Amazon Managed
Streaming for Apache Kafka

Developer Guide

dWS

Amazon Managed Streaming for
Apache Kafka Developer Guide

Amazon Managed Streaming for Apache Kafka: Developer Guide
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon Managed Streaming for
Apache Kafka Developer Guide

Table of Contents

WHhat IS AMAzon MSK? ...ttt et sttt et e e e e e e ra e eaaes 1
Y= [L U o R PPN 3
SIGN UP FOr AWS oottt ettt ettt et e et e et e et s et e et et e tae et e et e et eateanaansesnsasnsanneannees 3
Download Libraries and TOOLSccuiiuiiiiiiiiiiii ettt aa e 3
[CT=] A d g (o I] =T {1 O T O PR P PP PPPTPPTORN 4
SEEP i CrEate @ VPl ettt ettt ettt ettt ea et et et ettt e e e e e eneneneneneaeaeaeaeaeananaatatnanans 4
Step 2: Enable High Availability and Fault TOLeranceccoveviiiiiiiiiiie e 7
SEEP 3: CrEate @ ClUSTEI . .vniniiniiie ittt et e e et et et et et et et et et e et et eaeaaaneaaenaaasnesesaananns 8
Step 4: Create @ ClIeNt Machineoeiniiii i e e e e e e e e e e e e enes 10
SETEP 5: CrEAtE @ TOPIC tuuviiiiiiiieii ittt ettt et et et et et et et et e e enenenenensnenensneasasnnenensnnnsnnns 10
Step 6: Produce and CoNSUME Dataouuiniiiniiiiiiiieie et et e e e e e et e et e e et e e e st eneaeenaaaanas 12
SEEP 7: VIEW MOEEICS .oniniiiniii ettt ettt ettt ettt et ea et e e e aaae s aaeseaansnenensnenenensn 13
Step 8: Delete the CLUSTEN ..ouie i e et e e et e e e e e et e e s e eaeenans 14
HOW Tt WOKKS ettt ettt ettt et et et et et s ean s eaa e eaeeeneenaees 15
Creating @ CLUSTON «oeueeie it ettt et et et s e et s et e e et s et s e an s eneen s e ensenenneanes 15
Broker INStANCE TYPES «.eneeniiiiieiii ettt ettt ettt ettt ettt et et et et et ea et eaeerennenennennens 15
Creating a Cluster Using the AWS Management CoNSOLecocuviuiiniiniiiiiiiiiiiie e eeenes 16
Creating a Cluster UsSing the AWS CLIouiiiiniii ettt et e e enes 17
Creating a Cluster with a Custom MSK Configuration Using the AWS CLIc.ccoovvviviiniinnennnenn. 18
Creating @ Cluster Using the APL ...ttt e et et e enenenns 18
DELEtiNg @ CLUSTON . euiiiii ittt ettt et et et et et e e et e e et e e e e e e e e e e ens 18
Deleting a Cluster Using the AWS Management CONSOLEccveuveuviniiniiniiiiiineieeeeeeeeeeneens 18
Deleting @ Cluster UsSing the AWS CLIuuiiniiniiiiiiiei et ettt e e e 18
Deleting @ Cluster USiNg the AP ...ttt e e ens 19
Getting the Apache ZooKeeper ConnNection StriNgc.eeuieriuiiiiiiiiieeee e e e eneennens 19
Getting the Apache ZooKeeper Connection String Using the AWS Management Console 19
Getting the Apache ZooKeeper Connection String Using the AWS CLIccoviiiiiiiiiiiiiiininnennes 19
Getting the Apache ZooKeeper Connection String Using the APlooiiriiiiiiiiiiiiireeaeens 20
Getting the BoOtStrap BroKErSeuiiniiniiiiiii et et e e e e eanes 20
Getting the Bootstrap Brokers Using the AWS Management Consolecccccvevinveiinieneennennen. 20
Getting the Bootstrap Brokers Using the AWS CLIcc.iiniiiiiiiiiiiiie e 20
Getting the Bootstrap Brokers Using the APl ..o e 21
LISEING CLUSEEIS .. eneeniiit ittt ettt et et s e et s e et s e et s e e ta s e ta s e anseneeaseneeasenennanes 21
Listing Clusters Using the AWS Management CoNSOLecoeeuiiniiniiniiiiiiiiiii e 21
Listing Clusters UsSing the AWS CLIeuieniiniiii et ete e e et eaeenenenaens 21
Listing Clusters USiNg the APloue ittt et ee e e e e e eanes 21
SCAliNG UP BroKEr STOFAgE ..eueniiniiiiiii ittt ettt et ettt ettt et et e e et et et et eaneaneaaeanenaennenns 21
Scaling Up Broker Storage Using the AWS Management Consolecceeuveuviiiiiiiiiiiniininnennennes 21
Scaling Up Broker Storage Using the AWS CLIouuiiniiniiniiiiii et eeeanes 22
Scaling Up Broker Storage Using the APl ...t ee e 22

AULO SCAliNG STOMAGE . eniitiiii ettt ettt et sttt e et s e ta s e en s e e e e aaenes 22
Updating the Configuration 0f @ CLUSTENcuuiiuniiiiiiiii et e et e et e e e e e e eaae e 23
Updating the Configuration of a Cluster Using the AWS CLIcouiiiiiiiiiiiniiieiieieein e 24
Updating the Configuration of a Cluster Using the APlccooiviiiiiiiiiniinie e 25
Deleting the Configuration Of @ CLUSTENcuuiiniiiiii et e e e e e e e ae e e s eaneeans 25
Deleting the Configuration of a Cluster Using the AWS CLIc.coiviiiiiiiiiiniiiiiiiiei e 25
Deleting the Configuration of a Cluster Using the APlcouiiiiiiiiiiiiiiii e 25
EXPANAiNg @ CLUSTEI «..ieniiiiiiii ittt ettt et et et et et ettt et e e e e e e et e e e e eaneaneaneanes 26
Expanding a Cluster Using the AWS Management Consolec.cccviiviiiiiiiiiiiiniiniiiii e 26
Expanding a Cluster Using the AWS CLIouiniiniiiiiie et eaes 27
Expanding a Cluster Using the APl ...t eaee 28
MORNITOIING @ CLUSTEE «.euiniit ittt et et et e et e e et et et et e e e e s e e s e taeeneenaneens 28
Amazon MSK Monitoring Levels for CloudWatch Metricsoeuuviiniiiniiiniiiiiiieeiieeiee e, 28
Amazon MSK Metrics for Monitoring with CloudWatchccooiiiiiiiiiiiiiii e, 28

Amazon Managed Streaming for
Apache Kafka Developer Guide

Viewing Amazon MSK Metrics Using CloudWatchoouiiuiiiiiiiiiiiiiei e, 34
Consumer-Lag Checking WIth BUITOWcueiuiiiiiiiiiiiieie e ee et e eie et e eie e eeaeeneeeeneanns 34
Open Monitoring With Prometheuscuiuiuiiiii e e e e e e e ees 38
Rebooting @ BroKer fOr @ CLUSTEI ...uuiiii it e et et e e et e e e e aa e e aaneanaes 40
Rebooting a Broker Using the AWS CLIcuuiiiniiiiiiiie ettt e e eens 40
Rebooting a Broker Using the APl ...ttt ea e 40
LT e LT R T LT] PP 41
BE: [[2 F 1 [S O TP P PP PRSPPIt 42
Tracking Costs USING TagGiNg ...c.ueeuneuueiueeieiieii et ettt et e et et et et e et eebaeenaeeneeneenaeanns 42

TAG RESTIICTIONS «.eineniii ittt et ettt e e et e e e e e e et et e e en et eneananeaeanenaens 42
Tagging Resources Using the AmMazon MSK APoueiiniiiiiie e 43
[@e]q1 [[=14 To T I USRS 44
CUSTOM CONFIGUIATIONS L.vuiiiiiiii et e et e e et et e et e et et et et et eaeassneeteenseneeneeneennenns 44
DyNamic CoNfIGUIAtionu.iiiiii ittt et et e e et e e et ea e e eaneanaaneanaanns 49
Topic-Level ConfigUrationoeuiiiiiiiiiiie et e e e e e e e s ee e s ee e e aeaneanns 49

) 1N 49
Default CoNfIGUIAtioNc.ieiii et e e e e e e ee et e e e et e eteete et et aaeeraanaennannas 49
Configuration OPEratioNSc.uiuniii it ettt et et e et e et et et e en et eeneeeneenns 51
Create CoNfIGUIAtioNoiniiiii et e et e e e e e e e et e e e e e e eanas 52

To update an MSK coNfIQUIAtioN ..c..iuniiii e e e e e e et e e e eneeneeaeanns 52

To delete an MSK configurationcou et 53

To describe an MSK configurationoou oo 53

To describe an MSK configuration reViSioncc.ciieiiiiiiiiiiiiie e eaaes 53

To list all MSK configurations in your account for the current Regionc..cooviiviiiiiiiiniinnnn... 55
SY=ToT 11 8 PP PP PP PPP 56
Data Prot@CHIONceuieiiii ettt ettt et et e e e e e e eneaaes 56
o Tel Y/ o] o] s IR P T P PP P PRSPPI 57

How Do | Get Started with ENCryption?cuiiiiiiiiiiiii e e e e e e e e 58
Identity and ACCESS MaNAgEMIENTiuiuiiieie ettt et et e e e e et e e et e e et e e e e e e e e e aa e 60
How Amazon Managed Streaming for Apache Kafka Works with IAM ..., 60
Identity-Based POLICY EXAMPLES ...cuuiuniiniiiiiiiieeie et et et et et et et e et eaeetaeaeeteaaeeneannennees 63
Service-LinNKed ROLESuiiiiiie ettt et et et e et e e eaaae 65

B Lo 18] o] (=1 oo} i o T« TR PPRRNt 67
Client AUTNENTICATION ...eeeie ettt et et et e e e e et e e e e eannees 67
To create a cluster that supports client authenticationcccovviiiiiiiiiiini e 67

To set up a client to use AUENENTICATIONiviiiiii e e 68

To produce and consume messages using authenticationcoevviiiiiiiininiincin e 70
Username/ Password AULNENTICATIONvueeininiiii e e eaens 70
HOW Tt WOKKS .ttt e e e et e et et et e e e e e eaeeanae 70
Setting up SASL/ SCRAM authentication for an Amazon MSK Clusterccccevieeineenneinnennnenn. 71
WOrKing With USEISeneieiiiiie ettt ettt et et et e e e e et e e e e eens 72
(10011 =) o] LT PT PPN 73

LY oF: [l T (1 1 I AV I PPN 73
Controlling Access t0 APAche ZOOKEEPENiuiuiiiieit et e e e e e e e ans 74
To place your Apache ZooKeeper nodes in a separate Security groupccceeeeveeeeiinerneenennennns 74
Using TLS security with Apache ZooKEEPErc..iiiiiiiii e 75
[oTe o 12 [« IR TP PP PP PPN 76
27 o] T ol o Lo L TP 76
[IoTe o} [T A o I 6 | LTRSS 78
(@e)3q o] L[] e 1 d o] I TR 80
RESILIEIICE ... ettt ettt ettt et et ettt e et et et et et et et et et ean e eaaeaaae 80
INFrastrUCTUrE SECUIILY ...eenie it ettt e et et et et e e e e e e eaeeneenneens 81
ACCESSING YOUI ClUSTOI 11uitnitiiiiiii ettt et ettt ettt et et et et et e e eaaetnaaneanaansensentensanssnseneensensenseneens 82
AMAZON VPO PEEIIMNG . .ininiiiiiieii ettt e e ettt e et et ea st e et e et e eaetnensaanetanesaenennenensennn 82
AWS Dir€Ct COMMECT .uentiniiiiii ettt ettt et et et et et et et et e e e e e e eeneenees 82
AWS TranSit GAtEWAYcuuiuininiii ittt et ettt et st et et et et et s e et e e e e ens 82
VPN CONNECEIONS ..ttt et e ettt ettt et et e e et ettt e e e e e e e e e e e e e e e e eeneaneeneaneaneanns 82

Amazon Managed Streaming for
Apache Kafka Developer Guide

REST PFOXIES ..evuetieiniitittt et ettt ettt ettt ettt et ettt et et et et e e et et et eaa et eaaeaaeaaeaaeaaeaneanennennns 82
Multiple Region Multi-VPC CONNECLIVILY ..ivuitniiniiiiiieiii et e et e et e e e e e e eaeaneanaanaes 82
(@ @ - 1 [T PSPPSR PRUPROPNN 83

POrt INFOrMAtioNc.eieiie e e ettt e et e e et e e e e e e e e eaaeees 83

[\ [Te Yo] o I TP PP TP PP P PP 84
Migrating Your Apache Kafka Cluster to Amazon MSKciuiiiiiiiiiiiiiiiiii e eaeanas 84
Migrating From One Amazon MSK Cluster to ANOthercouiiiiiiiiiiii e 85
MirrorMaker 1.0 BeSt PractiCescuueuuiiniiiiii ettt et e et e e et e e e e eenee 85
MirrOrMakKer 2.5 AQVANTAGES ...uiuuiiniiiiiiieieei ettt ettt et ettt etaeteetnetetettenetnteastassastntsessesenssnsenssnees 86
[T 3T £ PP PPN 87
APAChE Kafka VEISIONSvuiiiiii it e et e et et et et et et e e e e eaneaneaneansansenseneens 88
Supported Apache Kafka VEISIONSoiuiiiiiiiiiie e e e e e e e 88
Apache Kafka VErsion 2.6.0iiiiiiiiiiiii e et e et e it e e e e e e et e e e e e e et eaaanas 88

ApPache Kafka VEIrSION 2.5.7 co.iuiiiiiiiii it et e et e e e e e e e e e e san e e eaneaneanaannes 88

AmMazon MSK bug-fix VErsion 2.4.T.7 ...ttt et et et et e e e e e e e e aanas 89

Apache Kafka VErSION 2.4.7 ...t et e e e e e e e e e et e e e e e e aanas 89

Apache Kafka VErSION 2.3.7 ot e et e e et e e e e e e et e e e e eanaanas 89

Apache Kafka VErSION 2.2.7 ... et e et e e e e e e e e e e e e e e e e anaanas 89

Apache Kafka VErsion T.T.7 couiuiiiiii e et e e e e e e e e e e e e e e e e eanaanaas 90

Updating the Apache Kafka VEISIONcoueiiiiiiiii et e e e 90

J e8] 0] (=1 e} i 5 T« TP PPNN 93
Consumer group stuck in PreparingRebalance STateccviiviiiiiiiiiiiiiiiii e 93
Static Membership ProtoColouuiiiiniiiiiie et e e e e e e e 93

Identify and REDOOTiiniiiii e e e e e e e e e et e e e e e aanas 94

Error delivering broker logs to Amazon CloudWatch LOgScuuiiniiniiiiiiiiiiiiiiicie e 94

NO defaULlt SECUILY GrOUP cuuiuniiiiii ittt e et e et e e et e e et e e e e e e e e e anetn s e eansaneaneanes 94
Cluster appears stuck in the CREATING Statecuviuiiuiiuiiiiiiiiieiiie e e e eie e ee e ee e ee e eee e eaeenean 94
Cluster state goes from CREATING 0 FAILEDcuuiiniiiiniiiiieiieieeieeie et et e et et et e e et eaeaneanaens 95
Cluster state is ACTIVE but producers cannot send data or consumers cannot receive data 95

AWS CLI doesn't recognize AMAazon MSKcuu ittt et et et e ea e e eaeeans 95
Partitions go offline or replicas are out Of SYNC ...c.viuiiniiiiiii e 95

Disk SPACE iS FUNMING LOW .euuiuiiiiiiieie ittt et e et et et e e et e e e e e e et e e et s e et s e et eaneansananns 95
MEMOIY IS FUNNMING LOW L.iiniiiiiiiiii ettt et e et et et e e et ean et ean e e eaneanaanssnaanesnannns 95
Producer Gets NotLeaderForPartitionEXCEPLIONcuuiiniiiiiiii i e aeaes 95
Under-Replicated Partitions (URP) greater than zZerocooviiiiiiiiiiiiiiiiii e, 96
NETWOIKING ISSUBS . .uitniiniiniiiiti ettt ettt et e et et et et et et et et et et atnetnetnssnsenesnssnssnssnesnsenssnsenns 96
Amazon EC2 client and MSK cluster in the same VPCcouiiiiiiiiiiiie e 97

Amazon EC2 client and MSK cluster in different VPCscouiiiiiiiniiiiiiiiiiccece e, 97
ON-PremiSES CLIBMT ..ouuieiiit ettt ettt et e et et et et e e et e e e e e e e e eanaanaanenns 97

AWS Dir€Ct COMMECTE .ueunitiiiiii ettt ettt et et et ee e et et et et e et e e e eeneens 97

2T ol o = ot o [T PPN 98
RIGIT-SIZE YOUI CLUSTEI «.utinitii it et et et et e et e e e e s e et e e e e s e e eaeanas 98
Number of partitions Per BroKerc..iuiiii e e e e aaas 98

NUmMber of bBrokers Per CLUSTENcu.iuiiii e e e e e e e e e eie et e eteeaeaaneaeanns 98

Build highly available CLUSTEIScvuiiiiii i et e e e e e e e et e ee et e eaeaaeaaeaneanees 98

[\ To] a1 o] difa [o - [« PP PPN 99
Adjust data retention PArAMELEIScu.iiiiiiie e e et e e et et et et et et et et e e e aaneans 99
Don't add NON-MSK DFOKEISeuniiiieeie ettt ettt et et et et et e eaeeaaes 100
Enable in-transit @NCrYPLION ...t e e e e e e e e e a e e e e 100
REASSIGN PANtiTIONS .nenitiit ittt e e ettt et e e et et e et e et e et et et en et e e anes 100

(D Te Yol N3 =] o fll o 11 o] o VPP P PP 101
AWS GLOSSAIY ..eneineeie ettt et et et ettt et e et e et e et e ea et et et ettt e ea ettt et e h e eh e e et et et eheaneanns 103

Amazon Managed Streaming for
Apache Kafka Developer Guide

What Is Amazon MSK?

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that enables
you to build and run applications that use Apache Kafka to process streaming data. Amazon MSK
provides the control-plane operations, such as those for creating, updating, and deleting clusters. It

lets you use Apache Kafka data-plane operations, such as those for producing and consuming data. It
runs open-source versions of Apache Kafka. This means existing applications, tooling, and plugins from
partners and the Apache Kafka community are supported without requiring changes to application code.
You can use Amazon MSK to create clusters that use Apache Kafka version 1.1.1, 2.2.1, 2.3.1, 2.4.1, or
2.5.1.

The following diagram provides an overview of how Amazon MSK works.

Customer VPC
. Subnet A .
Amazon MSK WPC Producer
- £C2 ngtarke
A
Subnetl Subnet 2 Subnet 3

. ' ‘ Subnet B .

Broker nodes (EC2 instances) Consumer

* B2 inzenee
'
i
'

\J

‘ ‘ . Subnet C .
Topic creator

EC2 irsnariee

ZooKeeper nodes (EC2 instances)

The diagram demonstrates the interaction between the following components:

« Broker nodes — When creating an Amazon MSK cluster, you specify how many broker nodes you want
Amazon MSK to create in each Availability Zone. In the example cluster shown in this diagram, there's
one broker per Availability Zone. Each Availability Zone has its own virtual private cloud (VPC) subnet.

« ZooKeeper nodes — Amazon MSK also creates the Apache ZooKeeper nodes for you. Apache
ZooKeeper is an open-source server that enables highly reliable distributed coordination.

« Producers, consumers, and topic creators — Amazon MSK lets you use Apache Kafka data-plane
operations to create topics and to produce and consume data.

o AWS CLI — You can use the AWS Command Line Interface (AWS CLI) or the APIs in the SDK to perform
control-plane operations. For example, you can use the AWS CLI or the SDK to create or delete an
Amazon MSK cluster, list all the clusters in an account, or view the properties of a cluster.

Amazon Managed Streaming for
Apache Kafka Developer Guide

Amazon MSK detects and automatically recovers from the most common failure scenarios for clusters so
that your producer and consumer applications can continue their write and read operations with minimal
impact. When Amazon MSK detects a broker failure, it mitigates the failure or replaces the unhealthy

or unreachable broker with a new one. In addition, where possible, it reuses the storage from the older
broker to reduce the data that Apache Kafka needs to replicate. Your availability impact is limited to the
time required for Amazon MSK to complete the detection and recovery. After a recovery, your producer
and consumer apps can continue to communicate with the same broker IP addresses that they used

before the failure.
To get started using Amazon MSK, see Getting Started (p. 4).

To see the control-plane operations available through Amazon MSK, see the Amazon MSK API Reference.

After you create a cluster, you can use Amazon CloudWatch to monitor it. For more information about
monitoring your cluster using metrics, see the section called “Monitoring a Cluster” (p. 28).

https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Sign Up for AWS

Setting Up Amazon MSK

Before you use Amazon MSK for the first time, complete the following tasks.

Tasks
« Sign Up for AWS (p. 3)
« Download Libraries and Tools (p. 3)

Sign Up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all
services in AWS, including Amazon MSK. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

Download Libraries and Tools

The following libraries and tools can help you work with Amazon MSK:

« The AWS Command Line Interface (AWS CLI) supports Amazon MSK. The AWS CLI enables you to
control multiple AWS services from the command line and automate them through scripts. Upgrade
your AWS CLI to the latest version to ensure that it has support for Amazon MSK. For detailed
instructions on how to upgrade the AWS CLI, see Installing the AWS Command Line Interface.

« The Amazon Managed Streaming for Kafka API Reference documents the API operations that Amazon
MSK supports.

o The AWS SDKs for Go, Java, JavaScript, .NET, Node.js, PHP, Python, and Ruby include Amazon MSK
support and samples.

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com//msk/1.0/apireference/what-is-servicename.html
https://docs.aws.amazon.com/sdk-for-go/api/service/kafka/
https://aws.amazon.com/developers/getting-started/java/
https://aws.amazon.com/sdkforbrowser/
https://aws.amazon.com/developers/getting-started/net/
https://aws.amazon.com/developers/getting-started/nodejs/
https://aws.amazon.com/developers/getting-started/php/
https://github.com/boto/boto
https://aws.amazon.com/developers/getting-started/ruby/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 1: Create a VPC

Getting Started Using Amazon MSK

Step

This section shows you an example of how you can create an MSK cluster, produce and consume data,
and monitor the health of your cluster using metrics. This example doesn't represent all the options you
can choose when you create an MSK cluster. In different parts of this tutorial, we choose default options
for simplicity. This doesn't mean that they're the only options that work for setting up an MSK cluster or
client instances.

This is a step-by-step tutorial that uses the AWS Management Console and the AWS CLI. If you prefer
to follow a different approach, you can perform the types of AWS operations described in this tutorial
using only the AWS Management Console, only the AWS CLI, only the AWS API, or a combination of the
three environments. Alternatively, you can use AWS CloudFormation to set up an MSK cluster. For some
example AWS CloudFormation templates, see Amazon MSK CloudFormation Examples.

Prerequisites

Before you start, ensure that you have an AWS account and that you have the AWS Command Line
Interface (AWS CLI) installed on your computer. For more information about these prerequisites, see
Setting Up (p. 3).

Important
Make sure that you have the latest version of the AWS CLI. Earlier versions might not have the
full functionality of Amazon MSK.
Topics

« Step 1: Create a VPC for Your MSK Cluster (p. 4)

» Step 2: Enable High Availability and Fault Tolerance (p. 7)

« Step 3: Create an Amazon MSK Cluster (p. 8)

« Step 4: Create a Client Machine (p. 10)

« Step 5: Create a Topic (p. 10)

« Step 6: Produce and Consume Data (p. 12)

« Step 7: Use Amazon CloudWatch to View Amazon MSK Metrics (p. 13)

« Step 8: Delete the Amazon MSK Cluster (p. 14)

1: Create a VPC for Your MSK Cluster

In the first step of Getting Started Using Amazon MSK (p. 4), you use the Amazon VPC Console to
create an Amazon Virtual Private Cloud (Amazon VPC). You create an MSK cluster in this VPC in a later
step.

To create a VPC

1. Sign in to the AWS Management Console and open the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

2. Choose Launch VPC Wizard.

https://docs.aws.amazon.com//AWSCloudFormation/latest/UserGuide/aws-resource-msk-cluster.html#aws-resource-msk-cluster--examples
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 1: Create a VPC

dWS

—1

VPG Dashboard o |

Filter by VPC:

Services v Resource Groups ~

Note: Your Instances will launc
Q Selecta VPC

Resources by Reg
Virtual Private

Cloud You are using the following Amaz
Your VPCs

VPCs
Subnets See all regions «

Route Tables

Internet Gateways Subnets

See all regions «
Egress Only Internet

Gateways

DHCP Options Sets Route Tables

See all regions «
Elastic IPs

3. Choose Select to accept the default Amazon VPC configuration named VPC with a Single Public
Subnet.

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 1: Create a VPC

Services v Resource Groups ~

Step 1: Select a VPC Configuration

VPC with a Single Public

Your instances run in a priv:
Subnet

direct access to the Internef
groups can be used to prov

VPC with Public and network traffic to your instar

Private Subnets

Creates:
VPC with Public and A /16 network with a /24 sul
Private Subnets and Public IPs to access the Int

Hardware VPN Access

VPC with a Private Subnet
Only and Hardware VPN
Access

4. For VPC name, enter AWSKafkaTutorialVPC. If you copy this name and paste it into the console,
delete any white space that gets into the text field before the name.

For Availability Zone, choose us-east-1a.

For Subnet name, enter AWSKafkaTutorialSubnet-1. If you copy this name and paste it into the
console, delete any white space that gets into the text field before the name.

Choose Create VPC, and then choose OK.

In the list of VPCs, find AWSKafkaTutorialVPC and copy its ID from the VPC ID column. Save this ID
somewhere because you need it in some of the following steps.

Next Step

Step 2: Enable High Availability and Fault Tolerance (p. 7)

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 2: Enable High Availability and Fault Tolerance

Step 2: Enable High Availability and Fault
Tolerance

In this step of Getting Started Using Amazon MSK (p. 4), you enable high availability and fault
tolerance. To do so, you add two subnets to the VPC that you created with one subnet in the previous
step. After you complete this step, you will have three subnets in three different Availability Zones.

To add subnets to your VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
In the navigation pane, choose Subnets.

In the list of subnets, find AWSKafkaTutorialSubnet-1, and then find the column named Route
table. Copy the value associated with AWSKafkaTutorialSubnet-1 in that column and save it for
later.

Services ~ Resource Groups ~ *

\VVPC Dashboard Actions ¥
4

Filter by VPC:

Name ~ SubnetID
tual Private
@ AwsSKafkaTutorialSubnet-1 subnet-01234567¢
g £
Your VPCs Subnet: subnet-0123456789abcdef0
Subnets
Description Flow Logs Route Table Net

Route Tables

nternet Gateways Edit route table association

4. Choose Create subnet.

o

For the Name tag, enter AWSKafkaTutorialSubnet-2. If you copy this name and paste it into the
console, delete any white space that gets into the text field before the name.

For VPC, choose AWSKafkaTutorialVPC.
For Availability Zone, choose us-east-1b.
For IPv4 CIDR block, enter 10.0.1.0/24.
Choose Create, and then choose Close.

0. Choose AWSKafkaTutorialSubnet-2 from the list of subnets by selecting the check box next to it.
Ensure that no other check boxes in the list are selected.

=S Y ® N O

11. In the subnet view near the bottom of the page, choose the Route Table tab, and then choose Edit
route table association.

https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 3: Create a Cluster

Step

Services Resource Groups ~ *

VPC Dashboard Actions ¥
iR

Filter by VPC:

Q, selecta VPC

Name * SubnetlID

rtual Private

E AWSKafkaTutorialSubnet-2 subnet-abcdef012
four VPCs Subnet: subnet-abcdef01234567890
Subnets

Description Flow Logs Me

Route Tables P g L
Internet Gateways [Edit route table association
Egress Only Internet Route Table: rib-024658135790abcdef

12. In the Route Table ID list, choose the route table whose value you copied earlier in this procedure.
13. Choose Save, and then choose Close.

14. Repeat this procedure to create another subnet with the name AWSKafkaTutorialSubnet-3, in
the us-east-1c Availability Zone, and with the IPv4 CIDR block set to 10.0.2.0/24. If you copy the
name of the subnet and paste it into the console, delete any white space that gets into the text field
before the name.

15. Edit the route table for AWSKafkaTutorialSubnet-3 to ensure that it has the same route table
used for AWSKafkaTutorialSubnet-1 and AWSKafkaTutorialSubnet-2.

Next Step

Step 3: Create an Amazon MSK Cluster (p. 8)

3: Create an Amazon MSK Cluster

In this step of Getting Started Using Amazon MSK (p. 4), you create an Amazon MSK cluster in the
VPC.

To create an Amazon MSK cluster using the AWS CLI

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Subnets, and then copy the subnet IDs of the three subnets you
created previously. Save these IDs because you need them later in this procedure.

3. Inthe navigation pane, choose Security Groups. Then in the table of security groups, find the group
for which the VPC ID column has the ID you saved for AWSKafkaTutorialVPC. Copy the ID of this
security group and save it because you need it later in this procedure.

4. Copy the following JSON and save it to a file. Name the file clusterinfo. json.

https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 3: Create a Cluster

{

"BrokerNodeGroupInfo": {
"BrokerAZDistribution": "DEFAULT",
"InstanceType": "kafka.m5.large",
"ClientSubnets": [

"AWSKafkaTutorialSubnet-1 Subnet ID",
"AWSKafkaTutorialSubnet-2 Subnet ID",
"AWSKafkaTutorialSubnet-3 Subnet ID"
1,
"SecurityGroups": [
"AWSKafkaTutorialVPC Security Group ID"
]

Iy

"ClusterName": "AWSKafkaTutorialCluster",

"EncryptionInfo": {

"EncryptionAtRest": {
"DataVolumeKMSKeyId": "your-CMK"

Iy

"EncryptionInTransit": {
"InCluster": true,
"ClientBroker": "TLS"

}

Iy

"EnhancedMonitoring": "PER_TOPIC_PER_BROKER",

"KafkaVersion": "2.2.1",

"NumberOfBrokerNodes": 3

}

5. Inthe clusterinfo. json file, replace the placeholders for the three subnet IDs and the security
group ID with the values that you saved in previous steps.

6. Inclusterinfo. json, replace your-CMK with a customer managed CMK. You can also remove
EncryptionAtRest and let Amazon MSK create a CMK and use it on your behalf. Setting
InCluster to true means that you want Amazon MSK to encrypt your data as it travels between
brokers within the cluster. For clientBroker you can choose one of the following settings: TLS,
TLS_PLAINTEXT, or PLAINTEXT. In this exercise, we use TLS to indicate that we want data to be
encrypted as it travels between clients and brokers. For more information about encryption settings,
see the section called “Encryption” (p. 57).

7. Upgrade your AWS CLI to the latest version to ensure that it has support for Amazon MSK. For
detailed instructions on how to upgrade the AWS CLI, see Installing the AWS Command Line
Interface.

8. Run the following AWS CLI command in the directory where you saved the clusterinfo. json file.

aws kafka create-cluster --cli-input-json file://clusterinfo.json

The output of the command looks like the following JSON:

{
"ClusterArn": "...",
"ClusterName": "AWSKafkaTutorialCluster",
"State": "CREATING"

}

9. Save the value of the clusterArn key because you need it later.

Important
Ensure that you saved ClusterArn before you proceed.

Next Step

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 4: Create a Client Machine

Step

Step

Step 4: Create a Client Machine (p. 10)

4: Create a Client Machine

In this step of Getting Started Using Amazon MSK (p. 4), you create a client machine. You use this
client machine to create a topic that produces and consumes data. For simplicity, we'll put this client
machine in the same VPC as the Amazon MSK cluster. But a client machine doesn't have to be in the
same VPC as the cluster.

To create a client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. Choose Select to create an instance of Amazon Linux 2 AMI (HVM), SSD Volume Type.

4. Choose the t2.xlarge instance type by selecting the check box next to it.

5. Choose Next: Configure Instance Details.

6. Inthe Network list, choose AWSKafkaTutorialVPC.

7. Inthe Auto-assign Public IP list, choose Enable.

8. Inthe menu near the top, choose 5. Add Tags.

9. Choose Add Tag.

10. Enter Name for the Key and AWSKafkaTutorialClient for the Value.

11. Choose Review and Launch, and then choose Launch.

12. Choose Create a new key pair, enter MSKKeyPair for Key pair name, and then choose Download
Key Pair. Alternatively, you can use an existing key pair if you prefer.

13. Read the acknowledgement, select the check box next to it, and choose Launch Instances.

14. Choose View Instances. Then, in the Security Groups column, choose the security group that is
associated with the AWSKafkaTutorialClient instance.

15. Copy the value of Group ID (and not the group name) that is associated with the security group, and
save it for later.

16. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

17. In the navigation pane, choose Security Groups. In the VPC ID column of the security groups, find
the row that contains the ID you saved for AWSKafkaTutorialVPC, and the Description column
has the value default VPC security group. Choose this row by selecting the check box in the first
column.

18. In the Inbound Rules tab, choose Edit rules.

19. Choose Add Rule.

20. In the new rule, choose All traffic in the Type column. In the second field in the Source column,
enter the ID of the security group of the client machine. This is the group ID that you saved earlier.

21. Choose Save rules.

Next Step

Step 5: Create a Topic (p. 10)

5: Create a Topic

In this step of Getting Started Using Amazon MSK (p. 4), you install Apache Kafka client libraries and
tools on the client machine, and then you create a topic.

10

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 5: Create a Topic

To create a topic on the client machine

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Inthe navigation pane, choose Instances, and then choose AWSKafkaTutorialClient by selecting the
check box next to it.

3. Choose Actions, and then choose Connect. Follow the instructions to connect to the client machine
AWSKafkaTutorialClient.

4. Install Java on the client machine by running the following command:

sudo yum install java-1.8.0

5. Run the following command to download Apache Kafka.

wget https://archive.apache.org/dist/kafka/2.2.1/kafka_2.12-2.2.1.tgz

Note
If you want to use a mirror site other than the one used in this command, you can choose a
different one on the Apache website.
6. Run the following command in the directory where you downloaded the TAR file in the previous
step.

tar -xzf kafka_2.12-2.2.1.tgz

7. Go to the kafka_2.12-2.2.1 directory.

8. Cluster creation can take a few minutes. To find out whether the cluster you created is ready, run
the following command, replacing clusterArn with the Amazon Resource Name (ARN) that you
obtained at the end of the section called “Step 3: Create a Cluster” (p. 8).

aws kafka describe-cluster --region us-east-1 --cluster-arn "ClusterArn"

The result of running this command looks like the following JSON:

"ClusterInfo": {
"BrokerNodeGroupInfo": {
"BrokerAZDistribution": "DEFAULT",
"ClientSubnets": [
"subnet-0d44al567c2ce409a",
"subnet-051201cac65561565",
"subnet-08b4eceb2bd3bd8c2"

]I

"InstanceType": "kafka.m5.large",

"SecurityGroups": [
"sg-041le78b0a8ba7£834"

]I

"StorageInfo": {
"EbsStorageInfo": {

"VolumeSize": 1000

}
}
T
"ClusterArn": "...",
"ClusterName": "AWSKafkaTutorialCluster",
"CreationTime": "2018-11-06T01:36:57.451Z",
"CurrentBrokerSoftwareInfo": {
"Kafkaversion": "2.2.1"
T
"CurrentVersion": "K3UN6WX5RRO2AG",

11

https://console.aws.amazon.com/ec2/
https://www.apache.org/dyn/closer.cgi?path=/kafka/1.1.1/kafka_2.11-1.1.1.tgz

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 6: Produce and Consume Data

"EncryptionInfo": {

"EncryptionAtRest": {

"DataVolumeKMSKeyId": "arn:aws:kms:us-east-1:012345678901:key/
a7de6539-7d2e-4e71-a279-aaaa5555878"

}
Iy
"EnhancedMonitoring": "DEFAULT",
"NumberOfBrokerNodes": 3,
"State": "CREATING"

If the output of the command shows that the state of the cluster is still CREATING, wait a few
minutes, and then run the command again. Keep running this command every few minutes until the
state turns to ACTIVE. When the state is ACTIVE, the output of this describe-cluster command
includes an additional key named ZookeeperConnectString. Copy the entire value associated
with this key because you need it to create an Apache Kafka topic in the following command.

Run the following command, replacing ZookeeperConnectString with the value that you saved
after you ran the describe-cluster command.

bin/kafka-topics.sh --create --zookeeper ZookeeperConnectString --replication-factor 3
--partitions 1 --topic AWSKafkaTutorialTopic

If the command succeeds, you see the following message: Created topic
AWSKafkaTutorialTopic.

Next Step

Step 6: Produce and Consume Data (p. 12)

Step 6: Produce and Consume Data

In this step of Getting Started Using Amazon MSK (p. 4), you produce and consume data.

To produce and consume messages

1.

In this example we use the JVM truststore to talk to the MSK cluster. To do this, first create

a folder named /tmp on the client machine. Then, go to the bin folder of the Apache Kafka
installation and run the following command, replacing JDKFolder with the name of your
JDK folder. For example, the name of the JDK folder on your instance might be java-1.8.0-
openjdk-1.8.0.201.b09-0.amzn2.x86_64

cp /usr/lib/jvm/JDKFolder/jre/lib/security/cacerts /tmp/kafka.client.truststore.jks

While still in the bin folder of the Apache Kafka installation on the client machine, create a text file
named client.properties with the following contents.

security.protocol=SSL
ssl.truststore.location=/tmp/kafka.client.truststore. jks

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained at the end of the section called “Step 3: Create a Cluster” (p. 8).

aws kafka get-bootstrap-brokers --region us-east-1 --cluster-arn ClusterArn

12

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 7: View Metrics

Step
MSK

From the JSON result of the command, save the value associated with the string named
"BootstrapBrokerStringTls" because you need it in the following commands.

4. Run the following command in the bin folder, replacing BootstrapBrokerStringTls with the
value that you obtained when you ran the previous command.

. /kafka-console-producer.sh --broker-list BootstrapBrokerStringTls --producer.config
client.properties --topic AWSKafkaTutorialTopic

5. Enter any message that you want, and press Enter. Repeat this step two or three times. Every
time you enter a line and press Enter, that line is sent to your Apache Kafka cluster as a separate
message.

6. Keep the connection to the client machine open, and then open a second, separate connection to
that machine in a new window.

7. Inthe following command, replace BootstrapBrokerStringTls with the value that you saved
earlier. Then, go to the bin folder and run the command using your second connection to the client
machine.

. /kafka-console-consumer.sh --bootstrap-server BootstrapBrokerStringTls --
consumer.config client.properties --topic AWSKafkaTutorialTopic --from-beginning

You start seeing the messages you entered earlier when you used the console producer command.
These messages are TLS encrypted in transit.

8. Enter more messages in the producer window, and watch them appear in the consumer window.

Next Step

Step 7: Use Amazon CloudWatch to View Amazon MSK Metrics (p. 13)

7: Use Amazon CloudWatch to View Amazon
Metrics

In this step of Getting Started Using Amazon MSK (p. 4), you look at the Amazon MSK metrics in
Amazon CloudWatch.

To view Amazon MSK metrics in CloudWatch

Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
In the navigation pane, choose Metrics.
Choose the All metrics tab, and then choose AWS/Kafka.

To view broker-level metrics, choose Broker ID, Cluster Name. For cluster-level metrics, choose
Cluster Name.

PN =

5. (Optional) In the graph pane, select a statistic and a time period, and then create a CloudWatch
alarm using these settings.

Next Step

Step 8: Delete the Amazon MSK Cluster (p. 14)

13

https://console.aws.amazon.com/cloudwatch/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Step 8: Delete the Cluster

Step 8: Delete the Amazon MSK Cluster

In the final step of Getting Started Using Amazon MSK (p. 4), you delete the MSK cluster that you
created in Step 3: Create an Amazon MSK Cluster (p. 8).

To delete the Amazon MSK cluster using the AWS CLI

1. Run the following command on the computer where you have the AWS CLlI installed.

aws kafka list-clusters --region us-east-1

2. Inthe output of the 1ist-clusters command, look for the cluster Amazon Resource Name (ARN)
that corresponds to the cluster that you want to delete. Copy that ARN.

3. Run the following command, replacing ClusterArn with the ARN that you obtained when you ran
the previous command.

aws kafka delete-cluster --region us-east-1 --cluster-arn ClusterArn

14

Amazon Managed Streaming for
Apache Kafka Developer Guide
Creating a Cluster

Amazon MSK: How It Works

An Amazon MSK cluster is the primary Amazon MSK resource that you can create in your account. The
topics in this section describe how to perform common Amazon MSK operations. For a list of all the
operations that you can perform on an MSK cluster, see the following:

« The AWS Management Console
« The Amazon MSK API Reference
e The Amazon MSK CLI Command Reference

Topics
« Creating an Amazon MSK Cluster (p. 15)
o Deleting an Amazon MSK Cluster (p. 18)
» Getting the Apache ZooKeeper Connection String for an Amazon MSK Cluster (p. 19)
« Getting the Bootstrap Brokers for an Amazon MSK Cluster (p. 20)
« Listing Amazon MSK Clusters (p. 21)
 Scaling Up Broker Storage (p. 21)
« Updating the Configuration of an Amazon MSK Cluster (p. 23)
« Deleting the Configuration of an Amazon MSK Cluster (p. 25)
« Expanding an Amazon MSK Cluster (p. 26)
« Monitoring an Amazon MSK Cluster (p. 28)
» Rebooting a broker for an Amazon MSK cluster (p. 40)
» Tagging an Amazon MSK Cluster (p. 41)

Creating an Amazon MSK Cluster

Before you can create an Amazon MSK cluster you need to have a VPC and set up subnets within that
VPC. You need two subnets in two different Availability Zones in the US West (N. California) Region. In all
other Regions where Amazon MSK is available, you can specify either two or three subnets. Your subnets
must all be in different Availability Zones. When you create a cluster, Amazon MSK distributes the broker
nodes evenly over the subnets that you specify. For an example of how to set up a VPC and subnets for
an MSK cluster, see ??? (p. 4) and ??? (p. 7).

Broker Instance Types

When you create an Amazon MSK cluster, you specify the type of Amazon EC2 instance that you want
the brokers to be. After you create a cluster, you can't change the EC2 instance type of its brokers.
Amazon MSK supports the following instance types:

o t3.small

- mb.large, m5.2xlarge, m5.4xlarge, m5.8xlarge, m5.12xlarge, m5.16xlarge, m5.24xlarge

M5 brokers have higher baseline throughput performance than T3 brokers and are recommended for
production workloads. M5 brokers can also have more partitions per broker than T3 brokers. Use M5

15

https://console.aws.amazon.com/msk
https://docs.aws.amazon.com/msk/1.0/apireference
https://docs.aws.amazon.com/cli/latest/reference/kafka/index.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Creating a Cluster Using the AWS Management Console

brokers if you are running larger production-grade workloads or require a greater number of partitions.
To learn more about M5 instance types, see Amazon EC2 M5 Instances.

T3 brokers have the ability to use CPU credits to temporarily burst performance. Use T3 brokers for
low-cost development, if you are testing small to medium streaming workloads, or if you have low-
throughput streaming workloads that experience temporary spikes in throughput. We recommend
that you run a proof-of-concept test to determine if T3 brokers are sufficient for production or critical
workload. To learn more about T3 instance types, see Amazon EC2 T3 Instances.

For more information on how to choose broker instance types, see the section called “Right-size your
cluster” (p. 98).

Creating a Cluster Using the AWS Management
Console

Open the Amazon MSK console at https://console.aws.amazon.com/msk/.
Choose Create cluster.
Specify a name for the cluster.

PwnN =

In the VPC list, choose the VPC you want to use for the cluster. You can also specify which version of
Apache Kafka you want Amazon MSK to use to create the cluster.

5. Specify two subnets if you're using one of the following Regions: South America (Sdo Paulo), Canada
(Central), and US West (N. California). In other Regions where Amazon MSK is available, you can
specify either two or three subnets. The subnets that you specify must be in different Availability
Zones.

6. Choose the kind of configuration you want. For information about MSK configurations, see
Configuration (p. 44).

7. Specify the type and number of brokers you want MSK to create in each Availability Zone. The
minimum is one broker per Availability Zone and the maximum is 30 brokers per cluster.

8. (Optional) Assign tags to your cluster. Tags are optional. For more information, see the section called
“Tagging a Cluster” (p. 41).

9. You can adjust the storage volume per broker. After you create the cluster, you can increase the
storage volume per broker but you can't decrease it.

10. Choose the settings you want for encrypting data in transit. By default, MSK encrypts data as it
transits between brokers within a cluster. If you don't want to encrypt data as it transits between
brokers, clear the check box labeled Enable encryption within the cluster.

11. Choose one of the three settings for encrypting data as it transits between clients and brokers. For
more information, see the section called “Encryption in Transit” (p. 57).

12. Choose the kind of CMK that you want to use for encrypting data at rest. For more information, see
the section called “Encryption at Rest” (p. 57).

13. If you want to authenticate the identity of clients, choose Enable TLS client authentication by
selecting the box next to it. For more information about authentication, see the section called
“Client Authentication” (p. 67).

14. Choose the monitoring level you want. This determines the set of metrics you get. For more
information, see the section called “Monitoring a Cluster” (p. 28).

15. (Optional) Choose Advanced settings, and then choose Customize settings. You can specify one or
more security groups that you want to give access to your cluster (for example, the security groups
of client machines). If you specify security groups that were shared with you, you must ensure
that you have permissions to them. Specifically, you need the ec2:DescribeSecurityGroups
permission. For an example, see Amazon EC2: Allows Managing EC2 Security Groups Associated With
a Specific VPC, Programmatically and in the Console.

16. Choose Create cluster.

16

https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/t3/
https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Creating a Cluster Using the AWS CLI

Creating a Cluster Using the AWS CLI

1. Copy the following JSON and save it to a file. Name the file brokernodegroupinfo. json. Replace
the subnet IDs in the JSON with the values that correspond to your subnets. These subnets must
be in different Availability Zones. Replace "Security-Group-ID" with the ID of one or more
security groups of the client VPC. Clients associated with these security groups get access to the
cluster. If you specify security groups that were shared with you, you must ensure that you have
permissions to them. Specifically, you need the ec2:DescribeSecurityGroups permission. For
an example, see Amazon EC2: Allows Managing EC2 Security Groups Associated With a Specific VPC,
Programmatically and in the Console. Finally, save the updated JSON file on the computer where
you have the AWS CLlI installed.

{
"InstanceType": "kafka.m5.large",
"ClientSubnets": [
"Subnet-1-ID",
"Subnet-2-ID"
]V
"SecurityGroups": [
"Security-Group-ID"
]
}

Important

Specify exactly two subnets if you are using one of the following Regions: South America
(Sao Paulo), Canada (Central), and US West (N. California). For other Regions where Amazon
MSK is available, you can specify either two or three subnets. The subnets that you specify
must be in distinct Availability Zones. When you create a cluster, Amazon MSK distributes
the broker nodes evenly across the subnets that you specify.

2. Run the following AWS CLI command in the directory where you saved the
brokernodegroupinfo. json file, replacing "Your-Cluster-Name" with a name of your
choice. For "Monitoring-Level", you can specify one of the following three values: DEFAULT,
PER_BROKER, or PER_TOPIC_PER_BROKER. For information about these three different levels of
monitoring, see ??? (p. 28). The enhanced-monitoring parameter is optional. If you don't
specify it in the create-cluster command, you get the DEFAULT level of monitoring.

aws kafka create-cluster --cluster-name "Your-Cluster-Name" --broker-node-group-info
file://brokernodegroupinfo.json --kafka-version "2.2.1" --number-of-broker-nodes 3 --
enhanced-monitoring "Monitoring-Level"

The output of the command looks like the following JSON:

{
"ClusterArn": "...",
"ClusterName": "AWSKafkaTutorialCluster",
"State": "CREATING"
}
Note

The create-cluster command might return an error stating that one or more subnets
belong to unsupported Availability Zones. When this happens, the error indicates which
Availability Zones are unsupported. Create subnets that don't use the unsupported
Availability Zones and try the create-cluster command again.

3. Save the value of the ClusterArn key because you need it to perform other actions on your cluster.

17

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Creating a Cluster with a Custom MSK
Configuration Using the AWS CLI

Creating a Cluster with a Custom MSK Configuration
Using the AWS CLI

For information about custom MSK configurations and how to create them, see Configuration (p. 44).

1. Save the following JSON to a file, replacing configuration-arn with the ARN of the configuration
that you want to use to create the cluster.

"Arn": configuration-arn,
"Revision": 1

}

2. Runthe create-cluster command and use the configuration-info option to point to the
JSON file you saved in the previous step. The following is an example.

aws kafka create-cluster --cluster-name ExampleClusterName --broker-node-group-info
file://brokernodegroupinfo.json --kafka-version "1.1.1" --number-of-broker-nodes 3 --
enhanced-monitoring PER_TOPIC_PER_BROKER --configuration-info file://configuration.json

The following is an example of a successful response after running this command.

{
"ClusterArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
CustomConfigExampleCluster/abcdl234-abcd-dcba-4321-alb2abed9f9of-2",
"ClusterName": "CustomConfigExampleCluster",
"State": "CREATING"
b

Creating a Cluster Using the API

To create a cluster using the API, see CreateCluster.

Deleting an Amazon MSK Cluster

Deleting a Cluster Using the AWS Management
Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.
2. Choose the MSK cluster that you want to delete by selecting the check box next to it.
3. Choose Delete, and then confirm deletion.

Deleting a Cluster Using the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that you
obtained when you created your cluster. If you don't have the ARN for your cluster, you can find it by
listing all clusters. For more information, see the section called “Listing Clusters” (p. 21).

18

https://docs.aws.amazon.com//msk/1.0/apireference/clusters.html#CreateCluster
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Deleting a Cluster using the API

aws kafka delete-cluster --cluster-arn ClusterArn

Deleting a Cluster using the API

To delete a cluster using the API, see DeleteCluster.

Getting the Apache ZooKeeper Connection String
for an Amazon MSK Cluster

Getting the Apache ZooKeeper Connection String
Using the AWS Management Console

Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. The table shows all the clusters for the current region under this account. Choose the name of a
cluster to view its description.

3. On the Cluster summary page, choose View client information. This shows you the bootstrap
servers, as well as the Apache ZooKeeper connection string.

Getting the Apache ZooKeeper Connection String
Using the AWS CLI

1. If you don't know the Amazon Resource Name (ARN) of your cluster, you can find it by listing all the
clusters in your account. For more information, see the section called “Listing Clusters” (p. 21).

2. To get the Apache ZooKeeper connection string, along with other information about your cluster,
run the following command, replacing clusterArn with the ARN of your cluster.

aws kafka describe-cluster --cluster-arn ClusterArn

The output of this describe-cluster command looks like the following JSON example.

"ClusterInfo": {

"BrokerNodeGroupInfo": {
"BrokerAZDistribution": "DEFAULT",
"ClientSubnets": [

"subnet-0123456789abcdefO",
"subnet-2468013579abcdefl",
"subnet-1357902468abcdef2"
1,
"InstanceType": "kafka.m5.large",
"StorageInfo": {
"EbsStorageInfo": {
"VolumeSize": 1000
}
}
e
"ClusterArn": "arn:aws:kafka:us-east-1:111122223333:cluster/

testcluster/12345678-abcd-4567-2345-abecdefl123456-2",
"ClusterName": "testcluster",

19

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn.html#DeleteCluster
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Getting the Apache ZooKeeper
Connection String Using the API

"CreationTime": "2018-12-02T17:38:36.75Z",
"CurrentBrokerSoftwareInfo": {
"KafkavVersion": "2.2.1"
Iy
"CurrentVersion": "K13V1IB3VIYZZH",
"EncryptionInfo": {
"EncryptionAtRest": {

"DataVolumeKMSKeyId": "arn:aws:kms:us-east-1:555555555555:key /12345678~
abcd-2345-ef0l-abcdef123456"
}
Iy
"EnhancedMonitoring": "DEFAULT",
"NumberOfBrokerNodes": 3,
"State": "ACTIVE",
"ZookeeperConnectString": "10.0.1.101:2018,10.0.2.101:2018,10.0.3.101:2018"

The previous JSON example shows the ZookeeperConnectString key in the output of the
describe-cluster command. Copy the value corresponding to this key and save it for when you
need to create a topic on your cluster.

Important

Your Amazon MSK cluster must be in the ACTIVE state for you to be able to obtain the
ZooKeeper connection string. When a cluster is still in the CREATING state, the output of
the describe-cluster command doesn't include ZookeeperConnectString. If this is
the case, wait a few minutes and then run the describe-cluster again after your cluster
reaches the ACTIVE state.

Getting the Apache ZooKeeper Connection String
Using the API

To get the Apache ZooKeeper connection string using the API, see DescribeCluster.

Getting the Bootstrap Brokers for an Amazon MSK
Cluster

Getting the Bootstrap Brokers Using the AWS
Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. The table shows all the clusters for the current region under this account. Choose the name of a
cluster to view its description.

3. On the Cluster summary page, choose View client information. This shows you the bootstrap
servers, as well as the Apache ZooKeeper connection string.

Getting the Bootstrap Brokers Using the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that you
obtained when you created your cluster. If you don't have the ARN for your cluster, you can find it by
listing all clusters. For more information, see the section called “Listing Clusters” (p. 21).

20

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Getting the Bootstrap Brokers Using the API

aws kafka get-bootstrap-brokers --cluster-arn ClusterArn

The output of this command looks like the following JSON example.

{

"BootstrapBrokerStringTls": "b-3.exampleClusterName.abcde.c2.kafka.us-
east-1.amazonaws.com:9094,b-1.exampleClusterName.abcde.c2.kafka.us-
east-1.amazonaws.com:9094,b-2.exampleClusterName.abcde.c2.kafka.us-
east-1.amazonaws.com:9094"

}

Getting the Bootstrap Brokers Using the API

To get the bootstrap brokers using the API, see GetBootstrapBrokers.

Listing Amazon MSK Clusters
Listing Clusters Using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. The table shows all the clusters for the current region under this account. Choose the name of a
cluster to view its details.

Listing Clusters Using the AWS CLI

Run the following command.

aws kafka list-clusters

Listing Clusters Using the API

To list clusters using the API, see ListClusters.

Scaling Up Broker Storage

You can increase the amount of EBS storage per broker. You can't decrease the storage. To increase
storage, wait for the cluster to be in the ACTIVE state. Storage volumes remain available during this
scaling-up operation.

Scaling Up Broker Storage Using the AWS
Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.

2. Choose the MSK cluster for which you want to update broker storage.

21

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#GetBootstrapBrokers
https://console.aws.amazon.com/msk/
https://docs.aws.amazon.com//msk/1.0/apireference/clusters.html#ListClusters
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Scaling Up Broker Storage Using the AWS CLI

3. Inthe Storage section, choose Edit.

Specify the storage volume you want. You can only increase the amount of storage, you can't
decrease it.

5. Choose Save changes.

Scaling Up Broker Storage Using the AWS CLI

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that you
obtained when you created your cluster. If you don't have the ARN for your cluster, you can find it by
listing all clusters. For more information, see the section called “Listing Clusters” (p. 21).

Replace Current-Cluster-Version with the current version of the cluster.

Important
Cluster versions aren't simple integers. You can obtain the current version by describing the
cluster. An example version is KTVPDKIKX0DER.

The Target-Volume-in-GiB parameter represents the amount of storage that you want each broker
to have. It is only possible to update the storage for all the brokers. You can't specify individual brokers
for which to update storage. The value you specify for Target-volume-in-GiB must be a whole
number that is greater than 100 GiB. The storage per broker after the update operation can't exceed
16384 GiB.

aws kafka update-broker-storage --cluster-arn ClusterArn --current-version Current-
Cluster-Version --target-broker-ebs-volume-info '{"KafkaBrokerNodeId": "All",
"VolumeSizeGB": Target-Volume-in-GiB}'

Scaling Up Broker Storage Using the API

To update a broker storage using the API, see UpdateBrokerStorage.

Auto-expanding storage for an Amazon MSK Cluster

You can configure Amazon Managed Streaming for Apache Kafka to automatically expand your cluster's
storage in response to increased usage using Application Auto-Scaling policies. Your auto-scaling policy
sets the target disk utilization and the maximum scaling capacity.

Note

The Amazon MSK service does not reduce cluster storage in response to reduced usage. Amazon
MSK does not support decreasing the size of storage volumes. If you need to reduce the size of
your cluster storage, you must migrate your existing cluster to a cluster with smaller storage. For
information about migrating a cluster, see Migration (p. 84).

MSK Storage auto-expansion details

Your auto scaling policy defines the following parameters for your cluster:

« Storage Utilization Target: The storage utilization threshold that Amazon MSK uses to trigger an
auto-scaling operation. You can set the utilization target between 10% and 80% of the current storage
capacity. We recommend that you set the Storage Utilization Target between 50% and 60%.

« Maximum Storage Capacity: This setting is the maximum scaling limit that Amazon MSK can set
your broker storage. You can set the maximum storage capacity up to 16 TB per broker. For more
information, see Amazon MSK Limits (p. 87).

22

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-nodes-storage.html#UpdateBrokerStorage

Amazon Managed Streaming for
Apache Kafka Developer Guide
Updating the Configuration of a Cluster

When the service detects that your Maximum Disk Utilization metricis equal to or greater than the
Storage Utilization Target setting, it will increase your storage capacity automatically. Amazon
MSK first expands your cluster storage by 10 GB. Further scaling operations increase storage by a greater
amount. The service checks your storage utilization every minute.

Note

Auto scaling has a cool-down period of at least six hours between events. Even though the
operation makes additional storage available right away, the service performs optimizations on
your cluster that can take up to 24 hours. The duration of these optimizations is proportional

to your storage size. To repeatedly expand your storage capacity more quickly, set the storage
capacity manually using the UpdateBrokerStorage operation. For information about right-sizing
your storage, see Right-size your cluster (p. 98).

You can check to determine if auto scaling operations occurred using the ListClusterOperations
operation.

Setting up auto-expansion for your Amazon MSK cluster

You can use the Amazon MSK console or the Amazon MSK API to implement auto-expanding storage.

Note

You can't implement auto-expansion when you create a cluster. You must first create the cluster,
and then create and enable an auto-expansion policy for it. However, you can create the policy
while the Amazon MSK service creates your cluster.

Setting up auto-expansion using the console

To set up auto-expansion in the Amazon MSK console, do the following:

Open the Amazon MSK console.
Navigate to the Cluster Details page.

Create and name an auto-scaling policy. Specify the Storage Utilization Target, the Maximum
Storage Capacity, and the target metric (RootDiskUsed).

4. Save and enable the new policy.

When you save and enable the new policy, the policy will be active for the cluster, and the service will
expand the cluster's storage when the Storage Utilization Target is reached.

Setting up auto-expansion using the API

To set up auto-expansion using the Amazon MSK AP, do the following:

1. Use the PutScalingPolicy API to create an auto-expansion policy.
2. Use the RegisterScalableTarget API to enable the policy.

Updating the Configuration of an Amazon MSK
Cluster

To update the configuration of a cluster, make sure that the cluster is in the ACTIVE state. For
information about MSK configuration, including how to create a custom configuration, which properties
you can update, and what happens when you update the configuration of an existing cluster, see
Configuration (p. 44).

23

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-nodes-storage.html#UpdateBrokerStorage
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-operations.html#ListClusterOperations
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html
https://docs.aws.amazon.com/autoscaling/application/APIReference/API_RegisterScalableTarget.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Updating the Configuration of a Cluster Using the AWS CLI

Updating the Configuration of a Cluster Using the
AWS CLI

1. Copy the following JSON and save it to a file. Name the file configuration-info. json. Replace
ConfigurationArn with the Amazon Resource Name (ARN) of the configuration that you want to
use to update the cluster. The ARN string must be in quotes in the following JSON.

Replace configuration-Revision with the revision of the configuration that you want to use.
Configuration revisions are integers (whole numbers) that start at 1. This integer mustn't be in
quotes in the following JSON.

"Arn": ConfigurationArn,
"Revision": Configuration-Revision

}

2. Run the following command, replacing clusterArn with the ARN that you obtained when you
created your cluster. If you don't have the ARN for your cluster, you can find it by listing all clusters.
For more information, see the section called “Listing Clusters” (p. 21).

Replace Path-to-Config-Info-File with the path to your configuration info file. If you named
the file that you created in the previous step configuration-info. json and saved it in the
current directory, then Path-to-Config-Info-Fileis configuration-info. json.

Replace current-Cluster-Version with the current version of the cluster.

Important
Cluster versions aren't simple integers. You can obtain the current version by describing the
cluster. An example version is KTVPDKIKXODER.

aws kafka update-cluster-configuration --cluster-arn ClusterArn --configuration-info
file://Path-to-Config-Info-File --current-version Current-Cluster-Version

The following is an example of how to use this command:

aws kafka update-cluster-configuration --cluster-arn "arn:aws:kafka:us-

east-1:0123456789012:cluster/exampleName/abcd1234-0123-abcd-5678-1234abed-1" --

configuration-info file://c:\users\tester\msk\configuration-info.json --current-version
"K1X5R6FKA87"

The output of this update-cluster-configuration command looks like the following JSON

example.
{

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",

"ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£f7£f-1234-9876543210ef"

¥

3. To get the result of the update-cluster-configuration operation, run the following command,
replacing ClusterOperationArn with the ARN that you obtained in the output of the update-
cluster-configuration command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

24

Amazon Managed Streaming for
Apache Kafka Developer Guide
Updating the Configuration of a Cluster Using the API

The output of this describe-cluster-operation command looks like the following JSON
example.

"ClusterOperationInfo": {
"ClientRequestId": "982168a3-939f-11e9-8a62-538d£f00285db",

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abecd-5678-cdef0123ab01-2",

"CreationTime": "2019-06-20T21:08:57.735Z",

"OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£7£f-1234-9876543210ef",
"OperationState": "UPDATE_COMPLETE",
"OperationType": "UPDATE_CLUSTER_CONFIGURATION",
"SourceClusterInfo": {},
"TargetClusterInfo": {
"ConfigurationInfo": {
"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/
ExampleConfigurationName/abcdabcd-abed-1234-abed-abcdl23e8e8e-1",
"Revision": 1

}

In this output, OperationType is UPDATE_CLUSTER CONFIGURATION. If OperationState has
the value UPDATE_IN_PROGRESS, wait a while, then run the describe-cluster-operation
command again.

Updating the Configuration of a Cluster Using the API

To create a cluster using the API, see UpdateClusterConfiguration.

Deleting the Configuration of an Amazon MSK
Cluster

To delete the configuration of a cluster, make sure that the cluster is in the ACTIVE or DELETE_FAILED
state, and the cluster configuration is in the ACTIVE or DELETE_FAILED state. For information about
MSK configuration, see Amazon MSK Configuration (p. 44).

Deleting the Configuration of a Cluster Using the
AWS CLI

1. Copy the following JSON and save it to a file. Name the file configuration-info. json. Replace
ConfigurationArn with the Amazon Resource Name (ARN) of the configuration that you want to
use to delete the cluster. The ARN string must be in quotes in the following JSON.

"Arn": ConfigurationArn

25

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-configuration.html#UpdateClusterConfiguration

Amazon Managed Streaming for
Apache Kafka Developer Guide
Deleting the Configuration of a Cluster Using the API

2. Run the following command, replacing ClusterArn with the ARN that you obtained when you
created your cluster. If you don't have the ARN for your cluster, you can find it by listing all clusters.
For more information, see the section called “Listing Clusters” (p. 21).

Replace current-Cluster-Version with the current version of the cluster. Note that this
parameter is optional.

Important
Cluster versions aren't simple integers. You can obtain the current version by describing the
cluster. An example version is KTVPDKIKXODER.

aws kafka delete-configuration --cluster-arn ClusterArn --current-version Current-
Cluster-Version

The following is an example of how to use this command:

aws kafka delete-configuration --cluster-arn "arn:aws:kafka:us-
east-1:0123456789012:cluster/exampleName/abcd1234-0123-abcd-5678-1234abcd-1" --current-
version "K1X5R6FKA87"

The output of this delete-configuration command looks like the following JSON example.

{

"state": "DELETING"

"Arn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2"
b

Deleting the Configuration of a Cluster Using the API

To delete a cluster configuration using the API, see DeleteConfiguration.

Expanding an Amazon MSK Cluster

Use this Amazon MSK operation when you want to increase the number of brokers in your MSK cluster.
To expand a cluster, make sure that it is in the ACTIVE state.

Important
If you want to expand an MSK cluster, make sure to use this Amazon MSK operation . Don't try
to add brokers to a cluster without using this operation.

For information about how to rebalance partitions after you add brokers to a cluster, see the section
called “Reassign partitions” (p. 100).

Expanding a Cluster Using the AWS Management
Console

Open the Amazon MSK console at https://console.aws.amazon.com/msk/.
Choose the MSK cluster whose number of brokers you want to increase.

On the cluster details page, choose the Edit button next to the Cluster-Level Broker Details
heading.

26

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-configuration.html#DeleteConfiguration
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Expanding a Cluster Using the AWS CLI

4. Enter the number of brokers that you want the cluster to have per Availability Zone and then choose
Save changes.

Expanding a Cluster Using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster. If you don't have the ARN for your cluster, you can find
it by listing all clusters. For more information, see the section called “Listing Clusters” (p. 21).

Replace current-Cluster-Version with the current version of the cluster.

Important
Cluster versions aren't simple integers. You can obtain the current version by describing the
cluster. An example version is KIVPDKIKXODER.

The Target-Number-of-Brokers parameter represents the total number of broker nodes that
you want the cluster to have when this operation completes successfully. The value you specify for
Target-Number-of-Brokers must be a whole number that is greater than the current number of
brokers in the cluster. It must also be a multiple of the number of Availability Zones.

aws kafka update-broker-count --cluster-arn ClusterArn —--current-version Current-
Cluster-Version --target-number-of-broker-nodes Target-Number-of-Brokers

The output of this update-broker-count operation looks like the following JSON.

{

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abecd-5678-cdef0123ab01-2",

"ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£f7£-1234-9876543210ef"

}

2. To get the result of the update-broker-count operation, run the following command, replacing
ClusterOperationArn with the ARN that you obtained in the output of the update-broker-
count command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON

example.
{
"ClusterOperationInfo": {

"ClientRequestId": "cO0b7af47-8591-45b5-9c0c-909ala2c99ea",

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",

"CreationTime": "2019-09-25T23:48:04.794Z",

"OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£f7f-1234-9876543210ef",

"OperationState": "UPDATE_COMPLETE",
"OperationType": "INCREASE_BROKER_COUNT",
"SourceClusterInfo": {

"NumberOfBrokerNodes": 9

Y
"TargetClusterInfo": {

27

Amazon Managed Streaming for
Apache Kafka Developer Guide
Expanding a Cluster Using the API

"NumberOfBrokerNodes": 12

}

In this output, OperationType is INCREASE_BROKER_COUNT. If OperationState has the value
UPDATE_IN_PROGRESS, wait a while, then run the describe-cluster-operation command
again.

Expanding a Cluster Using the API

To increase the number of brokers in a cluster using the API, see UpdateBrokerCount.

Monitoring an Amazon MSK Cluster

Amazon MSK gathers Apache Kafka metrics and sends them to Amazon CloudWatch where you can view
them. For more information about Apache Kafka metrics, including the ones that Amazon MSK surfaces,
see Monitoring in the Apache Kafka documentation.

You can also monitor your MSK cluster with Prometheus, an open-source monitoring application.
For information about Prometheus, see Overview in the Prometheus documentation. To learn
how to monitor your cluster with Prometheus, see the section called “Open Monitoring with
Prometheus” (p. 38).

Topics
o Amazon MSK Monitoring Levels for CloudWatch Metrics (p. 28)
« Amazon MSK Metrics for Monitoring with CloudWatch (p. 28)
« Viewing Amazon MSK Metrics Using CloudWatch (p. 34)
« Consumer-Lag Checking with Burrow (p. 34)
« Open Monitoring with Prometheus (p. 38)

Amazon MSK Monitoring Levels for CloudWatch
Metrics

When creating an Amazon MSK cluster, you can set the enhancedMonitoring property to one of three
monitoring levels: DEFAULT, PER_BROKER, or PER_TOPIC_PER_ BROKER. The tables in the following
section show all the metrics that Amazon MSK makes available starting at each monitoring level.

Amazon MSK Metrics for Monitoring with
CloudWatch

Amazon MSK integrates with Amazon CloudWatch metrics so that you can collect, view, and analyze
CloudWatch metrics for your Amazon MSK cluster. The metrics that you configure for your MSK cluster
are automatically collected and pushed to CloudWatch. The following three tables show the metrics that
become available at each of the three monitoring levels.

DEFAULT Level Monitoring

The metrics described in the following table are available at the DEFAULT monitoring level. They are
free.

28

https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-nodes-count.html#UpdateBrokerCount
http://kafka.apache.org/documentation/#monitoring
https://prometheus.io/docs/introduction/overview/
https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#clusters-prop-createclusterrequest-enhancedmonitoring

Amazon Managed Streaming for
Apache Kafka Developer Guide

Amazon MSK Metrics for Monitoring with CloudWatch

Metrics available at the DEFAULT monitoring level

Name When Visible

ActiveControllerCoudfter the cluster gets to
the ACTIVE state.

Cpuldle After the cluster gets to
the ACTIVE state.

CpuSystem After the cluster gets to
the ACTIVE state.

CpuUser After the cluster gets to

the ACTIVE state.

GlobalPartitionCoun#fter the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

GlobalTopicCount

KafkaAppLogsDiskUsedfter the cluster gets to
the ACTIVE state.

KafkaDataLogsDiskUsdditer the cluster gets to
(Cluster Name, the ACTIVE state.
Broker ID

dimension)

KafkaDataLogsDiskUsdditer the cluster gets to

(Cluster Name the ACTIVE state.

dimension)

MemoryBuffered After the cluster gets to
the ACTIVE state.

MemoryCached After the cluster gets to
the ACTIVE state.

MemoryFree After the cluster gets to
the ACTIVE state.

MemoryUsed After the cluster gets to

the ACTIVE state.

Dimensic Description

Cluster
Name

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name

Cluster
Name

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Only one controller per cluster should
be active at any given time.

The percentage of CPU idle time.

The percentage of CPU in kernel space.

The percentage of CPU in user space.

Total number of partitions across all
brokers in the cluster.

Total number of topics across all
brokers in the cluster.

The percentage of disk space used for
application logs.

The percentage of disk space used for
data logs.

The percentage of disk space used for
data logs.

The size in bytes of buffered memory
for the broker.

The size in bytes of cached memory for
the broker.

The size in bytes of memory that is free
and available for the broker.

The size in bytes of memory that is in
use for the broker.

29

Amazon Managed Streaming for
Apache Kafka Developer Guide

Amazon MSK Metrics for Monitoring with CloudWatch

Name

NetworkRxDropped

NetworkRxXErrors

NetworkRxPackets

NetworkTxDropped

NetworkTxXErrors

NetworkTxPackets

When Visible

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

OfflinePartitionsCoddfiter the cluster gets to

RootDiskUsed

SwapFree

SwapUsed

the ACTIVE state.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

ZooKeeperRequestLatfiterMbhMeahuster gets to

the ACTIVE state.

Dimensid Description

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

Cluster
Name,

Broker
ID

The number of dropped receive
packages.

The number of network receive errors
for the broker.

The number of packets received by the
broker.

The number of dropped transmit
packages.

The number of network transmit errors
for the broker.

The number of packets transmitted by
the broker.

Total number of partitions that are
offline in the cluster.

The percentage of the root disk used by
the broker.

The size in bytes of swap memory that
is available for the broker.

The size in bytes of swap memory that
is in use for the broker.

Mean latency in milliseconds for
ZooKeeper requests from broker.

30

Amazon Managed Streaming for
Apache Kafka Developer Guide
Amazon MSK Metrics for Monitoring with CloudWatch

Name When Visible Dimensid Description

ZooKeeperSessionSta#héter the cluster getsto | Cluster | Connection status of broker's

the ACTIVE state. Name, ZooKeeper session which may be one
Broker of the following: NOT_CONNECTED:
ID '0.0', ASSOCIATING: '0.1', CONNECTING:

'0.5', CONNECTEDREADONLY: '0.8',
CONNECTED: 1.0, CLOSED: '5.0,
AUTH_FAILED: '10.0".

PER_BROKER Level Monitoring

When you set the monitoring level to PER_BROKER, you get the metrics described in the following table
in addition to all the DEFAULT level metrics. You pay for the metrics in the following table, whereas

the DEFAULT level metrics continue to be free. The metrics in this table have the following dimensions:
Cluster Name, Broker ID.

Additional metrics that are available starting at the PER_BROKER monitoring level

Name When Visible Description

BytesInPerSec After you create a topic. The number of bytes per second received
from clients.

BytesOutPerSec After you create a topic. The number of bytes per second sent to
clients.

ReplicationBytesInPerSec | After you create a topic. The number of bytes per second received
from other brokers.

ReplicationBytesOutPerSec | After you create a topic. The number of bytes per second sent to
other brokers.

FetchConsumerLocalTimeMsMeakfter there's a The mean time in milliseconds that the
producer/consumer. consumer request is processed at the
leader.
FetchConsumerRequestQueueTiAkiMElteern's a The mean time in milliseconds that the
producer/consumer. consumer request waits in the request
queue.
FetchConsumerResponseQueueTAfitertiverals a The mean time in milliseconds that the
producer/consumer. consumer request waits in the response
queue.
FetchConsumerResponseSendTiAk¥MElteern's a The mean time in milliseconds for the
producer/consumer. consumer to send a response.
FetchConsumerTotalTimeMsMeahfter there's a The mean total time in milliseconds that
producer/consumer. consumers spend on fetching data from
the broker.
FetchFollowerLocalTimeMsMeahfter there's a The mean time in milliseconds that the
producer/consumer. follower request is processed at the
leader.

31

Amazon Managed Streaming for

Apache Kafka Developer Guide

Amazon MSK Metrics for Monitoring with CloudWatch

Name When Visible

FetchFollowerRequestQueueTiAkiMElteern's a
producer/consumer.

FetchFollowerResponseQueueTAfteMtverals a
producer/consumer.

FetchFollowerResponseSendTiAkMelteern's a
producer/consumer.

FetchFollowerTotalTimeMsMeahfter there's a
producer/consumer.

FetchMessageConversionsPerSafter you create a topic.

FetchThrottleByteRate After bandwidth
throttling is applied.

FetchThrottleQueueSize After bandwidth
throttling is applied.

FetchThrottleTime After bandwidth
throttling is applied.

LeaderCount After the cluster gets to
the ACTIVE state.

MessagesInPerSec After the cluster gets to
the ACTIVE state.

NetworkProcessorAvgIdlePerchtfter the cluster gets to

the ACTIVE state.
PartitionCount After the cluster gets to
the ACTIVE state.
ProduceLocalTimeMsMean After the cluster gets to
the ACTIVE state.

ProduceMessageConversionsPeAfteryou create a topic.

ProduceMessageConversionsTiAf¥MsHemoluster gets to
the ACTIVE state.

ProduceRequestQueueTimeMsMehtter the cluster gets to
the ACTIVE state.

ProduceResponseQueueTimeMsMatter the cluster gets to
the ACTIVE state.

ProduceResponseSendTimeMsMeAtter the cluster gets to
the ACTIVE state.

Description

The mean time in milliseconds that the
follower request waits in the request
queue.

The mean time in milliseconds that the
follower request waits in the response
queue.

The mean time in milliseconds for the
follower to send a response.

The mean total time in milliseconds that
followers spend on fetching data from
the broker.

The number of fetch message
conversions per second for the broker.

The number of throttled bytes per
second.

The number of messages in the throttle
queue.

The average fetch throttle time in
milliseconds.

The number of leader replicas.

The number of incoming messages per
second for the broker.

The average percentage of the time the
network processors are idle.

The number of partitions for the broker.

The mean time in milliseconds for the
follower to send a response.

The number of produce message
conversions per second for the broker.

The mean time in milliseconds spent on
message format conversions.

The mean time in milliseconds that
request messages spend in the queue.

The mean time in milliseconds that
response messages spend in the queue.

The mean time in milliseconds spent on
sending response messages.

32

Amazon Managed Streaming for

Apache Kafka Developer Guide

Amazon MSK Metrics for Monitoring with CloudWatch

Name

ProduceThrottleByteRate

ProduceThrottleQueueSize

ProduceThrottleTime

ProduceTotalTimeMsMean

RequestBytesMean

When Visible

After bandwidth
throttling is applied.

After bandwidth
throttling is applied.

After bandwidth
throttling is applied.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

RequestExemptFromThrottleTiffter request throttling

is applied.

RequestHandlerAvgIdlePercenAfter the cluster gets to

RequestThrottleQueueSize

RequestThrottleTime

RequestTime

UnderMinIsrPartitionCount

UnderReplicatedPartitions

the ACTIVE state.

After request throttling
is applied.

After request throttling
is applied.

After request throttling
is applied.

After the cluster gets to
the ACTIVE state.

After the cluster gets to
the ACTIVE state.

Description

The number of throttled bytes per
second.

The number of messages in the throttle
queue.

The average produce throttle time in
milliseconds.

The mean produce time in milliseconds.

The mean number of request bytes for
the broker.

The average time in milliseconds spent
in broker network and 1/0 threads to
process requests that are exempt from
throttling.

The average percentage of the time the
request handler threads are idle.

The number of messages in the throttle
queue.

The average request throttle time in
milliseconds.

The average time in milliseconds spent
in broker network and 1/0 threads to
process requests.

The number of under minlsr partitions
for the broker.

The number of under-replicated
partitions for the broker.

PER_TOPIC_PER_BROKER Level Monitoring

When you set the monitoring level to PER_TOPIC_PER_BROKER, you get the metrics described in the
following table, in addition to all the metrics from the PER_BROKER and DEFAULT levels. Only the
DEFAULT level metrics are free. The metrics in this table have the following dimensions: Cluster Name,

Broker ID, Topic.

Important

For an Amazon MSK cluster that uses Apache Kafka 2.4.1 or a newer version, the metrics in the
following table appear only after their values become nonzero for the first time. For example, to
see BytesInPerSec, one or more producers must first send data to the cluster.

33

Amazon Managed Streaming for
Apache Kafka Developer Guide
Viewing Amazon MSK Metrics Using CloudWatch

Additional metrics that are available starting at the PER_TOPIC_PER_BROKER monitoring

level

Name When Visible Description

BytesInPerSec After you create a | The number of bytes received per second.
topic.

BytesOutPerSec After you create a The number of bytes sent per second.
topic.

FetchMessageConversionsPAfi&egyou create a | The number of fetched messages converted per
topic. second.

MessagesInPerSec After you create a = The number of messages received per second.
topic.

ProduceMessageConversionAfteryea create a | The number of conversions per second for

topic. produced messages.

Viewing Amazon MSK Metrics Using CloudWatch

You can monitor metrics for Amazon MSK using the CloudWatch console, the command line, or the
CloudWatch API. The following procedures show you how to access metrics using these different
methods.

To access metrics using the CloudWatch console

Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

1.
2.
3.

4.

In the navigation pane, choose Metrics.

Choose the All metrics tab, and then choose AWS/Kafka.

To view topic-level metrics, choose Topic, Broker ID, Cluster Name; for broker-level metrics, choose
Broker ID, Cluster Name; and for cluster-level metrics, choose Cluster Name.

(Optional) In the graph pane, select a statistic and a time period, and then create a CloudWatch
alarm using these settings.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

To access metrics using the CloudWatch CLI

Use the mon-list-metrics and mon-get-stats commands.

To access metrics using the CloudWatch API

Use the ListMetrics and GetMetricStatistics operations.

Consumer-Lag Checking with Burrow

Burrow is a monitoring companion for Apache Kafka that provides consumer-lag checking. Burrow has a
modular design that includes the following subsystems:

« Clusters run an Apache Kafka client that periodically updates topic lists and the current HEAD offset

(the most recent offset) for every partition.

34

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-list-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-get-stats.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Consumer-Lag Checking with Burrow

Consumers fetch information about consumer groups from a repository. This repository can be an
Apache Kafka cluster (consuming the __consumer offsets topic), ZooKeeper, or some other
repository.

The storage subsystem stores all of this information in Burrow.

The evaluator subsystem retrieves information from the storage subsystem for a specific consumer
group and calculates the status of that group. This follows the consumer lag evaluation rules.

The notifier subsystem requests status on consumer groups according to a configured interval and
sends out notifications (Email, HTTP, or some other method) for groups that meet the configured
criteria.

The HTTP Server subsystem provides an API interface to Burrow for fetching information about
clusters and consumers.

For more information about Burrow, see Burrow - Kafka Consumer Lag Checking.

Important
Make sure that Burrow is compatible with the version of Apache Kafka that you are using for
your MSK cluster.

To set up and use Burrow with Amazon MSK

Follow this if you use plaintext communication. For TLS, see the next procedure, as well.

1.

Create an MSK cluster and launch a client machine in the same VPC as the cluster. For example, you
can follow the instructions at Getting Started (p. 4).

Run the following command on the EC2 instance that serves as your client machine.

sudo yum install go

Run the following command on the client machine to get the Burrow project.

go get github.com/linkedin/Burrow

Run the following command to install dep. It installs it in the /home/ec2-user/go/bin/dep
folder.

curl https://raw.githubusercontent.com/golang/dep/master/install.sh | sh

Go to the /home/ec2-user/go/src/github.com/linkedin/Burrow folder and run the
following command.

/home/ec2-user/go/bin/dep ensure

Run the following command in the same folder.

go install

Open the /home/ec2-user/go/src/github.com/linkedin/Burrow/config/burrow. toml
configuration file for editing. In the following sections of the configuration file, replace the
placeholders with the name of your MSK cluster, the host:port pairs for your ZooKeeper servers, and
your bootstrap brokers.

To get your ZooKeeper host:port pairs, describe your MSK cluster and look for the value of
ZookeeperConnectString. See the section called “Getting the Apache ZooKeeper Connection
String” (p. 19).

To get your bootstrap brokers, see the section called “Getting the Bootstrap Brokers” (p. 20).

35

https://github.com/linkedin/Burrow/wiki/Consumer-Lag-Evaluation-Rules
https://github.com/linkedin/Burrow

Amazon Managed Streaming for
Apache Kafka Developer Guide
Consumer-Lag Checking with Burrow

Follow the formatting shown below when you edit the configuration file.

[zookeeper]

servers=["ZooKeeper-host-port-pair-1", "ZooKeeper-host-port-pair-2", "ZooKeeper-host-
port-pair-3"]

timeout=6

root-path="/burrow"

[client-profile.test]
client-id="burrow-test"
kafka-version="0.10.0"

[cluster.MSK-cluster-name]

class—-name="kafka"

servers=["bootstrap-broker-host-port-pair-1", "bootstrap-broker-host-port-pair-2",
"bootstrap-broker-host-port-pair-3"]

client-profile="test"

topic-refresh=120

offset-refresh=30

[consumer .MSK-cluster—-name]

class—-name="kafka"

cluster="MSK-cluster-name"

servers=["bootstrap-broker-host-port-pair-1", "bootstrap-broker-host-port-pair-2",
"bootstrap-broker-host-port-pair-3"]

client-profile="test"

group-blacklist="~(console-consumer-|python-kafka-consumer-|quick-).*$"

group-whitelist=""

8. Inthe go/bin folder run the following command.

./Burrow --config-dir /home/ec2-user/go/src/github.com/linkedin/Burrow/config

9. Check for errorsinthebin/log/burrow. log file.
10. You can use the following command to test your setup.

curl -XGET 'HTTP://your-localhost-ip:8000/v3/kafka’

11. For all of the supported HTTP requests and links, see Burrow HTTP Endpoint.

To use Burrow with TLS
In addition to the previous procedure, see the following steps if you are using TLS communication.

1. Run the following command.

sudo yum install java-1.8.0-openjdk-devel -y

2. Run the following command after you adjust the paths as necessary.

find /usr/lib/jvm/ -name "cacerts" -exec cp {} /tmp/kafka.client.truststore.jks \;

3. Inthe next step you use the keytool command, which asks for a password. The default password is
changeit. We recommend that you run the following command to change the password before you
proceed to the next step.

keytool -keystore /tmp/kafka.client.truststore.jks -storepass changeit -storepasswd -
new Password

36

https://github.com/linkedin/Burrow/wiki/HTTP-Endpoint

Amazon Managed Streaming for
Apache Kafka Developer Guide
Consumer-Lag Checking with Burrow

Run the following command.

keytool --list -rfc -keystore /tmp/kafka.client.truststore.jks >/tmp/truststore.pem

You need truststore.pem for the burrow. toml file that's described later in this procedure.

To generate the certfile and the keyfile, use the code at Managing Client Certificates for Mutual
Authentication with Amazon MSK. You need the pem flag.

Set up your burrow. toml file like the following example. You can have multiple cluster and
consumer sections to monitor multiple MSK clusters using one burrow cluster. You can also adjust
the Apache Kafka version under client-profile. It represents the client version of Apache Kafka
to support. For more information, see Client Profile on the Burrow GitHub.

[general]
pidfile="burrow.pid"
stdout-logfile="burrow.out"

[logging]
filename="/tmp/burrow.log"
level="info"

maxsize=100

maxbackups=30

maxage=10
use-localtime=false
use-compression=true

[zookeeper]

servers=["ZooKeeperConnectionString"]
timeout=6

root-path="/burrow"

[client-profile.mskl-client]
client-id="burrow-test"
tls="msk-mTLS"
kafka-version="2.0.0"

[cluster.mskl]

class—-name="kafka"

servers=["BootstrapBrokerString"]
client-profile="mskl-client"
topic-refresh=120

offset-refresh=30

[consumer .mskl-cons]

class—-name="kafka"

cluster="msk1"

servers=["BootstrapBrokerString"]

client-profile="mskl-client"
group-blacklist="~(console-consumer-|python-kafka-consumer-|quick-).*$"
group-whitelist=""

[httpserver.default]
address=":8000"

[storage.default]
class-name="inmemory"
workers=20
intervals=15
expire-group=604800
min-distance=1

[tls.msk-mTLS]
certfile="/tmp/client_cert.pem"

37

https://github.com/aws-samples/amazon-msk-client-authentication
https://github.com/aws-samples/amazon-msk-client-authentication
https://github.com/linkedin/Burrow/wiki/Configuration#client-profile

Amazon Managed Streaming for
Apache Kafka Developer Guide
Open Monitoring with Prometheus

keyfile="/tmp/private_key.pem"
cafile="/tmp/truststore.pem"
noverify=false

Open Monitoring with Prometheus

You can monitor your MSK cluster with Prometheus, an open-source monitoring system for time-series
metric data. You can also use tools that are compatible with Prometheus-formatted metrics or tools that
integrate with Amazon MSK Open Monitoring, like Datadog, Lenses, New Relic, and Sumo logic. Open
monitoring is available for free but charges apply for the transfer of data across Availability Zones. For
information about Prometheus, see the Prometheus documentation.

Creating an Amazon MSK Cluster with Open Monitoring Enabled

Using the AWS Management Console

1. Signin to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.
In the Monitoring section, select the check box next to Enable open monitoring with Prometheus.
Provide the required information in all the sections of the page, and review all the available options.
Choose Create cluster.

Using the AWS CLI

« Invoke the create-cluster command and specify its open-monitoring option. Enable the
JmxExporter, the NodeExporter, or both. If you specify open-monitoring, the two exporters
can't be disabled at the same time.

Using the API

« Invoke the CreateCluster operation and specify OpenMonitoring. Enable the jmxExporter, the
nodeExporter, or both. If you specify OpenMonitoring, the two exporters can't be disabled at the
same time.

Enabling Open Monitoring for an Existing Amazon MSK Cluster

To enable open monitoring, make sure that the cluster is in the ACTIVE state.

Using the AWS Management Console
1. Signin to the AWS Management Console, and open the Amazon MSK console at https://
console.aws.amazon.com/msk/home?region=us-east-1#/home/.

2. Choose the name of the cluster that you want to update. This takes you to the Details page for the
cluster.

On the Details tab, scroll down to find the Monitoring section.
Choose Edit.
Select the check box next to Enable open monitoring with Prometheus.

o v AW

Choose Save changes.

38

https://docs.datadoghq.com/integrations/amazon_msk/
https://docs.lenses.io/install_setup/deployment-options/aws-deployment.html#msk-prometheus-metrics
https://docs.newrelic.com/docs/integrations/amazon-integrations/aws-integrations-list/aws-managed-kafka-msk-integration
https://help.sumologic.com/03Send-Data/Collect-from-Other-Data-Sources/Amazon_MSK_Prometheus_metrics_collection
https://prometheus.io/docs
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://docs.aws.amazon.com/cli/latest/reference/kafka/create-cluster.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#CreateCluster
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/
https://console.aws.amazon.com/msk/home?region=us-east-1#/home/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Open Monitoring with Prometheus

Using the AWS CLI

« Invoke the update-monitoring command and specify its open-monitoring option. Enable the
JmxExporter, the NodeExporter, or both. If you specify open-monitoring, the two exporters
can't be disabled at the same time.

Using the API

« Invoke the UpdateMonitoring operation and specify OpenMonitoring. Enable the jmxExporter,
the nodeExporter, or both. If you specify OpenMonitoring, the two exporters can't be disabled at
the same time.

Setting Up a Prometheus Host on an Amazon EC2 Instance

1. Download the Prometheus server from https://prometheus.io/download/#prometheus to your
Amazon EC2 instance.

Extract the downloaded file to a directory and go to that directory.

Create a file with the following contents and name it prometheus.yml.

file: prometheus.yml
my global config
global:
scrape_interval: 10s

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
The job name is added as a label ~job=<job_name>" to any timeseries scraped from
this config.
- job_name: 'prometheus'
static_configs:
9090 is the prometheus server port
- targets: ['localhost:9090']
- job_name: 'broker'
file_sd_configs:
- files:
- 'targets.json'

4. Use the ListNodes operation to get a list of your cluster's brokers.

5. Create a file named targets. json with the following JSON. Replace broker_dns_1,
broker_dns_2, and the rest of the broker DNS names with the DNS names you obtained for your
brokers in the previous step. Include all of the brokers you obtained in the previous step. Amazon
MSK uses port 11001 for the JMX Exporter and port 11002 for the Node Exporter.

{
"labels": {
"job": "jmx"
}V
"targets": [
"broker_dns_1:11001",
"broker_dns_2:11001",

"broker_dns_N:11001"

]
}V

39

https://docs.aws.amazon.com/cli/latest/reference/kafka/update-monitoring.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-monitoring.html#UpdateMonitoring
https://prometheus.io/download/#prometheus
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-nodes.html#ListNodes

Amazon Managed Streaming for
Apache Kafka Developer Guide
Rebooting a Broker for a Cluster

{
"labels": {
"job": "node"
Iy
"targets": [
"broker_dns_1:11002",
"broker_dns_2:11002",

"broker_dns_N:11002"
]
}
]

6. To start the Prometheus server on your Amazon EC2 instance, run the following command
in the directory where you extracted the Prometheus files and saved prometheus.yml and
targets.json.

. /prometheus

7. Find the IPv4 public IP address of the Amazon EC2 instance where you ran Prometheus in the
previous step. You need this public IP address in the following step.

8. To access the Prometheus web Ul, open a browser that can access your Amazon EC2 instance, and go
to Prometheus-Instance-Public-IP:9090, where Prometheus-Instance-Public-IP isthe
public IP address you got in the previous step.

Prometheus Metrics

All metrics emitted by Apache Kafka to JMX are accessible using open monitoring with Prometheus.
For information about Apache Kafka metrics, see Monitoring in the Apache Kafka documentation. In
addition, you can use the Prometheus Node Exporter to get CPU and disk metrics for the broker nodes.

Rebooting a broker for an Amazon MSK cluster

Use this Amazon MSK operation when you want to reboot a broker for your MSK cluster. To reboot a
broker for a cluster, make sure that the cluster in the ACTIVE state.

The Amazon MSK service may reboot the brokers for your MSK cluster during system maintenance,
such as patching or version upgrades. Rebooting a broker manually lets you test resilience of your Kafka
clients to determine how they respond to system maintenance.

Rebooting a Broker Using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster, and the BrokerArn list with the ARN of the broker you
want to reboot.

Note
The reboot-broker operation only supports rebooting one broker.

If you don't have the ARN for your cluster, you can find it by listing all clusters. For more
information, see the section called “Listing Clusters” (p. 21).

If you don't have the broker IDs for your cluster, you can find it by listing the broker nodes. For more
information, see ListNodes.

40

https://kafka.apache.org/documentation/#monitoring
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-nodes.html#ListNodes

Amazon Managed Streaming for
Apache Kafka Developer Guide
Rebooting a Broker Using the API

aws kafka reboot-broker --cluster-arn ClusterArn --broker-ids "1"

The output of this reboot-broker operation looks like the following JSON.

{

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abecd-5678-cdef0123ab01-2",

"ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£f7£f-1234-9876543210ef"

}

2. To get the result of the reboot-broker operation, run the following command, replacing
ClusterOperationArn with the ARN that you obtained in the output of the reboot-broker
command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON

example.
{
"ClusterOperationInfo": {

"ClientRequestId": "cOb7af47-8591-45b5-9c0c-909ala2c99ea",

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",

"CreationTime": "2019-09-25T23:48:04.7942Z",

"OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£f7£f-1234-9876543210ef",

"OperationState": "REBOOT_IN_PROGRESS",

"OperationType": "REBOOT NODE",

"SourceClusterInfo": {},

"TargetClusterInfo": {}

When the reboot operation is complete, the OperationState is REBOOT COMPLETE.

Rebooting a Broker Using the API

To reboot a broker in a cluster using the API, see RebootBroker.

Tagging an Amazon MSK Cluster

You can assign your own metadata in the form of tags to an Amazon MSK resource, such as an MSK
cluster. A tag is a key-value pair that you define for the resource. Using tags is a simple yet powerful way
to manage AWS resources and organize data, including billing data.

Topics
» Tag Basics (p. 42)
« Tracking Costs Using Tagging (p. 42)

41

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-reboot-broker.html#RebootBroker

Amazon Managed Streaming for
Apache Kafka Developer Guide
Tag Basics

« Tag Restrictions (p. 42)
» Tagging Resources Using the Amazon MSK API (p. 43)

Tag Basics

You can use the Amazon MSK API to complete the following tasks:

« Add tags to an Amazon MSK resource.
o List the tags for an Amazon MSK resource.
« Remove tags from an Amazon MSK resource.

You can use tags to categorize your Amazon MSK resources. For example, you can categorize your
Amazon MSK clusters by purpose, owner, or environment. Because you define the key and value for
each tag, you can create a custom set of categories to meet your specific needs. For example, you might
define a set of tags that help you track clusters by owner and associated application.

The following are several examples of tags:

e Project: Project name
e Owner: Name
e Purpose: Load testing

e Environment: Production

Tracking Costs Using Tagging

You can use tags to categorize and track your AWS costs. When you apply tags to your AWS resources,
including Amazon MSK clusters, your AWS cost allocation report includes usage and costs aggregated
by tags. You can organize your costs across multiple services by applying tags that represent business
categories (such as cost centers, application names, or owners). For more information, see Use Cost
Allocation Tags for Custom Billing Reports in the AWS Billing and Cost Management User Guide.

Tag Restrictions

The following restrictions apply to tags in Amazon MSK.
Basic restrictions

« The maximum number of tags per resource is 50.
« Tag keys and values are case-sensitive.
« You can't change or edit tags for a deleted resource.

Tag key restrictions

« Each tag key must be unique. If you add a tag with a key that's already in use, your new tag overwrites
the existing key-value pair.

« You can't start a tag key with aws : because this prefix is reserved for use by AWS. AWS creates tags
that begin with this prefix on your behalf, but you can't edit or delete them.

« Tag keys must be between 1 and 128 Unicode characters in length.

« Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - e.

42

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Tagging Resources Using the Amazon MSK API

Tag value restrictions

« Tag values must be between 0 and 255 Unicode characters in length.

« Tag values can be blank. Otherwise, they must consist of the following characters: Unicode letters,
digits, white space, and any of the following special characters: _ . / = + - e.

Tagging Resources Using the Amazon MSK API

You can use the following operations to tag or untag an Amazon MSK resource or to list the current set
of tags for a resource:

 ListTagsForResource
» TagResource
« UntagResource

43

https://docs.aws.amazon.com//msk/1.0/apireference/tags-resourcearn.html#ListTagsForResource
https://docs.aws.amazon.com//msk/1.0/apireference/tags-resourcearn.html#TagResource
https://docs.aws.amazon.com//msk/1.0/apireference/tags-resourcearn.html#UntagResource

Amazon Managed Streaming for
Apache Kafka Developer Guide
Custom Configurations

Amazon MSK Configuration

Amazon MSK provides a default configuration for brokers, topics, and Apache ZooKeeper nodes. You
can also create custom configurations and use them to create new MSK clusters or to update existing
clusters. An MSK configuration consists of a set of properties and their corresponding values.

Topics

o Custom MSK Configurations (p. 44)

o The Default Amazon MSK Configuration (p. 49)
« Amazon MSK Configuration Operations (p. 51)

Custom MSK Configurations

Amazon MSK enables you to create a custom MSK configuration where you set the following properties.
Properties that you don't set explicitly get the values they have in the section called “Default
Configuration” (p. 49). For more information about configuration properties, see Apache Kafka

Configuration.

Apache Kafka Configuration Properties That You Can Set

Name
auto.create.topics.enable

compression.type

default.replication.factor

delete.topic.enable

group.initial.rebalance.delay.ms

group.max.session.timeout.ms

group.min.session.timeout.ms

Description
Enables topic autocreation on the server.

The final compression type for a given topic. You
can set this property to the standard compression
codecs (gzip, snappy, 1z4, and zstd). It
additionally accepts uncompressed, which is
equivalent to no compression; and producer,
which means retain the original compression
codec set by the producer.

The default replication factor for automatically
created topics.

Enables the delete topic operation. If this config
is turned off, you can't delete a topic through the
admin tool.

Amount of time the group coordinator waits

for more consumers to join a new group before
performing the first rebalance. A longer delay
means potentially fewer rebalances, but increases
the time until processing begins.

Maximum session timeout for registered
consumers. Longer timeouts give consumers more
time to process messages in between heartbeats
at the cost of a longer time to detect failures.

Minimum session timeout for registered
consumers. Shorter timeouts result in quicker
failure detection at the cost of more frequent
consumer heartbeating, which can overwhelm
broker resources.

44

https://kafka.apache.org/documentation/#configuration
https://kafka.apache.org/documentation/#configuration

Amazon Managed Streaming for
Apache Kafka Developer Guide
Custom Configurations

Name

leader.imbalance.per.broker.percentage

log.cleaner.delete.retention.ms

log.cleaner.min.cleanable.ratio

log.cleanup.policy

log.flush.interval.messages

log.flush.interval.ms

log.retention.bytes

log.retention.hours

log.retention.minutes

log.retention.ms

log.roll.ms

log.segment.bytes

max.incremental.fetch.session.cache.slots

Description

The ratio of leader imbalance allowed per broker.
The controller triggers a leader balance if it goes
above this value per broker. This value is specified
in percentage.

Amount of time that you want Apache Kafka to
retain deleted records. The minimum value is O.

This configuration property can have values
between 0 and 1. It determines how frequently
the log compactor attempts to clean the log
(assuming log compaction is enabled). By default,
Apache Kafka avoids cleaning a log where more
than 50% of the log has been compacted. This
ratio bounds the maximum space wasted in the
log by duplicates (at 50%, which means at most
50% of the log could be duplicates). A higher ratio
means fewer, more efficient cleanings but more
wasted space in the log.

The default cleanup policy for segments beyond
the retention window. A comma-separated list
of valid policies. Valid policies are delete and
compact.

Number of messages accumulated on a log
partition before messages are flushed to disk.

Maximum time in ms that a message in any topic
is kept in memory before flushed to disk. If not
set, the value in log.flush.scheduler.interval.ms is
used. The minimum value is 0.

Maximum size of the log before deleting it.

Number of hours to keep a log file before deleting
it, tertiary to the log.retention.ms property.

Number of minutes to keep a log

file before deleting it, secondary to
log.retention.ms property. If not set, the value in
log.retention.hours is used.

Number of milliseconds to keep a log file before
deleting it (in milliseconds), If not set, the value in
log.retention.minutes is used.

Maximum time before a new log segment is rolled
out (in milliseconds). If you don't set this property,
the value in log.roll.hours is used. The minimum
possible value for this property is 1.

Maximum size of a single log file.

Maximum number of incremental fetch sessions
that are maintained.

45

Amazon Managed Streaming for
Apache Kafka Developer Guide
Custom Configurations

Name

message.max.bytes

log.message.timestamp.difference.max.ms

log.message.timestamp.type

min.insync.replicas

num.io.threads

num.network.threads

num.recovery.threads.per.data.dir

Description

Largest record batch size allowed by Kafka. If
this is increased and there are consumers older
than 0.10.2, the consumers' fetch size must also
be increased so that the they can fetch record
batches this large.

In the latest message format version, records are
always grouped into batches for efficiency. In
previous message format versions, uncompressed
records are not grouped into batches and this
limit only applies to a single record in that case.

This can be set per topic with the topic level
max.message.bytes config.

The maximum difference allowed between the
timestamp when a broker receives a message
and the timestamp specified in the message.

If log.message.timestamp.type=CreateTime,

a message is rejected if the difference

in timestamp exceeds this threshold.

This configuration is ignored if
log.message.timestamp.type=LogAppendTime.

Specifies whether the timestamp in the message
is the message creation time or the log append
time. The allowed values are CreateTime and
LogAppendTime.

When a producer sets acks to "all" (or "-1"),
min.insync.replicas specifies the minimum number
of replicas that must acknowledge a write for

the write to be considered successful. If this
minimum cannot be met, the producer raises

an exception (either NotEnoughReplicas or
NotEnoughReplicasAfterAppend).

When used together, min.insync.replicas and

acks enable you to enforce greater durability
guarantees. A typical scenario would be to

create a topic with a replication factor of 3, set
min.insync.replicas to 2, and produce with acks of
"all". This ensures that the producer raises an
exception if a majority of replicas don't receive a
write.

The number of threads that the server uses for
processing requests, which may include disk I/0.

The number of threads that the server uses for
receiving requests from the network and sending
responses to it.

The number of threads per data directory to be
used for log recovery at startup and for flushing
at shutdown.

46

Amazon Managed Streaming for
Apache Kafka Developer Guide
Custom Configurations

Name

num.replica.fetchers

num.partitions

offsets.retention.minutes

offsets.topic.replication.factor

replica.fetch.max.bytes

replica.fetch.response.max.bytes

replica.lag.time.max.ms

socket.receive.buffer.bytes

socket.request.max.bytes

Description

The number of fetcher threads used to replicate
messages from a source broker. Increasing this
value can increase the degree of 1/0 parallelism in
the follower broker.

Default number of log partitions per topic.

After a consumer group loses all its consumers
(that is, it becomes empty) its offsets are kept for
this retention period before getting discarded.
For standalone consumers (that is, using manual
assignment), offsets are expired after the time of
the last commit plus this retention period.

The replication factor for the offsets topic (set
higher to ensure availability). Internal topic
creation fails until the cluster size meets this
replication factor requirement.

Number of bytes of messages to attempt to
fetch for each partition. This is not an absolute
maximum. If the first record batch in the first
non-empty partition of the fetch is larger than
this value, the record batch is returned to ensure
that progress can be made. The maximum

record batch size accepted by the broker is
defined via message.max.bytes (broker config) or
max.message.bytes (topic config).

The maximum number of bytes expected for
the entire fetch response. Records are fetched in
batches, and if the first record batch in the first
non-empty partition of the fetch is larger than
this value, the record batch will still be returned
to ensure that progress can be made. This isn't
an absolute maximum. The message.max.bytes
(broker config) or max.message.bytes (topic
config) properties specify the maximum record
batch size that the broker accepts.

If a follower hasn't sent any fetch requests or
hasn't consumed up to the leader's log end offset
for at least this number of milliseconds, the leader
removes the follower from the ISR.

MinValue: 10000
MaxValue (inclusive) = 30000

The SO_RCVBUF buffer of the socket server
sockets. The minimum value to which you can set
this property is -1. If the value is -1, Amazon MSK
uses the OS default.

The maximum number of bytes in a socket
request.

47

Amazon Managed Streaming for
Apache Kafka Developer Guide
Custom Configurations

Name

socket.send.buffer.bytes

replica.selector.class

replica.socket.receive.buffer.bytes

transactional.id.expiration.ms

transaction.max.timeout.ms

transaction.state.log.min.isr

transaction.state.log.replication.factor

unclean.leader.election.enable

zookeeper.connection.timeout.ms

Description

The SO_SNDBUF buffer of the socket server
sockets. The minimum value to which you can set
this property is -1. If the value is -1, Amazon MSK
uses the OS default.

The fully-qualified class name that implements

ReplicaSelector. This is used by the broker

to find the preferred read replica. If you are

using Apache Kafka version 2.4.1 or higher,

and want to allow consumers to fetch from

the closest replica, set this property to
org.apache.kafka.common.replica.RackAwareReplicas
For more information, see the section called

“Apache Kafka version 2.4.1" (p. 89).

The socket receive buffer for network requests.

The time in milliseconds that the transaction
coordinator waits without receiving any
transaction status updates for the current
transaction before expiring its transactional ID.
This setting also influences producer ID expiration:
producer IDs are expired when this time elapses
after the last write with the given producer ID.
Producer IDs might expire sooner if the last write
from the producer ID is deleted due to the topic's
retention settings. The minimum value for this
property is 1 millisecond.

Maximum timeout for transactions. If a client’s
requested transaction time exceed this, the broker
returns an error in InitProducerldRequest. This
prevents a client from too large of a timeout,
which can stall consumers reading from topics
included in the transaction.

Overridden min.insync.replicas config for the
transaction topic.

The replication factor for the transaction topic.
Set it to a higher value to increase availability.
Internal topic creation fails until the cluster size
meets this replication factor requirement.

Indicates whether to enable replicas not in the ISR
set to be elected as leader as a last resort, even
though doing so may result in data loss.

Maximum time that the client waits to establish a
connection to ZooKeeper. If not set, the value in
zookeeper.session.timeout.ms is used.

48

Amazon Managed Streaming for
Apache Kafka Developer Guide
Dynamic Configuration

Name Description

zookeeper.session.timeout.ms The Apache ZooKeeper session timeout in
milliseconds.

MinValue = 6000

MaxValue (inclusive) = 18000

To learn how you can create a custom MSK configuration, list all configurations, or describe them, see
the section called “Configuration Operations” (p. 51). To create an MSK cluster using a custom MSK
configuration or to update a cluster with a new custom configuration, see How It Works (p. 15).

When you update your existing MSK cluster with a custom MSK configuration, Amazon MSK does rolling
restarts when necessary, using best practices to minimize customer downtime. For example, after
Amazon MSK restarts each broker, it tries to let the broker catch up on data that the broker might have
missed during the configuration update before it moves to the next broker.

Dynamic Configuration

In addition to the configuration properties that Amazon MSK provides, you can dynamically set cluster-
and broker-level configuration properties that don't require a broker restart. You can dynamically set
configuration properties that aren't marked as read-only in the table under Broker Configs in the Apache
Kafka documentation. For information about dynamic configuration and example commands, see
Updating Broker Configs in the Apache Kafka documentation.

Note
You can set the advertised.listeners property, but not the listeners property.

Topic-Level Configuration

You can use Apache Kafka commands to set or modify topic-level configuration properties for new and
existing topics. For more information about topic-level configuration properties and examples on how to
set them, see Topic-Level Configs in the Apache Kafka documentation.

Configuration States

Amazon MSK configurations can be in the following states. To perform an operation on a configuration,
the configuration must be in the ACTIVE or DELETE_FAILED state:

e ACTIVE

e DELETING

e DELETE_FAILED

The Default Amazon MSK Configuration

When you create an MSK cluster without specifying a custom MSK configuration, Amazon MSK creates
and uses a default configuration with the values shown in the following table. For properties that aren't
in this table, Amazon MSK uses the defaults associated with your version of Apache Kafka. For a list of
these default values, see Apache Kafka Configuration.

49

https://kafka.apache.org/documentation/#brokerconfigs
https://kafka.apache.org/documentation/#dynamicbrokerconfigs
https://kafka.apache.org/documentation/#topicconfigs
https://kafka.apache.org/documentation/#configuration

Amazon Managed Streaming for
Apache Kafka Developer Guide
Default Configuration

Default Configuration Values

Name

allow.everyone.if.no.acl.found

auto.create.topics.enable

auto.leader.rebalance.enable

default.replication.factor

min.insync.replicas

num.io.threads

num.network.threads

Description

If no resource patterns match a
specific resource, the resource
has no associated ACLs. In this
case, if this property is set to
true, everyone is allowed to
access the resource, not just the
super users.

Enables autocreation of a topic
on the server.

Enables auto leader balancing.
A background thread checks
and triggers leader balance if
required at regular intervals.

Default replication factors for
automatically created topics.

When a producer sets

acks to "all" (or "-1"),
min.insync.replicas specifies
the minimum number of
replicas that must acknowledge
a write for the write to be
considered successful. If this
minimum can't be met, the
producer raises an exception
(either NotEnoughReplicas or

NotEnoughReplicasAfterAppend).

When used together,
min.insync.replicas and acks
enable you to enforce greater
durability guarantees. A typical
scenario would be to create a
topic with a replication factor of
3, set min.insync.replicas to 2,
and produce with acks of "a11".
This ensures that the producer
raises an exception if a majority

of replicas do not receive a write.

Number of threads that the
server uses for processing
requests, which may include disk
1/0.

Number of threads that the
server uses for receiving
requests from the network
and sending responses to the
network.

Default Value

true

false

true

50

Amazon Managed Streaming for
Apache Kafka Developer Guide
Configuration Operations

Name Description Default Value
num.partitions Default number of log partitions | 1

per topic.
num.replica.fetchers Number of fetcher threads used 2

to replicate messages from a
source broker. Increasing this
value can increase the degree of
1/0 parallelism in the follower
broker.

replica.lag.time.max.ms If a follower hasn't sent 30000
any fetch requests or hasn't
consumed up to the leader's
log end offset for at least this
number of milliseconds, the
leader removes the follower
from the ISR.

socket.receive.buffer.bytes SO_RCVBUF buffer of the socket | 102400
sever sockets. If the value is -1,
the OS default is used.

socket.request.max.bytes Maximum number of bytesina | 104857600
socket request.

socket.send.buffer.bytes SO_SNDBUF buffer of the socket | 102400
sever sockets. If the value is -1,
the OS default is used.

unclean.leader.election.enable Indicates whether to enable true
replicas not in the ISR set to be
elected as leader as a last resort,
even though doing so may result
in data loss.

zookeeper.session.timeout.ms The Apache ZooKeeper session 18000
timeout in milliseconds.

zookeeper.set.acl Set client to use secure ACLs. false

Amazon MSK Configuration Operations

This topic describes how to create custom MSK configurations and how to perform operations on
them. For information about how to use MSK configurations to create or update clusters, see How It
Works (p. 15).

This topic contains the following sections:
« To create an MSK configuration (p. 52)
« To update an MSK configuration (p. 52)
» To delete an MSK configuration (p. 53)
» To describe an MSK configuration (p. 53)
» To describe an MSK configuration revision (p. 53)
« To list all MSK configurations in your account for the current Region (p. 55)

51

Amazon Managed Streaming for
Apache Kafka Developer Guide
Create Configuration

To create an MSK configuration

1.

Create a file where you specify the configuration properties that you want to set and the values that
you want to assign to them. The following are the contents of an example configuration file.

auto.create.topics.enable = true
zookeeper.connection.timeout.ms = 1000

log.roll.ms = 604800000

Run the following AWS CLI command, replacing config-file-path with the path to the file where
you saved your configuration in the previous step.

Note
The name that you choose for your configuration must match the following regex: "A[0-9A-
Za-z][0-9A-Za-z-]{0,}$".

aws kafka create-configuration --name "ExampleConfigurationName" --description
"Example configuration description." --kafka-versions "1.1.1" --server-properties
file://config-file-path

The following is an example of a successful response after running this command.

{
"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabcd-1234-
abcd-1234-abcdl123e8e8e-1",
"CreationTime": "2019-05-21T19:37:40.626Z",
"LatestRevision": {
"CreationTime": "2019-05-21T19:37:40.626Z",
"Description": "Example configuration description.",
"Revision": 1
}I
"Name": "ExampleConfigurationName"
}

The previous command returns an Amazon Resource Name (ARN) for the newly created
configuration. Save this ARN because you need it to refer to this configuration in other commands.
If you lose your configuration ARN, you can find it again by listing all the configurations in your
account.

To update an MSK configuration

1.

Create a file where you specify the configuration properties that you want to update and the values
that you want to assign to them. The following are the contents of an example configuration file.

auto.create.topics.enable = true
zookeeper.connection.timeout.ms = 1000

min.insync.replicas = 2

Run the following AWS CLI command, replacing config-file-path with the path to the file where
you saved your configuration in the previous step.

Replace configuration-arn with the ARN you obtained when you created the configuration.
If you didn't save the ARN when you created the configuration, you can use the 1ist-

52

Amazon Managed Streaming for
Apache Kafka Developer Guide
To delete an MSK configuration

configurations command to list all configuration in your account, and find the configuration that
you want in the list that appears in the response. The ARN of the configuration also appears in that
list.

aws kafka update-configuration --arn configuration-arn --description "Example
configuration revision description." --server-properties file://config-file-path

The following is an example of a successful response after running this command.

{
"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabcd-1234-
abcd-1234-abcdl123e8e8e-1",
"LatestRevision": {
"CreationTime": "2020-08-27T19:37:40.626Z",
"Description": "Example configuration revision description.",
"Revision": 2

To delete an MSK configuration

1.

To run this example, replace configuration-arn with the ARN you obtained when you created
the configuration. If you didn't save the ARN when you created the configuration, you can use
the list-configurations command to list all configuration in your account, and find the
configuration that you want in the list that appears in the response. The ARN of the configuration
also appears in that list.

aws kafka delete-configuration --arn configuration-arn

The following is an example of a successful response after running this command.

{

"arn": " arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabcd-1234-
abcd-1234-abcdl123e8e8e-1",

"state": "DELETING"
}

To describe an MSK configuration

1.

This command returns metadata about the configuration. To get a detailed description of the
configuration, run the describe-configuration-revision.

To run this example, replace configuration-arn with the ARN you obtained when you created
the configuration. If you didn't save the ARN when you created the configuration, you can use
the list-configurations command to list all configuration in your account, and find the
configuration that you want in the list that appears in the response. The ARN of the configuration
also appears in that list.

aws kafka describe-configuration --arn configuration-arn

The following is an example of a successful response after running this command.

{

53

Amazon Managed Streaming for
Apache Kafka Developer Guide
To describe an MSK configuration revision

"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabecd-
abcd-1234-abcd-abedl23e8e8e-1",
"CreationTime": "2019-05-21T00:54:23.591Z",
"Description": "Example configuration description.",
"KafkavVersions": [
"1.1.1"

1,

"LatestRevision": {

"CreationTime": "2019-05-21T00:54:23.591Z",
"Description": "Example configuration description.",
"Revision": 1

Iy

"Name": "SomeTest"

To describe an MSK configuration revision

Describing an MSK configuration using the describe-configuration command, gives you the
metadata of the configuration. To see a description of the configuration, use this command, describe-
configuration-revision, instead.

« Run the following command, replacing configuration-arn with the ARN you obtained when you
created the configuration. If you didn't save the ARN when you created the configuration, you can
use the list-configurations command to list all configuration in your account, and find the
configuration that you want in the list that appears in the response. The ARN of the configuration
also appears in that list.

aws kafka describe-configuration-revision --arn configuration-arn --revision 1

The following is an example of a successful response after running this command.

{

"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/abcdabecd-
abcd-1234-abcd-abcdl23e8e8e-1",

"CreationTime": "2019-05-21T00:54:23.5912Z",

"Description": "Example configuration description.",

"Revision": 1,

"ServerProperties":

¥

"YXVO0by5jcmvVhdGUudGowaWNzILmVuYWJIsZSA9 IHRydWUKCgp6b29rZWVwZXIuY29ubmvVjdGlvbi50awllb3VOLm

1zIDOgMTAWN

The value of ServerProperties is encoded using Baseb4. If you use a Base64 decoder (for
example, https://www.base64decode.org/) to manually decode it, you get the contents of the
original configuration file that you used to create the custom configuration. In this case, you get the
following:

auto.create.topics.enable = true
zookeeper.connection.timeout.ms = 1000

log.roll.ms = 604800000

54

Amazon Managed Streaming for

Apache Kafka Developer Guide

To list all MSK configurations in
your account for the current Region

To list all MSK configurations in your account for the
current Region

Run the following command.

aws kafka list-configurations

The following is an example of a successful response after running this command.

{
"Configurations": [
{
"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-abcd-1234-abcd-abcdl123e8e8e-1",
"CreationTime": "2019-05-21T00:54:23.591z2",
"Description": "Example configuration description.",
"KafkaVersions": [
"i1.1.1"
]I
"LatestRevision": {
"CreationTime": "2019-05-21T00:54:23.591z",
"Description": "Example configuration description.",
"Revision": 1
}I
"Name": "SomeTest"
Iy
{
"Arn": "arn:aws:kafka:us-east-1:123456789012:configuration/SomeTest/
abcdabcd-1234-abcd-1234-abcdl123e8e8e-1",
"CreationTime": "2019-05-03T23:08:29.4462Z",
"Description": "Example configuration description.",
"KafkaVersions": [
"i1.1.1"
]I
"LatestRevision": {
"CreationTime": "2019-05-03T23:08:29.446Z",
"Description": "Example configuration description.",
"Revision": 1
}I
"Name": "ExampleConfigurationName"
¥
]
}

55

Amazon Managed Streaming for
Apache Kafka Developer Guide
Data Protection

Security in Amazon Managed
Streaming for Apache Kafka

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

« Security of the cloud - AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To
learn about the compliance programs that apply to Amazon Managed Streaming for Apache Kafka, see
AWS Services in Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using
Amazon MSK. The following topics show you how to configure Amazon MSK to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and secure
your Amazon MSK resources.
Topics

« Data Protection in Amazon Managed Streaming for Apache Kafka (p. 56)

« ldentity and Access Management for Amazon Managed Streaming for Apache Kafka (p. 60)

« Client Authentication (p. 67)

« Using Username and Password Authentication with AWS Secrets Manager (p. 70)

« Apache Kafka ACLs (p. 73)

» Controlling Access to Apache ZooKeeper (p. 74)

« Logging (p. 76)

« Compliance Validation for Amazon Managed Streaming for Apache Kafka (p. 80)

 Resilience in Amazon Managed Streaming for Apache Kafka (p. 80)

« Infrastructure Security in Amazon Managed Streaming for Apache Kafka (p. 81)

Data Protection in Amazon Managed Streaming
for Apache Kafka

Amazon Managed Streaming for Apache Kafka conforms to the AWS shared responsibility model,
which includes regulations and guidelines for data protection. AWS is responsible for protecting
the global infrastructure that runs all the AWS services. AWS maintains control over data hosted on
this infrastructure, including the security configuration controls for handling customer content and

56

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Encryption

personal data. AWS customers and APN partners, acting either as data controllers or data processors, are
responsible for any personal data that they put in the AWS Cloud.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM), so that each user is given only
the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the
following ways:

« Use multi-factor authentication (MFA) with each account.
e Use SSL/TLS to communicate with AWS resources.

« Set up API and user activity logging with AWS CloudTrail.
« Use AWS encryption solutions, along with all default security controls within AWS services.

« Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your customers'
account numbers, into free-form fields. Examples of free-form fields are resource names like the name of
an MSK cluster, the tags you use for the cluster, and the names of the Apache Kafka topics. This guidance
applies when you work with Amazon MSK or any other AWS service. Keep it in mind whether you use the
console, API, AWS CLI, or AWS SDKs. Also, when you provide a URL to an external server, don't include
credentials information in the URL to validate your request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

Topics
» Amazon MSK Encryption (p. 57)
« How Do | Get Started with Encryption? (p. 58)

Amazon MSK Encryption

Amazon MSK provides data encryption options that you can use to meet strict data management
requirements. The certificates that Amazon MSK uses for encryption must be renewed every 13 months.
Amazon MSK automatically renews these certificates for all clusters. It sets the state of the cluster to
MAINTENANCE when it starts the certificate-update operation. It sets it back to ACTIVE when the update
is done. While a cluster is in the MAINTENANCE state, you can continue to produce and consume data, but
you can't perform any update operations on it.

Encryption at Rest

Amazon MSK integrates with AWS Key Management Service (KMS) to offer transparent server-side
encryption. Amazon MSK always encrypts your data at rest. When you create an MSK cluster, you can
specify the AWS KMS customer master key (CMK) that you want Amazon MSK to use to encrypt your
data at rest. If you don't specify a CMK, Amazon MSK creates an AWS managed CMK for you and uses
it on your behalf. For more information about CMKs, see Customer Master Keys (CMKs) in the AWS Key
Management Service Developer Guide.

Encryption in Transit

Amazon MSK uses TLS 1.2. By default, it encrypts data in transit between the brokers of your MSK
cluster. You can override this default at the time you create the cluster.

57

http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Amazon Managed Streaming for
Apache Kafka Developer Guide
How Do | Get Started with Encryption?

For communication between clients and brokers, you must specify one of the following three settings:

« Only allow TLS encrypted data. This is the default setting.
« Allow both plaintext, as well as TLS encrypted data.
« Only allow plaintext data.

Amazon MSK brokers use public AWS Certificate Manager certificates. Therefore, any truststore that
trusts Amazon Trust Services also trusts the certificates of Amazon MSK brokers.

Enabling encryption reduces performance by approximately 30%. However, the exact percentage
depends on the configuration of your cluster and clients.

How Do | Get Started with Encryption?

When creating an MSK cluster, you can specify encryption settings in JSON format. The following is an
example.

{
"EncryptionAtRest": {
"DataVolumeKMSKeyId": "arn:aws:kms:us-east-1:123456789012:key/abcdabcd-1234-
abcd-1234-abcdl23e8e8e"
T
"EncryptionInTransit": {
"InCluster": true,
"ClientBroker": "TLS"
¥
¥

For DatavVolumeKMSKeyId, you can specify a customer managed CMK or the AWS managed CMK for
MSK in your account (alias/aws/kafka). If you don't specify EncryptionAtRest, Amazon MSK still
encrypts your data at rest under the AWS managed CMK. To determine which CMK your cluster is using,
send a GET request or invoke the DescribeCluster API operation.

For EncryptionInTransit, the default value of InCluster is true, but you can set it to false if you
don't want Amazon MSK to encrypt your data as it passes between brokers.

To specify the encryption mode for data in transit between clients and brokers, set ClientBroker to
one of three values: TLS, TLS_PLAINTEXT, or PLAINTEXT.

To specify encryption settings when creating a cluster

1. Save the contents of the previous example in a file and give the file any name that you want. For
example, call it encryption-settings. json.

2. Runthe create-cluster command and use the encryption-info option to point to the file
where you saved your configuration JSON. The following is an example.

aws kafka create-cluster --cluster-name "ExampleClusterName" --broker-node-group-info
file://brokernodegroupinfo.json --encryption-info file://encryptioninfo.json --kafka-
version "2.2.1" --number-of-broker-nodes 3

The following is an example of a successful response after running this command.

{

"ClusterArn": "arn:aws:kafka:us-east-1:123456789012:cluster/SecondTLSTest/
abcdabcd-1234-abed-1234-abcdl123e8e8e™,

"ClusterName": "ExampleClusterName",

"State": "CREATING"

58

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Managed Streaming for
Apache Kafka Developer Guide
How Do | Get Started with Encryption?

}

To test TLS encryption

1.

Create a client machine following the guidance in the section called “Step 4: Create a Client
Machine” (p. 10).

Install Apache Kafka on the client machine.

Run the following command on a machine that has the AWS CLl installed, replacing clusterARN
with the ARN of your cluster (a cluster created with ClientBroker set to TLS like the example in
the previous procedure).

aws kafka describe-cluster --cluster-arn clusterARN

In the result, look for the value of ZookeeperConnectString and save it because you need it in
the next step.

Go to the bin folder of the Apache Kafka installation on the client machine. To create a topic, run
the following command, replacing ZookeeperConnectString with the value you obtained for
ZookeeperConnectString in the previous step.

kafka-topics.sh --create --zookeeper ZookeeperConnectString --replication-factor 3 --
partitions 1 --topic TLSTestTopic

In this example we use the JVM truststore to talk to the MSK cluster. To do this, first create a folder
named /tmp on the client machine. Then, go to the bin folder of the Apache Kafka installation, and
run the following command. (Your JVM path might be different.)

cp /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.201.b09-0.amzn2.x86_64/jre/lib/security/
cacerts /tmp/kafka.client.truststore.jks

While still in the bin folder of the Apache Kafka installation on the client machine, create a text file
named client.properties with the following contents.

security.protocol=SSL
ssl.truststore.location=/tmp/kafka.client.truststore. jks

Run the following command on a machine that has the AWS CLI installed, replacing clusterARN
with the ARN of your cluster.

aws kafka get-bootstrap-brokers --cluster-arn clusterARN

A successful result looks like the following. Save this result because you need it for the next step.

{

"BootstrapBrokerStringTls": "a-1l.example.g7oein.c2.kafka.us-
east-1l.amazonaws.com:0123,a-3.example.g7o0ein.c2.kafka.us-
east-1l.amazonaws.com:0123,a-2.example.g7o0ein.c2.kafka.us-east-1.amazonaws.com:0123"

}

In the bin folder of the Apache Kafka installation on the client machine, run the following, replacing
BootstrapBrokerStringTls with the value you obtained in the previous step. Leave this
producer command running.

kafka-console-producer.sh --broker-list BootstrapBrokerStringTls --producer.config
client.properties --topic TLSTestTopic

59

Amazon Managed Streaming for
Apache Kafka Developer Guide
Identity and Access Management

9. Open a new command window on the same client machine, go to the bin folder of the Apache
Kafka installation, and run the following command to create a consumer.

kafka-console-consumer.sh --bootstrap-server BootstrapBrokerStringTls --consumer.config
client.properties --topic TLSTestTopic

10. In the producer window, type a text message followed by a return, and look for the same message in
the consumer window. Amazon MSK encrypted this message in transit.

For more information about configuring Apache Kafka clients to work with encrypted data, see
Configuring Kafka Clients.

|dentity and Access Management for Amazon
Managed Streaming for Apache Kafka

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use Amazon MSK resources. IAM is an AWS service that you can use with
no additional charge.
Topics

« How Amazon Managed Streaming for Apache Kafka Works with 1AM (p. 60)

« Amazon Managed Streaming for Apache Kafka Identity-Based Policy Examples (p. 63)

« Using Service-Linked Roles for Amazon MSK (p. 65)

« Troubleshooting Amazon Managed Streaming for Apache Kafka Identity and Access (p. 67)

How Amazon Managed Streaming for Apache Kafka
Works with IAM

Before you use IAM to manage access to Amazon MSK, you should understand what IAM features are
available to use with Amazon MSK. To get a high-level view of how Amazon MSK and other AWS services
work with 1AM, see AWS Services That Work with IAM in the IAM User Guide.
Topics

« Amazon MSK Identity-Based Policies (p. 60)

o Amazon MSK Resource-Based Policies (p. 62)

« Authorization Based on Amazon MSK Tags (p. 62)

« Amazon MSK IAM Roles (p. 62)

Amazon MSK ldentity-Based Policies

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. Amazon MSK supports specific actions, resources,
and condition keys. To learn about all of the elements that you use in a JSON policy, see IAM JSON Policy
Elements Reference in the IAM User Guide.

60

https://kafka.apache.org/documentation/#security_configclients
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
How Amazon Managed Streaming
for Apache Kafka Works with IAM

Actions

The Action element of an IAM identity-based policy describes the specific action or actions that will be
allowed or denied by the policy. Policy actions usually have the same name as the associated AWS API
operation. The action is used in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon MSK use the following prefix before the action: kafka:. For example, to
grant someone permission to describe an MSK cluster with the Amazon MSK DescribeCluster API
operation, you include the kafka:DescribeCluster action in their policy. Policy statements must
include either an Action or NotAction element. Amazon MSK defines its own set of actions that
describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["kafka:actionl", "kafka:action2"]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with
the word Describe, include the following action:

"Action": "kafka:Describex*"

To see a list of Amazon MSK actions, see Actions Defined by Amazon Managed Streaming for Apache
Kafka in the IAM User Guide.

Resources

The Resource element specifies the object or objects to which the action applies. Statements must
include either a Resource or a NotResource element. You specify a resource using an ARN or using the
wildcard (*) to indicate that the statement applies to all resources.

The Amazon MSK instance resource has the following ARN:

arn:${Partition}:kafka:${Region}:${Account}:cluster/${ClusterName}/${UUID}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS Service
Namespaces.

For example, to specify the CustomerMessages instance in your statement, use the following ARN:

"Resource": "arn:aws:kafka:us-east-1:123456789012:cluster/CustomerMessages/abcdl1234-abcd-
dcba-4321-alb2abcd9f9of-2"

To specify all instances that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:kafka:us-east-1:123456789012:cluster/*"

Some Amazon MSK actions, such as those for creating resources, cannot be performed on a specific
resource. In those cases, you must use the wildcard (*).

"Resource": "*"

61

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
How Amazon Managed Streaming
for Apache Kafka Works with IAM

To specify multiple resources in a single statement, separate the ARNs with commas.

"Resource": ["resourcel", "resource2"]

To see a list of Amazon MSK resource types and their ARNs, see Resources Defined by Amazon Managed
Streaming for Apache Kafka in the IAM User Guide. To learn with which actions you can specify the ARN
of each resource, see Actions Defined by Amazon Managed Streaming for Apache Kafka.

Condition Keys

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can create conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see |IAM Policy Elements: Variables and Tags in the IAM User Guide.

Amazon MSK defines its own set of condition keys and also supports using some global condition keys.
To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User Guide.

To see a list of Amazon MSK condition keys, see Condition Keys for Amazon Managed Streaming for
Apache Kafka in the IAM User Guide. To learn with which actions and resources you can use a condition
key, see Actions Defined by Amazon Managed Streaming for Apache Kafka.

Examples

To view examples of Amazon MSK identity-based policies, see Amazon Managed Streaming for Apache
Kafka Identity-Based Policy Examples (p. 63).

Amazon MSK Resource-Based Policies

Amazon MSK does not support resource-based policies.

Authorization Based on Amazon MSK Tags

You can attach tags to Amazon MSK clusters. To control access based on tags, you provide tag
information in the condition element of a policy using the kafka:ResourceTag/key-name,

aws :RequestTag/key-name, or aws : TagKeys condition keys. For more information about tagging
Amazon MSK resources, see the section called “Tagging a Cluster” (p. 41).

To view an example identity-based policy for limiting access to a cluster based on the tags on that
cluster, see Accessing Amazon MSK Clusters Based on Tags (p. 65).

Amazon MSK IAM Roles

An IAM role is an entity within your AWS account that has specific permissions.

62

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonmanagedstreamingforkafka.html#amazonmanagedstreamingforkafka-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Identity-Based Policy Examples

Using Temporary Credentials with Amazon MSK

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-
account role. You obtain temporary security credentials by calling AWS STS API operations such as
AssumeRole or GetFederationToken.

Amazon MSK supports using temporary credentials.
Service-Linked Roles

Service-linked roles allow AWS services to access resources in other services to complete an action on
your behalf. Service-linked roles appear in your IAM account and are owned by the service. An IAM
administrator can view but not edit the permissions for service-linked roles.

Amazon MSK supports service-linked roles. For details about creating or managing Amazon MSK service-
linked roles, the section called “Service-Linked Roles” (p. 65).

Amazon Managed Streaming for Apache Kafka
|dentity-Based Policy Examples

By default, IAM users and roles don't have permission to execute Amazon MSK API actions. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific API
operations on the specified resources they need. The administrator must then attach those policies to
the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see
Creating Policies on the JSON Tab in the IAM User Guide.

Topics
 Policy Best Practices (p. 63)
« Allow Users to View Their Own Permissions (p. 64)
o Accessing One Amazon MSK Cluster (p. 64)
« Accessing Amazon MSK Clusters Based on Tags (p. 65)

Policy Best Practices

Identity-based policies are very powerful. They determine whether someone can create, access, or delete
Amazon MSK resources in your account. These actions can incur costs for your AWS account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

« Get Started Using AWS Managed Policies — To start using Amazon MSK quickly, use AWS managed
policies to give your employees the permissions they need. These policies are already available in
your account and are maintained and updated by AWS. For more information, see Get Started Using
Permissions With AWS Managed Policies in the IAM User Guide.

« Grant Least Privilege — When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions as
necessary. Doing so is more secure than starting with permissions that are too lenient and then trying
to tighten them later. For more information, see Grant Least Privilege in the IAM User Guide.

« Enable MFA for Sensitive Operations — For extra security, require IAM users to use multi-factor
authentication (MFA) to access sensitive resources or AP| operations. For more information, see Using
Multi-Factor Authentication (MFA) in AWS in the IAM User Guide.

« Use Policy Conditions for Extra Security — To the extent that it's practical, define the conditions under
which your identity-based policies allow access to a resource. For example, you can write conditions to

63

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Identity-Based Policy Examples

specify a range of allowable IP addresses that a request must come from. You can also write conditions
to allow requests only within a specified date or time range, or to require the use of SSL or MFA. For
more information, see IAM JSON Policy Elements: Condition in the IAM User Guide.

Allow Users to View Their Own Permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action
on the console or programmatically using the AWS CLI or AWS API.

{
"Version": "2012-10-17",
"Statement": [
{

"Sid": "ViewOwnUserInfo",

"Effect": "Allow",

"Action": [
"iam:GetUserPolicy",
"iam:ListGroupsForUser",
"jam:ListAttachedUserPolicies",
"iam:ListUserPolicies",
"iam:GetUser"

1.

"Resource": ["arn:aws:iam::*:user/${aws:username}"]

T
{

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:ListAttachedGroupPolicies",
"iam:ListGroupPolicies",
"iam:ListPolicyVersions",
"jam:ListPolicies",
"iam:ListUsers"

1.

"Resource": "*"

}
]
}

Accessing One Amazon MSK Cluster

In this example, you want to grant an IAM user in your AWS account access to one of your clusters,
purchaseQueriesCluster. This policy allows the user to describe the cluster, get its bootstrap
brokers, list its broker nodes, and update it.

"Version":"2012-10-17",
"Statement":[
{
"Sid":"UpdateCluster",
"Effect":"Allow",
"Action":[
"kafka:Describe*",
"kafka:Get*",
"kafka:List*",
"kafka:Update*"

64

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Service-Linked Roles

1,

"Resource":"arn:aws:kafka:us-east-1:012345678012:cluster/purchaseQueriesCluster/
abcdefab-1234-abcd-5678-cdef0123ab01-2"
}
1

Accessing Amazon MSK Clusters Based on Tags

You can use conditions in your identity-based policy to control access to Amazon MSK resources based on
tags. This example shows how you might create a policy that allows the user to describe the cluster, get
its bootstrap brokers, list its broker nodes, update it, and delete it. However, permission is granted only if
the cluster tag owner has the value of that user's user name.

{
"Version": "2012-10-17",

"Statement": [
{
"Sid": "AccessClusterIfOwner",
"Effect": "Allow",
"Action": [
"kafka:Describe*",
"kafka:Get*",
"kafka:List*",
"kafka:Update*",
"kafka:Delete*"
]!
"Resource": "arn:aws:kafka:us-east-1:012345678012:cluster/*",
"Condition": {
"StringEquals": {
"kafka:ResourceTag/Owner": "${aws:username}"

You can attach this policy to the IAM users in your account. If a user named richard-roe attempts to
update an MSK cluster, the cluster must be tagged Oowner=richard-roe or owner=richard-roe.
Otherwise, he is denied access. The condition tag key owner matches both owner and owner because
condition key names are not case-sensitive. For more information, see IAM JSON Policy Elements:
Condition in the IAM User Guide.

Using Service-Linked Roles for Amazon MSK

Amazon MSK uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role
is a unique type of IAM role that is linked directly to Amazon MSK. Service-linked roles are predefined by
Amazon MSK and include all the permissions that the service requires to call other AWS services on your
behalf.

A service-linked role makes setting up Amazon MSK easier because you do not have to manually add the
necessary permissions. Amazon MSK defines the permissions of its service-linked roles. Unless defined
otherwise, only Amazon MSK can assume its roles. The defined permissions include the trust policy and
the permissions policy, and that permissions policy cannot be attached to any other IAM entity.

For information about other services that support service-linked roles, see AWS Services That Work with
IAM, and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link
to view the service-linked role documentation for that service.

Topics

65

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Service-Linked Roles

« Service-Linked Role Permissions for Amazon MSK (p. 66)

« Creating a Service-Linked Role for Amazon MSK (p. 66)

« Editing a Service-Linked Role for Amazon MSK (p. 66)

» Supported Regions for Amazon MSK Service-Linked Roles (p. 66)

Service-Linked Role Permissions for Amazon MSK

Amazon MSK uses the service-linked role named AWSServiceRoleForKafka — Allows Amazon MSK to
access AWS resources on your behalf.

The AWSServiceRoleForKafka service-linked role trusts the following services to assume the role:

« kafka.amazonaws.com

The role permissions policy allows Amazon MSK to complete the following actions on the specified
resources:

o Action: ec2:CreateNetworkInterface on *
Action: ec2:DescribeNetworkInterfaces on *
Action: ec2:CreateNetworkInterfacePermission on *
Action: ec2:AttachNetworkInterface on *
Action: ec2:DeleteNetworkInterface on *
Action: ec2:DetachNetworkInterface on *
You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, edit, or

delete a service-linked role. For more information, see Service-Linked Role Permissions in the IAM User
Guide.

Creating a Service-Linked Role for Amazon MSK

You don't need to create a service-linked role manually. When you create an Amazon MSK cluster in the
AWS Management Console, the AWS CLI, or the AWS API, Amazon MSK creates the service-linked role for
you.

If you delete this service-linked role, and then need to create it again, you can use the same process to
recreate the role in your account. When you create an Amazon MSK cluster, Amazon MSK creates the
service-linked role for you again.

Editing a Service-Linked Role for Amazon MSK

Amazon MSK does not allow you to edit the AWSServiceRoleForKafka service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities might
reference the role. However, you can edit the description of the role using IAM. For more information, see
Editing a Service-Linked Role in the IAM User Guide.

Supported Regions for Amazon MSK Service-Linked Roles

Amazon MSK supports using service-linked roles in all of the AWS Regions where the service is available.
For more information, see AWS Regions and Endpoints.

66

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Troubleshooting

Troubleshooting Amazon Managed Streaming for
Apache Kafka Identity and Access

Use the following information to help you diagnose and fix common issues that you might encounter
when working with Amazon MSK and IAM.

Topics
« | Am Not Authorized to Perform an Action in Amazon MSK (p. 67)

| Am Not Authorized to Perform an Action in Amazon MSK

If the AWS Management Console tells you that you're not authorized to perform an action, then you
must contact your administrator for assistance. Your administrator is the person that provided you with
your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to delete
a cluster but does not have kafka:DeleteCluster permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
kafka:DeleteCluster on resource: purchaseQueriesCluster

In this case, Mateo asks his administrator to update his policies to allow him to access the
purchaseQueriesCluster resource using the kafka:DeleteCluster action.

Client Authentication

You can enable client authentication with TLS for connections from your applications to your Amazon
MSK brokers and ZooKeeper nodes. To use client authentication, you need an ACM Private CA. For
information about private CAs, see Creating and Managing a Private CA.

Note
TLS authentication is not currently available in the Beijing and Ningxia Regions.

This topic contains the following sections:
« To create a cluster that supports client authentication (p. 67)
« To set up a client to use authentication (p. 68)

« To produce and consume messages using authentication (p. 70)

To create a cluster that supports client authentication

This procedure shows you how to enable client authentication using a CA that is hosted by ACM.

1. Create a file named clientauthinfo. json with the following contents. Replace Private-CA-
ARN with the ARN of your PCA.

"Tls": {
"CertificateAuthorityArnList": ["Private-CA-ARN"]

}

67

https://docs.aws.amazon.com/acm-pca/latest/userguide/PcaCreatingManagingCA.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
To set up a client to use authentication

}

Create a file named brokernodegroupinfo. json as described in the section called “Creating a
Cluster Using the AWS CLI" (p. 17).

Client authentication requires that you also enable encryption in transit between clients and brokers.
Create a file named encryptioninfo. json with the following contents. Replace KMS-Key-ARN
with the ARN of your KMS key. You can set ClientBroker to TLS or TLS_PLAINTEXT.

{
"EncryptionAtRest": {
"DataVolumeKMSKeyId": "KMS-Key-ARN"
Iy
"EncryptionInTransit": {
"InCluster": true,
"ClientBroker": "TLS"
}
}

For more information about encryption, see the section called “Encryption” (p. 57).

On a machine where you have the AWS CLlI installed, run the following command to create a
cluster with authentication and in-transit encryption enabled. Save the cluster ARN provided in the
response.

aws kafka create-cluster --cluster-name "AuthenticationTest" --broker-node-group-info

file://brokernodegroupinfo.json --encryption-info file://encryptioninfo.json --client-
authentication file://clientauthinfo.json --kafka-version "2.2.1" --number-of-broker-
nodes 3

To set up a client to use authentication

1.

Create an Amazon EC2 instance to use as a client machine. For simplicity, create this instance in the
same VPC you used for the cluster. See the section called “Step 4: Create a Client Machine” (p. 10)
for an example of how to create such a client machine.

Create a topic. For an example, see the instructions under the section called “Step 5: Create a
Topic” (p. 10).

On a machine where you have the AWS CLlI installed, run the following command to get the
bootstrap brokers of the cluster. Replace cluster-ARN with the ARN of your cluster.

aws kafka get-bootstrap-brokers --cluster-arn Cluster-ARN

Save the string associated with BootstrapBrokerStringTls in the response.

On your client machine, run the following command to use the JVM trust store to create your client
trust store. If your JVM path is different, adjust the command accordingly.

cp /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.201.b09-0.amzn2.x86_64/jre/lib/security/
cacerts kafka.client.truststore.jks

On your client machine, run the following command to create a private key for your client. Replace
Distinguished-Name, Example-Alias, Your-Store-Pass, and Your-Key-Pass with strings of
your choice.

keytool -genkey -keystore kafka.client.keystore.jks -validity 300 -storepass Your-
Store-Pass -keypass Your-Key-Pass -dname "CN=Distinguished-Name" -alias Example-Alias -
storetype pkcsl2

68

Amazon Managed Streaming for
Apache Kafka Developer Guide
To set up a client to use authentication

10.

11.

12.

On your client machine, run the following command to create a certificate request with the private
key you created in the previous step.

keytool -keystore kafka.client.keystore.jks -certreq -file client-cert-sign-request -
alias Example-Alias -storepass Your-Store-Pass -keypass Your-Key-Pass

Open the client-cert-sign-request file and ensure that it starts with ----- BEGIN
CERTIFICATE REQUEST----- and ends with -——-- END CERTIFICATE REQUEST----- it
starts with -——-- BEGIN NEW CERTIFICATE REQUEST----- , delete the word NEW (and the single

space that follows it) from the beginning and the end of the file.

On a machine where you have the AWS CLlI installed, run the following command to sign your
certificate request. Replace Private-CA-ARN with the ARN of your PCA. You can change the
validity value if you want. Here we use 300 as an example.

aws acm-pca issue-certificate --certificate-authority-arn Private-CA-ARN --csr
file://client-cert-sign-request --signing-algorithm "SHA256WITHRSA" --validity
Value=300, Type="DAYS"

Save the certificate ARN provided in the response.

Run the following command to get the certificate that ACM signed for you. Replace Certificate-
ARN with the ARN you obtained from the response to the previous command.

aws acm-pca get-certificate --certificate-authority-arn Private-CA-ARN --certificate-
arn Certificate-ARN

From the JSON result of running the previous command, copy the strings associated with
Certificate and CertificateChain. Paste these two strings in a new file named signed-
certificate-from-acm. Paste the string associated with certificate first, followed by the string
associated with certificateChain. Replace the \n characters with new lines. The following is the
structure of the file after you paste the certificate and certificate chain in it.

Run the following command on the client machine to add this certificate to your keystore so you can
present it when you talk to the MSK brokers.

keytool -keystore kafka.client.keystore.jks -import -file signed-certificate-from-acm -
alias Example-Alias -storepass Your-Store-Pass -keypass Your-Key-Pass

Create a file named client.properties with the following contents. Adjust the truststore and
keystore locations to the paths where you saved kafka.client.truststore. jks.

security.protocol=SSL
ssl.truststore.location=/tmp/kafka_2.12-2.2.1/kafka.client.truststore. jks
ssl.keystore.location=/tmp/kafka_2.12-2.2.1/kafka.client.keystore. jks
ssl.keystore.password=Your-Store-Pass

ssl.key.password=Your-Key-Pass

69

Amazon Managed Streaming for
Apache Kafka Developer Guide
To produce and consume messages using authentication

To produce and consume messages using
authentication

1. Run the following command to create a topic.

bin/kafka-topics.sh --create --zookeeper ZooKeeper-Connection-String --replication-
factor 3 --partitions 1 --topic ExampleTopic

2. Run the following command to start a console producer. The file named client.properties is
the one you created in the previous procedure.

bin/kafka-console-producer.sh --broker-list BootstrapBroker-String --topic ExampleTopic
--producer.config client.properties

3. Inanew command window on your client machine, run the following command to start a console
consumer.

bin/kafka-console-consumer.sh --bootstrap-server BootstrapBroker-String --topic
ExampleTopic --consumer.config client.properties

4. Type messages in the producer window and watch them appear in the consumer window.

Using Username and Password Authentication
with AWS Secrets Manager

You can control access to your Amazon MSK clusters using usernames and passwords that are stored
and secured using AWS Secrets Manager. Storing your users' credentials in Secrets Manager reduces the
overhead of cluster authentication, including auditing, updating, and rotating credentials. Using Secrets
Manager also lets you share user credentials across clusters.
This topic contains the following sections:

« How it Works (p. 70)

o Setting up SASL/ SCRAM authentication for an Amazon MSK Cluster (p. 71)

« Working with Users (p. 72)

« Limitations (p. 73)

How it Works

Username and password authentication for Amazon MSK uses SASL/SCRAM (Simple Authentication
and Security Layer/ Salted Challenge Response Mechanism) authentication. To set up username and
password authentication for a cluster, you create a Secret resource in AWS Secrets Manager, and
associate user names and passwords with the secret.

SASL/ SCRAM is defined in RFC 5802. SCRAM uses secured hashing algorithms, and does not transmit
plaintext passwords between client and server.

70

https://docs.aws.amazon.com/secretsmanager/?id=docs_gateway
https://tools.ietf.org/html/rfc5802

Amazon Managed Streaming for
Apache Kafka Developer Guide
Setting up SASL/ SCRAM authentication
for an Amazon MSK Cluster

Setting up SASL/ SCRAM authentication for an
Amazon MSK Cluster

To set up a secret in AWS Secrets Manager, follow the Creating and Retrieving a Secret tutorial in the
AWS Secrets Manager User Guide.

Note the following requirements when creating a secret for an Amazon MSK cluster:

« Choose Other type of secrets (e.g. API key) for the secret type.
« Your secret name must have the prefix AmazonMSK_.

« You must either use an existing custom AWS KMS key or create a new custom AWS KMS key for your
secret. Secrets Manager uses the default AWS KMS key for a secret by default.

Important
A secret created with the default AWS KMS key cannot be used with an Amazon MSK cluster.

 Your user and password data must be in the following format:

"username": "alice",
"password": "alice-secret"

}

« Record the ARN (Amazon Resource Name) value for your secret.

To associate the secret with your cluster, use either the Amazon MSK console, or the
BatchAssociateScramSecret operation.

The following example json input for the BatchAssociateScramSecret operation associates a secret
with a cluster:

{
"clusterArn" : "arn:aws:kafka:us-west-2:0123456789019:cluster/SalesCluster/abcdl234-abcd-

cafe-abab-9876543210ab-4",
"secretArnList": [
"arn:aws:secretsmanager:us-west-2:0123456789019:secret:AmazonMSK_MyClusterSecret"
]
}

Connecting to your cluster with a username and password

After you create your secret and associate it with your cluster, do the following to connect your client to
the cluster:

1. On your client machine, create a JAAS configuration file with the user credentials stored in your
secret. For example, for the user alice, create a file called users_jaas.conf with the following
content:

KafkaClient {
org.apache.kafka.common.security.scram.ScramLoginModule required
username="alice"
password="alice-secret";

}i

2. Export this JAAS config file as a KAFKA_OPTS environment parmeter with the following command:

export KAFKA_OPTS=-Djava.security.auth.login.config=<path-to-jaas-file>/users_jaas.conf

71

https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#BatchAssociateScramSecret
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#BatchAssociateScramSecret

Amazon Managed Streaming for
Apache Kafka Developer Guide
Working with Users

Copy the JDK key store file from your JVM to a ./tmp directory. For details about this step, see Step
6: Produce and Consume Data (p. 12) in the Getting Started (p. 4) tutorial.

Create a client properties file called client_sasl.properties with the following contents. This
file defines the SASL mechanism and protocol.

security.protocol=SASL_SSL
sasl.mechanism=SCRAM-SHA-512
ssl.truststore.location=<path-to-keystore-file>/kafka.client.truststore. jks

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) of your
cluster:

aws kafka describe-cluster --region us-west-2 --cluster-arn "ClusterArn"

From the JSON result of the command, save the value associated with the string named
"ZookeeperConnectString".

Create a topic in your cluster by running the following command in the bin directory in your client
machine, replacing ZookeeperConnectString with the string you recorded in the previous
command.

./kafka-topics.sh --create --zookeeper ZookeeperConnectString --replication-factor 3 --
partitions 1 --topic AWSKafkaTutorialTopic

Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) of your
cluster:

aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn

From the JSON result of the command, save the value associated with the string named
"BootstrapBrokerStringSaslScram®”.

To produce to the topic you created, run the following command in the bin directory in your client
machine, replacing BootstrapBrokerStringSaslScram with the value that you obtained when
you ran the previous command.

. /kafka-console-producer.sh --broker-list BootstrapBrokerStringSaslScram --topic
AWSKafkaTutorialTopic --producer.config client_sasl.properties

To consume from the topic you created, run the following command in the bin directory in your
client machine, replacing BootstrapBrokerStringSaslScram with the value that you obtained
previosly.

. /kafka-console-consumer.sh --bootstrap-server BootstrapBrokerStringSaslScram --topic
AWSKafkaTutorialTopic --from-beginning --consumer.config client_sasl.properties

Working with Users

Creating users: You create users in your secret as key-value pairs. AWS KMS requires the username and
password data to be in the following format:

"username": "alice",
"password": "alice-secret"

72

Amazon Managed Streaming for
Apache Kafka Developer Guide
Limitations

Revoking user access: To revoke a user's credentials to access a cluster, we recommend that you
first remove or enforce an ACL on the cluster, and then disassociate the secret. This is because of the
following:

« Removing a user does not close existing connections.
« Changes to your secret take up to 10 minutes to propagate.

For information about using an ACL with Amazon MSK, see Apache Kafka ACLs (p. 73).

We recommend that you restrict access to your zookeeper nodes to prevent users from modifying ACLs.
For more information, see Controlling Access to Apache ZooKeeper (p. 74).

Limitations

Note the following limitations when using SCRAM secrets:

« Amazon MSK only supports SCRAM-SHA-512 authentication.
« An Amazon MSK cluster can have up to 1000 users.

« You must use a customer master key (CMK) with your Secret. You cannot use a Secret that uses the
default Secrets Manager encryption key with Amazon MSK. For information about creating a CMK, see
Creating symmetric CMKs.

» You can't use an asymmetric CMK with Secrets Manager.

« You can associate up to 10 secrets with a cluster at a time using the BatchAssociateScramSecret
operation.

« The name of secrets associated with an Amazon MSK cluster must have the prefix AmazonMSK_.

« Secrets associated with an Amazon MSK cluster must be in the same AWS account and AWS region as
the cluster.

Apache Kafka ACLs

Apache Kafka has a pluggable authorizer and ships with an out-of-box authorizer implementation
that uses Apache ZooKeeper to store all ACLs. Amazon MSK enables this authorizer in the
server.properties file on the brokers. For Apache Kafka version 2.4.1, the authorizer is
AclAuthorizer. For earlier versions of Apache Kafka, it is SimpleAclAuthorizer.

Apache Kafka ACLs have the format "Principal P is [Allowed/Denied] Operation O From Host H on any
Resource R matching ResourcePattern RP". If RP doesn't match a specific resource R, then R has no
associated ACLs, and therefore no one other than super users is allowed to access R. To change this
Apache Kafka behavior, you set the property allow.everyone.if.no.acl. found to true. Amazon
MSK sets it to true by default. This means that with Amazon MSK clusters, if you don't explicitly set

ACLs on a resource, all principals can access this resource. If you enable ACLs on a resource, only the
authorized principals can access it. If you want to restrict access to a topic and authorize a client using
TLS mutual authentication, add ACLs using the Apache Kafka authorizer CLI. For more information about
adding, removing, and listing ACLs, see Kafka Authorization Command Line Interface.

In addition to the client, you also need to grant all your brokers access to your topics so that the brokers
can replicate messages from the primary partition. If the brokers don't have access to a topic, replication
for the topic fails.

To add or remove read and write access to a topic
1. Add your brokers to the ACL table to allow them to read from all topics that have ACLs in place. To

grant your brokers read access to a topic, run the following command on a client machine that can
communicate with the MSK cluster.

73

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#BatchAssociateScramSecret
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Authorization+Command+Line+Interface

Amazon Managed Streaming for
Apache Kafka Developer Guide
Controlling Access to Apache ZooKeeper

Replace ZooKeeper-Connection-String with your Apache ZooKeeper connection string.
For information on how to get this string, see the section called “Getting the Apache ZooKeeper
Connection String” (p. 19).

Replace Distinguished-Name with the DNS of any of your cluster's bootstrap

brokers, then replace the string before the first period in this distinguished

name by an asterisk (*). For example, if one of your cluster's bootstrap

brokers has the DNS b-6 .mytestcluster.67281x.c4.kafka.us-

east-1.amazonaws.com, replace Distinguished-Name in the following command with

* . mytestcluster.67281x.c4.kafka.us-east-1.amazonaws.com. For information on how to
get the bootstrap brokers, see the section called “Getting the Bootstrap Brokers” (p. 20).

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=ZooKeeper-Connection-String
--add --allow-principal "User:CN=Distinguished-Name" --operation Read --group=* --
topic Topic-Name

To grant read access to a topic, run the following command on your client machine. Use the same
Distinguished-Name you used when you created the private key.

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=ZooKeeper-Connection-String
--add --allow-principal "User:CN=Distinguished-Name" --operation Read --group=* --
topic Topic-Name

To remove read access, you can run the same command, replacing --add with --remove.

To grant write access to a topic, run the following command on your client machine. Use the same
Distinguished-Name you used when you created the private key.

bin/kafka-acls.sh --authorizer-properties zookeeper.connect=ZooKeeper-Connection-String
--add --allow-principal "User:CN=Distinguished-Name" --operation Write --topic Topic-
Name

To remove write access, you can run the same command, replacing --add with --remove.

Controlling Access to Apache ZooKeeper

For security reasons you can limit access to the Apache ZooKeeper nodes that are part of your Amazon
MSK cluster. To limit access to the nodes, you can assign a separate security group to them. You can then
decide who gets access to that security group.

This topic contains the following sections:

» To place your Apache ZooKeeper nodes in a separate security group (p. 74)
» Using TLS security with Apache Zookeeper (p. 75)

To place your Apache ZooKeeper nodes in a separate
security group

1.

Get the Apache ZooKeeper connection string for your cluster. To learn how, see the section called
“Getting the Apache ZooKeeper Connection String” (p. 19). The connection string contains the DNS
names of your Apache ZooKeeper nodes.

Use a tool like host or ping to convert the DNS names you obtained in the previous step to IP
addresses. Save these IP addresses because you need them later in this procedure.

74

Amazon Managed Streaming for
Apache Kafka Developer Guide
Using TLS security with Apache Zookeeper

Save the IP addresses of the Apache ZooKeeper nodes because you need them later in this
procedure.

Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

In the left pane, under NETWORK & SECURITY, choose Network Interfaces.

In the search field above the table of network interfaces, type the name of your cluster, then type
return. This limits the number of network interfaces that appear in the table to those interfaces that
are associated with your cluster.

Select the check box at the beginning of the row that corresponds to the first network interface in
the list.

In the details pane at the bottom of the page, look for the Primary private IPv4 IP. If this IP address
matches one of the IP addresses you obtained in the first step of this procedure, this means that this
network interface is assigned to an Apache ZooKeeper node that is part of your cluster. Otherwise,
deselect the check box next to this network interface, and select the next network interface in the
list. The order in which you select the network interfaces doesn't matter. In the next steps, you will
perform the same operations on all network interfaces that are assigned to Apache ZooKeeper
nodes, one by one.

When you select a network interface that corresponds to an Apache ZooKeeper node, choose the
Actions menu at the top of the page, then choose Change Security Groups. Assign a new security
group to this network interface. For information about creating security groups, see Creating a
Security Group in the Amazon VPC documentation.

10. Repeat the previous step to assign the same new security group to all the network interfaces that

11.

are associated with the Apache ZooKeeper nodes of your cluster.

You can now choose who has access to this new security group. For information about setting
security group rules, see Adding, Removing, and Updating Rules in the Amazon VPC documentation.

Using TLS security with Apache Zookeeper

You can use TLS security for encryption in transit between your clients and your Apache Zookeeper
nodes. To implement TLS security with your Apache Zookeeper nodes, do the following:

Clusters must use Apache Kafka version 2.5.1 or later to use TLS security with Apache Zookeeper.

Enable TLS security when you create or configure your cluster. Clusters created with Apache

Kafka version 2.5.1 or later with TLS enabled automatically use TLS security with Apache
Zookeeper endpoints. For information about setting up TLS security, see How Do | Get Started with
Encryption? (p. 58).

Retrieve the TLS Zookeeper endpoints using the DescribeCluster operation.

Create an Apache Zookeeper configuration file for use with the following CLI commands: Config, ACL,
and Zookeeper Shell. You use the Apache Zookeeper config file with these commands using the --zk-
tls-config-file parameter.

The following example shows a typical Apache Zookeeper configuration file:

zookeeper.ssl.client.enable=true
zookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty
zookeeper.ssl.keystore.location=kafka. jks
zookeeper.ssl.keystore.password=test1234
zookeeper.ssl.truststore.location=truststore. jks
zookeeper.ssl.truststore.password=test1234

For other commands (such as kafka-topics), you must use the KAFKA_OPTS environment variable
to configure zookeeper parameters. The following example shows how to configure the KAFKA_OPTS
environment variable to pass zookeeper parameters into other commands:

75

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html?shortFooter=true#CreatingSecurityGroups
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html?shortFooter=true#CreatingSecurityGroups
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html?shortFooter=true#AddRemoveRules
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster

Amazon Managed Streaming for
Apache Kafka Developer Guide

Logging

export KAFKA OPTS="
-Dzookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty
-Dzookeeper.client.secure=true
-Dzookeeper.ssl.trustStore.location=/home/ec2-user/kafka.client.truststore. jks
-Dzookeeper.ssl.trustStore.password=changeit"

Once you have configured the KAFKA_OPTS environment variable, you can use CLI commands
normally. The following example creates a Kafka topic using the Zookeeper configuration from the
KAFKA_OPTS environment variable:

bin/kafka-topics.sh --create --zookeeper ZookeeperTLSConnectString --replication-factor 3
--partitions 1 --topic AWSKafkaTutorialTopic

Note

The names of the parameters you use in your Apache Zookeeper configuration file and those
you use in your KAFKA_OPTS environment variable are not consistent. Pay attention to which
names you use with which parameters in your configuration file and KAFKA_OPTS environment
variable.

For more information about accessing your Apache Zookeeper nodes with TLS, see KIP-515: Enable ZK
client to use the new TLS supported authentication.

Logging

You can deliver Apache Kafka broker logs to one or more of the following destination types: Amazon
CloudWatch Logs, Amazon S3, Amazon Kinesis Data Firehose. You can also log Amazon MSK API calls
with AWS CloudTrail.

Broker logs

Broker logs enable you to troubleshoot your Apache Kafka applications and to analyze their
communications with your MSK cluster. You can configure your new or existing MSK cluster to deliver
INFO-level broker logs to one or more of the following types of destination resources: a CloudWatch
log group, an S3 bucket, a Kinesis Data Firehose delivery stream. Through Kinesis Data Firehose you

can then deliver the log data from your delivery stream to Amazon ES. You must create a destination
resource before you configure your cluster to deliver broker logs to it. Amazon MSK doesn't create these
destination resources for you if they don't already exist. For information about these three types of
destination resources and how to create them, see the following documentation:

« Amazon CloudWatch Logs
« Amazon S3
« Amazon Kinesis Data Firehose

Required permissions

For Amazon MSK to deliver broker logs to the destinations that you configure, ensure that the
AmazonMSKFullAccess policy is attached to your IAM role. To stream broker logs to an S3 bucket,
you also need the s3:PutBucketPolicy permission attached to your IAM role. For information about
S3 bucket policies, see How Do | Add an S3 Bucket Policy? in the Amazon S3 Console User Guide. For
information about IAM policies in general, see Access Management in the IAM User Guide.

76

https://cwiki.apache.org/confluence/display/KAFKA/KIP-515
https://cwiki.apache.org/confluence/display/KAFKA/KIP-515
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Broker Logs

Required CMK key policy for use with SSE-KMS buckets

If you enabled server-side encryption for your S3 bucket using AWS KMS-managed keys (SSE-KMS) with
a customer managed Customer Master Key (CMK), add the following to the key policy for your CMK so
that Amazon MSK can write broker files to the bucket.

"Sid": "Allow Amazon MSK to use the key.",
"Effect": "Allow",
"Principal": {
"Service": [
"delivery.logs.amazonaws.com"
]
T
"Action": [
"kms :Encrypt",
"kms :Decrypt",
"kms :ReEncrypt*",
"kms :GenerateDataKey*",
"kms :DescribeKey"
1,

"Resource": "*"

Configuring broker logs using the AWS Management Console

If you are creating a new cluster, look for the Broker log delivery heading in the Monitoring section. You
can specify the destinations to which you want Amazon MSK to deliver your broker logs.

For an existing cluster, choose the cluster from your list of clusters, then choose the Details tab. Scroll
down to the Monitoring section and then choose its Edit button. You can specify the destinations to
which you want Amazon MSK to deliver your broker logs.

Configuring broker logs using the AWS CLI

When you use the create-cluster or the update-monitoring commands, you can optionally
specify the logging-info parameter and pass to it a JSON structure like the following example. In this
JSON, all three destination types are optional.

{
"BrokerLogs": {
"s3m: {
"Bucket": "ExampleBucketName",
"Prefix": "ExamplePrefix",
"Enabled": true
T
"Firehose": {
"DeliveryStream": "ExampleDeliveryStreamName",
"Enabled": true
T
"CloudWatchLogs": {
"Enabled": true,
"LogGroup": "ExampleLogGroupName"
}
}
}

77

Amazon Managed Streaming for
Apache Kafka Developer Guide
Logging API Calls

Configuring broker logs using the API

You can specify the optional loggingInfo structure in the JSON that you pass to the CreateCluster or
UpdateMonitoring operations.

Note

By default, when broker logging is enabled, Amazon MSK logs INFO level logs to the specified
destinations. However, users of Apache Kafka 2.4.X and later can dynamically set the broker
log level to any of the log4j log levels. For information about dynamically setting the broker
log level, see KIP-412: Extend Admin API to support dynamic application log levels. If you
dynamically set the log level to DEBUG or TRACE, we recommend using Amazon S3 or Kinesis
Data Firehose as the log destination. If you use CloudWatch Logs as a log destination and you
dynamically enable DEBUG or TRACE level logging, Amazon MSK may continuously deliver a
sample of logs. This can significantly impact broker performance and should only be used when
the INFO log level is not verbose enough to determine the root cause of an issue.

Logging Amazon MSK API calls with AWS CloudTrail

Amazon MSK is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in Amazon MSK. CloudTrail captures all API calls for Amazon MSK as events.
The calls captured include calls from the Amazon MSK console and code calls to the Amazon MSK API
operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket,
including events for Amazon MSK. If you don't configure a trail, you can still view the most recent
events in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to Amazon MSK, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

Amazon MSK information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event activity
occurs in Amazon MSK, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account. For
more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon MSK, create a trail.

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a

trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the

AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

« Overview for Creating a Trail

» CloudTrail Supported Services and Integrations

« Configuring Amazon SNS Notifications for CloudTrail

« Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple

Accounts
Amazon MSK logs all operations as events in CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

78

https://docs.aws.amazon.com/msk/1.0/apireference/clusters.html#CreateCluster
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-monitoring.html#UpdateMonitoring
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-412%3A+Extend+Admin+API+to+support+dynamic+application+log+levels
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com//msk/1.0/apireference/operations.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Logging API Calls

« Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

« Whether the request was made with temporary security credentials for a role or federated user.
« Whether the request was made by another AWS service.

For more information, see the CloudTrail userldentity Element.

Example: Amazon MSK log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from

any source and includes information about the requested action, the date and time of the action, request

parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they
don't appear in any specific order.

The following example shows CloudTrail log entries that demonstrate the DescribeCluster and
DeleteCluster actions.

{
"Records": [
{
"eventVersion": "1.05",
"userIdentity": {
"type": "IAMUser",
"principalId": "ABCDEF0123456789ABCDE",
"arn": "arn:aws:iam::012345678901:user/Joe",
"accountId": "012345678901",
"accessKeyId": "AIDACKCEVSQ6C2EXAMPLE",
"userName": "Joe"
Iy
"eventTime": "2018-12-12T02:29:247Z",
"eventSource": "kafka.amazonaws.com",
"eventName": "DescribeCluster",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "aws-cli/1.14.67 Python/3.6.0 Windows/10 botocore/1.9.20",
"requestParameters": {
"clusterArn": "arn%3Aaws%3Akafka%3Aus-east-1%3A012345678901%3Acluster
%2Fexamplecluster%2F01234567-abcd-0123-abcd-abcd0123efa-2"
Iy
"responseElements": null,
"requestID": "bd83f636-fdb5-abcd-0123-157e2fbf2bde",
"eventID": "60052aba-0123-4511-bcde-3el18dbd42aa4",
"readOnly": true,
"eventType": "AwsApiCall",
"recipientAccountId": "012345678901"

"eventVersion": "1.05",
"userIdentity": {
"type": "IAMUser",
"principalId": "ABCDEF0123456789ABCDE",
"arn": "arn:aws:iam::012345678901:user/Joe",
"accountId": "012345678901",
"accessKeyId": "AIDACKCEVSQ6C2EXAMPLE",
"userName": "Joe"
I
"eventTime": "2018-12-12T02:29:40Z",
"eventSource": "kafka.amazonaws.com",
"eventName": "DeleteCluster",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",

79

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Compliance Validation

"userAgent": "aws-cli/1.14.67 Python/3.6.0 Windows/10 botocore/1.9.20",
"requestParameters": {
"clusterArn": "arn%3Aaws%3Akafka%3Aus-east-1%3A012345678901%3Acluster
%2Fexamplecluster%2F01234567-abcd-0123-abcd-abcd0123efa-2"
Iy
"responseElements": {
"clusterArn": "arn:aws:kafka:us-east-1:012345678901:cluster/
examplecluster/01234567-abcd-0123-abcd-abcd0123efa-2",
"state": "DELETING"
Iy
"requestID": "c6bfb3f7-abcd-0123-afa5-293519897703",
"eventID": "8a7fl1fcf-0123-abcd-9bdb-1ebf0663a75c",
"readOnly": false,
"eventType": "AwsApiCall",
"recipientAccountId": "012345678901"
}
1
}

Compliance Validation for Amazon Managed
Streaming for Apache Kafka

Third-party auditors assess the security and compliance of Amazon Managed Streaming for Apache
Kafka as part of AWS compliance programs. These include PCl and HIPAA BAA.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using Amazon MSK is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

« Security and Compliance Quick Start Guides — These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

« Architecting for HIPAA Security and Compliance Whitepaper - This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

« AWS Compliance Resources — This collection of workbooks and guides might apply to your industry
and location.

« Evaluating Resources with Rules in the AWS Config Developer Guide - The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

o AWS Security Hub - This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon Managed Streaming for
Apache Kafka

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,

80

http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Infrastructure Security

high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between zones without interruption. Availability
Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data
center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon MSK offers several features to help support your
data resiliency and backup needs.

Infrastructure Security in Amazon Managed
Streaming for Apache Kafka

As a managed service, Amazon Managed Streaming for Apache Kafka is protected by the AWS global
network security procedures that are described in the Amazon Web Services: Overview of Security
Processes whitepaper.

You use AWS published API calls to access Amazon MSK through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

81

http://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Amazon VPC Peering

Accessing an Amazon MSK Cluster

To access your Amazon MSK cluster from a client that's in the same Amazon VPC as the cluster, make
sure the cluster's security group has an inbound rule that accepts traffic from the client's security group.
For information about setting up these rules, see Security Group Rules. For an example of how to access
a cluster from an Amazon EC2 instance that's in the same VPC as the cluster, see Getting Started (p. 4).

To access an MSK cluster from outside its Amazon VPC, the following options exist.

Amazon VPC Peering

To access your MSK cluster from a VPC that's different from the cluster's VPC, you can create a peering
connection between the two VPCs. For information about VPC peering, see the Amazon VPC Peering
Guide.

AWS Direct Connect

AWS Direct Connect links your internal network to an AWS Direct Connect location over a standard 1
gigabit or 10 gigabit Ethernet fiber-optic cable. One end of the cable is connected to your router, the
other to an AWS Direct Connect router. With this connection in place, you can create virtual interfaces
directly to the AWS cloud and Amazon VPC, bypassing Internet service providers in your network path.
For more information, see AWS Direct Connect.

AWS Transit Gateway

AWS Transit Gateway is a service that enables you to connect your VPCs and your on-premises networks
to a single gateway. For information about how to use AWS Transit Gateway, see AWS Transit Gateway.

VPN Connections

You can connect your MSK cluster's VPC to remote networks and users using the VPN connectivity
options described in the following topic: VPN Connections.

REST Proxies

You can install a REST proxy on an instance running within your cluster's Amazon VPC. REST proxies
enable your producers and consumers to communicate with the cluster through HTTP API requests.

Multiple Region Multi-VPC Connectivity

The following document describes connectivity options for multiple VPCs that reside in different AWS
Regions: Multiple Region Multi-VPC Connectivity.

82

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://aws.amazon.com/answers/networking/aws-multiple-region-multi-vpc-connectivity/

Amazon Managed Streaming for
Apache Kafka Developer Guide
EC2-Classic

EC2-Classic

Use the following procedure to access your cluster from an EC2-Classic instance.

Port

1.

8.
9.

10.
11.

12.

Follow the guidance described in ClassicLink to connect your EC2-Classic instance to your cluster's
VPC.

Find and copy the private IP associated with your EC2-Classic instance.

Using the AWS CLI, run the following command, replacing ClusterArn with the Amazon Resource
Name (ARN) for your MSK cluster.

aws kafka describe-cluster --region us-east-1 --cluster-arn "ClusterArn"

In the output of the describe-cluster command, look for SecurityGroups and save the ID of
the security group for your MSK cluster.

Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
In the left pane, choose Security Groups.

Choose the security group whose ID you saved after you ran the describe-cluster command.
Select the box at the beginning of the row corresponding to this security group.

In the lower half of the page, choose Inbound Rules.
Choose Edit rules, then choose Add Rule.
For the Type field, choose All traffic in the drop-down list.

Leave the Source set to Custom and enter the private IP of your EC2-Classic instance, followed
immediately by /32 with no intervening spaces.

Choose Save rules.

Information

The following list provides the numbers of the ports that Amazon MSK uses to communicate with client
machines.

« To communicate with producers and consumers in plaintext, brokers use port 9092.

« To communicate with producers and consumers in TLS, brokers use port 9094.
« Apache ZooKeeper nodes use port 2181.

83

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html
https://console.aws.amazon.com/vpc/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Migrating Your Apache Kafka Cluster to Amazon MSK

Migrating Clusters Using Apache
Kafka's MirrorMaker

You can mirror or migrate your cluster using MirrorMaker, which is part of Apache Kafka. For example,
you can use it to migrate your Apache Kafka cluster to Amazon MSK or to migrate from one MSK cluster
to another. For information about how to use MirrorMaker, see Mirroring data between clusters in the
Apache Kafka documentation. We recommend setting up MirrorMaker in a highly available configuration.

An outline of the steps to follow when using MirrorMaker to migrate to an MSK cluster

1.
2.

Create the destination MSK cluster

Start MirrorMaker from an Amazon EC2 instance within the same Amazon VPC as the destination
cluster.

Inspect the MirrorMaker lag.

After MirrorMaker catches up, redirect producers and consumers to the new cluster using the MSK
cluster bootstrap brokers.

Shut down MirrorMaker.

Migrating Your Apache Kafka Cluster to Amazon

MSK

Suppose that you have an Apache Kafka cluster named CLUSTER ONPREM. That cluster is populated
with topics and data. If you want to migrate that cluster to a newly created Amazon MSK cluster named
CLUSTER_AWSMSK, this procedure provides a high-level view of the steps that you need to follow.

To migrate your existing Apache Kafka cluster to Amazon MSK

1.

In CLUSTER_AWSMSK, create all the topics that you want to migrate.

You can't use MirrorMaker for this step because it doesn't automatically re-create the topics that you
want to migrate with the right replication level. You can create the topics in Amazon MSK with the
same replication factors and numbers of partitions that they had in CLUSTER_ONPREM. You can also
create the topics with different replication factors and numbers of partitions.

Start MirrorMaker from an instance that has read access to CLUSTER_ONPREM and write access to
CLUSTER_AWSMSK.

Run the following command to mirror all topics:

./bin/kafka-mirror-maker.sh --consumer.config config/mirrormaker-consumer.properties --
producer.config config/mirrormaker-producer.properties --whitelist '.*'

In this command, config/mirrormaker-consumer.properties points to a bootstrap broker
in CLUSTER_ONPREM; for example, bootstrap.servers=1localhost:9092. And config/
mirrormaker-producer.properties points to a bootstrap broker in CLUSTER_AWSMSK; for
example, bootstrap.servers=10.0.0.237:9092,10.0.2.196:9092,10.0.1.233:9092.

Keep MirrorMaker running in the background, and continue to use CLUSTER_ONPREM. MirrorMaker
mirrors all new data.

84

https://kafka.apache.org/documentation/#basic_ops_mirror_maker

Amazon Managed Streaming for
Apache Kafka Developer Guide
Migrating From One Amazon MSK Cluster to Another

5. Check the progress of mirroring by inspecting the lag between the last offset for each topic and the
current offset from which MirrorMaker is consuming.

Remember that MirrorMaker is simply using a consumer and a producer. So, you can check the lag
using the kafka-consumer-groups.sh tool. To find the consumer group name, look inside the
mirrormaker-consumer.properties file for the group.id, and use its value. If there is no such
key in the file, you can create it. For example, set group.id=mirrormaker-consumer-group.

6. After MirrorMaker finishes mirroring all topics, stop all producers and consumers, and then
stop MirrorMaker. Then redirect the producers and consumers to the CLUSTER_AWSMSK cluster
by changing their producer and consumer bootstrap brokers values. Restart all producers and
consumers on CLUSTER_AWSMSK.

Migrating From One Amazon MSK Cluster to
Another

You can use Apache MirrorMaker to migrate an MSK cluster to another cluster. For example, you

can migrate from one version of Apache Kafka to another. For an example of how to use AWS
CloudFormation to do this, see AWS::MSK::Cluster Examples (search for the example titled Create Two
MSK Clusters To Use With Apache MirrorMaker.

MirrorMaker 1.0 Best Practices

This list of best practices applies to MirrorMaker 1.0.

« Run MirrorMaker on the destination cluster. This way, if a network problem happens, the messages are
still available in the source cluster. If you run MirrorMaker on the source cluster and events are buffered
in the producer and there is a network issue, events might be lost.

« If encryption is required in transit, run it in the source cluster.
» For consumers, set auto.commit.enabled=false
 For producers, set
« max.in.flight.requests.per.connection=1
« retries=Int.Max_Value
« acks=all
« max.block.ms = Long.Max_Value
« For a high producer throughput:
» Buffer messages and fill message batches — tune buffer.memory, batch.size, linger.ms
« Tune socket buffers — receive.buffer.bytes, send.buffer.bytes

» To avoid data loss, turn off auto commit at the source, so that MirrorMaker can control the commits,
which it typically does after it receives the ack from the destination cluster. If the producer has acks=all
and the destination cluster has min.insync.replicas set to more than 1, the messages are persisted on
more than one broker at the destination before the MirrorMaker consumer commits the offset at the
source.

« If order is important, you can set retries to 0. Alternatively, for a production environment, set max
inflight connections to 1 to ensure that the batches sent out are not committed out of order if a batch
fails in the middle. This way, each batch sent is retried until the next batch is sent out. If max.block.ms
is not set to the maximum value, and if the producer buffer is full, there can be data loss (depending
on some of the other settings). This can block and back-pressure the consumer.

« For high throughput

« Increase buffer.memory.

85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-msk-cluster.html#aws-resource-msk-cluster--examples

Amazon Managed Streaming for
Apache Kafka Developer Guide
MirrorMaker 2.* Advantages

« Increase batch size.

« Tune linger.ms to allow the batches to fill. This also allows for better compression, less network
bandwidth usage, and less storage on the cluster. This results in increased retention.

» Monitor CPU and memory usage.
For high consumer throughput
« Increase the number of threads/consumers per MirrorMaker process — num.streams.

« Increase the number of MirrorMaker processes across machines first before increasing threads to
allow for high availability.

« Increase the number of MirrorMaker processes first on the same machine and then on different
machines (with the same group ID).

« Isolate topics that have very high throughput and use separate MirrorMaker instances.

For management and configuration

« Use AWS CloudFormation and configuration management tools like Chef and Ansible.

» Use Amazon EFS mounts to keep all configuration files accessible from all Amazon EC2 instances.
« Use containers for easy scaling and management of MirrorMaker instances.

Typically, it takes more than one consumer to saturate a producer in MirrorMaker. So, set up multiple
consumers. First, set them up on different machines to provide high availability. Then, scale individual
machines up to having a consumer for each partition, with consumers equally distributed across
machines.

For high throughput ingestion and delivery, tune the receive and send buffers because their defaults
might be too low. For maximum performance, ensure that the total number of streams (num.streams)
matches all of the topic partitions that MirrorMaker is trying to copy to the destination cluster.

Makes use of the Apache Kafka Connect framework and ecosystem.

Detects new topics and partitions.

Automatically syncs topic configuration between clusters.

Supports "active/active" cluster pairs, as well as any number of active clusters.

Provides new metrics including end-to-end replication latency across multiple data centers and
clusters.

Emits offsets required to migrate consumers between clusters and provides tooling for offset
translation.

Supports a high-level configuration file for specifying multiple clusters and replication flows in one
place, compared to low-level producer/consumer properties for each MirrorMaker 1.* process.

86

Amazon Managed Streaming for
Apache Kafka Developer Guide

Amazon MSK Limits

Amazon MSK has the following limits:

« Up to 90 brokers per account and 30 brokers per cluster. To request a higher limit, create a support
case.

« A minimum of 1 GiB of storage per broker.
« A maximum of 16384 GiB of storage per broker.
« Up to 100 configurations per account. To request a higher limit, create a support case.

87

https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Supported Apache Kafka versions

Apache Kafka Versions

When you create an Amazon MSK cluster, you specify which Apache Kafka version you want to have on it.
You can also update the Apache Kafka version of an existing cluster.

Topics
« Supported Apache Kafka versions (p. 88)
« Updating the Apache Kafka version (p. 90)

Supported Apache Kafka versions

Amazon Managed Streaming for Apache Kafka (Amazon MSK) supports the following Apache Kafka and
Amazon MSK versions.

Topics
» Apache Kafka version 2.6.0 (p. 88)
« Apache Kafka version 2.5.1 (p. 88)
» Amazon MSK bug-fix version 2.4.1.1 (p. 89)
« Apache Kafka version 2.4.1 (p. 89)
» Apache Kafka version 2.3.7 (p. 89)
« Apache Kafka version 2.2.1 (p. 89)
» Apache Kafka version 1.1.7 (p. 90)

Apache Kafka version 2.6.0

For information about Apache Kafka version 2.6.0, see its release notes on the Apache Kafka downloads
site.

Apache Kafka version 2.5.1

Apache Kafka version 2.5.1 includes several bug fixes and new features, including encryption in-transit
for Apache ZooKeeper and administration clients. Amazon MSK provides TLS ZooKeeper endpoints,
which you can query with the DescribeCluster operation.

The output of the DescribeCluster operation includes the ZookeeperConnectStringTls node, which
lists the TLS zookeeper endpoints.

The following example shows the ZookeeperConnectStringTls node of the response for the
DescribeCluster operation:

"ZookeeperConnectStringTls": "z-3.awskafkatutorialc.abcd123.c3.kafka.us-
east-1.amazonaws.com:2182,z-2.awskafkatutorialc.abcd123.c3.kafka.us-
east-1.amazonaws.com:2182,z-1.awskafkatutorialc.abcd123.c3.kafka.us-
east-1l.amazonaws.com:2182"

For information about using TLS encryption with zookeeper, see Using TLS security with Apache
Zookeeper (p. 75).

For more information about Apache Kafka version 2.5.1, see its release notes on the Apache Kafka
downloads site.

88

https://downloads.apache.org/kafka/2.6.0/RELEASE_NOTES.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn.html#DescribeCluster
https://downloads.apache.org/kafka/2.5.1/RELEASE_NOTES.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Amazon MSK bug-fix version 2.4.1.1

Amazon MSK bug-fix version 2.4.1.1

This release is an Amazon MSK-only bug-fix version of Apache Kafka version 2.4.1. This bug-fix release
contains a fix for KAFKA-9752, a rare issue that causes consumer groups to continuously rebalance and
remain in the PreparingRebalance state. This issue affects clusters running Apache Kafka versions
2.3.1 and 2.4.1. This release contains a community-produced fix that is available in Apache Kafka version
2.5.0.

Note
Amazon MSK clusters running version 2.4.1.1 are compatible with any Apache Kafka client that
is compatible with Apache Kafka version 2.4.1.

We recommend that you use MSK bug-fix version 2.4.1.1 for new Amazon MSK clusters if you prefer
to use Apache Kafka 2.4.1. You can update existing clusters running Apache Kafka version 2.4.1 to this
version to incorporate this fix. For information about upgrading an existing cluster, see Updating the
Apache Kafka version (p. 90).

To work around this issue without upgrading the cluster to version 2.4.1.1, see the Consumer group stuck
in PreparingRebalance state (p. 93) section of the ??? (p. 93) guide.

Apache Kafka version 2.4.1

Note
Apache Kafka version 2.4.1 is deprecated. We recommend you use version Amazon MSK bug-fix
version 2.4.1.1 (p. 89) with clients compatible with Apache Kafka version 2.4.1.

KIP-392 is one of the key Kafka Improvement Proposals that are included in the 2.4.1 release of
Apache Kafka. This improvement allows consumers to fetch from the closest replica. To use this
feature, set client.rack in the consumer properties to the ID of the consumer's Availability Zone.

An example AZ ID is usel-az1l. Amazon MSK sets broker.rack to the IDs of the Availability

Zones of the brokers. You must also set the replica.selector.class configuration property to
org.apache.kafka.common.replica.RackAwareReplicaSelector, which is an implementation
of rack awareness provided by Apache Kafka.

When you use this version of Apache Kafka, the metrics in the PER_TOPIC_PER_BROKER monitoring
level appear only after their values become nonzero for the first time. For more information about this,
see the section called "PER_TOPIC_PER_ BROKER Level Monitoring” (p. 33).

For information about how to find Availability Zone IDs, see AZ IDs for Your Resource in the AWS
Resource Access Manager user guide.

For information about setting configuration properties, see Configuration (p. 44).

For more information about KIP-392, see Allow Consumers to Fetch from Closest Replica in the
Confluence pages.

For more information about Apache Kafka version 2.4.1, see its release notes on the Apache Kafka
downloads site.

Apache Kafka version 2.3.1

For information about Apache Kafka version 2.3.1, see its release notes on the Apache Kafka downloads
site.

Apache Kafka version 2.2.1

For information about Apache Kafka version 2.2.1, see its release notes on the Apache Kafka downloads
site.

89

https://issues.apache.org/jira/browse/KAFKA-9752
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392:+Allow+consumers+to+fetch+from+closest+replica
https://downloads.apache.org/kafka/2.4.1/RELEASE_NOTES.html
https://downloads.apache.org/kafka/2.3.1/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.2.1/RELEASE_NOTES.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Apache Kafka version 1.1.1

Apache Kafka version 1.1.1

For information about Apache Kafka version 1.1.1, see its release notes on the Apache Kafka downloads
site.

Updating the Apache Kafka version

You can update an existing MSK cluster to a newer version of Apache Kafka. You can't update it to an
older version. When you update the Apache Kafka version of an MSK cluster, also check your client-side
software to make sure its version enables you to use the features of the cluster's new Apache Kafka
version. Amazon MSK only updates the server software. It doesn't update your clients.

Important
For information about how to make a cluster highly available during an update, see the section
called "Build highly available clusters” (p. 98).

Updating the Apache Kafka version using the AWS Management Console

1. Open the Amazon MSK console at https://console.aws.amazon.com/msk/.
2. Choose the MSK cluster on which you want to update the Apache Kafka version.
3. On the Details tab choose Upgrade the Apache Kafka version.

Updating the Apache Kafka version using the AWS CLI

1. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster. If you don't have the ARN for your cluster, you can find
it by listing all clusters. For more information, see the section called “Listing Clusters” (p. 21).

aws kafka get-compatible-kafka-versions --cluster-arn ClusterArn

The output of this command includes a list of the Apache Kafka versions to which you can update
the cluster. It looks like the following example.

{
"CompatibleKafkaVersions": [
{
"SourceVersion": "2.2.1",
"TargetVersions": [
"2.3.1",
"2.4.1",
"2.4.1.1",
"2.5.1"
]
}
]
}

2. Run the following command, replacing ClusterArn with the Amazon Resource Name (ARN) that
you obtained when you created your cluster. If you don't have the ARN for your cluster, you can find
it by listing all clusters. For more information, see the section called “Listing Clusters” (p. 21).

Replace current-Cluster-Version with the current version of the cluster. For Targetversion
you can specify any of the target versions from the output of the previous command.

90

https://archive.apache.org/dist/kafka/1.1.1/RELEASE_NOTES.html
https://console.aws.amazon.com/msk/

Amazon Managed Streaming for
Apache Kafka Developer Guide
Updating the Apache Kafka version

Important
Cluster versions aren't simple integers. You can obtain the current version by describing the
cluster. An example version is KITVPDKIKXODER.

aws kafka update-cluster-kafka-version --cluster-arn ClusterArn --current-
version Current-Cluster-Version --target-kafka-version TargetVersion

The output of the previous command looks like the following JSON.

{

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",

"ClusterOperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-

operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abcd-
abcd-4£f7£-1234-9876543210ef"

}

To get the result of the update-cluster-kafka-version operation, run the following command,
replacing ClusterOperationArn with the ARN that you obtained in the output of the update-
cluster-kafka-version command.

aws kafka describe-cluster-operation --cluster-operation-arn ClusterOperationArn

The output of this describe-cluster-operation command looks like the following JSON
example.

"ClusterOperationInfo": {

"ClientRequestId": "cOb7af47-8591-45b5-9c0c-909ala2c99ea",

"ClusterArn": "arn:aws:kafka:us-east-1:012345678012:cluster/exampleClusterName/
abcdefab-1234-abcd-5678-cdef0123ab01-2",

"CreationTime": "2019-09-25T23:48:04.794Z",

"OperationArn": "arn:aws:kafka:us-east-1:012345678012:cluster-
operation/exampleClusterName/abcdefab-1234-abcd-5678-cdef0123ab01-2/0123abecd-
abcd-4£f7£f-1234-9876543210ef",

"OperationState": "UPDATE_IN_PROGRESS",
"OperationSteps": [
{
"StepInfo": {
"StepStatus": "IN_PROGRESS"
}l
"StepName": "INITIALIZE_UPDATE"
}e
{
"StepInfo": {
"StepStatus": "PENDING"
}l
"StepName": "UPDATE_APACHE_KAFKA_ BINARIES"
}e
{
"StepInfo": {
"StepStatus": "PENDING"
}l
"StepName": "FINALIZE_UPDATE"
}
1,
"OperationType": "UPDATE_CLUSTER_KAFKA_ VERSION",
"SourceClusterInfo": {
"KafkavVersion": "2.2.1"

91

Amazon Managed Streaming for
Apache Kafka Developer Guide
Updating the Apache Kafka version

Iy
"TargetClusterInfo": {
"KafkavVersion": "2.5.1"

}

If OperationState has the value UPDATE_IN_PROGRESS, wait a while, then run the
describe-cluster-operation command again. When the operation is complete, the value of

OperationState becomes UPDATE_COMPLETE.

Updating the Apache Kafka version using the API

1. Invoke the GetCompatibleKafkaVersions operation to get a list of the Apache Kafka versions to
which you can update the cluster.

2. Invoke the UpdateClusterKafkaVersion operation to update the cluster to one of the compatible
Apache Kafka versions.

92

https://docs.aws.amazon.com//msk/1.0/apireference/compatible-kafka-versions.html#GetCompatibleKafkaVersions
https://docs.aws.amazon.com//msk/1.0/apireference/clusters-clusterarn-version.html#UpdateClusterKafkaVersion

Amazon Managed Streaming for
Apache Kafka Developer Guide
Consumer group stuck in PreparingRebalance state

Troubleshooting Your Amazon MSK
Cluster

The following information can help you troubleshoot problems that you might have with your Amazon
MSK cluster. You can also post your issue to the Amazon MSK forum.

Topics
o Consumer group stuck in PreparingRebalance state (p. 93)
« Error delivering broker logs to Amazon CloudWatch Logs (p. 94)
» No default security group (p. 94)
o Cluster appears stuck in the CREATING state (p. 94)
« Cluster state goes from CREATING to FAILED (p. 95)
 Cluster state is ACTIVE but producers cannot send data or consumers cannot receive data (p. 95)
o AWS CLI doesn't recognize Amazon MSK (p. 95)
« Partitions go offline or replicas are out of sync (p. 95)
« Disk space is running low (p. 95)
« Memory is running low (p. 95)
« Producer Gets NotLeaderForPartitionException (p. 95)
« Under-Replicated Partitions (URP) greater than zero (p. 96)
» Networking issues (p. 96)

Consumer group stuck in PreparingRebalance
state

If one or more of your consumer groups is stuck in a perpetual rebalancing state, the cause might be
Apache Kafka issue KAFKA-9752, which affects Apache Kafka versions 2.3.1 and 2.4.1.

To resolve this issue, we recommend that you upgrade your cluster to Amazon MSK bug-fix version
2.4.1.1 (p. 89), which contains a fix for this issue. For information about updating an existing cluster to
Amazon MSK bug-fix version 2.4.1.1, see Updating the Apache Kafka version (p. 90).

The workarounds for solving this issue without upgrading the cluster to Amazon MSK bug-fix version
2.4.1.1 are to either set the Kafka clients to use Static Membership Protocol (p. 93), or to Identify and
Reboot (p. 94) the coordinating broker node of the stuck consumer group.

Implementing Static Membership Protocol

To implement Static Membership Protocol in your clients, do the following:

1. Setthe group.instance.id property of your Kafka Consumers configuration to a static string
that identifies the consumer in the group.

2. Ensure that other instances of the configuration are updated to use the static string.
3. Deploy the changes to your Kafka Consumers.

93

https://forums.aws.amazon.com/forum.jspa?forumID=315
https://issues.apache.org/jira/browse/KAFKA-9752
https://kafka.apache.org/26/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Identify and Reboot

Using Static Membership Protocol is more effective if the session timeout in the client configuration

is set to a duration that allows the consumer to recover without prematurely triggering a consumer
group rebalance. For example, if your consumer application can tolerate 5 minutes of unavailability, a
reasonable value for the session timeout would be 4 minutes instead of the default value of 10 seconds.

Note
Using Static Membership Protocol only reduces the probability of encountering this issue. You
may still encounter this issue even when using Static Membership Protocol.

Rebooting the Coordinating Broker Node

To reboot the coordinating broker node, do the following:

1. Identify the group coordinator using the kafka-consumer-groups.sh command.
2. Restart the group coordinator of the stuck consumer group using the RebootBroker API action.

Error delivering broker logs to Amazon
CloudWatch Logs

When you try to set up your cluster to send broker logs to Amazon CloudWatch Logs, you might get one
of two exceptions.

If you get an InvalidInput.LengthOfCloudWatchResourcePolicyLimitExceeded exception,
try again but use log groups that start with /aws /vendedlogs/. For more information, see Enabling
Logging from Certain AWS Services.

If you get an InvalidInput.NumberOfCloudWatchResourcePoliciesLimitExceeded exception,
choose an existing Amazon CloudWatch Logs policy in your account, and append the following JSON to
it.

{"sid":"AWSLogDeliveryWrite", "Effect":"Allow", "Principal":
{"Service":"delivery.logs.amazonaws.com"}, "Action":
["logs:CreateLogStream", "logs:PutLogEvents"], "Resource":["*"]}

If you try to append the JSON above to an existing policy but get an error that says you've reached the
maximum length for the policy you picked, try to append the JSON to another one of your Amazon
CloudWatch Logs policies. After you append the JSON to an existing policy, try once again to set up
broker-log delivery to Amazon CloudWatch Logs.

No default security group

If you try to create a cluster and get an error indicating that there's no default security group, it might be
because you are using a VPC that was shared with you. Ask your administrator to grant you permission
to describe the security groups on this VPC and try again. For an example of a policy that allows

this action, see Amazon EC2: Allows Managing EC2 Security Groups Associated With a Specific VPC,
Programmatically and in the Console .

Cluster appears stuck in the CREATING state

Sometimes cluster creation can take up to 30 minutes. Wait for 30 minutes and check the state of the
cluster again.

94

https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-reboot-broker.html#RebootBroker
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_ec2_securitygroups-vpc.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Cluster state goes from CREATING to FAILED

Cluster state goes from CREATING to FAILED

Try creating the cluster again.

Cluster state is ACTIVE but producers cannot send
data or consumers cannot receive data

« If the cluster creation succeeds (the cluster state is ACTIVE), but you can't send or receive data, ensure
that your producer and consumer applications have access to the cluster. For more information, see the
guidance in the section called “Step 4: Create a Client Machine” (p. 10).

« If your producers and consumers have access to the cluster but still experience problems producing
and consuming data, the cause might be KAFKA-7697, which affects Apache Kafka version 2.1.0 and
can lead to a deadlock in one or more brokers. Consider migrating to Apache Kafka 2.2.1, which is not
affected by this bug. For information about how to migrate, see Migration (p. 84).

AWS CLI doesn't recognize Amazon MSK

If you have the AWS CLI installed, but it doesn't recognize the Amazon MSK commands, upgrade your
AWS CLI to the latest version. For detailed instructions on how to upgrade the AWS CLI, see Installing

the AWS Command Line Interface. For information about how to use the AWS CLI to run Amazon MSK
commands, see How It Works (p. 15).

Partitions go offline or replicas are out of sync

These can be symptoms of low disk space. See the section called “Disk space is running low” (p. 95).

Disk space is running low

See the following best practices for managing disk space: the section called “Monitor disk
space” (p. 99) and the section called “Adjust data retention parameters” (p. 99).

Memory is running low

If you see the MemoryUsed metric running high or MemoryFree running low, that doesn't mean there's a
problem. Apache Kafka is designed to use as much memory as possible, and it manages it optimally.

Producer Gets NotLeaderForPartitionException

This is often a transient error. Set the producer's retries configuration parameter to a value that's
higher than its current value.

95

https://issues.apache.org/jira/browse/KAFKA-7697
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Under-Replicated Partitions (URP) greater than zero

Under-Replicated Partitions (URP) greater than
Zero

The UnderReplicatedPartitions metric is an important one to monitor. In a healthy MSK cluster,
this metric has the value 0. If it's greater than zero, that might be for one of the following reasons.

o If UnderReplicatedPartitions is spiky, the issue might be that the cluster isn't provisioned
at the right size to handle incoming and outgoing traffic. See the section called “Right-size your
cluster” (p. 98).

o If UnderReplicatedPartitions is consistently greater than O including during low-traffic periods,
the issue might be that you've set restrictive ACLs that don't grant topic access to brokers. To replicate
partitions, brokers must be authorized to both READ and DESCRIBE topics. DESCRIBE is granted by
default with the READ authorization. For information about setting ACLs, see Authorization and ACLs
in the Apache Kafka documentation.

Networking issues

If you have an Apache Kafka application that is unable to communicate successfully with an MSK cluster,
start by performing the following connectivity test.

1. Use any of the methods described in the section called “Getting the Bootstrap Brokers” (p. 20) to get
the addresses of the bootstrap brokers.

2. In the following command replace bootstrap-broker with one of the broker addresses that you
obtained in the previous step. Replace port-number with 9094 if the cluster is set up to use TLS
authentication. If the cluster doesn't use TLS authentication, replace port-number with 9092. Run
the command from the client machine.

telnet bootstrap-broker port-number

3. Repeat the previous command for all the bootstrap brokers.

4. Use any of the methods described in the section called “Getting the Apache ZooKeeper Connection
String” (p. 19) to get the addresses of the cluster's Apache ZooKeeper nodes.

5. On the client machine run the following command, replacing Apache-ZooKeeper-node with the
address of one of the Apache ZooKeeper nodes that you obtained in the previous step. The number
2181 is the port number. Repeat for all the Apache ZooKeeper nodes.

telnet Apache-ZooKeeper-node 2181

If the client machine is able to access the brokers and the Apache ZooKeeper nodes, this means there
are no connectivity issues. In this case, run the following command to check whether your Apache Kafka
client is set up correctly. To get bootstrap-brokers, use any of the methods described in the section
called “Getting the Bootstrap Brokers” (p. 20). Replace topic with the name of your topic.

bin/kafka-console-producer.sh --broker-list bootstrap-brokers --producer.config
client.properties —topic topic

If the previous command succeeds, this means that your client is set up correctly. If you're still unable to
produce and consume from an application, debug the problem at the application level.

If the client machine is unable to access the brokers and the Apache ZooKeeper nodes, see the following
subsections for guidance that is based on your client-machine setup.

96

https://kafka.apache.org/documentation/#security_authz

Amazon Managed Streaming for
Apache Kafka Developer Guide
Amazon EC2 client and MSK cluster in the same VPC

Amazon EC2 client and MSK cluster in the same VPC

If the client machine is in the same VPC as the MSK cluster, make sure the cluster's security group has an
inbound rule that accepts traffic from the client machine's security group. For information about setting
up these rules, see Security Group Rules. For an example of how to access a cluster from an Amazon EC2
instance that's in the same VPC as the cluster, see Getting Started (p. 4).

Amazon EC2 client and MSK cluster in different VPCs

If the client machine and the cluster are in two different VPCs, ensure the following:

o The two VPCs are peered.
« The status of the peering connection is active.
« The route tables of the two VPCs are set up correctly.

For information about VPC peering, see Working with VPC Peering Connections.

On-premises client

In the case of an on-premises client that is set up to connect to the MSK cluster using AWS VPN, ensure
the following:

« The VPN connection status is UP. For information about how to check the VPN connection status, see
How do | check the current status of my VPN tunnel?.

« The route table of the cluster's VPC contains the route for an on-premises CIDR whose target has the
format Virtual private gateway(vgw-XXXXXXXX).

« The MSK cluster's security group allows traffic on port 2181, port 9092 (if your cluster accepts
plaintext traffic), and port 9094 (if your cluster accepts TLS-encrypted traffic).

For more AWS VPN troubleshooting guidance, see Troubleshooting Client VPN.

AWS Direct Connect

If the client uses AWS Direct Connect, see Troubleshooting AWS Direct Connect.

If the previous troubleshooting guidance doesn't resolve the issue, ensure that no firewall is blocking
network traffic. For further debugging, use tools like tecpdump and Wireshark to analyze traffic and to
make sure that it is reaching the MSK cluster.

97

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SecurityGroupRules
https://docs.aws.amazon.com/vpc/latest/peering/working-with-vpc-peering.html
https://aws.amazon.com/premiumsupport/knowledge-center/check-vpn-tunnel-status/
https://docs.aws.amazon.com/vpn/latest/clientvpn-admin/troubleshooting.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Troubleshooting.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Right-size your cluster

Best Practices

This topic outlines some best practices to follow when using Amazon MSK.

Right-size your cluster

When you create an MSK cluster, you specify the type and number of broker nodes.

Number of partitions per broker

The following table shows the recommended maximum number of partitions (including leader and
follower replicas) per broker. However, the number of partitions per broker is affected by use case and
configuration. We also recommend that you perform your own testing to determine the right instance
type for your brokers. For more information about the different instance types, see the section called
“Broker Instance Types” (p. 15).

Broker instance type Maximum number of partitions (including
leader and follower replicas) per broker

t3.small 300

m5.large orm5.xlarge 1000
m5.2xlarge 2000
m5.4xlarge, m5.8xlarge, m5.12xlarge, 4000

m5.16xlarge, orm5.24xlarge

For guidance on choosing the number of partitions, see Apache Kafka Supports 200K Partitions Per
Cluster.

Number of brokers per cluster

To determine the right number of brokers for your MSK cluster and understand costs, see the MSK
Sizing and Pricing spreadsheet. This spreadsheet provides an estimate for sizing an MSK cluster and
the associated costs of Amazon MSK compared to a similar, self-managed, EC2-based Apache Kafka
cluster. For more information about the input parameters in the spreadsheet, hover over the parameter
descriptions. This spreadsheet was the result of running a test workload with three producers and
three consumers, and ensuring that P99 write latencies were below 100 ms. This might not reflect your
workload or performance expectations. Therefore, we recommend that you test your workloads after
provisioning the cluster.

Build highly available clusters

Use the following recommendations so that your MSK cluster can be highly available during an update or
when Amazon MSK is replacing a broker.

98

https://blogs.apache.org/kafka/entry/apache-kafka-supports-more-partitions
https://blogs.apache.org/kafka/entry/apache-kafka-supports-more-partitions
https://amazonmsk.s3.amazonaws.com/MSK_Sizing_Pricing.xlsx
https://amazonmsk.s3.amazonaws.com/MSK_Sizing_Pricing.xlsx

Amazon Managed Streaming for
Apache Kafka Developer Guide
Monitor disk space

« Ensure that the replication factor (RF) is at least 2 for two-AZ clusters and at least 3 for three-AZ
clusters. An RF of 1 can lead to offline partitions during a rolling update.

« Set minimum in-sync replicas (minlISR) to at most RF - 1. A minISR that is equal to the RF can prevent
producing to the cluster during a rolling update. A minISR of 2 allows three-way replicated topics to be
available when one replica is offline.

« Ensure client connection strings include multiple brokers. Having multiple brokers in a client’s
connection string allows for failover when a specific broker is offline for an update. For information
about how to get a connection string with multiple brokers, see the section called “Getting the
Bootstrap Brokers” (p. 20).

Monitor disk space

To avoid running out of disk space for messages, create a CloudWatch alarm that watches the
KafkaDataLogsDiskUsed metric. When the value of this metric reaches or exceeds 85%, perform one
or more of the following actions:

« Increase broker storage. For information on how to do this, see the section called “Scaling Up Broker
Storage” (p. 21).

« Reduce the message retention period or log size. For information on how to do that, see the section
called “Adjust data retention parameters” (p. 99).

« Delete unused topics.

For information on how to set up and use alarms, see Using Amazon CloudWatch Alarms. For a full list of
Amazon MSK metrics, see the section called “Monitoring a Cluster” (p. 28).

Adjust data retention parameters

Consuming messages doesn't remove them from the log. To free up disk space regularly, you can
explicitly specify a retention time period, which is how long messages stay in the log. You can also
specify a retention log size. When either the retention time period or the retention log size are reached,
Apache Kafka starts removing inactive segments from the log.

To specify a retention policy at the cluster level, set one or more of the following
parameters: log.retention.hours, log.retention.minutes, log.retention.ms, or
log.retention.bytes. For more information, see the section called “Custom Configurations” (p. 44).

You can also specify retention parameters at the topic level:

« To specify a retention time period per topic, use the following command.

kafka-configs.sh --zookeeper ZooKeeperConnectionString --alter --entity-type topics --
entity-name TopicName --add-config retention.ms=DesiredRetentionTimePeriod

« To specify a retention log size per topic, use the following command.

kafka-configs.sh --zookeeper ZooKeeperConnectionString --alter --entity-type topics --
entity-name TopicName --add-config retention.bytes=DesiredRetentionLogSize

The retention parameters that you specify at the topic level take precedence over cluster-level
parameters.

99

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Managed Streaming for
Apache Kafka Developer Guide
Don't add non-MSK brokers

Don't add non-MSK brokers

If you use Apache ZooKeeper commands to add brokers, these brokers don't get added to your MSK
cluster, and your Apache ZooKeeper will contain incorrect information about the cluster. This might
result in data loss. For supported cluster operations, see How It Works (p. 15).

Enable in-transit encryption

For information about encryption in transit and how to enable it, see the section called “Encryption in
Transit” (p. 57).

Reassign partitions

To move partitions to different brokers on the same cluster, you can use the partition reassignment
tool named kafka-reassign-partitions.sh. For example, after you add new brokers to expand
a cluster, you can rebalance that cluster by reassigning partitions to the new brokers. For information
about how to add brokers to a cluster, see the section called “Expanding a Cluster” (p. 26). For

information about the partition reassignment tool, see Expanding your cluster in the Apache Kafka
documentation.

100

https://kafka.apache.org/documentation/#basic_ops_cluster_expansion

Amazon Managed Streaming for
Apache Kafka Developer Guide

Document History for Amazon MSK
Developer Guide

The following table describes the important changes to the Amazon MSK Developer Guide.

Latest documentation update: September 30, 2020

Change
Support for Apache Kafka 2.6.0

Support for Apache Kafka 2.5.1

Application Auto-Expansion

Support for Username and
Password Security

Support for Upgrading the
Apache Kafka Version of an
Amazon MSK Cluster

Support for T3.small Broker
Nodes

Support for Apache Kafka 2.4.1

Description Date

Amazon MSK now supports 2020-10-21
Apache Kafka version 2.6.0.

For more information, see

Supported Apache Kafka

versions (p. 88).

Amazon MSK now supports 2020-09-30
Apache Kafka version

2.5.1. With Apache Kafka

version 2.5.1, Amazon MSK

supports encryption in

transit between clients and

ZooKeeper endpoints. For more

information, see Supported

Apache Kafka versions (p. 88).

You can configure Amazon 2020-09-30
Managed Streaming for Apache

Kafka to automatically expand

your cluster's storage in

response to increased usage.

For more information, see Auto

Scaling Storage (p. 22).

Amazon MSK now supports 2020-09-17
logging into clusters using

a username and password.

Amazon MSK stores credentials

in AWS Secrets Manager.

For more information,

see Username/ Password

Authentication (p. 70).

You can now upgrade the 2020-05-28
Apache Kafka version of an

existing MSK cluster.

Amazon MSK now supports 2020-04-08
creating clusters with brokers of

Amazon EC2 type T3.small.

Amazon MSK now supports 2020-04-02

Apache Kafka version 2.4.1.

101

Amazon Managed Streaming for
Apache Kafka Developer Guide

Change

Support for Streaming Broker
Logs

Support for Apache Kafka 2.3.1

Open Monitoring

Support for Apache Kafka 2.2.1

General Availability

Support for Apache Kafka 2.1.0

Description

Amazon MSK can now stream
broker logs to CloudWatch Logs,
Amazon S3, and Amazon Kinesis
Data Firehose. Kinesis Data
Firehose can, in turn, deliver
these logs to the destinations
that it supports, such as Amazon
ES.

Amazon MSK now supports
Apache Kafka version 2.3.1.

Amazon MSK now supports
open monitoring with
Prometheus.

Amazon MSK now supports
Apache Kafka version 2.2.1.

New features include tagging
support, authentication, TLS
encryption, configurations, and
the ability to update broker
storage.

Amazon MSK now supports
Apache Kafka version 2.1.0.

Date

2020-02-25

2019-12-19

2019-12-04

2019-07-31

2019-05-30

2019-02-05

102

Amazon Managed Streaming for
Apache Kafka Developer Guide

AWS glossary

For the latest AWS terminology, see the AWS glossary in the AWS General Reference.

103

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Managed Streaming for Apache Kafka
	Table of Contents
	What Is Amazon MSK?
	Setting Up Amazon MSK
	Sign Up for AWS
	Download Libraries and Tools

	Getting Started Using Amazon MSK
	Step 1: Create a VPC for Your MSK Cluster
	Step 2: Enable High Availability and Fault Tolerance
	Step 3: Create an Amazon MSK Cluster
	Step 4: Create a Client Machine
	Step 5: Create a Topic
	Step 6: Produce and Consume Data
	Step 7: Use Amazon CloudWatch to View Amazon MSK Metrics
	Step 8: Delete the Amazon MSK Cluster

	Amazon MSK: How It Works
	Creating an Amazon MSK Cluster
	Broker Instance Types
	Creating a Cluster Using the AWS Management Console
	Creating a Cluster Using the AWS CLI
	Creating a Cluster with a Custom MSK Configuration Using the AWS CLI
	Creating a Cluster Using the API

	Deleting an Amazon MSK Cluster
	Deleting a Cluster Using the AWS Management Console
	Deleting a Cluster Using the AWS CLI
	Deleting a Cluster using the API

	Getting the Apache ZooKeeper Connection String for an Amazon MSK Cluster
	Getting the Apache ZooKeeper Connection String Using the AWS Management Console
	Getting the Apache ZooKeeper Connection String Using the AWS CLI
	Getting the Apache ZooKeeper Connection String Using the API

	Getting the Bootstrap Brokers for an Amazon MSK Cluster
	Getting the Bootstrap Brokers Using the AWS Management Console
	Getting the Bootstrap Brokers Using the AWS CLI
	Getting the Bootstrap Brokers Using the API

	Listing Amazon MSK Clusters
	Listing Clusters Using the AWS Management Console
	Listing Clusters Using the AWS CLI
	Listing Clusters Using the API

	Scaling Up Broker Storage
	Scaling Up Broker Storage Using the AWS Management Console
	Scaling Up Broker Storage Using the AWS CLI
	Scaling Up Broker Storage Using the API
	Auto-expanding storage for an Amazon MSK Cluster
	MSK Storage auto-expansion details
	Setting up auto-expansion for your Amazon MSK cluster
	Setting up auto-expansion using the console
	Setting up auto-expansion using the API

	Updating the Configuration of an Amazon MSK Cluster
	Updating the Configuration of a Cluster Using the AWS CLI
	Updating the Configuration of a Cluster Using the API

	Deleting the Configuration of an Amazon MSK Cluster
	Deleting the Configuration of a Cluster Using the AWS CLI
	Deleting the Configuration of a Cluster Using the API

	Expanding an Amazon MSK Cluster
	Expanding a Cluster Using the AWS Management Console
	Expanding a Cluster Using the AWS CLI
	Expanding a Cluster Using the API

	Monitoring an Amazon MSK Cluster
	Amazon MSK Monitoring Levels for CloudWatch Metrics
	Amazon MSK Metrics for Monitoring with CloudWatch
	DEFAULT Level Monitoring
	PER_BROKER Level Monitoring
	PER_TOPIC_PER_BROKER Level Monitoring

	Viewing Amazon MSK Metrics Using CloudWatch
	Consumer-Lag Checking with Burrow
	Open Monitoring with Prometheus
	Creating an Amazon MSK Cluster with Open Monitoring Enabled
	Enabling Open Monitoring for an Existing Amazon MSK Cluster
	Setting Up a Prometheus Host on an Amazon EC2 Instance
	Prometheus Metrics

	Rebooting a broker for an Amazon MSK cluster
	Rebooting a Broker Using the AWS CLI
	Rebooting a Broker Using the API

	Tagging an Amazon MSK Cluster
	Tag Basics
	Tracking Costs Using Tagging
	Tag Restrictions
	Tagging Resources Using the Amazon MSK API

	Amazon MSK Configuration
	Custom MSK Configurations
	Dynamic Configuration
	Topic-Level Configuration
	Configuration States

	The Default Amazon MSK Configuration
	Amazon MSK Configuration Operations
	To create an MSK configuration
	To update an MSK configuration
	To delete an MSK configuration
	To describe an MSK configuration
	To describe an MSK configuration revision
	To list all MSK configurations in your account for the current Region

	Security in Amazon Managed Streaming for Apache Kafka
	Data Protection in Amazon Managed Streaming for Apache Kafka
	Amazon MSK Encryption
	Encryption at Rest
	Encryption in Transit

	How Do I Get Started with Encryption?

	Identity and Access Management for Amazon Managed Streaming for Apache Kafka
	How Amazon Managed Streaming for Apache Kafka Works with IAM
	Amazon MSK Identity-Based Policies
	Actions
	Resources
	Condition Keys
	Examples

	Amazon MSK Resource-Based Policies
	Authorization Based on Amazon MSK Tags
	Amazon MSK IAM Roles
	Using Temporary Credentials with Amazon MSK
	Service-Linked Roles

	Amazon Managed Streaming for Apache Kafka Identity-Based Policy Examples
	Policy Best Practices
	Allow Users to View Their Own Permissions
	Accessing One Amazon MSK Cluster
	Accessing Amazon MSK Clusters Based on Tags

	Using Service-Linked Roles for Amazon MSK
	Service-Linked Role Permissions for Amazon MSK
	Creating a Service-Linked Role for Amazon MSK
	Editing a Service-Linked Role for Amazon MSK
	Supported Regions for Amazon MSK Service-Linked Roles

	Troubleshooting Amazon Managed Streaming for Apache Kafka Identity and Access
	I Am Not Authorized to Perform an Action in Amazon MSK

	Client Authentication
	To create a cluster that supports client authentication
	To set up a client to use authentication
	To produce and consume messages using authentication

	Using Username and Password Authentication with AWS Secrets Manager
	How it Works
	Setting up SASL/ SCRAM authentication for an Amazon MSK Cluster
	Connecting to your cluster with a username and password

	Working with Users
	Limitations

	Apache Kafka ACLs
	Controlling Access to Apache ZooKeeper
	To place your Apache ZooKeeper nodes in a separate security group
	Using TLS security with Apache Zookeeper

	Logging
	Broker logs
	Required permissions
	Required CMK key policy for use with SSE-KMS buckets
	Configuring broker logs using the AWS Management Console
	Configuring broker logs using the AWS CLI
	Configuring broker logs using the API

	Logging Amazon MSK API calls with AWS CloudTrail
	Amazon MSK information in CloudTrail
	Example: Amazon MSK log file entries

	Compliance Validation for Amazon Managed Streaming for Apache Kafka
	Resilience in Amazon Managed Streaming for Apache Kafka
	Infrastructure Security in Amazon Managed Streaming for Apache Kafka

	Accessing an Amazon MSK Cluster
	Amazon VPC Peering
	AWS Direct Connect
	AWS Transit Gateway
	VPN Connections
	REST Proxies
	Multiple Region Multi-VPC Connectivity
	EC2-Classic
	Port Information

	Migrating Clusters Using Apache Kafka's MirrorMaker
	Migrating Your Apache Kafka Cluster to Amazon MSK
	Migrating From One Amazon MSK Cluster to Another
	MirrorMaker 1.0 Best Practices
	MirrorMaker 2.* Advantages

	Amazon MSK Limits
	Apache Kafka Versions
	Supported Apache Kafka versions
	Apache Kafka version 2.6.0
	Apache Kafka version 2.5.1
	Amazon MSK bug-fix version 2.4.1.1
	Apache Kafka version 2.4.1
	Apache Kafka version 2.3.1
	Apache Kafka version 2.2.1
	Apache Kafka version 1.1.1

	Updating the Apache Kafka version

	Troubleshooting Your Amazon MSK Cluster
	Consumer group stuck in PreparingRebalance state
	Implementing Static Membership Protocol
	Rebooting the Coordinating Broker Node

	Error delivering broker logs to Amazon CloudWatch Logs
	No default security group
	Cluster appears stuck in the CREATING state
	Cluster state goes from CREATING to FAILED
	Cluster state is ACTIVE but producers cannot send data or consumers cannot receive data
	AWS CLI doesn't recognize Amazon MSK
	Partitions go offline or replicas are out of sync
	Disk space is running low
	Memory is running low
	Producer Gets NotLeaderForPartitionException
	Under-Replicated Partitions (URP) greater than zero
	Networking issues
	Amazon EC2 client and MSK cluster in the same VPC
	Amazon EC2 client and MSK cluster in different VPCs
	On-premises client
	AWS Direct Connect

	Best Practices
	Right-size your cluster
	Number of partitions per broker
	Number of brokers per cluster

	Build highly available clusters
	Monitor disk space
	Adjust data retention parameters
	Don't add non-MSK brokers
	Enable in-transit encryption
	Reassign partitions

	Document History for Amazon MSK Developer Guide
	AWS glossary

