aws

Developer Guide

Amazon Simple Queue Service

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Simple Queue Service Developer Guide

Amazon Simple Queue Service: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Simple Queue Service Developer Guide

Table of Contents

What is AMAzZon SQS? ... eeeiiieeeieeeeneceeeencceeesscesssssccssssecsssssssssssscsssasses |

Benefits of uSing AMAZON SQS ...ttt ettt e s e s e e e s e e et e st e st e st e s ae e e ssaesae e aneans 1
BASIC @rCRITECEUIE ..ottt sttt sttt et et s s b et e e e e se st esanas 1
DiISEIHDULEA QUEBUES ...ttt ettt et esae s e e e e e et e st e s ae st e bessa e e esaena e aantansensanes 2
MESSAGE LIFECYCLE ettt ettt et e te s b e st e s se e e e e e aesaestestabassessnennennans 2
Differences between Amazon SQS, Amazon MQ, and AmMazon SNS ... 4
Getting StArtedcccciiiiiireeeeeiiiiiiiiiiiiineeeeesesessisisieeeeessess O
SEEEING UP ittt ettt s e e st e st e st e s ae e s b e s ae e s b e s b e e s b e e aaeeae s sa e st e e seesssesaseeesteeseessseanses 6
Step 1: Create an AWS account and IAM USEFcoueceeeeeeieietestestesee e e e tesaessesaesse e esessaesaenes 6
Step 2: Grant programmMmaAtiC QCCESSccciiriiiriirieirierteese et re s sre e s aessseestessaesssaesssesssaassasssseassns 8
Step 3: Get ready to use the example COAE ... 10
NEXE SEEPS ittt ettt e st e st s s e e st e e st e s sae s e se e e ae e st e s aesssaessee st esssesssaesssaesseesssesssaessseesseenns 10
Understanding the AmMazon SQS CONSOLEuiiieieeeececeeee et saesae e re s essaenean 10
QUEUE TYPES ettt ettt s e s sae s st e st e e st e s sae s sa e s be s s st asssesssaessseesstesssassstesssessseesssessssesssessseesssenses 12
Implementing request-response systems in AmMazon SQSccoereeiereereecececese e 14
Creating @ StANAArd QUEUE ...ttt ettt te e s te st e e e e s e e s et et e saestesaessessnsnnenaanes 15
CreatiNg @ QUEUE ...ttt sttt s et s sae e s e e s e e s sa e s b e e s st e s aesssaesae e st asssassaesssaessnesssesssaennses 15
Sending a message using a StaNdard QUEUEc.ecveieiecieceeceeeeee ettt e et eeaesa e nas 17
Creating @ FIFO QUEUE ...ttt ettt st s e st e st e s s st e s e e s ae e st e ssaassssesssaessaessseasssesssaensesssennnns 18
CrEATE @ QUEUE ..ottt sttt e st s e s s ae e st e s st e s b e s sae e s b e s sa e s b e s ssa e ssassaesssessessnsessssessnessseanns 18
Sending a message USING @ FIFO QUEUEcuieeeieeceeeeteteteteteere e see et saesaesaesae s e e e s s ennennans 20
COMIMION TASKS ..veviteieiirieteerente sttt te st et e st st s seste st e e ssa st e e ssesae st esessassesassasbesaesassassensssansensesessassesessans 21
MaNAgiNg @ QUEUE ...cciiiiieeeeeneneisiiisiccettsess 29
EQITING @ QUEUE ettt e et et e st e st e s tesse s s e s e e s et e ta b e sasseesaeseenaensansansansan 23
Receiving and deleting @ MESSAGE ...ttt ste e s e e s e e e e e st aesaesaessessasseeaennaneans 23
ConfirmMinNg @ QUEUE IS EIMPLY ..ccueeuiiieietececeeeeee ettt e steste s e e e e e s s e s e tesaesaesbessasseesasssensansensansansans 25
DELELING @ QUEUE ..ttt ettt et e st e st st e e e e e s e e e et et et et asaassaesaesaenaessensansanes 26
PUFGING Q@ QUEBUE .ttt et e ettt essee e st e s sse s s e e s sae e saesaesssaesssessseasssessssesssassseesssessssessseesseesssenns 27
SEANAArd QUEUES uueeiiiiiiiiiiiiiieeeenneiiiiiceiiittesss 28
Amazon SQS at-least-0NCe AELIVEIY ...ttt s ae e s e aenenes 28
Queue and MESSAGE IAENTITIEIS ..ottt st s e e saesaenes 29
Identifiers for StanNdard QUEUES ...ttt st e s ae e s a e s e saaeans 29

FIFO QUEUES ..crveeiirreecirnneniirnecinseescsssessesssessessesssnsssssssesssssssssssssssssnsess 3 |

FIFO QUEUE KEY TEITIIS ...ttt sttt st s s s s s s bbbt s s s s s s s s s s ses s sesesesssesesssssesasasasnsans 32

Amazon Simple Queue Service Developer Guide

FIFO dEUVEIY LOGIC ettt ettt ste et te et et e st e st e tesaesae st e e se e e e e e e e s et e aessassassassessnensansansans 33
SENAING MESSAGES ...veeveeereneeiereiteeereeeeeete e stestessessesseeseesesssesessassessassessassasssessessessensessansessessessssssensen 33
RECEIVING MESSAGES ...eeivveiiiiieeitieteesteste st e ste e st este s s e essessstesssesssaesssessssesssesssaesssessssesssessssessseesssesss 34
REtrying MULLIPLE tIMES .ottt ettt et st e sttt e b e e nes 35
Additional notes 0N FIFO DENAVION ...ttt sae e 36
Examples for better understanding ...ttt aens 36

EXQCELY-0NCE PrOCESSING c.cuveviieeieieeetecte ettt ettt st e s te s e et e e e e e e e e e ae st e tesaa s e ssaesaesaesaeaetansansenes 37

Moving from a standard queue t0 @ FIFO QUEUEcuoueeeeeeeeeeereeeteteteste e reste e sae e 37

FIFO queue and Lambda concurrency behavior ... 39
FIFO queUue MeSSAgEe GrOUPINGcccvieevuerrienireereeesreeseesssesssesssessseesssessssesssesssessssessssesssesssessssesssssssaens 39
Lambda concurrency With FIFO QUEUESccueeveevieieeeteeeteteteste e ee e ese e saesaestessessesse s e enennannens 39
USE CASE EXAMPLE ettt ettt st st e s te e e e e e e e et et e st e st e s s e s sessaesa e e ensensansassansessessaenean 40

High throughput fOr FIFO QUEUESceeieeeeceeeetetetetetee ettt stesteste e re e s e e sa et e s e ae s e sassnenaanes 40
L8 L= o= [=L OO ROS O RRRRSRRRTRPRR 41
Partitions and data diStribULION ..ot 41
Enabling high throughput for FIFO QUEUES ...ttt 44

Queue and MESSAGE IAENTITIEIS ..ottt s a et saesaenes 45
[deNtifiers fOr FIFO QUEBUES ...ttt steeve e se e e s saesae st e stassasseesa e s e s asaesansansans 29
Additional identifiers fOr FIFO QUEUESccueceeeeeeeeeceetectectectes et saestessesae e s e e e s e snennan 46

QUOTAS .eeeeienitncencennceecceectecceecceccsscascssscssssssssssssscssessssssesssss 48

FIFO QUEUE QUOTAS oottt ettt te st estessaesseessaeesstessaesssaesssaessaesssassssesssssssaasssesssaesssesssaesssennns 48
AMAZON SQS QUOTAS ..ttt ettt e st e st e st e s sae e st e s sesssaessseessaesssasssaesssassssessssesssessseessaes 48

StaNAard QUEUE QUOTAS ...ccueiieieeeieeeeeeetete ettt te st e e st e et e st e st e st e s aesse s s e ese e s et e saestessessassassassnenaaneans 49

MESSAGE QUOTAS ..eeeiiiieeeiieeeeeeceteeett et e et e s et s s stesesseesesaeesesseasssseasssseessssesssssesssssesssssessssesssseessseessnsaens 51

POLICY QUOLAS ettt ettt st et e s e et e e e et et e st e st e st e st e e e e e s saena et estassasassassaesaessensensensansanes 57

Features and Capabilitiesccciiiiiiiiiiiiiiiennniniiiiiieiiiiiiieeeemsiiiiiiieiiiiess 59

DEAA-LEILEN QUEUES ...ttt ettt e te e e e e e e e st e st e b e e s se e e e se e e esaessentassassessessnenaanaans 59
Using policies for dead-letter QUEUES ...ttt 60
Understanding message retention periods for dead-letter queuUescooeeeeeeeeceecveceecvenenee. 60
Configuring @ dead-Letter QUEBUEeceeeeeeeeeeeteeeeee ettt ettt et s ae s e s reenens 60
Configuring a dead-letter QUEUE FEATIVEc.eoueeieieeeeeee ettt sttt saesbansens 61
CloudTrail update and permission reqUIrEMENTScceeeeieiieriecienereeeeeee e seesae e s e e e eseeanens 71
Creating alarms for dead-letter queues using Amazon CloudWatchcccoeeeveveeeneeeneennne. 75

Message metadata for AMAzon SQS ...ttt et a e a et aan 75
MESSAGE ATLIIDULES ...ttt ettt te s te e e e e e et et e s aesaessasseeseesa e aeaansans 75
MesSSage SYSTEM QELFDULESc.eeeeceeeeee ettt s ae s ae e e e e s e aesaatans 80

Amazon Simple Queue Service Developer Guide

Resources required tO ProCeSS MESSAGEScccccreererrerrerrereereereesersessessessessesssesessessessessessessassessssssssassans 80
LiSt QUEUE PAGINATION ..ottt st e st s st e s sae s s e e s s e e ssae s saeessaa s aesssaessaesssassseesssesssaennees 81
COSt QLLOCALION TAGS ..ovieiieieieeteeec ettt e e e s e st et e s ae st e s s e e e e e e st et et estessessassaesasseessansanes 81
Short and LONG POLLING ...ttt te e s e e e e e e e e s et e te st e b e ssesse s e ssaeneesensanean 82
Consuming messages using Short POLLING ... 83
Consuming messages using long POLING ..o eaens 83
Differences between long and short POLING ... 84
VISIDILITY TIMEOUL ..ttt et e e st e e e s e e sae s tesaesbessa s aesn e e enaenaansansans 84
ViSiDility timMEOUL USE CASESveeeeeeeeeetetetetec ettt ste st e e te s e e e s et e st et e ssessassasss e s esaesensansans 85
Setting and adjusting the visibility tiMeEOULc.ooiiieieeeeeeee e 86

In flight MeSsSages aNd QUOTASccuecuieieceeeeececteteete ettt st e st s e et et tesaa s 86
Understanding visibility timeout in standard and FIFO qUEUEScceeeveeerereeveeeeeeceereeenne. 87
HANALING FAILUIES ...ttt ettt et et esae s e e s et e b e st et e s e seeseenaenneneanaanes 87
Changing and terminating visibility timeEoUt ..o 87
BEST PrACLICES .ottt st e e st s st st e s e s s sa e s b e s aa e s e e e ae e s b e e e raeeaaesaeessaesnnas 88
FQUIE QUEBUES ..ttt st e et s st e s ae s e e s st e st e s s e e s st e e sae s sae s saessaessaeesssasssaesssassseesssessseesssessnanns 88
Difference With FIFO QUEUES ...ttt ste e s e e e e s ae e et st e saesae s se s e s snennanes 90
USING TQIF QUEUES ...ttt ettt et et e s ae st e steese s e e s et et et essastassessessaesaessansansansansansen 91
Fair queues CloudWatch MELIICS ..ottt st 91
DELAY QUEBUES ...ttt ettt e st e s aeste s e e e s et et et e sesteesaeseesaesaestansasasasaesaesaessensansanes 92
TEMPOTATY QUEUESeeeeeeveeciieertieteeiseestesssesssaessseesstesssessssessssesssesssessssesssessssesssessssessssesssesssessssessssessaesssessns 93
VIFEUGL QUEUES .ttt ettt e te s e s e s e e e et et e st e st e st e s seesaeseesa e e e st enaessessessassaesesnsensanes 93
Request-response messaging pattern (Virtual QUEUES)c.ccueveeeeeeiecieceeeeecee et 95
Example scenario: Processing @ login reqUESEcoeceeeeieeeeciecececeeee ettt 95
CLEANING UP QUEUES ...oeveeteieteeteeeeteteteste e stestesaeees e ssesaestessassassassessessesssassessansansassansassessesssensensensanes 97
MESSAGE TIMELS ...eeriiieeteecteert ettt st e et se e e s see e st e s te s s e e s saeessaesssesssaessseesstasssessssessseesseesssesssaessseesseesssennns 98
ACCesSiNG EVENTBIridQE PIPES ..ocviieieieieeeeeceeeetete ettt te e e e e e st et e stessesse s e s se e s e e e e e s anaasansanes 99
ManNaging large MESSAGEScuceeeerreeeeeeieietestestesteseseeseeseesestessessassessasseesssssessassessessessassassessesssensanes 100
Using the Extended Client Library for Java ...ttt e s 101
Using the Extended Client Library for Python ..., 107
Configuring AMAzon SQSiiiiiiiiiiieeeemniiiiiiiiiiiitesssssssssssssssesss 110
ABAC fOr AMAzZOon SQS ...ttt ettt et esae e st e e b e sabe e bessabssbssesbe e bseeab e e bsesabeeateenae e aresares 110
WAt S ABACY ...ttt et s e st et s st et s s b e st et s e st et e s b et e e ssa b et esassasseseesassessesarsensansans 110
Why should | use ABAC in AMAzZon SQS? ...ttt tsste e saestesse e e e e e e saesaesaenan 111
Tagging fOr ACCESS CONTIOLouiieieieieeeeee ettt sae st s e s e e s e e e e sa et e saesaanes 111
Creating IAM users and AMAazon SQS QUEUESc.ccveeeciereereeereeeeeeeecsesaessessesesseesesaessessessenes 112

Amazon Simple Queue Service Developer Guide

Testing attribute-based access CONTIOL ... 115
Configuring QUEUE PAr@MELELS ...c.ucoveeeeieieeetetetecte et s et e saestestesae s e e se e e e e eaesaestessessassessnesasnaans 116
Configuring @n ACCESS POLICY ..ueiiicieieieceeeceeee ettt te e e e e e e et e e et este st e sessessaess e s esaensentansansansans 118
Configuring SSE-SQS fOI @ QUEUE ...ttt te e ae s e s e e e e e e s e s e st e aessessessnesaennens 118
Configuring SSE-KMS fOI @ QUEBUEueouveeeeeeeceetetete ettt e et aeste st saesaeese e e ss e a e testanaanes 120
Configuring tags fOr @ QUEBUE ...ttt te e teste e e s et et e besaesse e e e e e aesaanaanes 121
Subscribing @ QUEUE t0 @ TOPIC cveuiiieeeeee et ettt ae e e e e sae b aens 122

Cross-account SUDSCHPLIONScviiieceececeeeee ettt e e a et aesaesaa s sa e e nnens 123

Cross-region SUDSCHIPLIONScuiiiiececceteeeerer ettt e e e e st ae st e s besaa e e e e e nneaenes 124
Configuring @ Lambda trHigQer ...ttt ettt e e s st et a e s se e e e e e nnenanes 124

PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 125
Automating notifications using EVENtBridge ...ttt aens 126
MESSAGE ALLIIDULES ...ttt e st st e e e e e e e e e e saesaesbe st e ssassasseennenaannans 126

BESt PraCliCeS ..cceieiiiiiinnnnnneniiiiiieiiiiineeeesssenssssseeesssasss 128
Error handling and problematic MESSAGEScceeviieiecieneeecee e 128

Handling request errors in AMAazon SQS ...ttt ste e e s s sa e e s 128

Capturing problematic messages in AmMazon SQSccreieeieeeseeece e 129

Setting-up dead-letter queue retention in AMazon SQS ... 129
Message deduplication and GroUPING ...ttt steste e ae e e e e sa e s e e sae st nes 129

Avoiding inconsistent message processing in AMazon SQScooiecenieneeieececreecee e 130

Using the message deduplication ID ...ttt a e 130

Using the mMeSSage GroUP ID ...t ete et stesteste s e e e e s s e saestesaesaassessessnesnennens 132

Using the receive request attemMPt ID ...t aenens 134
Message processing and tiMING ...c.cccceeceeicinececeeeereee et e e re e e et e saestessesse s e e e e s essenaessansans 135

Processing messages in a timely manner in Amazon SQSccieiecerecesececee e 135

Setting-up long polling in AMAzon SQS ...t ns 136

Using the appropriate polling mode in AMazon SQS ...t 137

JaVva SDK eXAMIPLESceeeeeeeiiiiiieiiniineenennennnssssssseesesss 138
USiNG Server-side @NCIYPLION ...cc.cceiieieieeeeteeeeetee ettt e stesteste s e s e e se e s e e e s e saesaessessessessesnnesnannans 138

Adding SSE t0 an eXiStiNg QUEUEeoeeieeeeeee ettt e s a et stesbe s e se s e e e s nennan 138

Disabling SSE fOr @ QUEBUE ...ttt ettt ste e ve s e e e s e et saesbesbassasanennsnnens 139

Creating @ qUEUE WIth SSE ettt ettt e st st an e ns 140

RErieVING SSE QtIriDULES ..ottt ettt a e a et nes 141
CONFIGUIING TAGS .eeiuiiieieieceeeceeeete ettt e s e e e e e e st et e st e st e st essesse e e e s e s e st estetantassassessaesaansassansansansansas 141

LISEING TGS erteiiiiiieetectect ettt sttt et e s sae s re e s sa e e st e s ae s st e s ae e s st e s saa s saessse e ssessseesssesseenssessennns 141

Adding or UPAAting TagS .oeeoieeeeececeeerer ettt sttt a e e a e st aeeaan 142

Vi

Amazon Simple Queue Service Developer Guide

REMOVING TGS «etiiiiiiiiitecierttsteeteest st s e e st e s sae s ssa e s sae s st e s sae s sa e s s esssaasssesssaesssessseesssessssesssesssaans 142
Sending MesSage AttriDULES ...ttt e st e e e e ra e sa et aesaasaens 143
DEefiNiNG QEEFIDULES ...ttt sa et b e st e s e s te e e e e s e aenaennan 143
Sending a message With attribULES ... 145
USING APIS coeiiiiiiiiieeenenniiiiiiieiiinteeesssssssssssssscessses 146
Making query API requests using AWS JSON Protocolccceeeeeeiecieceeneneseseeeeeeseee e svesvenas 147
Constructing an @NAPOINT ...ttt s ae s e a e s a et e aeaas 147
MaKiNG @ POST FEOUEST ...ttt ettt e testestesse e e s e e e s e tesaesaa b e sse s e ssaenaessansansansansans 148
Interpreting Amazon SQS JSON APl FESPONSESc..eeerierreirerierireesrteesiereeessseesseesssessssesssesssaesssessns 149
Amazon SQS AWS JSON ProtoCOl FAQSouiieeeecereeeeteteteste e stesteeee e e s e s saesaesaessessessaeaens 150
Making query APl requests using AWS query pProtoCoLlccceceeeeeeieeeeceeriecteceeceseseeee e seesaenens 153
Constructing an @NAPOINT ...ttt s ae s e a e s a et e aeaas 153
MaKiNG @ GET FEQUEST ..ottt te e et e st e sae st et e s te s s e s e e s et et essassassassassasnnanean 154
MaKiNG @ POST FEOUEST ...ttt ettt e testestesse e e s e e e s e tesaesaa b e sse s e ssaenaessansansansansans 148
Interpreting Amazon SQS XML API FESPONSEScccueievierreirrierrreentensreeseessseeseesssessssesssessseessssssses 156
AUtNENTICAtING FEQUESES ...ttt ettt e s re e et e e e e et e st e sae s basbesseesessaenaennanes 157
Basic authentication process with HMAC-SHA ...ttt 158
Part 1: The request from the USEI ...ttt aesa et saesaesaans 159
Part 2: The response from AWS ...ttt te e s e s e e e e s e e s e saesaestassesse s e e e ssnennan 160
BATCR QCHIONS ..ttt sttt et st sttt et et e et et e ba b e nan 161
Batching mMesSSage QCLiONS ...ttt st e st e s et e st e aesse e s e e nnennens 162
Enabling client-side buffering and request batching with Amazon SQSccccevevecieriecnenen. 163
Increasing throughput using horizontal scaling and action batching with Amazon SQS 175
WOTrKiNG With AWS SDKS ...ttt tetetete e e e e sse s e saestestestessessa e e s e e s e s etesaeseassassassassnennanes 187
USING JMS . eeeiiiiiiieiiiiienessnsessssssesestsss 189
PrEIrEGQUISITES ..ottt ettt te st e s e e et e st e ssae e s e e e sa e s sbesssaessaes st asssesssaesssessssesssesssaesssaesseens 189
Using the Java Messaging LIDIary ...ttt eeve s saesae st essesaesses e ssneaennens 190
Creating @ JMS CONNECLIONuiiiiiieetcctecectee ettt et e st e s saesssaessse s sreessbasssaessnessseassnassssanns 191
Creating an AmMAzon SQS QUEUE ...ttt eete st ssee st esstessaessaessaeessaesssesssaessssesssesssasnne 191
Sending mMessages SYNCHIONOUSLY ..ot a ettt ns 192
Receiving messages SYNCArONOUSLYcuooieiieiceeeeeeeee ettt saesae e 194
Receiving messages aSyNCRIONOUSLYccccueevereeeeieecteceeeetese et sae et e e se e e e nesae s 195
Using client acknowledge MOAE ...ttt ettt a e st e aan 197
Using unordered acknowledge MOAE ...ttt sae e 198
Using the JMS Client with other Amazon SQS clients ... 198
Working Java examples for using JMS with standard qUEUESc.cceceeeeeeeeeeieeeeee e, 200

vii

Amazon Simple Queue Service Developer Guide

EXampleConfiguration.jaVva ...ttt te e s e se et et esae s e s s e aeaea e b s 200
TEXtMESSAGESENUEIJAVA ...ttt sae et e st e st e st e s aeesaeseesae s esnenseaanes 203
SYNCMESSAGERECEIVEIJAVA ..ceeeeeiiiieeitictecie ettt et e sste s stessaeesseesssessssesssesssaesssassssesssessseesssessssesnnes 204
ASYNCMESSAGERECEIVEIJAVAeicuieiiiiieeiierieestee et esressre e s seeesseessessseesssesssaesssesssaesssassssesssessseesssens 206
SyncMessageReceiverClientAcknowledge.java ... 208
SyncMessageReceiverUnorderedAcknowledge.javaeeeeeeceeieceececesec e 212
SpringExampleConfiguration. XMl ...ttt 215
SPINGEXAMPLE.JAVA ettt ettt e b et e s s s s e e e e et et et e saesbassaennenaanes 217
EXQMPLECOMIMON.JAVA «.uriiiiiieieeeetetetete et te e e e e e e e s e teste st e st assassesseesaesessessesansassassessesnaensansans 219
Supported JMS 1.7 iMpPLlementations ...t ettt ae s ns 221
Supported COMMON INEEITACESooueeieeeeeeceee ettt e s sa e e e aesaasaans 221
SUPPOrtEd MESSAGE LYPES «.cuvereeeeieeeetetectecteste e st e st e stesaestesae s e s se e e e s esaeaesestassassassassasssensessanes 221
Supported message acknowledgment MOAESc.ccveieeeeereriececeeeee e 222
JMS-defined headers and reserved Properties ... eceeereeeeeereeeeceeste e e s eseeeeseesaennas 222
TUROKHIALS ceeerrriiiiiiiiiiiiiiiiiiiiiiiiiiieiieesses 224
Creating an Amazon SQS queue using AWS CloudFormationccceceeeeenenieneececceeceecreceecennn 224
Sending @ MeSsSAge fromM @ VP C ...ttt ettt te sttt besaesae s e s se e nans 226
Step 1: Create an AMAzon EC2 KEY Pl c.cceeeeieieieieeseceeee ettt ste e ae e nesaesaeaesae s 227
STEP 2: Creat@ AWS FESOUICESccvcveieieerrierieerteestessrtestessseestessseesssesssessssesssessseesssessssesssessssassssssnes 227
Step 3: Confirm that your EC2 instance isn't publicly accessiblecooovioveceeenenenieeeenen. 228
Step 4: Create an Amazon VPC endpoint for Amazon SQS ... 229
Step 5: Send a message to your AmMazon SQS QUEUEc.ccueereeereeeeeereeeeeeereseeesesesseeeeeeseens 230
COdE EXAMPLESceeeeeeeniiiiiieeiiiiieeeeeanseessssseeeeenessanes 232
BaSICS ittt st b e st st a e et e et e b s be st e st et e et e e s e e sbe st e neebeenee 245
HEllo AMAZON SQS ..ttt et eb e et e eabe e s s e e beesasesssesssaesssesssaesssesssesassesssesnseenns 246
ACTIONS .ttt sttt et s s s ae st st e ae et e et e e st st e et e st et e et e st sbeeat e st e besatenne s 258
SCONANIOS ..ottt ettt st e et e st e et e st s b e st e e st et e et e e se s be st s st s b e et e st sse s st asstebesatesseesesnsenstensaans 419
Create @ messaging apPLiCAtION ...ttt st s s e s aenens 419
Create @ messenger aPPLICALION ...ttt a e e a e 420
Create an Amazon Textract explorer appliCationccoeeeeieieiccececeeeec e 421
Create and publish t0 @ FIFO tOPIC .cciiiiieeeeeeeeteeeteeec ettt n e saesaeaens 423
Detect people and 0bjJects iN @ VIO ...ttt aens 435
Manage large MesSSages USING S3 ... rieeesteste e e s e e e e e st e ssesaessesses e s s eaesaessensensanes 436
Process S3 event NOLITICAtIONSc.ccveriiiiinicieeetreecte ettt ettt sa e 440
PUblish MeSSages t0 QUEUES ...ttt ettt s et et e st e aessa e s e e neaenes 444
Send and receive batches Of MESSAGES ... st eae s 559

viii

Amazon Simple Queue Service Developer Guide

Use the AWS Message Processing Framework for .NET with Amazon SQScccveveeieeeenne 590
Use the Amazon SQS Java Messaging Library to work with the JMS interface...................... 591
WOTrK WIith QUEUE tagS ..ceeieeeeeeeeeeeeeteteetee ettt ettt et st e s e s e e a e e et e st esta b e s se e e e e ennennan 613
SEIVEILESS EXAMPLES ...eeeieeieieteetecee ettt te e e e e e et et e st e st et e s sessesse e e e s esaenbeseessasassesseessessensensanes 617
Invoke a Lambda function from an Amazon SQS triggerevecerecececeeeeeeee e 617
Reporting batch item failures for Lambda functions with an Amazon SQS trigger 626
TrouDBLESHOOTING ..cciiiiiieeeiiiiiiiciiiiiiiiteeneniiiiiieeettttesassssssssssssssesesssanns 636
ACCESS AENIEA EITON ..ttt ettt e st st e e st e st e e sse st et esessasse e s sesbe st esassestesassessensesasensesassans 636
Amazon SQS queue policy and IAM POLICY .ottt 637
AWS Key Management Service (AWS KMS) Permissionsccccceevevieceereseneseeeeresreessessessennes 637
VPC @NAPOINt POLICY oottt ettt et st esaesse s e e e e e e s e s et et e te b e s sessessaesaansensansanes 639
Organization service CONtrol POLICY ...ccccceciecierieeeeeceeeerete ettt te e s e e e s eneneneens 639
APL BITOFS ..ttt ettt ettt sttt e st st s a e st e et e s st st e st s e st st e et e sbe e b e s st ssesaba st essessbesstasesnsasatesens 640
QUEUEDOESNOTEXIST BITOK ..ueeeeeeeeeeeectee ettt e eare e e e saee e e e saeeeessssaeessssssseeessssnesessssens 640
INValidAEADULEVALUE EITOK ...ttt sttt et 640
RECEIPEHANALE EITOK ...ttt ettt et e st s e e e e s e et et e st et e ssassessaesnenaansanean 641
DLQ anNd DLQ rEAIIVE ISSUEBS ..ccuveeeeeicereiieicteceteectecesreetecsseeesseesseeesseesssessessssesssessssesssessssesssssssessssessssens 642
DLQ GSSUES ..eeeeeecieeeeeeeeteeeeeeirteeeeeetteeeeeesereeesssssseeesssssesssssssesessssssessssssssesssssssessssssssesessssssessssssssessssnsnees 642
DO =T [Y T U< 643
FIFO throttling ISSUESoouveeieteeeeeeeete ettt et steste st e s e e e e s s et e ste st e saa s s e s se s e ese s e enaasansans 645
Messages not returned for a ReceiveMessage APl Call ... 646
EMPLY QUEUE ettt ettt te s st e st s ae s s e e s s e et e s aa s st e s saa e st assa e saesssassssasssennnes 646

IN Flight LMt FEACKHEM ...ttt e et et saesaesaesse s e a e ens 646
MESSAGE LAY ...ttt ettt e st e st e st e e e se e e e e et e b et et e baeseeraenae e entetetansanean 646
MESSAGE iS TN TGN ..ottt r e s re s a e e a s 647
POLLING MELNOM ...ttt sa et st s b e st e b e e e e e nneae s 647
NETWOTK BITOTS ettt ettt ettt et et e st e s s ae st e e s s et et s e b et eaassasestssasansenassansensensane 647
ETIMEOUT ©ITOF ittt st este st estessaeesstessaessssesssaesssassseasssessssesssesssessssesssessssessseesssessssesnees 647
UNKNOWNHOSTEXCEPLION EITOK ...ttt te e este e s s s saesae s s e saesaassa s e ennennans 649
Troubleshooting QUEUES USING X-RAYc.cceririerireeecieeectecte e sese e se e saessesaestesse s e e e e s e s e ssesaessanean 649
SECUNITY ceiiiiiiiiennnneniiieieeiiiinensessssssssssssessssssssssssssssssssssssess 651
DAt PrOTECLION ...ttt s s e st e s s ae s st e s s e e e s e e s aesssaessaaessaasssaasssassaesssesssnanns 651
DAta ENCIYPTION .ottt sttt s st e st e e sae e s te s se e s beesseessaesssaessaasssessssessssessaesssaanns 652
INternetwork traffic PriVacy ettt 664
Using dual-stack endpoints for CONNECLIVILYccueveeeeiiieieeee et 666
Identity and access MANAGEMENT ..ottt ettt et e s e e e e e e e e e s e saesaeneans 666

Amazon Simple Queue Service Developer Guide

AUAIENCE ..ttt sttt sttt s b et s s b et et e e b et e s s et et s sa b et esassabestesassansesessansensenanns 666
Authenticating With identities ..ottt nnens 667
Managing access USING POLICIES ...cceeeiieiieieceeeceeeeee et ste e ste e e e e e e e e e e s e ste st e sse s e sse e e esaennennan 670
OVEIVIBW ...ttt sttt et s e s st st st et s b e et e e st s b e st e e st e b e et e e st s be st e st s saesbe st essesasestensasnns 673
How Amazon Simple Queue Service Works With 1AM ... 680
AWS MANAGEA POLICIES .cveereeeeeietetetesteceeee ettt et steste s e e e e e e s et e st e stesaessessasse e e essesaansesansansanses 687
TrOUBLESNOOTING ...ttt e e et et e st et e st e be s e e sa e e e e e a e s ensanean 689
USING POLICIES ettt te s e et et et et e st e s ae e e e s e e sa e s et e bassassessaeseesaesaensansansansan 691
LOgging and MONTLOIING ..cuccueeuieeeeieieeeeetetectee ettt et e saeste st e e e e e e e et e ssestessessessassaesaensensansansans 738
LOGGING AP CALLS ettt et te s s e s s e s et et et e s b e s se e e e na et enaantanes 740
MORNILOTING QUEUESeeeeeeeteereecteerte et et st e e sae e st e s saessstessesssaesssesssaesssessssesssesssessssessssesssessseesseennnes 744
ComPLANCE VAliIAAtioN ..ottt e et st e aesaesae s e s be s e e e e e e aeaanaans 762
RESILIEICE .ottt sttt ettt st st s e s b et et s b et et e e b et e e s se b e st esassastesassanseneenas 763
DiISEIDULEA QUEBUES ...ttt ettt e st e st e st e e e e e s e et et et e stassasseeseenaennannan 763
INFraStrUCTUIE SECUNILY uviieeeteecee ettt te st e st e e e e e e e et e sae b e s ae s s e e seesnesaasensensansans 764
BOST PrACLICES ettt ettt e s st s et e s b e s s e e s s b e s sa e s b e e aa e b e e s ra e e e e e st e e b e e saeeraenntans 765
Make sure that queues aren't publicly accessibleooveeieieceieeeeeeee e 765
Implement least-privilEge QCCESScccviieeeeeeeeeeeeetetetee ettt st e st s e e saesae e aan 765
Use IAM roles for applications and AWS services which require Amazon SQS access 766
Implement server-side NCrYPLiON ...ttt sa e s a e st aeaas 766
Enforce encryption of data in tranSit ... e 766
Consider using VPC endpoints to access AMazon SQSceeeeevierierieceeeseeee e saesaenas 767
RELAtEU FESOUICES wueeeeeeeereennennrnnnieiiiiiiitiiiiiiieeseessasssssssssns 768
DocumMeENtation RIStOIYiiiiiiiiiiiiiieeeeiiiiieiiiiiiiineeessessssssseceeesssans 769

Amazon Simple Queue Service Developer Guide

What is Amazon Simple Queue Service?

Amazon Simple Queue Service (Amazon SQS) offers a secure, durable, and available hosted queue
that lets you integrate and decouple distributed software systems and components. Amazon SQS
offers common constructs such as dead-letter queues and cost allocation tags. It provides a generic
web services APl that you can access using any programming language that the AWS SDK supports.

Benefits of using Amazon SQS

» Security - You control who can send messages to and receive messages from an Amazon SQS
queue. You can choose to transmit sensitive data by protecting the contents of messages in
queues by using default Amazon SQS managed server-side encryption (SSE), or by using custom
SSE keys managed in AWS Key Management Service (AWS KMS).

 Durability — For the safety of your messages, Amazon SQS stores them on multiple servers.
Standard queues support at-least-once message delivery, and FIFO queues support exactly-once
message processing and high-throughput mode.

« Availability - Amazon SQS uses redundant infrastructure to provide highly-concurrent access to

messages and high availability for producing and consuming messages.

« Scalability - Amazon SQS can process each buffered request independently, scaling

transparently to handle any load increases or spikes without any provisioning instructions.

 Reliability - Amazon SQS locks your messages during processing, so that multiple producers can
send and multiple consumers can receive messages at the same time.

» Customization - Your queues don't have to be exactly alike—for example, you can set a default
delay on a queue. You can store the contents of messages larger than 1 MiB using Amazon

Simple Storage Service (Amazon S3) or Amazon DynamoDB, with Amazon SQS holding a pointer

to the Amazon S3 obiject, or you can split a large message into smaller messages.

Basic Amazon SQS architecture

This section describes the components of a distributed messaging system and explains the lifecycle
of an Amazon SQS message.

Benefits of using Amazon SQS 1

Amazon Simple Queue Service Developer Guide

Distributed queues

There are three main parts in a distributed messaging system: the components of your distributed
system, your queue (distributed on Amazon SQS servers), and the messages in the queue.

In the following scenario, your system has several producers (components that send messages

to the queue) and consumers (components that receive messages from the queue). The queue
(which holds messages A through E) redundantly stores the messages across multiple Amazon SQS
servers.

Your Distributed Your Queue
System's (Distributed on
Components 5Q5 Servers)

Component E
: JIC ®

. @ o
Component e e
2

A
—
o O 6

Component e o

3

— ﬁ

Message lifecycle

The following scenario describes the lifecycle of an Amazon SQS message in a queue, from creation
to deletion.

Distributed queues 2

Amazon Simple Queue Service Developer Guide

o Component 1 sends Visibility
Message A to the queue 'gg':ﬁt

Wisibility
Timeaout

9 Component 2 retrieves Message A
Clock

from the gueue and the visibility (
timeout period starts 40

A A
: _ A
A A

]
9 Component 2 processes Message A g . Wisibility
and then deletes it from the queue : Timaaut

during the visibility timeout period 4" Clack
25

@
@

A producer (Component 1) sends message A to a queue, and the message is distributed across the
Amazon SQS servers redundantly.

e

When a consumer (Component 2) is ready to process messages, it consumes messages from the
queue, and message A is returned. While message A is being processed, it remains in the queue and
isn't returned to subsequent receive requests for the duration of the visibility timeout.

Message lifecycle 3

Amazon Simple Queue Service Developer Guide

The consumer (Component 2) deletes message A from the queue to prevent the message from

being received and processed again when the visibility timeout expires.

® Note

Amazon SQS automatically deletes messages that have been in a queue for more than
the maximum message retention period. The default message retention period is 4
days. However, you can set the message retention period to a value from 60 seconds to
1,209,600 seconds (14 days) using the SetQueueAttributes action.

Differences between Amazon SQS, Amazon MQ, and Amazon
SNS

Amazon SQS, Amazon SNS, and Amazon MQ offer highly scalable and easy-to-use managed

messaging services, each designed for specific roles within distributed systems. Here's an enhanced
overview of the differences between these services:

Amazon SQS decouples and scales distributed software systems and components as a queue
service. It processes messages through a single subscriber typically, ideal for workflows where order
and loss prevention are critical. For wider distribution, integrating Amazon SQS with Amazon SNS
enables a fanout messaging pattern, effectively pushing messages to multiple subscribers at once.

Amazon SNS allows publishers to send messages to multiple subscribers through topics, which
serve as communication channels. Subscribers receive published messages using a supported
endpoint type, such as Amazon Data Firehose, Amazon SQS, Lambda, HTTP, email, mobile

push notifications, and mobile text messages (SMS). This service is ideal for scenarios requiring
immediate notifications, such as real-time user engagement or alarm systems. To prevent message
loss when subscribers are offline, integrating Amazon SNS with Amazon SQS queue messages
ensures consistent delivery.

Amazon MQ fits best with enterprises looking to migrate from traditional message brokers,
supporting standard messaging protocols like AMQP and MQTT, along with Apache ActiveMQ and
RabbitMQ. It offers compatibility with legacy systems needing stable, reliable messaging without
significant reconfiguration.

The following chart provides an overview of each services' resource type:

Differences between Amazon SQS, Amazon MQ, and Amazon SNS 4

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/sns/
https://aws.amazon.com/amazon-mq/
https://aws.amazon.com/getting-started/hands-on/send-fanout-event-notifications/
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://activemq.apache.org/
https://www.rabbitmq.com/

Amazon Simple Queue Service

Developer Guide

Resource type
Synchronous
Asynchronous
Queues

Publisher-subscriber
messaging

Message brokers

Amazon SNS

No

Yes

No

Yes

No

Amazon SQS
No
Yes
Yes

No

No

Amazon MQ
Yes
Yes
Yes

Yes

Yes

Both Amazon SQS and Amazon SNS are recommended for new applications that can benefit from
nearly unlimited scalability and simple APIs. They generally offer more cost-effective solutions
for high-volume applications with their pay-as-you-go pricing. We recommend Amazon MQ for
migrating applications from existing message brokers that rely on compatibility with APIs such

as JMS or protocols such as Advanced Message Queuing Protocol (AMQP), MQTT, OpenWire, and

Simple Text Oriented Message Protocol (STOMP).

Differences between Amazon SQS, Amazon MQ, and Amazon SNS

Amazon Simple Queue Service Developer Guide

Getting started with Amazon SQS

This topic guides you through using the Amazon SQS console to create and manage standard
queues and FIFO queues. You'll learn how to navigate the console, view queue attributes, and
distinguish between queue types. Key tasks include sending, receiving, and configuring messages,
adjusting parameters such as visibility timeout and message retention, and managing queue access
through policies.

Topics

« Setting up Amazon SQS

« Understanding the Amazon SQS console

« Amazon SQS queue types

» Creating an Amazon SQS standard queue and sending a message

» Creating an Amazon SQS FIFO queue and sending a message

« Common tasks for getting started with Amazon SQS

Setting up Amazon SQS
Before you can use Amazon SQS for the first time, you must complete the following steps:

Step 1: Create an AWS account and IAM user

To access any AWS service, you first need to create an AWS account, an Amazon.com account that
can use AWS products. You can use your AWS account to view your activity and usage reports and
to manage authentication and access.

To avoid using your AWS account root user for Amazon SQS actions, it is a best practice to create
an |IAM user for each person who needs administrative access to Amazon SQS.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Setting up 6

https://aws.amazon.com/
https://portal.aws.amazon.com/billing/signup

Amazon Simple Queue Service Developer Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to a user.

Step 1: Create an AWS account and IAM user 7

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Amazon Simple Queue Service Developer Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In 1AM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Step 2: Grant programmatic access

To use Amazon SQS actions (for example, using Java or through the AWS Command Line Interface),
you need an access key ID and a secret access key.

(® Note

The access key ID and secret access key are specific to AWS Identity and Access
Management. Don't confuse them with credentials for other AWS services, such as Amazon
EC2 key pairs.

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

Step 2: Grant programmatic access 8

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon Simple Queue Service

Developer Guide

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By

Following the instructions for
the interface that you want to
use.

o For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

« For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia

s with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM

user credentials in the AWS

Command Line Interface
User Guide.

« For AWS SDKs and tools,
see Authenticate using

long-term credentials in

Step 2: Grant programmatic access

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html

Amazon Simple Queue Service Developer Guide

Which user needs To By
programmatic access?

the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 3: Get ready to use the example code

This guide includes examples that use the AWS SDK for Java. To run the example code, follow the
set-up instructions in Getting Started with AWS SDK for Java 2.0.

You can develop AWS applications in other programming languages, such as Go, JavaScript, Python
and Ruby. For more information, see Tools to Build on AWS.

(® Note

You can explore Amazon SQS without writing code with tools such as the AWS Command
Line Interface (AWS CLI) or Windows PowerShell. You can find AWS CLI examples in

the Amazon SQS section of the AWS CLI Command Reference. You can find Windows
PowerShell examples in the Amazon Simple Queue Service section of the AWS Tools for

PowerShell Cmdlet Reference.

Next steps

You are now ready for Getting started with managing Amazon SQS queues and messages using the
AWS Management Console.

Understanding the Amazon SQS console

When you open the Amazon SQS console, choose Queues from the navigation pane. The Queues
page provides information about all of your queues in the active region.

Step 3: Get ready to use the example code 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://aws.amazon.com/developer/tools/#sdk
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/powershell/latest/reference/
https://docs.aws.amazon.com/powershell/latest/reference/

Amazon Simple Queue Service Developer Guide

Each queue entry provides essential information about the queue, including its type and key
attributes. Standard queues, optimized for maximum throughput and best-effort message

ordering, are distinguished from First-In-First-Out (FIFO) queues, which prioritize message ordering

and uniqueness for applications requiring strict message sequencing.

Queues (2) | @] || Edit || Delete || Send and receive messages || Actions ¥ |m

Q 1 @
Messages Messages in Content-based
N A T v Created E ti v
ame e reate available v flight v ML deduplication v
6/27/2022, 13:03:08
MyTestQueue Standard EéT / a 0 Disabled
testFifo1.fifo FIFO 6/27/2022,13:05:41 a 0 Disabled Disabled

EDT

Interactive elements and actions
From the Queues page, you have multiple options for managing your queues:

1. Quick Actions — Adjacent to each queue name, a dropdown menu offers quick access to
common actions such as sending messages, viewing or deleting messages, configuring triggers,
and deleting the queue itself.

2. Detailed View and Configuration - Clicking on a queue name opens its Details page, where you
can delve deeper into queue settings and configurations. Here, you can adjust parameters like
message retention period, visibility timeout, and maximum message size to tailor the queue to
your application's requirements.

MyTEStQ ueue ‘ Edit ‘ | Delete | | Purge ‘ | Send and receive messages
Details info
Name Type ARN
[P MyTestQueue Standard [Parn:aws:sgs:us-east-1:269704527654:MyTestQueue
Encryption URL Dead-letter queue
Disabled [https://sqs.us-east-1.amazonaws.com -

1269704527654,/ MyTestQueue

» More

| SNS subscriptions Lambda triggers Dead-letter queue Monitoring Tagging Access policy Encryption Dead-letter queue redrive tasks

Region selection and resource tags

Understanding the Amazon SQS console 11

Amazon Simple Queue Service

Developer Guide

Ensure you're in the correct AWS Region to access and manage your queues effectively.

Additionally, consider utilizing resource tags to organize and categorize your queues, enabling

better resource management, cost allocation, and access control within your AWS shared

environment.

By leveraging the features and functionalities offered within the Amazon SQS console, you can
efficiently manage your messaging infrastructure, optimize queue performance, and ensure reliable

message delivery for your applications.

Amazon SQS queue types

Amazon SQS supports two types of queues: standard queues and FIFO queues. Use the following

table to determine which queue best fits your needs.

Standard queues

Unlimited throughput - Standard queues
support a very high, nearly unlimited
number of API calls per second, per action
(SendMessage , ReceiveMessage , or
DeleteMessage). This high throughput
makes them ideal for use cases that require

processing large volumes of messages quickly,
such as real-time data streaming or large-sca
le applications. While standard queues scale
automatically with demand, it is essential to
monitor usage patterns to ensure optimal
performance, especially in regions with higher
workloads.

At-least-once delivery — Guaranteed at-least-
once delivery, meaning that every message

is delivered at least once, but in some cases,

a message may be delivered more than once
due to retries or network delays. You should
design your application to handle potential
duplicate messages by using idempotent
operations, which ensure that processing the

FIFO queues

High throughput — When you use batching,
FIFO queues process up to 3,000 messages
per second per APl method (SendMessa
geBatch , ReceiveMessage , or

). This throughput
relies on 300 API calls per second, with each
API call handling a batch of 10 messages.

By enabling high throughput mode, you can

DeleteMessageBatch

scale up to 30,000 transactions per second
(TPS) with relaxed ordering within message
groups. Without batching, FIFO queues
support up to 300 API calls per second per
APl method (SendMessage , ReceiveMe
ssage , or DeleteMessage). If you need
more throughput, you can request a quota
increase through the AWS Support Center. To
enable high-throughput mode, see Enabling

high throughput for FIFO queues in Amazon
SQS.

Exactly-once processing — FIFO queues deliver
each message once and keep it available

Queue types

12

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs

Amazon Simple Queue Service

Developer Guide

Standard queues

same message multiple times will not affect
the system’s state.

Best-effort ordering — Provides best-effort
ordering, meaning that while Amazon SQS
attempts to deliver messages in the order
they were sent, it does not guarantee this. In
some cases, messages may arrive out of order,
especially under conditions of high throughpu
t or failure recovery. For applications where
the order of message processing is crucial,
you should handle reordering logic within

the application or use FIFO queues for strict
ordering guarantees.

Durability and redundancy - Standard
queues ensure high durability by storing
multiple copies of each message across
multiple AWS Availability Zones. This ensures
that messages are not lost, even in the event
of infrastructure failures.

Visibility timeout — Amazon SQS allows you
to configure a visibility timeout to control
how long a message stays hidden after being
received, ensuring that other consumers do
not process the message until it has been fully
handled or the timeout expires.

FIFO queues

until you process and delete it. By using
features like MessageDeduplicationld
or content-based deduplication, you prevent
duplicate messages, even when retrying due
to network issues or timeouts.

First-in-first-out delivery - FIFO queues
ensure that you receive messages in the order
they are sent within each message group. By
distributing messages across multiple groups,
you can process them in parallel while still
maintaining the order within each group.

Queue types

13

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service

Developer Guide

Standard queues

Use standard queues to send data between
applications when throughput is crucial, for
example:

» Decouple live user requests from intensive
background work. Allow users to upload
media quickly while you process tasks
like resizing or encoding in the backgroun
d, ensuring fast response times without
overloading the system.

» Allocate tasks to multiple worker nodes.
Distribute a high number of credit card
validation requests across multiple worker
nodes, and handle duplicate messages with
idempotent operations to avoid processing
errors.

« Batch messages for future processing.
Queue multiple entries for batch additions
to a database. Since message order isn't
guaranteed, design your system to handle
out-of-order processing if necessary.

FIFO queues

Use FIFO queues to send data between
applications when the order of events is
important, for example:

» Make sure that user-entered commands
are run in the right order. This is a key use
case for FIFO queues, where command order
is crucial. For example, if a user performs a
sequence of actions in an application, FIFO
queues ensure the actions are processed in
the same order they were entered.

» Display the correct product price by
sending price modifications in the right
order. FIFO queues ensure that multiple
updates to a product's price arrive and are
processed sequentially. Without FIFO, a
price reduction might be processed after a
price increase, causing incorrect data to be
displayed.

« Prevent a student from enrolling in a
course before registering for an account.
By using FIFO queues, you ensure that the
registration process occurs in the correct
sequence. The system processes the account
registration first and then the course
enrollment, preventing the enrollment
request from being executed prematurely.

Implementing request-response systems in Amazon SQS

When implementing a request-response or remote procedure call (RPC) system, keep the following

best practices in mind:

Implementing request-response systems in Amazon SQS

14

Amazon Simple Queue Service Developer Guide

» Create reply queues on start-up - Instead of creating reply queues per message, create them
on start-up, per producer. Use a correlation ID message attribute to map replies to requests
efficiently.

« Avoid sharing reply queues among producers — Ensure that each producer has its own reply
queue. Sharing reply queues can result in a producer receiving response messages intended for
another producer.

For more information about implementing the request-response pattern using the Temporary
Queue Client, see Request-response messaging pattern (virtual queues).

Creating an Amazon SQS standard queue and sending a
message

You can create a standard queue and send messages using the Amazon SQS console. This topic also

emphasizes best practices, including avoiding sensitive information in queue names and utilizing
managed server-side encryption.

Creating a standard queue using the Amazon SQS console

/A Important

On August 17, 2022, default server-side encryption (SSE) was applied to all Amazon SQS
queues.

Do not add personally identifiable information (Pll) or other confidential or sensitive
information in queue names. Queue names are accessible to many Amazon Web Services,
including billing and CloudWatch logs. Queue names are not intended to be used for
private or sensitive data.

To create an Amazon SQS standard queue

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. Choose Create queue.

3. For Type, the Standard queue type is set by default.

Creating a standard queue 15

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

® Note

You can't change the queue type after you create the queue.

4. Enter a Name for your queue.

5. (Optional) The console sets default values for the queue configuration parameters. Under

Configuration, you can set new values for the following parameters:

a. For Visibility timeout , enter the duration and units. The range is from 0 seconds to 12
hours. The default value is 30 seconds.

b. For Message retention period, enter the duration and units. The range is from 1 minute to
14 days. The default value is 4 days.

c. For Delivery delay, enter the duration and units. The range is from 0 seconds to 15
minutes. The default value is 0 seconds.

d. For Maximum message size, enter a value. The range is from 1 KiB to 1024 KiB. The
default value is 1024 KiB.

e. For Receive message wait time, enter a value. The range is from 0 to 20 seconds. The
default value is O seconds, which sets short polling. Any non-zero value sets long polling.

6. (Optional) Define an Access policy. The access policy defines the accounts, users, and roles
that can access the queue. The access policy also defines the actions (such as SendMessage,
ReceiveMessage, or DeleteMessage) that the users can access. The default policy allows

only the queue owner to send and receive messages.

To define the access policy, do one of the following:

» Choose Basic to configure who can send messages to the queue and who can receive
messages from the queue. The console creates the policy based on your choices and displays
the resulting access policy in the read-only JSON panel.

» Choose Advanced to modify the JSON access policy directly. This allows you to specify a
custom set of actions that each principal (account, user, or role) can perform.

7. For Redrive allow policy, choose Enabled. Select one of the following: Allow all, By queue,
or Deny all. When choosing By queue, specify a list of up to 10 source queues by the Amazon
Resource Name (ARN).

8. Amazon SQS provides managed server-side encryption by default. To choose an encryption
key type, or to disable Amazon SQS managed server-side encryption, expand Encryption.

Creating a queue 16

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

9.

For more on encryption key types, see Configuring server-side encryption for a queue using

SQS-managed encryption keys and Configuring server-side encryption for a queue using the

Amazon SQS console.

(@ Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

(Optional) To configure a dead-letter queue to receive undeliverable messages, expand Dead-

letter queue.

10. (Optional) To add tags to the queue, expand Tags.

11. Choose Create queue. Amazon SQS creates the queue and displays the queue's Details page.

Amazon SQS propagates information about the new queue across the system. Because Amazon

SQS is a distributed system, you might experience a slight delay before the console displays the

queue on the Queues page.

Sending a message using a standard queue

After your queue has been created, you can send a message to it.

1.

From the left navigation pane, choose Queues. From the queue list, select the queue that you
created.

From Actions, choose Send and receive messages.

The console displays the Send and receive messages page.
In the Message body, enter the message text.

For a standard queue, you can enter a value for Delivery delay and choose the units. For
example, enter 60 and choose seconds. For more information, see Amazon SQS message

timers.

Choose Send message.

When your message is sent, the console displays a success message. Choose View details to
display information about the sent message.

Sending a message using a standard queue 17

Amazon Simple Queue Service Developer Guide

Creating an Amazon SQS FIFO queue and sending a message

You can create an Amazon SQS FIFO queue and send messages using the console. This topic
explains how to set up queue parameters, including visibility timeout, message retention, and
deduplication, while following security best practices such as avoiding sensitive information

in queue names and enabling server-side encryption. It also covers defining access policies,
configuring dead-letter queues, and sending messages with FIFO-specific attributes like message
group ID and deduplication ID.

Creating a FIFO queue using the Amazon SQS console

You can use the Amazon SQS console to create FIFO queues. The console provides default values
for all settings except for the queue name.

/A Important

On August 17, 2022, default server-side encryption (SSE) was applied to all Amazon SQS
queues.

Do not add personally identifiable information (Pll) or other confidential or sensitive
information in queue names. Queue names are accessible to many Amazon Web Services,
including billing and CloudWatch logs. Queue names are not intended to be used for
private or sensitive data.

To create an Amazon SQS FIFO queue

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. Choose Create queue.

3. For Type, the Standard queue type is set by default. To create a FIFO queue, choose FIFO.

(® Note

You can't change the queue type after you create the queue.

4. Enter a Name for your queue.

Creating a FIFO queue 18

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

The name of a FIFO queue must end with the . fifo suffix. The suffix counts towards the 80-
character queue name quota. To determine whether a queue is FIFO, you can check whether
the queue name ends with the suffix.

5. (Optional) The console sets default values for the queue configuration parameters. Under
Configuration, you can set new values for the following parameters:

a.

For Visibility timeout , enter the duration and units. The range is from 0 seconds to 12
hours. The default value is 30 seconds.

For Message retention period, enter the duration and units. The range is from 1 minute to
14 days. The default value is 4 days.

For Delivery delay, enter the duration and units. The range is from 0 seconds to 15
minutes. The default value is 0 seconds.

For Maximum message size, enter a value. The range is from 1 KiB to 1024 KiB. The
default value is 1024 KiB.

For Receive message wait time, enter a value. The range is from 0 to 20 seconds. The
default value is 0 seconds, which sets short polling. Any non-zero value sets long polling.

For a FIFO queue, choose Content-based deduplication to enable content-based
deduplication. The default setting is disabled.

(Optional) For a FIFO queue to enable higher throughput for sending and receiving
messages in the queue, choose Enable high throughput FIFO.

Choosing this option changes the related options (Deduplication scope and FIFO
throughput limit) to the required settings for enabling high throughput for FIFO queues.
If you change any of the settings required for using high throughput FIFO, normal
throughput is in effect for the queue, and deduplication occurs as specified. For more
information, see High throughput for FIFO queues in Amazon SQS and Amazon SQS
message quotas.

6. (Optional) Define an Access policy. The access policy defines the accounts, users, and roles
that can access the queue. The access policy also defines the actions (such as SendMessage,
ReceiveMessage, or DeleteMessage) that the users can access. The default policy allows

only the queue owner to send and receive messages.

To define the access policy, do one of the following:

Create a queue 19

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

» Choose Basic to configure who can send messages to the queue and who can receive
messages from the queue. The console creates the policy based on your choices and displays
the resulting access policy in the read-only JSON panel.

o Choose Advanced to modify the JSON access policy directly. This allows you to specify a
custom set of actions that each principal (account, user, or role) can perform.

7. For Redrive allow policy, choose Enabled. Select one of the following: Allow all, By queue,
or Deny all. When choosing By queue, specify a list of up to 10 source queues by the Amazon
Resource Name (ARN).

8. Amazon SQS provides managed server-side encryption by default. To choose an encryption
key type, or to disable Amazon SQS managed server-side encryption, expand Encryption.
For more on encryption key types, see Configuring server-side encryption for a queue using

SQS-managed encryption keys and Configuring server-side encryption for a queue using the

Amazon SQS console.

(® Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

9. (Optional) To configure a dead-letter queue to receive undeliverable messages, expand Dead-
letter queue.

10. (Optional) To add tags to the queue, expand Tags.

11. Choose Create queue. Amazon SQS creates the queue and displays the queue's Details page.

Amazon SQS propagates information about the new queue across the system. Because Amazon
SQS is a distributed system, you might experience a slight delay before the console displays the
queue on the Queues page.

After creating a queue, you can send messages to it, and receive and delete messages. You can also

edit any of the queue configuration settings except the queue type.

Sending a message using a FIFO queue

After you create your queue, you can send a message to it.

Sending a message using a FIFO queue 20

Amazon Simple Queue Service Developer Guide

1. From the left navigation pane, choose Queues. From the queue list, select the queue that you
created.

2. From Actions, choose Send and receive messages.

The console displays the Send and receive messages page.
In the Message body, enter the message text.

4. For a First-In-First-Out (FIFO) queue, enter a Message group ID. For more information, see
FIFO queue delivery logic in Amazon SQS.

5. (Optional) For a FIFO queue, you can enter a Message deduplication ID. If you enabled
content-based deduplication for the queue, the message deduplication ID isn't required. For
more information, see FIFO queue delivery logic in Amazon SQS.

6. FIFO queues does not support timers on individual messages. For more information, see
Amazon SQS message timers.

7. Choose Send message.

When your message is sent, the console displays a success message. Choose View details to
display information about the sent message.

Common tasks for getting started with Amazon SQS

Once you've created a queue and learned how to send, receive, and delete messages, you might
want to try the following:

» Trigger a Lambda function to process incoming messages automatically, enabling event-driven

workflows without the need for continuous polling.

» Configure queues, including SSE and other features.

« Send a message with attributes.

« Send a message from a VPC.

» Discover the functionality and architecture of Amazon SQS.

 Discover guidelines and caveats that will help you make the most of Amazon SQS.

» Explore the Amazon SQS examples for an AWS SDK, such as the AWS SDK for Java 2.x Developer

Guide.

e Learn about Amazon SQS AWS CLI commands.

« Learn about Amazon SQS API actions.

Common tasks

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://docs.aws.amazon.com/cli/latest/reference/sqs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html

Amazon Simple Queue Service Developer Guide

« Learn how to interact with Amazon SQS programmatically. See Working with APIs and explore
the AWS Development Center:

e Java

 JavaScript
« PHP
« Python

e Ruby
¢« Windows & .NET

e Learn how to monitor costs and resources.

o Learn how to protect your data.

o Learn more about the Amazon SQS workflow.

Common tasks 22

https://aws.amazon.com/developer/
https://aws.amazon.com/java/
https://aws.amazon.com/javascript/
https://aws.amazon.com/php/
https://aws.amazon.com/python/
https://aws.amazon.com/ruby/
https://aws.amazon.com/net/

Amazon Simple Queue Service Developer Guide

Managing an Amazon SQS queue

Learn how to manage Amazon SQS queues using the console, including editing queue settings,
receiving and deleting messages, confirming queue emptiness, and deleting or purging queues.
Understand best practices for efficient message handling, such as using long polling, managing
visibility timeouts, and verifying metrics through monitoring dashboards or the AWS CLI. Follow
practical steps to maintain queues and handle messages effectively while minimizing disruptions.

Editing an Amazon SQS queue using the console

You can use the Amazon SQS console to edit queue configuration parameters (except the queue
type) and modify or remove features as needed.

To edit an Amazon SQS queue (console)

Open the Queues page of the Amazon SQS console.
Select a queue, and then choose Edit.

(Optional) Under Configuration, update the queue's configuration parameters.

(Optional) To update the access policy, under Access policy, modify the JSON policy.

(Optional) To update a dead-letter queue redrive allow policy, expand Redrive allow policy.

(Optional) To update or remove encryption, expand Encryption.

N o v kA WwDNh =

(Optional) To add, update, or remove a dead-letter queue (which allows you to receive

undeliverable messages), expand Dead-letter queue.

o

(Optional) To add, update, or remove the tags for the queue, expand Tags.

Choose Save.

» The console displays the Details page for the queue.

Receiving and deleting a message in Amazon SQS

After sending messages to an Amazon SQS queue, you can retrieve and delete them to process
your application workflow. This process ensures secure and reliable message handling. This topic
walks you through retrieving and deleting messages using the Amazon SQS console and explains
key settings to optimize this operation. The following are key concepts for receiving and deleting
messages:

Editing a queue 23

https://console.aws.amazon.com/sqs/#/queues

Amazon Simple Queue Service Developer Guide

1. Receiving messages

« When you retrieve messages from an Amazon SQS queue, you cannot target specific
messages. Instead, specify the maximum number of messages to retrieve in a single request
(up to 10).

» Due to Amazon SQS's distributed nature, retrieving from a queue with few messages may
return an empty response. To mitigate this:

» Use long polling, which waits until a message is available or the poll times out. This
approach reduces unnecessary polling costs and improves efficiency.

» Re-issue the request if needed.
2. Message visibility and deletion

» Messages are not deleted automatically after retrieval. This feature ensures you can reprocess
messages in case of application failures or network disruptions.

« After processing, you must explicitly send a delete request to remove the message
permanently. This action confirms successful handling.

» Messages retrieved using the Amazon SQS console remain visible for re-retrieval. Adjust the
visibility timeout setting for automated environments to temporarily hide messages from
other consumers while they are being processed.

3. Visibility timeout
» This setting determines how long a message remains hidden after retrieval. Set an appropriate
timeout to ensure messages are processed only once and to prevent duplication during
distributed processing.

To receive and delete a message using the console

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. Inthe navigation pane, choose Queues.

3. On the Queues page, choose the queue you want to receive messages from, and then select
Send and receive messages.

4. On the Send and receive messages page, select Poll for messages.

Amazon SQS displays a progress bar indicating the polling duration. Messages retrieved will
appear in the Messages section, showing:

» Message ID

Receiving and deleting a message 24

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

o Sent date
e Size
« Receive count

5. To delete messages, choose the ones you want to remove and select Delete.

Confirm deletion in the Delete Messages dialog box by selecting Delete.

For more details on advanced operations, including API-based message retrieval and deletion, see
the Amazon SQS API Reference Guide.

Confirming that an Amazon SQS queue is empty

In most cases, you can use long polling to determine if a queue is empty. In rare cases, you might
receive empty responses even when a queue still contains messages, especially if you specified a
low value for Receive message wait time when you created the queue. This section describes how
to confirm that a queue is empty.

To confirm that a queue is empty (console)

1. Stop all producers from sending messages.

Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.
On the Queues page, choose a queue.

Choose the Monitoring tab.

o un M W N

At the top right of the Monitoring dashboards, choose the down arrow next to the Refresh
symbol. From the dropdown menu, choose Auto refresh. Leave the Refresh interval at 1
Minute.

7. Observe the following dashboards:

» Approximate Number Of Messages Delayed
« Approximate Number Of Messages Not Visible

» Approximate Number Of Messages Visible

When all of them show 0 values for several minutes, the queue is empty.

Confirming a queue is empty 25

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

To confirm that a queue is empty (AWS CLI, AWS API)

1. Stop all producers from sending messages.

2. Repeatedly run one of the following commands:

e AWS CLI: get-queue-attributes
« AWS API: GetQueueAttributes

3. Observe the metrics for the following attributes:

« ApproximateNumberOfMessagesDelayed
« ApproximateNumberOfMessagesNotVisible

« ApproximateNumberOfMessagesVisible

When all of them are 0 for several minutes, the queue is empty.

If you rely on Amazon CloudWatch metrics, make sure that you see multiple consecutive zero data
points before considering that queue empty. For more information on CloudWatch metrics, see
Available CloudWatch metrics for Amazon SQS.

Deleting an Amazon SQS queue

If you no longer use an Amazon SQS queue and don't plan to use it in the near future, delete the
queue.

® Tip
If you want to verify that a queue is empty before you delete it, see Confirming that an
Amazon SQS queue is empty.

You can delete a queue even when it isn't empty. To delete the messages in a queue but not the
queue itself, purge the queue.

To delete a queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

Deleting a queue 26

https://docs.aws.amazon.com/cli/latest/reference/get-queue-attributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

3. On the Queues page, choose the queue to delete.
Choose Delete.

In the Delete queue dialog box, confirm the deletion by entering delete.

o u oA

Choose Delete.

To delete a queue (AWS CLI and API)
Choose the appropriate method to delete your queue based on your needs:

o« AWS CLI: aws sgs delete-queue
« AWS API: DeleteQueue

Purging messages from an queue using the Amazon SQS
console

To keep an Amazon SQS queue but remove all its messages, you can purge the queue. This will
delete all messages, including those that are currently invisible (in flight). The purge process can
take up to 60 seconds, so wait the full 60 seconds regardless of the queue’s size.

/A Important

When you purge a queue, you can't retrieve any of the deleted messages.

To purge a queue (console)

Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.
On the Queues page, choose the queue to purge.

From Actions, choose Purge.

i A W=

In the Purge queue dialog box, confirm the purge by entering purge and choosing Purge.

« All messages are purged from the queue. The console displays a confirmation banner.

Purging a queue 27

https://docs.aws.amazon.com/cli/latest/reference/sqs/delete-queue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

Amazon SQS standard queues

Amazon SQS provides standard queues as the default queue type, supporting a nearly
unlimited number of API calls per second for actions like SendMessage, ReceiveMessage, and

DeleteMessage. Standard queues ensure at-least-once message delivery, but due to the highly

distributed architecture, more than one copy of a message might be delivered, and messages
may occasionally arrive out of order. Despite this, standard queues make a best-effort attempt to
maintain the order in which messages are sent.

When you send a message using SendMessage, Amazon SQS redundantly stores the message in
multiple availability zones (AZs) before acknowledging it. This redundancy ensures that no single
computer, network, or AZ failure can render the messages inaccessible.

You can create and configure queues using the Amazon SQS console. For detailed instructions, see
Creating a standard queue using the Amazon SQS console. For Java-specific examples, see Amazon
SQS Java SDK examples.

Use cases for standard queues

Standard message queues are suitable for various scenarios, as long as your application can handle
messages that might arrive more than once or out of order. Examples include:

« Decoupling live user requests from intensive background work - Users can upload media while
the system resizes or encodes it in the background.

« Allocating tasks to multiple worker nodes - For example, handling a high volume of credit card
validation requests.

» Batching messages for future processing — Scheduling multiple entries to be added to a
database at a later time.

For information on quotas related to standard queues, see Amazon SQS standard queue quotas.

For best practices of working with standard queues, see Amazon SQS best practices.

Amazon SQS at-least-once delivery

Amazon SQS stores copies of your messages on multiple servers for redundancy and high
availability. On rare occasions, one of the servers that stores a copy of a message might be
unavailable when you receive or delete a message.

Amazon SQS at-least-once delivery 28

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

If this occurs, the copy of the message isn't deleted on the server that is unavailable, and you
might get that message copy again when you receive messages. Design your applications to be
idempotent (they should not be affected adversely when processing the same message more than
once).

Amazon SQS queue and message identifiers

This topic describes the identifiers of standard and FIFO queues. These identifiers can help you find
and manipulate specific queues and messages.

Identifiers for Amazon SQS standard queues

For more information about the following identifiers, see the Amazon Simple Queue Service API
Reference.

Queue name and URL

When you create a new queue, you must specify a queue name unique for your AWS account and
region. Amazon SQS assigns each queue you create an identifier called a queue URL that includes
the queue name and other Amazon SQS components. Whenever you want to perform an action on
a queue, you provide its queue URL.

The following is the queue URL for a queue named MyQueue owned by a user with the AWS
account number 123456789012.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue

You can retrieve the URL of a queue programmatically by listing your queues and parsing the string
that follows the account number. For more information, see ListQueues.

Message ID

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. The maximum length of
a message ID is 100 characters.

Receipt handle

Every time you receive a message from a queue, you receive a receipt handle for that message.
This handle is associated with the action of receiving the message, not with the message itself. To

Queue and message identifiers 29

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

delete the message or to change the message visibility, you must provide the receipt handle (not
the message ID). Thus, you must always receive a message before you can delete it (you can't put
a message into the queue and then recall it). The maximum length of a receipt handle is 1,024
characters.

/A Important

If you receive a message more than once, each time you receive it, you get a different
receipt handle. You must provide the most recently received receipt handle when you
request to delete the message (otherwise, the message might not be deleted).

The following is an example of a receipt handle broken across three lines.

MbZj6wDW1li+JvwwlaBV+3dcjk2YW2vA3+STFF1jTM8tJJg6HRG6PYSasuWXPIB+Cw
Lj1FjgXUv1luSj1lgUPAWVE66FU/WeR4mq20KpEGYWbnLmpRCIVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3MIMFx1YvV11A2x/KSbk]10=

Identifiers for standard queues 30

Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queues

FIFO (First-In-First-Out) queues have all the capabilities of the standard queues, but are designed

to enhance messaging between applications when the order of operations and events is critical, or
where duplicates can't be tolerated.

The most important features of FIFO queues are FIFO (First-In-First-Out) delivery and exactly-once
processing:

» The order in which messages are sent and received is strictly preserved and a message is
delivered once and remains unavailable until a consumer processes and deletes it.

» Duplicates aren't introduced into the queue.

Additionally, FIFO queues support message groups that allow multiple ordered message groups
within a single queue. There is no quota to the number of message groups within a FIFO queue.

Examples of situations where you might use FIFO queues include the following:

1. E-commerce order management system where order is critical

2. Integrating with a third-party systems where events need to be processed in order
3. Processing user-entered inputs in the order entered
4

. Communications and networking — Sending and receiving data and information in the same
order

ul

. Computer systems — Making sure that user-entered commands are run in the right order

6. Educational institutes — Preventing a student from enrolling in a course before registering for an
account

7. Online ticketing system — Where tickets are distributed on a first come first serve basis

(® Note

FIFO queues also provide exactly-once processing, but have a limited number of
transactions per second (TPS). You can use Amazon SQS high throughput mode with your
FIFO queue to increase your transaction limit. For details on using high throughput mode,
see High throughput for FIFO queues in Amazon SQS. For information on throughput

quotas, see the section called “Message quotas”.

31

Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queues are available in all Regions where Amazon SQS is available.

For more on using FIFO queues with complex ordering, see Solving Complex Ordering Challenges
with Amazon SQS FIFO Queues.

For information about how to create and configure queues using the Amazon SQS console, see
Creating a standard queue using the Amazon SQS console. For Java examples, see Amazon SQS
Java SDK examples.

For best practices for working with FIFO queues, see Amazon SQS best practices.

Amazon SQS FIFO queue key terms

The following key terms can help you better understand the functionality of FIFO queues. For more
information, see the Amazon Simple Queue Service AP| Reference.

Clients

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.
Message deduplication ID

A token used in Amazon SQS FIFO queues to uniquely identify messages and prevent
duplication. If multiple messages with the same deduplication ID are sent within a 5 minute
deduplication interval, they are treated as duplicates, and only one copy is delivered. If you
don't specify a deduplication ID and content-based deduplication is enabled, Amazon SQS
generates a deduplication ID by hashing the message body. This mechanism ensures exactly-
once delivery by eliminating duplicate messages within the specified time frame.

(® Note

Amazon SQS continues tracking the deduplication ID even after the message has been
received and deleted.

Message group ID

In FIFO (First-In-First-Out) queues, MessageGroupId is an attribute that organizes messages
into distinct groups. Messages within the same message group are always processed one at
a time, in strict order, ensuring that no two messages from the same group are processed

FIFO queue key terms 32

https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/
https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

simultaneously. In standard queues, using MessageGroupId enables fair queues. If strict
ordering is required, use a FIFO queue.

Receive request attempt ID

The receive request attempt ID is a unique token used to deduplicate ReceiveMessage calls in
Amazon SQS.

Sequence number

The large, non-consecutive number that Amazon SQS assigns to each message.

Services

If your application uses multiple AWS services, or a mix of AWS and external services, it is
important to understand which service functionality doesn't support FIFO queues.

Some AWS or external services that send notifications to Amazon SQS might not be compatible
with FIFO queues, despite allowing you to set a FIFO queue as a target.

The following features of AWS services aren't currently compatible with FIFO queues:

+« Amazon S3 Event Notifications

» Auto Scaling Lifecycle Hooks
« AWS loT Rule Actions
o AWS Lambda Dead-Letter Queues

For information about compatibility of other services with FIFO queues, see your service
documentation.

FIFO queue delivery logic in Amazon SQS

The following concepts clarify how Amazon SQS FIFO queues handle the sending and receiving of
messages, particularly when dealing with message ordering and message group IDs.

Sending messages

Amazon SQS FIFO queues preserve message order using unique deduplication IDs and message
group IDs. This topic highlights the importance of message group IDs for maintaining strict
ordering within groups and highlights best practices for ensuring reliable, ordered message
delivery across multiple producers.

FIFO delivery logic 33

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq

Amazon Simple Queue Service Developer Guide

1. Order preservation

« When multiple messages are sent in succession to a FIFO queue with unique message
deduplication IDs, Amazon SQS stores them and acknowledges their transmission. These
messages are then received and processed in the exact order they were transmitted.

2. Message group ID

 In FIFO queues, messages are ordered based on their message group ID. If multiple producers
or threads send messages with the same message group ID, Amazon SQS ensures they are
stored and processed in the order they arrive.

» Best practice: To guarantee strict message order across multiple producers, assign a unique
message group ID for all messages from each producer.

3. Per-group ordering
» FIFO queue logic applies on a per message group ID basis:
« Each message group ID represents a distinct, ordered group of messages.
« Within a message group ID, all messages are sent and received in strict order.

» Messages with different message group IDs may arrive or be processed out of order relative
to one another.

» Requirement - You must associate a message group ID with each message. If a message is
sent without a group ID, the action fails.

« Single group scenario - If you require all messages to be processed in strict order, use the
same message group ID for every message.

Receiving messages

Amazon SQS FIFO queues handle message retrieval, including batch processing, FIFO order
guarantees, and limitations on requesting specific message group IDs. This topic explains how
Amazon SQS retrieves messages within and across message group IDs while maintaining strict
ordering and visibility rules.

1. Batch retrieval
« When receiving messages from a FIFO queue with multiple message group IDs, Amazon SQS:

« Attempts to return as many messages as possible with the same message group ID in a
single call.

 Allows other consumers to process messages from different message group IDs
concurrently.

Receiving messages 34

Amazon Simple Queue Service Developer Guide

« Important clarification

« You may receive multiple messages from the same message group ID in one batch (up to 10

messages in a single call using the MaxNumberOfMessages parameter).

» However, you can't receive additional messages from the same message group ID in
subsequent requests until:

» The currently received messages are deleted, or
» They become visible again (for example, after the visibility timeout expires).
2. FIFO order guarantee
» Messages retrieved in a batch retain their FIFO order within the group.

o If fewer than 10 messages are available for the same message group ID, Amazon SQS may
include messages from other message group IDs in the same batch, but each group retains
FIFO order.

3. Consumer limitations

» You cannot explicitly request to receive messages from a specific message group ID.

Retrying multiple times

Producers and consumers can safely retry failed actions in Amazon SQS FIFO queues without
disrupting message order or introducing duplicates. This topic highlights how deduplication IDs
and visibility timeouts ensure message integrity during retries.

1. Producer retries

« If a SendMessage action fails, the producer can retry sending the message multiple times

with the same message deduplication ID.

« As long as the producer receives at least one acknowledgment before the deduplication
interval expires, retries:

« Do not introduce duplicate messages.
« Do not disrupt message order.

2. Consumer retries

« If a ReceiveMessage action fails, the consumer can retry as many times as necessary using

the same receive request attempt ID.

« As long as the consumer receives at least one acknowledgment before the visibility timeout

oavniroc rofrince

Retrying multiple times

35

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

« Do not disrupt message order.

Additional notes on FIFO behavior

Learn about handling visibility timeouts, enabling parallel processing with multiple message group
IDs, and ensuring strict sequential processing in single-group scenarios.

1. Handling visibility timeout

« When a message is retrieved but not deleted, it remains invisible until the visibility timeout
expires.

» No additional messages from the same message group ID are returned until the first message
is deleted or becomes visible again.

2. Concurrency and parallel processing
» FIFO queues allow parallel processing of messages across different message group IDs.

« To maximize concurrency, design your system with multiple message group IDs for
independent workflows.

3. Single group scenarios

 For strict sequential processing of all messages in a FIFO queue, use a single message group ID
for all messages in the queue.

Examples for better understanding

The following are practical scenarios illustrating FIFO queue behavior in Amazon SQS.

1. Scenario 1: Single group ID
« A producer sends five messages with the same message group ID Group A.

« A consumer receives these messages in FIFO order. Until the consumer deletes these messages
or the visibility timeout expires, no additional messages from Group A are received.

2. Scenario 2: Multiple group IDs
« A producer sends five messages to Group A and 5 to Group B.

« Consumer 1 processes messages from Group A, while Consumer 2 processes messages from
Group B. This enables parallel processing with strict ordering maintained within each group.

3. Scenario 3: Batch retrieval

« A producer sends seven messages to Group A and three to Group B.

Additional notes on FIFO behavior 36

Amazon Simple Queue Service Developer Guide

« A single consumer retrieves up to 10 messages. If the queue allows, it may return:

« Seven messages from Group A and three from Group B (or fewer if fewer messages are
available from a single group).

Exactly-once processing in Amazon SQS

Unlike standard queues, FIFO queues don't introduce duplicate messages. FIFO queues help you
avoid sending duplicates to a queue. If you retry the SendMessage action within the 5-minute
deduplication interval, Amazon SQS doesn't introduce any duplicates into the queue.

To configure deduplication, you must do one of the following:

« Enable content-based deduplication. This instructs Amazon SQS to use a SHA-256 hash
to generate the message deduplication ID using the body of the message—but not the
attributes of the message. For more information, see the documentation on the CreateQueue,

GetQueueAttributes, and SetQueueAttributes actions in the Amazon Simple Queue

Service API Reference.

» Explicitly provide the message deduplication ID (or view the sequence number) for the message.
For more information, see the documentation on the SendMessage, SendMessageBatch, and
ReceiveMessage actions in the Amazon Simple Queue Service API Reference.

Moving from a standard queue to a FIFO queue in Amazon SQS

If your existing application uses standard queues and you want to take advantage of the ordering
or exactly-once processing features of FIFO queues, you need to configure both the queue and your
application correctly.

Key considerations

« Creating a FIFO Queue: You cannot convert an existing standard queue into a FIFO queue. You
must either create a new FIFO queue for your application or delete the existing standard queue
and recreate it as a FIFO queue.

» Delay Parameter: FIFO queues do not support per-message delays, only per-queue delays. If
your application sets the DelaySeconds parameter on each message, you must modify it to set
DelaySeconds on the entire queue instead.

Exactly-once processing 37

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

« Message Group ID: Provide a message group ID for every sent message. This ID enables parallel

processing of messages while maintaining their respective order. Use a granular business
dimension for the message group ID to better scale with FIFO queues. The more message group
IDs you distribute messages to, the greater the number of messages available for consumption.

« High Throughput Mode: Use the recommended high throughput mode for FIFO queues to

achieve increased throughput. For more information on messaging quotas, see Amazon SQS
message quotas.

Checklist for moving to FIFO queues

Before sending messages to a FIFO queue, confirm the following:

1. Configure delay settings
« Modify your application to remove per-message delays.
» Set the DelaySeconds parameter on the entire queue.
2. Set message group IDs

« Organize messages into message groups by specifying a message group ID based on a
business dimension.

« Use more granular business dimensions to improve scalability.
3. Handle message deduplication

« If your application can't send messages with identical message bodies, provide a unique
message deduplication ID for each message.

« If your application sends messages with unique message bodies, enable content-based
deduplication.

4. Configure the consumer
» Generally, no code changes are needed for the consumer.

« If processing messages takes a long time and the visibility timeout is set high, consider
adding a receive request attempt ID to each ReceiveMessage action. This helps retry receive
attempts in case of networking failures and prevents queues from pausing due to failed
receive attempts.

By following these steps, you can ensure your application works correctly with FIFO queues,
taking full advantage of their ordering and exactly-once processing features. For more detailed
information, see the Amazon Simple Queue Service API Reference.

Moving from a standard queue to a FIFO queue 38

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queue and Lambda concurrency behavior

By using a FIFO (First-In-First-Out) queue with Lambda, you can ensure ordered processing of
messages within each message group. The Lambda function will not run multiple instances for the
same message group simultaneously, thereby maintaining the order. However, it can scale up to
handle multiple message groups in parallel, ensuring efficient processing of your queue's workload.
The following points describe the behavior of Lambda functions when processing messages from
an Amazon SQS FIFO queue with respect to message group IDs:

« Single instance per message group: At any point in time, only one Lambda instance will be
processing messages from a specific message group ID. This ensures that messages within the
same group are processed in order, maintaining the integrity of the FIFO sequence.

» Concurrent processing of different groups: Lambda can concurrently process messages from
different message group IDs using multiple instances. This means that while one instance of
the Lambda function is handling messages from one message group ID, other instances can
simultaneously handle messages from other message group IDs, leveraging the concurrency
capabilities of Lambda to process multiple groups in parallel.

FIFO queue message grouping

FIFO queues ensure that messages are processed in the exact order they are sent. They use a
message group ID to group messages that should be processed sequentially.

Messages within the same message group are processed in order, and only one message from each
group is processed at a time to maintain this order.

Lambda concurrency with FIFO queues

After you create your queue, you can send a message to it.

When you set up a Lambda function to process messages from an Amazon SQS FIFO queue,
Lambda respects the ordering guarantees provided by the FIFO queue. The following points
describe the behavior of Lambda functions in terms of concurrency and scaling when processing
messages from an Amazon SQS FIFO queue when using message group IDs.

» Concurrency within message groups: Only one Lambda instance processes messages for a
particular message group ID at a time. This ensures that messages within a group are handled
sequentially.

FIFO queue and Lambda concurrency behavior 39

Amazon Simple Queue Service Developer Guide

« Scaling and multiple message groups:While Lambda can scale up to process messages
concurrently, this scaling occurs across different message groups. If you have multiple message
groups, Lambda can process multiple groups in parallel, with each group being handled by a
separate Lambda instance.

For more information, see Scaling and concurrency in Lambda in the AWS Lambda Operator Guide.

Use case example

Suppose your FIFO queue receives messages with the same message group ID, and your Lambda
function has a high concurrency limit (up to 1000).

If a message from group ID 'A' is being processed and another message from group ID 'A’ arrives,
the second message will not trigger a new Lambda instance until the first message is fully
processed.

However, if messages from group IDs 'A' and 'B' arrive, both messages can be processed
concurrently by separate Lambda instances.

High throughput for FIFO queues in Amazon SQS

High throughput FIFO queues in Amazon SQS efficiently manage high message throughput while
maintaining strict message order, ensuring reliability and scalability for applications processing
numerous messages. This solution is ideal for scenarios demanding both high throughput and
ordered message delivery.

Amazon SQS high throughput FIFO queues are not necessary in scenarios where strict message
ordering is not crucial and where the volume of incoming messages is relatively low or sporadic.
For instance, if you have a small-scale application that processes infrequent or non-sequential
messages, the added complexity and cost associated with high throughput FIFO queues may not
be justified. Additionally, if your application does not require the enhanced throughput capabilities
provided by high throughput FIFO queues, opting for a standard Amazon SQS queue might be
more cost-effective and simpler to manage.

To enhance request capacity in high throughput FIFO queues, increasing the number of message
groups is recommended. For more information on high throughput message quotas, see Amazon
SQS service quotas in the Amazon Web Services General Reference.

Use case example 40

https://docs.aws.amazon.com/lambda/latest/operatorguide/scaling-concurrency.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html#limits_sqs.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html#limits_sqs.html

Amazon Simple Queue Service Developer Guide

For information per-queue quotas and data distribution strategies, see Amazon SQS message
quotas and Partitions and data distribution for high throughput for SQS FIFO queues.

Use cases for high throughput for Amazon SQS FIFO queues

The following use cases highlight the diverse applications of high throughput FIFO queues,
showcasing their effectiveness across industries and scenarios:

1. Real-time data processing: Applications dealing with real-time data streams, such as event
processing or telemetry data ingestion, can benefit from high throughput FIFO queues to handle
the continuous influx of messages while preserving their order for accurate analysis.

2. E-commerce order processing: In e-commerce platforms where maintaining the order of
customer transactions is critical, high throughput FIFO queues ensure that orders are processed
sequentially and without delays, even during peak shopping seasons.

3. Financial services: Financial institutions handling high-frequency trading or transactional data
rely on high throughput FIFO Queues to process market data and transactions with minimal
latency while adhering to strict regulatory requirements for message ordering.

4. Media streaming: Streaming platforms and media distribution services utilize high throughput
FIFO queues to manage the delivery of media files and streaming content, ensuring smooth
playback experiences for users while maintaining the correct order of content delivery.

Partitions and data distribution for high throughput for SQS FIFO
queues

Amazon SQS stores FIFO queue data in partitions. A partition is an allocation of storage for a queue
that is automatically replicated across multiple Availability Zones within an AWS Region. You don't
manage partitions. Instead, Amazon SQS handles partition management.

For FIFO queues, Amazon SQS modifies the number of partitions in a queue in the following
situations:

o If the current request rate approaches or exceeds what the existing partitions can support,
additional partitions are allocated until the queue reaches the regional quota. For information on
quotas, see Amazon SQS message quotas.

o If the current partitions have low utilization, the number of partitions may be reduced.

Use cases 41

Amazon Simple Queue Service Developer Guide

Partition management occurs automatically in the background and is transparent to your
applications. Your queue and messages are available at all times.

Distributing data by message group IDs

To add a message to a FIFO queue, Amazon SQS uses the value of each message’s message group
ID as input to an internal hash function. The output value from the hash function determines which
partition stores the message.

The following diagram shows a queue that spans multiple partitions. The queue’'s message group
ID is based on item number. Amazon SQS uses its hash function to determine where to store a new
item; in this case, it's based on the hash value of the string item@. Note that the items are stored
in the same order in which they are added to the queue. Each item's location is determined by the
hash value of its message group ID.

SQS-FIFO Queue

Message Message Message

Message Message

Internal Hash Function

(
Fix) : N "
messageBody: "

Partition

® Note

Amazon SQS is optimized for uniform distribution of items across a FIFO queue's partitions,
regardless of the number of partitions. AWS recommends that you use message group IDs
that can have a large number of distinct values.

Partitions and data distribution 42

Amazon Simple Queue Service Developer Guide

Optimizing partition utilization

Each partition supports up to 3,000 messages per second with batching, or up to 300 messages per
second for send, receive, and delete operations in supported regions. For more information on high
throughput message quotas, see Amazon SQS service quotas in the Amazon Web Services General

Reference.

When using batch APIs, each message is routed based on the process described in Distributing data
by message group IDs. Messages that are routed to the same partition are grouped and processed

in a single transaction.

To optimize partition utilization for the SendMessageBatch API, AWS recommends batching
messages with the same message group IDs when possible.

To optimize partition utilization for the DeleteMessageBatch and
ChangeMessageVisibilityBatch APIs, AWS recommends using ReceiveMessage requests
with the MaxNumberOfMessages parameter set to 10, and batching the receipt-handles returned
by a single ReceiveMessage request.

In the following example, a batch of messages with various message group IDs is sent. The batch is
split into three groups, each of which counts against the quota for the partition.

Messages

GroupId: "item0",

SQS-FIFO Queue

Message Message Message

Partition

1 Transaction

Message Message

Internal Hash Function

cageGroupTd: *iteml®,| |yl [Fo]

Partition

1 Transaction

{
nessageGroupTd: "1temd®, Message

Partition

1 Transaction

Partitions and data distribution 43

https://docs.aws.amazon.com/general/latest/gr/sqs-service.html#limits_sqs.html

Amazon Simple Queue Service Developer Guide

® Note

Amazon SQS only guarantees that messages with the same message group ID's internal
hash function are grouped within a batch request. Depending on the output of the internal
hash function and the number of partitions, messages with different message group IDs
might be grouped. Since the hash function or number of partitions can change at any time,
messages that are grouped at one point may not be grouped later.

Enabling high throughput for FIFO queues in Amazon SQS

You can enable high throughput for any new or existing FIFO queue. The feature includes three
new options when you create and edit FIFO queues:

Enable high throughput FIFO — Makes higher throughput available for messages in the current
FIFO queue.

Deduplication scope - Specifies whether deduplication occurs at the queue or message group
level.

FIFO throughput limit — Specifies whether the throughput quota on messages in the FIFO queue
is set at the queue or message group level.

To enable high throughput for a FIFO queue (console)

1.
2.

Start creating or editing a FIFO queue.

When specifying options for the queue, choose Enable high throughput FIFO.
Enabling high throughput for FIFO queues sets the related options as follows:
« Deduplication scope is set to Message group, the required setting for using high

throughput for FIFO queues.

» FIFO throughput limit is set to Per message group ID, the required setting for using high
throughput for FIFO queues.

If you change any of the settings required for using high throughput for FIFO queues, normal
throughput is in effect for the queue, and deduplication occurs as specified.

Continue specifying all options for the queue. When you finish, choose Create queue or Save.

Enabling high throughput for FIFO queues 44

Amazon Simple Queue Service Developer Guide

After creating or editing the FIFO queue, you can send messages to it and receive and delete

messages, all at a higher TPS. For high throughput quotas, see Message throughput in Amazon SQS
message quotas.

FIFO queue and message identifiers in Amazon SQS

This section describes the identifiers of FIFO queues. These identifiers can help you find and
manipulate specific queues and messages.

Identifiers for FIFO queues in Amazon SQS

For more information about the following identifiers, see the Amazon Simple Queue Service API

Reference.
Queue name and URL

When you create a new queue, you must specify a queue name unique for your AWS account and
region. Amazon SQS assigns each queue you create an identifier called a queue URL that includes
the queue name and other Amazon SQS components. Whenever you want to perform an action on
a queue, you provide its queue URL.

The name of a FIFO queue must end with the . fifo suffix. The suffix counts towards the 80-
character queue name quota. To determine whether a queue is FIFO, you can check whether the
queue name ends with the suffix.

The following is the queue URL for a FIFO queue named MyQueue owned by a user with the AWS
account number 123456789012.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue.fifo

You can retrieve the URL of a queue programmatically by listing your queues and parsing the string
that follows the account number. For more information, see ListQueues.

Message ID

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. The maximum length of

a message ID is 100 characters.

Queue and message identifiers 45

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Receipt handle

Every time you receive a message from a queue, you receive a receipt handle for that message.
This handle is associated with the action of receiving the message, not with the message itself. To
delete the message or to change the message visibility, you must provide the receipt handle (not
the message ID). Thus, you must always receive a message before you can delete it (you can't put
a message into the queue and then recall it). The maximum length of a receipt handle is 1,024
characters.

/A Important

If you receive a message more than once, each time you receive it, you get a different
receipt handle. You must provide the most recently received receipt handle when you
request to delete the message (otherwise, the message might not be deleted).

The following is an example of a receipt handle (broken across three lines).

MbZj6wbDW1li+JvwwlaBV+3dcjk2YW2vA3+STFF1jTM8tJJg6HRG6PYSasuWXPIB+Cw
Lj1FjgXUv1luSjlgUPAWVE6FU/WeR4mq20KpEGYWbnLmpRCIVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3MIMFx1YvV11A2x/KSbk]10=

Additional identifiers for Amazon SQS FIFO queues

For more information about the following identifiers, see Exactly-once processing in Amazon SQS

and the Amazon Simple Queue Service API Reference.

Message deduplication ID

A token used in Amazon SQS FIFO queues to uniquely identify messages and prevent duplication.
If multiple messages with the same deduplication ID are sent within a 5 minute deduplication
interval, they are treated as duplicates, and only one copy is delivered. If you don't specify

a deduplication ID and content-based deduplication is enabled, Amazon SQS generates a
deduplication ID by hashing the message body. This mechanism ensures exactly-once delivery by
eliminating duplicate messages within the specified time frame.

Message group ID

The MessageGroupId is an attribute used only in Amazon SQS FIFO (First-In-First-Out) queues
to organize messages into distinct groups. Messages within the same message group are always

Additional identifiers for FIFO queues 46

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

processed one at a time, in strict order, ensuring that no two messages from the same group are
processed simultaneously. Standard queues do not use MessageGroupId and do not provide
ordering guarantees. If strict ordering is required, use a FIFO queue instead.

Sequence number

The large, non-consecutive number that Amazon SQS assigns to each message.

Additional identifiers for FIFO queues 47

Amazon Simple Queue Service Developer Guide

Amazon SQS quotas

This topic explains the quotas and limitations for Amazon SQS FIFO and standard queues, detailing
how they impact queue creation, configuration, and message handling. Learn about constraints like
message retention limits, in-flight message caps, and throughput thresholds, as well as strategies
to maximize efficiency through batching, API call optimization, and long polling. This topic also
covers naming conventions, tagging rules, and methods for requesting quota increases to meet
high-demand workloads, ensuring effective queue management and optimal performance.

Amazon SQS FIFO queue quotas

Amazon SQS quotas

The following table lists quotas related to FIFO queues.

Quota Description

Delay queue The default (minimum) delay for a queue is O seconds.
The maximum is 15 minutes.

Listed queues 1,000 queues per ListQueues request.
Long polling wait time The maximum long polling wait time is 20 seconds.
Message groups There is no quota to the number of message groups

within a FIFO queue.

Messages per queue (backlog) The number of messages that an Amazon SQS queue
can store is unlimited.

Messages per queue (in flight) FIFO queues support a maximum of 120,000 in-flight
messages (messages received by a consumer but not yet
deleted). If this limit is reached, Amazon SQS does not
return an error, but processing may be impacted. You
can request an increase beyond this limit by contacting
AWS Support.

FIFO queue quotas 48

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/awssupport/latest/user/create-service-quota-increase.html

Amazon Simple Queue Service

Developer Guide

Quota

Queue name

Queue tag

Description

The name of a FIFO queue must end with the . fifo

suffix. The suffix counts towards the 80-character queue
name quota. To determine whether a queue is FIFO, you
can check whether the queue name ends with the suffix.

We don't recommend adding more than 50 tags to a
queue. Tagging supports Unicode characters in UTF-8.

The tag Key is required, but the tag Value is optional.
The tag Key and tag Value are case-sensitive.

The tag Key and tag Value can include Unicode
alphanumeric characters in UTF-8 and whitespaces. The
following special characters are allowed: _ . : / = +
- @

The tag Key or Value must not include the reserved
prefix aws : (you can't delete tag keys or values with this
prefix).

The maximum tag Key length is 128 Unicode characters
in UTF-8. The tag Key must not be empty or null.

The maximum tag Value length is 256 Unicode
characters in UTF-8. The tag Value may be empty or
null.

Tagging actions are limited to 30 TPS per AWS account.
If your application requires a higher throughput, submit

a request.

Amazon SQS standard queue quotas

The following table lists quotas related to standard queues.

Standard queue quotas

49

https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas
https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas

Amazon Simple Queue Service Developer Guide

Quota Description

Delay queue The default (minimum) delay for a queue is O seconds.
The maximum is 15 minutes.

Listed queues 1,000 queues per ListQueues request.
Long polling wait time The maximum long polling wait time is 20 seconds.
Messages per queue (backlog) The number of messages that an Amazon SQS queue

can store is unlimited.

Messages per queue (in flight) For most standard queues (depending on queue traffic
and message backlog), there can be a maximum of
approximately 120,000 in flight messages (received
from a queue by a consumer, but not yet deleted from
the queue). If you reach this quota while using short
polling, Amazon SQS returns the OverLimit error
message. If you use long polling, Amazon SQS returns
no error messages. To avoid reaching the quota, you
should delete messages from the queue after they're
processed. You can also increase the number of queues
you use to process your messages. To request a quota
increase, submit a support request.

Queue name A queue name can have up to 80 characters. The
following characters are accepted: alphanumeric
characters, hyphens (-), and underscores (_).

(® Note

Queue names are case-sensitive (for example,
Test-queue and test-queue are different
queues).

Queue tag We don't recommend adding more than 50 tags to a
queue. Tagging supports Unicode characters in UTF-8.

Standard queue quotas 50

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas

Amazon Simple Queue Service Developer Guide

Quota Description
The tag Key is required, but the tag Value is optional.
The tag Key and tag Value are case-sensitive.

The tag Key and tag Value can include Unicode
alphanumeric characters in UTF-8 and whitespaces. The
following special characters are allowed: _ . : / = +
- e

The tag Key or Value must not include the reserved
prefix aws : (you can't delete tag keys or values with
this prefix).

The maximum tag Key length is 128 Unicode characters
in UTF-8. The tag Key must not be empty or null.

The maximum tag Value length is 256 Unicode
characters in UTF-8. The tag Value may be empty or
null.

Tagging actions are limited to 30 TPS per AWS account.
If your application requires a higher throughput, submit

a request.

Amazon SQS message quotas

The following table lists quotas related to messages.

Quota Description

Batched message ID A batched message ID can have up to 80 characters.
The following characters are accepted: alphanumeric
characters, hyphens (-), and underscores (_).

Message attributes A message can contain up to 10 metadata attributes.

Message quotas 51

https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas
https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas

Amazon Simple Queue Service

Developer Guide

Quota

Message batch

Message content

Message group ID

Message retention

Description

A single message batch request can include a maximum
of 10 messages. For more information, see Configuring
AmazonSQSBufferedAsyncClient in the Amazon SQS
batch actions section.

A message can include only XML, JSON, and unformatt
ed text. The following Unicode characters are allowed:
#x9 | #xA | #xD | #x20 to #xD7FF | #xEQ0QQ to #xFFFD |
#x10000 to #x10QFFFF

Any characters not included in this list are rejected.
For more information, see the W3C specification for

characters.

MessageGroupId is required for FIFO queues. If you
don't provide a MessageGroupId when sendinga
message to a FIFO queue, the action fails. In standard
queues, using MessageGroupId enables fair queues.
We recommend that you include a MessageGroupId
in all messages when using fair queues.

The length of MessageGroupId is 128 characters.
Valid values: alphanumeric characters and punctuation

(1#$%8" () *+, -/ <=>2e\]*"_"{]|}~)

By default, a message is retained for 4 days. The
minimum is 60 seconds (1 minute). The maximum is
1,209,600 seconds (14 days).

Message quotas

52

https://www.w3.org/TR/REC-xml/#charsets
https://www.w3.org/TR/REC-xml/#charsets

Amazon Simple Queue Service

Developer Guide

Quota

Message throughput

Description

Standard queues

Standard queues support a very high, nearly unlimited
number of API calls per second, per action (SendMessa
ge , ReceiveMessage , or DeleteMessage). This

high throughput makes them ideal for use cases that
require processing large volumes of messages quickly,
such as real-time data streaming or large-scale applicati
ons. While standard queues scale automatically with
demand, it is essential to monitor usage patterns to
ensure optimal performance, especially in regions with
higher workloads.

Message quotas

53

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

Quota Description

FIFO queues

« Each partition in a FIFO queue is limited to 300
transactions per second, per APl action (SendMessa
ge , ReceiveMessage , and DeleteMessage).
This limit applies specifically to non-high throughput
mode. By switching to high throughput mode, you can
surpass this default limit. To enable high-throughput
mode, see Enabling high throughput for FIFO queues
in Amazon SQS.

« If you use batching, non-high throughput FIFO queues
support up to 3,000 messages per second, per API
action (SendMessage , ReceiveMessage , and
DeleteMessage). The 3,000 messages per second
represent 300 API calls, each with a batch of 10
messages.

High throughput for FIFO queues

Amazon SQS FIFO limits are based on the number of API
requests, not message limits. For high throughput mode,
these API request limits are as follows:

Transaction throughput limits (Non-batching API
calls)

These limits define how frequently each API operation
(such as SendMessage, ReceiveMessage, or DeleteMes
sage) can be performed independently, ensuring
efficient system performance within the allowed

transactions per second (TPS).
The following limits are based on non-batched API calls:

o US East (N. Virginia), US West (Oregon), and Europe
(Ireland): Up to 70,000 transactions per second (TPS).

Message quotas 54

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service

Developer Guide

Quota

Description

« US East (Ohio) and Europe (Frankfurt): Up to 19,000
TPS.

« Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia
Pacific (Sydney), and Asia Pacific (Tokyo): Up to 9,000
TPS.

« Europe (London) and South America (S3ao Paulo): Up
to 4,500 TPS.

« All other AWS Regions: Default throughput of 2,400
TPS.

Maximizing throughput with batching

Processes multiple messages in a single API call, which
significantly increasing efficiency. Instead of handling
each message individually, batching allows you to send,
receive, or delete up to 10 messages in a single API
request. This reduces the total number of API calls,
allowing you to process more messages per second
while staying within the transaction limits (TPS) for the
region, maximizing throughput and system performan
ce. For more information, see Increasing throughput usi

ng horizontal scaling and action batching with Amazon
SQS.

The following limits are based on batched API calls:

» US East (N. Virginia), US West (Oregon), and Europe
(Ireland): Up to 700,000 messages per second (10x the
non-batch limit of 70,000 TPS).

« US East (Ohio) and Europe (Frankfurt): Up to 190,000
messages per second.

« Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia
Pacific (Sydney), and Asia Pacific (Tokyo): Up to 90,000
messages per second.

Message quotas

55

Amazon Simple Queue Service

Developer Guide

Quota

Description

« Europe (London) and South America (S3ao Paulo): Up
to 45,000 messages per second.

« All other AWS Regions: Up to 24,000 messages per
second.

Optimizing throughput beyond batching

While batching can greatly increase throughput, it's
important to consider other strategies for optimizing
FIFO performance:

« Distribute messages across multiple message
group IDs - Since messages within a single group are
processed sequentially, distributing your workload
across multiple message groups allows for better
parallelism and higher overall throughput. For more
information, see Partitions and data distribution for
high throughput for SQS FIFO queues.

« Efficient use of API calls — Minimize unnecessa
ry API calls, such as frequent visibility changes or
repeated message deletions, to optimize the use of
your available TPS and improve efficiency.

« Use long poll receives - Utilize long polling by
setting WaitTimeSeconds in your receive requests

to reduce empty responses when no messages are
available, lowering unnecessary API calls and making
better use of your TPS quota.

» Requesting throughput increases - If your applicati
on requires throughput higher than the default limits,
request an increase using the Service Quotas console.

This can be necessary for high-demand workloads or
in regions with lower default limits. To enable high-
throughput mode, see Enabling high throughput for
FIFO queues in Amazon SQS.

Message quotas

56

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas

Amazon Simple Queue Service Developer Guide

Quota Description

Message timer The default (minimum) delay for a message is 0 seconds.
The maximum is 15 minutes.

Message size The minimum message size is 1 byte (1 character). The
maximum is 1,048,576 bytes (1 MiB).

To send messages larger than 1 MiB, you can use the
Amazon SQS Extended Client Library for Java and the
Amazon SQS Extended Client Library for Python. This
library allows you to send an Amazon SQS message that

contains a reference to a message payload in Amazon
S3. The maximum payload size is 2 GB.

(® Note

This extended library works only for synchrono
us clients.

Message visibility timeout The default visibility timeout for a message is 30
seconds. The minimum is O seconds. The maximum is 12
hours.

Policy information The maximum quota is 8,192 bytes, 20 statements, 50
principals, or 10 conditions. For more information, see
Amazon SQS policy quotas.

Amazon SQS policy quotas

The following table lists quotas related to policies.

Name Maximum
Bytes 8,192
Conditions 10

Policy quotas 57

https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-python-extended-client-lib

Amazon Simple Queue Service

Developer Guide

Name
Principals
Statements

Actions per statement

Maximum

50

20

Policy quotas

58

Amazon Simple Queue Service Developer Guide

Amazon SQS features and capabilities

This topic provides commonly used features in Amazon SQS for managing message queues,
optimizing performance, ensuring reliable message delivery, and handling message processing
efficiently.

Using dead-letter queues in Amazon SQS

Amazon SQS supports dead-letter queues (DLQs), which source queues can target for messages
that are not processed successfully. DLQs are useful for debugging your application because you
can isolate unconsumed messages to determine why processing did not succeed. For optimal
performance, it is a best practice to keep the source queue and DLQ within the same AWS account
and Region. Once messages are in a dead-letter queue, you can:

« Examine logs for exceptions that might have caused messages to be moved to a dead-letter
queue.

» Analyze the contents of messages moved to the dead-letter queue to diagnose application
issues.

« Determine whether you have given your consumer sufficient time to process messages.

» Move messages out of the dead-letter queue using dead-letter queue redrive.

You must first create a new queue before configuring it as a dead-letter queue. For information
about configuring a dead-letter queue using the Amazon SQS console, see Configure a dead-letter

queue using the Amazon SQS console. For help with dead-letter queues, such as how to configure

an alarm for any messages moved to a dead-letter queue, see Creating alarms for dead-letter
queues using Amazon CloudWatch.

(® Note

Don't use a dead-letter queue with a FIFO queue if you don't want to break the exact order
of messages or operations. For example, don't use a dead-letter queue with instructions

in an Edit Decision List (EDL) for a video editing suite, where changing the order of edits
changes the context of subsequent edits.

Dead-letter queues 59

Amazon Simple Queue Service Developer Guide

Using policies for dead-letter queues

Use a redrive policy to specify the maxReceiveCount. The maxReceiveCount is the number of
times a consumer can receive a message from a source queue before it is moved to a dead-letter
queue. For example, if the maxReceiveCount is set to a low value such as 1, one failure to receive
a message would cause the message to move to the dead-letter queue. To ensure that your system
is resilient against errors, set the maxReceiveCount high enough to allow for sufficient retries.

The redrive allow policy specifies which source queues can access the dead-letter queue. You can
choose whether to allow all source queues, allow specific source queues, or deny all source queues
use of the dead-letter queue. The default allows all source queues to use the dead-letter queue.

If you choose to allow specific queues using the byQueue option, you can specify up to 10 source

queues using the source queue Amazon Resource Name (ARN). If you specify denyAll, the queue

cannot be used as a dead-letter queue.

Understanding message retention periods for dead-letter queues

For standard queues, the expiration of a message is always based on its original enqueue
timestamp. When a message is moved to a dead-letter queue, the enqueue timestamp is
unchanged. The ApproximateAgeOfOldestMessage metric indicates when the message moved
to the dead-letter queue, not when the message was originally sent. For example, assume that

a message spends 1 day in the original queue before it's moved to a dead-letter queue. If the
dead-letter queue's retention period is 4 days, the message is deleted from the dead-letter queue
after 3 days and the ApproximateAgeOfOldestMessage is 3 days. Thus, it is a best practice to
always set the retention period of a dead-letter queue to be longer than the retention period of
the original queue.

For FIFO queues, the enqueue timestamp resets when the message is moved to a dead-letter
queue. The ApproximateAgeOfO0ldestMessage metric indicates when the message moved to
the dead-letter queue. In the same example above, the message is deleted from the dead-letter
queue after four days and the ApproximateAgeOfOldestMessage is four days.

Configure a dead-letter queue using the Amazon SQS console

A dead-letter queue (DLQ) is a queue that receives messages that were not successfully processed
from another queue, known as the source queue. Amazon SQS does not create the dead-letter

queue automatically. You must first create the queue before using it as a dead-letter queue. When
configuring a DLQ, the queue type must match the source queue type—a FIFO queue can only use

Using policies for dead-letter queues 60

Amazon Simple Queue Service Developer Guide

a FIFO DLQ, and a standard queue can only use a standard DLQ. You can configure a dead-letter
queue when you create or edit a queue. For more details, see Using dead-letter queues in Amazon
SQS.

To configure a dead-letter queue for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Select the source queue (the queue that will send failed messages to the dead-letter queue),
then choose Edit.

4. Scroll to the Dead-letter queue section and toggle Enabled.

Under Dead-letter queue settings, choose the Amazon Resource Name (ARN) of an existing
queue that you want to use as the dead-letter queue.

6. Set the Maximum receives value, which defines how many times a message can be received
before being sent to the dead-letter queue (valid range: 1 to 1,000).

7. Choose Save.

Learn how to configure a dead-letter queue redrive in Amazon SQS

Use dead-letter queue redrive to move unconsumed messages from a dead-letter queue to another
destination for processing. By default, dead-letter queue redrive moves messages from a dead-
letter queue to a source queue. However, you can also configure any other queue as the redrive
destination if both queues are the same type. For example, if the dead-letter queue is a FIFO
queue, the redrive destination queue must be a FIFO queue as well. Additionally, you can configure
the redrive velocity to set the rate at which Amazon SQS moves messages.

(@ Note

When a message is moved from a FIFO queue to a FIFO DLQ, the original message's
deduplication ID will be replaced with the original message's ID. This is to make sure that
the DLQ deduplication will not prevent storing of two independent messages that happen
to share a deduplication ID.

Dead-letter queues redrive messages in the order they are received, starting with the oldest
message. However, the destination queue ingests the redriven messages, as well as new messages

Configuring a dead-letter queue redrive 61

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

from other producers, according to the order in which it receives them. For example, if a producer
is sending messages to a source FIFO queue when simultaneously receiving redriven messages
from a dead letter queue, the redriven messages will interweave with the new messages from the
producer.

(® Note

The redrive task resets the retention period. All redriven messages are considered new
messages with a new messageID and enqueueTime are assigned to redriven messages.

Configuring a dead-letter queue redrive for an existing standard queue using the
Amazon SQS API

You can configure a dead-letter queue redrive using the StartMessageMoveTask,
ListMessageMoveTasks, and CancelMessageMoveTask API actions:

API action Description

StartMessageMoveTask Starts an asynchronous task to move
messages from a specified source queue to a

specified destination queue.

ListMessageMoveTasks Gets the most recent message movement
tasks (up to 10) under a specific source queue.

CancelMessageMoveTask Cancels a specified message movement task.
A message movement can only be cancelled
when the current status is RUNNING.

Configuring a dead-letter queue redrive for an existing standard queue using the
Amazon SQS console

1. Open the Amazon SQS console at https://console.aws.amazon.com/sgs/.

2. Inthe navigation pane, choose Queues.

3. Choose the name of queue that you have configured as a dead-letter queue.

Configuring a dead-letter queue redrive 62

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

4.
5.

Choose Start DLQ redrive.
Under Redrive configuration, for Message destination, do either of the following:
« To redrive messages to their source queue, choose Redrive to source queue(s).

« To redrive messages to another queue, choose Redrive to custom destination. Then, enter
the Amazon Resource Name (ARN) of an existing destination queue.

Under Velocity control settings, choose one of the following:

» System optimized - Redrive dead-letter queue messages at the maximum number of
messages per second.

« Custom max velocity - Redrive dead-letter queue messages with a custom maximum rate of
messages per second. The maximum allowed rate is 500 messages per second.

o Itis recommended to start with a small value for Custom max velocity and verify that the
source queue doesn't get overwhelmed with messages. From there, gradually ramp-up the
Custom max velocity value, continuing to monitor the state of the source queue.

When you finish configuring the dead-letter queue redrive, choose Redrive messages.

/A Important

Amazon SQS doesn't support filtering and modifying messages while redriving them
from the dead-letter queue.

A dead-letter queue redrive task can run a maximum of 36 hours. Amazon SQS
supports a maximum of 100 active redrive tasks per account.

If you want to cancel the message redrive task, on the Details page for your queue, choose
Cancel DLQ redrive. When canceling an in progress message redrive, any messages that
have already been successfully moved to their move destination queue will remain in the
destination queue.

Configuring queue permissions for dead-letter queue redrive

You can give user access to specific dead-letter queue actions by adding permissions to your policy.
The minimum required permissions for a dead-letter queue redrive are as follows:

Configuring a dead-letter queue redrive 63

Amazon Simple Queue Service Developer Guide

Minimum Required APl methods
Permissions

To start a .

message redrive Add the sqs:StartMessageMoveTask , sqs:ReceiveMessage

, sqs:DeleteMessage ,and sqgs:GetQueueAttributes of
the dead-letter queue. If either the dead-letter queue or the original
source queue are encrypted (also known as an SSE queue), kms:Decry
pt for any KMS key that has been used to encrypt the messages is also
required.

Add the sgqs:SendMessage of the destination queue. If the destinati
on queue is encrypted, kms:GenerateDataKey and kms:Decry
pt are also required.

To cancel an in- . '
progress message Add the sqs:CancelMessageMoveTask , sqs:ReceiveMessage

el , sqs:DeleteMessage ,and sqgs:GetQueueAttributes of the

dead-letter queue. If the dead-letter queue is encrypted (also known as
an SSE queue), kms:Decrypt is also required.

To show a .
Add the sqs:ListMessageMoveTasks and sqs:GetQu

eueAttributes of the dead-letter queue.

message move
status

To configure permissions for an encrypted queue pair (a source queue with a dead-letter
queue)

Use the following steps to configure minimum permissions for a dead-letter queue (DLQ) redrive:

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, select Policies.

3. Create a new policy and add the following permissions. Attach the policy to the IAM user or
role that will perform the redrive operation.
» Permissions for the DLQ (source queue):

» sqs:StartMessageMoveTask

Configuring a dead-letter queue redrive 64

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Queue Service Developer Guide

e sqs:CancelMessageMoveTask

e sqs:ListMessageMoveTasks

» sqgs:ReceiveMessage

» sqs:DeleteMessage

e sgs:GetQueueAttributes

e sqgs:ListDeadLetterSourceQueues

» Specify the Resource ARN of the DLQ (source queue) (for example,
"arn:aws:sqs:<DL@_region>:<DLQ_accountId>:<DL@Q_name>").

» Permissions for destination queue:
» sqs:SendMessage

« Specify the Resource ARN of the destination queue (for example,
"arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>").

» Permissions for KMS keys:
« kms:Decrypt (Needed to decrypt messages in the DLQ.)
« kms:GenerateDataKey (Needed to encrypt messages in the destination queue.)
» Resource ARNs:

« The ARN of the KMS key used to encrypt messages in the DLQ (source queue) (for
example, "arn:aws:kms:<region>:<accountId>:key/<SourceQueueKeyId>").

« The ARN of the KMS key used to encrypt messages in the destination queue (for
example,
"arn:aws:kms:<region>:<accountId>:key/<DestinationQueueKeyId>").

Your access policy should resemble the following:

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sqs:StartMessageMoveTask",

Configuring a dead-letter queue redrive "sqs:CancelMessageMoveTask™, 65

Amazon Simple Queue Service

Developer Guide

"sqs:ListMessageMoveTasks",
"sqs:ReceiveMessage",
"sqs:DeleteMessage",
"sqs:GetQueueAttributes”,
"sqs:ListDeadLettexrSourceQueues"

1,

"Resource": "arn:aws:sqs:us-west-1:123456789012:<DLQ_name>",

"Condition": {
"StringEquals": {
"aws :ResourceTag/QueueRole": "source"

"Effect": "Allow",
"Action": "sqs:SendMessage",
"Resource": "arn:aws:sqs:us-

west-1:123456789012: <DestQueue_name>",

"Condition": {
"StringEquals": {

"aws:ResourceTag/QueueRole": "destination"
}
}
"Effect": "Allow",
"Action": [
"kms :Decrypt",
"kms : GenerateDataKey"
]I
"Resource": [
"arn:aws:kms:us-west-1:123456789012:key/<SourceQueueKeyId>",
"arn:aws:kms:us-west-1:123456789012:key/<DestQueueKeyId>"
]

Configuring a dead-letter queue redrive

66

Amazon Simple Queue Service Developer Guide

To configure permissions using a non-encrypted queue pair (a source queue with a dead-letter
queue)

Follow these steps to configure the minimum permissions required for handling a standard,
unencrypted dead-letter queue (DLQ). Required minimum permissions are to receive, delete and
get attributes from the dead-letter queue, and send attributes to the source queue.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, select Policies.
3. Create a new policy and add the following permissions. Attach the policy to the IAM user or
role that will perform the redrive operation.
» Permissions for the DLQ (source queue):
e sqs:StartMessageMoveTask
» sqs:CancelMessageMoveTask
e sqs:ListMessageMoveTasks
» sqgs:ReceiveMessage
» sqs:DeleteMessage
e sqgs:ListDeadLetterSourceQueues

» Specify the Resource ARN of the DLQ (source queue) (for example,
"arn:aws:sqs:<DL@_region>:<DLQ_accountId>:<DLQ_name>").

» Permissions for destination queue:
» sqs:SendMessage

« Specify the Resource ARN of the destination queue (for example,
"arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>").

Your access policy should resemble the following:

JSON

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

Configuring a dead-letter queue redrive 67

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Queue Service

Developer Guide

"Action":
:StartMessageMoveTask",
:CancelMessageMoveTask",

Ilsqs
llsqs

"sqs:
:ReceiveMessage",
:DeleteMessage",
:GetQueueAttributes",

llsqs
Ilsqs
llsqs

"sqs:

1,

[

ListMessageMoveTasks",

ListDeadLettexSourceQueues"

"Resource": "arn:aws:sqs:us-west-1:111122223333:<DLQ_name>",
"Condition": {
"StringEquals": {

"aws:ResourceTag/QueueRole": "source"
}
}
}I
{
"Effect": "Allow",
"Action": "sqs:SendMessage",
"Resource": "arn:aws:sqs:us-

west-1:111122223333:<DestQueue_name>",
"Condition": {
"StringEquals": {

"aws :ResourceTag/QueueRole": "destination"

Using dead-letter queue redrive with VPC endpoint access control

When you restrict queue access to specific VPCs using the aws : sourceVpc condition, you need to
make an exception for AWS services to enable dead-letter queue (DLQ) redrive functionality. This is
because the Amazon SQS service operates outside your VPC when moving messages.

To allow DLQ redrive operations, add the aws :CalledVialast condition to your queue policy.
This allows Amazon SQS to make API calls on your behalf while maintaining VPC restrictions for

direct access.

To allow both VPC-restricted access and DLQ redrive:

Configuring a dead-letter queue redrive

68

Amazon Simple Queue Service

Developer Guide

1. Usethe aws:CalledVialast condition in your queue policy.
2. Apply the policy to both the source queue and the DLQ

3. Maintain VPC restrictions for direct access from other sources

Here is an example policy that implements these requirements:

{
"Version": "2012-10-17",
"Id": "SQSRedriveWithVpcRestriction",
"Statement": [
{
"Sid": "DenyOutsideVPCUnlessAWSService_DestQueue",
"Effect": "Deny",
"Principal": "*",
"Action": "sqgs:*",
"Resource": "arn:aws:sqs:*:111122223333:DestQueue",
"Condition": {
"StringNotEquals": {
"aws:SourceVpc": "vpc-1234567890abcdef@"
},
"StringNotEqualsIfExists": {
"aws:CalledVialast": "sqgs.amazonaws.com"
}
}
b
{
"Sid": "DenyOutsideVPCUnlessAWSService_DLQ",
"Effect": "Deny",
"Principal": "*",
"Action": "sqgs:*",
"Resource": "arn:aws:sqs:*:111122223333:D1q",
"Condition": {
"StringNotEquals": {
"aws:SourceVpc": "vpc-1234567890abcdef@"
b
"StringNotEqualsIfExists": {
"aws:CalledVialast": '"sqgs.amazonaws.com"
}
}
}
]

Configuring a dead-letter queue redrive

69

Amazon Simple Queue Service Developer Guide

}

» Replace the placeholder values with your actual values

» This policy uses a "deny" statement with conditions, which is more secure than using "allow"
statements

« The StringNotEqualsIfExists operator handles cases where the condition key might not be
present in the request context.

Alternatively, you can use the aws : ViaAWSService condition key to allow service-based access
while maintaining VPC restrictions. This condition key indicates whether the request comes
from an AWS service. Here is an example policy that uses aws : ViaAWSService instead of
aws:CalledVialast:

"Version": "2012-10-17",
"Id": "SQSRedriveWithVpcRestriction",
"Statement": [
{
"Sid": "DenyOutsideVPCUnlessAWSService_DestQueue",
"Effect": "Deny",
"Principal": "*",
"Action": "sqgs:*",
"Resource": "arn:aws:sqs:*:111122223333:DestQueue",
"Condition": {
"StringNotEquals": {
"aws:SourceVpc": "vpc-1234567890abcdef@"
.
"BoolIfExists": {
"aws:ViaAWSService": "false"

"Sid": "DenyOutsideVPCUnlessAWSService_DLQ",
"Effect": "Deny",
"Principal": "*",
"Action": "sqgs:*",
"Resource": "arn:aws:sqs:*:111122223333:D1q",
"Condition": {

"StringNotEquals": {

Configuring a dead-letter queue redrive 70

Amazon Simple Queue Service Developer Guide

"aws:SourceVpc": "vpc-1234567890abcdef@"

1,
"BoolIfExists": {
"aws:ViaAWSService": "false"

The BoollfExists operator with aws : ViaAWSService condition ensures that requests are allowed
when they come from services while maintaining VPC restrictions for direct access. This can be
simpler to understand and maintain, as it directly checks if the request is made by an AWS service
rather than checking which service made the last call.

For more information on condition keys used in IAM and resource policies, see IAM JSON policy
elements: Condition.

CloudTrail update and permission requirements for Amazon SQS dead-
letter queue redrive

On June 8, 2023, Amazon SQS introduced dead-letter queue (DLQ) redrive for AWS SDK and AWS
Command Line Interface (CLI). This capability is an addition to the already supported DLQ redrive
for the AWS console. If you've previously used the AWS console to redrive dead-letter queue
messages, you may be affected by the following changes:

CloudTrail event renaming

On October 15, 2023, the CloudTrail event names for dead-letter queue redrive will change on the
Amazon SQS console. If you've set alarms for these CloudTrail events, you must update them now.
The following are the new CloudTrail event names for DLQ redrive:

Previous event name New event name
CreateMoveTask StartMessageMoveTask
CancelMoveTask CancelMessageMoveTask

CloudTrail update and permission requirements 71

Amazon Simple Queue Service Developer Guide

Updated permissions

Included with the SDK and CLI release, Amazon SQS has also updated queue permissions for DLQ
redrive to adhere to security best practices. Use the following queue permission types to redrive
messages from your DLQs.

1. Action-based permissions (update for the DLQ API actions)
2. Managed Amazon SQS policy permissions

3. Permission policy that uses sqs:* wildcard

/A Important

To use the DLQ redrive for SDK or CLI, you are required to have a DLQ redrive permission
policy that matches one of the above options.

If your queue permissions for DLQ redrive don't match one of the options above, you must update
your permissions by August 31, 2023. Between now and August 31, 2023, your account will be
able to redrive messages using the permissions you configured using the AWS console only in the
regions where you have previously used the DLQ redrive. For example, say you had "Account A" in
both us-east-1 and eu-west-1. "Account A" was used to redrive messages on the AWS console in
us-east-1 prior to June 8, 2023, but not in eu-west-1. Between June 8, 2023 and August 31, 2023,
if "Account A's" policy permissions don't match one of the options above, it can only be used to
redrive messages on the AWS console in us-east-1, and not in eu-west-1.

/A Important

If your DLQ redrive permissions do not match one of these options after August 31, 2023,
your account will no longer be able to redrive DLQ messages using the AWS console.
However, if you used the DLQ redrive feature on the AWS Console during August 2023, you
have an extension until October 15, 2023 to adopt the new permissions according to one of
these options.

For more information, see the section called “Identifying impacted policies”.

The following are queue permission examples for each DLQ redrive option. When using server-side
encrypted (SSE) queues, the corresponding AWS KMS key permission is required.

CloudTrail update and permission requirements 72

Amazon Simple Queue Service Developer Guide

Action-based

JSON

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"sqs:ReceiveMessage",
"sqs:DeleteMessage",
"sqs:GetQueueAttributes”,
"sqs:StartMessageMoveTask",
"sqs:ListMessageMoveTasks",
"sqs:CancelMessageMoveTask"

]I

"Resource": "arn:aws:sqs:us-west-1:123456789012:<DLQ_name>"

}I
{

"Effect": "Allow",

"Action": "sqs:SendMessage",

"Resource'": "arn:aws:sqs:us-west-1:123456789012:<DestQueue_name>"

}
]
}

Managed policy
The following managed policies contain the required updated permissions:

« AmazonSQSFullAccess - Includes the following dead-letter queue redrive tasks: start, cancel,
and list.

« AmazonSQSReadOnlyAccess — Provides read-only access, and includes the list dead-letter queue
redrive task.

CloudTrail update and permission requirements 73

Amazon Simple Queue Service Developer Guide

Step 1

Add permissions

Add user to an existing group or create a new one. Using groups is a best-practice way to manage user's permissions by job
functions. Learn more [

Add permissions

Step 2
Review

Permissions options

() Add user to group () Copy permissions © Attach policies directly
Add user to an existing group, or Copy all group memberships, Attach a managed policy directly
create a new group. We attached managed policies, inline to a user. As a best practice, we
recommend using groups to policies, and any existing recommend attaching policies to a
manage user permissions by job permissions boundaries from an group instead. Then, add the user
function. existing user. to the appropriate group.
Permissions policies (1/1051) ‘ Cc ‘ ‘ Create policy [3
Q. AmazonsQs X ‘ 2 matches 1 ©
[—| Policy name [2 A | Type v | Attached entities v
3] AmazonSQSFullAccess AWS managed 0
[l 3] AmazonSQSReadOnly... AWS managed 0

Permission Policy that uses sqs* wildcard

JSON

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "sqs:*",
"Resource": "*"

Identifying impacted policies

If you are using customer managed policies (CMPs), you can use AWS CloudTrail and IAM to identify
the policies impacted by the queue permissions update.

CloudTrail update and permission requirements 74

Amazon Simple Queue Service Developer Guide

® Note

If you are using AmazonSQSFullAccess and AmazonSQSReadOnlyAccess, no further
action is required.

1. Sign in to the AWS CloudTrail console.

2. On the Event history page, under Look up attributes, use the drop down menu to select Event
name. Then, search for CreateMoveTask.

3. Choose an event to open the Details page. In the Event records section, retrieve the
UserName or RoleName from the userIdentity ARN.

4. Sign into IAM console.

» For users, choose Users. Select the user with the UserName identified in the previous step.
» For roles, choose Roles. Search for the user with the RoleName identified in the previous
step.

5. On the Details page, in the Permissions section, review any policies with the sqs: prefix in
Action, or review policies that have Amazon SQS queue defined in Resouzrce.

Creating alarms for dead-letter queues using Amazon CloudWatch

Set up a CloudWatch alarm to monitor messages in a dead-letter queue using the
ApproximateNumberOfMessagesVisible metric. For detailed instructions, see Creating
CloudWatch alarms for Amazon SQS metrics. When the alarm triggers, indicating messages have
been moved to the dead-letter queue, you can poll the queue to review and retrieve them.

Message metadata for Amazon SQS

Use message attributes to add custom metadata to Amazon SQS messages for your applications.
Use message system attributes to store metadata for integration with other AWS services, such as
AWS X-Ray.

Amazon SQS message attributes

Amazon SQS allows you to include structured metadata (such as timestamps, geospatial data,
signatures, and identifiers) with messages using message attributes. Each message can have up

Creating alarms for dead-letter queues using Amazon CloudWatch 75

Amazon Simple Queue Service Developer Guide

to 10 attributes. Message attributes are optional and separate from the message body (however,
they are sent alongside it). Your consumer can use message attributes to handle a message in a
particular way without having to process the message body first. For information about sending
messages with attributes using the Amazon SQS console, see Sending a message with attributes
using Amazon SQS.

(® Note

Don't confuse message attributes with message system attributes: Whereas you can
use message attributes to attach custom metadata to Amazon SQS messages for your
applications, you can use message system attributes to store metadata for other AWS

services, such as AWS X-Ray.

Topics

» Message attribute components

» Message attribute data types

» Calculating the MD5 message digest for message attributes

Message attribute components

/A Important

All components of a message attribute are included in the 1 MiB message size restriction.
The Name, Type, Value, and the message body must not be empty or null.

Each message attribute consists of the following components:

« Name - The message attribute name can contain the following characters: A-Z, a-z, 0-9,
underscore (_), hyphen (-), and period (.). The following restrictions apply:

« Can be up to 256 characters long

« Can't start with AWS. or Amazon. (or any casing variations)
« Is case-sensitive

» Must be unique among all attribute names for the message

» Must not start or end with a period

Message attributes 76

Amazon Simple Queue Service Developer Guide

« Must not have periods in a sequence

« Type — The message attribute data type. Supported types include String, Number, and Binary.
You can also add custom information for any data type. The data type has the same restrictions
as the message body (for more information, see SendMessage in the Amazon Simple Queue
Service APl Reference). In addition, the following restrictions apply:

« Can be up to 256 characters long
« Is case-sensitive

» Value - The message attribute value. For String data types, the attribute values has the same
restrictions as the message body.

Message attribute data types

Message attribute data types instruct Amazon SQS how to handle the corresponding message
attribute values. For example, if the type is Number, Amazon SQS validates numerical values.

Amazon SQS supports the logical data types String, Number, and Binary with optional custom
data type labels with the format . custom-data-type
« String - String attributes can store Unicode text using any valid XML characters.

* Number - Number attributes can store positive or negative numerical values. A number can have
up to 38 digits of precision, and it can be between 107-128 and 107 +126.

(® Note

Amazon SQS removes leading and trailing zeroes.

« Binary - Binary attributes can store any binary data such as compressed data, encrypted data, or
images.

« Custom - To create a custom data type, append a custom-type label to any data type. For
example:

e Number.byte, Number.short, Number.int, and Number.float can help distinguish
between number types.

« Binary.gif and Binary.png can help distinguish between file types.

Message attributes 77

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

® Note

Amazon SQS doesn't interpret, validate, or use the appended data.
The custom-type label has the same restrictions as the message body.

Calculating the MD5 message digest for message attributes

If you use the AWS SDK for Java, you can skip this section. The MessageMD5ChecksumHandler
class of the SDK for Java supports MD5 message digests for Amazon SQS message attributes.

If you use either the Query API or one of the AWS SDKs that doesn't support MD5 message digests
for Amazon SQS message attributes, you must use the following guidelines to perform the MD5
message digest calculation.

(® Note

Always include custom data type suffixes in the MD5 message-digest calculation.

Overview

The following is an overview of the MD5 message digest calculation algorithm:

1. Sort all message attributes by name in ascending order.
2. Encode the individual parts of each attribute (Name, Type, and Value) into a buffer.

3. Compute the message digest of the entire buffer.

The following diagram shows the encoding of the MD5 message digest for a single message
attribute:

Message attributes 78

Amazon Simple Queue Service Developer Guide

MDS5Utils.digest -
MessageAttributeValue | MessageAttributeValue . MessageAttributeValue |em w= w= == - e _ —>» MD50fMessageAttributes

Encoded Name Encoded Datatype Encoded value
Length | AttributeName Length Datatype Encoded MessageAttributeValue
|‘£\ff-_es. UTF8 bytes 4 b'fE_| UTF8 bytes ’|

stringValue = null

=

Length String value

|‘ 4 b\ftesr «_ UTF8 bytes ’|

binaryValue = null

L
=]

Length | Binary value

& b'.rtes’ o Hbytes _|

To encode a single Amazon SQS message attribute

1. Encode the name: the length (4 bytes) and the UTF-8 bytes of the name.
2. Encode the data type: the length (4 bytes) and the UTF-8 bytes of the data type.

3. Encode the transport type (String or Binary) of the value (1 byte).

(@ Note

The logical data types String and Number use the String transport type.
The logical data type Binary uses the Binary transport type.

a. Forthe String transport type, encode 1.
b. Forthe Binary transport type, encode 2.
4. Encode the attribute value.
a. Forthe String transport type, encode the attribute value: the length (4 bytes) and the
UTF-8 bytes of the value.

b. Forthe Binary transport type, encode the attribute value: the length (4 bytes) and the
raw bytes of the value.

Message attributes 79

Amazon Simple Queue Service Developer Guide

Amazon SQS message system attributes

Whereas you can use message attributes to attach custom metadata to Amazon SQS messages for

your applications, you can use message system attributes to store metadata for other AWS services,
such as AWS X-Ray. For more information, see the MessageSystemAttribute request parameter
of the SendMessage and SendMessageBatch API actions, the AWSTraceHeader attribute of
the ReceiveMessage APl action, and the MessageSystemAttributeValue data typein the

Amazon Simple Queue Service API Reference.

Message system attributes are structured exactly like message attributes, with the following
exceptions:

« Currently, the only supported message system attribute is AWSTraceHeader. Its type must be
String and its value must be a correctly formatted AWS X-Ray trace header string.

« The size of a message system attribute doesn't count towards the total size of a message.

Resources required to process Amazon SQS messages

Amazon SQS provides estimates of the approximate number of delayed, visible, and not visible
messages in a queue to help you assess the resources needed for processing. For more information
about visibility, see Amazon SQS visibility timeout.

(@ Note

For some metrics, the result is approximate because of the distributed architecture of
Amazon SQS. In most cases, the count should be close to the actual number of messages in
the queue.

The following table lists the attribute name to use with the GetQueueAttributes action:

Task Attribute name

Get the approximate number of messages ApproximateNumberOfMessages
available for retrieval from the queue. Visible

Get the approximate number of messages in ApproximateNumberOfMessages
the queue that are delayed and not available Delayed

Message system attributes 80

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageSystemAttributeValue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

Task Attribute name

for reading immediately. This can happen
when the queue is configured as a delay queue
or when a message has been sent with a delay

parameter.
Get the approximate number of messages ApproximateNumberOfMessages
that are in flight. Messages are considered to NotVisible

be in flight if they have been sent to a client
but have not yet been deleted or have not yet
reached the end of their visibility window.

Amazon SQS list queue pagination

The 1listQueues and listDeadlLetterQueues APl methods support optional pagination
controls. By default, these APl methods return up to 1000 queues in the response message. You
can set the MaxResults parameter to return fewer results in each response.

Set parameter MaxResults in the 1istQueues or listDeadLetterQueues request to specify
the maximum number of results to be returned in the response. If you do not set MaxResults, the
response includes a maximum of 1,000 results and the NextToken value in the response is null.

If you set MaxResults, the response includes a value for NextToken if there are additional results
to display. Use NextToken as a parameter in your next request to 1istQueues to receive the next
page of results. If there are no additional results to display, the NextToken value in the response is
null.

Amazon SQS cost allocation tags

To organize and identify your Amazon SQS queues for cost allocation, you can add metadata tags
that identify a queue's purpose, owner, or environment. This is especially useful when you have
many queues. To configure tags using the Amazon SQS console, see the section called “"Configuring
tags for a queue”

You can use cost allocation tags to organize your AWS bill to reflect your own cost structure. To do
this, sign up to get your AWS account bill to include tag keys and values. For more information, see
Setting Up a Monthly Cost Allocation Report in the AWS Billing User Guide.

List queue pagination 81

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html#allocation-report

Amazon Simple Queue Service Developer Guide

Each tag consists of a key-value pair that you define. For example, you can easily identify your
production and testing queues if you tag your queues as follows:

Queue Key Value
MyQueueA QueueType Production
MyQueueB QueueType Testing

® Note

When you use queue tags, keep the following guidelines in mind:

« We don't recommend adding more than 50 tags to a queue. Tagging supports Unicode
characters in UTF-8.

« Tags don't have any semantic meaning. Amazon SQS interprets tags as character strings.

« Tags are case-sensitive.

« A new tag with a key identical to that of an existing tag overwrites the existing tag.

» Tagging actions are limited to 30 TPS per AWS account. If your application requires a
higher throughput, submit a request.

For a full list of tag restrictions, see Amazon SQS standard queue quotas.

Amazon SQS short and long polling

Amazon SQS offers short and long polling options for receiving messages from a queue. Consider
your application's requirements for responsiveness and cost efficiency when choosing between
these two polling options:

« Short polling (default) - The ReceiveMessage request queries a subset of servers (based on
a weighted random distribution) to find available messages and sends an immediate response,

even if no messages are found.

« Long polling - ReceiveMessage queries all servers for messages, sending a response once at

least one message is available, up to the specified maximum. An empty response is sent only

Short and long polling 82

https://console.aws.amazon.com/servicequotas/home/services/sqs/quotas
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

if the polling wait time expires. This option can reduce the number of empty responses and
potentially lower costs.

The following sections explain the details of short polling and long polling.

Consuming messages using short polling

When you consume messages from a queue (FIFO or standard) using short polling, Amazon SQS
samples a subset of its servers (based on a weighted random distribution) and returns messages
from only those servers. Thus, a particular ReceiveMessage request might not return all of your

messages. However, if you have fewer than 1,000 messages in your queue, a subsequent request
will return your messages. If you keep consuming from your queues, Amazon SQS samples all of its
servers, and you receive all of your messages.

The following diagram shows the short-polling behavior of messages returned from a standard
queue after one of your system components makes a receive request. Amazon SQS samples several
of its servers (in gray) and returns messages A, C, D, and B from these servers. Message E isn't
returned for this request, but is returned for a subsequent request.

Your Distributed Your Queue
System's (Distributed on
Components 5Q5 Servers)
Component E
1 Messages A E o
Received from

Sampled Servers o - 0

oo o
Component A e
A =+000 49, -

r) B E

Com gumm o e e

Consuming messages using long polling

When the wait time for the ReceiveMessage APl action is greater than O, long polling is in

effect. The maximum long polling wait time is 20 seconds. Long polling helps reduce the cost of
using Amazon SQS by eliminating the number of empty responses (when there are no messages

Consuming messages using short polling 83

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

available for a ReceiveMessage request) and false empty responses (when messages are available
but aren't included in a response). For information about enabling long polling for a new or
existing queue using the Amazon SQS console, see the Configuring queue parameters using the
Amazon SQS console. For best practices, see Setting-up long polling in Amazon SQS.

Long polling offers the following benefits:

» Reduce empty responses by allowing Amazon SQS to wait until a message is available in
a queue before sending a response. Unless the connection times out, the response to the
ReceiveMessage request contains at least one of the available messages, up to the maximum
number of messages specified in the ReceiveMessage action. In rare cases, you might receive
empty responses even when a queue still contains messages, especially if you specify a low value
for the ReceiveMessageWaitTimeSeconds parameter.

» Reduce false empty responses by querying all—rather than a subset of—Amazon SQS servers.

« Return messages as soon as they become available.

For information about how to confirm that a queue is empty, see Confirming that an Amazon SQS

queue is empty.

Differences between long and short polling

Short polling occurs when the WaitTimeSeconds parameter of a ReceiveMessage request is set

to @ in one of two ways:

« The ReceiveMessage call sets WaitTimeSeconds to 0.

« The ReceiveMessage call doesn't set WaitTimeSeconds, but the queue attribute
ReceiveMessageWaitTimeSeconds is set to 0.

Amazon SQS visibility timeout

When you receive a message from an Amazon SQS queue, it remains in the queue but becomes
temporarily invisible to other consumers. This invisibility is controlled by the visibility timeout,
which ensures that other consumers cannot process the same message while you are working on it.
Amazon SQS offers two options for deleting messages after processing:

« Manual deletion - You explicitly delete messages using the DeleteMessage action.

Differences between long and short polling 84

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

« Automatic deletion — Supported in certain AWS SDKs, messages are automatically deleted upon
successful processing, simplifying workflows.

RecelveMessage ReceiveMessage

Request ReceiveMessage ReceiveMessage Request
Requast Raequast

Visibility Timeout (in seconds)

Time

Message not Message not
returned returned '

Message returned Message returned

Visibility timeout use cases

Manage long-running tasks — Use the visibility timeout to handle tasks that require extended
processing times. Set an appropriate visibility timeout for messages that require extended
processing time. This ensures that other consumers don't pick up the same message while it's being
processed, preventing duplicate work and maintaining system efficiency.

Implement retry mechanisms - Extend the visibility timeout programmatically for tasks that fail
to complete within the initial timeout. If a task fails to complete within the initial visibility timeout,
you can extend the timeout programmatically. This allows your system to retry processing the
message without it becoming visible to other consumers, improving fault tolerance and reliability.
Combine with Dead-Letter Queues (DLQs) to manage persistent failures.

Coordinate distributed systems — Use SQS visibility timeout to coordinate tasks across distributed
systems. Set visibility timeouts that align with your expected processing times for different
components. This helps maintain consistency and prevents race conditions in complex, distributed
architectures.

Optimize resource utilization — Adjust SQS visibility timeouts to optimize resource utilization in
your application. By setting appropriate timeouts, you can ensure that messages are processed
efficiently without tying up resources unnecessarily. This leads to better overall system
performance and cost-effectiveness.

Visibility timeout use cases 85

Amazon Simple Queue Service Developer Guide

Setting and adjusting the visibility timeout

The visibility timeout starts as soon as a message is delivered to you. During this period, you're
expected to process and delete the message. If you don't delete it before the timeout expires,
the message becomes visible again in the queue and can be retrieved by another consumer.
The default visibility timeout for a queue is 30 seconds, but you can adjust this to match

the time your application needs to process and delete a message. You can also set a specific
visibility timeout for individual messages without changing the queue's overall setting. Use the
ChangeMessageVisibility action to programmatically extend or shorten the timeout as
needed.

In flight messages and quotas

In Amazon SQS, in-flight messages are messages that have been received by a consumer but not
yet deleted. For standard queues, there's a limit of approximately 120,000 in-flight messages,
depending on queue traffic and message backlog. If you reach this limit, Amazon SQS returns
an OverLimit error, indicating that no additional messages can be received until some in-flight
messages are deleted. For FIFO queues, limits depend on active message groups.

« When using short polling - If this limit is reached while using short polling, Amazon SQS will
return an OverLimit error, indicating that no additional messages can be received until some
in-flight messages are deleted.

« When using long polling - If you are using long polling, Amazon SQS does not return an error
when the in-flight message limit is reached. Instead, it will not return any new messages until the
number of in-flight messages drops below the limit.

To manage in-flight messages effectively:

1. Prompt deletion — Delete messages (manually or automatically) after processing to reduce the
in-flight count.

2. Monitor with CloudWatch - Set alarms for high in-flight counts to prevent reaching the limit.

3. Distribute load - If you're processing a high volume of messages, use additional queues or
consumers to balance load and avoid bottlenecks.

4. Request a quota increase — Submit a request to AWS Support if higher limits are required.

Setting and adjusting the visibility timeout 86

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/awssupport/latest/user/create-service-quota-increase.html

Amazon Simple Queue Service Developer Guide

Understanding visibility timeout in standard and FIFO queues

In both standard and FIFO (First-In-First-Out) queues, the visibility timeout helps prevent multiple
consumers from processing the same message simultaneously. However, due to the at-least-once
delivery model of Amazon SQS, there's no absolute guarantee that a message won't be delivered
more than once during the visibility timeout period.

« Standard queues — The visibility timeout in standard queues prevents multiple consumers from
processing the same message at the same time. However, because of the at-least-once delivery
model, Amazon SQS doesn't guarantee that a message won't be delivered more than once within
the visibility timeout period.

» FIFO queues - For FIFO queues, messages with the same message group ID are processed in a
strict sequence. When a message with a message group ID is in-flight, subsequent messages in
that group are not made available until the in-flight message is either deleted or the visibility
timeout expires. However, this doesn't "lock" the group indefinitely— each message is processed
in sequence, and only when each message is deleted or becomes visible again will the next
message in that group be available to consumers. This approach ensures ordered processing
within the group without unnecessarily locking the group from delivering messages.

Handling failures

If you don't process and delete a message before the visibility timeout expires—due to application
errors, crashes, or connectivity problems—the message becomes visible again in the queue. It can
then be retrieved by the same or a different consumer for another processing attempt. This ensures
that messages aren't lost even if the initial processing fails. However, setting the visibility timeout
too high can delay the reappearance of unprocessed messages, potentially slowing down retries.
It's crucial to set an appropriate visibility timeout based on the expected processing time for timely
message handling.

Changing and terminating visibility timeout

You can change or terminate the visibility timeout using the ChangeMessageVisibility action:

« Changing the timeout — Adjust the visibility timeout dynamically using
ChangeMessageVisibility. This allows you to extend or reduce timeout durations to match

processing needs.

Understanding visibility timeout in standard and FIFO queues 87

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html

Amazon Simple Queue Service Developer Guide

« Terminating the timeout - If you decide not to process a received message, terminate
its visibility timeout by setting the VisibilityTimeout to 0 seconds through the
ChangeMessageVisibility action. This immediately makes the message available for other
consumers to process.

Best practices

Use the following best practices for managing visibility timeouts in Amazon SQS, including setting,
adjusting, and extending timeouts, as well as handling unprocessed messages using Dead-Letter
Queues (DLQs).

« Setting and adjusting the timeout. Start by setting the visibility timeout to match the
maximum time your application typically needs to process and delete a message. If you're unsure
about the exact processing time, begin with a shorter timeout (for example, 2 minutes) and
extend it as necessary. Implement a heartbeat mechanism to periodically extend the visibility
timeout, ensuring the message remains invisible until processing is complete. This minimizes
delays in reprocessing unhandled messages and prevents premature visibility.

« Extending the timeout and handling the 12-Hour limit. If your processing time varies or may
exceed the initially set timeout, use the ChangeMessageVisibility action to extend the
visibility timeout while processing the message. Keep in mind that the visibility timeout has
a maximum limit of 12 hours from when the message is first received. Extending the timeout
doesn't reset this 12-hour limit. If your processing requires more time than this limit, consider
using AWS Step Functions or breaking the task into smaller steps.

« Handling unprocessed messages. To manage messages that fail multiple processing attempts,
configure a Dead-Letter Queue (DLQ). This ensures that messages that can't be processed after
several retries are captured separately for further analysis or handling, preventing them from
repeatedly circulating in the main queue.

Amazon SQS fair queues

Amazon SQS fair queues automatically mitigates the noisy-neighbor impact in multi-tenant queues
that contain messages from multiple logical entities, such as customers, client applications, or
message types. In these shared queue environments, one critical performance metric is dwell time,
which measures the total time messages spend in a queue from arrival to processing. When one
tenant creates a backlog in the queue by publishing more messages than the system can handle,
fair queues minimizes the impact on dwell time for other tenants.

Best practices 88

Amazon Simple Queue Service Developer Guide

Steady state

The following diagram illustrates a multi-tenant queue containing messages from four distinct
tenants (labeled A, B, C, and D). The queue operates in a steady state, and there is no message
backlog as consumers receive messages as soon as they appear in the queue. All tenants experience
low dwell times. Not all consumer capacity is fully utilized in this steady state.

Producers Consumers

SendMessage
(Batch)

\ : Queue backlog

e ReceiveMessage

| <

0000

?T??
®O®®

Noisy neighbor impact

Noisy neighbor impact occurs when one tenant in a multi-tenant queue creates a backlog,
increasing message dwell time for all other tenants. A tenant can become a noisy neighbor by
sending a larger volume of messages than other tenants, or when consumers take longer to
process messages from that particular tenant.

This diagram illustrates how increased traffic from Tenant A creates a backlog in the queue.
Consumers are busy processing the messages from only Tenant A, while messages from other
tenants wait in the backlog, leading to higher dwell times for all tenants.

Producers Consumers

SendMessage
(Batch)

Queue backlog

00O I®™®
\ ‘
—/“

9900
0000
0000

Mitigation with fair queues

Amazon SQS detects noisy neighbors by monitoring message distribution among tenants during
processing (the "in-flight" state). When a tenant has a disproportionately large number of in-

Fair queues 89

Amazon Simple Queue Service Developer Guide

flight messages compared to others, Amazon SQS identifies that tenant as a noisy neighbor and
prioritizes message delivery for other tenants. This approach reduces the dwell time impact to the
other tenants.

This diagram illustrates how Amazon SQS fair queues addresses the noisy neighbor problem. When
one tenant (Tenant A) becomes noisy, Amazon SQS prioritizes returning messages from other
tenants (B, C, and D). This prioritization helps maintain low dwell times for quiet tenants Tenants
B, C, and D, while the dwell time for Tenant A's messages is elevated until the queue backlog is
consumed without impacting other tenants.

Producers Consumers

SendMessage
(Batch)

ReceiveMessage

<

?TTP
2O
OO0
0000

Amazon SQS does not limit the consumption rate per tenant. It allows consumers to receive
messages from noisy neighbor tenants when there is consumer capacity and the queue has
no other messages to return. Like Amazon SQS standard queues, fair queues allow virtually
unlimited throughput, and there are no limits on the number of tenants you could have in
your queue.

Difference with FIFO queues

FIFO queues maintain strict ordering by limiting the number of in-flight messages from each
tenant. While this prevents noisy neighbors, it limits throughput for each tenant. Fair queues are
designed for multi-tenant scenarios where high throughput, low dwell time, and fair resource
allocation are priorities. Fair queues allow multiple consumers to process messages from the same
tenant concurrently while helping all tenants maintain consistent dwell times.

Difference with FIFO queues 90

Amazon Simple Queue Service Developer Guide

Using fair queues

Your message producers can add a tenant identifier by setting a MessageGroupId on an outgoing
message:

// Send message with tenant identifier

SendMessageRequest request = new SendMessageRequest()
.withQueueUrl(queueUrl)
.withMessageBody(messageBody)
.withMessageGroupId("tenant-123"); // Tenant identifier

sqgs.sendMessage(request);

The fairness capability will be applied automatically in all Amazon SQS standard queues for
messages with the MessageGroupld property. It does not require any change in the consumer code,
it has no impact on API latency, and it does not come with any throughput limitations.

Fair queues CloudWatch metrics

Amazon SQS provides additional CloudWatch metrics to help you monitor the mitigation of noisy
neighbor impact. As an example, you can compare Approximate..InQuietGroups metrics
with standard queue-level metrics. During traffic surges for a specific tenant, the general queue-
level metrics might reveal increasing backlogs or older message ages. However, looking at the

quiet groups in isolation, you can identify that most non-noisy message groups or tenants are not
impacted.

Below you can find an example where the standard queue backlog metric
(ApproximateNumberOfMessagesVisible) increases due to a noisy tenant while the backlog for
non-noisy tenants (ApproximateNumberOfMessagesVisiblelInQuietGroups) remains low.

Queue backlog for noisy and quiet groups @ :

Count

5,152

2,576 ~ [N

.\\\.
N
.

o - S _
15:51 15:51 15:52 15:52 15:53 15:53 15:54 15:54 15:55 15:55 15:56 15:56 15:57 15:57 15:58 15:58 15:59
@ ApproximateNumberOfMessagesVisible ApproximateNumberOfMessagesVisibleinQuietGroups

For a complete list of Amazon SQS CloudWatch metrics and their descriptions, see CloudWatch
metrics for Amazon SQS.

Using fair queues 91

Amazon Simple Queue Service Developer Guide

Amazon SQS delay queues

Delay queues let you postpone the delivery of new messages to consumers for a number

of seconds, for example, when your consumer application needs additional time to process
messages. If you create a delay queue, any messages that you send to the queue remain invisible
to consumers for the duration of the delay period. The default (minimum) delay for a queue is O
seconds. The maximum is 15 minutes. For information about configuring delay queues using the
console see Configuring queue parameters using the Amazon SQS console.

(® Note

For standard queues, the per-queue delay setting is not retroactive—changing the setting
doesn't affect the delay of messages already in the queue.

For FIFO queues, the per-queue delay setting is retroactive—changing the setting affects
the delay of messages already in the queue.

Delay queues are similar to visibility timeouts because both features make messages unavailable to
consumers for a specific period of time. The difference between the two is that, for delay queues,

a message is hidden when it is first added to queue, whereas for visibility timeouts a message is
hidden only after it is consumed from the queue. The following diagram illustrates the relationship

between delay queues and visibility timeouts.

SendMessage ReceiveMessage ReceiveMessage
Request ReceiveMessage Request ReceiveMessage Request

Request Request

isibility Timeout
(in seconds)

Delay Seconds

Time -
Message nol Message not
' returnad ' returnad '.
Message added to
queue Message returmed Message returnad

Extended scheduling options

While Amazon SQS delay queues and message timers allow scheduling of message delivery up
to 15 minutes in the future, you may require more flexible scheduling capabilities. In such cases,
consider using EventBridge Scheduler, which enables you to schedule billions of one-time or

Delay queues 92

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html

Amazon Simple Queue Service Developer Guide

recurring API actions without time limitations. EventBridge Scheduler is the recommended solution
for advanced message scheduling use cases.

To set delay seconds on individual messages, rather than on an entire queue, use message timers to

allow Amazon SQS to use the message timer's DelaySeconds value instead of the delay queue's
DelaySeconds value. EventBridge Scheduler also supports scheduling individual messages.

Amazon SQS temporary queues

Temporary queues help you save development time and deployment costs when using common
message patterns such as request-response. You can use the Temporary Queue Client to create

high-throughput, cost-effective, application-managed temporary queues.

The client maps multiple temporary queues—application-managed queues created on demand for
a particular process—onto a single Amazon SQS queue automatically. This allows your application
to make fewer API calls and have a higher throughput when the traffic to each temporary queue
is low. When a temporary queue is no longer in use, the client cleans up the temporary queue
automatically, even if some processes that use the client aren't shut down cleanly.

The following are the benefits of temporary queues:

« They serve as lightweight communication channels for specific threads or processes.
» They can be created and deleted without incurring additional cost.

« They are API-compatible with static (normal) Amazon SQS queues. This means that existing
code that sends and receives messages can send messages to and receive messages from virtual
queues.

Virtual queues

Virtual queues are local data structures that the Temporary Queue Client creates. Virtual queues let
you combine multiple low-traffic destinations into a single Amazon SQS queue. For best practices,
see Avoid reusing the same message group ID with virtual queues.

(® Note

» Creating a virtual queue creates only temporary data structures for consumers to receive
messages in. Because a virtual queue makes no API calls to Amazon SQS, virtual queues
incur no cost.

Temporary queues 93

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client

Amazon Simple Queue Service Developer Guide

« TPS quotas apply to all virtual queues across a single host queue. For more information,
see Amazon SQS message quotas.

The AmazonSQSVirtualQueuesClient wrapper class adds support for attributes related to
virtual queues. To create a virtual queue, you must call the CreateQueue API action using the
HostQueueURL attribute. This attribute specifies the existing queue that hosts the virtual queues.

The URL of a virtual queue is in the following format.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue#MyVirtualQueueName

When a producer calls the SendMessage or SendMessageBatch API action on a virtual queue
URL, the Temporary Queue Client does the following:

1. Extracts the virtual queue name.

2. Attaches the virtual queue name as an additional message attribute.

3. Sends the message to the host queue.

While the producer sends messages, a background thread polls the host queue and sends received
messages to virtual queues according to the corresponding message attributes.

While the consumer calls the ReceiveMessage API action on a virtual queue URL, the Temporary
Queue Client blocks the call locally until the background thread sends a message into the virtual
queue. (This process is similar to message prefetching in the Buffered Asynchronous Client: a single
API action can provide messages to up to 10 virtual queues.) Deleting a virtual queue removes any
client-side resources without calling Amazon SQS itself.

The AmazonSQSTemporaryQueuesClient class turns all queues it creates into temporary
queues automatically. It also creates host queues with the same queue attributes automatically,

on demand. These queues' names share a common, configurable prefix (by default,

_ RequesterClientQueues__) that identifies them as temporary queues. This allows the client
to act as a drop-in replacement that optimizes existing code which creates and deletes queues. The
client also includes the AmazonSQSRequester and AmazonSQSResponder interfaces that allow
two-way communication between queues.

Virtual queues 94

Amazon Simple Queue Service

Developer Guide

Request-response messaging pattern (virtual queues)

The most common use case for temporary queues is the request-response messaging pattern,

where a requester creates a temporary queue for receiving each response message. To avoid

creating an Amazon SQS queue for each response message, the Temporary Queue Client lets you

create and delete multiple temporary queues without making any Amazon SQS API calls. For more

information, see Implementing request-response systems.

The following diagram shows a common configuration using this pattern.

SendMessage ('--:'"i :
"MyQueue#MyVirtualQueuead”, |:|. i Sﬁm:message (:
"Hello world!") Lol | ..Hefffu:$1£| " I
Hello world! : "VirtualQueueName" = |
Virtual Queue Client i "MyVirtualQueueA") :
: b||| < —
: SendMessage (/ :
i "MyQueue" , Host Queue 1
SendMessage ([T ,....--Ir-"'"" "What's up?", MyQueue 1
=—"MyQueuef#MyVirtualQueueB" ,— P — i "VirtualQueueName" = Hello world! What's up? :
"What's up?") R : "MyVirtualQueueB") :
What's up? :]
Virtual Queue Client [T, o [:
Amazon SQS
Hello world! Dl | |4
ReceiveMessage (P—
"MyQueue#MyVirtualQueueA") LU IoE
MyQueue#MyVirtualQueusA ¢
ReceiveMessage (Dispaich
"MyQueuefMyVirtualQueueB") > Dl | |d Thread
P Virtual Queue
“«€ |:| : l MyQueue#MyVirtualQueueB
What's ur;'?
Virtual Queue Client
Example scenario: Processing a login request
The following example scenario shows how you can use the AmazonSQSRequester and
AmazonSQSResponder interfaces to process a user's login request.
On the client side
public class LoginClient {
Request-response messaging pattern (virtual queues) 95

Amazon Simple Queue Service Developer Guide

// Specify the Amazon SQS queue to which to send requests.
private final String requestQueueUrl;

// Use the AmazonSQSRequester interface to create

// a temporary queue for each response.

private final AmazonSQSRequester sqsRequester =
AmazonSQSRequesterClientBuilder.defaultClient();

LoginClient(String requestQueueUrl) {
this.requestQueuelUrl = requestQueueUrl;

// Send a login request.
public String login(String body) throws TimeoutException {
SendMessageRequest request = new SendMessageRequest()
.withMessageBody(body)
.withQueueUrl(requestQueueUrl);

// If no response is received, in 20 seconds,

// trigger the TimeoutException.

Message reply = sqsRequester.sendMessageAndGetResponse(request,
20, TimeUnit.SECONDS);

return reply.getBody();

Sending a login request does the following:

o v M WD

Creates a temporary queue.

Attaches the temporary queue's URL to the message as an attribute.
Sends the message.

Receives a response from the temporary queue.

Deletes the temporary queue.

Returns the response.

Example scenario: Processing a login request 96

Amazon Simple Queue Service Developer Guide

On the server side

The following example assumes that, upon construction, a thread is created to poll the queue
and call the handleLoginRequest () method for every message. In addition, doLogin() is an
assumed method.

public class LoginServer {

// Specify the Amazon SQS queue to poll for login requests.
private final String requestQueueUrl;

// Use the AmazonSQSResponder interface to take care

// of sending responses to the correct response destination.

private final AmazonSQSResponder sqsResponder =
AmazonSQSResponderClientBuilder.defaultClient();

LoginServer(String requestQueueUrl) {
this.requestQueuelUrl = requestQueueUrl;

// Process login requests from the client.
public void handlelLoginRequest(Message message) {

// Process the login and return a serialized result.
String response = doLogin(message.getBody());

// Extract the URL of the temporary queue from the message attribute

// and send the response to the temporary queue.

sgsResponder.sendResponseMessage(MessageContent.fromMessage(message),
new MessageContent(response));

Cleaning up queues

To make sure that Amazon SQS reclaims any in-memory resources used by virtual queues, when
your application no longer needs the Temporary Queue Client, it should call the shutdown()
method. You can also use the shutdown () method of the AmazonSQSRequester interface.

The Temporary Queue Client also provides a way to eliminate orphaned host queues. For each
queue that receives an API call over a period of time (by default, five minutes), the client uses the
TagQueue API action to tag a queue that remains in use.

Cleaning up queues 97

Amazon Simple Queue Service Developer Guide

® Note

Any API action taken on a queue marks it as non-idle, including a ReceiveMessage action
that returns no messages.

The background thread uses the ListQueues and ListTags API actions to check all queues with
the configured prefix, deleting any queues that haven't been tagged for at least five minutes. In
this way, if one client doesn't shut down cleanly, the other active clients clean up after it. In order
to reduce the duplication of work, all clients with the same prefix communicate through a shared,
internal work queue named after the prefix.

Amazon SQS message timers

Message timers allow you to set an initial invisibility period for a message when it's added to

a queue. For example, if you send a message with a 45-second timer, it remains hidden from
consumers for the first 45 seconds. The default (minimum) delay for a message is 0 seconds. The
maximum is 15 minutes. For information about sending messages with timers using the console,
see Sending a message using a standard queue.

(® Note

FIFO queues don't support timers on individual messages.

To set a delay period on an entire queue, rather than on individual messages, use delay queues.
A message timer setting for an individual message overrides any DelaySeconds value on an
Amazon SQS delay queue.

Extended scheduling options

While Amazon SQS delay queues and message timers allow scheduling of message delivery up
to 15 minutes in the future, you may require more flexible scheduling capabilities. In such cases,
consider using EventBridge Scheduler, which enables you to schedule billions of one-time or

recurring API actions without time limitations. EventBridge Scheduler is the recommended solution
for advanced message scheduling use cases.

Message timers 98

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html

Amazon Simple Queue Service Developer Guide

Accessing Amazon EventBridge Pipes through the Amazon SQS
console

Amazon EventBridge Pipes connect sources to targets. Pipes are intended for point-to-point
integrations between supported sources and targets, with support for advanced transformations
and enrichment. EventBridge Pipes provide a highly scalable way to connect your Amazon SQS
queue to AWS services such as Step Functions, Amazon SQS, and API Gateway, as well as third-
party software as a service (SaaS) applications like Salesforce.

To set up a pipe, you choose the source, add optional filtering, define optional enrichment, and
choose the target for the event data.

On the details page for an Amazon SQS queue, you can view the pipes that use that queue as their
source. From there, you can also:

« Launch the EventBridge console to view pipe details.

« Launch the EventBridge console to create a new pipe with the queue as its source.

For more information on configuring an Amazon SQS queue as a pipe source, see Amazon SQS
queue as a source in the Amazon EventBridge User Guide. For more information about EventBridge

Pipes in general, see EventBridge Pipes.

To access EventBridge pipes for a given Amazon SQS queue

1. Open the Queues page of the Amazon SQS console.
2. Select a queue.

3. On the queue detail page, choose the EventBridge Pipes tab.

The EventBridge Pipes tab includes a list of any pipes currently configured to use the selected
queue as a source, including:

e pipe name

e current status

o pipe target

« when the pipe was last modified

4. View more pipe details or create a new pipe, if desired:

Accessing EventBridge pipes 99

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-sqs.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-sqs.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://console.aws.amazon.com/sqs/#/queues

Amazon Simple Queue Service Developer Guide

» To access more details about a pipe:
Choose the pipe name.

This launches the Pipe details page of the EventBridge console.

» To create a new pipe:
Choose Connect Amazon SQS queue to pipe.

This launches the Create pipe page of the EventBridge console, with the Amazon SQS queue
specified as the pipe source. For more information, see Creating an EventBridge pipe in the
Amazon EventBridge User Guide.

/A Important
A message on an Amazon SQS queue is read by a single pipe and then deleted from
the queue after being processed, whether or not the message matches the filter you
can configured for that pipe. Proceed with caution when configuring multiple pipes to
use the same queue as their source.

Managing large Amazon SQS messages with Extended Client
Library and Amazon Simple Storage Service

Use the Amazon SQS Extended Client Library for Java and Amazon SQS Extended Client Library for
Python to send large messages, especially for payloads between 256 KB and 2 GB. These libraries
store the message payload in an Amazon S3 bucket and send a reference to the stored object in the
Amazon SQS queue.

® Note

The Amazon SQS Extended Client Libraries are compatible with both standard and FIFO
queues.

Managing large messages 100

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-create.html
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-python-extended-client-lib/
https://github.com/awslabs/amazon-sqs-python-extended-client-lib/

Amazon Simple Queue Service Developer Guide

Managing large Amazon SQS messages using Java and Amazon S3

Use the Amazon SQS Extended Client Library for Java with Amazon S3 to manage large Amazon
SQS messages, particularly for payloads ranging from 256 KB to 2 GB. The library stores the
message payload in an Amazon S3 bucket and sends a message containing a reference to the
stored object in the Amazon SQS queue.

With the Amazon SQS Extended Client Library for Java, you can:

» Specify whether messages are always stored in Amazon S3 or only when the size of a message
exceeds 256 KB

» Send a message that references a single message object stored in an S3 bucket
 Retrieve the message object from an Amazon S3 bucket

« Delete the message object from an Amazon S3 bucket

Prerequisites

The following example uses the AWS Java SDK. To install and set up the SDK, see Set up the AWS
SDK for Java in the AWS SDK for Java Developer Guide.

Before you run the example code, configure your AWS credentials. For more information, see Set
up AWS Credentials and Region for Development in the AWS SDK for Java Developer Guide.

The SDK for Java and Amazon SQS Extended Client Library for Java require the J2SE Development
Kit 8.0 or later.

® Note

You can use the Amazon SQS Extended Client Library for Java to manage Amazon SQS
messages using Amazon S3 only with the AWS SDK for Java. You can't do this with the AWS
CLI, the Amazon SQS console, the Amazon SQS HTTP API, or any of the other AWS SDKs.

AWS SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon SQS
messages

The following SDK for SDK for Java 2.x example uses the Extended Client Library for Java to work
with large messages. In the constructor, the following code:

Using the Extended Client Library for Java 101

https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://aws.amazon.com/sdkforjava/

Amazon Simple Queue Service Developer Guide

o Creates an Amazon S3 bucket with a random name
« Creates an SQS queue that begins with MyQueue

» Wraps a standard Java SDK Amazon S3 client in an instance of a AmazonSQSExtendedClient

In the sendAnReceiveMessage method, the example sends a random message that is stored
in an Amazon S3 bucket because it is more than 256 KB (the standard maximum message size).
Finally, the method retrieves the message and displays information about it to the console.

You can view the full example in https://github.com/awsdocs/aws-doc-sdk-examples/blob/
94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/
example/sqs/SqsExtendedClientExample.java#L1.

* Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.

* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at

* https://aws.amazon.com/apache2.0

* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing

* permissions and limitations under the License.

*/

import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.BucketLifecycleConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;
import software.amazon.awssdk.services.s3.model.ExpirationStatus;
import software.amazon.awssdk.services.s3.model.LifecycleExpiration;
import software.amazon.awssdk.services.s3.model.LifecycleRule;
import software.amazon.awssdk.services.s3.model.LifecycleRuleFilter;

Using the Extended Client Library for Java 102

https://github.com/awsdocs/aws-doc-sdk-examples/blob/94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/example/sqs/SqsExtendedClientExample.java#L1
https://github.com/awsdocs/aws-doc-sdk-examples/blob/94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/example/sqs/SqsExtendedClientExample.java#L1
https://github.com/awsdocs/aws-doc-sdk-examples/blob/94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/example/sqs/SqsExtendedClientExample.java#L1

Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.s3.model.ListObjectVersionsRequest;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsResponse;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Request;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Response;
import software.amazon.awssdk.services.s3.model.PutBucketlLifecycleConfigurationRequest;
import software.amazon.awssdk.services.sqgs.SgsClient;

import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;

import software.amazon.awssdk.services.sqgs.model.CreateQueueResponse;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;

import software.amazon.awssdk.services.sqs.model.Message;

import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageResponse;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;

import java.util.Arrays;
import java.util.List;
import java.util.UUID;

/**
* Examples of using Amazon SQS Extended Client Library for Java 2.x
*
*/
public class SqsExtendedClientExamples {
// Create an Amazon S3 bucket with a random name.
private final static String amzn-s3-demo-bucket = UUID.randomUUID() + "-"
+ DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new DateTime());

public static void main(String[] args) {

/*
* Create a new instance of the builder with all defaults (credentials
* and region) set automatically. For more information, see
* Creating Service Clients in the AWS SDK for Java Developer Guide.
*/

final S3Client s3 = S3Client.create();

/*
* Set the Amazon S3 bucket name, and then set a lifecycle rule on the
* bucket to permanently delete objects 14 days after each object's
* creation date.
*/
final LifecycleRule lifeCycleRule = LifecycleRule.buildex()

Using the Extended Client Library for Java 103

Amazon Simple Queue Service Developer Guide

.expiration(LifecycleExpiration.builder().days(14).build())
.filter(LifecycleRuleFilter.builder().prefix("").build())
.status(ExpirationStatus.ENABLED)
.build();
final BucketLifecycleConfiguration lifecycleConfig =

BucketLifecycleConfiguration.buildexr()
.rules(lifeCycleRule)
.build();

// Create the bucket and configure it
s3.createBucket(CreateBucketRequest.builder().bucket(amzn-s3-demo-
bucket).build());

s3.putBucketLifecycleConfiguration(PutBucketLifecycleConfigurationRequest.builder()
.bucket(amzn-s3-demo-bucket)
.lifecycleConfiguration(lifecycleConfig)
.build());
System.out.println("Bucket created and configured.");

// Set the Amazon SQS extended client configuration with large payload support
enabled

final ExtendedClientConfiguration extendedClientConfig = new
ExtendedClientConfiguration().withPayloadSupportEnabled(s3, amzn-s3-demo-bucket);

final SgsClient sqsExtended = new
AmazonSQSExtendedClient(SqsClient.builder().build(), extendedClientConfig);

// Create a long string of characters for the message object
int stringlLength = 300000;

char[] chars = new char[stringlLength];

Arrays.fill(chars, 'x');

final String mylLongString = new String(chars);

// Create a message queue for this example

final String queueName = "MyQueue-" + UUID.randomUUID();

final CreateQueueResponse createQueueResponse =
sqsExtended.createQueue(CreateQueueRequest.builder().queueName(queueName).build());

final String myQueueUrl = createQueueResponse.queuelUrl();

System.out.println("Queue created.");

// Send the message

final SendMessageRequest sendMessageRequest = SendMessageRequest.builder()
.queueUrl(myQueueUrl)
.messageBody(myLongString)

Using the Extended Client Library for Java 104

Amazon Simple Queue Service Developer Guide

.build();
sqsExtended.sendMessage(sendMessageRequest);
System.out.println("Sent the message.");

// Receive the message

final ReceiveMessageResponse receiveMessageResponse =
sqsExtended.receiveMessage(ReceiveMessageRequest.builder().queueUrl(myQueueUrl).build());

List<Message> messages = receiveMessageResponse.messages();

// Print information about the message

for (Message message : messages) {
System.out.println("\nMessage received.");
System.out.println(" ID: " + message.messageId());
System.out.println(" Receipt handle: " + message.receiptHandle());
System.out.println(" Message body (first 5 characters): " +

message.body().substring(@, 5));
}

// Delete the message, the queue, and the bucket
final String messageReceiptHandle = messages.get(@).receiptHandle();

sqsExtended.deleteMessage(DeleteMessageRequest.builder().queueUrl(myQueueUrl).receiptHandle(me
System.out.println("Deleted the message.");

sqsExtended.deleteQueue(DeleteQueueRequest.builder().queueUrl(myQueueUrl).build());
System.out.println("Deleted the queue.");

deleteBucketAndAllContents(s3);
System.out.println("Deleted the bucket.");

private static void deleteBucketAndAllContents(S3Client client) {
ListObjectsV2Response listObjectsResponse =
client.listObjectsV2(ListObjectsV2Request.builder().bucket(amzn-s3-demo-
bucket).build());

listObjectsResponse.contents().forEach(object -> {
client.deleteObject(DeleteObjectRequest.builder().bucket(amzn-s3-demo-
bucket).key(object.key()).build());
1)

Using the Extended Client Library for Java 105

Amazon Simple Queue Service Developer Guide

ListObjectVersionsResponse listVersionsResponse =
client.listObjectVersions(ListObjectVersionsRequest.builder().bucket(amzn-s3-demo-
bucket).build());

listVersionsResponse.versions().forEach(version -> {
client.deleteObject(DeleteObjectRequest.builder().bucket(amzn-s3-demo-
bucket).key(version.key()).versionId(version.versionId()).build());

1)

client.deleteBucket(DeleteBucketRequest.builder().bucket(amzn-s3-demo-
bucket).build());
}

You can use Apache Maven to configure and build Amazon SQS Extended Client for your Java
project, or to build the SDK itself. Specify individual modules from the SDK that you use in your
application.

<properties>
<aws-java-sdk.version>2.20.153</aws-java-sdk.version>
</properties>

<dependencies>

<dependency>
<groupId>software.amazon.awssdk</groupId>
<artifactId>sqgs</artifactId>
<version>${aws-java-sdk.version}</version>

</dependency>

<dependency>
<groupId>software.amazon.awssdk</groupId>
<artifactId>s3</artifactId>
<version>${aws-java-sdk.version}</version>

</dependency>

<dependency>
<groupId>com.amazonaws</groupIld>
<artifactId>amazon-sqs-java-extended-client-lib</artifactId>
<version>2.0.4</version>

</dependency>

<dependency>
<groupId>joda-time</groupIld>

Using the Extended Client Library for Java 106

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html

Amazon Simple Queue Service Developer Guide

<artifactId>joda-time</artifactId>
<version>2.12.6</version>
</dependency>
</dependencies>

Managing large Amazon SQS messages using Python and Amazon S3

Use the Amazon SQS Amazon SQS Extended Client Library for Python with Amazon S3 to manage

large Amazon SQS messages, especially for payloads between 256 KB and 2 GB. The library stores
the message payload in an Amazon S3 bucket and sends a message containing a reference to the
stored object in the Amazon SQS queue.

With the Amazon SQS Extended Client Library for Python, you can:

« Specify whether payloads are always stored in Amazon S3, or only stored in Amazon S3 when a
payload size exceeds 256 KB

» Send a message that references a single message object stored in an Amazon S3 bucket
 Retrieve the corresponding payload object from an Amazon S3 bucket

o Delete the corresponding payload object from an Amazon S3 bucket

Prerequisites
The following are the prerequisites for using the Amazon SQS Extended Client Library for Python:

« An AWS account with the necessary credentials. To create an AWS account, navigate to the AWS
home page, and then choose Create an AWS Account . Follow the instructions. For information
about credentials, see Credentials.

« An AWS SDK: The example on this page uses AWS Python SDK Boto3. To install and set up the
SDK, see the AWS SDK for Python documentation in the AWS SDK for Python Developer Guide

« Python 3.x (or later) and pip.
« The Amazon SQS Extended Client Library for Python, available from PyPI

(® Note

You can use the Amazon SQS Extended Client Library for Python to manage Amazon SQS
messages using Amazon S3 only with the AWS SDK for Python. You can't do this with the

Using the Extended Client Library for Python 107

https://github.com/awslabs/amazon-sqs-python-extended-client-lib/
https://aws.amazon.com/
https://aws.amazon.com/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://pypi.org/project/amazon-sqs-extended-client/

Amazon Simple Queue Service Developer Guide

AWS CLI, the Amazon SQS console, the Amazon SQS HTTP API, or any of the other AWS
SDKs.

Configuring message storage

The Amazon SQS Extended Client makes uses the following message attributes to configure the
Amazon S3 message storage options:

« large_payload_support: The Amazon S3 bucket name to store large messages.

« always_through_s3: If True, then all messages are stored in Amazon S3. If False, messages
smaller than 256 KB will not be serialized to the s3 bucket. The default is False.

« use_legacy_attribute: If True, all published messages use the Legacy reserved message
attribute (SQSLargePayloadSize) instead of the current reserved message attribute
(ExtendedPayloadSize).

Managing large Amazon SQS messages with Extended Client Library for Python

The following example creates an Amazon S3 bucket with a random name. It then creates an
Amazon SQS queue named MyQueue and sends a message that is stored in an S3 bucket and is
more than 256 KB to the queue. Finally, the code retrieves the message, returns information about
it, and then deletes the message, the queue, and the bucket.

import boto3
import sqs_extended_client

#Set the Amazon SQS extended client configuration with large payload.
sqs_extended_client = boto3.client("sqgs", region_name="us-east-1")
sqs_extended_client.large_payload_support = "amzn-s3-demo-bucket"
sqs_extended_client.use_legacy_attribute = False

Create an SQS message queue for this example. Then, extract the queue URL.
queue = sqgs_extended_client.create_queue(

QueueName = "MyQueue"

)

queue_url = sqgs_extended_client.get_queue_url(
QueueName = "MyQueue"

Using the Extended Client Library for Python 108

Amazon Simple Queue Service Developer Guide

)['QueueUrl']

Create the S3 bucket and allow message objects to be stored in the bucket.
sqs_extended_client.s3_client.create_bucket(Bucket=sqs_extended_client.large_payload_support)

Sending a large message
small_message = "s"
large_message = small_message * 300000 # Shall cross the limit of 256 KB

send_message_response = sqs_extended_client.send_message(
QueueUrl=queue_url,
MessageBody=large_message

)

assert send_message_response['ResponseMetadata’]J['HTTPStatusCode'] == 200

Receiving the large message
receive_message_response = sqs_extended_client.receive_message(
QueueUrl=queue_url,
MessageAttributeNames=["'All"']
)
assert receive_message_response['Messages'][@]['Body'] == large_message
receipt_handle = receive_message_response['Messages'][0@]['ReceiptHandle']

Deleting the large message
Set to True for deleting the payload from S3
sqs_extended_client.delete_payload_from_s3 = True
delete_message_response = sqs_extended_client.delete_message(
QueueUrl=queue_url,
ReceiptHandle=receipt_handle

assert delete_message_response['ResponseMetadata']['HTTPStatusCode'] == 200
Deleting the queue

delete_queue_response = sqs_extended_client.delete_queue(
QueueUrl=queue_url

assert delete_queue_response['ResponseMetadata’]['HTTPStatusCode'] == 200

Using the Extended Client Library for Python 109

Amazon Simple Queue Service Developer Guide

Configuring Amazon SQS queues using the Amazon SQS
console

Use the Amazon SQS console to configure and manage Amazon SQS queues and features. You can
also:

« Enable server-side encryption for enhanced security.

» Associate a dead-letter queue to handle unprocessed messages.

« Set up a trigger to invoke an Lambda function for event-driven processing.

Attribute-based access control for Amazon SQS

What is ABAC?

Attribute-based access control (ABAC) is an authorization process that defines permissions based
on tags that are attached to users and AWS resources. ABAC provides granular and flexible access
control based on attributes and values, reduces security risk related to reconfigured role-based
policies, and centralizes auditing and access policy management. For more details about ABAC, see
What is ABAC for AWS in the IAM User Guide.

Amazon SQS supports ABAC by allowing you to control access to your Amazon SQS queues based
on the tags and aliases that are associated with an Amazon SQS queue. The tag and alias condition
keys that enable ABAC in Amazon SQS authorize IAM principals to use Amazon SQS queues without
editing policies or managing grants. To learn more about ABAC condition keys, see Condition keys

for Amazon SQS in the Service Authorization Reference.

With ABAC, you can use tags to configure IAM access permissions and policies for your Amazon
SQS queues, which helps you to scale your permissions management. You can create a single
permissions policy in IAM using tags that you add to each business role—without having to update
the policy each time you add a new resource. You can also attach tags to IAM principals to create
an ABAC policy. You can design ABAC policies to allow Amazon SQS operations when the tag on
the IAM user role that's making the call matches the Amazon SQS queue tag. To learn more about
tagging in AWS, see AWS Tagging Strategies and Amazon SQS cost allocation tags.

ABAC for Amazon SQS 110

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

Amazon Simple Queue Service Developer Guide

® Note

ABAC for Amazon SQS is currently available in all AWS Commercial Regions where Amazon
SQS is available, with the following exceptions:

Asia Pacific (Hyderabad)

Asia Pacific (Melbourne)

Europe (Spain)

Europe (Zurich)

Why should | use ABAC in Amazon SQS?

Here are some benefits of using ABAC in Amazon SQS:

« ABAC for Amazon SQS requires fewer permissions policies. You don't have to create different
policies for different job functions. You can use resource and request tags that apply to more
than one queue, which reduces operational overhead.

« Use ABAC to scale teams quickly. Permissions for new resources are automatically granted based
on tags when resources are appropriately tagged during their creation.

» Use permissions on the IAM principal to restrict resource access. You can create tags for the
IAM principal and use them to restrict access to specific actions that match the tags on the IAM
principal. This helps you to automate the process of granting request permissions.

» Track who's accessing your resources. You can determine the identity of a session by looking at
user attributes in AWS CloudTrail.

Topics

» Tagging for access control in Amazon SQS

» Creating IAM users and Amazon SQS queues

» Testing attribute-based access control in Amazon SQS

Tagging for access control in Amazon SQS

The following is an example of using tags for access control in Amazon SQS. The IAM policy
restricts an 1AM user to all Amazon SQS actions for all queues that include a resource tag with

Why should | use ABAC in Amazon SQS? 111

Amazon Simple Queue Service Developer Guide

the key environment and the value production. For more information, see Attribute-based access

control with tags and AWS Organizations.

JSON

{
"Version": "2012-10-17",

"Statement": [
{

"Sid": "AllowAccessForProd",
"Effect": "Allow",
"Action": "sqgs:*",
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:ResourceTag/environment": "prod"

Creating IAM users and Amazon SQS queues

The following examples explain how to create an ABAC policy to control access to Amazon SQS
using the AWS Management Console and AWS CloudFormation.

Using the AWS Management Console

Create an IAM user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Choose User from the left navigation pane.
Choose Add Users and enter a name in the User name text box.
Select the Access key - Programmatic access box and choose Next:Permissions.

Choose Next:Tags.

A

Add the tag key as environment and the tag value as beta.

Creating |IAM users and Amazon SQS queues 112

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tagging_abac.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tagging_abac.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Simple Queue Service Developer Guide

7. Choose Next:Review and then choose Create user.

8. Copy and store the access key ID and secret access key in a secure location.

Add IAM user permissions

Select the IAM user that you created.
Choose Add inline policy.
On the JSON tab, paste the following policy:

Choose Review policy.

i hd W=

Choose Create policy.

Using AWS CloudFormation

Use the following sample AWS CloudFormation template to create an IAM user with an inline
policy attached and an Amazon SQS queue:

AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create IAM user with custom inline policy"
Resources:
IAMPolicy:
Type: "AWS::IAM::Policy"
Properties:
PolicyDocument: |
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowAccessForSameResTag",
"Effect": "Allow",
"Action": [
"sqgs:SendMessage",
"sqs:ReceiveMessage",
"sqs:DeleteMessage"
1,
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:ResourceTag/environment": "${aws:PrincipalTag/
environment}"

Creating |IAM users and Amazon SQS queues 113

Amazon Simple Queue Service Developer Guide

"Sid": "AllowAccessForSameReqTag",

"Effect": "Allow",

"Action": [
"sqs:CreateQueue",
"sqs:DeleteQueue",
"sqgs:SetQueueAttributes",
"sqgs:tagqueue"

1,

"Resource": "*",

"Condition": {
"StringEquals": {

"aws:RequestTag/environment": "${aws:PrincipalTag/
environment}"

"Sid": "DenyAccessForProd",
"Effect": "Deny",
"Action": "sqgs:*",
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:ResourceTag/stage": "prod"

Users:
- "testUser"
PolicyName: tagQueuePolicy

IAMUser:
Type: "AWS::IAM::User"
Properties:
Path: "/"
UserName: "testUser"
Tags:

Creating |IAM users and Amazon SQS queues 114

Amazon Simple Queue Service Developer Guide

Key: "environment"
Value: "beta"

Testing attribute-based access control in Amazon SQS
The following examples show you how to test attribute-based access control in Amazon SQS.
Create a queue with the tag key set to environment and the tag value set to prod

Run this AWS CLI command to test creating the queue with the tag key set to environment and
the tag value set to prod. If you don't have AWS CLI, you can download and configure it for your
machine.

aws sqgs create-queue --queue-name prodQueue —region us-east-1 —tags "environment=prod"

You receive an AccessDenied error from the Amazon SQS endpoint:

An error occurred (AccessDenied) when calling the CreateQueue operation: Access to the
resource <queueUrl> is denied.

This is because the tag value on the IAM user does not match the tag passed in the CreateQueue
API call. Remember that we applied a tag to the IAM user with the key set to environment and
the value set to beta.

Create a queue with the tag key set to environment and the tag value set to beta

Run the this CLI command to test creating a queue with the tag key set to environment and the
tag value set to beta.

aws sqgs create-queue --queue-name betaQueue —region us-east-1 —tags "environment=beta"

You receive a message confirming the successful creation of the queue, similar to the one below.

{

"QueueUrl": "<queueUrl>"

}

Sending a message to a queue

Run this CLI command to test sending a message to a queue.

Testing attribute-based access control 115

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html

Amazon Simple Queue Service Developer Guide

aws sqgs send-message --queue-url <queueUrl> --message-body testMessage

The response shows a successful message delivery to the Amazon SQS queue. The IAM user
permission allows you to send a message to a queue that has a beta tag. The response includes
MD50fMessageBody and Messageld containing the message.

{
"MD50fMessageBody": "<MD50fMessageBody>",

"MessageId": "<MessageId>"

}

Configuring queue parameters using the Amazon SQS console

When creating or editing a queue, you can configure the following parameters:

« Visibility timeout — The length of time that a message received from a queue (by one consumer)
won't be visible to the other message consumers. For more information, see Visibility timeout.

(® Note

Using the console to configure the visibility timeout configures the timeout value for all
of the messages in the queue. To configure the timeout for single or multiple messages,
you must use one of the AWS SDKs.

Message retention period — The amount of time that Amazon SQS retains messages that remain
in the queue. By default, the queue retains messages for four days. You can configure a queue to
retain messages for up to 14 days. For more information, see Message retention period.

Delivery delay — The amount of time that Amazon SQS will delay before delivering a message
that is added to the queue. For more information, see Delivery delay.

Maximum message size — The maximum message size for this queue. For more information, see
Maximum message size.

Receive message wait time — The maximum amount of time that Amazon SQS waits for
messages to become available after the queue gets a receive request. For more information, see
Amazon SQS short and long polling.

Enable content-based deduplication - Amazon SQS can automatically create deduplication IDs
based on the body of the message. For more information, see Amazon SQS FIFO queues.

Configuring queue parameters 116

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

« Enable high throughput FIFO - Use to enable high throughput for messages in the queue.
Choosing this option changes the related options (Deduplication scope and FIFO throughput
limit) to the required settings for enabling high throughput for FIFO queues. For more
information, see High throughput for FIFO queues in Amazon SQS and Amazon SQS message

guotas.
» Redrive allow policy: defines which source queues can use this queue as the dead-letter queue.

For more information, see Using dead-letter queues in Amazon SQS .

To configure queue parameters for an existing queue (console)

1.

2
3.
4

10.

Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues. Choose a queue and choose Edit.
Scroll to the Configuration section.

For Visibility timeout , enter the duration and units. The range is 0 seconds to 12 hours. The
default value is 30 seconds.

For Message retention period, enter the duration and units. The range is 1 minute to 14 days.
The default value is 4 days.

For a standard queue, enter a value for Receive message wait time. The range is 0 to 20
seconds. The default value is 0 seconds, which sets short polling. Any non-zero value sets long
polling.

For Delivery delay, enter the duration and units. The range is 0 seconds to 15 minutes. The
default value is O seconds.

For Maximum message size, enter a value. The range is from 1 KiB to 1024 KiB. The default
value is 1024 KiB.

For a FIFO queue, choose Enable content-based deduplication to enable content-based
deduplication. The default setting is disabled.

(Optional) For a FIFO queue to enable higher throughput for sending and receiving messages
in the queue, choose Enable high throughput FIFO.

Choosing this option changes the related options (Deduplication scope and FIFO throughput
limit) to the required settings for enabling high throughput for FIFO queues. If you change any
of the settings required for using high throughput FIFO, normal throughput is in effect for the
queue, and deduplication occurs as specified. For more information, see High throughput for

FIFO queues in Amazon SQS and Amazon SQS message quotas.

Configuring queue parameters 117

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

11. For Redrive allow policy, choose Enabled. Select from the following: Allow all (default), By
queue or Deny all. When choosing By queue, specify a list of up to 10 source queues by the
Amazon Resource Name (ARN).

12. When you finish configuring the queue parameters, choose Save.

Configuring an access policy in Amazon SQS

When you edit a queue, you can configure its access policy to control who can interact with it.

» The access policy defines which accounts, users, and roles have permissions to access the queue.

« It specifies the allowed actions, such as SendMessage, ReceiveMessage, or DeleteMessage.

By default, only the queue owner has permission to send and receive messages.

To configure the access policy for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sgs/.

In the navigation pane, choose Queues.
Choose a queue and choose Edit.

Scroll to the Access policy section.

vk WN

Edit the access policy statements in the input box. For more on access policy statements, see
Identity and access management in Amazon SQS.

6. When you finish configuring the access policy, choose Save.

Configuring server-side encryption for a queue using SQS-
managed encryption keys

In addition to the default Amazon SQS managed server-side encryption (SSE) option, Amazon

SQS managed SSE (SSE-SQS) lets you create custom managed server-side encryption that uses
SQS-managed encryption keys to protect sensitive data sent over message queues. With SSE-SQS,
you don't need to create and manage encryption keys, or modify your code to encrypt your data.
SSE-SQS lets you transmit data securely and helps you meet strict encryption compliance and
regulatory requirements at no additional cost.

Configuring an access policy 118

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

SSE-SQS protects data at rest using 256-bit Advanced Encryption Standard (AES-256) encryption.
SSE encrypts messages as soon as Amazon SQS receives them. Amazon SQS stores messages in
encrypted form and decrypts them only when sending them to an authorized consumer.

(® Note

» The default SSE option is only effective when you create a queue without specifying
encryption attributes.

« Amazon SQS allows you to turn off all queue encryption. Therefore, turning off KMS-SSE,
will not automatically enable SQS-SSE. If you wish to enable SQS-SSE after turning off
KMS-SSE, you must add an attribute change in the request.

To configure SSE-SQS encryption for a queue (console)

(@ Note

Any new queue created using the HTTP (non-TLS) endpoint will not enable SSE-SQS
encryption by default. It is a security best practice to create Amazon SQS queues using
HTTPS or Signature Version 4 endpoints.

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.
Choose a queue, and then choose Edit.

Expand Encryption.

ok W

For Server-side encryption, choose Enabled (default).

(@ Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

6. Select Amazon SQS key (SSE-SQS). There is no additional fee for using this option.

Configuring SSE-SQS for a queue 119

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

7. Choose Save.

Configuring server-side encryption for a queue using the
Amazon SQS console

To protect the data in a queue’s messages, Amazon SQS has server-side encryption (SSE) enabled
by default for all newly created queues. Amazon SQS integrates with the Amazon Web Services Key
Management Service (Amazon Web Services KMS) to manage KMS keys for server-side encryption
(SSE). For information about using SSE, see Encryption at rest in Amazon SQS.

The KMS key that you assign to your queue must have a key policy that includes permissions for all
principals that are authorized to use the queue. For information, see Key Management.

If you aren't the owner of the KMS key, or if you log in with an account that doesn't have
kms:ListAliases and kms:DescribeKey permissions, you won't be able to view information
about the KMS key on the Amazon SQS console. Ask the owner of the KMS key to grant you these
permissions. For more information, see Key Management.

When you create or edit a queue, you can configure SSE-KMS.

To configure SSE-KMS for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.
Choose a queue, and then choose Edit.

Expand Encryption.

ok W

For Server-side encryption, choose Enabled (default).

(® Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

6. Select AWS Key Management Service key (SSE-KMS).

Configuring SSE-KMS for a queue 120

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

The console displays the Description, the Account, and the KMS key ARN of the KMS key.
7. Specify the KMS key ID for the queue. For more information, see Key terms.

a. Choose the Choose a KMS key alias option.

b. The default key is the Amazon Web Services managed KMS key for Amazon SQS. To use
this key, choose it from the KMS key list.

c. To use a custom KMS key from your Amazon Web Services account, choose it from the
KMS key list. For instructions on creating custom KMS keys, see Creating Keys in the
Amazon Web Services Key Management Service Developer Guide.

d. To use a custom KMS key that is not in the list, or a custom KMS key from another Amazon
Web Services account, choose Enter the KMS key alias and enter the KMS key Amazon
Resource Name (ARN).

8. (Optional) For Data key reuse period, specify a value between 1 minute and 24 hours. The
default is 5 minutes. For more information, see Understanding the data key reuse period.

9. When you finish configuring SSE-KMS, choose Save.

Configuring cost allocation tags for a queue using the Amazon
SQS console

To organize and identify your Amazon SQS queues, you can add cost allocation tags. For more
information, see Amazon SQS cost allocation tags.

» The Tagging tab on the Details page displays the queue's tags.

» You can add or modify tags when creating or editing a queue.

To configure tags for an existing queue (console)

Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.

1.
2.
3. Choose a queue and choose Edit.
4. Scroll to the Tags section.

5.

Add, modify, or remove the queue tags:

a. To add a tag, choose Add new tag, enter a Key and Value, and then choose Add new tag.

Configuring tags for a queue 121

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

b. To update a tag, change its Key and Value.
c. Toremove a tag, choose Remove next to its key-value pair.

6. When you finish configuring the tags, choose Save.

Subscribing a queue to an Amazon SNS topic using the Amazon
SQS console

You can subscribe one or more Amazon SQS queues to an Amazon SNS topic. When you publish

a message to a topic, Amazon SNS sends the message to each subscribed queue. Amazon SQS
manages the subscription and handles the required permissions. For more information about
Amazon SNS, see What is Amazon SNS? in the Amazon Simple Notification Service Developer Guide.

When you subscribe an Amazon SQS queue to an Amazon SNS topic, Amazon SNS uses HTTPS
to forward messages to Amazon SQS. For information about using Amazon SNS with encrypted
Amazon SQS queues, see Configure KMS permissions for AWS services.

/A Important

Amazon SQS supports a maximum of 20 statements for each access policy. Subscribing to
an Amazon SNS topic adds one such statement. Exceeding this amount will result in a failed
topic subscription delivery.

To subscribe a queue to an Amazon SNS topic (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.
From the list of queues, choose the queue to subscribe to the Amazon SNS topic.

From Actions, choose Subscribe to Amazon SNS topic.

i ok W

From the Specify an Amazon SNS topic available for this queue menu, choose the Amazon
SNS topic for your queue.

If the SNS topic isn't listed, choose Enter Amazon SNS topic ARN and then enter the topic's
Amazon Resource Name (ARN).

6. Choose Save.

Subscribing a queue to a topic 122

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

7. To verify the subscription, publish a message to the topic and view the message in the queue.
For more information, see Amazon SNS message publishing in the Amazon Simple Notification
Service Developer Guide.

Cross-account subscriptions

If your Amazon SQS queue and Amazon SNS topic are in different AWS accounts, additional
permissions are required.

Topic owner (Account A)

Modify the Amazon SNS topic's access policy to allow the Amazon SQS queue's AWS account to
subscribe. Example policy statement:

{
"Effect": "Allow",
"Principal": { "AWS": "arn:aws:iam::111122223333:root" },
"Action": "sns:Subscribe",
"Resource": "arn:aws:sns:us-east-1:123456789012:MyTopic"
}

This policy allows account 111122223333 to subscribe to MyTopic.
Queue owner (Account B)

Modify the Amazon SQS queue's access policy to allow the Amazon SNS topic to send messages.
Example policy statement:

{
"Effect": "Allow",
"Principal": { "Service": "sns.amazonaws.com" },
"Action": "sqgs:SendMessage",
"Resource": "arn:aws:sqs:us-east-1:111122223333:MyQueue",
"Condition": {
"ArnEquals": { "aws:SourceArn": "arn:aws:sns:us-east-1:123456789012:MyTopic" }
}
}

This policy allows MyTopic to send messages to MyQueue.

Cross-account subscriptions 123

https://docs.aws.amazon.com/sns/latest/dg/sns-publishing.html

Amazon Simple Queue Service Developer Guide

Cross-region subscriptions
To subscribe to an Amazon SNS topic in a different AWS Region, ensure that:

» The Amazon SNS topic's access policy allows cross-region subscriptions.

« The Amazon SQS queue's access policy permits the Amazon SNS topic to send messages across
regions.

For more information, Sending Amazon SNS messages to an Amazon SQS queue or AWS Lambda

function in a different Region in the Amazon Simple Notification Service Developer Guide.

Configuring an Amazon SQS queue to trigger an AWS Lambda
function

You can use a Lambda function to process messages from an Amazon SQS queue. Lambda polls the
qgueue and invokes your function synchronously, passing a batch of messages as an event.

Configuring visibility timeout

Set the queue's visibility timeout to at least six times the function timeout. This ensures Lambda

has enough time to retry if a function is throttled while processing a previous batch.

Using a dead-letter queue (DLQ)

Specify a dead-letter queue to capture messages that the Lambda function fails to process.

Handling multiple queues and functions

A Lambda function can process multiple queues by creating a separate event source for each
queue. You can also associate multiple Lambda functions with the same queue.

Permissions for encrypted queues

If you associate an encrypted queue with a Lambda function but Lambda doesn't poll for
messages, add the kms :Decrypt permission to your Lambda execution role.

Restrictions
The queue and Lambda function must be in the same AWS Region.

An encrypted queue that uses the default key (AWS managed KMS key for Amazon SQS) cannot
invoke a Lambda function in a different AWS account.

Cross-region subscriptions 124

https://docs.aws.amazon.com/sns/latest/dg/sns-cross-region-delivery.html
https://docs.aws.amazon.com/sns/latest/dg/sns-cross-region-delivery.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-common-summary

Amazon Simple Queue Service Developer Guide

For implementation details, see Using AWS Lambda with Amazon SQS in the AWS Lambda
Developer Guide.

Prerequisites

To configure Lambda function triggers, you must meet the following requirements:

« If you use a user, your Amazon SQS role must include the following permissions:
« lambda:CreateEventSourceMapping
o lambda:ListEventSourceMappings
e lambda:ListFunctions
« The Lambda execution role must include the following permissions:
» sqs:DeleteMessage
e sqs:GetQueueAttributes
» sqgs:ReceiveMessage

« If you associate an encrypted queue with a Lambda function, add the kms :Decrypt permission
to the Lambda execution role.

For more information, see Overview of managing access in Amazon SQS.

To configure a queue to trigger a Lambda function (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sgs/.

In the navigation pane, choose Queues.
On the Queues page, choose the queue to configure.

On the queue's page, choose the Lambda triggers tab.

i A W

On the Lambda triggers page, choose a Lambda trigger.

If the list doesn't include the Lambda trigger that you need, choose Configure Lambda
function trigger. Enter the Amazon Resource Name (ARN) of the Lambda function or choose
an existing resource. Then choose Save.

6. Choose Save. The console saves the configuration and displays the Details page for the queue.

On the Details page, the Lambda triggers tab displays the Lambda function and its status. It
takes approximately 1 minute for the Lambda function to become associated with your queue.

Prerequisites 125

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

7. To verify the results of the configuration, send a message to your queue and then view the
triggered Lambda function in the Lambda console.

Automating notifications from AWS services to Amazon SQS
using Amazon EventBridge

Amazon EventBridge allows you to automate AWS services and respond to events, such as
application issues or resource changes, in near real-time.

» You can create rules to filter specific events and define automated actions when a rule matches
an event.

« EventBridge supports multiple targets, including Amazon SQS standard and FIFO queues, which
receive events in JSON format.

For more information, see Amazon EventBridge targets in the Amazon EventBridge User Guide.

Sending a message with attributes using Amazon SQS

For standard and FIFO queues, you can include structured metadata to messages, including
timestamps, geospatial data, signatures, and identifiers . For more information, see Amazon SQS
message attributes.

To send a message with attributes to a queue using the Amazon SQS console

Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

In the navigation pane, choose Queues.
On the Queues page, choose a queue.

Choose Send and receive messages.

i A W=

Enter the message attribute parameters.

o

In the name text box, enter a unique name of up to 256 characters.
b. For the attribute type, choose String, Number, or Binary.

c. (Optional) Enter a custom data type. For example, you could add byte, int, or float as
custom data types for Number.

d. Inthe value text box, enter the message attribute value.

Automating notifications using EventBridge 126

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-targets.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

Message attributes - Optional Infa

string ¥

Add new attribute

6. To add another message attribute., choose Add new attribute.

Message attributes - Optional Info

String ¥

Add new attribute

You can modify the attribute values any time before sending the message.
To delete an attribute, choose Remove. To delete the first attribute, close Message attributes.

When you finish adding attributes to the message, choose Send message. Your message is
sent and the console displays a success message. To view information about the message
attributes of the sent message, choose View details. Choose Done to close the Message
details dialog box.

Message attributes 127

Amazon Simple Queue Service Developer Guide

Amazon SQS best practices

Amazon SQS manages and processes message queues, enabling different parts of an application
to exchange messages reliably and at scale. This topic covers key operational best practices,
including using long polling to reduce empty responses, implementing dead-letter queues to
handle processing errors, and optimizing queue permissions for security.

Topics

« Amazon SQS error handling and problematic messages

« Amazon SQS message deduplication and grouping

« Amazon SQS message processing and timing

Amazon SQS error handling and problematic messages

This topic provides detailed instructions on managing and mitigating errors in Amazon SQS,
including techniques for handling request errors, capturing problematic messages, and configuring
dead-letter queue retention to ensure message reliability.

Topics

« Handling request errors in Amazon SQS

» Capturing problematic messages in Amazon SQS

» Setting-up dead-letter queue retention in Amazon SQS

Handling request errors in Amazon SQS

To handle request errors, use one of the following strategies:

« If you use an AWS SDK, you already have automatic retry and backoff logic at your disposal. For
more information, see Error Retries and Exponential Backoff in AWS in the Amazon Web Services
General Reference.

« If you don't use the AWS SDK features for retry and backoff, allow a pause (for example, 200
ms) before retrying the ReceiveMessage action after receiving no messages, a timeout, or an

error message from Amazon SQS. For subsequent use of ReceiveMessage that gives the same
results, allow a longer pause (for example, 400 ms).

Error handling and problematic messages 128

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Capturing problematic messages in Amazon SQS

To capture all messages that can't be processed, and to collect accurate CloudWatch metrics,
configure a dead-letter queue.

» The redrive policy redirects messages to a dead-letter queue after the source queue fails to
process a message a specified number of times.

» Using a dead-letter queue decreases the number of messages and reduces the possibility of
exposing you to poison pill messages (messages that are received but can't be processed).

« Including a poison pill message in a queue can distort the ApproximateAgeOfOldestMessage

CloudWatch metric by giving an incorrect age of the poison pill message. Configuring a dead-
letter queue helps avoid false alarms when using this metric.

Setting-up dead-letter queue retention in Amazon SQS

For standard queues, the expiration of a message is always based on its original enqueue
timestamp. When a message is moved to a dead-letter queue, the enqueue timestamp is
unchanged. The ApproximateAgeOfOldestMessage metric indicates when the message moved
to the dead-letter queue, not when the message was originally sent. For example, assume that

a message spends 1 day in the original queue before it's moved to a dead-letter queue. If the
dead-letter queue's retention period is 4 days, the message is deleted from the dead-letter queue
after 3 days and the ApproximateAgeOfOldestMessage is 3 days. Thus, it is a best practice to
always set the retention period of a dead-letter queue to be longer than the retention period of
the original queue.

For FIFO queues, the enqueue timestamp resets when the message is moved to a dead-letter
queue. The ApproximateAgeOf0ldestMessage metric indicates when the message moved to
the dead-letter queue. In the same example above, the message is deleted from the dead-letter
queue after 4 days and the ApproximateAgeOfOldestMessage is 4 days.

Amazon SQS message deduplication and grouping

This topic provides best practices for ensuring consistent message processing in Amazon SQS. It
explains how to use:

» MessageDeduplicationlId to prevent duplicate messages in FIFO queues.

« MessageGroupId to manage message ordering within distinct message groups.

Capturing problematic messages in Amazon SQS 129

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestSyntax
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Topics

Avoiding inconsistent message processing in Amazon SQS

Using the message deduplication ID in Amazon SQS

Using the message group ID with Amazon SQS FIFO Queues

Using the Amazon SQS receive request attempt ID

Avoiding inconsistent message processing in Amazon SQS

Because Amazon SQS is a distributed system, it is possible for a consumer to not receive a message
even when Amazon SQS marks the message as delivered while returning successfully from a
ReceiveMessage APl method call. In this case, Amazon SQS records the message as delivered at
least once, although the consumer has never received it. Because no additional attempts to deliver
messages are made under these conditions, we don't recommend setting the number of maximum
receives to 1 for a dead-letter queue.

Using the message deduplication ID in Amazon SQS

MessageDeduplicationlId is a token used only in Amazon SQS FIFO queues to prevent duplicate
message delivery. It ensures that within a 5-minute deduplication window, only one instance of a
message with the same deduplication ID is processed and delivered.

If Amazon SQS has already accepted a message with a specific deduplication ID, any subsequent
messages with the same ID will be acknowledged but not delivered to consumers.

(® Note

Amazon SQS continues tracking the deduplication ID even after the message has been
received and deleted.

Topics

When to provide a message deduplication ID in Amazon SQS

Enabling deduplication for a single-producer/consumer system in Amazon SQS

Outage recovery scenarios in Amazon SQS

Configuring visibility timeouts in Amazon SQS

Avoiding inconsistent message processing in Amazon SQS 130

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

When to provide a message deduplication ID in Amazon SQS

A producer should specify a message deduplication ID in the following scenarios:

« When sending identical message bodies that must be treated as unique.

« When sending messages with the same content but different message attributes, ensuring each
message is processed separately.

« When sending messages with different content (for example, a retry counter in the message
body) but requiring Amazon SQS to recognize them as duplicates.

Enabling deduplication for a single-producer/consumer system in Amazon SQS

If you have a single producer and a single consumer, and messages are unique because they include
an application-specific message ID in the body, follow these best practices:

« Enable content-based deduplication for the queue (each of your messages has a unique body).
The producer can omit the message deduplication ID.

« When content-based deduplication is enabled for an Amazon SQS FIFO queue, and a message
is sent with a deduplication ID, the SendMessage deduplication ID overrides the generated
content-based deduplication ID.

» Although the consumer isn't required to provide a receive request attempt ID for each request,
it's a best practice because it allows fail-retry sequences to execute faster.

» You can retry send or receive requests because they don't interfere with the ordering of
messages in FIFO queues.

Outage recovery scenarios in Amazon SQS

The deduplication process in FIFO queues is time-sensitive. When designing your application,
ensure that both the producer and consumer can recover from client or network outages without
introducing duplicates or processing failures.

Producer considerations

« Amazon SQS enforces a 5-minute deduplication window.

« If a producer retries a SendMessage request after 5-minutes, Amazon SQS treats it as a new

message, potentially creating duplicates.

Using the message deduplication ID 131

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Consumer considerations

« If a consumer fails to process a message before the visibility timeout expires, another consumer
may receive and process it, leading to duplicate processing.

» Adjust the visibility timeout based on your application's processing time.

« Use the ChangeMessageVisibility API to extend the timeout while a message is still being
processed.

« If a message repeatedly fails to process, route it to a dead-letter queue (DLQ) instead of allowing
it to be reprocessed indefinitely.

» The producer must be aware of the deduplication interval of the queue. Amazon SQS has a
deduplication interval of 5 minutes. Retrying SendMessage requests after the deduplication
interval expires can introduce duplicate messages into the queue. For example, a mobile device
in a car sends messages whose order is important. If the car loses cellular connectivity for a
period of time before receiving an acknowledgement, retrying the request after regaining
cellular connectivity can create a duplicate.

» The consumer must have a visibility timeout that minimizes the risk of being unable to process
messages before the visibility timeout expires. You can extend the visibility timeout while the
messages are being processed by calling the ChangeMessageVisibility action. However, if
the visibility timeout expires, another consumer can immediately begin to process the messages,
causing a message to be processed multiple times. To avoid this scenario, configure a dead-letter

queue.

Configuring visibility timeouts in Amazon SQS

To ensure reliable message processing, set the visibility timeout to be longer than the AWS SDK
read timeout. This applies when using the ReceiveMessage API with both short polling and long

polling. A longer visibility timeout prevents messages from becoming available to other consumers
before the original request completes, reducing the risk of duplicate processing.

Using the message group ID with Amazon SQS FIFO Queues

In FIFO (First-In-First-Out) queues, MessageGroupId is an attribute that organizes messages into
distinct groups. Messages within the same message group are always processed one at a time, in

strict order, ensuring that no two messages from the same group are processed simultaneously. In

Using the message group ID 132

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

standard queues, using MessageGroupId enables fair queues. If strict ordering is required, use a
FIFO queue.

Topics

Interleaving multiple ordered message groups in Amazon SQS

Preventing duplicate processing in a multiple-producer/consumer system in Amazon SQS

Avoid large message backlogs with the same message group ID in Amazon SQS

Avoid reusing the same message group ID with virtual queues in Amazon SQS

Interleaving multiple ordered message groups in Amazon SQS

To interleave multiple ordered message groups within a single FIFO queue, assign a
MessageGroupld to each group (for example, session data for different users). This allows

multiple consumers to read from the queue simultaneously while ensuring that messages within
the same group are processed in order.

When a message with a specific MessageGroupId is being processed and is invisible, no other
consumer can process messages from that same group until the visibility timeout expires or the
message is deleted.

Preventing duplicate processing in a multiple-producer/consumer system in
Amazon SQS

In a high-throughput, low-latency system where message ordering is not a priority, producers can
assign a unique MessageGroupId to each message. This ensures that Amazon SQS FIFO queues

eliminate duplicates, even in a multiple-producer/multiple-consumer setup. While this approach
prevents duplicate messages, it does not guarantee message ordering since each message is
treated as its own independent group.

In any system with multiple producers and consumers, there is always a risk of duplicate delivery.
If a consumer fails to process a message before the visibility timeout expires, Amazon SQS makes
the message available again, potentially allowing another consumer to pick it up. To mitigate this,
ensure proper message acknowledgment and visibility timeout settings based on processing time.

Using the message group ID 133

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Avoid large message backlogs with the same message group ID in Amazon SQS

FIFO queues support a maximum of 120,000 in-flight messages (messages received by a consumer
but not yet deleted). If this limit is reached, Amazon SQS does not return an error, but processing
may be impacted. You can request an increase beyond this limit by contacting AWS Support.

FIFO queues scan the first 120,000 messages to determine available message groups. If a large
backlog builds up in a single message group, messages from other groups sent later will remain
blocked until the backlog is processed.

(® Note

A message backlog can occur when a consumer repeatedly fails to process a message. This
could be due to message content issues or consumer-side failures. To prevent message
processing delays, configure a dead-letter queue to move unprocessed messages after

multiple failed attempts. This ensures that other messages in the same message group can
be processed, preventing system bottlenecks.

Avoid reusing the same message group ID with virtual queues in Amazon SQS

When using virtual queues with a shared host queue, avoid reusing the same MessageGroupld
across different virtual queues. If multiple virtual queues share the same host queue and contain
messages with the same MessageGrouplId, those messages can block each other, preventing
efficient processing. To ensure smooth message processing, assign unique MessageGroupId
values for messages in different virtual queues.

Using the Amazon SQS receive request attempt ID

The receive request attempt ID is a unique token used to deduplicate ReceiveMessage calls in
Amazon SQS. During a network outage or connectivity issue between your application and Amazon
SQS, it is best practice to:

» Provide a receive request attempt ID when making a ReceiveMessage call.

» Retry using the same receive request attempt ID if the operation fails.

Using the receive request attempt ID 134

https://docs.aws.amazon.com/awssupport/latest/user/create-service-quota-increase.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Amazon SQS message processing and timing

This topic provides a comprehensive guidance on optimizing the speed and efficiency of message
handling in Amazon SQS, including strategies for timely message processing, selecting the best
polling mode, and configuring long polling for improved performance.

Topics

» Processing messages in a timely manner in Amazon SQS

« Setting-up long polling in Amazon SQS

» Using the appropriate polling mode in Amazon SQS

Processing messages in a timely manner in Amazon SQS

Setting the visibility timeout depends on how long it takes your application to process and delete

a message. For example, if your application requires 10 seconds to process a message and you

set the visibility timeout to 15 minutes, you must wait for a relatively long time to attempt to
process the message again if the previous processing attempt fails. Alternatively, if your application
requires 10 seconds to process a message but you set the visibility timeout to only 2 seconds, a
duplicate message is received by another consumer while the original consumer is still working on
the message.

To make sure that there is sufficient time to process messages, use one of the following strategies:

« If you know (or can reasonably estimate) how long it takes to process a message, extend the
message's visibility timeout to the maximum time it takes to process and delete the message. For
more information, see Configuring the Visibility Timeout.

« If you don't know how long it takes to process a message, create a heartbeat for your consumer
process: Specify the initial visibility timeout (for example, 2 minutes) and then—as long as your
consumer still works on the message—keep extending the visibility timeout by 2 minutes every
minute.

/A Important

The maximum visibility timeout is 12 hours from the time that Amazon SQS receives the
ReceiveMessage request. Extending the visibility timeout does not reset the 12 hour
maximum.

Message processing and timing 135

Amazon Simple Queue Service Developer Guide

Additionally, you may be unable to set the timeout on an individual message to the full
12 hours (e.g. 43,200 seconds) since the ReceiveMessage request initiates the timer.
For example, if you receive a message and immediately set the 12 hour maximum by
sending a ChangeMessageVisibility call with VisibilityTimeout equal to 43,200
seconds, it will likely fail. However, using a value of 43,195 seconds will work unless
there is a significant delay between requesting the message via ReceiveMessage and
updating the visibility timeout. If your consumer needs longer than 12 hours, consider
using Step Functions.

Setting-up long polling in Amazon SQS

When the wait time for the ReceiveMessage API action is greater than O, long polling is in

effect. The maximum long polling wait time is 20 seconds. Long polling helps reduce the cost of
using Amazon SQS by eliminating the number of empty responses (when there are no messages
available for a ReceiveMessage request) and false empty responses (when messages are available
but aren't included in a response). For more information, see Amazon SQS short and long polling.

For optimal message processing, use the following strategies:

« In most cases, you can set the ReceiveMessage wait time to 20 seconds. If 20 seconds is too
long for your application, set a shorter ReceiveMessage wait time (1 second minimum). If you
don't use an AWS SDK to access Amazon SQS, or if you configure an AWS SDK to have a shorter
wait time, you might have to modify your Amazon SQS client to either allow longer requests or
use a shorter wait time for long polling.

« If you implement long polling for multiple queues, use one thread for each queue instead of
a single thread for all queues. Using a single thread for each queue allows your application to
process the messages in each of the queues as they become available, while using a single thread
for polling multiple queues might cause your application to become unable to process messages
available in other queues while the application waits (up to 20 seconds) for the queue which
doesn't have any available messages.

Setting-up long polling in Amazon SQS 136

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

/A Important

To avoid HTTP errors, make sure that the HTTP response timeout for ReceiveMessage
requests is longer than the WaitTimeSeconds parameter. For more information, see
ReceiveMessage.

Using the appropriate polling mode in Amazon SQS

» Long polling lets you consume messages from your Amazon SQS queue as soon as they become
available.

» To reduce the cost of using Amazon SQS and to decrease the number of empty receives to an
empty queue (responses to the ReceiveMessage action which return no messages), enable
long polling. For more information, see Amazon SQS Long Polling.

» To increase efficiency when polling for multiple threads with multiple receives, decrease the
number of threads.

» Long polling is preferable over short polling in most cases.
« Short polling returns responses immediately, even if the polled Amazon SQS queue is empty.

» To satisfy the requirements of an application that expects immediate responses to the
ReceiveMessage request, use short polling.

« Short polling is billed the same as long polling.

Using the appropriate polling mode in Amazon SQS 137

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Amazon SQS Java SDK examples

The AWS SDK for Java allows you build Java applications that interact with Amazon SQS and other
AWS services.

» To install and set up the SDK, see Getting started in the AWS SDK for Java 2.x Developer Guide.

» For basic queue operations—such as creating a queue or sending a message—see Working with
Amazon SQS Message Queues in the AWS SDK for Java 2.x Developer Guide.

 This guide also includes examples of additional Amazon SQS features, such as:

» Using server-side encryption with Amazon SQS queues

» Configuring tags for an Amazon SQS queue

« Sending message attributes to an Amazon SQS queue

Using server-side encryption with Amazon SQS queues

Use the AWS SDK for Java to add server-side encryption (SSE) to an Amazon SQS queue. Each
queue uses an AWS Key Management Service (AWS KMS) KMS key to generate the data encryption
keys. This example uses the AWS managed KMS key for Amazon SQS.

For more information about using SSE and the role of the KMS key, see Encryption at rest in
Amazon SQS.

Adding SSE to an existing queue

To enable server-side encryption for an existing queue, use the SetQueueAttributes method to
set the KmsMasterKeyId attribute.

The following code example sets the AWS KMS key as the AWS managed KMS key for Amazon SQS.
The example also sets the AWS KMS key reuse period to 140 seconds.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x

Developer Guide.

public static void addEncryption(String queueName, String kmsMasterKeyAlias) {

Using server-side encryption 138

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/sqs-examples.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/sqs-examples.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Amazon Simple Queue Service Developer Guide

SgsClient sgsClient = SgsClient.create();

GetQueueUrlRequest urlRequest = GetQueueUrlRequest.builder()
.queueName(queueName)
.build();

GetQueueUrlResponse getQueueUrlResponse;
try {
getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest);
} catch (QueueDoesNotExistException e) {
LOGGER.error(e.getMessage(), e);
throw new RuntimeException(e);

}

String queueUrl = getQueueUrlResponse.queueUrl();

Map<QueueAttributeName, String> attributes = Map.of(
QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias,
QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "14@" // Set the

data key reuse period to 140 seconds.

)8 // This is

how long SQS can reuse the data key before requesting a new one from KMS.

SetQueueAttributesRequest attRequest = SetQueueAttributesRequest.builder()
.queueUrl(queueUlrl)
.attributes(attributes)
.build();
try {
sgsClient.setQueueAttributes(attRequest);
LOGGER.info("The attributes have been applied to {}", queueName);
} catch (InvalidAttributeNameException | InvalidAttributeValueException e) {
LOGGER.error(e.getMessage(), e);
throw new RuntimeException(e);
} finally {
sgsClient.close();

Disabling SSE for a queue

To disable server-side encryption for an existing queue, set the KmsMasterKeyId attribute to an
empty string using the SetQueueAttributes method.

Disabling SSE for a queue 139

Amazon Simple Queue Service Developer Guide

/A Important

null isn't a valid value for KmsMasterKeyId.

Creating a queue with SSE

To enable SSE when you create the queue, add the KmsMasterKeyId attribute to the
CreateQueue APl method.

The following example creates a new queue with SSE enabled. The queue uses the AWS managed
KMS key for Amazon SQS. The example also sets the AWS KMS key reuse period to 160 seconds.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

// Create an SgsClient for the specified Region.
SgsClient sqsClient = SqgsClient.builder().region(Region.US_WEST_1).build();

// Create a hashmap for the attributes. Add the key alias and reuse period to the
hashmap.

HashMap<QueueAttributeName, String> attributes = new HashMap<QueueAttributeName,
String>();

final String kmsMasterKeyAlias = "alias/aws/sqs"; // the alias of the AWS managed KMS
key for Amazon SQS.

attributes.put(QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias);

attributes.put(QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "140");

// Add the attributes to the CreateQueueRequest.
CreateQueueRequest createQueueRequest =
CreateQueueRequest.builder()
.queueName(queueName)
.attributes(attributes)
.build();
sgsClient.createQueue(createQueueRequest);

Creating a queue with SSE 140

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Amazon Simple Queue Service Developer Guide

Retrieving SSE attributes

For information about retrieving queue attributes, see Examples in the Amazon Simple Queue
Service API Reference.

To retrieve the KMS key ID or the data key reuse period for a particular queue,
run the GetQueueAttributes method and retrieve the KmsMasterKeyId and
KmsDataKeyReusePeriodSeconds values.

Configuring tags for an Amazon SQS queue

Use cost-allocation tags to help organize and identify your Amazon SQS queues. The following
examples show how to configure tags using the AWS SDK for Java. For more information, see
Amazon SQS cost allocation tags.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

Listing tags
To list the tags for a queue, use the ListQueueTags method.

// Create an SqgsClient for the specified region.
SgsClient sqgsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the queue URL.
String queueName = "MyStandardQl";
GetQueueUrlResponse getQueueUrlResponse =

sqsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();

// Create the ListQueueTagsRequest.
final ListQueueTagsRequest listQueueTagsRequest =

ListQueueTagsRequest.builder().queueUrl(queueUrl).build();
// Retrieve the list of queue tags and print them.

final ListQueueTagsResponse listQueueTagsResponse =
sqsClient.listQueueTags(listQueueTagsRequest);

Retrieving SSE attributes 141

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html#API_GetQueueAttributes_Examples
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Amazon Simple Queue Service Developer Guide

System.out.println(String.format("ListQueueTags: \tTags for queue %s are %s.\n",
queueName, listQueueTagsResponse.tags()));

Adding or updating tags
To add or update tag values for a queue, use the TagQueue method.

// Create an SgsClient for the specified Region.
SgsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the queue URL.
String queueName = "MyStandardQl";
GetQueueUrlResponse getQueueUrlResponse =

sgsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();

// Build a hashmap of the tags.

final HashMap<String, String> addedTags = new HashMap<>();
addedTags.put("Team", "Development");
addedTags.put("Priority", "Beta");
addedTags.put("Accounting ID", "456def");

//Create the TagQueueRequest and add them to the queue.

final TagQueueRequest tagQueueRequest = TagQueueRequest.builder()
.queueUrl(queueUlrl)
.tags(addedTags)
.build();

sgsClient.tagQueue(tagQueueRequest);

Removing tags

To remove one or more tags from the queue, use the UntagQueue method. The following example
removes the Accounting ID tag.

// Create the UntagQueueRequest.

final UntagQueueRequest untagQueueRequest = UntagQueueRequest.builder()
.queueUrl(queuelrl)
.tagKeys("Accounting ID")

Adding or updating tags 142

Amazon Simple Queue Service Developer Guide

.build();

// Remove the tag from this queue.
sgsClient.untagQueue(untagQueueRequest);

Sending message attributes to an Amazon SQS queue

You can include structured metadata (such as timestamps, geospatial data, signatures, and
identifiers) with messages using message attributes. For more information, see Amazon SQS
message attributes.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

Defining attributes

To define an attribute for a message, add the following code, which uses the
MessageAttributeValue data type. For more information, see Message attribute components
and Message attribute data types.

The AWS SDK for Java automatically calculates the message body and message attribute
checksums and compares them with the data that Amazon SQS returns. For more information, see
the AWS SDK for Java 2.x Developer Guide and Calculating the MD5 message digest for message
attributes for other programming languages.

String

This example defines a String attribute named Name with the value Jane.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("Name", new MessageAttributeValue()
.withDataType("String")

.withStringValue("Jane"));

Number

This example defines a Number attribute named AccurateWeight with the value
230.000000000000000001.

Sending message attributes 143

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageAttributeValue.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/

Amazon Simple Queue Service Developer Guide

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccurateWeight", new MessageAttributeValue()
.withDataType("Number")

.withStringValue("230.000000000000000001"));

Binary

This example defines a Binary attribute named ByteArray with the value of an uninitialized
10-byte array.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("ByteArray", new MessageAttributeValue()
.withDataType("Binary")

.withBinaryValue(ByteBuffer.wrap(new byte[10])));

String (custom)

This example defines the custom attribute String.Employeeld named EmployeeId with the
value ABC123456.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("Employeeld", new MessageAttributeValue()
.withDataType("String.Employeeld")

.withStringValue("ABC123456"));

Number (custom)

This example defines the custom attribute Number.AccountId named AccountId with the
value 000123456.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccountId", new MessageAttributeValue()
.withDataType("Number.AccountId")

.withStringValue("000123456"));

(® Note

Because the base data type is Number, the ReceiveMessage method returns 123456.

Defining attributes 144

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Binary (custom)

This example defines the custom attribute Binary.JPEG named ApplicationIcon with the
value of an uninitialized 10-byte array.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("ApplicationIcon", new MessageAttributeValue()
.withDataType("Binary.JPEG")

.withBinaryValue(ByteBuffer.wrap(new byte[10])));

Sending a message with attributes
This example adds the attributes to the SendMessageRequest before sending the message.

// Send a message with an attribute.

final SendMessageRequest sendMessageRequest = new SendMessageRequest();
sendMessageRequest.withMessageBody("This is my message text.");
sendMessageRequest.withQueueUrl(myQueueUrl);
sendMessageRequest.withMessageAttributes(messageAttributes);
sgs.sendMessage(sendMessageRequest);

/A Important

If you send a message to a First-In-First-Out (FIFO) queue, make sure that the
sendMessage method executes after you provide the message group ID.

If you use the SendMessageBatch method instead of SendMessage, you must specify
message attributes for each message in the batch.

Sending a message with attributes 145

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Using APIs with Amazon SQS

This topic provides information about constructing Amazon SQS endpoints, making query API
requests using the GET and POST methods, and using batch API actions. For detailed information
about Amazon SQS actions—including parameters, errors, examples, and data types, see the
Amazon Simple Queue Service APl Reference.

To access Amazon SQS using a variety of programming languages, you can also use AWS SDKs,
which contain the following automatic functionality:

» Cryptographically signing your service requests
» Retrying requests

« Handling error responses

For more information, see the section called "Working with AWS SDKs".

For command line tool information, see the Amazon SQS sections in the AWS CLI Command

Reference and the AWS Tools for PowerShell Cmdlet Reference.

Amazon SQS APIs with AWS JSON protocol

Amazon SQS uses AWS JSON protocol as the transport mechanism for all Amazon SQS APIs on
the specified AWS SDK versions. AWS JSON protocol provides a higher throughput, lower latency,

and faster application-to-application communication. AWS JSON protocol is more efficient in
serialization/deserialization of requests and responses when compared to AWS query protocol. If
you still prefer to use the AWS query protocol with SQS APls, see What languages are supported
for AWS JSON protocol used in Amazon SQS APIs? for the AWS SDK versions that support Amazon
SQS AWS query protocol.

Amazon SQS uses AWS JSON protocol to communicate between AWS SDK clients (for example,
Java, Python, Golang, JavaScript) and the Amazon SQS server. An HTTP request of an Amazon
SQS API operation accepts JSON formatted input. The Amazon SQS operation is executed, and the
execution response is sent back to the SDK client in JSON format. Compared to AWS query, AWS
JSON is simpler, faster, and more efficient to transport data between client and server.

o AWS JSON protocol acts as a mediator between the Amazon SQS client and server.

« The server doesn't understand the programming language in which the Amazon SQS operation is
created, but it understands the AWS JSON protocol.

146

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://aws.amazon.com/tools/#sdk
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/powershell/latest/reference/

Amazon Simple Queue Service Developer Guide

« The AWS JSON protocol uses the serialization (convert object to JSON format) and de-
serialization (convert JSON format to object) between Amazon SQS client and server.

For more information about AWS JSON protocol with Amazon SQS, see Amazon SQS AWS JSON
protocol FAQs.

AWS JSON protocol is available on the specified AWS SDK version. To review SDK version and
release dates across language variants, see the AWS SDKs and Tools version support matrix in the
AWS SDKs and Tools Reference Guide

Making query API requests using AWS JSON protocol in
Amazon SQS

This topic explains how to construct an Amazon SQS endpoint, make POST requests, and interpret
responses.

(® Note

AWS JSON protocol is supported for most language variants. For a full list of supported
language variants, see What languages are supported for AWS JSON protocol used in
Amazon SQS APIs?.

Constructing an endpoint

To work with Amazon SQS queues, you must construct an endpoint. For information about Amazon
SQS endpoints, see the following pages in the Amazon Web Services General Reference:

» Regional endpoints

« Amazon Simple Queue Service endpoints and quotas

Every Amazon SQS endpoint is independent. For example, if two queues are named MyQueue
and one has the endpoint sqs.us-east-2.amazonaws.com while the other has the endpoint
sgs.eu-west-2.amazonaws.com, the two queues don't share any data with each other.

The following is an example of an endpoint that makes a request to create a queue.

Making query API requests using AWS JSON protocol 147

https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://docs.aws.amazon.com/general/latest/gr/sqs-service

Amazon Simple Queue Service Developer Guide

POST / HTTP/1.1

Host: sqgs.us-west-2.amazonaws.com
X-Amz-Target: AmazonSQS.CreateQueue
X-Amz-Date: <Date>

Content-Type: application/x-amz-json-1.0
Authorization: <AuthParams>
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive

{
"QueueName" :"MyQueue",
"Attributes": {
"VisibilityTimeout": "40Q"
.
"tags": {
"QueueType": "Production"
}
}
(® Note

Queue names and queue URLs are case sensitive.
The structure of AUTHPARAMS depends on the signature of the API request. For more
information, see Signing AWS API Requests in the Amazon Web Services General Reference.

Making a POST request
An Amazon SQS POST request sends query parameters as a form in the body of an HTTP request.

The following is an example of an HTTP header with X-Amz-Target set to
AmazonSQS.<operationName>, and an HTTP header with Content-Type set to application/
X-amz-json-1.0.

POST / HTTP/1.1

Host: sqgs.<region>.<domain>
X-Amz-Target: AmazonSQS.SendMessage
X-Amz-Date: <Date>

Content-Type: application/x-amz-json-1.0
Authorization: <AuthParams>
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive

Making a POST request 148

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

Amazon Simple Queue Service Developer Guide

{

"QueueUrl": "https://sqs.<region>.<domain>/<awsAccountId>/<queueName>/",
"MessageBody": "This is a test message"

This HTTP POST request sends a message to an Amazon SQS queue.

(® Note

Both HTTP headers X-Amz-Target and Content-Type are required.
Your HTTP client might add other items to the HTTP request, according to the client's HTTP
version.

Interpreting Amazon SQS JSON API responses

When you send a request to Amazon SQS, it returns a JSON response with the results. The
response structure depends on the API action you used.

To understand the details of these responses, see:

« The specific API action in the API actions in the Amazon Simple Queue Service API Reference

o The Amazon SQS AWS JSON protocol FAQs

Successful JSON response structure

If the request is successful, the main response element is x-amzn-RequestId, which contains
the Universal Unique Identifier (UUID) of the request, as well as other appended response field(s).
For example, the following CreateQueue response contains the QueueUr1 field, which, in turn,
contains the URL of the created queue.

HTTP/1.1 200 OK
x-amzn-RequestId: <requestId>
Content-Length: <PayloadSizeBytes>
Date: <Date>
Content-Type: application/x-amz-json-1.0
{
"QueueUrl":"https://sqs.us-east-1.amazonaws.com/111122223333/MyQueue"

Interpreting Amazon SQS JSON API responses 149

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html

Amazon Simple Queue Service Developer Guide

JSON error response structure

If a request is unsuccessful, Amazon SQS returns the main response, including the HTTP header
and the body.

In the HTTP header, x-amzn-RequestId contains the UUID of the request. x-amzn-query-
error contains two pieces of information: the type of error, and whether the error was a producer
or consumer error.

In the response body, "__type" indicates other error details, and Message indicates the error
condition in a readable format.

The following is an example error response in JSON format:

HTTP/1.1 400 Bad Request

x-amzn-RequestId: 66916324-67ca-54bb-a410-3f567a7a0571
x-amzn-query-error: AWS.SimpleQueueService.NonExistentQueue;Sender
Content-Length: <PayloadSizeBytes>

Date: <Date>

Content-Type: application/x-amz-json-1.0

{

_ _type": "com.amazonaws.sqs#QueueDoesNotExist",
"message": "The specified queue does not exist."

Amazon SQS AWS JSON protocol FAQs

This topic covers frequently asked questions about using AWS JSON protocol with Amazon SQS.

What is AWS JSON protocol, and how does it differ from existing Amazon SQS API
requests and responses?

JSON is one of the most widely used and accepted wiring methods for communication between
heterogeneous systems. Amazon SQS uses JSON as a medium to communicate between an AWS
SDK client (for example, Java, Python, Golang, JavaScript) and Amazon SQS server. An HTTP
request of an Amazon SQS API operation accepts input in the form of JSON. The Amazon SQS
operation is executed and the response of execution is shared back to the SDK client in the form
of JSON. Compared to AWS query, JSON is more efficient at transporting data between client and
server.

Amazon SQS AWS JSON protocol FAQs 150

Amazon Simple Queue Service Developer Guide

« Amazon SQS AWS JSON protocol acts as a mediator between Amazon SQS client and server.

» The server doesn't understand the programming language in which the Amazon SQS operation is
created, but it understands the AWS JSON protocol.

« The Amazon SQS AWS JSON protocol uses the serialization (convert object to JSON format) and
deserialization (convert JSON format to object) between the Amazon SQS client and server.

How do | get started with AWS JSON protocols for Amazon SQS?

To get started with the latest AWS SDK version to achieve faster messaging for Amazon SQS,
upgrade your AWS SDK to the specified version or any subsequent version. To learn more about
SDK clients, see the Guide column in the table below.

The following is a list of SDK versions across language variants for AWS JSON protocol for use with
Amazon SQS APIs:

Language SDK client repository Required SDK client Guide

version
C++ aws/aws-sdk-cpp 1.11.98 AWS SDK for C++
Golang 1.x aws/aws-sdk-go v1.47.7 AWS SDK for Go
Golang 2.x aws/aws-sdk-go-v2 v1.28.0 AWS SDK for Go V2
Java 1.x aws/aws-sdk-java 1.12.585 AWS SDK for Java
Java 2.x aws/aws-sdk-java-v2 2.21.19 AWS SDK for Java
JavaScript v2.x aws/aws-sdk-js JavaScript on AWS
JavaScript v3.x aws/aws-sdk-js-v3 v3.447.0 JavaScript on AWS
.NET aws/aws-sdk-net 3.7.681.0 AWS SDK for .NET

Amazon SQS AWS JSON protocol FAQs 151

https://github.com/aws/aws-sdk-cpp
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.198
https://aws.amazon.com/sdk-for-cpp/
https://github.com/aws/aws-sdk-go
https://github.com/aws/aws-sdk-go/releases/tag/v1.47.7
https://aws.amazon.com/sdk-for-go/
https://github.com/aws/aws-sdk-go-v2
https://github.com/aws/aws-sdk-go-v2/blob/release-2023-11-09/service/sqs/CHANGELOG.md#v1270-2023-11-09
https://aws.github.io/aws-sdk-go-v2/docs/
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/releases/tag/1.12.585
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java-v2
https://github.com/aws/aws-sdk-java-v2/releases/tag/2.21.19
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-js
https://aws.amazon.com/developer/language/javascript/
https://github.com/aws/aws-sdk-js-v3
https://github.com/aws/aws-sdk-js-v3/releases/tag/v3.447.0
https://aws.amazon.com/developer/language/javascript/
https://github.com/aws/aws-sdk-net
https://github.com/aws/aws-sdk-net/releases/tag/3.7.681.0
https://aws.amazon.com/sdk-for-net/

Amazon Simple Queue Service Developer Guide

Language SDK client repository Required SDK client Guide
version

PHP aws/aws-sdk-php 3.285.2 AWS SDK for PHP

Python-boto3 boto/boto3 1.28.82 AWS SDK for Python
(Boto3)

Python-botocore boto/botocore 1.31.82 AWS SDK for Python
(Boto3)

awscli AWS CLI 1.29.82 AWSCommand Line
Interface

Ruby aws/aws-sdk-ruby 1.67.0 AWS SDK for Ruby

What are the risks of enabling JSON protocol for my Amazon SQS workloads?

If you are using a custom implementation of AWS SDK or a combination of custom clients and AWS
SDK to interact with Amazon SQS that generates AWS Query based (aka XML-based) responses, it
may be incompatible with AWS JSON protocol. If you encounter any issues, contact AWS Support.

What if | am already on the latest AWS SDK version, but my open sourced solution
does not support JSON?

You must change your SDK version to the version previous to what you are using. See How do | get
started with AWS JSON protocols for Amazon SQS? for more information. AWS SDK versions listed
in How do | get started with AWS JSON protocols for Amazon SQS? uses JSON wire protocol for
Amazon SQS APIs. If you change your AWS SDK to the previous version, your Amazon SQS APIs will
use the AWS query.

What languages are supported for AWS JSON protocol used in Amazon SQS APIs?

Amazon SQS supports all language variants where AWS SDKs are generally available (GA).
Currently, we don't support Kotlin, Rust, or Swift. To learn more about other language variants, see
Tools to Build on AWS.

Amazon SQS AWS JSON protocol FAQs 152

https://github.com/aws/aws-sdk-php
https://github.com/aws/aws-sdk-php/releases/tag/3.285.2
https://aws.amazon.com/sdk-for-php/
https://github.com/boto/boto3
https://github.com/boto/boto3/releases/tag/1.28.82
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/boto/botocore/
https://github.com/boto/botocore/releases/tag/1.31.82
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli/releases/tag/1.29.82
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://github.com/aws/aws-sdk-ruby
https://rubygems.org/gems/aws-sdk-sqs/versions/1.67.0
https://aws.amazon.com/sdk-for-ruby/
https://aws.amazon.com/developer/tools/

Amazon Simple Queue Service Developer Guide

What regions are supported for AWS JSON protocol used in Amazon SQS APIs
Amazon SQS supports AWS JSON protocol in all AWS regions where Amazon SQS is available.

What latency improvements can | expect when upgrading to the specified AWS
SDK versions for Amazon SQS using the AWS JSON protocol?

AWS JSON protocol is more efficient at serialization and deserialization of requests and responses
when compared to AWS query protocol. Based on AWS performance tests for a 5 KB message
payload, JSON protocol for Amazon SQS reduces end-to-end message processing latency by up to
23%, and reduces application client side CPU and memory usage.

Will AWS query protocol be deprecated?

AWS query protocol will continue to be supported. You can continue using AWS query protocol as
long as your AWS SDK version is set any previous version other that what is listed in How do | get
started with AWS JSON protocols for Amazon SQS.

Where can | find more information about AWS JSON protocol?

You can find more information about JSON protocol at AWS JSON 1.0 protocol in the Smithy
documentation. For more about Amazon SQS API requests using AWS JSON protocol, see Making
query API requests using AWS JSON protocol in Amazon SQS.

Making query API requests using AWS query protocol in
Amazon SQS

This topic explains how to construct an Amazon SQS endpoint, make GET and POST requests, and
interpret responses.

Constructing an endpoint

In order to work with Amazon SQS queues, you must construct an endpoint. For information about
Amazon SQS endpoints, see the following pages in the Amazon Web Services General Reference:

» Regional endpoints

« Amazon Simple Queue Service endpoints and quotas

Making query API requests using AWS query protocol 153

https://docs.aws.amazon.com/general/latest/gr/sqs-service.html
https://smithy.io/2.0/aws/protocols/aws-json-1_0-protocol.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#sqs_region
https://docs.aws.amazon.com/general/latest/gr/sqs-service

Amazon Simple Queue Service Developer Guide

Every Amazon SQS endpoint is independent. For example, if two queues are named MyQueue
and one has the endpoint sqs.us-east-2.amazonaws. com while the other has the endpoint
sgs.eu-west-2.amazonaws.com, the two queues don't share any data with each other.

The following is an example of an endpoint which makes a request to create a queue.

https://sqs.eu-west-2.amazonaws.com/
?Action=CreateQueue
&DefaultVisibilityTimeout=40
&QueueName=MyQueue
&Version=2012-11-05

&AUTHPARAMS

(® Note

Queue names and queue URLs are case sensitive.
The structure of AUTHPARAMS depends on the signature of the API request. For more
information, see Signing AWS API Requests in the Amazon Web Services General Reference.

Making a GET request

An Amazon SQS GET request is structured as a URL which consists of the following:

« Endpoint — The resource that the request is acting on (the queue name and URL), for example:
https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue

« Action - The action that you want to perform on the endpoint. A question mark (?