca get-certificate --certificate-authority-arn Private-CA-ARN --
certificate-arn Certificate-ARN

10. From the JSON result of running the previous command, copy the strings associated with
Certificate and CertificateChain. Paste these two strings in a new file named signed-
certificate-from-acm. Paste the string associated with Certificate first, followed by the
string associated with CertificateChain. Replace the \n characters with new lines. The
following is the structure of the file after you paste the certificate and certificate chain in it.

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

Mutual TLS authentication 265

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/acm-pca/get-certificate.html

Amazon Managed Streaming for Apache Kafka Developer Guide

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

11. Run the following command on the client machine to add this certificate to your keystore so
you can present it when you talk to the MSK brokers.

keytool -keystore kafka.client.keystore.jks -import -file signed-certificate-from-
acm -alias Example-Alias -storepass Your-Store-Pass -keypass Your-Key-Pass

12. Create a file named client.properties with the following contents. Adjust the truststore
and keystore locations to the paths where you saved kafka.client.truststore.jks.
Substitute your Kafka client version for the {YOUR KAFKA VERSION} placeholders.

security.protocol=SSL
ssl.truststore.location=/tmp/kafka_2.12-{YOUR KAFKA VERSION}/
kafka.client.truststore.jks
ssl.keystore.location=/tmp/kafka_2.12-{YOUR KAFKA VERSION}/
kafka.client.keystore.jks
ssl.keystore.password=Your-Store-Pass
ssl.key.password=Your-Key-Pass

To produce and consume messages using authentication

1. Run the following command to create a topic. The file named client.properties is the one
you created in the previous procedure.

<path-to-your-kafka-installation>/bin/kafka-topics.sh --create --bootstrap-
server BootstrapBroker-String --replication-factor 3 --partitions 1 --topic
 ExampleTopic --command-config client.properties

2. Run the following command to start a console producer. The file named client.properties
is the one you created in the previous procedure.

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --bootstrap-
server BootstrapBroker-String --topic ExampleTopic --producer.config
 client.properties

Mutual TLS authentication 266

Amazon Managed Streaming for Apache Kafka Developer Guide

3. In a new command window on your client machine, run the following command to start a
console consumer.

<path-to-your-kafka-installation>/bin/kafka-console-consumer.sh --bootstrap-
server BootstrapBroker-String --topic ExampleTopic --consumer.config
 client.properties

4. Type messages in the producer window and watch them appear in the consumer window.

Sign-in credentials authentication with AWS Secrets Manager

You can control access to your Amazon MSK clusters using sign-in credentials that are stored
and secured using AWS Secrets Manager. Storing user credentials in Secrets Manager reduces the
overhead of cluster authentication such as auditing, updating, and rotating credentials. Secrets
Manager also lets you share user credentials across clusters.

This topic contains the following sections:

• How it works

• Setting up SASL/SCRAM authentication for an Amazon MSK cluster

• Working with users

• Limitations

How it works

Sign-in credentials authentication for Amazon MSK uses SASL/SCRAM (Simple Authentication
and Security Layer/ Salted Challenge Response Mechanism) authentication. To set up sign-in
credentials authentication for a cluster, you create a Secret resource in AWS Secrets Manager, and
associate sign-in credentials with that secret.

SASL/SCRAM is defined in RFC 5802. SCRAM uses secured hashing algorithms, and does not
transmit plaintext sign-in credentials between client and server.

Note

When you set up SASL/SCRAM authentication for your cluster, Amazon MSK turns on TLS
encryption for all traffic between clients and brokers.

SASL/SCRAM authentication 267

https://docs.aws.amazon.com/secretsmanager/?id=docs_gateway
https://tools.ietf.org/html/rfc5802

Amazon Managed Streaming for Apache Kafka Developer Guide

Setting up SASL/SCRAM authentication for an Amazon MSK cluster

To set up a secret in AWS Secrets Manager, follow the Creating and Retrieving a Secret tutorial in
the AWS Secrets Manager User Guide.

Note the following requirements when creating a secret for an Amazon MSK cluster:

• Choose Other type of secrets (e.g. API key) for the secret type.

• Your secret name must begin with the prefix AmazonMSK_.

• You must either use an existing custom AWS KMS key or create a new custom AWS KMS key for
your secret. Secrets Manager uses the default AWS KMS key for a secret by default.

Important

A secret created with the default AWS KMS key cannot be used with an Amazon MSK
cluster.

• Your sign-in credential data must be in the following format to enter key-value pairs using the
Plaintext option.

{
 "username": "alice",
 "password": "alice-secret"
}

• Record the ARN (Amazon Resource Name) value for your secret.

•
Important

You can't associate a Secrets Manager secret with a cluster that exceeds the limits
described in the section called “ Right-size your cluster: Number of partitions per broker”.

• If you use the AWS CLI to create the secret, specify a key ID or ARN for the kms-key-id
parameter. Don't specify an alias.

• To associate the secret with your cluster, use either the Amazon MSK console, or the
BatchAssociateScramSecret operation.

SASL/SCRAM authentication 268

https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#BatchAssociateScramSecret
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#BatchAssociateScramSecret

Amazon Managed Streaming for Apache Kafka Developer Guide

Important

When you associate a secret with a cluster, Amazon MSK attaches a resource policy to the
secret that allows your cluster to access and read the secret values that you defined. You
should not modify this resource policy. Doing so can prevent your cluster from accessing
your secret.

The following example JSON input for the BatchAssociateScramSecret operation associates
a secret with a cluster:

{
 "clusterArn" : "arn:aws:kafka:us-west-2:0123456789019:cluster/SalesCluster/
abcd1234-abcd-cafe-abab-9876543210ab-4",
 "secretArnList": [
 "arn:aws:secretsmanager:us-west-2:0123456789019:secret:AmazonMSK_MyClusterSecret"
]
}

Connecting to your cluster with sign-in credentials

After you create a secret and associate it with your cluster, you can connect your client to the
cluster. The following example steps demonstrate how to connect a client to a cluster that uses
SASL/SCRAM authentication, and how to produce to and consume from an example topic.

1. Run the following command on a machine that has the AWS CLI installed, replacing
clusterARN with the ARN of your cluster.

aws kafka get-bootstrap-brokers --cluster-arn clusterARN

2. To create an example topic, run the following command, replacing BootstrapServerString
with one of the broker endpoints that you obtained in the previous step.

<path-to-your-kafka-installation>/bin/kafka-topics.sh --create --bootstrap-
server BootstrapServerString --replication-factor 3 --partitions 1 --topic
 ExampleTopicName

SASL/SCRAM authentication 269

Amazon Managed Streaming for Apache Kafka Developer Guide

3. On your client machine, create a JAAS configuration file that contains the user credentials
stored in your secret. For example, for the user alice, create a file called users_jaas.conf
with the following content.

KafkaClient {
 org.apache.kafka.common.security.scram.ScramLoginModule required
 username="alice"
 password="alice-secret";
};

4. Use the following command to export your JAAS config file as a KAFKA_OPTS environment
parameter.

export KAFKA_OPTS=-Djava.security.auth.login.config=<path-to-jaas-file>/
users_jaas.conf

5. Create a file named kafka.client.truststore.jks in a ./tmp directory.

6. Use the following command to copy the JDK key store file from your JVM cacerts folder
into the kafka.client.truststore.jks file that you created in the previous step. Replace
JDKFolder with the name of the JDK folder on your instance. For example, your JDK folder
might be named java-1.8.0-openjdk-1.8.0.201.b09-0.amzn2.x86_64.

cp /usr/lib/jvm/JDKFolder/jre/lib/security/cacerts /tmp/kafka.client.truststore.jks

7. In the bin directory of your Apache Kafka installation, create a client properties file called
client_sasl.properties with the following contents. This file defines the SASL
mechanism and protocol.

security.protocol=SASL_SSL
sasl.mechanism=SCRAM-SHA-512
ssl.truststore.location=<path-to-keystore-file>/kafka.client.truststore.jks

8. Retrieve your bootstrap brokers string with the following command. Replace ClusterArn
with the Amazon Resource Name (ARN) of your cluster:

aws kafka get-bootstrap-brokers --cluster-arn ClusterArn

From the JSON result of the command, save the value associated with the string named
BootstrapBrokerStringSaslScram.

SASL/SCRAM authentication 270

Amazon Managed Streaming for Apache Kafka Developer Guide

9. To produce to the example topic that you created, run the following command on your client
machine. Replace BootstrapBrokerStringSaslScram with the value that you retrieved in
the previous step.

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --broker-
list BootstrapBrokerStringSaslScram --topic ExampleTopicName --producer.config
 client_sasl.properties

10. To consume from the topic you created, run the following command on your client machine.
Replace BootstrapBrokerStringSaslScram with the value that you obtained previously.

<path-to-your-kafka-installation>/bin/kafka-console-consumer.sh --bootstrap-
server BootstrapBrokerStringSaslScram --topic ExampleTopicName --from-beginning --
consumer.config client_sasl.properties

Working with users

Creating users: You create users in your secret as key-value pairs. When you use the Plaintext
option in the Secrets Manager console, you should specify sign-in credential data in the following
format.

{
 "username": "alice",
 "password": "alice-secret"
}

Revoking user access: To revoke a user's credentials to access a cluster, we recommend that you
first remove or enforce an ACL on the cluster, and then disassociate the secret. This is because of
the following:

• Removing a user does not close existing connections.

• Changes to your secret take up to 10 minutes to propagate.

For information about using an ACL with Amazon MSK, see Apache Kafka ACLs.

For clusters using ZooKeeper mode, we recommend that you restrict access to your ZooKeeper
nodes to prevent users from modifying ACLs. For more information, see Controlling access to
Apache ZooKeeper.

SASL/SCRAM authentication 271

Amazon Managed Streaming for Apache Kafka Developer Guide

Limitations

Note the following limitations when using SCRAM secrets:

• Amazon MSK only supports SCRAM-SHA-512 authentication.

• An Amazon MSK cluster can have up to 1000 users.

• You must use an AWS KMS key with your Secret. You cannot use a Secret that uses the default
Secrets Manager encryption key with Amazon MSK. For information about creating a KMS key,
see Creating symmetric encryption KMS keys.

• You can't use an asymmetric KMS key with Secrets Manager.

• You can associate up to 10 secrets with a cluster at a time using the BatchAssociateScramSecret
operation.

• The name of secrets associated with an Amazon MSK cluster must have the prefix AmazonMSK_.

• Secrets associated with an Amazon MSK cluster must be in the same Amazon Web Services
account and AWS region as the cluster.

Apache Kafka ACLs

Apache Kafka has a pluggable authorizer and ships with an out-of-box authorizer implementation.
Amazon MSK enables this authorizer in the server.properties file on the brokers.

Apache Kafka ACLs have the format "Principal P is [Allowed/Denied] Operation O From Host H
on any Resource R matching ResourcePattern RP". If RP doesn't match a specific resource R, then
R has no associated ACLs, and therefore no one other than super users is allowed to access R. To
change this Apache Kafka behavior, you set the property allow.everyone.if.no.acl.found
to true. Amazon MSK sets it to true by default. This means that with Amazon MSK clusters, if you
don't explicitly set ACLs on a resource, all principals can access this resource. If you enable ACLs on
a resource, only the authorized principals can access it. If you want to restrict access to a topic and
authorize a client using TLS mutual authentication, add ACLs using the Apache Kafka authorizer
CLI. For more information about adding, removing, and listing ACLs, see Kafka Authorization
Command Line Interface.

In addition to the client, you also need to grant all your brokers access to your topics so that the
brokers can replicate messages from the primary partition. If the brokers don't have access to a
topic, replication for the topic fails.

Apache Kafka ACLs 272

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#BatchAssociateScramSecret
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Authorization+Command+Line+Interface
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Authorization+Command+Line+Interface

Amazon Managed Streaming for Apache Kafka Developer Guide

To add or remove read and write access to a topic

1. Add your brokers to the ACL table to allow them to read from all topics that have ACLs in
place. To grant your brokers read access to a topic, run the following command on a client
machine that can communicate with the MSK cluster.

Replace Distinguished-Name with the DNS of any of your cluster's bootstrap
brokers, then replace the string before the first period in this distinguished
name by an asterisk (*). For example, if one of your cluster's bootstrap
brokers has the DNS b-6.mytestcluster.67281x.c4.kafka.us-
east-1.amazonaws.com, replace Distinguished-Name in the following command with
*.mytestcluster.67281x.c4.kafka.us-east-1.amazonaws.com. For information on
how to get the bootstrap brokers, see the section called “Getting the bootstrap brokers”.

<path-to-your-kafka-installation>/bin/kafka-acls.sh --authorizer-properties
 --bootstrap-server BootstrapServerString --add --allow-principal
 "User:CN=Distinguished-Name" --operation Read --group=* --topic Topic-Name

2. To grant read access to a topic, run the following command on your client machine. If you use
mutual TLS authentication, use the same Distinguished-Name you used when you created
the private key.

<path-to-your-kafka-installation>/bin/kafka-acls.sh --authorizer-properties
 --bootstrap-server BootstrapServerString --add --allow-principal
 "User:CN=Distinguished-Name" --operation Read --group=* --topic Topic-Name

To remove read access, you can run the same command, replacing --add with --remove.

3. To grant write access to a topic, run the following command on your client machine. If you use
mutual TLS authentication, use the same Distinguished-Name you used when you created
the private key.

<path-to-your-kafka-installation>/bin/kafka-acls.sh --authorizer-properties
 --bootstrap-server BootstrapServerString --add --allow-principal
 "User:CN=Distinguished-Name" --operation Write --topic Topic-Name

To remove write access, you can run the same command, replacing --add with --remove.

Apache Kafka ACLs 273

Amazon Managed Streaming for Apache Kafka Developer Guide

Changing an Amazon MSK cluster's security group

This page explains how to change the security group of an existing MSK cluster. You might need
to change a cluster's security group in order to provide access to a certain set of users or to limit
access to the cluster. For information about security groups, see Security groups for your VPC in the
Amazon VPC user guide.

1. Use the ListNodes API or the list-nodes command in the AWS CLI to get a list of the brokers
in your cluster. The results of this operation include the IDs of the elastic network interfaces
(ENIs) that are associated with the brokers.

2. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

3. Using the dropdown list near the top-right corner of the screen, select the Region in which the
cluster is deployed.

4. In the left pane, under Network & Security, choose Network Interfaces.

5. Select the first ENI that you obtained in the first step. Choose the Actions menu at the top of
the screen, then choose Change Security Groups. Assign the new security group to this ENI.
Repeat this step for each of the ENIs that you obtained in the first step.

Note

Changes that you make to a cluster's security group using the Amazon EC2 console
aren't reflected in the MSK console under Network settings.

6. Configure the new security group's rules to ensure that your clients have access to the brokers.
For information about setting security group rules, see Adding, Removing, and Updating Rules
in the Amazon VPC user guide.

Important

If you change the security group that is associated with the brokers of a cluster, and then
add new brokers to that cluster, Amazon MSK associates the new brokers with the original
security group that was associated with the cluster when the cluster was created. However,
for a cluster to work correctly, all of its brokers must be associated with the same security

Changing security groups 274

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.amazonaws.cn/en_us/msk/1.0/apireference/clusters-clusterarn-nodes.html#ListNodes
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/list-nodes.html
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html?shortFooter=true#AddRemoveRules

Amazon Managed Streaming for Apache Kafka Developer Guide

group. Therefore, if you add new brokers after changing the security group, you must
follow the previous procedure again and update the ENIs of the new brokers.

Controlling access to Apache ZooKeeper

For security reasons you can limit access to the Apache ZooKeeper nodes that are part of your
Amazon MSK cluster. To limit access to the nodes, you can assign a separate security group to
them. You can then decide who gets access to that security group.

Important

This section does not apply for clusters running in KRaft mode. See the section called
“KRaft mode ”.

This topic contains the following sections:

• To place your Apache ZooKeeper nodes in a separate security group

• Using TLS security with Apache ZooKeeper

To place your Apache ZooKeeper nodes in a separate security group

1. Get the Apache ZooKeeper connection string for your cluster. To learn how, see the section
called “ZooKeeper mode”. The connection string contains the DNS names of your Apache
ZooKeeper nodes.

2. Use a tool like host or ping to convert the DNS names you obtained in the previous step to IP
addresses. Save these IP addresses because you need them later in this procedure.

3. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

4. In the left pane, under NETWORK & SECURITY, choose Network Interfaces.

5. In the search field above the table of network interfaces, type the name of your cluster, then
type return. This limits the number of network interfaces that appear in the table to those
interfaces that are associated with your cluster.

6. Select the check box at the beginning of the row that corresponds to the first network
interface in the list.

Controlling access to Apache ZooKeeper 275

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Managed Streaming for Apache Kafka Developer Guide

7. In the details pane at the bottom of the page, look for the Primary private IPv4 IP. If this IP
address matches one of the IP addresses you obtained in the first step of this procedure, this
means that this network interface is assigned to an Apache ZooKeeper node that is part of
your cluster. Otherwise, deselect the check box next to this network interface, and select the
next network interface in the list. The order in which you select the network interfaces doesn't
matter. In the next steps, you will perform the same operations on all network interfaces that
are assigned to Apache ZooKeeper nodes, one by one.

8. When you select a network interface that corresponds to an Apache ZooKeeper node, choose
the Actions menu at the top of the page, then choose Change Security Groups. Assign a new
security group to this network interface. For information about creating security groups, see
Creating a Security Group in the Amazon VPC documentation.

9. Repeat the previous step to assign the same new security group to all the network interfaces
that are associated with the Apache ZooKeeper nodes of your cluster.

10. You can now choose who has access to this new security group. For information about
setting security group rules, see Adding, Removing, and Updating Rules in the Amazon VPC
documentation.

Using TLS security with Apache ZooKeeper

You can use TLS security for encryption in transit between your clients and your Apache ZooKeeper
nodes. To implement TLS security with your Apache ZooKeeper nodes, do the following:

• Clusters must use Apache Kafka version 2.5.1 or later to use TLS security with Apache ZooKeeper.

• Enable TLS security when you create or configure your cluster. Clusters created with Apache
Kafka version 2.5.1 or later with TLS enabled automatically use TLS security with Apache
ZooKeeper endpoints. For information about setting up TLS security, see How do I get started
with encryption?.

• Retrieve the TLS Apache ZooKeeper endpoints using the DescribeCluster operation.

• Create an Apache ZooKeeper configuration file for use with the kafka-configs.sh and
kafka-acls.sh tools, or with the ZooKeeper shell. With each tool, you use the --zk-tls-
config-file parameter to specify your Apache ZooKeeper config.

The following example shows a typical Apache ZooKeeper configuration file:

zookeeper.ssl.client.enable=true
zookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty

Using TLS security with Apache ZooKeeper 276

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html?shortFooter=true#CreatingSecurityGroups
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html?shortFooter=true#AddRemoveRules
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://kafka.apache.org/documentation/#security_authz_cli

Amazon Managed Streaming for Apache Kafka Developer Guide

zookeeper.ssl.keystore.location=kafka.jks
zookeeper.ssl.keystore.password=test1234
zookeeper.ssl.truststore.location=truststore.jks
zookeeper.ssl.truststore.password=test1234

• For other commands (such as kafka-topics), you must use the KAFKA_OPTS environment
variable to configure Apache ZooKeeper parameters. The following example shows how to
configure the KAFKA_OPTS environment variable to pass Apache ZooKeeper parameters into
other commands:

export KAFKA_OPTS="
-Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty
-Dzookeeper.client.secure=true
-Dzookeeper.ssl.trustStore.location=/home/ec2-user/kafka.client.truststore.jks
-Dzookeeper.ssl.trustStore.password=changeit"

After you configure the KAFKA_OPTS environment variable, you can use CLI commands normally.
The following example creates an Apache Kafka topic using the Apache ZooKeeper configuration
from the KAFKA_OPTS environment variable:

<path-to-your-kafka-installation>/bin/kafka-topics.sh --create --
zookeeper ZooKeeperTLSConnectString --replication-factor 3 --partitions 1 --topic
 AWSKafkaTutorialTopic

Note

The names of the parameters you use in your Apache ZooKeeper configuration file and
those you use in your KAFKA_OPTS environment variable are not consistent. Pay attention
to which names you use with which parameters in your configuration file and KAFKA_OPTS
environment variable.

For more information about accessing your Apache ZooKeeper nodes with TLS, see KIP-515:
Enable ZK client to use the new TLS supported authentication.

Using TLS security with Apache ZooKeeper 277

https://cwiki.apache.org/confluence/display/KAFKA/KIP-515%3A+Enable+ZK+client+to+use+the+new+TLS+supported+authentication
https://cwiki.apache.org/confluence/display/KAFKA/KIP-515%3A+Enable+ZK+client+to+use+the+new+TLS+supported+authentication

Amazon Managed Streaming for Apache Kafka Developer Guide

Logging

You can deliver Apache Kafka broker logs to one or more of the following destination types:
Amazon CloudWatch Logs, Amazon S3, Amazon Data Firehose. You can also log Amazon MSK API
calls with AWS CloudTrail.

Broker logs

Broker logs enable you to troubleshoot your Apache Kafka applications and to analyze their
communications with your MSK cluster. You can configure your new or existing MSK cluster to
deliver INFO-level broker logs to one or more of the following types of destination resources:
a CloudWatch log group, an S3 bucket, a Firehose delivery stream. Through Firehose you can
then deliver the log data from your delivery stream to OpenSearch Service. You must create a
destination resource before you configure your cluster to deliver broker logs to it. Amazon MSK
doesn't create these destination resources for you if they don't already exist. For information
about these three types of destination resources and how to create them, see the following
documentation:

• Amazon CloudWatch Logs

• Amazon S3

• Amazon Data Firehose

Required permissions

To configure a destination for Amazon MSK broker logs, the IAM identity that you use for
Amazon MSK actions must have the permissions described in the AWS managed policy:
AmazonMSKFullAccess policy.

To stream broker logs to an S3 bucket, you also need the s3:PutBucketPolicy permission. For
information about S3 bucket policies, see How Do I Add an S3 Bucket Policy? in the Amazon S3
User Guide. For information about IAM policies in general, see Access Management in the IAM User
Guide.

Required KMS key policy for use with SSE-KMS buckets

If you enabled server-side encryption for your S3 bucket using AWS KMS-managed keys (SSE-
KMS) with a customer managed key, add the following to the key policy for your KMS key so that
Amazon MSK can write broker files to the bucket.

Logging 278

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Managed Streaming for Apache Kafka Developer Guide

{
 "Sid": "Allow Amazon MSK to use the key.",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "delivery.logs.amazonaws.com"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Configuring broker logs using the AWS Management Console

If you are creating a new cluster, look for the Broker log delivery heading in the Monitoring
section. You can specify the destinations to which you want Amazon MSK to deliver your broker
logs.

For an existing cluster, choose the cluster from your list of clusters, then choose the Properties
tab. Scroll down to the Log delivery section and then choose its Edit button. You can specify the
destinations to which you want Amazon MSK to deliver your broker logs.

Configuring broker logs using the AWS CLI

When you use the create-cluster or the update-monitoring commands, you can optionally
specify the logging-info parameter and pass to it a JSON structure like the following example.
In this JSON, all three destination types are optional.

{
 "BrokerLogs": {
 "S3": {
 "Bucket": "ExampleBucketName",
 "Prefix": "ExamplePrefix",
 "Enabled": true
 },
 "Firehose": {

Broker logs 279

Amazon Managed Streaming for Apache Kafka Developer Guide

 "DeliveryStream": "ExampleDeliveryStreamName",
 "Enabled": true
 },
 "CloudWatchLogs": {
 "Enabled": true,
 "LogGroup": "ExampleLogGroupName"
 }
 }
}

Configuring broker logs using the API

You can specify the optional loggingInfo structure in the JSON that you pass to the
CreateCluster or UpdateMonitoring operations.

Note

By default, when broker logging is enabled, Amazon MSK logs INFO level logs to the
specified destinations. However, users of Apache Kafka 2.4.X and later can dynamically
set the broker log level to any of the log4j log levels. For information about dynamically
setting the broker log level, see KIP-412: Extend Admin API to support dynamic application
log levels. If you dynamically set the log level to DEBUG or TRACE, we recommend using
Amazon S3 or Firehose as the log destination. If you use CloudWatch Logs as a log
destination and you dynamically enable DEBUG or TRACE level logging, Amazon MSK may
continuously deliver a sample of logs. This can significantly impact broker performance and
should only be used when the INFO log level is not verbose enough to determine the root
cause of an issue.

Logging API calls with AWS CloudTrail

Note

AWS CloudTrail logs are available for Amazon MSK only when you use IAM access control.

Amazon MSK is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Amazon MSK. CloudTrail captures API calls for as events. The

CloudTrail events 280

https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#CreateCluster
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-monitoring.html#UpdateMonitoring
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-412%3A+Extend+Admin+API+to+support+dynamic+application+log+levels
https://cwiki.apache.org/confluence/display/KAFKA/KIP-412%3A+Extend+Admin+API+to+support+dynamic+application+log+levels

Amazon Managed Streaming for Apache Kafka Developer Guide

calls captured include calls from the Amazon MSK console and code calls to the Amazon MSK API
operations. It also captures Apache Kafka actions such as creating and altering topics and groups.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Amazon MSK. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected by
CloudTrail, you can determine the request that was made to Amazon MSK or the Apache Kafka
action, the IP address from which the request was made, who made the request, when it was made,
and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon MSK information in CloudTrail

CloudTrail is enabled on your Amazon Web Services account when you create the account. When
supported event activity occurs in an MSK cluster, that activity is recorded in a CloudTrail event
along with other AWS service events in Event history. You can view, search, and download recent
events in your Amazon Web Services account. For more information, see Viewing Events with
CloudTrail Event History.

For an ongoing record of events in your Amazon Web Services account, including events for
Amazon MSK, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
By default, when you create a trail in the console, the trail applies to all Regions. The trail logs
events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket
that you specify. Additionally, you can configure other Amazon services to further analyze and act
upon the event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Amazon MSK logs all Amazon MSK operations as events in CloudTrail log files. In addition, it logs
the following Apache Kafka actions.

• kafka-cluster:DescribeClusterDynamicConfiguration

CloudTrail events 281

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com//msk/1.0/apireference/operations.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• kafka-cluster:AlterClusterDynamicConfiguration

• kafka-cluster:CreateTopic

• kafka-cluster:DescribeTopicDynamicConfiguration

• kafka-cluster:AlterTopic

• kafka-cluster:AlterTopicDynamicConfiguration

• kafka-cluster:DeleteTopic

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or AWS Identity and Access Management (IAM)
user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Example: Amazon MSK log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls and Apache Kafka actions, so they don't appear in any specific order.

The following example shows CloudTrail log entries that demonstrate the DescribeCluster and
DeleteCluster Amazon MSK actions.

{
 "Records": [
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "ABCDEF0123456789ABCDE",
 "arn": "arn:aws:iam::012345678901:user/Joe",
 "accountId": "012345678901",
 "accessKeyId": "AIDACKCEVSQ6C2EXAMPLE",

CloudTrail events 282

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Managed Streaming for Apache Kafka Developer Guide

 "userName": "Joe"
 },
 "eventTime": "2018-12-12T02:29:24Z",
 "eventSource": "kafka.amazonaws.com",
 "eventName": "DescribeCluster",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.14.67 Python/3.6.0 Windows/10 botocore/1.9.20",
 "requestParameters": {
 "clusterArn": "arn%3Aaws%3Akafka%3Aus-east-1%3A012345678901%3Acluster
%2Fexamplecluster%2F01234567-abcd-0123-abcd-abcd0123efa-2"
 },
 "responseElements": null,
 "requestID": "bd83f636-fdb5-abcd-0123-157e2fbf2bde",
 "eventID": "60052aba-0123-4511-bcde-3e18dbd42aa4",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "012345678901"
 },
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "ABCDEF0123456789ABCDE",
 "arn": "arn:aws:iam::012345678901:user/Joe",
 "accountId": "012345678901",
 "accessKeyId": "AIDACKCEVSQ6C2EXAMPLE",
 "userName": "Joe"
 },
 "eventTime": "2018-12-12T02:29:40Z",
 "eventSource": "kafka.amazonaws.com",
 "eventName": "DeleteCluster",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.14.67 Python/3.6.0 Windows/10 botocore/1.9.20",
 "requestParameters": {
 "clusterArn": "arn%3Aaws%3Akafka%3Aus-east-1%3A012345678901%3Acluster
%2Fexamplecluster%2F01234567-abcd-0123-abcd-abcd0123efa-2"
 },
 "responseElements": {
 "clusterArn": "arn:aws:kafka:us-east-1:012345678901:cluster/
examplecluster/01234567-abcd-0123-abcd-abcd0123efa-2",
 "state": "DELETING"
 },

CloudTrail events 283

Amazon Managed Streaming for Apache Kafka Developer Guide

 "requestID": "c6bfb3f7-abcd-0123-afa5-293519897703",
 "eventID": "8a7f1fcf-0123-abcd-9bdb-1ebf0663a75c",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "012345678901"
 }
]
}

The following example shows a CloudTrail log entry that demonstrates the kafka-
cluster:CreateTopic action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "ABCDEFGH1IJKLMN2P34Q5",
 "arn": "arn:aws:iam::111122223333:user/Admin",
 "accountId": "111122223333",
 "accessKeyId": "CDEFAB1C2UUUUU3AB4TT",
 "userName": "Admin"
 },
 "eventTime": "2021-03-01T12:51:19Z",
 "eventSource": "kafka-cluster.amazonaws.com",
 "eventName": "CreateTopic",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "198.51.100.0/24",
 "userAgent": "aws-msk-iam-auth/unknown-version/aws-internal/3 aws-sdk-java/1.11.970
 Linux/4.14.214-160.339.amzn2.x86_64 OpenJDK_64-Bit_Server_VM/25.272-b10 java/1.8.0_272
 scala/2.12.8 vendor/Red_Hat,_Inc.",
 "requestParameters": {
 "kafkaAPI": "CreateTopics",
 "resourceARN": "arn:aws:kafka:us-east-1:111122223333:topic/IamAuthCluster/3ebafd8e-
dae9-440d-85db-4ef52679674d-1/Topic9"
 },
 "responseElements": null,
 "requestID": "e7c5e49f-6aac-4c9a-a1d1-c2c46599f5e4",
 "eventID": "be1f93fd-4f14-4634-ab02-b5a79cb833d2",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"

CloudTrail events 284

Amazon Managed Streaming for Apache Kafka Developer Guide

}

Compliance validation for Amazon Managed Streaming for
Apache Kafka

Third-party auditors assess the security and compliance of Amazon Managed Streaming for Apache
Kafka as part of AWS compliance programs. These include PCI and HIPAA BAA.

For a list of AWS services in scope of specific compliance programs, see Amazon Services in Scope
by Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Amazon MSK is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Managed Streaming for Apache Kafka

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you

Compliance validation 285

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Managed Streaming for Apache Kafka Developer Guide

can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon Managed Streaming for
Apache Kafka

As a managed service, Amazon Managed Streaming for Apache Kafka is protected by the AWS
global network security procedures that are described in the Amazon Web Services: Overview of
Security Processes whitepaper.

You use AWS published API calls to access Amazon MSK through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Infrastructure security 286

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Connecting to an Amazon MSK cluster

By default, clients can access an MSK cluster only if they're in the same VPC as the cluster. All
communication between your Kafka clients and your MSK cluster are private by default and your
streaming data never traverses the internet. To connect to your MSK cluster from a client that's
in the same VPC as the cluster, make sure the cluster's security group has an inbound rule that
accepts traffic from the client's security group. For information about setting up these rules, see
Security Group Rules. For an example of how to access a cluster from an Amazon EC2 instance
that's in the same VPC as the cluster, see Getting started.

To connect to your MSK cluster from a client that's outside the cluster's VPC, see Access from within
AWS but outside cluster's VPC.

Topics

• Public access

• Access from within AWS but outside cluster's VPC

Public access

Amazon MSK gives you the option to turn on public access to the brokers of MSK clusters running
Apache Kafka 2.6.0 or later versions. For security reasons, you can't turn on public access while
creating an MSK cluster. However, you can update an existing cluster to make it publicly accessible.
You can also create a new cluster and then update it to make it publicly accessible.

You can turn on public access to an MSK cluster at no additional cost, but standard AWS data
transfer costs apply for data transfer in and out of the cluster. For information about pricing, see
Amazon EC2 On-Demand Pricing.

To turn on public access to a cluster, first ensure that the cluster meets all of the following
conditions:

• The subnets that are associated with the cluster must be public. This means that the subnets
must have an associated route table with an internet gateway attached. For information about
how to create and attach an internet gateway, see Internet gateways in the Amazon VPC user
guide.

Public access 287

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access.html
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access.html
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• Unauthenticated access control must be off and at least one of the following access-control
methods must be on: SASL/IAM, SASL/SCRAM, mTLS. For information about how to update the
access-control method of a cluster, see the section called “Updating security”.

• Encryption within the cluster must be turned on. The on setting is the default when creating a
cluster. It's not possible to turn on encryption within the cluster for a cluster that was created
with it turned off. It is therefore not possible to turn on public access for a cluster that was
created with encryption within the cluster turned off.

• Plaintext traffic between brokers and clients must be off. For information about how to turn it off
if it's on, see the section called “Updating security”.

• If you are using the SASL/SCRAM or mTLS access-control methods, you must set Apache Kafka
ACLs for your cluster. After you set the Apache Kafka ACLs for your cluster, update the cluster's
configuration to have the property allow.everyone.if.no.acl.found to false for the
cluster. For information about how to update the configuration of a cluster, see the section called
“Configuration operations”. If you are using IAM access control and want to apply authorization
policies or update your authorization policies, see the section called “IAM access control”. For
information about Apache Kafka ACLs, see the section called “Apache Kafka ACLs”.

After you ensure that an MSK cluster meets the conditions listed above, you can use the AWS
Management Console, the AWS CLI, or the Amazon MSK API to turn on public access. After you turn
on public access to a cluster, you can get a public bootstrap-brokers string for it. For information
about getting the bootstrap brokers for a cluster, see the section called “Getting the bootstrap
brokers”.

Important

In addition to turning on public access, ensure that the cluster's security groups have
inbound TCP rules that allow public access from your IP address. We recommend that
you make these rules as restrictive as possible. For information about security groups and
inbound rules, see Security groups for your VPC in the Amazon VPC User Guide. For port
numbers, see the section called “Port information”. For instructions on how to change a
cluster's security group, see the section called “Changing security groups”.

Public access 288

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Note

If you use the following instructions to turn on public access and then still cannot access
the cluster, see the section called “Unable to access cluster that has public access turned
on”.

Turning on public access using the console

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. In the list of clusters, choose the cluster to which you want to turn on public access.

3. Choose the Properties tab, then find the Network settings section.

4. Choose Edit public access.

Turning on public access using the AWS CLI

1. Run the following AWS CLI command, replacing ClusterArn and Current-Cluster-
Version with the ARN and current version of the cluster. To find the current version of the
cluster, use the DescribeCluster operation or the describe-cluster AWS CLI command. An
example version is KTVPDKIKX0DER.

aws kafka update-connectivity --cluster-arn ClusterArn --current-
version Current-Cluster-Version --connectivity-info '{"PublicAccess": {"Type":
 "SERVICE_PROVIDED_EIPS"}}'

The output of this update-connectivity command looks like the following JSON example.

{
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"
}

Public access 289

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Note

To turn off public access, use a similar AWS CLI command, but with the following
connectivity info instead:

'{"PublicAccess": {"Type": "DISABLED"}}'

2. To get the result of the update-connectivity operation, run the following command,
replacing ClusterOperationArn with the ARN that you obtained in the output of the
update-connectivity command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "982168a3-939f-11e9-8a62-538df00285db",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2019-06-20T21:08:57.735Z",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "UPDATE_COMPLETE",
 "OperationType": "UPDATE_CONNECTIVITY",
 "SourceClusterInfo": {
 "ConnectivityInfo": {
 "PublicAccess": {
 "Type": "DISABLED"
 }
 }
 },
 "TargetClusterInfo": {
 "ConnectivityInfo": {
 "PublicAccess": {
 "Type": "SERVICE_PROVIDED_EIPS"
 }
 }

Public access 290

Amazon Managed Streaming for Apache Kafka Developer Guide

 }
 }
}

If OperationState has the value UPDATE_IN_PROGRESS, wait a while, then run the
describe-cluster-operation command again.

Turning on public access using the Amazon MSK API

• To use the API to turn public access to a cluster on or off, see UpdateConnectivity.

Note

For security reasons, Amazon MSK doesn't allow public access to Apache ZooKeeper or
KRaft controller nodes.

Access from within AWS but outside cluster's VPC

To connect to an MSK cluster from inside AWS but outside the cluster's Amazon VPC, the following
options exist.

Amazon VPC peering

To connect to your MSK cluster from a VPC that's different from the cluster's VPC, you can create
a peering connection between the two VPCs. For information about VPC peering, see the Amazon
VPC Peering Guide.

AWS Direct Connect

AWS Direct Connect links your on-premise network to AWS over a standard 1 gigabit or 10 gigabit
Ethernet fiber-optic cable. One end of the cable is connected to your router, the other to an AWS
Direct Connect router. With this connection in place, you can create virtual interfaces directly to the
AWS cloud and Amazon VPC, bypassing Internet service providers in your network path. For more
information, see AWS Direct Connect.

Access from within AWS 291

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-connectivity.html#UpdateConnectivityn
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon Managed Streaming for Apache Kafka Developer Guide

AWS Transit Gateway

AWS Transit Gateway is a service that enables you to connect your VPCs and your on-premises
networks to a single gateway. For information about how to use AWS Transit Gateway, see AWS
Transit Gateway.

VPN connections

You can connect your MSK cluster's VPC to remote networks and users using the VPN connectivity
options described in the following topic: VPN Connections.

REST proxies

You can install a REST proxy on an instance running within your cluster's Amazon VPC. REST
proxies enable your awproducers and consumers to communicate with the cluster through HTTP
API requests.

Multiple Region multi-VPC connectivity

The following document describes connectivity options for multiple VPCs that reside in different
Regions: Multiple Region Multi-VPC Connectivity.

Single Region multi-VPC private connectivity

Multi-VPC private connectivity (powered by AWS PrivateLink) for Amazon Managed Streaming for
Apache Kafka (Amazon MSK) clusters is a feature that enables you to more quickly connect Kafka
clients hosted in different Virtual Private Clouds (VPCs) and AWS accounts to an Amazon MSK
cluster.

See Single Region multi-VPC connectivity for cross-account clients.

EC2-Classic networking is retired

Amazon MSK no longer supports Amazon EC2 instances running with Amazon EC2-Classic
networking.

See EC2-Classic Networking is Retiring – Here’s How to Prepare.

AWS Transit Gateway 292

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://aws.amazon.com/answers/networking/aws-multiple-region-multi-vpc-connectivity/
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK multi-VPC private connectivity in a single Region

Multi-VPC private connectivity (powered by AWS PrivateLink) for Amazon Managed Streaming for
Apache Kafka (Amazon MSK) clusters is a feature that enables you to more quickly connect Kafka
clients hosted in different Virtual Private Clouds (VPCs) and AWS accounts to an Amazon MSK
cluster.

Multi-VPC private connectivity is a managed solution that simplifies the networking infrastructure
for multi-VPC and cross-account connectivity. Clients can connect to the Amazon MSK cluster over
PrivateLink while keeping all traffic within the AWS network. Multi-VPC private connectivity for
Amazon MSK clusters is available in all AWS Regions where Amazon MSK is available.

Topics

• What is multi-VPC private connectivity?

• Benefits of multi-VPC private connectivity

• Requirements and limitations for multi-VPC private connectivity

• Getting started using multi-VPC private connectivity

• Update the authorization schemes on a cluster

• Reject a managed VPC connection to an Amazon MSK cluster

• Delete a managed VPC connection to an Amazon MSK cluster

• Permissions for multi-VPC private connectivity

What is multi-VPC private connectivity?

Multi-VPC private connectivity for Amazon MSK is a connectivity option that enables you to
connect Apache Kafka clients that are hosted in different Virtual Private Clouds (VPCs) and AWS
accounts to a MSK cluster.

Amazon MSK simplifies cross-account access with cluster policies. These policies allow the cluster
owner to grant permissions for other AWS accounts to establish private connectivity to the MSK
cluster.

Benefits of multi-VPC private connectivity

Multi-VPC private connectivity has several advantages over other connectivity solutions:

• It automates operational management of the AWS PrivateLink connectivity solution.

Multi-VPC private connectivity in a single Region 293

https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• It allows overlapping IPs across connecting VPCs, eliminating the need to maintain non-
overlapping IPs, complex peering, and routing tables associated with other VPC connectivity
solutions.

You use a cluster policy for your MSK cluster to define which AWS accounts have permissions to set
up cross-account private connectivity to your MSK cluster. The cross-account admin can delegate
permissions to appropriate roles or users. When used with IAM client authentication, you can also
use the cluster policy to define Kafka data plane permissions on a granular basis for the connecting
clients.

Requirements and limitations for multi-VPC private connectivity

Note these MSK cluster requirements for running multi-VPC private connectivity:

• Multi-VPC private connectivity is supported only on Apache Kafka 2.7.1 or higher. Make sure
that any clients that you use with the MSK cluster are running Apache Kafka versions that are
compatible with the cluster.

• Multi-VPC private connectivity supports auth types IAM, TLS and SASL/SCRAM. Unauthenticated
clusters can't use multi-VPC private connectivity.

• If you are using the SASL/SCRAM or mTLS access-control methods, you must set Apache Kafka
ACLs for your cluster. First, set the Apache Kafka ACLs for your cluster. Then, update the cluster's
configuration to have the property allow.everyone.if.no.acl.found set to false for the
cluster. For information about how to update the configuration of a cluster, see the section called
“Configuration operations”. If you are using IAM access control and want to apply authorization
policies or update your authorization policies, see the section called “IAM access control”. For
information about Apache Kafka ACLs, see the section called “Apache Kafka ACLs”.

• Multi-VPC private connectivity doesn’t support the t3.small instance type.

• Multi-VPC private connectivity isn’t supported across AWS Regions, only on AWS accounts within
the same Region.

• Amazon MSK doesn't support multi-VPC private connectivity to Zookeeper nodes.

Getting started using multi-VPC private connectivity

Topics

• Step 1: On the MSK cluster in Account A, turn on multi-VPC connectivity for IAM auth scheme on
the cluster

Multi-VPC private connectivity in a single Region 294

Amazon Managed Streaming for Apache Kafka Developer Guide

• Step 2: Attach a cluster policy to the MSK cluster

• Step 3: Cross-account user actions to configure client-managed VPC connections

This tutorial uses a common use case as an example of how you can use multi-VPC connectivity
to privately connect an Apache Kafka client to an MSK cluster from inside AWS, but outside
VPC of the cluster. This process requires the cross-account user to create a MSK managed VPC
connection and configuration for each client, including required client permissions. The process
also requires the MSK cluster owner to enable PrivateLink connectivity on the MSK cluster and
select authentication schemes to control access to the cluster.

In different parts of this tutorial, we choose options that apply to this example. This doesn't mean
that they're the only options that work for setting up an MSK cluster or client instances.

The network configuration for this use case is as follows:

• A cross-account user (Kafka client) and an MSK cluster are in the same AWS network/Region, but
in different accounts:

• MSK cluster in Account A

• Kafka client in Account B

• The cross-account user will connect privately to the MSK cluster using IAM auth scheme.

This tutorial assumes that there is a provisioned MSK cluster created with Apache Kafka version
2.7.1 or higher. The MSK cluster must be in an ACTIVE state before beginning the configuration
process. To avoid potential data loss or downtime, clients that will use multi-VPC private
connection to connect to the cluster should use Apache Kafka versions that are compatible with
the cluster.

The following diagram illustrates the architecture of Amazon MSK multi-VPC connectivity
connected to a client in a different AWS account.

Multi-VPC private connectivity in a single Region 295

Amazon Managed Streaming for Apache Kafka Developer Guide

Step 1: On the MSK cluster in Account A, turn on multi-VPC connectivity for IAM auth scheme
on the cluster

The MSK cluster owner needs to make configuration settings on the MSK cluster after the cluster is
created and in an ACTIVE state.

The cluster owner turns on multi-VPC private connectivity on the ACTIVE cluster for any auth
schemes that will be active on the cluster. This can be done using the UpdateSecurity API or MSK
console. The IAM, SASL/SCRAM, and TLS auth schemes support multi-VPC private connectivity.
Multi-VPC private connectivity can’t be enabled for unauthenticated clusters.

For this use case, you’ll configure the cluster to use the IAM auth scheme.

Note

If you are configuring your MSK cluster to use SASL/SCRAM auth scheme, the Apache Kafka
ACLs property "allow.everyone.if.no.acl.found=false" is mandatory. See Apache
Kafka ACLs.

When you update multi-VPC private connectivity settings, Amazon MSK starts a rolling reboot of
broker nodes that updates the broker configurations. This can take up to 30 minutes or more to
complete. You can’t make other updates to the cluster while connectivity is being updated.

Multi-VPC private connectivity in a single Region 296

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-security.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-acls.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-acls.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Turn on multi-VPC for selected auth schemes on the cluster in Account A using the console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/ for the account
where the cluster is located.

2. In the navigation pane, under MSK Clusters, choose Clusters to display the list of clusters in
the account.

3. Select the cluster to configure for multi-VPC private connectivity. The cluster must be in an
ACTIVE state.

4. Select the cluster Properties tab, and then go to Network settings.

5. Select the Edit drop down menu and select Turn on multi-VPC connectivity.

6. Select one or more authentication types you want turned on for this cluster. For this use case,
select IAM role-based authentication.

7. Select Save changes.

Example - UpdateConnectivity API that turns on Multi-VPC private connectivity auth schemes
on a cluster

As an alternative to the MSK console, you can use the UpdateConnectivity API to turn on multi-
VPC private connectivity and configure auth schemes on an ACTIVE cluster. The following example
shows the IAM auth scheme turned on for the cluster.

{
 "currentVersion": "K3T4TT2Z381HKD",
 "connectivityInfo": {
 "vpcConnectivity": {
 "clientAuthentication": {
 "sasl": {
 "iam": {
 "enabled": TRUE
 }
 }
 }
 }
 }
}

Multi-VPC private connectivity in a single Region 297

https://docs.aws.amazon.com/msk/latest/developerguide/msk-acls.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-connectivity.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK creates the networking infrastructure required for private connectivity. Amazon
MSK also creates a new set of bootstrap broker endpoints for each auth type that requires private
connectivity. Note that the plaintext auth scheme does not support multi-VPC private connectivity.

Step 2: Attach a cluster policy to the MSK cluster

The cluster owner can attach a cluster policy (also known as a resource-based policy) to the MSK
cluster where you will turn on multi-VPC private connectivity. The cluster policy gives the clients
permission to access the cluster from another account. Before you can edit the cluster policy, you
need the account ID(s) for the accounts that should have permission to access the MSK cluster. See
How Amazon MSK works with IAM.

The cluster owner must attach a cluster policy to the MSK cluster that authorizes the cross-account
user in Account B to get bootstrap brokers for the cluster and to authorize the following actions on
the MSK cluster in Account A:

• CreateVpcConnection

• GetBootstrapBrokers

• DescribeCluster

• DescribeClusterV2

Example

For reference, the following is an example of the JSON for a basic cluster policy, similar to the
default policy shown in the MSK console IAM policy editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "123456789012"
]
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:GetBootstrapBrokers",

Multi-VPC private connectivity in a single Region 298

https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html#security_iam_service-with-iam-resource-based-policies
https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html

Amazon Managed Streaming for Apache Kafka Developer Guide

 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2"
],
 "Resource": "arn:aws:kafka:us-east-1:123456789012:cluster/testing/
de8982fa-8222-4e87-8b20-9bf3cdfa1521-2"
 }
]
}

Attach a cluster policy to the MSK cluster

1. In the Amazon MSK console, under MSK Clusters, choose Clusters.

2. Scroll down to Security settings and select Edit cluster policy.

3. In the console, on the Edit Cluster Policy screen, select Basic policy for multi-VPC
connectivity.

4. In the Account ID field, enter the account ID for each account that should have permission to
access this cluster. As you type the ID, it is automatically copied over into the displayed policy
JSON syntax. In our example cluster policy, the Account ID is 123456789012.

5. Select Save changes.

For information about cluster policy APIs, see Amazon MSK resource-based policies.

Step 3: Cross-account user actions to configure client-managed VPC connections

To set up multi-VPC private connectivity between a client in a different account from the MSK
cluster, the cross-account user creates a managed VPC connection for the client. Multiple clients
can be connected to the MSK cluster by repeating this procedure. For the purposes of this use case,
you’ll configure just one client.

Clients can use the supported auth schemes IAM, SASL/SCRAM, or TLS. Each managed VPC
connection can have only one auth scheme associated with it. The client auth scheme must be
configured on the MSK cluster where the client will connect.

For this use case, configure the client auth scheme so that the client in Account B uses the IAM auth
scheme.

Prerequisites

This process requires the following items:

Multi-VPC private connectivity in a single Region 299

https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html#security_iam_service-with-iam-resource-based-policies

Amazon Managed Streaming for Apache Kafka Developer Guide

• The previously created cluster policy that grants the client in Account B permission to perform
actions on the MSK cluster in Account A.

• An identity policy attached to the client in Account B that grants permissions for
kafka:CreateVpcConnection, ec2:CreateTags, ec2:CreateVPCEndpoint and
ec2:DescribeVpcAttribute action.

Example

For reference, the following is an example of the JSON for a basic client identity policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka:CreateVpcConnection",
 "ec2:CreateTags",
 "ec2:CreateVPCEndpoint",
 "ec2:DescribeVpcAttribute"
],
 "Resource": "*"
 }
]
}

To create a managed VPC connection for a client in Account B

1. From the cluster administrator, get the Cluster ARN of the MSK cluster in Account A that you
want the client in Account B to connect to. Make note of the cluster ARN to use later.

2. In the MSK console for the client Account B, choose Managed VPC connections, and then
choose Create connection.

3. In the Connection settings pane, paste the cluster ARN into the cluster ARN text field, and
then choose Verify.

4. Select the Authentication type for the client in Account B. For this use case, choose IAM when
creating the client VPC connection.

5. Choose the VPC for the client.

Multi-VPC private connectivity in a single Region 300

Amazon Managed Streaming for Apache Kafka Developer Guide

6. Choose at least two availability Zones and associated Subnets. You can get the availability
zone IDs from the AWS Management Console cluster details or by using the DescribeCluster
API or the describe-cluster AWS CLI command. The zone IDs that you specify for the client
subnet must match those of the cluster subnet. If the values for a subnet are missing, first
create a subnet with the same zone ID as your MSK cluster.

7. Choose a Security group for this VPC connection. You can use the default security group.
For more information on configuring a security group, see Control traffic to resources using
security groups.

8. Select Create connection.

9. To get the list of new bootstrap broker strings from the cross-account user’s MSK console
(Cluster details > Managed VPC connection), see the bootstrap broker strings shown under
“Cluster connection string.” From the client Account B, the list of bootstrap brokers can be
viewed by calling the GetBootstrapBrokers API or by viewing the list of bootstrap brokers in
the console cluster details.

10. Update the security groups associated with the VPC connections as follows:

a. Set inbound rules for the PrivateLink VPC to allow all traffic for the IP range from the
Account B network.

b. [Optional] Set Outbound rules connectivity to the MSK cluster. Choose the Security
Group in the VPC console, Edit Outbound Rules, and add a rule for Custom TCP Traffic
for port ranges 14001-14100. The multi-VPC network load balancer is listening on the
14001-14100 port ranges. See Network Load Balancers.

11. Configure the client in Account B to use the new bootstrap brokers for multi-VPC private
connectivity to connect to the MSK cluster in Account A. See Produce and consume data.

After authorization is complete, Amazon MSK creates a managed VPC connection for each specified
VPC and auth scheme. The chosen security group is associated with each connection. This managed
VPC connection is configured by Amazon MSK to connect privately to the brokers. You can use the
new set of bootstrap brokers to connect privately to the Amazon MSK cluster.

Update the authorization schemes on a cluster

Multi-VPC private connectivity supports several authorization schemes: SASL/SCRAM, IAM, and
TLS. The cluster owner can turn on/off private connectivity for one or more auth schemes. The
cluster has to be in ACTIVE state to perform this action.

Multi-VPC private connectivity in a single Region 301

https://docs.aws.amazon.com/https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#GetBootstrapBrokers
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/network-load-balancers.html
https://docs.aws.amazon.com/msk/latest/developerguide/produce-consume.html

Amazon Managed Streaming for Apache Kafka Developer Guide

To turn on an auth scheme using the Amazon MSK console

1. Open the Amazon MSK console at AWS Management Console for the cluster that you want to
edit.

2. In the navigation pane, under MSK Clusters, choose Clusters to display the list of clusters in
the account.

3. Select the cluster that you want to edit. The cluster must be in an ACTIVE state.

4. Select the cluster Properties tab, and then go to Network settings.

5. Select the Edit dropdown menu and select Turn on multi-VPC connectivity to turn on a new
auth scheme.

6. Select one or more authentication types that you want turned on for this cluster.

7. Select Turn on selection.

When you turn on a new auth scheme, you should also create new managed VPC connections for
the new auth scheme and update your clients to use the bootstrap brokers specific to the new auth
scheme.

To turn off an auth scheme using the Amazon MSK console

Note

When you turn off multi-VPC private connectivity for auth schemes, all connectivity related
infrastructure, including the managed VPC connections, are deleted.

When you turn off multi-VPC private connectivity for auth schemes, existing VPC connections on
client side change to INACTIVE, and Privatelink infrastructure on the cluster side, including the
managed VPC connections, on the cluster side is removed. The cross-account user can only delete
the inactive VPC connection. If private connectivity is turned on again on the cluster, the cross-
account user needs to create a new connection to the cluster.

1. Open the Amazon MSK console at AWS Management Console.

2. In the navigation pane, under MSK Clusters, choose Clusters to display the list of clusters in
the account.

3. Select the cluster you want to edit. The cluster must be in an ACTIVE state.

4. Select the cluster Properties tab, then go to Network settings.

Multi-VPC private connectivity in a single Region 302

https://console.aws.amazon.com/msk
https://console.aws.amazon.com/msk

Amazon Managed Streaming for Apache Kafka Developer Guide

5. Select the Edit drop down menu and select Turn off multi-VPC connectivity (to turn off an
auth scheme).

6. Select one or more authentication types you want turned off for this cluster.

7. Select Turn off selection.

Example To turn on/off an auth scheme with the API

As an alternative to the MSK console, you can use the UpdateConnectivity API to turn on multi-
VPC private connectivity and configure auth schemes on an ACTIVE cluster. The following example
shows SASL/SCRAM and IAM auth schemes turned on for the cluster.

When you turn on a new auth scheme, you should also create new managed VPC connections for
the new auth scheme and update your clients to use the bootstrap brokers specific to the new auth
scheme.

When you turn off multi-VPC private connectivity for auth schemes, existing VPC connections on
client side change to INACTIVE, and Privatelink infrastructure on the cluster side, including the
managed VPC connections, is removed. The cross-account user can only delete the inactive VPC
connection. If private connectivity is turned on again on the cluster, the cross-account user needs
to create a new connection to the cluster.

Request:
{
 "currentVersion": "string",
 "connnectivityInfo": {
 "publicAccess": {
 "type": "string"
 },
 "vpcConnectivity": {
 "clientAuthentication": {
 "sasl": {
 "scram": {
 "enabled": TRUE
 },
 "iam": {
 "enabled": TRUE
 }
 },
 "tls": {
 "enabled": FALSE
 }

Multi-VPC private connectivity in a single Region 303

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-connectivity.html

Amazon Managed Streaming for Apache Kafka Developer Guide

 }
 }
 }
}

Response:
{
 "clusterArn": "string",
 "clusterOperationArn": "string"
}

Reject a managed VPC connection to an Amazon MSK cluster

From the Amazon MSK console on the cluster admin account, you can reject a client VPC
connection. The client VPC connection must be in the AVAILABLE state to be rejected. You might
want to reject a managed VPC connection from a client that is no longer authorized to connect to
your cluster. To prevent new managed VPC connections from a connecting to a client, deny access
to the client in the cluster policy. A rejected connection still incurs cost until its deleted by the
connection owner. See Delete a managed VPC connection to an Amazon MSK cluster .

To reject a client VPC connection using the MSK console

1. Open the Amazon MSK console at AWS Management Console.

2. In the navigation pane, select Clusters and scroll to the Network settings > Client VPC
connections list.

3. Select the connection that you want to reject and select Reject client VPC connection.

4. Confirm that you want to reject the selected client VPC connection.

To reject a managed VPC connection using the API, use the RejectClientVpcConnection API.

Delete a managed VPC connection to an Amazon MSK cluster

The cross-account user can delete a managed VPC connection for an MSK cluster from the client
account console. Because the cluster owner user doesn’t own the managed VPC connection, the
connection can’t be deleted from the cluster admin account. Once a VPC connection is deleted, it
no longer incurs cost.

To delete a managed VPC connection using the MSK console

1. From the client account, open the Amazon MSK console at AWS Management Console.

Multi-VPC private connectivity in a single Region 304

https://docs.aws.amazon.com/msk/latest/developerguide/mvpc-cross-account-delete-connection.html
https://console.aws.amazon.com/msk
https://console.aws.amazon.com/msk

Amazon Managed Streaming for Apache Kafka Developer Guide

2. In the navigation pane, select Managed VPC connections.

3. From the connection list, select the connection that you want to delete.

4. Confirm that you want to delete the VPC connection.

To delete a managed VPC connection using the API, use the DeleteVpcConnection API.

Permissions for multi-VPC private connectivity

This section summarizes the permissions needed for clients and clusters using the multi-VPC
private connectivity feature. Multi-VPC private connectivity requires the client admin to create
permissions on each client that will have a managed VPC connection to the MSK cluster. It also
requires the MSK cluster admin to enable PrivateLink connectivity on the MSK cluster and select
authentication schemes to control access to the cluster.

Cluster auth type and topic access permissions

Turn on the multi-VPC private connectivity feature for auth schemes that are enabled for
your MSK cluster. See Requirements and limitations for multi-VPC private connectivity. If you
are configuring your MSK cluster to use SASL/SCRAM auth scheme, the Apache Kafka ACLs
property allow.everyone.if.no.acl.found=false is mandatory. After you set the
Apache Kafka ACLs for your cluster, update the cluster's configuration to have the property
allow.everyone.if.no.acl.found set to false for the cluster. For information about how to
update the configuration of a cluster, see Amazon MSK configuration operations.

Cross-account cluster policy permissions

If a Kafka client is in an AWS account that is different than the MSK cluster, attach a cluster-
based policy to the MSK cluster that authorizes the client root user for cross-account connectivity.
You can edit the multi-VPC cluster policy using the IAM policy editor in the MSK console (cluster
Security settings > Edit cluster policy), or use the following APIs to manage the cluster policy:

PutClusterPolicy

Attaches the cluster policy to the cluster. You can use this API to create or update the specified
MSK cluster policy. If you’re updating the policy, the currentVersion field is required in the
request payload.

GetClusterPolicy

Retrieves the JSON text of the cluster policy document attached to the cluster.

Multi-VPC private connectivity in a single Region 305

Amazon Managed Streaming for Apache Kafka Developer Guide

DeleteClusterPolicy

Deletes the cluster policy.

The following is an example of the JSON for a basic cluster policy, similar to the one shown in the
MSK console IAM policy editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "123456789012"
]
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2"
],
 "Resource": "arn:aws:kafka:us-east-1:123456789012:cluster/testing/
de8982fa-8222-4e87-8b20-9bf3cdfa1521-2"
 }
]
}

Client permissions for multi-VPC private connectivity to an MSK cluster

To set up multi-VPC private connectivity between a Kafka client and an MSK cluster, the client
requires an attached identity policy that grants permissions for kafka:CreateVpcConnection,
ec2:CreateTags and ec2:CreateVPCEndpoint actions on the client. For reference, the
following is an example of the JSON for a basic client identity policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Multi-VPC private connectivity in a single Region 306

Amazon Managed Streaming for Apache Kafka Developer Guide

 "kafka:CreateVpcConnection",
 "ec2:CreateTags",
 "ec2:CreateVPCEndpoint"
],
 "Resource": "*"
 }
]
}

Port information

Use the following port numbers so that Amazon MSK can communicate with client machines:

• To communicate with brokers in plaintext, use port 9092.

• To communicate with brokers with TLS encryption, use port 9094 for access from within AWS
and port 9194 for public access.

• To communicate with brokers with SASL/SCRAM, use port 9096 for access from within AWS and
port 9196 for public access.

• To communicate with brokers in a cluster that is set up to use the section called “IAM access
control”, use port 9098 for access from within AWS and port 9198 for public access.

• To communicate with Apache ZooKeeper by using TLS encryption, use port 2182. Apache
ZooKeeper nodes use port 2181 by default.

Port information 307

Amazon Managed Streaming for Apache Kafka Developer Guide

Migrating to an Amazon MSK Cluster

Amazon MSK Replicator can be used for MSK cluster migration. See What is Amazon MSK
Replicator?. Alternatively, you can use Apache MirrorMaker 2.0 to migrate from a non-MSK cluster
to an Amazon MSK cluster. For an example of how to do this, see Migrate an on-premises Apache
Kafka cluster to Amazon MSK by using MirrorMaker. For information about how to use MirrorMaker,
see Mirroring data between clusters in the Apache Kafka documentation. We recommend setting
up MirrorMaker in a highly available configuration.

An outline of the steps to follow when using MirrorMaker to migrate to an MSK cluster

1. Create the destination MSK cluster

2. Start MirrorMaker from an Amazon EC2 instance within the same Amazon VPC as the
destination cluster.

3. Inspect the MirrorMaker lag.

4. After MirrorMaker catches up, redirect producers and consumers to the new cluster using the
MSK cluster bootstrap brokers.

5. Shut down MirrorMaker.

Migrating your Apache Kafka cluster to Amazon MSK

Suppose that you have an Apache Kafka cluster named CLUSTER_ONPREM. That cluster is
populated with topics and data. If you want to migrate that cluster to a newly created Amazon
MSK cluster named CLUSTER_AWSMSK, this procedure provides a high-level view of the steps that
you need to follow.

To migrate your existing Apache Kafka cluster to Amazon MSK

1. In CLUSTER_AWSMSK, create all the topics that you want to migrate.

You can't use MirrorMaker for this step because it doesn't automatically re-create the
topics that you want to migrate with the right replication level. You can create the topics
in Amazon MSK with the same replication factors and numbers of partitions that they had
in CLUSTER_ONPREM. You can also create the topics with different replication factors and
numbers of partitions.

Migrating your Apache Kafka cluster to Amazon MSK 308

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/migrate-an-on-premises-apache-kafka-cluster-to-amazon-msk-by-using-mirrormaker.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/migrate-an-on-premises-apache-kafka-cluster-to-amazon-msk-by-using-mirrormaker.html
https://kafka.apache.org/documentation/#basic_ops_mirror_maker

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Start MirrorMaker from an instance that has read access to CLUSTER_ONPREM and write access
to CLUSTER_AWSMSK.

3. Run the following command to mirror all topics:

<path-to-your-kafka-installation>/bin/kafka-mirror-maker.sh --consumer.config
 config/mirrormaker-consumer.properties --producer.config config/mirrormaker-
producer.properties --whitelist '.*'

In this command, config/mirrormaker-consumer.properties
points to a bootstrap broker in CLUSTER_ONPREM; for example,
bootstrap.servers=localhost:9092. And config/mirrormaker-
producer.properties points to a bootstrap broker in CLUSTER_AWSMSK; for example,
bootstrap.servers=10.0.0.237:9092,10.0.2.196:9092,10.0.1.233:9092.

4. Keep MirrorMaker running in the background, and continue to use CLUSTER_ONPREM.
MirrorMaker mirrors all new data.

5. Check the progress of mirroring by inspecting the lag between the last offset for each topic
and the current offset from which MirrorMaker is consuming.

Remember that MirrorMaker is simply using a consumer and a producer. So, you can check the
lag using the kafka-consumer-groups.sh tool. To find the consumer group name, look
inside the mirrormaker-consumer.properties file for the group.id, and use its value. If
there is no such key in the file, you can create it. For example, set group.id=mirrormaker-
consumer-group.

6. After MirrorMaker finishes mirroring all topics, stop all producers and consumers, and then
stop MirrorMaker. Then redirect the producers and consumers to the CLUSTER_AWSMSK cluster
by changing their producer and consumer bootstrap brokers values. Restart all producers and
consumers on CLUSTER_AWSMSK.

Migrating from one Amazon MSK cluster to another

You can use Apache MirrorMaker 2.0 to migrate from a non-MSK cluster to a MSK cluster. For
example, you can migrate from one version of Apache Kafka to another. For an example of how to
do this, see Migrate an on-premises Apache Kafka cluster to Amazon MSK by using MirrorMaker.
Alternatively, Amazon MSK Replicator can be used for MSK cluster migration. For more information
about Amazon MSK Replicator, see MSK Replicator.

Migrating from one Amazon MSK cluster to another 309

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/migrate-an-on-premises-apache-kafka-cluster-to-amazon-msk-by-using-mirrormaker.html

Amazon Managed Streaming for Apache Kafka Developer Guide

MirrorMaker 1.0 best practices

This list of best practices applies to MirrorMaker 1.0.

• Run MirrorMaker on the destination cluster. This way, if a network problem happens, the
messages are still available in the source cluster. If you run MirrorMaker on the source cluster and
events are buffered in the producer and there is a network issue, events might be lost.

• If encryption is required in transit, run it in the source cluster.

• For consumers, set auto.commit.enabled=false

• For producers, set

• max.in.flight.requests.per.connection=1

• retries=Int.Max_Value

• acks=all

• max.block.ms = Long.Max_Value

• For a high producer throughput:

• Buffer messages and fill message batches — tune buffer.memory, batch.size, linger.ms

• Tune socket buffers — receive.buffer.bytes, send.buffer.bytes

• To avoid data loss, turn off auto commit at the source, so that MirrorMaker can control the
commits, which it typically does after it receives the ack from the destination cluster. If the
producer has acks=all and the destination cluster has min.insync.replicas set to more than 1,
the messages are persisted on more than one broker at the destination before the MirrorMaker
consumer commits the offset at the source.

• If order is important, you can set retries to 0. Alternatively, for a production environment, set
max inflight connections to 1 to ensure that the batches sent out are not committed out of order
if a batch fails in the middle. This way, each batch sent is retried until the next batch is sent out.
If max.block.ms is not set to the maximum value, and if the producer buffer is full, there can
be data loss (depending on some of the other settings). This can block and back-pressure the
consumer.

• For high throughput

• Increase buffer.memory.

• Increase batch size.

• Tune linger.ms to allow the batches to fill. This also allows for better compression, less
network bandwidth usage, and less storage on the cluster. This results in increased retention.

MirrorMaker 1.0 best practices 310

Amazon Managed Streaming for Apache Kafka Developer Guide

• Monitor CPU and memory usage.

• For high consumer throughput

• Increase the number of threads/consumers per MirrorMaker process — num.streams.

• Increase the number of MirrorMaker processes across machines first before increasing threads
to allow for high availability.

• Increase the number of MirrorMaker processes first on the same machine and then on different
machines (with the same group ID).

• Isolate topics that have very high throughput and use separate MirrorMaker instances.

• For management and configuration

• Use AWS CloudFormation and configuration management tools like Chef and Ansible.

• Use Amazon EFS mounts to keep all configuration files accessible from all Amazon EC2
instances.

• Use containers for easy scaling and management of MirrorMaker instances.

• Typically, it takes more than one consumer to saturate a producer in MirrorMaker. So, set up
multiple consumers. First, set them up on different machines to provide high availability. Then,
scale individual machines up to having a consumer for each partition, with consumers equally
distributed across machines.

• For high throughput ingestion and delivery, tune the receive and send buffers because their
defaults might be too low. For maximum performance, ensure that the total number of streams
(num.streams) matches all of the topic partitions that MirrorMaker is trying to copy to the
destination cluster.

MirrorMaker 2.* advantages

• Makes use of the Apache Kafka Connect framework and ecosystem.

• Detects new topics and partitions.

• Automatically syncs topic configuration between clusters.

• Supports "active/active" cluster pairs, as well as any number of active clusters.

• Provides new metrics including end-to-end replication latency across multiple data centers and
clusters.

• Emits offsets required to migrate consumers between clusters and provides tooling for offset
translation.

MirrorMaker 2.* advantages 311

Amazon Managed Streaming for Apache Kafka Developer Guide

• Supports a high-level configuration file for specifying multiple clusters and replication flows
in one place, compared to low-level producer/consumer properties for each MirrorMaker 1.*
process.

MirrorMaker 2.* advantages 312

Amazon Managed Streaming for Apache Kafka Developer Guide

Monitoring an Amazon MSK cluster

There are several ways that Amazon MSK helps you monitor the status of your Amazon MSK
cluster.

• Amazon MSK helps you monitor your disk storage capacity by automatically sending you storage
capacity alerts when a cluster is about to reach its storage capacity limit. The alerts also provide
recommendations on the best steps to take to address detected issues. This helps you to identify
and quickly resolve disk capacity issues before they become critical. Amazon MSK automatically
sends these alerts to the Amazon MSK console, AWS Health Dashboard, Amazon EventBridge,
and email contacts for your AWS account. For information about storage capacity alerts, see
Amazon MSK storage capacity alerts.

• Amazon MSK gathers Apache Kafka metrics and sends them to Amazon CloudWatch where
you can view them. For more information about Apache Kafka metrics, including the ones that
Amazon MSK surfaces, see Monitoring in the Apache Kafka documentation.

• You can also monitor your MSK cluster with Prometheus, an open-source monitoring application.
For information about Prometheus, see Overview in the Prometheus documentation. To learn
how to monitor your cluster with Prometheus, see the section called “Open monitoring with
Prometheus”.

Topics

• Amazon MSK metrics for monitoring with CloudWatch

• Viewing Amazon MSK metrics using CloudWatch

• Consumer-lag monitoring

• Open monitoring with Prometheus

• Amazon MSK storage capacity alerts

Amazon MSK metrics for monitoring with CloudWatch

Amazon MSK integrates with Amazon CloudWatch so that you can collect, view, and analyze
CloudWatch metrics for your Amazon MSK cluster. The metrics that you configure for your MSK
cluster are automatically collected and pushed to CloudWatch. You can set the monitoring level
for an MSK cluster to one of the following: DEFAULT, PER_BROKER, PER_TOPIC_PER_BROKER, or

Amazon MSK metrics for monitoring with CloudWatch 313

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
http://kafka.apache.org/documentation/#monitoring
https://prometheus.io/docs/introduction/overview/

Amazon Managed Streaming for Apache Kafka Developer Guide

PER_TOPIC_PER_PARTITION. The tables in the following sections show all the metrics that are
available starting at each monitoring level.

Note

The names of some Amazon MSK metrics for CloudWatch monitoring have changed in
version 3.6.0 and higher. Use the new names for monitoring these metrics. For metrics with
changed names, the table below shows the name used in version 3.6.0 and higher, followed
by the name in version 2.8.2.tiered.

DEFAULT-level metrics are free. Pricing for other metrics is described in the Amazon CloudWatch
pricing page.

DEFAULT Level monitoring

The metrics described in the following table are available at the DEFAULT monitoring level. They
are free.

Metrics available at the DEFAULT monitoring level

Name When visible Dimension
s

Description

ActiveCon
trollerCount

After the cluster gets
to the ACTIVE state.

Cluster
Name

Only one controller per cluster
should be active at any given time.

BurstBalance After the cluster gets
to the ACTIVE state.

Cluster
Name ,
Broker
ID

The remaining balance of input-out
put burst credits for EBS volumes
in the cluster. Use it to investigate
latency or decreased throughput.

BurstBalance is not reported
for EBS volumes when the baseline
performance of a volume is higher
than the maximum burst performan
ce. For more information, see I/O
Credits and burst performance.

DEFAULT Level monitoring 314

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#IOcredit
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#IOcredit

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

BytesInPerSec After you create a
topic.

Cluster
Name,
Broker
ID,
Topic

The number of bytes per second
received from clients. This metric
is available per broker and also per
topic.

BytesOutPerSec After you create a
topic.

Cluster
Name,
Broker
ID,
Topic

The number of bytes per second
sent to clients. This metric is
available per broker and also per
topic.

ClientCon
nectionCount

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID,
Client
Authentic
ation

The number of active authenticated
client connections.

Connectio
nCount

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of active authenticated,
unauthenticated, and inter-broker
connections.

DEFAULT Level monitoring 315

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

CPUCredit
Balance

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of earned CPU credits
that a broker has accrued since it
was launched. Credits are accrued
in the credit balance after they are
earned, and removed from the credit
balance when they are spent. If you
run out of the CPU credit balance,
it can have a negative impact on
your cluster's performance. You can
take steps to reduce CPU load. For
example, you can reduce the number
of client requests or update the
broker type to an M5 broker type.

CpuIdle After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of CPU idle time.

CpuIoWait After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of CPU idle time
during a pending disk operation.

CpuSystem After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of CPU in kernel
space.

CpuUser After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of CPU in user space.

DEFAULT Level monitoring 316

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

GlobalPar
titionCount

After the cluster gets
to the ACTIVE state.

Cluster
Name

The number of partitions across
all topics in the cluster, excluding
replicas. Because GlobalPar
titionCount doesn't include
replicas, the sum of the Partition
Count values can be higher than
GlobalPartitionCount if the replicati
on factor for a topic is greater than
1.

GlobalTop
icCount

After the cluster gets
to the ACTIVE state.

Cluster
Name

Total number of topics across all
brokers in the cluster.

Estimated
MaxTimeLag

After consumer group
consumes from a
topic.

Consumer
Group,
Topic

Time estimate (in seconds) to drain
MaxOffsetLag .

KafkaAppL
ogsDiskUsed

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of disk space used
for application logs.

KafkaData
LogsDiskU
sed (Cluster
Name, Broker ID
dimension)

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of disk space used
for data logs.

KafkaData
LogsDiskUsed
(Cluster Name
dimension)

After the cluster gets
to the ACTIVE state.

Cluster
Name

The percentage of disk space used
for data logs.

DEFAULT Level monitoring 317

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

LeaderCount After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The total number of leaders of
partitions per broker, not including
replicas.

MaxOffsetLag After consumer group
consumes from a
topic.

Consumer
Group,
Topic

The maximum offset lag across all
partitions in a topic.

MemoryBuffered After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The size in bytes of buffered
memory for the broker.

MemoryCached After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The size in bytes of cached memory
for the broker.

MemoryFree After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The size in bytes of memory that is
free and available for the broker.

HeapMemor
yAfterGC

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of total heap
memory in use after garbage
collection.

MemoryUsed After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The size in bytes of memory that is
in use for the broker.

DEFAULT Level monitoring 318

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

MessagesI
nPerSec

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of incoming messages
per second for the broker.

NetworkRx
Dropped

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of dropped receive
packages.

NetworkRx
Errors

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of network receive
errors for the broker.

NetworkRx
Packets

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of packets received by
the broker.

NetworkTx
Dropped

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of dropped transmit
packages.

NetworkTx
Errors

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of network transmit
errors for the broker.

NetworkTx
Packets

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of packets transmitted
by the broker.

DEFAULT Level monitoring 319

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

OfflinePa
rtitionsCount

After the cluster gets
to the ACTIVE state.

Cluster
Name

Total number of partitions that are
offline in the cluster.

PartitionCount After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The total number of topic partitions
per broker, including replicas.

ProduceTo
talTimeMsMean

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The mean produce time in milliseco
nds.

RequestBy
tesMean

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The mean number of request bytes
for the broker.

RequestTime After request throttlin
g is applied.

Cluster
Name,
Broker
ID

The average time in milliseconds
spent in broker network and I/O
threads to process requests.

RootDiskUsed After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The percentage of the root disk used
by the broker.

SumOffsetLag After consumer group
consumes from a
topic.

Consumer
Group,
Topic

The aggregated offset lag for all the
partitions in a topic.

DEFAULT Level monitoring 320

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

SwapFree After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The size in bytes of swap memory
that is available for the broker.

SwapUsed After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The size in bytes of swap memory
that is in use for the broker.

TrafficShaping After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

High-level metrics indicating the
number of packets shaped (dropped
or queued) due to exceeding
network allocations. Finer detail is
available with PER_BROKER metrics.

UnderMinI
srPartiti
onCount

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of under minIsr
partitions for the broker.

UnderRepl
icatedPar
titions

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

The number of under-replicated
partitions for the broker.

ZooKeeper
RequestLa
tencyMsMean

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

For ZooKeeper-based cluster. The
mean latency in milliseconds for
Apache ZooKeeper requests from
broker.

DEFAULT Level monitoring 321

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Dimension
s

Description

ZooKeeper
SessionState

After the cluster gets
to the ACTIVE state.

Cluster
Name,
Broker
ID

For ZooKeeper-based cluster.
Connection status of broker's
ZooKeeper session which may be
one of the following: NOT_CONNE
CTED: '0.0', ASSOCIATING: '0.1',
CONNECTING: '0.5', CONNECTED
READONLY: '0.8', CONNECTED: '1.0',
CLOSED: '5.0', AUTH_FAILED: '10.0'.

PER_BROKER Level monitoring

When you set the monitoring level to PER_BROKER, you get the metrics described in the following
table in addition to all the DEFAULT level metrics. You pay for the metrics in the following table,
whereas the DEFAULT level metrics continue to be free. The metrics in this table have the following
dimensions: Cluster Name, Broker ID.

Additional metrics that are available starting at the PER_BROKER monitoring level

Name When visible Description

BwInAllowanceExceeded After the cluster gets
to the ACTIVE state.

The number of packets shaped
because the inbound aggregate
 bandwidth exceeded the maximum
for the broker.

BwOutAllowanceExce
eded

After the cluster gets
to the ACTIVE state.

The number of packets shaped
because the outbound aggregate
 bandwidth exceeded the maximum
for the broker.

ConnTrackAllowance
Exceeded

After the cluster gets
to the ACTIVE state.

The number of packets shaped
because the connection tracking
exceeded the maximum for the
broker. Connection tracking is related
to security groups that track each

PER_BROKER Level monitoring 322

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

connection established to ensure
that return packets are delivered as
expected.

ConnectionCloseRate After the cluster gets
to the ACTIVE state.

The number of connections closed per
second per listener. This number is
aggregated per listener and filtered
for the client listeners.

ConnectionCreation
Rate

After the cluster gets
to the ACTIVE state.

The number of new connections
established per second per listener.
This number is aggregated per
listener and filtered for the client
listeners.

CpuCreditUsage After the cluster gets
to the ACTIVE state.

The number of CPU credits spent by
the broker. If you run out of the CPU
credit balance, it can have a negative
impact on your cluter's performan
ce. You can take steps to reduce CPU
load. For example, you can reduce the
number of client requests or update
the broker type to an M5 broker type.

FetchConsumerLocal
TimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds that
the consumer request is processed at
the leader.

FetchConsumerReque
stQueueTimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds that
the consumer request waits in the
request queue.

FetchConsumerRespo
nseQueueTimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds that
the consumer request waits in the
response queue.

PER_BROKER Level monitoring 323

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

FetchConsumerRespo
nseSendTimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds for the
consumer to send a response.

FetchConsumerTotal
TimeMsMean

After there's a
producer/consumer.

The mean total time in milliseconds
that consumers spend on fetching
data from the broker.

FetchFollowerLocal
TimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds that
the follower request is processed at
the leader.

FetchFollowerReque
stQueueTimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds that
the follower request waits in the
request queue.

FetchFollowerRespo
nseQueueTimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds that
the follower request waits in the
response queue.

FetchFollowerRespo
nseSendTimeMsMean

After there's a
producer/consumer.

The mean time in milliseconds for the
follower to send a response.

FetchFollowerTotal
TimeMsMean

After there's a
producer/consumer.

The mean total time in milliseconds
that followers spend on fetching data
from the broker.

FetchMessageConver
sionsPerSec

After you create a
topic.

The number of fetch message
conversions per second for the broker.

FetchThrottleByteRate After bandwidth
throttling is applied.

The number of throttled bytes per
second.

FetchThrottleQueue
Size

After bandwidth
throttling is applied.

The number of messages in the
throttle queue.

FetchThrottleTime After bandwidth
throttling is applied.

The average fetch throttle time in
milliseconds.

PER_BROKER Level monitoring 324

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

IAMNumberOfConnect
ionRequests

After the cluster gets
to the ACTIVE state.

The number of IAM authentication
requests per second.

IAMTooManyConnections After the cluster gets
to the ACTIVE state.

The number of connections
attempted beyond 100. 0 means the
number of connections is within the
limit. If >0, the throttle limit is being
exceeded and you need to reduce
number of connections.

NetworkProcessorAv
gIdlePercent

After the cluster gets
to the ACTIVE state.

The average percentage of the time
the network processors are idle.

PpsAllowanceExceeded After the cluster gets
to the ACTIVE state.

The number of packets shaped
because the bidirectional PPS
exceeded the maximum for the
broker.

ProduceLocalTimeMs
Mean

After the cluster gets
to the ACTIVE state.

The mean time in milliseconds that
the request is processed at the leader.

ProduceMessageConv
ersionsPerSec

After you create a
topic.

The number of produce message
conversions per second for the broker.

ProduceMessageConv
ersionsTimeMsMean

After the cluster gets
to the ACTIVE state.

The mean time in milliseconds spent
on message format conversions.

ProduceRequestQueu
eTimeMsMean

After the cluster gets
to the ACTIVE state.

The mean time in milliseconds that
request messages spend in the queue.

ProduceResponseQue
ueTimeMsMean

After the cluster gets
to the ACTIVE state.

The mean time in milliseconds that
response messages spend in the
queue.

ProduceResponseSen
dTimeMsMean

After the cluster gets
to the ACTIVE state.

The mean time in milliseconds spent
on sending response messages.

PER_BROKER Level monitoring 325

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

ProduceThrottleByt
eRate

After bandwidth
throttling is applied.

The number of throttled bytes per
second.

ProduceThrottleQue
ueSize

After bandwidth
throttling is applied.

The number of messages in the
throttle queue.

ProduceThrottleTime After bandwidth
throttling is applied.

The average produce throttle time in
milliseconds.

ProduceTotalTimeMs
Mean

After the cluster gets
to the ACTIVE state.

The mean produce time in milliseco
nds.

RemoteFetchBytesPe
rSec (RemoteBy
tesInPerSec in
v2.8.2.tiered)

After there’s a
producer/consumer.

The total number of bytes transferr
ed from tiered storage in response
to consumer fetches. This metric
includes all topic-partitions that
contribute to downstream data
transfer traffic. Category: Traffic and
error rates. This is a KIP-405 metric.

RemoteCopyBytesPerSec
(RemoteBytesOutPerSec
in v2.8.2.tiered)

After there’s a
producer/consumer.

The total number of bytes transferred
to tiered storage, including data from
log segments, indexes, and other
auxiliary files. This metric includes
all topic-partitions that contribut
e to upstream data transfer traffic.
Category: Traffic and error rates. This
is a KIP-405 metric.

RemoteLogManagerTa
sksAvgIdlePercent

After the cluster gets
to the ACTIVE state.

The average percentage of time the
remote log manager spent idle. The
remote log manager transfers data
from the broker to tiered storage.
Category: Internal activity. This is a
KIP-405 metric.

PER_BROKER Level monitoring 326

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

RemoteLogReaderAvg
IdlePercent

After the cluster gets
to the ACTIVE state.

The average percentage of time the
remote log reader spent idle. The
remote log reader transfers data from
the remote storage to the broker
in response to consumer fetches.
Category: Internal activity. This is a
KIP-405 metric.

RemoteLogReaderTas
kQueueSize

After the cluster gets
to the ACTIVE state.

The number of tasks responsible for
reads from tiered storage that are
waiting to be scheduled. Category:
Internal activity. This is a KIP-405
metric.

RemoteFetchErrorsP
erSec (RemoteRe
adErrorPerSec in
v2.8.2.tiered)

After the cluster gets
to the ACTIVE state.

The total rate of errors in response
to read requests that the specified
broker sent to tiered storage to
retrieve data in response to consumer
fetches. This metric includes all
topic partitions that contribute to
downstream data transfer traffic.
Category: traffic and error rates. This
is a KIP-405 metric.

RemoteFetchRequest
sPerSec (RemoteRe
adRequestsPerSec in
v2.8.2.tiered)

After the cluster gets
to the ACTIVE state.

The total number of read requests
that the specifies broker sent to
tiered storage to retrieve data in
response to consumer fetches. This
metric includes all topic partitions
which contribute to downstream data
transfer traffic. Category: traffic and
error rates. This is a KIP-405 metric.

PER_BROKER Level monitoring 327

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

RemoteCopyErrorsPe
rSec (RemoteWr
iteErrorPerSec in
v2.8.2.tiered)

After the cluster gets
to the ACTIVE state.

The total rate of errors in response
to write requests that the specified
broker sent to tiered storage to
transfer data upstream. This metric
includes all topic partitions that
contribute to upstream data transfer
traffic. Category: traffic and error
rates. This is a KIP-405 metric.

ReplicationBytesIn
PerSec

After you create a
topic.

The number of bytes per second
received from other brokers.

ReplicationBytesOu
tPerSec

After you create a
topic.

The number of bytes per second sent
to other brokers.

RequestExemptFromT
hrottleTime

After request
throttling is applied.

The average time in milliseconds
spent in broker network and I/O
threads to process requests that are
exempt from throttling.

RequestHandlerAvgI
dlePercent

After the cluster gets
to the ACTIVE state.

The average percentage of the time
the request handler threads are idle.

RequestThrottleQue
ueSize

After request
throttling is applied.

The number of messages in the
throttle queue.

RequestThrottleTime After request
throttling is applied.

The average request throttle time in
milliseconds.

TcpConnections After the cluster gets
to the ACTIVE state.

Shows number of incoming and
outgoing TCP segments with the SYN
flag set.

PER_BROKER Level monitoring 328

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

RemoteCopyLagBytes
(TotalTierBytesLag in
v2.8.2.tiered)

After you create a
topic.

The total number of bytes of the
data that is eligible for tiering on the
broker but has not been transferred
to tiered storage yet. This metrics
show the efficiency of upstream data
transfer. As the lag increases, the
amount of data that doesn't persist
in tiered storage increases. Category:
Archive lag. This is a not a KIP-405
metric.

TrafficBytes After the cluster gets
to the ACTIVE state.

Shows network traffic in overall
bytes between clients (producers
and consumers) and brokers. Traffic
between brokers isn't reported.

VolumeQueueLength After the cluster gets
to the ACTIVE state.

The number of read and write
operation requests waiting to be
completed in a specified time period.

VolumeReadBytes After the cluster gets
to the ACTIVE state.

The number of bytes read in a
specified time period.

VolumeReadOps After the cluster gets
to the ACTIVE state.

The number of read operations in a
specified time period.

VolumeTotalReadTime After the cluster gets
to the ACTIVE state.

The total number of seconds spent by
all read operations that completed in
a specified time period.

VolumeTotalWriteTime After the cluster gets
to the ACTIVE state.

The total number of seconds spent by
all write operations that completed in
a specified time period.

VolumeWriteBytes After the cluster gets
to the ACTIVE state.

The number of bytes written in a
specified time period.

PER_BROKER Level monitoring 329

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

VolumeWriteOps After the cluster gets
to the ACTIVE state.

The number of write operations in a
specified time period.

PER_TOPIC_PER_BROKER Level monitoring

When you set the monitoring level to PER_TOPIC_PER_BROKER, you get the metrics described in
the following table, in addition to all the metrics from the PER_BROKER and DEFAULT levels. Only
the DEFAULT level metrics are free. The metrics in this table have the following dimensions: Cluster
Name, Broker ID, Topic.

Important

For an Amazon MSK cluster that uses Apache Kafka 2.4.1 or a newer version, the metrics
in the following table appear only after their values become nonzero for the first time.
For example, to see BytesInPerSec, one or more producers must first send data to the
cluster.

Additional metrics that are available starting at the PER_TOPIC_PER_BROKER monitoring level

Name When visible Description

FetchMessageConver
sionsPerSec

After you create
a topic.

The number of fetched messages converted
per second.

MessagesInPerSec After you create
a topic.

The number of messages received per second.

ProduceMessageConv
ersionsPerSec

After you create
a topic.

The number of conversions per second for
produced messages.

RemoteFetchBytesPe
rSec (RemoteBy
tesInPerSec in
v2.8.2.tiered)

After you create
a topic and
the topic is
producing/
consuming.

The number of bytes transferred from tiered
storage in response to consumer fetches for
the specified topic and broker. This metric
includes all partitions from the topic that
contribute to downstream data transfer traffic

PER_TOPIC_PER_BROKER Level monitoring 330

Amazon Managed Streaming for Apache Kafka Developer Guide

Name When visible Description

on the specified broker. Category: traffic and
error rates. This is a KIP-405 metric.

RemoteCopyBytesPer
Sec (RemoteBy
tesOutPerSec in
v2.8.2.tiered)

After you create
a topic and
the topic is
producing/
consuming.

The number of bytes transferred to tiered
storage, for the specified topic and broker.
This metric includes all partitions from the
topic that contribute to upstream data transfer
traffic on the specified broker. Category: traffic
and error rates. This is a KIP-405 metric.

RemoteFetchErrorsP
erSec (RemoteRe
adErrorPerSec in
v2.8.2.tiered)

After you create
a topic and
the topic is
producing/
consuming.

The rate of errors in response to read requests
that the specified broker sends to tiered
storage to retrieve data in response to
consumer fetches on the specified topic. This
metric includes all partitions from the topic
that contribute to downstream data transfer
traffic on the specified broker. Category: traffic
and error rates. This is a KIP-405 metric.

RemoteFetchRequest
sPerSec (RemoteRe
adRequestsPerSec
in v2.8.2.tiered)

After you create
a topic and
the topic is
producing/
consuming.

The number of read requests that the specifies
broker sends to tiered storage to retrieve
data in response to consumer fetches on
the specified topic. This metric includes all
partitions from the topic that contribute
to downstream data transfer traffic on the
specified broker. Category: traffic and error
rates. This is a KIP-405 metric.

RemoteCopyErrorsPe
rSec (RemoteWr
iteErrorPerSec in
v2.8.2.tiered)

After you create
a topic and
the topic is
producing/
consuming.

The rate of errors in response to write requests
that the specified broker sends to tiered
storage to transfer data upstream. This metric
includes all partitions from the topic that
contribute to upstream data transfer traffic on
the specified broker. Category: traffic and error
rates. This is a KIP-405 metric.

PER_TOPIC_PER_BROKER Level monitoring 331

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

Amazon Managed Streaming for Apache Kafka Developer Guide

PER_TOPIC_PER_PARTITION Level monitoring

When you set the monitoring level to PER_TOPIC_PER_PARTITION, you get the metrics
described in the following table, in addition to all the metrics from the PER_TOPIC_PER_BROKER,
PER_BROKER, and DEFAULT levels. Only the DEFAULT level metrics are free. The metrics in this
table have the following dimensions: Consumer Group, Topic, Partition.

Additional metrics that are available starting at the PER_TOPIC_PER_PARTITION monitoring
level

Name When visible Description

EstimatedTimeLag After consumer
group
consumes from
a topic.

Time estimate (in seconds) to drain the
partition offset lag.

OffsetLag After consumer
group
consumes from
a topic.

Partition-level consumer lag in number of
offsets.

Viewing Amazon MSK metrics using CloudWatch

You can monitor metrics for Amazon MSK using the CloudWatch console, the command line, or the
CloudWatch API. The following procedures show you how to access metrics using these different
methods.

To access metrics using the CloudWatch console

Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

1. In the navigation pane, choose Metrics.

2. Choose the All metrics tab, and then choose AWS/Kafka.

3. To view topic-level metrics, choose Topic, Broker ID, Cluster Name; for broker-level metrics,
choose Broker ID, Cluster Name; and for cluster-level metrics, choose Cluster Name.

PER_TOPIC_PER_PARTITION Level monitoring 332

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Managed Streaming for Apache Kafka Developer Guide

4. (Optional) In the graph pane, select a statistic and a time period, and then create a
CloudWatch alarm using these settings.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

To access metrics using the CloudWatch CLI

Use the mon-list-metrics and mon-get-stats commands.

To access metrics using the CloudWatch API

Use the ListMetrics and GetMetricStatistics operations.

Consumer-lag monitoring

Monitoring consumer lag allows you to identify slow or stuck consumers that aren't keeping up
with the latest data available in a topic. When necessary, you can then take remedial actions,
such as scaling or rebooting those consumers. To monitor consumer lag, you can use Amazon
CloudWatch or open monitoring with Prometheus.

Consumer lag metrics quantify the difference between the latest data written to your topics
and the data read by your applications. Amazon MSK provides the following consumer-lag
metrics, which you can get through Amazon CloudWatch or through open monitoring with
Prometheus: EstimatedMaxTimeLag, EstimatedTimeLag, MaxOffsetLag, OffsetLag, and
SumOffsetLag. For information about these metrics, see the section called “Amazon MSK metrics
for monitoring with CloudWatch”.

Note

Consumer-lag metrics are visible only for consumer groups in a STABLE state. A consumer
group is STABLE after the successful completion of re-balancing, ensuring that partitions
are evenly distributed among the consumers.

Amazon MSK supports consumer lag metrics for clusters with Apache Kafka 2.2.1 or a later version.

Consumer-lag monitoring 333

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-list-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-get-stats.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Open monitoring with Prometheus

You can monitor your MSK cluster with Prometheus, an open-source monitoring system for time-
series metric data. You can publish this data to Amazon Managed Service for Prometheus using
Prometheus's remote write feature. You can also use tools that are compatible with Prometheus-
formatted metrics or tools that integrate with Amazon MSK Open Monitoring, like Datadog,
Lenses, New Relic, and Sumo logic. Open monitoring is available for free but charges apply for the
transfer of data across Availability Zones. For information about Prometheus, see the Prometheus
documentation.

Creating an Amazon MSK cluster with open monitoring enabled

Using the AWS Management Console

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. In the Monitoring section, select the check box next to Enable open monitoring with
Prometheus.

3. Provide the required information in all the sections of the page, and review all the available
options.

4. Choose Create cluster.

Using the AWS CLI

• Invoke the create-cluster command and specify its open-monitoring option. Enable the
JmxExporter, the NodeExporter, or both. If you specify open-monitoring, the two
exporters can't be disabled at the same time.

Using the API

• Invoke the CreateCluster operation and specify OpenMonitoring. Enable the jmxExporter,
the nodeExporter, or both. If you specify OpenMonitoring, the two exporters can't be
disabled at the same time.

Open monitoring with Prometheus 334

https://docs.datadoghq.com/integrations/amazon_msk/
https://docs.lenses.io/install_setup/deployment-options/aws-deployment.html#msk-prometheus-metrics
https://docs.newrelic.com/docs/integrations/amazon-integrations/aws-integrations-list/aws-managed-kafka-msk-integration
https://help.sumologic.com/03Send-Data/Collect-from-Other-Data-Sources/Amazon_MSK_Prometheus_metrics_collection
https://prometheus.io/docs
https://prometheus.io/docs
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://docs.aws.amazon.com/cli/latest/reference/kafka/create-cluster.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#CreateCluster

Amazon Managed Streaming for Apache Kafka Developer Guide

Enabling open monitoring for an existing Amazon MSK cluster

To enable open monitoring, make sure that the cluster is in the ACTIVE state.

Using the AWS Management Console

1. Sign in to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. Choose the name of the cluster that you want to update. This takes you to a page the contains
details for the cluster.

3. On the Properties tab, scroll down to find the Monitoring section.

4. Choose Edit.

5. Select the check box next to Enable open monitoring with Prometheus.

6. Choose Save changes.

Using the AWS CLI

• Invoke the update-monitoring command and specify its open-monitoring option. Enable
the JmxExporter, the NodeExporter, or both. If you specify open-monitoring, the two
exporters can't be disabled at the same time.

Using the API

• Invoke the UpdateMonitoring operation and specify OpenMonitoring. Enable the
jmxExporter, the nodeExporter, or both. If you specify OpenMonitoring, the two
exporters can't be disabled at the same time.

Setting up a Prometheus host on an Amazon EC2 instance

1. Download the Prometheus server from https://prometheus.io/download/#prometheus to your
Amazon EC2 instance.

2. Extract the downloaded file to a directory and go to that directory.

3. Create a file with the following contents and name it prometheus.yml.

file: prometheus.yml
my global config

Enabling open monitoring for an existing Amazon MSK cluster 335

https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://docs.aws.amazon.com/cli/latest/reference/kafka/update-monitoring.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-monitoring.html#UpdateMonitoring
https://prometheus.io/download/#prometheus

Amazon Managed Streaming for Apache Kafka Developer Guide

global:
 scrape_interval: 60s

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped
 from this config.
 - job_name: 'prometheus'
 static_configs:
 # 9090 is the prometheus server port
 - targets: ['localhost:9090']
 - job_name: 'broker'
 file_sd_configs:
 - files:
 - 'targets.json'

4. Use the ListNodes operation to get a list of your cluster's brokers.

5. Create a file named targets.json with the following JSON. Replace broker_dns_1,
broker_dns_2, and the rest of the broker DNS names with the DNS names you obtained for
your brokers in the previous step. Include all of the brokers you obtained in the previous step.
Amazon MSK uses port 11001 for the JMX Exporter and port 11002 for the Node Exporter.

ZooKeeper mode targets.json

[
 {
 "labels": {
 "job": "jmx"
 },
 "targets": [
 "broker_dns_1:11001",
 "broker_dns_2:11001",
 .
 .
 .
 "broker_dns_N:11001"
]
 },
 {
 "labels": {
 "job": "node"
 },

Setting up a Prometheus host on an Amazon EC2 instance 336

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-nodes.html#ListNodes

Amazon Managed Streaming for Apache Kafka Developer Guide

 "targets": [
 "broker_dns_1:11002",
 "broker_dns_2:11002",
 .
 .
 .
 "broker_dns_N:11002"
]
 }
]

KRaft mode targets.json

[
 {
 "labels": {
 "job": "jmx"
 },
 "targets": [
 "broker_dns_1:11001",
 "broker_dns_2:11001",
 .
 .
 .
 "broker_dns_N:11001",
 "controller_dns_1:11001",
 "controller_dns_2:11001",
 "controller_dns_3:11001"
]
 },
 {
 "labels": {
 "job": "node"
 },
 "targets": [
 "broker_dns_1:11002",
 "broker_dns_2:11002",
 .
 .
 .
 "broker_dns_N:11002"
]
 }

Setting up a Prometheus host on an Amazon EC2 instance 337

Amazon Managed Streaming for Apache Kafka Developer Guide

]

Note

To scrape JMX metrics from KRaft controllers, add controller DNS names as
targets in the JSON file. For example: controller_dns_1:11001, replacing
controller_dns_1 with the actual controller DNS name.

6. To start the Prometheus server on your Amazon EC2 instance, run the following command
in the directory where you extracted the Prometheus files and saved prometheus.yml and
targets.json.

./prometheus

7. Find the IPv4 public IP address of the Amazon EC2 instance where you ran Prometheus in the
previous step. You need this public IP address in the following step.

8. To access the Prometheus web UI, open a browser that can access your Amazon EC2 instance,
and go to Prometheus-Instance-Public-IP:9090, where Prometheus-Instance-
Public-IP is the public IP address you got in the previous step.

Prometheus metrics

All metrics emitted by Apache Kafka to JMX are accessible using open monitoring with
Prometheus. For information about Apache Kafka metrics, see Monitoring in the Apache Kafka
documentation. Along with Apache Kafka metrics, consumer-lag metrics are also available at port
11001 under the JMX MBean name kafka.consumer.group:type=ConsumerLagMetrics. You
can also use the Prometheus Node Exporter to get CPU and disk metrics for your brokers at port
11002.

Storing Prometheus metrics in Amazon Managed Service for
Prometheus

Amazon Managed Service for Prometheus is a Prometheus-compatible monitoring and alerting
service that you can use to monitor Amazon MSK clusters. It is a fully-managed service that
automatically scales the ingestion, storage, querying, and alerting of your metrics. It also

Prometheus metrics 338

https://kafka.apache.org/documentation/#monitoring

Amazon Managed Streaming for Apache Kafka Developer Guide

integrates with AWS security services to give you fast and secure access to your data. You can use
the open-source PromQL query language to query your metrics and alert on them.

For more information, see Getting started with Amazon Managed Service for Prometheus.

Amazon MSK storage capacity alerts

On Amazon MSK provisioned clusters, you choose the cluster's primary storage capacity. If you
exhaust the storage capacity on a broker in your provisioned cluster, it can affect its ability to
produce and consume data, leading to costly downtime. Amazon MSK offers CloudWatch metrics
to help you monitor your cluster's storage capacity. However, to make it easier for you to detect
and resolve storage capacity issues, Amazon MSK automatically sends you dynamic cluster storage
capacity alerts. The storage capacity alerts include recommendations for short-term and long-term
steps to manage your cluster's storage capacity. From the Amazon MSK console, you can use quick
links within the alerts to take recommended actions immediately.

There are two types of MSK storage capacity alerts: proactive and remedial.

• Proactive ("Action required") storage capacity alerts warn you about potential storage issues
with your cluster. When a broker in an MSK cluster has used over 60% or 80% of its disk storage
capacity, you'll receive proactive alerts for the affected broker.

• Remedial ("Critical action required") storage capacity alerts require you to take remedial action to
fix a critical cluster issue when one of the brokers in your MSK cluster has run out of disk storage
capacity.

Amazon MSK automatically sends these alerts to the Amazon MSK console, AWS Health
Dashboard, Amazon EventBridge, and email contacts for your AWS account. You can also configure
Amazon EventBridge to deliver these alerts to Slack or to tools such as New Relic, and Datadog.

Storage capacity alerts are enabled by default for all MSK provisioned clusters and can't be turned
off. This feature is supported in all regions where MSK is available.

Monitoring Amazon MSK storage capacity alerts

You can check for storage capacity alerts in several ways:

• Go to the Amazon MSK console. Storage capacity alerts are displayed in the cluster alerts pane
for 90 days. The alerts contain recommendations and single-click link actions to address disk
storage capacity issues.

Amazon MSK storage capacity alerts 339

https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-getting-started.html
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://aws.amazon.com/premiumsupport/technology/aws-health/
https://aws.amazon.com/premiumsupport/technology/aws-health/
https://aws.amazon.com/pm/eventbridge/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destination-partners.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destination-partners.html
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for Apache Kafka Developer Guide

• Use ListClusters, ListClustersV2, DescribeCluster, or DescribeClusterV2 APIs to view
CustomerActionStatus and all the alerts for a cluster.

• Go to the AWS Health Dashboard to view alerts from MSK and other AWS services.

• Set up AWS Health API and Amazon EventBridge to route alert notifications to 3rd party
platforms such as Datadog, NewRelic, and Slack.

Monitoring Amazon MSK storage capacity alerts 340

https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#ListClusters
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters.html#ListClustersV2
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://docs.aws.amazon.com/MSK/2.0/APIReference/v2-clusters-clusterarn.html#DescribeClusterV2
https://aws.amazon.com/premiumsupport/technology/aws-health/
https://docs.aws.amazon.com/health/latest/ug/health-api.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destination-partners.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Using LinkedIn's Cruise Control for Apache Kafka with
Amazon MSK

You can use LinkedIn's Cruise Control to rebalance your Amazon MSK cluster, detect and fix
anomalies, and monitor the state and health of the cluster.

To download and build Cruise Control

1. Create an Amazon EC2 instance in the same Amazon VPC as the Amazon MSK cluster.

2. Install Prometheus on the Amazon EC2 instance that you created in the previous step. Note
the private IP and the port. The default port number is 9090. For information on how to
configure Prometheus to aggregate metrics for your cluster, see the section called “Open
monitoring with Prometheus”.

3. Download Cruise Control on the Amazon EC2 instance. (Alternatively, you can use a separate
Amazon EC2 instance for Cruise Control if you prefer.) For a cluster that has Apache Kafka
version 2.4.*, use the latest 2.4.* Cruise Control release. If your cluster has an Apache Kafka
version that is older than 2.4.*, use the latest 2.0.* Cruise Control release.

4. Decompress the Cruise Control file, then go to the decompressed folder.

5. Run the following command to install git.

sudo yum -y install git

6. Run the following command to initialize the local repo. Replace Your-Cruise-Control-
Folder with the name of your current folder (the folder that you obtained when you
decompressed the Cruise Control download).

git init && git add . && git commit -m "Init local repo." && git tag -a Your-
Cruise-Control-Folder -m "Init local version."

7. Run the following command to build the source code.

./gradlew jar copyDependantLibs

341

https://github.com/linkedin/cruise-control/releases

Amazon Managed Streaming for Apache Kafka Developer Guide

To configure and run Cruise Control

1. Make the following updates to the config/cruisecontrol.properties file. Replace the
example bootstrap servers and bootstrap-brokers string with the values for your cluster. To get
these strings for your cluster, you can see the cluster details in the console. Alternatively, you
can use the GetBootstrapBrokers and DescribeCluster API operations or their CLI equivalents.

If using TLS encryption, use 9094; use 9092 if using plaintext
bootstrap.servers=b-1.test-cluster.2skv42.c1.kafka.us-
east-1.amazonaws.com:9094,b-2.test-cluster.2skv42.c1.kafka.us-
east-1.amazonaws.com:9094,b-3.test-cluster.2skv42.c1.kafka.us-
east-1.amazonaws.com:9094

SSL properties, needed if cluster is using TLS encryption
security.protocol=SSL
ssl.truststore.location=/home/ec2-user/kafka.client.truststore.jks

Use the Prometheus Metric Sampler
metric.sampler.class=com.linkedin.kafka.cruisecontrol.monitor.sampling.prometheus.PrometheusMetricSampler

Prometheus Metric Sampler specific configuration
prometheus.server.endpoint=1.2.3.4:9090 # Replace with your Prometheus IP and port

Change the capacity config file and specify its path; details below
capacity.config.file=config/capacityCores.json

2. Edit the config/capacityCores.json file to specify the right disk size and CPU cores and
network in/out limits. You can use the DescribeCluster API operation (or its CLI equivalent) to
obtain the disk size. For CPU cores and network in/out limits, see Amazon EC2 Instance Types.

{
 "brokerCapacities": [
 {
 "brokerId": "-1",
 "capacity": {
 "DISK": "10000",
 "CPU": {
 "num.cores": "2"
 },
 "NW_IN": "5000000",
 "NW_OUT": "5000000"
 },

342

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#GetBootstrapBrokers
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://aws.amazon.com/ec2/instance-types/

Amazon Managed Streaming for Apache Kafka Developer Guide

 "doc": "This is the default capacity. Capacity unit used for disk is in MB,
 cpu is in number of cores, network throughput is in KB."
 }
]
}

3. You can optionally install the Cruise Control UI. To download it, go to Setting Up Cruise
Control Frontend.

4. Run the following command to start Cruise Control. Consider using a tool like screen or tmux
to keep a long-running session open.

<path-to-your-kafka-installation>/bin/kafka-cruise-control-start.sh config/
cruisecontrol.properties 9091

5. Use the Cruise Control APIs or the UI to make sure that Cruise Control has the cluster load
data and that it's making rebalancing suggestions. It might take several minutes to get a valid
window of metrics.

Automated deployment template of Cruise Control for Amazon
MSK

You can also use this CloudFormation template, to easily deploy Cruise Control and Prometheus
to gain deeper insights into your Amazon MSK cluster's performance and optimize resource
utilization.

Key features:

• Automated provisioning of an Amazon EC2 instance with Cruise Control and Prometheus pre-
configured.

• Support for Amazon MSK provisioned cluster.

• Flexible authentication with PlainText and IAM.

• No Zookeeper dependency for Cruise Control.

• Easily customize Prometheus targets, Cruise Control capacity settings, and other configurations
by providing your own configuration files stored in an Amazon S3 bucket.

Cruise Control 343

https://github.com/linkedin/cruise-control-ui/wiki/Single-Kafka-Cluster#setting-up-cruise-control-frontend
https://github.com/linkedin/cruise-control-ui/wiki/Single-Kafka-Cluster#setting-up-cruise-control-frontend
https://github.com/aws-samples/cruise-control-for-msk

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK quota

Your AWS account has default quotas for Amazon MSK. Unless otherwise stated, each per-account
quota is region-specific within your AWS account.

Amazon MSK quota

• Up to 90 brokers per account. 30 brokers per ZooKeeper mode cluster. 60 brokers per KRaft
mode cluster. To request higher quota, go to the AWS console Support Center and create a
support case.

• A minimum of 1 GiB of storage per broker.

• A maximum of 16384 GiB of storage per broker.

• A cluster that uses the section called “IAM access control” can have up to
3000 TCP connections per broker at any given time. To increase this limit, you
can adjust the listener.name.client_iam.max.connections or the
listener.name.client_iam_public.max.connections configuration property using the
Kafka AlterConfig API or the kafka-configs.sh tool. It's important to note that increasing
either property to a high value can result in unavailability.

• Limits on TCP connections. With connection rate bursts enabled, MSK allows 100 connections
per second. The exception is the kafka.t3.small instance type, which is allowed 4 connections
per second with connection rate bursts enabled. Older clusters that don't have connection rate
bursts enabled will have the feature automatically enabled when the cluster is patched.

To handle retries on failed connections, you can set the reconnect.backoff.ms configuration
parameter on the client side. For example, if you want a client to retry connections after 1
second, set reconnect.backoff.ms to 1000. For more information, see reconnect.backoff.ms
in the Apache Kafka documentation.

• Up to 100 configurations per account. To request a quota adjustment, go to the AWS console
Support Center and create a support case.

• A maximum of 50 revisions per configuration.

• To update the configuration or the Apache Kafka version of an MSK cluster, first ensure the
number of partitions per broker is under the limits described in the section called “ Right-size
your cluster: Number of partitions per broker”.

Amazon MSK quota 344

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://kafka.apache.org/documentation/#producerconfigs_reconnect.backoff.ms
https://console.aws.amazon.com/support/home#/

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK Replicator quotas

• A maximum of 15 MSK Replicators per account.

• MSK Replicator only replicates up to 750 topics in sorted order. If you need to replicate more
topics, we recommend that you create a separate Replicator. Go to the AWS console Support
Center and create a support case if you need support for more than 750 topics per Replicator.
You can monitor the number of topics being replicated using the "TopicCount" metric.

• A maximum ingress throughput of 1GB per second per MSK Replicator. To request higher quota,
go to the AWS console Support Center and create a support case.

• MSK Replicator Record Size - A maximum of 10MB record size (message.max.bytes). To request
higher quota, go to the AWS console Support Center and create a support case.

MSK Serverless quota

Note

If you experience any issues with quota limits, contact AWS Support by creating a support
case.

Limits are per cluster, unless otherwise stated.

Dimension Quota Quota violation result

Maximum ingress throughput 200 MBps Slowdown with throttle
duration in response

Maximum egress throughput 400 MBps Slowdown with throttle
duration in response

Maximum retention duration Unlimited N/A

Maximum number of client
connections

3000 Connection close

Maximum connection
attempts

100 per second Connection close

MSK Replicator quotas 345

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

Amazon Managed Streaming for Apache Kafka Developer Guide

Dimension Quota Quota violation result

Maximum message size 8 MB Request fails with ErrorCode:
INVALID_REQUEST

Maximum request rate 15,000 per second Slowdown with throttle
duration in response

Maximum rate of topic
management APIs requests
rate

2 per second Slowdown with throttle
duration in response

Maximum fetch bytes per
request

55 MB Request fails with ErrorCode:
INVALID_REQUEST

Maximum number of
consumer groups

500 JoinGroup request fails

Maximum number of partition
s (leaders)

2400 for non-compacted
topics. 120 for compacted
topics. To request a quota
adjustment, go to the AWS
console Support Center and
create a support case.

Request fails with ErrorCode:
INVALID_REQUEST

Maximum rate of partition
creation and deletion

250 in 5 minutes Request fails with ErrorCode
: THROUGHPUT_QUOTA_E
XCEEDED

Maximum ingress throughput
per partition

5 MBps Slowdown with throttle
duration in response

Maximum egress throughput
per partition

10 MBps Slowdown with throttle
duration in response

Maximum partition size (for
compacted topics)

250 GB Request fails with ErrorCode
: THROUGHPUT_QUOTA_E
XCEEDED

Quota for serverless clusters 346

https://console.aws.amazon.com/support/home#/

Amazon Managed Streaming for Apache Kafka Developer Guide

Dimension Quota Quota violation result

Maximum number of client
VPCs per serverless cluster

5

Maximum number of serverles
s clusters per account

10. To request a quota
adjustment, go to the AWS
console Support Center and
create a support case.

MSK Connect quota

• Up to 100 custom plugins.

• Up to 100 worker configurations.

• Up to 60 connect workers. If a connector is set up to have auto scaled capacity, then the
maximum number of workers that the connector is set up to have is the number MSK Connect
uses to calculate the quota for the account.

• Up to 10 workers per connector.

To request higher quota for MSK Connect, go to the AWS console Support Center and create a
support case.

MSK Connect quota 347

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK resources

The term resources has two meanings in Amazon MSK, depending on the context. In the context
of APIs a resource is a structure on which you can invoke an operation. For a list of these resources
and the operations that you can invoke on them, see Resources in the Amazon MSK API Reference.
In the context of the section called “IAM access control”, a resource is an entity to which you can
allow or deny access, as defined in the the section called “Resources” section.

348

https://docs.aws.amazon.com/msk/1.0/apireference/resources.html

Amazon Managed Streaming for Apache Kafka Developer Guide

MSK integrations

This section provides references to AWS features that integrate with Amazon MSK.

Topics

• Amazon Athena connector for Amazon MSK

• Amazon Redshift streaming data ingestion

• Firehose

• Accessing Amazon EventBridge Pipes through the Amazon MSK console

Amazon Athena connector for Amazon MSK

The Amazon Athena connector for Amazon MSK enables Amazon Athena to run SQL queries on
Apache Kafka topics. Use this connector to view Apache Kafka topics as tables and messages as
rows in Athena.

For more information, see Amazon Athena MSK Connector in the Amazon Athena User Guide.

Amazon Redshift streaming data ingestion

Amazon Redshift supports streaming ingestion from Amazon MSK. The Amazon Redshift streaming
ingestion feature provides low-latency, high-speed ingestion of streaming data from Amazon MSK
into an Amazon Redshift materialized view. Because it doesn't need to stage data in Amazon S3,
Amazon Redshift can ingest streaming data at a lower latency and at a reduced storage cost. You
can configure Amazon Redshift streaming ingestion on an Amazon Redshift cluster using SQL
statements to authenticate and connect to an Amazon MSK topic.

For more information, see Streaming ingestion in the Amazon Redshift Database Developer Guide.

Firehose

Amazon MSK integrates with Firehose to provide a serverless, no-code solution to deliver
streams from Apache Kafka clusters to Amazon S3 data lakes. Firehose is a streaming extract,
transform, and load (ETL) service that reads data from your Amazon MSK Kafka topics, performs
transformations such as conversion to Parquet, and aggregates and writes the data to Amazon S3.

Athena 349

https://docs.aws.amazon.com/athena/latest/ug/connectors-msk.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion.html

Amazon Managed Streaming for Apache Kafka Developer Guide

With few click from the console, you can setup a Firehose stream to read from a Kafka topic and
deliver to an S3 location. There is no code to write, no connector applications, and no resources to
provision. Firehose automatically scales based on the amount of data published to the Kafka topic,
and you only pay for the bytes ingested from Kafka.

See the following for more information about this feature.

• Writing to Kinesis Data Firehose Using Amazon MSK - Amazon Kinesis Data Firehose in the
Amazon Data Firehose Developer Guide

• Blog: Amazon MSK Introduces Managed Data Delivery from Apache Kafka to Your Data Lake

• Lab: Delivery to Amazon S3 using Firehose

Accessing Amazon EventBridge Pipes through the Amazon MSK
console

Amazon EventBridge Pipes connects sources to targets. Pipes are intended for point-to-point
integrations between supported sources and targets, with support for advanced transformations
and enrichment. EventBridge Pipes provide a highly scalable way to connect your Amazon MSK
cluster to AWS services such as Step Functions, Amazon SQS, and API Gateway, as well as third-
party software as a service (SaaS) applications like Salesforce.

To set up a pipe, you choose the source, add optional filtering, define optional enrichment, and
choose the target for the event data.

On the details page for an Amazon MSK cluster, you can view the pipes that use that cluster as
their source. From there, you can also:

• Launch the EventBridge console to view pipe details.

• Launch the EventBridge console to create a new pipe with the cluster as its source.

For more information on configuring an Amazon MSK cluster as a pipe source, see Amazon
Managed Streaming for Apache Kafka cluster as a source in the Amazon EventBridge User Guide. For
more information about EventBridge Pipes in general, see EventBridge Pipes.

To access EventBridge pipes for a given Amazon MSK cluster

1. Open the Amazon MSK console and choose Clusters .

Accessing EventBridge pipes 350

https://docs.aws.amazon.com/firehose/latest/dev/writing-with-msk.html
https://aws.amazon.com/blogs/aws/amazon-msk-introduces-managed-data-delivery-from-apache-kafka-to-your-data-lake/
https://catalog.us-east-1.prod.workshops.aws/workshops/c2b72b6f-666b-4596-b8bc-bafa5dcca741/en-US/amazon-kinesis-data-firehose-integration
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-msk.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-msk.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

2. Select a cluster.

3. On the cluster detail page, choose the Integration tab.

The Integration tab includes a list of any pipes currently configured to use the selected cluster
as a source, including:

• pipe name

• current status

• pipe target

• when the pipe was last modified

4. Manage the pipes for your Amazon MSK cluster as desired:

To access more details about a pipe

• Choose the pipe.

This launches the Pipe details page of the EventBridge console.

To create a new pipe

• Choose Connect Amazon MSK cluster to pipe.

This launches the Create pipe page of the EventBridge console, with the Amazon MSK
cluster specified as the pipe source. For more information, see Creating an EventBridge pipe
in the Amazon EventBridge User Guide.

• You can also create a pipe for a cluster from the Clusters page. Select the cluster, and, from
the Actions menu, select Create EventBridge Pipe.

Accessing EventBridge pipes 351

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-create.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Apache Kafka versions

When you create an Amazon MSK cluster, you specify which Apache Kafka version you want to
have on it. You can also update the Apache Kafka version of an existing cluster. The topics in
the chapter help you understand timelines for Kafka version support and suggestions for best
practices.

Topics

• Supported Apache Kafka versions

• Amazon MSK version support

Supported Apache Kafka versions

Amazon Managed Streaming for Apache Kafka (Amazon MSK) supports the following Apache Kafka
and Amazon MSK versions. The Apache Kafka community provides approximately 12 months of
support for a version after its release date. For more details check the Apache Kafka EOL (end of
life) policy.

Supported Apache Kafka versions

Apache Kafka version MSK release date End of support date

1.1.1 -- 2024-06-05

2.1.0 -- 2024-06-05

2.2.1 2019-07-31 2024-06-08

2.3.1 2019-12-19 2024-06-08

2.4.1 2020-04-02 2024-06-08

2.4.1.1 2020-09-09 2024-06-08

2.5.1 2020-09-30 2024-06-08

2.6.0 2020-10-21 2024-09-11

2.6.1 2021-01-19 2024-09-11

Supported Apache Kafka versions 352

https://cwiki.apache.org/confluence/display/KAFKA/Time+Based+Release+Plan#TimeBasedReleasePlan-WhatIsOurEOLPolicy?
https://cwiki.apache.org/confluence/display/KAFKA/Time+Based+Release+Plan#TimeBasedReleasePlan-WhatIsOurEOLPolicy?
https://archive.apache.org/dist/kafka/1.1.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.1.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.2.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.3.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.4.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.4.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.5.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.6.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.6.1/RELEASE_NOTES.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Apache Kafka version MSK release date End of support date

2.6.2 2021-04-29 2024-09-11

2.6.3 2021-12-21 2024-09-11

2.7.0 2020-12-29 2024-09-11

2.7.1 2021-05-25 2024-09-11

2.7.2 2021-12-21 2024-09-11

2.8.0 -- 2024-09-11

2.8.1 2022-10-28 2024-09-11

2.8.2-tiered 2022-10-28 To be announced

3.1.1 2022-06-22 2024-09-11

3.2.0 2022-06-22 2024-09-11

3.3.1 2022-10-26 2024-09-11

3.3.2 2023-03-02 2024-09-11

3.4.0 2023-05-04 2025-06-17

3.5.1 (recommended) 2023-09-26 --

3.6.0 2023-11-16 --

3.7.x 2024-05-29 --

For more information on Amazon MSK version support policy, see Amazon MSK version support
policy.

Apache Kafka version 3.7.x (with production-ready tiered storage)

Apache Kafka version 3.7.x on MSK includes support for Apache Kafka version 3.7.0. You can create
clusters or upgrade existing clusters to use the new 3.7.x version. With this change in version

Apache Kafka version 3.7.x (with production-ready tiered storage) 353

https://archive.apache.org/dist/kafka/2.6.2/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.6.3/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.7.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.7.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.7.2/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.8.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.8.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.8.2/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.1.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.2.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.3.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.3.2/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.4.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.5.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.6.0/RELEASE_NOTES.html
https://downloads.apache.org/kafka/3.7.0/RELEASE_NOTES.html

Amazon Managed Streaming for Apache Kafka Developer Guide

naming, you no longer have to adopt newer patch fix versions such as 3.7.1 when they are released
by the Apache Kafka community. Amazon MSK will automatically update 3.7.x to support future
patch versions once they become available. This allows you to benefit from the security and bug
fixes available through patch fix versions without triggering a version upgrade. These patch fix
versions released by Apache Kafka don't break version compatibility and you can benefit from the
new patch fix versions without worrying about read or write errors for your client applications.
Please make sure your infrastructure automation tools, such as CloudFormation, are updated to
account for this change in version naming.

Amazon MSK now supports KRaft mode (Apache Kafka Raft) in Apache Kafka version 3.7.x. On
Amazon MSK, like with ZooKeeper nodes, KRaft controllers are included at no additional cost to
you, and require no additional setup or management from you. You can now create clusters in
either KRaft mode or ZooKeeper mode on Apache Kafka version 3.7.x. In Kraft mode, you can add
up to 60 brokers to host more partitions per-cluster, without requesting a limit increase, compared
to the 30-broker quota on Zookeeper-based clusters. To learn more about KRaft on MSK, see KRaft
mode.

Apache Kafka version 3.7.x also includes several bug fixes and new features that improve
performance. Key improvements include leader discovery optimizations for clients and log
segment flush optimization options. For a complete list of improvements and bug fixes, see the
Apache Kafka release notes for 3.7.0.

Apache Kafka version 3.6.0 (with production-ready tiered storage)

For information about Apache Kafka version 3.6.0 (with production-ready tiered storage), see its
release notes on the Apache Kafka downloads site.

Amazon MSK will continue to use and manage Zookeeper for quorum management in this release
for stability.

Amazon MSK version 3.5.1

Amazon Managed Streaming for Apache Kafka (Amazon MSK) now supports Apache Kafka version
3.5.1 for new and existing clusters. Apache Kafka 3.5.1 includes several bug fixes and new features
that improve performance. Key features include the introduction of new rack-aware partition
assignment for consumers. Amazon MSK will continue to use and manage Zookeeper for quorum
management in this release. For a complete list of improvements and bug fixes, see the Apache
Kafka release notes for 3.5.1.

Apache Kafka version 3.6.0 (with production-ready tiered storage) 354

https://docs.aws.amazon.com/msk/latest/developerguide/kraft-intro.html
https://docs.aws.amazon.com/msk/latest/developerguide/kraft-intro.html
https://downloads.apache.org/kafka/3.7.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.6.0/RELEASE_NOTES.html

Amazon Managed Streaming for Apache Kafka Developer Guide

For information about Apache Kafka version 3.5.1, see its release notes on the Apache Kafka
downloads site.

Amazon MSK version 3.4.0

Amazon Managed Streaming for Apache Kafka (Amazon MSK) now supports Apache Kafka version
3.4.0 for new and existing clusters. Apache Kafka 3.4.0 includes several bug fixes and new features
that improve performance. Key features include a fix to improve stability to fetch from the closest
replica. Amazon MSK will continue to use and manage Zookeeper for quorum management in this
release. For a complete list of improvements and bug fixes, see the Apache Kafka release notes for
3.4.0.

For information about Apache Kafka version 3.4.0, see its release notes on the Apache Kafka
downloads site.

Amazon MSK version 3.3.2

Amazon Managed Streaming for Apache Kafka (Amazon MSK) now supports Apache Kafka version
3.3.2 for new and existing clusters. Apache Kafka 3.3.2 includes several bug fixes and new features
that improve performance. Key features include a fix to improve stability to fetch from the closest
replica. Amazon MSK will continue to use and manage Zookeeper for quorum management in this
release. For a complete list of improvements and bug fixes, see the Apache Kafka release notes for
3.3.2.

For information about Apache Kafka version 3.3.2, see its release notes on the Apache Kafka
downloads site.

Amazon MSK version 3.3.1

Amazon Managed Streaming for Apache Kafka (Amazon MSK) now supports Apache Kafka version
3.3.1 for new and existing clusters. Apache Kafka 3.3.1 includes several bug fixes and new features
that improve performance. Some of the key features include enhancements to metrics and
partitioner. Amazon MSK will continue to use and manage Zookeeper for quorum management in
this release for stability. For a complete list of improvements and bug fixes, see the Apache Kafka
release notes for 3.3.1.

For information about Apache Kafka version 3.3.1, see its release notes on the Apache Kafka
downloads site.

Amazon MSK version 3.4.0 355

https://archive.apache.org/dist/kafka/3.5.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.4.0/RELEASE_NOTES.html
https://downloads.apache.org/kafka/3.3.2/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.3.1/RELEASE_NOTES.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Amazon MSK version 3.1.1

Amazon Managed Streaming for Apache Kafka (Amazon MSK) now supports Apache Kafka version
3.1.1 and 3.2.0 for new and existing clusters. Apache Kafka 3.1.1 and Apache Kafka 3.2.0 includes
several bug fixes and new features that improve performance. Some of the key features include
enhancements to metrics and the use of topic IDs. MSK will continue to use and manage Zookeeper
for quorum management in this release for stability. For a complete list of improvements and bug
fixes, see the Apache Kafka release notes for 3.1.1 and 3.2.0.

For information about Apache Kafka version 3.1.1 and 3.2.0, see its 3.2.0 release notes and 3.1.1
release notes on the Apache Kafka downloads site.

Amazon MSK tiered storage version 2.8.2.tiered

This release is an Amazon MSK-only version of Apache Kafka version 2.8.2, and is compatible with
open source Apache Kafka clients.

The 2.8.2.tiered release contains tiered storage functionality that is compatible with APIs
introduced in KIP-405 for Apache Kafka. For more information about the Amazon MSK tiered
storage feature, see Tiered storage.

Apache Kafka version 2.5.1

Apache Kafka version 2.5.1 includes several bug fixes and new features, including encryption in-
transit for Apache ZooKeeper and administration clients. Amazon MSK provides TLS ZooKeeper
endpoints, which you can query with the DescribeCluster operation.

The output of the DescribeCluster operation includes the ZookeeperConnectStringTls node,
which lists the TLS zookeeper endpoints.

The following example shows the ZookeeperConnectStringTls node of the response for the
DescribeCluster operation:

"ZookeeperConnectStringTls": "z-3.awskafkatutorialc.abcd123.c3.kafka.us-
east-1.amazonaws.com:2182,z-2.awskafkatutorialc.abcd123.c3.kafka.us-
east-1.amazonaws.com:2182,z-1.awskafkatutorialc.abcd123.c3.kafka.us-
east-1.amazonaws.com:2182"

For information about using TLS encryption with zookeeper, see Using TLS security with Apache
ZooKeeper.

Amazon MSK version 3.1.1 356

https://archive.apache.org/dist/kafka/3.2.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.1.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.1.1/RELEASE_NOTES.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster

Amazon Managed Streaming for Apache Kafka Developer Guide

For more information about Apache Kafka version 2.5.1, see its release notes on the Apache Kafka
downloads site.

Amazon MSK bug-fix version 2.4.1.1

This release is an Amazon MSK-only bug-fix version of Apache Kafka version 2.4.1. This bug-fix
release contains a fix for KAFKA-9752, a rare issue that causes consumer groups to continuously
rebalance and remain in the PreparingRebalance state. This issue affects clusters running
Apache Kafka versions 2.3.1 and 2.4.1. This release contains a community-produced fix that is
available in Apache Kafka version 2.5.0.

Note

Amazon MSK clusters running version 2.4.1.1 are compatible with any Apache Kafka client
that is compatible with Apache Kafka version 2.4.1.

We recommend that you use MSK bug-fix version 2.4.1.1 for new Amazon MSK clusters if you
prefer to use Apache Kafka 2.4.1. You can update existing clusters running Apache Kafka version
2.4.1 to this version to incorporate this fix. For information about upgrading an existing cluster, see
Updating the Apache Kafka version.

To work around this issue without upgrading the cluster to version 2.4.1.1, see the Consumer group
stuck in PreparingRebalance state section of the Troubleshooting your Amazon MSK cluster
guide.

Apache Kafka version 2.4.1 (use 2.4.1.1 instead)

Note

You can no longer create an MSK cluster with Apache Kafka version 2.4.1. Instead, you
can use Amazon MSK bug-fix version 2.4.1.1 with clients compatible with Apache Kafka
version 2.4.1. And if you already have an MSK cluster with Apache Kafka version 2.4.1, we
recommend you update it to use Apache Kafka version 2.4.1.1 instead.

KIP-392 is one of the key Kafka Improvement Proposals that are included in the 2.4.1 release of
Apache Kafka. This improvement allows consumers to fetch from the closest replica. To use this

Amazon MSK bug-fix version 2.4.1.1 357

https://archive.apache.org/dist/kafka/2.5.1/RELEASE_NOTES.html
https://issues.apache.org/jira/browse/KAFKA-9752

Amazon Managed Streaming for Apache Kafka Developer Guide

feature, set client.rack in the consumer properties to the ID of the consumer's Availability
Zone. An example AZ ID is use1-az1. Amazon MSK sets broker.rack to the IDs of the
Availability Zones of the brokers. You must also set the replica.selector.class configuration
property to org.apache.kafka.common.replica.RackAwareReplicaSelector, which is an
implementation of rack awareness provided by Apache Kafka.

When you use this version of Apache Kafka, the metrics in the PER_TOPIC_PER_BROKER
monitoring level appear only after their values become nonzero for the first time. For more
information about this, see the section called “PER_TOPIC_PER_BROKER Level monitoring”.

For information about how to find Availability Zone IDs, see AZ IDs for Your Resource in the AWS
Resource Access Manager user guide.

For information about setting configuration properties, see Configuration.

For more information about KIP-392, see Allow Consumers to Fetch from Closest Replica in the
Confluence pages.

For more information about Apache Kafka version 2.4.1, see its release notes on the Apache Kafka
downloads site.

Amazon MSK version support

This topic describes the Amazon MSK version support policy and the procedure for Updating the
Apache Kafka version. If you're upgrading your Kafka version, follow the best practices outlined in
Best practices for version upgrades.

Amazon MSK version support policy

This section describes the support policy for Amazon MSK supported Kafka versions.

• All Kafka versions are supported until they reach their end of support date. For details on
end of support dates, see Supported Apache Kafka versions. Upgrade your MSK cluster to the
recommended Kafka version or higher version before the end of support date. For details on
updating your Apache Kafka version, see Updating the Apache Kafka version. A cluster using a
Kafka version after its end of support date is auto-upgraded to the recommended Kafka version.

• MSK will phase out support for newly created clusters that use Kafka versions with published end
of support dates.

Amazon MSK version support 358

https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392:+Allow+consumers+to+fetch+from+closest+replica
https://archive.apache.org/dist/kafka/2.4.1/RELEASE_NOTES.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Updating the Apache Kafka version

You can update an existing MSK cluster to a newer version of Apache Kafka. You can't update
it to an older version. When you update the Apache Kafka version of an MSK cluster, also check
your client-side software to make sure its version enables you to use the features of the cluster's
new Apache Kafka version. Amazon MSK only updates the server software. It doesn't update your
clients.

For information about how to make a cluster highly available during an update, see the section
called “Build highly available clusters”.

Important

You can't update the Apache Kafka version for an MSK cluster that exceeds the limits
described in the section called “ Right-size your cluster: Number of partitions per broker”.

Updating the Apache Kafka version using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster on which you want to update the Apache Kafka version.

3. On the Properties tab choose Upgrade in the Apache Kafka version section.

Updating the Apache Kafka version using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN)
that you obtained when you created your cluster. If you don't have the ARN for your cluster,
you can find it by listing all clusters. For more information, see the section called “Listing
clusters”.

aws kafka get-compatible-kafka-versions --cluster-arn ClusterArn

The output of this command includes a list of the Apache Kafka versions to which you can
update the cluster. It looks like the following example.

{
 "CompatibleKafkaVersions": [
 {

Updating the Apache Kafka version 359

https://console.aws.amazon.com/msk/

Amazon Managed Streaming for Apache Kafka Developer Guide

 "SourceVersion": "2.2.1",
 "TargetVersions": [
 "2.3.1",
 "2.4.1",
 "2.4.1.1",
 "2.5.1"
]
 }
]
}

2. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN)
that you obtained when you created your cluster. If you don't have the ARN for your cluster,
you can find it by listing all clusters. For more information, see the section called “Listing
clusters”.

Replace Current-Cluster-Version with the current version of the cluster. For
TargetVersion you can specify any of the target versions from the output of the previous
command.

Important

Cluster versions aren't simple integers. To find the current version of the cluster, use
the DescribeCluster operation or the describe-cluster AWS CLI command. An example
version is KTVPDKIKX0DER.

aws kafka update-cluster-kafka-version --cluster-arn ClusterArn --current-
version Current-Cluster-Version --target-kafka-version TargetVersion

The output of the previous command looks like the following JSON.

{

 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef"
}

Updating the Apache Kafka version 360

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kafka/describe-cluster.html

Amazon Managed Streaming for Apache Kafka Developer Guide

3. To get the result of the update-cluster-kafka-version operation, run the following
command, replacing ClusterOperationArn with the ARN that you obtained in the output of
the update-cluster-kafka-version command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

{
 "ClusterOperationInfo": {
 "ClientRequestId": "62cd41d2-1206-4ebf-85a8-dbb2ba0fe259",
 "ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/
exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2",
 "CreationTime": "2021-03-11T20:34:59.648000+00:00",
 "OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4f7f-1234-9876543210ef",
 "OperationState": "UPDATE_IN_PROGRESS",
 "OperationSteps": [
 {
 "StepInfo": {
 "StepStatus": "IN_PROGRESS"
 },
 "StepName": "INITIALIZE_UPDATE"
 },
 {
 "StepInfo": {
 "StepStatus": "PENDING"
 },
 "StepName": "UPDATE_APACHE_KAFKA_BINARIES"
 },
 {
 "StepInfo": {
 "StepStatus": "PENDING"
 },
 "StepName": "FINALIZE_UPDATE"
 }
],
 "OperationType": "UPDATE_CLUSTER_KAFKA_VERSION",
 "SourceClusterInfo": {
 "KafkaVersion": "2.4.1"

Updating the Apache Kafka version 361

Amazon Managed Streaming for Apache Kafka Developer Guide

 },
 "TargetClusterInfo": {
 "KafkaVersion": "2.6.1"
 }
 }
}

If OperationState has the value UPDATE_IN_PROGRESS, wait a while, then run the
describe-cluster-operation command again. When the operation is complete, the value
of OperationState becomes UPDATE_COMPLETE. Because the time required for Amazon
MSK to complete the operation varies, you might need to check repeatedly until the operation
is complete.

Updating the Apache Kafka version using the API

1. Invoke the GetCompatibleKafkaVersions operation to get a list of the Apache Kafka versions to
which you can update the cluster.

2. Invoke the UpdateClusterKafkaVersion operation to update the cluster to one of the
compatible Apache Kafka versions.

Best practices for version upgrades

To ensure client continuity during the rolling update that is performed as part of the Kafka version
upgrade process, review the configuration of your clients and your Apache Kafka topics as follows:

• Set the topic replication factor (RF) to a minimum value of 2 for two-AZ clusters and a minimum
value of 3 for three-AZ clusters. An RF value of 2 can lead to offline partitions during patching.

• Set minimum in-sync replicas (minISR) to a maximum value of RF - 1 to ensure the partition
replica set can tolerate one replica being offline or under-replicated.

• Configure clients to use multiple broker connection strings. Having multiple brokers in a client’s
connection string allows for failover if a specific broker supporting client I/O begins to be
patched. For information about how to get a connection string with multiple brokers, see Getting
the bootstrap brokers for an Amazon MSK cluster.

• We recommend that you upgrade connecting clients to the recommended version or above to
benefit from the features available in the new version. Client upgrades are not subject to the end
of life (EOL) dates of your MSK cluster's Kafka version, and do not need to be completed by the

Best practices for version upgrades 362

https://docs.aws.amazon.com//msk/1.0/apireference/compatible-kafka-versions.html#GetCompatibleKafkaVersions
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-version.html#UpdateClusterKafkaVersion
https://docs.aws.amazon.com//msk/latest/developerguide/msk-get-bootstrap-brokers.html
https://docs.aws.amazon.com//msk/latest/developerguide/msk-get-bootstrap-brokers.html

Amazon Managed Streaming for Apache Kafka Developer Guide

EOL date. Apache Kafka provides a bi-directional client compatibility policy that allows older
clients to work with newer clusters and vice versa.

• Kafka clients using versions 3.x.x are likely to come with the following defaults: acks=all and
enable.idempotence=true. acks=all is different from the previous default of acks=1
and provides extra durability by ensuring that all in-sync replicas acknowledge the produce
request. Similarly, the default for enable.idempotence was previously false. The change to
enable.idempotence=true as the default lowers the likelihood of duplicate messages. These
changes are considered best practice settings and may introduce a small amount of additional
latency that's within normal performance parameters.

• Use the recommended Kafka version when creating new MSK clusters. Using the recommended
Kafka version allows you to benefit from the latest Kafka and MSK features.

Best practices for version upgrades 363

https://kafka.apache.org/protocol#protocol_compatibility

Amazon Managed Streaming for Apache Kafka Developer Guide

Troubleshooting your Amazon MSK cluster

The following information can help you troubleshoot problems that you might have with your
Amazon MSK cluster. You can also post your issue to AWS re:Post.

Topics

• Volume replacement causes disk saturation due to replication overload

• Consumer group stuck in PreparingRebalance state

• Error delivering broker logs to Amazon CloudWatch Logs

• No default security group

• Cluster appears stuck in the CREATING state

• Cluster state goes from CREATING to FAILED

• Cluster state is ACTIVE but producers cannot send data or consumers cannot receive data

• AWS CLI doesn't recognize Amazon MSK

• Partitions go offline or replicas are out of sync

• Disk space is running low

• Memory running low

• Producer gets NotLeaderForPartitionException

• Under-replicated partitions (URP) greater than zero

• Cluster has topics called __amazon_msk_canary and __amazon_msk_canary_state

• Partition replication fails

• Unable to access cluster that has public access turned on

• Unable to access cluster from within AWS: Networking issues

• Failed authentication: Too many connects

• MSK Serverless: Cluster creation fails

Volume replacement causes disk saturation due to replication
overload

During unplanned volume hardware failure, Amazon MSK may replace the volume with a new
instance. Kafka repopulates the new volume by replicating partitions from other brokers in the

Volume replacement causes disk saturation due to replication overload 364

https://repost.aws/

Amazon Managed Streaming for Apache Kafka Developer Guide

cluster. Once partitions are replicated and caught up, they are eligible for leadership and in-sync
replica (ISR) membership.

Problem

In a broker recovering from volume replacement, some partitions of varying sizes may come
back online before others. This can be problematic as those partitions can be serving traffic from
the same broker that is still catching up (replicating) other partitions. This replication traffic can
sometimes saturate the underlying volume throughput limits, which is 250 MiB per second in
the default case. When this saturation occurs, any partitions that are already caught up will be
impacted, resulting in latency across the cluster for any brokers sharing ISR with those caught up
partitions (not just leader partitions due to remote acks acks=all). This problem is more common
with larger clusters that have larger numbers of partitions that vary in size.

Recommendation

• To improve replication I/O posture, ensure that best practice thread settings are in place.

• To reduce the likelihood of underlying volume saturation, enable provisioned storage with a
higher throughput. A min throughput value of 500 MiB/s is recommended for high throughput
replication cases, but the actual value needed will vary with throughput and use case.
Provisioning storage throughput.

• To minimize replication pressure, lower num.replica.fetchers to the default value of 2.

Consumer group stuck in PreparingRebalance state

If one or more of your consumer groups is stuck in a perpetual rebalancing state, the cause might
be Apache Kafka issue KAFKA-9752, which affects Apache Kafka versions 2.3.1 and 2.4.1.

To resolve this issue, we recommend that you upgrade your cluster to Amazon MSK bug-fix version
2.4.1.1, which contains a fix for this issue. For information about updating an existing cluster to
Amazon MSK bug-fix version 2.4.1.1, see Updating the Apache Kafka version.

The workarounds for solving this issue without upgrading the cluster to Amazon MSK bug-fix
version 2.4.1.1 are to either set the Kafka clients to use Static membership protocol , or to Identify
and reboot the coordinating broker node of the stuck consumer group.

Implementing static membership protocol

To implement Static Membership Protocol in your clients, do the following:

Consumer group stuck in PreparingRebalance state 365

https://docs.aws.amazon.com/msk/latest/developerguide/bestpractices.html#optimize-broker-threads
https://issues.apache.org/jira/browse/KAFKA-9752

Amazon Managed Streaming for Apache Kafka Developer Guide

1. Set the group.instance.id property of your Kafka Consumers configuration to a static
string that identifies the consumer in the group.

2. Ensure that other instances of the configuration are updated to use the static string.

3. Deploy the changes to your Kafka Consumers.

Using Static Membership Protocol is more effective if the session timeout in the client
configuration is set to a duration that allows the consumer to recover without prematurely
triggering a consumer group rebalance. For example, if your consumer application can tolerate 5
minutes of unavailability, a reasonable value for the session timeout would be 4 minutes instead of
the default value of 10 seconds.

Note

Using Static Membership Protocol only reduces the probability of encountering this issue.
You may still encounter this issue even when using Static Membership Protocol.

Rebooting the coordinating broker node

To reboot the coordinating broker node, do the following:

1. Identify the group coordinator using the kafka-consumer-groups.sh command.

2. Restart the group coordinator of the stuck consumer group using the RebootBroker API
action.

Error delivering broker logs to Amazon CloudWatch Logs

When you try to set up your cluster to send broker logs to Amazon CloudWatch Logs, you might
get one of two exceptions.

If you get an InvalidInput.LengthOfCloudWatchResourcePolicyLimitExceeded
exception, try again but use log groups that start with /aws/vendedlogs/. For more information,
see Enabling Logging from Certain Amazon Web Services.

If you get an InvalidInput.NumberOfCloudWatchResourcePoliciesLimitExceeded
exception, choose an existing Amazon CloudWatch Logs policy in your account, and append the
following JSON to it.

Identify and reboot 366

https://kafka.apache.org/26/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-reboot-broker.html#RebootBroker
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html

Amazon Managed Streaming for Apache Kafka Developer Guide

{"Sid":"AWSLogDeliveryWrite","Effect":"Allow","Principal":
{"Service":"delivery.logs.amazonaws.com"},"Action":
["logs:CreateLogStream","logs:PutLogEvents"],"Resource":["*"]}

If you try to append the JSON above to an existing policy but get an error that says you've reached
the maximum length for the policy you picked, try to append the JSON to another one of your
Amazon CloudWatch Logs policies. After you append the JSON to an existing policy, try once again
to set up broker-log delivery to Amazon CloudWatch Logs.

No default security group

If you try to create a cluster and get an error indicating that there's no default security group, it
might be because you are using a VPC that was shared with you. Ask your administrator to grant
you permission to describe the security groups on this VPC and try again. For an example of a
policy that allows this action, see Amazon EC2: Allows Managing EC2 Security Groups Associated
With a Specific VPC, Programmatically and in the Console .

Cluster appears stuck in the CREATING state

Sometimes cluster creation can take up to 30 minutes. Wait for 30 minutes and check the state of
the cluster again.

Cluster state goes from CREATING to FAILED

Try creating the cluster again.

Cluster state is ACTIVE but producers cannot send data or
consumers cannot receive data

• If the cluster creation succeeds (the cluster state is ACTIVE), but you can't send or receive data,
ensure that your producer and consumer applications have access to the cluster. For more
information, see the guidance in the section called “Step 3: Create a client machine”.

• If your producers and consumers have access to the cluster but still experience problems
producing and consuming data, the cause might be KAFKA-7697, which affects Apache Kafka

No default security group 367

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://issues.apache.org/jira/browse/KAFKA-7697

Amazon Managed Streaming for Apache Kafka Developer Guide

version 2.1.0 and can lead to a deadlock in one or more brokers. Consider migrating to Apache
Kafka 2.2.1, which is not affected by this bug. For information about how to migrate, see
Migration.

AWS CLI doesn't recognize Amazon MSK

If you have the AWS CLI installed, but it doesn't recognize the Amazon MSK commands, upgrade
your AWS CLI to the latest version. For detailed instructions on how to upgrade the AWS CLI, see
Installing the AWS Command Line Interface. For information about how to use the AWS CLI to run
Amazon MSK commands, see How it works.

Partitions go offline or replicas are out of sync

These can be symptoms of low disk space. See the section called “Disk space is running low”.

Disk space is running low

See the following best practices for managing disk space: the section called “Monitor disk space”
and the section called “Adjust data retention parameters”.

Memory running low

If you see the MemoryUsed metric running high or MemoryFree running low, that doesn't mean
there's a problem. Apache Kafka is designed to use as much memory as possible, and it manages it
optimally.

Producer gets NotLeaderForPartitionException

This is often a transient error. Set the producer's retries configuration parameter to a value
that's higher than its current value.

Under-replicated partitions (URP) greater than zero

The UnderReplicatedPartitions metric is an important one to monitor. In a healthy MSK
cluster, this metric has the value 0. If it's greater than zero, that might be for one of the following
reasons.

AWS CLI doesn't recognize Amazon MSK 368

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• If UnderReplicatedPartitions is spiky, the issue might be that the cluster isn't provisioned
at the right size to handle incoming and outgoing traffic. See Best practices.

• If UnderReplicatedPartitions is consistently greater than 0 including during low-traffic
periods, the issue might be that you've set restrictive ACLs that don't grant topic access to
brokers. To replicate partitions, brokers must be authorized to both READ and DESCRIBE topics.
DESCRIBE is granted by default with the READ authorization. For information about setting ACLs,
see Authorization and ACLs in the Apache Kafka documentation.

Cluster has topics called __amazon_msk_canary and
__amazon_msk_canary_state

You might see that your MSK cluster has a topic with the name __amazon_msk_canary and
another with the name __amazon_msk_canary_state. These are internal topics that Amazon
MSK creates and uses for cluster health and diagnostic metrics. These topics are negligible in size
and can't be deleted.

Partition replication fails

Ensure that you haven't set ACLs on CLUSTER_ACTIONS.

Unable to access cluster that has public access turned on

If your cluster has public access turned on, but you still cannot access it from the internet, follow
these steps:

1. Ensure that the cluster's security group's inbound rules allow your IP address and the cluster's
port. For a list of cluster port numbers, see the section called “Port information”. Also
ensure that the security group's outbound rules allow outbound communications. For more
information about security groups and their inbound and outbound rules, see Security groups
for your VPC in the Amazon VPC User Guide.

2. Make sure that your IP address and the cluster's port are allowed in the inbound rules of the
cluster's VPC network ACL. Unlike security groups, network ACLs are stateless. This means that
you must configure both inbound and outbound rules. In the outbound rules, allow all traffic
(port range: 0-65535) to your IP address. For more information, see Add and delete rules in the
Amazon VPC User Guide.

Cluster has topics called __amazon_msk_canary and __amazon_msk_canary_state 369

https://kafka.apache.org/documentation/#security_authz
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html#Rules

Amazon Managed Streaming for Apache Kafka Developer Guide

3. Make sure that you are using the public-access bootstrap-brokers string to access the cluster.
An MSK cluster that has public access turned on has two different bootstrap-brokers strings,
one for public access, and one for access from within AWS. For more information, see the
section called “Getting the bootstrap brokers using the AWS Management Console”.

Unable to access cluster from within AWS: Networking issues

If you have an Apache Kafka application that is unable to communicate successfully with an MSK
cluster, start by performing the following connectivity test.

1. Use any of the methods described in the section called “Getting the bootstrap brokers” to get
the addresses of the bootstrap brokers.

2. In the following command replace bootstrap-broker with one of the broker addresses that
you obtained in the previous step. Replace port-number with 9094 if the cluster is set up to
use TLS authentication. If the cluster doesn't use TLS authentication, replace port-number
with 9092. Run the command from the client machine.

telnet bootstrap-broker port-number

Where port-number is:

• 9094 if the cluster is set up to use TLS authentication.

• 9092 If the cluster doesn't use TLS authentication.

• A different port-number is required if public access is enabled.

Run the command from the client machine.

3. Repeat the previous command for all the bootstrap brokers.

If the client machine is able to access the brokers, this means there are no connectivity issues. In
this case, run the following command to check whether your Apache Kafka client is set up correctly.
To get bootstrap-brokers, use any of the methods described in the section called “Getting the
bootstrap brokers”. Replace topic with the name of your topic.

<path-to-your-kafka-installation>/bin/kafka-console-producer.sh --broker-
list bootstrap-brokers --producer.config client.properties --topic topic

Unable to access cluster from within AWS: Networking issues 370

Amazon Managed Streaming for Apache Kafka Developer Guide

If the previous command succeeds, this means that your client is set up correctly. If you're still
unable to produce and consume from an application, debug the problem at the application level.

If the client machine is unable to access the brokers, see the following subsections for guidance
that is based on your client-machine setup.

Amazon EC2 client and MSK cluster in the same VPC

If the client machine is in the same VPC as the MSK cluster, make sure the cluster's security group
has an inbound rule that accepts traffic from the client machine's security group. For information
about setting up these rules, see Security Group Rules. For an example of how to access a cluster
from an Amazon EC2 instance that's in the same VPC as the cluster, see Getting started.

Amazon EC2 client and MSK cluster in different VPCs

If the client machine and the cluster are in two different VPCs, ensure the following:

• The two VPCs are peered.

• The status of the peering connection is active.

• The route tables of the two VPCs are set up correctly.

For information about VPC peering, see Working with VPC Peering Connections.

On-premises client

In the case of an on-premises client that is set up to connect to the MSK cluster using AWS VPN,
ensure the following:

• The VPN connection status is UP. For information about how to check the VPN connection status,
see How do I check the current status of my VPN tunnel?.

• The route table of the cluster's VPC contains the route for an on-premises CIDR whose target has
the format Virtual private gateway(vgw-xxxxxxxx).

• The MSK cluster's security group allows traffic on port 2181, port 9092 (if your cluster accepts
plaintext traffic), and port 9094 (if your cluster accepts TLS-encrypted traffic).

For more AWS VPN troubleshooting guidance, see Troubleshooting Client VPN.

Amazon EC2 client and MSK cluster in the same VPC 371

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/vpc/latest/peering/working-with-vpc-peering.html
https://aws.amazon.com/premiumsupport/knowledge-center/check-vpn-tunnel-status/
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/troubleshooting.html

Amazon Managed Streaming for Apache Kafka Developer Guide

AWS Direct Connect

If the client uses AWS Direct Connect, see Troubleshooting AWS Direct Connect.

If the previous troubleshooting guidance doesn't resolve the issue, ensure that no firewall is
blocking network traffic. For further debugging, use tools like tcpdump and Wireshark to analyze
traffic and to make sure that it is reaching the MSK cluster.

Failed authentication: Too many connects

The Failed authentication ... Too many connects error indicates that a broker is
protecting itself because one or more IAM clients are trying to connect to it at an aggressive
rate. To help brokers accept a higher rate of new IAM connections, you can increase the
reconnect.backoff.ms configuration parameter.

To learn more about the rate limits for new connections per broker, see the Amazon MSK quota
page.

MSK Serverless: Cluster creation fails

If you try to create an MSK Serverless cluster and the workflow fails, you may not have permission
to create a VPC endpoint. Verify that your administrator has granted you permission to create a
VPC endpoint by allowing the ec2:CreateVpcEndpoint action.

For a complete list of permissions required to perform all Amazon MSK actions, see AWS managed
policy: AmazonMSKFullAccess.

AWS Direct Connect 372

https://docs.aws.amazon.com/directconnect/latest/UserGuide/Troubleshooting.html
https://kafka.apache.org/documentation/#producerconfigs_reconnect.backoff.ms

Amazon Managed Streaming for Apache Kafka Developer Guide

Best practices

This topic outlines some best practices to follow when using Amazon MSK.

Right-size your cluster: Number of partitions per broker

The following table shows the recommended number of partitions (including leader and follower
replicas) per broker.

Broker size Recommended number of partitions
(including leader and follower replicas) per
broker

kafka.t3.small 300

kafka.m5.large or kafka.m5.xlarge 1000

kafka.m5.2xlarge 2000

kafka.m5.4xlarge , kafka.m5.8xlarge ,
kafka.m5.12xlarge , kafka.m5.
16xlarge , or kafka.m5.24xlarge

4000

kafka.m7g.large or kafka.m7g
.xlarge

1000

kafka.m7g.2xlarge 2000

kafka.m7g.4xlarge , kafka.m7g
.8xlarge , kafka.m7g.12xlarge , or
kafka.m7g.16xlarge

4000

If the number of partitions per broker exceeds the recommended value and your cluster becomes
overloaded, you may be prevented from performing the following operations:

• Update the cluster configuration

• Update the cluster to a smaller broker size

Right-size your cluster: Number of partitions per broker 373

Amazon Managed Streaming for Apache Kafka Developer Guide

• Associate an AWS Secrets Manager secret with a cluster that has SASL/SCRAM authentication

A high number of partitions can also result in missing Kafka metrics on CloudWatch and on
Prometheus scraping.

For guidance on choosing the number of partitions, see Apache Kafka Supports 200K Partitions
Per Cluster. We also recommend that you perform your own testing to determine the right size for
your brokers. For more information about the different broker sizes, see the section called “Broker
sizes”.

Right-size your cluster: Number of brokers per cluster

To determine the right number of brokers for your MSK cluster and understand costs, see the MSK
Sizing and Pricing spreadsheet. This spreadsheet provides an estimate for sizing an MSK cluster
and the associated costs of Amazon MSK compared to a similar, self-managed, EC2-based Apache
Kafka cluster. For more information about the input parameters in the spreadsheet, hover over the
parameter descriptions. Estimates provided by this sheet are conservative and provide a starting
point for a new cluster. Cluster performance, size, and costs are dependent on your use case and
we recommend that you verify them with actual testing.

To understand how the underlying infrastructure affects Apache Kafka performance, see Best
practices for right-sizing your Apache Kafka clusters to optimize performance and cost in the AWS
Big Data Blog. The blog post provides information about how to size your clusters to meet your
throughput, availability, and latency requirements. It also provides answers to questions such as
when you should scale up versus scale out, and guidance on how to continuously verify the size of
your production clusters.

Optimize cluster throughput for m5.4xl, m7g.4xl or larger
instances

When using m5.4xl, m7g.4xl, or larger instances, you can optimize the cluster throughput by tuning
the num.io.threads and num.network.threads configurations.

Num.io.threads is the number of threads that a broker uses for processing requests. Adding more
threads, up to the number of CPU cores supported for the instance size, can help improve cluster
throughput.

Right-size your cluster: Number of brokers per cluster 374

https://blogs.apache.org/kafka/entry/apache-kafka-supports-more-partitions
https://blogs.apache.org/kafka/entry/apache-kafka-supports-more-partitions
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdy7oqpxkwhskb.cloudfront.net%2FMSK_Sizing_Pricing.xlsx&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdy7oqpxkwhskb.cloudfront.net%2FMSK_Sizing_Pricing.xlsx&wdOrigin=BROWSELINK
https://aws.amazon.com/blogs/big-data/best-practices-for-right-sizing-your-apache-kafka-clusters-to-optimize-performance-and-cost/
https://aws.amazon.com/blogs/big-data/best-practices-for-right-sizing-your-apache-kafka-clusters-to-optimize-performance-and-cost/

Amazon Managed Streaming for Apache Kafka Developer Guide

Num.network.threads is the number of threads the broker uses for receiving all incoming requests
and returning responses. Network threads place incoming requests on a request queue for
processing by io.threads. Setting num.network.threads to half the number of CPU cores supported
for the instance size allows for full usage of the new instance size.

Important

Do not increase num.network.threads without first increasing num.io.threads as this can
lead to congestion related to queue saturation.

Recommended settings

Instance size Recommended value for
num.io.threads

Recommended value for
num.network.threads

m5.4xl 16 8

m5.8xl 32 16

m5.12xl 48 24

m5.16xl 64 32

m5.24xl 96 48

m7g.4xlarge 16 8

m7g.8xlarge 32 16

m7g.12xlarge 48 24

m7g.16xlarge 64 32

Use latest Kafka AdminClient to avoid topic ID mismatch issue

The ID of a topic is lost (Error: does not match the topic Id for partition) when you use a Kafka
AdminClient version lower than 2.8.0 with the flag --zookeeper to increase or reassign topic
partitions for a cluster using Kafka version 2.8.0 or higher. Note that the --zookeeper flag is

Use latest Kafka AdminClient to avoid topic ID mismatch issue 375

Amazon Managed Streaming for Apache Kafka Developer Guide

deprecated in Kafka 2.5 and is removed starting with Kafka 3.0. See Upgrading to 2.5.0 from any
version 0.8.x through 2.4.x.

To prevent topic ID mismatch, use a Kafka client version 2.8.0 or higher for Kafka admin
operations. Alternatively, clients 2.5 and higher can use the --bootstrap-servers flag instead
of the --zookeeper flag.

Build highly available clusters

Use the following recommendations so that your MSK cluster can be highly available during an
update (such as when you're updating the broker size or Apache Kafka version, for example) or
when Amazon MSK is replacing a broker.

• Set up a three-AZ cluster.

• Ensure that the replication factor (RF) is at least 3. Note that a RF of 1 can lead to offline
partitions during a rolling update; and a RF of 2 may lead to data loss.

• Set minimum in-sync replicas (minISR) to at most RF - 1. A minISR that is equal to the RF
can prevent producing to the cluster during a rolling update. A minISR of 2 allows three-way
replicated topics to be available when one replica is offline.

• Ensure client connection strings include at least one broker from each availability zone. Having
multiple brokers in a client's connection string allows for failover when a specific broker is offline
for an update. For information about how to get a connection string with multiple brokers, see
the section called “Getting the bootstrap brokers”.

Monitor CPU usage

Amazon MSK strongly recommends that you maintain the total CPU utilization for your brokers
(defined as CPU User + CPU System) under 60%. When you have at least 40% of your cluster's
total CPU available, Apache Kafka can redistribute CPU load across brokers in the cluster when
necessary. One example of when this is necessary is when Amazon MSK detects and recovers
from a broker fault; in this case, Amazon MSK performs automatic maintenance, like patching.
Another example is when a user requests a broker-size change or version upgrade; in these two
cases, Amazon MSK deploys rolling workflows that take one broker offline at a time. When brokers
with lead partitions go offline, Apache Kafka reassigns partition leadership to redistribute work to
other brokers in the cluster. By following this best practice you can ensure you have enough CPU
headroom in your cluster to tolerate operational events like these.

Build highly available clusters 376

https://kafka.apache.org/documentation.html#upgrade_2_5_0
https://kafka.apache.org/documentation.html#upgrade_2_5_0

Amazon Managed Streaming for Apache Kafka Developer Guide

You can use Amazon CloudWatch metric math to create a composite metric that is CPU User +
CPU System. Set an alarm that gets triggered when the composite metric reaches an average
CPU utilization of 60%. When this alarm is triggered, scale the cluster using one of the following
options:

• Option 1 (recommended): Update your broker size to the next larger size. For example, if the
current size is kafka.m5.large, update the cluster to use kafka.m5.xlarge. Keep in mind
that when you update the broker size in the cluster, Amazon MSK takes brokers offline in a
rolling fashion and temporarily reassigns partition leadership to other brokers. A size update
typically takes 10-15 minutes per broker.

• Option 2: If there are topics with all messages ingested from producers that use round-robin
writes (in other words, messages aren't keyed and ordering isn't important to consumers),
expand your cluster by adding brokers. Also add partitions to existing topics with the highest
throughput. Next, use kafka-topics.sh --describe to ensure that newly added partitions
are assigned to the new brokers. The main benefit of this option compared to the previous one is
that you can manage resources and costs more granularly. Additionally, you can use this option
if CPU load significantly exceeds 60% because this form of scaling doesn't typically result in
increased load on existing brokers.

• Option 3: Expand your cluster by adding brokers, then reassign existing partitions by using the
partition reassignment tool named kafka-reassign-partitions.sh. However, if you use
this option, the cluster will need to spend resources to replicate data from broker to broker
after partitions are reassigned. Compared to the two previous options, this can significantly
increase the load on the cluster at first. As a result, Amazon MSK doesn't recommend using this
option when CPU utilization is above 70% because replication causes additional CPU load and
network traffic. Amazon MSK only recommends using this option if the two previous options
aren't feasible.

Other recommendations:

• Monitor total CPU utilization per broker as a proxy for load distribution. If brokers have
consistently uneven CPU utilization it might be a sign that load isn't evenly distributed within the
cluster. Amazon MSK recommends using Cruise Control to continuously manage load distribution
via partition assignment.

• Monitor produce and consume latency. Produce and consume latency can increase linearly with
CPU utilization.

Monitor CPU usage 377

https://docs.aws.amazon.com//AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com//msk/latest/developerguide/msk-update-broker-type.html
https://docs.aws.amazon.com//msk/latest/developerguide/msk-update-broker-count.html
https://docs.aws.amazon.com//msk/latest/developerguide/cruise-control.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• JMX scrape interval: If you enable open monitoring with the Prometheus feature, it is
recommended that you use a 60 second or higher scrape interval (scrape_interval: 60s) for your
Prometheus host configuration (prometheus.yml). Lowering the scrape interval can lead to high
CPU usage on your cluster.

Monitor disk space

To avoid running out of disk space for messages, create a CloudWatch alarm that watches the
KafkaDataLogsDiskUsed metric. When the value of this metric reaches or exceeds 85%, perform
one or more of the following actions:

• Use the section called “Automatic scaling”. You can also manually increase broker storage as
described in the section called “Manual scaling”.

• Reduce the message retention period or log size. For information on how to do that, see the
section called “Adjust data retention parameters”.

• Delete unused topics.

For information on how to set up and use alarms, see Using Amazon CloudWatch Alarms. For a full
list of Amazon MSK metrics, see Monitoring a cluster.

Adjust data retention parameters

Consuming messages doesn't remove them from the log. To free up disk space regularly, you can
explicitly specify a retention time period, which is how long messages stay in the log. You can also
specify a retention log size. When either the retention time period or the retention log size are
reached, Apache Kafka starts removing inactive segments from the log.

To specify a retention policy at the cluster level, set one or more of the following
parameters: log.retention.hours, log.retention.minutes, log.retention.ms, or
log.retention.bytes. For more information, see the section called “Custom configurations”.

You can also specify retention parameters at the topic level:

• To specify a retention time period per topic, use the following command.

kafka-configs.sh --bootstrap-server $bs --alter --entity-type topics --entity-
name TopicName --add-config retention.ms=DesiredRetentionTimePeriod

Monitor disk space 378

https://docs.aws.amazon.com/msk/latest/developerguide/open-monitoring.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Managed Streaming for Apache Kafka Developer Guide

• To specify a retention log size per topic, use the following command.

kafka-configs.sh --bootstrap-server $bs --alter --entity-type topics --entity-
name TopicName --add-config retention.bytes=DesiredRetentionLogSize

The retention parameters that you specify at the topic level take precedence over cluster-level
parameters.

Speeding up log recovery after unclean shutdown

After an unclean shutdown, a broker can take a while to restart as it does log recovery. By
default, Kafka only uses a single thread per log directory to perform this recovery. For example,
if you have thousands of partitions, log recovery can take hours to complete. To speed up log
recovery, it's recommended to increase the number of threads using configuration property
num.recovery.threads.per.data.dir. You can set it to the number of CPU cores.

Monitor Apache Kafka memory

We recommend that you monitor the memory that Apache Kafka uses. Otherwise, the cluster may
become unavailable.

To determine how much memory Apache Kafka uses, you can monitor the HeapMemoryAfterGC
metric. HeapMemoryAfterGC is the percentage of total heap memory that is in use after
garbage collection. We recommend that you create a CloudWatch alarm that takes action when
HeapMemoryAfterGC increases above 60%.

The steps that you can take to decrease memory usage vary. They depend on the way that you
configure Apache Kafka. For example, if you use transactional message delivery, you can decrease
the transactional.id.expiration.ms value in your Apache Kafka configuration from
604800000 ms to 86400000 ms (from 7 days to 1 day). This decreases the memory footprint of
each transaction.

Don't add non-MSK brokers

For ZooKeeper-based clusters, if you use Apache ZooKeeper commands to add brokers, these
brokers don't get added to your MSK cluster, and your Apache ZooKeeper will contain incorrect

Speeding up log recovery after unclean shutdown 379

https://docs.aws.amazon.com/msk/latest/developerguide/msk-configuration-properties.html

Amazon Managed Streaming for Apache Kafka Developer Guide

information about the cluster. This might result in data loss. For supported cluster operations, see
How it works.

Enable in-transit encryption

For information about encryption in transit and how to enable it, see the section called “Encryption
in transit”.

Reassign partitions

To move partitions to different brokers on the same cluster, you can use the partition reassignment
tool named kafka-reassign-partitions.sh. For example, after you add new brokers to
expand a cluster or to move partitions in order to removing brokers, you can rebalance that cluster
by reassigning partitions to the new brokers. For information about how to add brokers to a cluster,
see the section called “Expanding a cluster”. For information about how to remove brokers from a
cluster, see the section called “Remove a broker”. For information about the partition reassignment
tool, see Expanding your cluster in the Apache Kafka documentation.

Enable in-transit encryption 380

https://kafka.apache.org/documentation/#basic_ops_cluster_expansion

Amazon Managed Streaming for Apache Kafka Developer Guide

Document history for Amazon MSK Developer Guide

The following table describes the important changes to the Amazon MSK Developer Guide.

Latest documentation update: June 25, 2024

Change Description Date

Graviton upgrade in place
feature added.

You can update your cluster
broker size from M5 or T3 to
M7g, or from M7g to M5.

2024-6-25

3.4.0 end of support date
announced.

End of support date for
Apache Kafka version 3.4.0 is
June 17, 2025.

2024-6-24

Broker removal feature
added.

You can reduce your provision
ed cluster’s storage and
compute capacity by
removing sets of brokers, with
no availability impact, data
durability risk, or disruptio
n to your data streaming
 applications.

2024-5-16

WriteDataIdempoten
tly added to AWSMSKRep
licatorExecutionRole

WriteDataIdempotently
permission is added to
AWSMSKReplicatorEx
ecutionRole policy to support
data replication between MSK
clusters.

2024-5-16

Graviton M7g brokers
released in Brazil and Bahrain.

Amazon MSK now supports
South America (sa-east-
1, São Paulo) and Middle
East (me-south-1, Bahrain)
region availability of M7g
brokers using AWS Graviton

2024-2-07

381

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

processors (custom Arm-
based processors built by
Amazon Web Services).

Release Graviton M7g brokers
to China region

Amazon MSK now supports
China region availability
of M7g brokers using AWS
Graviton processors (custom
Arm-based processors built by
Amazon Web Services).

2024-01-11

Amazon MSK Kafka version
support policy

Added explanation of the
Amazon MSK supported
Kafka version support policy.
For more information, see
Apache Kafka versions.

2023-12-08

New service execution role
policy to support Amazon
MSK Replicator.

Amazon MSK added new
AWSMSKReplicatorEx
ecutionRole policy
to support Amazon MSK
Replicator. For more informati
on, see AWS managed policy:
AWSMSKReplicatorEx
ecutionRole .

2023-12-06

M7g Graviton support Amazon MSK now supports
M7g brokers using AWS
Graviton processors (custom
Arm-based processors built by
Amazon Web Services).

2023-11-27

382

https://docs.aws.amazon.com/msk/latest/developerguide/kafka-versions.html
https://docs.aws.amazon.com/msk/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSMSKReplicatorExecutionRole
https://docs.aws.amazon.com/msk/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSMSKReplicatorExecutionRole
https://docs.aws.amazon.com/msk/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AWSMSKReplicatorExecutionRole

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

Amazon MSK Replicator Amazon MSK Replicator is
a new feature that you can
use to replicate data between
Amazon MSK clusters.
Amazon MSK Replicator
includes an update to the
AmazonMSKFullAccess
policy. For more informati
on, see AWS managed policy:
AmazonMSKFullAccess .

2023-09-28

Updated for IAM best
practices.

Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

2023-03-08

Service-linked role updates
to support multi-VPC private
connectivity

Amazon MSK now includes
AWSServiceRoleForKafka
service-linked role updates
to manage network interface
s and VPC endpoints in
your account that make
cluster brokers accessible to
clients in your VPC. Amazon
MSK uses permissions to
DescribeVpcEndpoints ,
ModifyVpcEndpoint and
DeleteVpcEndpoints .
For more information, see
Using service-linked roles for
Amazon MSK.

2023-03-08

383

https://docs.aws.amazon.com/msk/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonMSKFullAccess
https://docs.aws.amazon.com/msk/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonMSKFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

Support for Apache Kafka
2.7.2

Amazon MSK now supports
Apache Kafka version 2.7.2.
For more information, see
Supported Apache Kafka
versions.

2021-12-21

Support for Apache Kafka
2.6.3

Amazon MSK now supports
Apache Kafka version 2.6.3.
For more information, see
Supported Apache Kafka
versions.

2021-12-21

MSK Serverless Prerelease MSK Serverless is a new
feature that you can use to
create serverless clusters. For
more information, see MSK
Serverless.

2021-11-29

Support for Apache Kafka
2.8.1

Amazon MSK now supports
Apache Kafka version 2.8.1.
For more information, see
Supported Apache Kafka
versions.

2021-09-30

MSK Connect MSK Connect is a new
feature that you can use
to create and manage
Apache Kafka connectors. For
more information, see MSK
Connect.

2021-09-16

Support for Apache Kafka
2.7.1

Amazon MSK now supports
Apache Kafka version 2.7.1.
For more information, see
Supported Apache Kafka
versions.

2021-05-25

384

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

Support for Apache Kafka
2.8.0

Amazon MSK now supports
Apache Kafka version 2.8.0.
For more information, see
Supported Apache Kafka
versions.

2021-04-28

Support for Apache Kafka
2.6.2

Amazon MSK now supports
Apache Kafka version 2.6.2.
For more information, see
Supported Apache Kafka
versions.

2021-04-28

Support for Updating Broker
Type

You can now change the
broker type for an existing
cluster. For more information,
see Updating the broker size.

2021-01-21

Support for Apache Kafka
2.6.1

Amazon MSK now supports
Apache Kafka version 2.6.1.
For more information, see
Supported Apache Kafka
versions.

2021-01-19

Support for Apache Kafka
2.7.0

Amazon MSK now supports
Apache Kafka version 2.7.0.
For more information, see
Supported Apache Kafka
versions.

2020-12-29

385

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

No New Clusters with Apache
Kafka Version 1.1.1

You can no longer create a
new Amazon MSK cluster
with Apache Kafka version
1.1.1. However, if you have
existing MSK clusters that are
running Apache Kafka version
1.1.1, you can continue
using all of the currently-
supported features on those
existing clusters. For more
information, see Apache
Kafka versions.

2020-11-24

Consumer-Lag Metrics Amazon MSK now provides
metrics that you can use
to monitor consumer lag.
For more information, see
Monitoring an Amazon MSK
cluster.

2020-11-23

Support for Cruise Control Amazon MSK now supports
LinkedIn's Cruise Control. For
more information, see Using
LinkedIn's Cruise Control for
Apache Kafka with Amazon
MSK.

2020-11-17

Support for Apache Kafka
2.6.0

Amazon MSK now supports
Apache Kafka version 2.6.0.
For more information, see
Supported Apache Kafka
versions.

2020-10-21

386

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

Support for Apache Kafka
2.5.1

Amazon MSK now supports
Apache Kafka version 2.5.1.
With Apache Kafka version
2.5.1, Amazon MSK supports
encryption in transit between
clients and ZooKeeper
endpoints. For more informati
on, see Supported Apache
Kafka versions.

2020-09-30

Application Auto-Expansion You can configure Amazon
Managed Streaming for
Apache Kafka to automatic
ally expand your cluster's
storage in response to
increased usage. For more
information, see Automatic
scaling.

2020-09-30

Support for Username and
Password Security

Amazon MSK now supports
logging into clusters using
a username and password.
Amazon MSK stores credentia
ls in AWS Secrets Manager.
For more information, see
SASL/SCRAM authentication.

2020-09-17

Support for Upgrading the
Apache Kafka Version of an
Amazon MSK Cluster

You can now upgrade the
Apache Kafka version of an
existing MSK cluster.

2020-05-28

Support for T3.small Broker
Nodes

Amazon MSK now supports
creating clusters with brokers
of Amazon EC2 type T3.small.

2020-04-08

387

Amazon Managed Streaming for Apache Kafka Developer Guide

Change Description Date

Support for Apache Kafka
2.4.1

Amazon MSK now supports
Apache Kafka version 2.4.1.

2020-04-02

Support for Streaming Broker
Logs

Amazon MSK can now stream
broker logs to CloudWatc
h Logs, Amazon S3, and
Amazon Data Firehose.
Firehose can, in turn, deliver
these logs to the destinati
ons that it supports, such as
OpenSearch Service.

2020-02-25

Support for Apache Kafka
2.3.1

Amazon MSK now supports
Apache Kafka version 2.3.1.

2019-12-19

Open Monitoring Amazon MSK now supports
open monitoring with
Prometheus.

2019-12-04

Support for Apache Kafka
2.2.1

Amazon MSK now supports
Apache Kafka version 2.2.1.

2019-07-31

General Availability New features include tagging
support, authentication, TLS
encryption, configurations,
and the ability to update
broker storage.

2019-05-30

Support for Apache Kafka
2.1.0

Amazon MSK now supports
Apache Kafka version 2.1.0.

2019-02-05

388

Amazon Managed Streaming for Apache Kafka Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

389

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Managed Streaming for Apache Kafka
	Table of Contents
	Welcome to the Amazon MSK Developer Guide
	What is Amazon MSK?

	Setting up Amazon MSK
	Sign up for AWS
	Download libraries and tools

	Getting started using Amazon MSK
	Step 1: Create an Amazon MSK cluster
	Step 2: Create an IAM role
	Step 3: Create a client machine
	Step 4: Create a topic
	Step 5: Produce and consume data
	Step 6: Use Amazon CloudWatch to view Amazon MSK metrics
	Step 7: Delete the AWS resources created for this tutorial

	Amazon MSK: How it works
	Creating an Amazon MSK cluster
	Broker sizes
	Creating a cluster using the AWS Management Console
	Creating a cluster using the AWS CLI
	Creating a cluster with a custom Amazon MSK configuration using the AWS CLI
	Creating a cluster using the API

	Deleting an Amazon MSK cluster
	Deleting a cluster using the AWS Management Console
	Deleting a cluster using the AWS CLI
	Deleting a cluster using the API

	Getting the bootstrap brokers for an Amazon MSK cluster
	Getting the bootstrap brokers using the AWS Management Console
	Getting the bootstrap brokers using the AWS CLI
	Getting the bootstrap brokers using the API

	Listing Amazon MSK clusters
	Listing clusters using the AWS Management Console
	Listing clusters using the AWS CLI
	Listing clusters using the API

	Metadata management
	ZooKeeper mode
	Getting the Apache ZooKeeper connection string using the AWS Management Console
	Getting the Apache ZooKeeper connection string using the AWS CLI
	Getting the Apache ZooKeeper connection string using the API

	KRaft mode

	Storage management
	Tiered storage
	Tiered storage requirements
	Tiered storage constraints and limitations
	How log segments are copied to tiered storage
	Example tiered storage scenario

	Creating a Amazon MSK cluster with tiered storage with the AWS Management Console
	Creating an Amazon MSK cluster with tiered storage with the AWS CLI
	Creating a Kafka topic with tiered storage enabled

	Enabling and disabling tiered storage on an existing topic
	Enabling tiered storage on an existing topic
	Disabling tiered storage on an existing topic

	Enabling tiered storage on an existing cluster using AWS CLI
	Updating tiered storage on an existing cluster using the console

	Scaling up broker storage
	Automatic scaling
	Auto-scaling policy details
	Setting up automatic scaling for your Amazon MSK cluster
	Setting up automatic scaling using the AWS Management Console
	Setting up automatic scaling using the CLI
	Setting up automatic-scaling using the API

	Manual scaling
	Scaling up broker storage using the AWS Management Console
	Scaling up broker storage using the AWS CLI
	Scaling up broker storage using the API

	Provisioning storage throughput
	Throughput bottlenecks
	Measuring storage throughput
	Configuration update
	Provisioning storage throughput using the AWS Management Console
	Provisioning storage throughput using the AWS CLI
	Provisioning storage throughput using the API

	Updating the broker size
	Updating the broker size using the AWS Management Console
	Updating the broker size using the AWS CLI
	Updating the broker size using the API

	Updating the configuration of an Amazon MSK cluster
	Updating the configuration of a cluster using the AWS CLI
	Updating the configuration of a cluster using the API

	Expanding an Amazon MSK cluster
	Expanding a cluster using the AWS Management Console
	Expanding a cluster using the AWS CLI
	Expanding a cluster using the API

	Remove a broker from an Amazon MSK cluster
	Prepare to remove brokers by removing all partitions
	Example process to remove partitions

	Remove a broker with the AWS Management Console
	Remove a broker with the AWS CLI
	Remove a broker with the AWS API

	Updating security settings of a cluster
	Updating a cluster's security settings using the AWS Management Console
	Updating a cluster's security settings using the AWS CLI
	Updating a cluster's security settings using the API

	Rebooting a broker for an Amazon MSK cluster
	Rebooting a broker using the AWS Management Console
	Rebooting a broker using the AWS CLI
	Rebooting a broker using the API

	Impact of broker restarts during patching and other maintenance
	Tagging an Amazon MSK cluster
	Tag basics
	Tracking costs using tagging
	Tag restrictions
	Tagging resources using the Amazon MSK API

	Amazon MSK configuration
	Custom MSK configurations
	Dynamic configuration
	Topic-level configuration
	Configuration states

	The default Amazon MSK configuration
	Guidelines for tiered storage topic-level configuration
	Amazon MSK configuration operations
	To create an MSK configuration
	To update an MSK configuration
	To delete an MSK configuration
	To describe an MSK configuration
	To describe an MSK configuration revision
	To list all MSK configurations in your account for the current Region

	MSK Serverless
	Getting started using MSK Serverless clusters
	Step 1: Create an MSK Serverless cluster
	Step 2: Create an IAM role
	Step 3: Create a client machine
	Step 4: Create an Apache Kafka topic
	Step 5: Produce and consume data
	Step 6: Delete resources

	Configuration for serverless clusters
	Monitoring serverless clusters

	MSK Connect
	What is MSK Connect?
	Getting started using MSK Connect
	Step 1: Set up required resources
	Step 2: Create custom plugin
	Step 3: Create client machine and Apache Kafka topic
	Step 4: Create connector
	Step 5: Send data

	Connectors
	Connector capacity
	Creating a connector

	Plugins
	Workers
	Default worker configuration
	Supported worker configuration properties
	Creating a custom worker configuration
	Managing source connector offsets using offset.storage.topic
	Using the default offset storage topic
	Specifying your own offset storage topic
	Considerations

	Externalizing sensitive information using config providers
	Step 1: Create a custom plugin and upload to S3
	Step 2: Configure parameters and permissions for different providers
	Step 3: Create a custom worker configuration with information about your configuration provider
	Step 4: Create the connector
	Considerations

	IAM roles and policies for MSK Connect
	Service execution role
	Examples of IAM policies for MSK Connect
	Cross-service confused deputy prevention
	AWS managed policies for MSK Connect
	AWS managed policy: AmazonMSKConnectReadOnlyAccess
	AWS managed policy: KafkaConnectServiceRolePolicy
	MSK Connect updates to AWS managed policies

	Using service-linked roles for MSK Connect
	Service-linked role permissions for MSK Connect
	Creating a service-linked role for MSK Connect
	Editing a service-linked role for MSK Connect
	Deleting a service-linked role for MSK Connect
	Supported Regions for MSK Connect service-linked roles

	Enabling internet access for Amazon MSK Connect
	Setting up a NAT gateway for Amazon MSK Connect

	Private DNS hostnames
	Configuring a VPC DHCP option set for your connector
	DNS attributes for your VPC
	Failure handling

	Logging for MSK Connect
	Preventing secrets from appearing in connector logs

	Monitoring MSK Connect
	Examples
	Amazon S3 sink connector
	Debezium source connector with configuration provider
	Before you begin
	Creating a Debezium source connector

	Best practices
	Connecting from connectors
	Do not overlap IPs for Amazon VPC peering or Transit Gateway

	Amazon MSK Connect migration guide
	Benefits of using Amazon MSK Connect
	Migrating to Amazon MSK Connect
	Internal topics used by Kafka Connect
	State management of Amazon MSK Connect applications
	Migrating source connectors to Amazon MSK Connect
	Migrating sink connectors to Amazon MSK Connect

	Troubleshooting Amazon MSK Connect

	MSK Replicator
	What is Amazon MSK Replicator?
	How Amazon MSK Replicator works
	Requirements and considerations for creating an Amazon MSK Replicator
	Permissions required to create an MSK Replicator
	Supported cluster types and versions
	MSK Serverless cluster configuration
	Cluster configuration changes

	Getting started using Amazon MSK Replicator
	Step 1: Prepare the Amazon MSK source cluster
	Step 2: Prepare the Amazon MSK target cluster
	Step 3: Create an Amazon MSK Replicator
	Create replicator using the AWS console in the target cluster Region
	Choose your source cluster
	Choose your target cluster
	Configure replicator settings and permissions

	Edit MSK Replicator settings
	Delete an MSK Replicator
	Monitor replication
	MSK Replicator metrics

	Using replication to increase the resiliency of a Kafka streaming application across regions
	
	
	Creating an active-passive Kafka cluster setup and replicated topic naming
	When to failover to the secondary AWS Region
	Performing a planned failover to the secondary AWS Region
	Performing an unplanned failover to the secondary AWS Region
	Performing failback to the primary AWS Region
	Creating an active-active setup using MSK Replicator

	Troubleshooting MSK Replicator
	MSK Replicator state goes from CREATING to FAILED
	MSK Replicator appears stuck in the CREATING state
	MSK Replicator is not replicating data or replicating only partial data
	Message offsets in the target cluster are different than the source cluster
	MSK Replicator is not syncing consumer groups offsets or consumer group does not exist on target cluster
	Replication latency is high or keeps increasing

	Best practices for using MSK Replicator
	Managing MSK Replicator throughput using Kafka quotas
	Setting cluster retention period

	Cluster states
	Security in Amazon Managed Streaming for Apache Kafka
	Data protection in Amazon Managed Streaming for Apache Kafka
	Amazon MSK encryption
	Encryption at rest
	Encryption in transit

	How do I get started with encryption?

	Authentication and authorization for Amazon MSK APIs
	How Amazon MSK works with IAM
	Amazon MSK identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	Amazon MSK resource-based policies
	AWS managed policies
	Authorization based on Amazon MSK tags
	Amazon MSK IAM roles
	Using temporary credentials with Amazon MSK
	Service-linked roles

	Amazon MSK identity-based policy examples
	Policy best practices
	Allow users to view their own permissions
	Accessing one Amazon MSK cluster
	Accessing Amazon MSK clusters based on tags

	Using service-linked roles for Amazon MSK
	Service-linked role permissions for Amazon MSK
	Creating a service-linked role for Amazon MSK
	Editing a service-linked role for Amazon MSK
	Supported Regions for Amazon MSK service-linked roles

	AWS managed policies for Amazon MSK
	AWS managed policy: AmazonMSKFullAccess
	AWS managed policy: AmazonMSKReadOnlyAccess
	AWS managed policy: KafkaServiceRolePolicy
	AWS managed policy: AWSMSKReplicatorExecutionRole
	Amazon MSK updates to AWS managed policies

	Troubleshooting Amazon MSK identity and access
	I Am not authorized to perform an action in Amazon MSK

	Authentication and authorization for Apache Kafka APIs
	IAM access control
	How IAM access control for Amazon MSK works
	Create a cluster that uses IAM access control
	Configure clients for IAM access control
	Using the SASL_OAUTHBEARER mechanism to configure IAM
	Using the MSK custom AWS_MSK_IAM mechanism to configure IAM

	Create authorization policies
	Get the bootstrap brokers for IAM access control

	Semantics of actions and resources
	Actions
	Resources

	Common use cases

	Mutual TLS authentication
	To create a cluster that supports client authentication
	To set up a client to use authentication
	To produce and consume messages using authentication

	Sign-in credentials authentication with AWS Secrets Manager
	How it works
	Setting up SASL/SCRAM authentication for an Amazon MSK cluster
	Connecting to your cluster with sign-in credentials

	Working with users
	Limitations

	Apache Kafka ACLs

	Changing an Amazon MSK cluster's security group
	Controlling access to Apache ZooKeeper
	To place your Apache ZooKeeper nodes in a separate security group
	Using TLS security with Apache ZooKeeper

	Logging
	Broker logs
	Required permissions
	Required KMS key policy for use with SSE-KMS buckets
	Configuring broker logs using the AWS Management Console
	Configuring broker logs using the AWS CLI
	Configuring broker logs using the API

	Logging API calls with AWS CloudTrail
	Amazon MSK information in CloudTrail
	Example: Amazon MSK log file entries

	Compliance validation for Amazon Managed Streaming for Apache Kafka
	Resilience in Amazon Managed Streaming for Apache Kafka
	Infrastructure security in Amazon Managed Streaming for Apache Kafka

	Connecting to an Amazon MSK cluster
	Public access
	Access from within AWS but outside cluster's VPC
	Amazon VPC peering
	AWS Direct Connect
	AWS Transit Gateway
	VPN connections
	REST proxies
	Multiple Region multi-VPC connectivity
	Single Region multi-VPC private connectivity
	EC2-Classic networking is retired
	Amazon MSK multi-VPC private connectivity in a single Region
	What is multi-VPC private connectivity?
	Benefits of multi-VPC private connectivity
	Requirements and limitations for multi-VPC private connectivity
	Getting started using multi-VPC private connectivity
	Step 1: On the MSK cluster in Account A, turn on multi-VPC connectivity for IAM auth scheme on the cluster
	Step 2: Attach a cluster policy to the MSK cluster
	Step 3: Cross-account user actions to configure client-managed VPC connections

	Update the authorization schemes on a cluster
	Reject a managed VPC connection to an Amazon MSK cluster
	Delete a managed VPC connection to an Amazon MSK cluster
	Permissions for multi-VPC private connectivity

	Port information

	Migrating to an Amazon MSK Cluster
	Migrating your Apache Kafka cluster to Amazon MSK
	Migrating from one Amazon MSK cluster to another
	MirrorMaker 1.0 best practices
	MirrorMaker 2.* advantages

	Monitoring an Amazon MSK cluster
	Amazon MSK metrics for monitoring with CloudWatch
	DEFAULT Level monitoring
	PER_BROKER Level monitoring
	PER_TOPIC_PER_BROKER Level monitoring
	PER_TOPIC_PER_PARTITION Level monitoring

	Viewing Amazon MSK metrics using CloudWatch
	Consumer-lag monitoring
	Open monitoring with Prometheus
	Creating an Amazon MSK cluster with open monitoring enabled
	Enabling open monitoring for an existing Amazon MSK cluster
	Setting up a Prometheus host on an Amazon EC2 instance
	Prometheus metrics
	Storing Prometheus metrics in Amazon Managed Service for Prometheus

	Amazon MSK storage capacity alerts
	Monitoring Amazon MSK storage capacity alerts

	Using LinkedIn's Cruise Control for Apache Kafka with Amazon MSK
	Automated deployment template of Cruise Control for Amazon MSK

	Amazon MSK quota
	Amazon MSK quota
	MSK Replicator quotas
	MSK Serverless quota
	MSK Connect quota

	Amazon MSK resources
	MSK integrations
	Amazon Athena connector for Amazon MSK
	Amazon Redshift streaming data ingestion
	Firehose
	Accessing Amazon EventBridge Pipes through the Amazon MSK console

	Apache Kafka versions
	Supported Apache Kafka versions
	Apache Kafka version 3.7.x (with production-ready tiered storage)
	Apache Kafka version 3.6.0 (with production-ready tiered storage)
	Amazon MSK version 3.5.1
	Amazon MSK version 3.4.0
	Amazon MSK version 3.3.2
	Amazon MSK version 3.3.1
	Amazon MSK version 3.1.1
	Amazon MSK tiered storage version 2.8.2.tiered
	Apache Kafka version 2.5.1
	Amazon MSK bug-fix version 2.4.1.1
	Apache Kafka version 2.4.1 (use 2.4.1.1 instead)

	Amazon MSK version support
	Amazon MSK version support policy
	Updating the Apache Kafka version
	Best practices for version upgrades

	Troubleshooting your Amazon MSK cluster
	Volume replacement causes disk saturation due to replication overload
	Consumer group stuck in PreparingRebalance state
	Implementing static membership protocol
	Rebooting the coordinating broker node

	Error delivering broker logs to Amazon CloudWatch Logs
	No default security group
	Cluster appears stuck in the CREATING state
	Cluster state goes from CREATING to FAILED
	Cluster state is ACTIVE but producers cannot send data or consumers cannot receive data
	AWS CLI doesn't recognize Amazon MSK
	Partitions go offline or replicas are out of sync
	Disk space is running low
	Memory running low
	Producer gets NotLeaderForPartitionException
	Under-replicated partitions (URP) greater than zero
	Cluster has topics called __amazon_msk_canary and __amazon_msk_canary_state
	Partition replication fails
	Unable to access cluster that has public access turned on
	Unable to access cluster from within AWS: Networking issues
	Amazon EC2 client and MSK cluster in the same VPC
	Amazon EC2 client and MSK cluster in different VPCs
	On-premises client
	AWS Direct Connect

	Failed authentication: Too many connects
	MSK Serverless: Cluster creation fails

	Best practices
	Right-size your cluster: Number of partitions per broker
	Right-size your cluster: Number of brokers per cluster
	Optimize cluster throughput for m5.4xl, m7g.4xl or larger instances
	Use latest Kafka AdminClient to avoid topic ID mismatch issue
	Build highly available clusters
	Monitor CPU usage
	Monitor disk space
	Adjust data retention parameters
	Speeding up log recovery after unclean shutdown
	Monitor Apache Kafka memory
	Don't add non-MSK brokers
	Enable in-transit encryption
	Reassign partitions

	Document history for Amazon MSK Developer Guide
	AWS Glossary

