Amazon Elastic Container Service: API Reference
Copyright © 2023 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
Table of Contents

Welcome ... 1
Actions by Amazon ECS resource .. 2
 Account setting actions ... 2
 Cluster actions ... 2
 Cluster capacity provider actions ... 2
 Container actions ... 3
 Container agent actions ... 3
 Container instance actions ... 3
 Namespace actions .. 3
 Service actions ... 3
 Task definition actions .. 4
 Task actions ... 4
 Task set actions .. 4
 Tag actions .. 4
Actions ... 5
 CreateCapacityProvider .. 7
 Request Syntax .. 7
 Request Parameters .. 7
 Response Syntax .. 8
 Response Elements ... 8
 Errors ... 9
 See Also .. 9
 CreateCluster .. 10
 Request Syntax ... 10
 Request Parameters ... 10
 Response Syntax ... 12
 Response Elements ... 13
 Errors .. 14
 Examples .. 14
 See Also .. 15
 CreateService .. 16
 Request Syntax ... 17
 Request Parameters ... 19
 Response Syntax ... 25
 Response Elements ... 28
 Errors .. 28
 Examples .. 29
 See Also .. 34
 CreateTaskSet ... 35
 Request Syntax ... 35
 Request Parameters ... 36
 Response Syntax ... 38
 Response Elements ... 39
 Errors .. 39
 See Also .. 41
 DeleteAccountSetting ... 42
 Request Syntax ... 42
 Request Parameters ... 42
 Response Syntax ... 42
 Response Elements ... 43
 Errors .. 43
 See Also .. 43
 DeleteAttributes ... 44
 Request Syntax ... 44
DescribeTasks .. 84
Examples .. 85
See Also ... 86
DescribeClusters ... 90
Request Syntax ... 90
Request Parameters ... 90
Response Syntax ... 90
Response Elements ... 92
Errors ... 92
Examples .. 92
See Also ... 95
DescribeContainerInstances ... 96
Request Syntax ... 96
Request Parameters ... 96
Response Syntax ... 96
Response Elements ... 98
Errors ... 98
Examples .. 99
See Also ... 101
DescribeServices ... 102
Request Syntax ... 102
Request Parameters ... 102
Response Syntax ... 102
Response Elements ... 106
Errors ... 106
Examples .. 107
See Also ... 108
DescribeTaskDefinition .. 109
Request Syntax ... 109
Request Parameters ... 109
Response Syntax ... 109
Response Elements ... 113
Errors ... 114
Examples .. 114
See Also ... 116
DescribeTasks ... 117
Request Syntax ... 117
Request Parameters ... 117
Response Syntax ... 117
Response Elements ... 120
Errors ... 120
Examples .. 121
See Also ... 116
DescribeTaskSets .. 124
Request Syntax ... 124
Request Parameters ... 124
Response Syntax ... 125
Response Elements ... 126
Errors ... 126
See Also ... 127
DiscoverPollEndpoint ... 128
Request Syntax ... 128
Request Parameters ... 128
Response Syntax ... 128
Response Elements ... 128
Errors .. 129
See Also .. 129
ExecuteCommand .. 130
Request Syntax ... 130
Request Parameters ... 130
Response Syntax ... 131
Response Elements ... 131
Errors .. 132
See Also .. 132
GetTaskProtection .. 134
Request Syntax ... 134
Request Parameters ... 134
Response Syntax ... 134
Response Elements ... 134
Errors .. 135
Examples .. 136
See Also .. 137
ListAccountSettings ... 138
Request Syntax ... 138
Request Parameters ... 138
Response Syntax ... 139
Response Elements ... 139
Errors .. 140
See Also .. 140
ListAttributes ... 141
Request Syntax ... 141
Request Parameters ... 141
Response Syntax ... 142
Response Elements ... 142
Errors .. 143
Examples .. 143
See Also .. 144
ListClusters .. 145
Request Syntax ... 145
Request Parameters ... 145
Response Syntax ... 145
Response Elements ... 145
Errors .. 146
Examples .. 146
See Also .. 147
ListContainerInstances .. 148
Request Syntax ... 148
Request Parameters ... 148
Response Syntax ... 149
Response Elements ... 149
Errors .. 149
Examples .. 150
See Also .. 150
ListServices .. 152
Request Syntax ... 152
Request Parameters ... 152
Response Syntax ... 153
<table>
<thead>
<tr>
<th>Operation</th>
<th>Request Syntax</th>
<th>Request Parameters</th>
<th>Response Syntax</th>
<th>Response Elements</th>
<th>Errors</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>PutAttributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PutClusterCapacityProviders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RegisterContainerInstance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RegisterTaskDefinition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RunTask</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StartTask</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StopTask</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SubmitAttachmentStateChanges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Request Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Syntax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Also</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Response Syntax .. 240
Response Elements .. 240
Errors ... 241
See Also .. 241
SubmitContainerStateChange ... 242
Request Syntax .. 242
Request Parameters ... 242
Response Syntax ... 243
Response Elements ... 243
Errors ... 243
See Also .. 243
SubmitTaskStateChange .. 245
Request Syntax .. 245
Request Parameters ... 245
Response Syntax ... 247
Response Elements ... 247
Errors ... 247
See Also .. 247
TagResource .. 249
Request Syntax .. 249
Request Parameters ... 249
Response Elements ... 250
Errors ... 250
Examples ... 250
See Also .. 250
UntagResource .. 253
Request Syntax .. 253
Request Parameters ... 253
Response Elements ... 253
Errors ... 253
Examples ... 254
See Also .. 254
UpdateCapacityProvider ... 256
Request Syntax .. 256
Request Parameters ... 256
Response Syntax ... 257
Response Elements ... 257
Errors ... 257
See Also .. 257
UpdateCluster ... 259
Request Syntax .. 259
Request Parameters ... 259
Response Syntax ... 260
Response Elements ... 261
Errors ... 261
See Also .. 261
UpdateClusterSettings ... 263
Request Syntax .. 263
Request Parameters ... 263
Response Syntax ... 264
Response Elements ... 264
Errors ... 264
See Also .. 264
UpdateContainerAgent .. 266
Request Syntax .. 266
Request Parameters ... 266
Response Syntax ... 266
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Also</td>
<td>362</td>
</tr>
<tr>
<td>DeploymentController</td>
<td>363</td>
</tr>
<tr>
<td>Contents</td>
<td>363</td>
</tr>
<tr>
<td>See Also</td>
<td>363</td>
</tr>
<tr>
<td>Device</td>
<td>364</td>
</tr>
<tr>
<td>Contents</td>
<td>364</td>
</tr>
<tr>
<td>See Also</td>
<td>364</td>
</tr>
<tr>
<td>DockerVolumeConfiguration</td>
<td>365</td>
</tr>
<tr>
<td>Contents</td>
<td>365</td>
</tr>
<tr>
<td>See Also</td>
<td>366</td>
</tr>
<tr>
<td>EFSAuthorizationConfig</td>
<td>367</td>
</tr>
<tr>
<td>Contents</td>
<td>367</td>
</tr>
<tr>
<td>See Also</td>
<td>367</td>
</tr>
<tr>
<td>EFSVolumeConfiguration</td>
<td>368</td>
</tr>
<tr>
<td>Contents</td>
<td>368</td>
</tr>
<tr>
<td>See Also</td>
<td>369</td>
</tr>
<tr>
<td>EnvironmentFile</td>
<td>370</td>
</tr>
<tr>
<td>Contents</td>
<td>370</td>
</tr>
<tr>
<td>See Also</td>
<td>370</td>
</tr>
<tr>
<td>EphemeralStorage</td>
<td>372</td>
</tr>
<tr>
<td>Contents</td>
<td>372</td>
</tr>
<tr>
<td>See Also</td>
<td>372</td>
</tr>
<tr>
<td>ExecuteCommandConfiguration</td>
<td>373</td>
</tr>
<tr>
<td>Contents</td>
<td>373</td>
</tr>
<tr>
<td>See Also</td>
<td>373</td>
</tr>
<tr>
<td>ExecuteCommandLogConfiguration</td>
<td>374</td>
</tr>
<tr>
<td>Contents</td>
<td>374</td>
</tr>
<tr>
<td>See Also</td>
<td>374</td>
</tr>
<tr>
<td>Failure</td>
<td>376</td>
</tr>
<tr>
<td>Contents</td>
<td>376</td>
</tr>
<tr>
<td>See Also</td>
<td>376</td>
</tr>
<tr>
<td>FireLensConfiguration</td>
<td>377</td>
</tr>
<tr>
<td>Contents</td>
<td>377</td>
</tr>
<tr>
<td>See Also</td>
<td>377</td>
</tr>
<tr>
<td>FSxWindowsFileServerAuthorizationConfig</td>
<td>378</td>
</tr>
<tr>
<td>Contents</td>
<td>378</td>
</tr>
<tr>
<td>See Also</td>
<td>378</td>
</tr>
<tr>
<td>FSxWindowsFileServerVolumeConfiguration</td>
<td>379</td>
</tr>
<tr>
<td>Contents</td>
<td>379</td>
</tr>
<tr>
<td>See Also</td>
<td>379</td>
</tr>
<tr>
<td>HealthCheck</td>
<td>380</td>
</tr>
<tr>
<td>Contents</td>
<td>381</td>
</tr>
<tr>
<td>See Also</td>
<td>382</td>
</tr>
<tr>
<td>HostEntry</td>
<td>383</td>
</tr>
<tr>
<td>Contents</td>
<td>383</td>
</tr>
<tr>
<td>See Also</td>
<td>383</td>
</tr>
<tr>
<td>HostVolumeProperties</td>
<td>384</td>
</tr>
<tr>
<td>Contents</td>
<td>384</td>
</tr>
<tr>
<td>See Also</td>
<td>384</td>
</tr>
<tr>
<td>InferenceAccelerator</td>
<td>385</td>
</tr>
<tr>
<td>Contents</td>
<td>385</td>
</tr>
<tr>
<td>See Also</td>
<td>385</td>
</tr>
<tr>
<td>InferenceAcceleratorOverride</td>
<td>386</td>
</tr>
<tr>
<td>Contents</td>
<td>386</td>
</tr>
<tr>
<td>See Also</td>
<td>386</td>
</tr>
<tr>
<td>InstanceHealthCheckResult</td>
<td>387</td>
</tr>
<tr>
<td>Contents</td>
<td>387</td>
</tr>
<tr>
<td>Contents</td>
<td>See Also</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>KernelCapabilities</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>KeyValuePair</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>LinuxParameters</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>LoadBalancer</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>LogConfiguration</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>ManagedAgent</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>ManagedAgentStateChange</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>ManagedScaling</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>MountPoint</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>NetworkBinding</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>NetworkConfiguration</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>NetworkInterface</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>PlacementConstraint</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>PlacementStrategy</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>PlatformDevice</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>PortMapping</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>ProtectedTask</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>ProxyConfiguration</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>See Also</td>
<td></td>
</tr>
<tr>
<td>RepositoryCredentials</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
</tbody>
</table>
See Also .. 415
Resource ... 416
Contents ... 416
See Also ... 416
ResourceRequirement .. 418
Contents ... 418
See Also ... 418
RuntimePlatform ... 419
Contents ... 419
See Also ... 419
Scale .. 420
Contents ... 420
See Also ... 420
Secret .. 421
Contents ... 421
See Also ... 421
Service .. 422
Contents ... 422
See Also ... 426
ServiceConnectClientAlias .. 428
Contents ... 428
See Also ... 428
ServiceConnectConfiguration ... 430
Contents ... 430
See Also ... 431
ServiceConnectService ... 432
Contents ... 432
See Also ... 433
ServiceConnectServiceResource ... 434
Contents ... 434
See Also ... 434
ServiceEvent ... 435
Contents ... 435
See Also ... 435
ServiceRegistry ... 436
Contents ... 436
See Also ... 436
Session .. 438
Contents ... 438
See Also ... 438
Setting ... 439
Contents ... 439
See Also ... 439
SystemControl ... 440
Contents ... 440
See Also ... 440
Tag ... 441
Contents ... 441
See Also ... 441
Task .. 443
Contents ... 443
See Also ... 449
TaskDefinition ... 450
Contents ... 450
See Also ... 455
TaskDefinitionPlacementConstraint .. 457
Contents ... 457
See Also

- TaskOverride ... 458
- Contents ... 458
- TaskSet ... 460
- Contents ... 460
- Tmpfs ... 465
- Contents ... 465
- Ulimit ... 466
- Contents ... 466
- VersionInfo ... 467
- Contents ... 467
- Volume ... 468
- Contents ... 468
- VolumeFrom ... 470
- Contents ... 470
- API request throttling .. 471
 - How throttling is applied .. 471
 - Throttling quotas ... 472
 - Adjusting API throttling quotas ... 474
 - Handling API throttling ... 474
- Ensuring idempotency ... 475
 - Idempotency in Amazon ECS .. 475
 - Idempotency for RunTask .. 475
 - RunTask retry rules and responses 476
- Examples ... 476
 - AWS CLI command examples .. 476
 - API request examples ... 477
- Retry recommendations for idempotent requests 479
- Common Parameters .. 480
- Common Errors ... 482
Welcome

Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service. It makes it easy to run, stop, and manage Docker containers. You can host your cluster on a serverless infrastructure that's managed by Amazon ECS by launching your services or tasks on AWS Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) or External (on-premises) instances that you manage.

Amazon ECS makes it easy to launch and stop container-based applications with simple API calls. This makes it easy to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features.

You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. With Amazon ECS, you don't need to operate your own cluster management and configuration management systems. You also don't need to worry about scaling your management infrastructure.

This document was last published on November 21, 2023.
Actions by Amazon ECS resource

The following section lists the API actions by resource.

Resource actions

- Account setting actions (p. 2)
- Cluster actions (p. 2)
- Cluster capacity provider actions (p. 2)
- Container actions (p. 3)
- Container agent actions (p. 3)
- Container instance actions (p. 3)
- Namespace actions (p. 3)
- Service actions (p. 3)
- Task definition actions (p. 4)
- Task actions (p. 4)
- Task set actions (p. 4)
- Tag actions (p. 4)

Account setting actions

The following API actions are available for account settings:

- DeleteAccountSetting (p. 42)
- ListAccountSettings (p. 138)
- PutAccountSetting (p. 176)
- PutAccountSettingDefault (p. 179)

Cluster actions

The following API actions are available for clusters:

- CreateCluster (p. 10)
- DeleteCluster (p. 50)
- DescribeClusters (p. 90)
- ListClusters (p. 145)
- UpdateCluster (p. 259)
- UpdateClusterSettings (p. 263)

Cluster capacity provider actions

The following APIs are available for cluster capacity providers:

- CreateCapacityProvider (p. 7)
Container actions

The following APIs are available for containers:

- **ExecuteCommand (p. 130)**

Container agent actions

The following APIs are available for container agents:

- **UpdateContainerAgent (p. 266)**

Container instance actions

The following APIs are available for container instances:

- **DeregisterContainerInstance (p. 74)**
- **DescribeContainerInstances (p. 96)**
- **DeleteAttributes (p. 44)**
- **ListAttributes (p. 141)**
- **ListContainerInstances (p. 148)**
- **PutAttributes (p. 182)**
- **UpdateContainerInstanceState (p. 271)**

Namespace actions

Note

Namespaces are an AWS Cloud Map resource. Namespaces are necessary in Amazon ECS to use the ECS Service Connect or ECS service discovery features. Amazon ECS requests namespaces from AWS Cloud Map and then displays your namespaces in the AWS Management Console. Use the AWS Cloud Map console or API for additional configuration options.

The following APIs are available for namespaces:

- **CreateCluster (p. 10)**

Service actions

The following APIs are available for services:

- **CreateService (p. 16)**
Task definition actions

The following APIs are available for task-definitions:

- **DeleteTaskDefinitions** (p. 62)
- **DeregisterTaskDefinition** (p. 80)
- **DescribeTaskDefinition** (p. 109)
- **ListTaskDefinitionFamilies** (p. 162)
- **ListTaskDefinitions** (p. 167)
- **RegisterTaskDefinition** (p. 195)

Task actions

The following APIs are available for tasks:

- **DescribeTasks** (p. 117)
- **GetTaskProtection** (p. 134)
- **ListTasks** (p. 171)
- **RunTask** (p. 212)
- **StartTask** (p. 224)
- **StopTask** (p. 233)
- **UpdateTaskProtection** (p. 297)

Task set actions

The following APIs are available for task sets:

- **CreateTaskSet** (p. 35)
- **DeleteTaskSet** (p. 70)
- **DescribeTaskSets** (p. 124)
- **UpdateServicePrimaryTaskSet** (p. 293)
- **UpdateTaskSet** (p. 303)

Tag actions

The following APIs are available for tags:

- **ListTagsForResource** (p. 159)
- **TagResource** (p. 249)
- **UntagResource** (p. 253)
Actions

The following actions are supported:

- CreateCapacityProvider (p. 7)
- CreateCluster (p. 10)
- CreateService (p. 16)
- CreateTaskSet (p. 35)
- DeleteAccountSetting (p. 42)
- DeleteAttributes (p. 44)
- DeleteCapacityProvider (p. 47)
- DeleteCluster (p. 50)
- DeleteService (p. 55)
- DeleteTaskDefinitions (p. 62)
- DeleteTaskSet (p. 70)
- DeregisterContainerInstance (p. 74)
- DeregisterTaskDefinition (p. 80)
- DescribeCapacityProviders (p. 87)
- DescribeClusters (p. 90)
- DescribeContainerInstances (p. 96)
- DescribeServices (p. 102)
- DescribeTaskDefinition (p. 109)
- DescribeTasks (p. 117)
- DescribeTaskSets (p. 124)
- DiscoverPollEndpoint (p. 128)
- ExecuteCommand (p. 130)
- GetTaskProtection (p. 134)
- ListAccountSettings (p. 138)
- ListAttributes (p. 141)
- ListClusters (p. 145)
- ListContainerInstances (p. 148)
- ListServices (p. 152)
- ListServicesByNamespace (p. 156)
- ListTagsForResource (p. 159)
- ListTaskDefinitionFamilies (p. 162)
- ListTaskDefinitions (p. 167)
- ListTasks (p. 171)
- PutAccountSetting (p. 176)
- PutAccountSettingDefault (p. 179)
- PutAttributes (p. 182)
- PutClusterCapacityProviders (p. 186)
- RegisterContainerInstance (p. 190)
- RegisterTaskDefinition (p. 195)
- RunTask (p. 212)
• **StartTask** (p. 224)
• **StopTask** (p. 233)
• **SubmitAttachmentStateChanges** (p. 240)
• **SubmitContainerStateChange** (p. 242)
• **SubmitTaskStateChange** (p. 245)
• **TagResource** (p. 249)
• **UntagResource** (p. 253)
• **UpdateCapacityProvider** (p. 256)
• **UpdateCluster** (p. 259)
• **UpdateClusterSettings** (p. 263)
• **UpdateContainerAgent** (p. 266)
• **UpdateContainerInstancesState** (p. 271)
• **UpdateService** (p. 279)
• **UpdateServicePrimaryTaskSet** (p. 293)
• **UpdateTaskProtection** (p. 297)
• **UpdateTaskSet** (p. 303)
CreateCapacityProvider

Creates a new capacity provider. Capacity providers are associated with an Amazon ECS cluster and are used in capacity provider strategies to facilitate cluster auto scaling.

Only capacity providers that use an Auto Scaling group can be created. Amazon ECS tasks on AWS Fargate use the FARGATE and FARGATE_SPOT capacity providers. These providers are available to all accounts in the AWS Regions that AWS Fargate supports.

Request Syntax

```
{
    "autoScalingGroupProvider": {
        "autoScalingGroupArn": "string",
        "managedScaling": {
            "instanceWarmupPeriod": number,
            "maximumScalingStepSize": number,
            "minimumScalingStepSize": number,
            "status": "string",
            "targetCapacity": number
        },
        "managedTerminationProtection": "string"
    },
    "name": "string",
    "tags": [
        {
            "key": "string",
            "value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

autoScalingGroupProvider (p. 7)

The details of the Auto Scaling group for the capacity provider.

Type: AutoScalingGroupProvider (p. 313) object

Required: Yes

name (p. 7)

The name of the capacity provider. Up to 255 characters are allowed. They include letters (both upper and lowercase letters), numbers, underscores (_), and hyphens (-). The name can't be prefixed with "aws", "ecs", or "fargate".

Type: String

Required: Yes

tags (p. 7)

The metadata that you apply to the capacity provider to categorize and organize them more conveniently. Each tag consists of a key and an optional value. You define both of them.
The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of `Tag` objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```
{
    "capacityProvider": {
        "autoScalingGroupProvider": {
            "autoScalingGroupArn": "string",
            "managedScaling": {
                "instanceWarmupPeriod": number,
                "maximumScalingStepSize": number,
                "minimumScalingStepSize": number,
                "status": "string",
                "targetCapacity": number
            },
            "managedTerminationProtection": "string"
        },
        "capacityProviderArn": "string",
        "name": "string",
        "status": "string",
        "tags": [
            {
                "key": "string",
                "value": "string"
            }
        ],
        "updateStatus": "string",
        "updateStatusReason": "string"
    }
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

capacityProvider (p. 8)

The full description of the new capacity provider.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

LimitExceededException

The limit for the resource was exceeded.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as PENDING or STAGING, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateCluster

Creates a new Amazon ECS cluster. By default, your account receives a default cluster when you launch your first container instance. However, you can create your own cluster with a unique name with the CreateCluster action.

Note
When you call the CreateCluster API operation, Amazon ECS attempts to create the Amazon ECS service-linked role for your account. This is so that it can manage required resources in other AWS services on your behalf. However, if the user that makes the call doesn't have permissions to create the service-linked role, it isn't created. For more information, see Using service-linked roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
    "capacityProviders": [ "string" ],
    "clusterName": "string",
    "configuration": {
        "executeCommandConfiguration": {
            "kmsKeyId": "string",
            "logConfiguration": {
                "cloudWatchEncryptionEnabled": boolean,
                "cloudWatchLogGroupName": "string",
                "s3BucketName": "string",
                "s3EncryptionEnabled": boolean,
                "s3KeyPrefix": "string"
            },
            "logging": "string"
        }
    },
    "defaultCapacityProviderStrategy": [ {
        "base": number,
        "capacityProvider": "string",
        "weight": number
    } ],
    "serviceConnectDefaults": {
        "namespace": "string"
    },
    "settings": [ {
        "name": "string",
        "value": "string"
    } ],
    "tags": [ {
        "key": "string",
        "value": "string"
    } ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).
The request accepts the following data in JSON format.

capacityProviders (p. 10)

The short name of one or more capacity providers to associate with the cluster. A capacity provider must be associated with a cluster before it can be included as part of the default capacity provider strategy of the cluster or used in a capacity provider strategy when calling the CreateService or RunTask actions.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must be created but not associated with another cluster. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

The PutCapacityProvider API operation is used to update the list of available capacity providers for a cluster after the cluster is created.

Type: Array of strings

Required: No

clusterName (p. 10)

The name of your cluster. If you don't specify a name for your cluster, you create a cluster that's named default. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.

Type: String

Required: No

configuration (p. 10)

The execute command configuration for the cluster.

Type: ClusterConfiguration (p. 324) object

Required: No

defaultCapacityProviderStrategy (p. 10)

The capacity provider strategy to set as the default for the cluster. After a default capacity provider strategy is set for a cluster, when you call the CreateService or RunTask APIs with no capacity provider strategy or launch type specified, the default capacity provider strategy for the cluster is used.

If a default capacity provider strategy isn't defined for a cluster when it was created, it can be defined later with the PutClusterCapacityProviders (p. 186) API operation.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: No

serviceConnectDefaults (p. 10)

Use this parameter to set a default Service Connect namespace. After you set a default Service Connect namespace, any new services with Service Connect turned on that are created in the cluster are added as client services in the namespace. This setting only applies to new services that set the enabled parameter to true in the ServiceConnectConfiguration. You can set the namespace
of each service individually in the ServiceConnectConfiguration to override this default parameter.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: ClusterServiceConnectDefaultsRequest (p. 326) object

Required: No

settings (p. 10)

The setting to use when creating a cluster. This parameter is used to turn on CloudWatch Container Insights for a cluster. If this value is specified, it overrides the containerInsights value set with PutAccountSetting (p. 176) or PutAccountSettingDefault (p. 179).

Type: Array of ClusterSetting (p. 327) objects

Required: No

tags (p. 10)

The metadata that you apply to the cluster to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
  "cluster": {
    "activeServicesCount": number,
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ]
      }
    ]
  }
}
```

API Version 2014-11-13
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
cluster (p. 12)

The full description of your new cluster.

Type: Cluster (p. 320) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

NamespaceNotFoundException

The specified namespace wasn't found.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request creates a cluster called My-cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 29
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateCluster
X-Amz-Date: 20150429T163840Z
```
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "clusterName": "My-cluster"
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 16:38:41 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 209
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "cluster": {
 "activeServicesCount": 0,
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/My-cluster",
 "clusterName": "My-cluster",
 "pendingTasksCount": 0,
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "status": "ACTIVE"
 }
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateService

Runs and maintains your desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the `desiredCount`, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the [UpdateService](p. 279) action.

Note

Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.

In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see [Service load balancing](p. 279) in the *Amazon Elastic Container Service Developer Guide*.

Tasks for services that don't use a load balancer are considered healthy if they're in the `RUNNING` state. Tasks for services that use a load balancer are considered healthy if they're in the `RUNNING` state and are reported as healthy by the load balancer.

There are two service scheduler strategies available:

- **REPLICA** - The replica scheduling strategy places and maintains your desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see [Service scheduler concepts](p. 279) in the *Amazon Elastic Container Service Developer Guide*.

- **DAEMON** - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It also stops tasks that don't meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see [Service scheduler concepts](p. 279) in the *Amazon Elastic Container Service Developer Guide*.

You can optionally specify a deployment configuration for your service. The deployment is initiated by changing properties. For example, the deployment might be initiated by the task definition or by your desired count of a service. This is done with an [UpdateService](p. 279) operation. The default value for a replica service for `minimumHealthyPercent` is 100%. The default value for a daemon service for `minimumHealthyPercent` is 0%.

If a service uses the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the `RUNNING` state during a deployment. Specifically, it represents it as a percentage of your desired number of tasks (rounded up to the nearest integer). This happens when any of your container instances are in the `DRAINING` state if the service contains tasks using the EC2 launch type. Using this parameter, you can deploy without using additional cluster capacity. For example, if you set your service to have desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. If they're in the `RUNNING` state, tasks for services that don't use a load balancer are considered healthy. If they're in the `RUNNING` state and reported as healthy by the load balancer, tasks for services that do use a load balancer are considered healthy. The default value for minimum healthy percent is 100%.

If a service uses the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the `RUNNING` or `PENDING` state during...
a deployment. Specifically, it represents it as a percentage of the desired number of tasks (rounded down to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%.

If a service uses either the CODE DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the **minimum healthy percent** and **maximum percent** values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state. This is while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used. This is the case even if they're currently visible when describing your service.

When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide.

When the service scheduler launches new tasks, it determines task placement. For information about task placement and task placement strategies, see Amazon ECS task placement in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
    "capacityProviderStrategy": [
        {
            "base": number,
            "capacityProvider": "string",
            "weight": number
        }
    ],
    "clientToken": "string",
    "cluster": "string",
    "deploymentConfiguration": {
        "alarms": {
            "alarmNames": [ "string" ],
            "enable": boolean,
            "Rollback": boolean
        },
        "deploymentCircuitBreaker": {
            "enable": boolean,
            "Rollback": boolean
        },
        "maximumPercent": number,
        "minimumHealthyPercent": number
    },
    "deploymentController": {
        "type": "string"
    },
    "desiredCount": number,
    "enableECSManagedTags": boolean,
    "enableExecuteCommand": boolean,
    "healthCheckGracePeriodSeconds": number,
    "launchType": "string",
    "loadBalancers": [
        {
            "containerName": "string",
            "containerPort": number
        }
    ]
}
```
"loadBalancerName": "string",
"targetGroupArn": "string"
],
"networkConfiguration": {
 "awsVpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
},
"placementConstraints": [
 {
 "expression": "string",
 "type": "string"
 }
],
"placementStrategy": [
 {
 "field": "string",
 "type": "string"
 }
],
"platformVersion": "string",
"propagateTags": "string",
"role": "string",
"schedulingStrategy": "string",
"serviceConnectConfiguration": {
 "enabled": boolean,
 "logConfiguration": {
 "logDriver": "string",
 "options": {
 "string": "string"
 },
 "secretOptions": [
 {
 "name": "string",
 "valueFrom": "string"
 }
]
 },
 "namespace": "string",
 "services": [
 {
 "clientAliases": [
 {
 "dnsName": "string",
 "port": number
 }
],
 "discoveryName": "string",
 "ingressPortOverride": number,
 "portName": "string"
 }
]
},
"serviceName": "string",
"serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
"tags": [
Amazon Elastic Container Service API Reference

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

capacityProviderStrategy (p. 17)

The capacity provider strategy to use for the service.

If a capacityProviderStrategy is specified, the launchType parameter must be omitted. If no capacityProviderStrategy or launchType is specified, the defaultCapacityProviderStrategy for the cluster is used.

A capacity provider strategy may contain a maximum of 6 capacity providers.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: No

clientToken (p. 17)

An identifier that you provide to ensure the idempotency of the request. It must be unique and is case sensitive. Up to 36 ASCII characters in the range of 33-126 (inclusive) are allowed.

Type: String

Required: No

cluster (p. 17)

The short name or full Amazon Resource Name (ARN) of the cluster that you run your service on. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

deploymentConfiguration (p. 17)

Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.

Type: DeploymentConfiguration (p. 361) object

Required: No

deploymentController (p. 17)

The deployment controller to use for the service. If no deployment controller is specified, the default value of ECS is used.
Type: DeploymentController (p. 363) object

Required: No
desiredCount (p. 17)

The number of instantiations of the specified task definition to place and keep running in your service.

This is required if schedulingStrategy is REPLICA or isn't specified. If schedulingStrategy is DAEMON then this isn't required.

Type: Integer

Required: No
enableECSManagedTags (p. 17)

Specifies whether to turn on Amazon ECS managed tags for the tasks within the service. For more information, see Tagging your Amazon ECS resources in the Amazon Elastic Container Service Developer Guide.

When you use Amazon ECS managed tags, you need to set the propagateTags request parameter.

Type: Boolean

Required: No
enableExecuteCommand (p. 17)

Determines whether the execute command functionality is turned on for the service. If true, this enables execute command functionality on all containers in the service tasks.

Type: Boolean

Required: No
healthCheckGracePeriodSeconds (p. 17)

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started. This is only used when your service is configured to use a load balancer. If your service has a load balancer defined and you don't specify a health check grace period value, the default value of 0 is used.

If you do not use an Elastic Load Balancing, we recommend that you use the startPeriod in the task definition health check parameters. For more information, see Health check.

If your service's tasks take a while to start and respond to Elastic Load Balancing health checks, you can specify a health check grace period of up to 2,147,483,647 seconds (about 69 years). During that time, the Amazon ECS service scheduler ignores health check status. This grace period can prevent the service scheduler from marking tasks as unhealthy and stopping them before they have time to come up.

Type: Integer

Required: No
launchType (p. 17)

The infrastructure that you run your service on. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

The FARGATE launch type runs your tasks on AWS Fargate On-Demand infrastructure.
Note
Fargate Spot infrastructure is available for use but a capacity provider strategy must be used. For more information, see [AWS Fargate capacity providers](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/aws-fargate-capacity-providers.html) in the Amazon ECS User Guide for AWS Fargate.

The EC2 launch type runs your tasks on Amazon EC2 instances registered to your cluster.

The EXTERNAL launch type runs your tasks on your on-premises server or virtual machine (VM) capacity registered to your cluster.

A service can use either a launch type or a capacity provider strategy. If a `launchType` is specified, the `capacityProviderStrategy` parameter must be omitted.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

loadBalancers (p. 17)

A load balancer object representing the load balancers to use with your service. For more information, see Service load balancing in the Amazon Elastic Container Service Developer Guide.

If the service uses the rolling update (ECS) deployment controller and using either an Application Load Balancer or Network Load Balancer, you must specify one or more target group ARNs to attach to the service. The service-linked role is required for services that use multiple target groups. For more information, see Using service-linked roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide.

If the service uses the CODE_DEPLOY deployment controller, the service is required to use either an Application Load Balancer or Network Load Balancer. When creating an AWS CodeDeploy deployment group, you specify two target groups (referred to as a targetGroupPair). During a deployment, AWS CodeDeploy determines which task set in your service has the status PRIMARY, and it associates one target group with it. Then, it also associates the other target group with the replacement task set. The load balancer can also have up to two listeners: a required listener for production traffic and an optional listener that you can use to perform validation tests with Lambda functions before routing production traffic to it.

If you use the CODE_DEPLOY deployment controller, these values can be changed when updating the service.

For Application Load Balancers and Network Load Balancers, this object must contain the load balancer target group ARN, the container name, and the container port to access from the load balancer. The container name must be as it appears in a container definition. The load balancer name parameter must be omitted. When a task from this service is placed on a container instance, the container instance and port combination is registered as a target in the target group that's specified here.

For Classic Load Balancers, this object must contain the load balancer name, the container name, and the container port to access from the load balancer. The container name must be as it appears in a container definition. The target group ARN parameter must be omitted. When a task from this service is placed on a container instance, the container instance is registered with the load balancer that's specified here.

Services with tasks that use the awsvpc network mode (for example, those with the Fargate launch type) only support Application Load Balancers and Network Load Balancers. Classic Load Balancers aren't supported. Also, when you create any target groups for these services, you must choose ip as the target type, not instance. This is because tasks that use the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2 instance.
Type: Array of **LoadBalancer (p. 393)** objects

Required: No

networkConfiguration (p. 17)

The network configuration for the service. This parameter is required for task definitions that use the `awsvpc` network mode to receive their own elastic network interface, and it isn't supported for other network modes. For more information, see [Task networking](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html) in the *Amazon Elastic Container Service Developer Guide*.

Type: **NetworkConfiguration (p. 404)** object

Required: No

placementConstraints (p. 17)

An array of placement constraint objects to use for tasks in your service. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.

Type: Array of **PlacementConstraint (p. 406)** objects

Required: No

placementStrategy (p. 17)

The placement strategy objects to use for tasks in your service. You can specify a maximum of 5 strategy rules for each service.

Type: Array of **PlacementStrategy (p. 407)** objects

Required: No

platformVersion (p. 17)

The platform version that your tasks in the service are running on. A platform version is specified only for tasks using the Fargate launch type. If one isn't specified, the LATEST platform version is used. For more information, see [AWS Fargate platform versions](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform-versions.html) in the *Amazon Elastic Container Service Developer Guide*.

Type: String

Required: No

propagateTags (p. 17)

Specifies whether to propagate the tags from the task definition to the task. If no value is specified, the tags aren't propagated. Tags can only be propagated to the task during task creation. To add tags to a task after task creation, use the [TagResource](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-definition-tagger.html) API action.

The default is NONE.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No

role (p. 17)

The name or full Amazon Resource Name (ARN) of the IAM role that allows Amazon ECS to make calls to your load balancer on your behalf. This parameter is only permitted if you are using a load
balancer with your service and your task definition doesn't use the awsvpc network mode. If you specify the role parameter, you must also specify a load balancer object with the loadBalancers parameter.

Important
If your account has already created the Amazon ECS service-linked role, that role is used for your service unless you specify a role here. The service-linked role is required if your task definition uses the awsvpc network mode or if the service is configured to use service discovery, an external deployment controller, multiple target groups, or Elastic Inference accelerators in which case you don't specify a role here. For more information, see Using service-linked roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide.

If your specified role has a path other than /, then you must either specify the full role ARN (this is recommended) or prefix the role name with the path. For example, if a role with the name baz has a path of /foo/ then you would specify /foo/baz as the role name. For more information, see Friendly names and paths in the IAM User Guide.

Type: String

Required: No

schedulingStrategy (p. 17)

The scheduling strategy to use for the service. For more information, see Services.

There are two service scheduler strategies available:

- **REPLICA**—The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. This scheduler strategy is required if the service uses the CODE_DEPLOY or EXTERNAL deployment controller types.

- **DAEMON**—The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks and will stop tasks that don't meet the placement constraints. When you're using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies.

 Note
 Tasks using the Fargate launch type or the CODE_DEPLOY or EXTERNAL deployment controller types don't support the DAEMON scheduling strategy.

Type: String

Valid Values: REPLICA | DAEMON

Required: No

serviceConnectConfiguration (p. 17)

The configuration for this service to discover and connect to services, and be discovered by, and connected from, other services within a namespace.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: ServiceConnectConfiguration (p. 430) object
Request Parameters

Required: No

serviceName (p. 17)

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. Service names must be unique within a cluster, but you can have similarly named services in multiple clusters within a Region or across multiple Regions.

Type: String

Required: Yes

serviceRegistries (p. 17)

The details of the service discovery registry to associate with this service. For more information, see Service discovery.

Note

Each service may be associated with one service registry. Multiple service registries for each service isn't supported.

Type: Array of ServiceRegistry (p. 436) objects

Required: No

tags (p. 17)

The metadata that you apply to the service to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define. When a service is deleted, the tags are deleted as well.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition (p. 17)

The family and revision (family:revision) or full ARN of the task definition to run in your service. If a revision isn't specified, the latest ACTIVE revision is used.

A task definition must be specified if the service uses either the ECS or CODE_DEPLOY deployment controllers.

For more information about deployment types, see Amazon ECS deployment types.
Response Syntax

```json
{
    "service": {
        "capacityProviderStrategy": [
            {
                "base": number,
                "capacityProvider": "string",
                "weight": number
            }
        ],
        "clusterArn": "string",
        "createdAt": number,
        "createdBy": "string",
        "deploymentConfiguration": {
            "alarms": {
                "alarmNames": [ "string" ],
                "enable": boolean,
                "rollback": boolean
            },
            "deploymentCircuitBreaker": {
                "enable": boolean,
                "rollback": boolean
            },
            "maximumPercent": number,
            "minimumHealthyPercent": number
        },
        "deploymentController": {
            "type": "string"
        },
        "deployments": [
            {
                "capacityProviderStrategy": [
                    {
                        "base": number,
                        "capacityProvider": "string",
                        "weight": number
                    }
                ],
                "createdAt": number,
                "desiredCount": number,
                "failedTasks": number,
                "id": "string",
                "launchType": "string",
                "networkConfiguration": {
                    "awsVpcConfiguration": {
                        "assignPublicIp": "string",
                        "securityGroups": [ "string" ],
                        "subnets": [ "string" ]
                    }
                },
                "pendingCount": number,
                "platformFamily": "string",
                "platformVersion": "string",
                "rolloutState": "string",
                "rolloutStateReason": "string",
                "runningCount": number,
                "serviceConnectConfiguration": {
                    "enabled": boolean,
                    "allocationId": "string",
                    "proxyConfiguration": {
                        "proxyMode": "string",
                        "strategy": "string"
                    }
                }
            }
        ]
    }
}
```
"logConfiguration": {
 "logDriver": "string",
 "options": {
 "string" : "string"
 },
 "secretOptions": [
 {
 "name": "string",
 "ValueFrom": "string"
 }
]},
"namespace": "string",
"services": [
 {
 "clientAliases": [
 {
 "dnsName": "string",
 "port": number
 }
],
 "discoveryName": "string",
 "IngressPortOverride": number,
 "portName": "string"
 }
],
"serviceConnectResources": [
 {
 "discoveryArn": "string",
 "discoveryName": "string"
 }
],
"status": "string",
"taskDefinition": "string",
"updatedAt": number
},
"desiredCount": number,
"enableECSManagedTags": boolean,
"enableExecuteCommand": boolean,
"events": [
 {
 "createdAt": number,
 "id": "string",
 "message": "string"
 }
],
"healthCheckGracePeriodSeconds": number,
"launchType": "string",
"loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "LoadBalancerName": "string",
 "TargetGroupArn": "string"
 }
],
"networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "Subnets": ["string"]
 }
},
"pendingCount": number,
"placementConstraints": [
 {
 "expression": "string",
 "type": "string"
 }
],
"placementStrategy": [
 {
 "field": "string",
 "type": "string"
 }
],
"platformFamily": "string",
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
"status": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
],
"taskDefinition": "string",
"taskSets": [
 {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "computedDesiredCount": number,
 "createdAt": number,
 "externalId": "string",
 "id": "string",
 "launchType": "string",
 "loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 }
 }
]
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

service (p. 25)

The full description of your service following the create call.

A service will return either a capacityProviderStrategy or launchType parameter, but not both, depending where one was specified when it was created.

If a service is using the ECS deployment controller, the deploymentController and taskSets parameters will not be returned.

if the service uses the CODE_DEPLOY deployment controller, the deploymentController, taskSets and deployments parameters will be returned, however the deployments parameter will be an empty list.

Type: Service (p. 422) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).
AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

NamespaceNotFoundException

The specified namespace wasn't found.

HTTP Status Code: 400

PlatformTaskDefinitionIncompatibilityException

The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400

PlatformUnknownException

The specified platform version doesn't exist.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.
Example 1

This example API request creates a service in your default Region called `ecs-simple-service`. The service uses the `ecs-demo` task definition and it maintains 10 instantiations of that task. It uses both the FARGATE and FARGATE_SPOT capacity providers.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 87
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateService
X-Amz-Date: 20150429T170125Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "serviceName": "ecs-simple-service",
  "taskDefinition": "ecs-demo",
  "desiredCount": 10,
  "capacityProviderStrategy": [
    {
      "base": number,
      "capacityProvider": "FARGATE",
      "weight": 1
    }
  ],
  "capacityProviderStrategy": [
    {
      "base": number,
      "capacityProvider": "FARGATE_SPOT",
      "weight": 1
    }
  ]
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:01:27 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 636
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "service": {
    "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
    "deploymentConfiguration": {
      "maximumPercent": 200,
      "minimumHealthyPercent": 100
    },
    "deployments": [
      {
        "createdAt": 1430326887.362,
        "desiredCount": 10,
        "id": "ecs-svc/9223370606527888445",
        "pendingCount": 0,
        "runningCount": 0,
        "status": "PRIMARY"
      }
    ]
  }
}
```
Example 2

This example API request creates a service with multiple load balancer target groups.

Sample Request

POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateService
Content-Type: application/x-amz-json-1.1
User-Agent: aws-cli/1.16.190 Python/3.6.1 Darwin/16.7.0 botocore/1.12.180
X-Amz-Date: 20190723T001203Z
Authorization: AUTHPARAMS
Content-Length: 453

{
 "serviceName": "ecs-multiplealb-service",
 "taskDefinition": "ecs-multiplealb-demo",
 "loadBalancers": [
 {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg1/18ce32cc074018ed",
 "containerName": "simple-app",
 "containerPort": 80
 },
 {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg2/737bead11d516e2a",
 "containerName": "simple-app",
 "containerPort": 8000
 }
],
 "desiredCount": 10
}
Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
Content-Type: application/x-amz-json-1.1
Content-Length: 1440
Date: Tue, 23 Jul 2019 00:12:03 GMT
Connection: keep-alive

{
 "service": {
 "serviceArn": "arn:aws:ecs:us-east-1:012345678910:service/default/ecs-multiplealb-service",
 "serviceName": "ecs-multiplealb-service",
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "loadBalancers": [
 {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg1/18ce32cc074018ed",
 "containerName": "simple-app",
 "containerPort": 80
 },
 {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg2/737bead11d516e2a",
 "containerName": "simple-app",
 "containerPort": 8080
 }
],
 "serviceRegistries": [],
 "status": "ACTIVE",
 "desiredCount": 10,
 "runningCount": 0,
 "pendingCount": 0,
 "launchType": "EC2",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/ecs-multiplealb-demo",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "id": "ecs-svc/9223370473014051517",
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/ecs-multiplealb-demo",
 "desiredCount": 10,
 "pendingCount": 0,
 "runningCount": 0,
 "createdAt": 1563840724.29,
 "updatedAt": 1563840724.29,
 "launchType": "EC2"
 }
],
 "roleArn": "arn:aws:iam::012345678910:role/aws-service-role/ecs.amazonaws.com/AWSServiceRoleForECS",
 "events": [],
 "createdAt": 1563840724.29,
 "placementConstraints": [],
 "placementStrategy": [],
 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "enableECSManagedTags": false,
 "propagateTags": "NONE"
 }
}
Example 3

This example API request creates a service with a strategy that distributes tasks evenly across Availability Zones and then bin packs tasks based on memory within each Availability Zone.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateService
Content-Type: application/x-amz-json-1.1
User-Agent: aws-cli/1.16.190 Python/3.6.1 Darwin/16.7.0 botocore/1.12.180
X-Amz-Date: 20190723T001203Z
Authorization: AUTHPARAMS
Content-Length: 453

{
  "serviceName": "example-placement1",
  "taskDefinition": "windows-simple-iis",
  "placementStrategy": [
    {
      "field": "attribute:ecs.availability-zone",
      "type": "spread"
    },
    {
      "field": "memory",
      "type": "binpack"
    }
  ],
  "desiredCount": 3
}
```

Sample Response

```
HTTP/1.1 200 OK
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
Content-Type: application/x-amz-json-1.1
Content-Length: 1440
Date: Tue, 23 Jul 2019 00:12:03 GMT
Connection: keep-alive

{
  "service": {
    "serviceArn": "arn:aws:ecs:us-east-1:123456789012:service/windows-ec2/default/example-placement1",
    "serviceName": "example-placement1",
    "clusterArn": "arn:aws:ecs:us-east-1:123456789012:cluster/windows-ec2",
    "loadBalancers": [],
    "serviceRegistries": [],
    "status": "ACTIVE",
    "desiredCount": 3,
    "runningCount": 0,
    "pendingCount": 0,
    "launchType": "EC2",
    "taskDefinition": "arn:aws:ecs:us-east-1:123456789012:task-definition/windows-simple-iis:2",
    "deploymentConfiguration": {
      "deploymentCircuitBreaker": {
```
"enable": false,
"rollback": false
},
"maximumPercent": 200,
"minimumHealthyPercent": 100
},
"deployments": [
{
"id": "ecs-svc/409552086333EXAMPLE",
"status": "PRIMARY",
"taskDefinition": "arn:aws:ecs:us-east-1:123456789012:task-definition/windows-simple-iis:2",
"desiredCount": 3,
"pendingCount": 0,
"runningCount": 0,
"failedTasks": 0,
"createdAt": "2022-07-21T15:06:08.787000-04:00",
"updatedAt": "2022-07-21T15:06:08.787000-04:00",
"launchType": "EC2",
"rolloutState": "IN_PROGRESS",
"rollbackStateReason": "ECS deployment ecs-svc/409552086333EXAMPLE in progress."
}
],
"events": [],
"createdAt": "2022-07-21T15:06:08.787000-04:00",
"placementConstraints": [],
"placementStrategy": [
{
"type": "spread",
"field": "attribute:ecs.availability-zone"
},
{
"type": "binpack",
"field": "MEMORY"
}
],
"schedulingStrategy": "REPLICA",
"createdAt": "2022-07-21T15:06:08.787000-04:00",
"placementConstraints": [],
"placementStrategy": [
{
"type": "spread",
"field": "attribute:ecs.availability-zone"
},
{
"type": "binpack",
"field": "MEMORY"
}
],
"schedulingStrategy": "REPLICA",
"createdAt": "2022-07-21T15:06:08.787000-04:00",
"placementConstraints": [],
"placementStrategy": [
{
"type": "spread",
"field": "attribute:ecs.availability-zone"
},
{
"type": "binpack",
"field": "MEMORY"
}
],
"schedulingStrategy": "REPLICA",
"createdAt": "2022-07-21T15:06:08.787000-04:00",
"enableECSManagedTags": false,
"propagateTags": "NONE",
"enableExecuteCommand": false
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- **AWS Command Line Interface**
- [AWS SDK for .NET](https://aws.amazon.com/sdk-for-.net/)
- [AWS SDK for C++](https://aws.amazon.com/sdk-for-cpp/)
- [AWS SDK for Go](https://aws.amazon.com/sdk-for-go/)
- [AWS SDK for Java V2](https://aws.amazon.com/sdk-for-java/)
- [AWS SDK for JavaScript](https://aws.amazon.com/sdk-for-javascript/)
- [AWS SDK for PHP V3](https://aws.amazon.com/sdk-for-php/)
- [AWS SDK for Python](https://aws.amazon.com/sdk-for-python/)
- [AWS SDK for Ruby V3](https://aws.amazon.com/sdk-for-ruby/)

API Version 2014-11-13
34
Create a task set in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
  "capacityProviderStrategy": [
    {
      "base": number,
      "capacityProvider": "string",
      "weight": number
    }
  ],
  "clientToken": "string",
  "cluster": "string",
  "externalId": "string",
  "launchType": "string",
  "loadBalancers": [
    {
      "containerName": "string",
      "containerPort": number,
      "loadBalancerName": "string",
      "targetGroupArn": "string"
    }
  ],
  "networkConfiguration": {
    "awsvpcConfiguration": {
      "assignPublicIp": "string",
      "securityGroups": [ "string" ],
      "subnets": [ "string" ]
    }
  },
  "platformVersion": "string",
  "scale": {
    "unit": "string",
    "value": number
  },
  "service": "string",
  "serviceRegistries": [
    {
      "containerName": "string",
      "containerPort": number,
      "port": number,
      "registryArn": "string"
    }
  ],
  "tags": [
    {
      "key": "string",
      "value": "string"
    }
  ],
  "taskDefinition": "string"
}
```
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

capacityProviderStrategy (p. 35)

The capacity provider strategy to use for the task set.

A capacity provider strategy consists of one or more capacity providers along with the base and weight to assign to them. A capacity provider must be associated with the cluster to be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 186) API is used to associate a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status can be used.

If a capacityProviderStrategy is specified, the launchType parameter must be omitted. If no capacityProviderStrategy or launchType is specified, the defaultCapacityProviderStrategy for the cluster is used.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 7) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

The PutClusterCapacityProviders (p. 186) API operation is used to update the list of available capacity providers for a cluster after the cluster is created.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

clientToken (p. 35)

An identifier that you provide to ensure the idempotency of the request. It must be unique and is case sensitive. Up to 36 ASCII characters in the range of 33-126 (inclusive) are allowed.

Type: String

Required: No

cluster (p. 35)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service to create the task set in.

Type: String

Required: Yes

externalId (p. 35)

An optional non-unique tag that identifies this task set in external systems. If the task set is associated with a service discovery registry, the tasks in this task set will have the ECS_TASK_SET_EXTERNAL_ID AWS Cloud Map attribute set to the provided value.

Type: String
Required: No

launchType (p. 35)

The launch type that new tasks in the task set uses. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

If a launchType is specified, the capacityProviderStrategy parameter must be omitted.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

loadBalancers (p. 35)

A load balancer object representing the load balancer to use with the task set. The supported load balancer types are either an Application Load Balancer or a Network Load Balancer.

Type: Array of LoadBalancer (p. 393) objects

Required: No

networkConfiguration (p. 35)

An object representing the network configuration for a task set.

Type: NetworkConfiguration (p. 404) object

Required: No

platformVersion (p. 35)

The platform version that the tasks in the task set uses. A platform version is specified only for tasks using the Fargate launch type. If one isn't specified, the LATEST platform version is used.

Type: String

Required: No

scale (p. 35)

A floating-point percentage of the desired number of tasks to place and keep running in the task set.

Type: Scale (p. 420) object

Required: No

service (p. 35)

The short name or full Amazon Resource Name (ARN) of the service to create the task set in.

Type: String

Required: Yes

serviceRegistries (p. 35)

The details of the service discovery registries to assign to this task set. For more information, see Service discovery.

Type: Array of ServiceRegistry (p. 436) objects

Required: No
tags (p. 35)

The metadata that you apply to the task set to help you categorize and organize them. Each tag consists of a key and an optional value. You define both. When a service is deleted, the tags are deleted.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:` , `AWS:` , or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition (p. 35)

The task definition for the tasks in the task set to use. If a revision isn't specified, the latest ACTIVE revision is used.

Type: String

Required: Yes

Response Syntax

```json
{
    "taskSet": {
        "capacityProviderStrategy": [
            {
                "base": number,
                "capacityProvider": "string",
                "weight": number
            }
        ],
        "clusterArn": "string",
        "computedDesiredCount": number,
        "createdAt": number,
        "externallyId": "string",
        "id": "string",
        "launchType": "string",
        "loadBalancers": [
            {
                "containerName": "string",
                "containerPort": number,
                "loadBalancerName": "string",
                "targetGroupArn": "string"
            }
        ],
    }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

taskSet (p. 38)

Information about a set of Amazon ECS tasks in either an AWS CodeDeploy or an EXTERNAL deployment. A task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.

Type: TaskSet (p. 460) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.
HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with `ListClusters (p. 145)`. Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

NamespaceNotFoundException

The specified namespace wasn't found.

HTTP Status Code: 400

PlatformTaskDefinitionIncompatibilityException

The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400

PlatformUnknownException

The specified platform version doesn't exist.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with `CreateService (p. 16)`.

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with `ListServices (p. 152)`. Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

UnsupportedFeatureException

The specified task isn't supported in this Region.
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteAccountSetting

Disables an account setting for a specified user, role, or the root user for an account.

Request Syntax

```json
{
   "name": "string",
   "principalArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 480).

The request accepts the following data in JSON format.

name (p. 42)

The resource name to disable the account setting for. If `serviceLongArnFormat` is specified, the ARN for your Amazon ECS services is affected. If `taskLongArnFormat` is specified, the ARN and resource ID for your Amazon ECS tasks is affected. If `containerInstanceLongArnFormat` is specified, the ARN and resource ID for your Amazon ECS container instances is affected. If `awsvpcTrunking` is specified, the ENI limit for your Amazon ECS container instances is affected.

Type: String

Required: Yes

principalArn (p. 42)

The Amazon Resource Name (ARN) of the principal. It can be an user, role, or the root user. If you specify the root user, it disables the account setting for all users, roles, and the root user of the account unless a user or role explicitly overrides these settings. If this field is omitted, the setting is changed only for the authenticated user.

Type: String

Required: No

Response Syntax

```json
{
   "setting": {
      "name": "string",
      "principalArn": "string",
      "value": "string"
   }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

setting (p. 42)

The account setting for the specified principal ARN.

Type: Setting (p. 439) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteAttributes

Deletes one or more custom attributes from an Amazon ECS resource.

Request Syntax

```json
{
  "attributes": [
    {
      "name": "string",
      "targetId": "string",
      "targetType": "string",
      "value": "string"
    }
  ],
  "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

attributes (p. 44)

The attributes to delete from your resource. You can specify up to 10 attributes for each request. For custom attributes, specify the attribute name and target ID, but don't specify the value. If you specify the target ID using the short form, you must also specify the target type.

Type: Array of Attribute (p. 312) objects

Required: Yes

cluster (p. 44)

The short name or full Amazon Resource Name (ARN) of the cluster that contains the resource to delete attributes. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

Response Syntax

```json
{
  "attributes": [
    {
      "name": "string",
      "targetId": "string",
      "targetType": "string",
      "value": "string"
    }
  ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

attributes (p. 44)

A list of attribute objects that were successfully deleted from your resource.

Type: Array of Attribute (p. 312) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

TargetNotFoundException

The specified target wasn't found. You can view your available container instances with ListContainerInstances (p. 148). Amazon ECS container instances are cluster-specific and Region-specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example deletes an attribute with the name stack from a container instance.

Sample Request

POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 169
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeleteAttributes
X-Amz-Date: 20161222T193851Z
User-Agent: aws-cli/1.11.30 Python/2.7.12 Darwin/16.3.0 botocore/1.4.87
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "cluster": "default",
 "attributes": [
 {
 "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-
 df30-47b4-8f1e-6e68ebd01f34",
 "name": "stack"
 }
]
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Thu, 22 Dec 2016 19:38:51 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 158
Connection: keep-alive
x-amzn-RequestId: 445193ca-c87e-11e6-86db-1bd3d9928caf
{
 "attributes": [
 {
 "name": "stack",
 "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-
 df30-47b4-8f1e-6e68ebd01f34",
 "value": "production"
 }
]
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
DeleteCapacityProvider

Deletes the specified capacity provider.

Note
The FARGATE and FARGATE_SPOT capacity providers are reserved and can't be deleted. You can
disassociate them from a cluster using either the [PutClusterCapacityProviders](p. 186) API or
by deleting the cluster.

Prior to a capacity provider being deleted, the capacity provider must be removed from the
capacity provider strategy from all services. The [UpdateService](p. 279) API can be used to
remove a capacity provider from a service's capacity provider strategy. When updating a service, the
forceNewDeployment option can be used to ensure that any tasks using the Amazon EC2 instance
capacity provided by the capacity provider are transitioned to use the capacity from the remaining
capacity providers. Only capacity providers that aren't associated with a cluster can be deleted. To
remove a capacity provider from a cluster, you can either use [PutClusterCapacityProviders](p. 186) or
delete the cluster.

Request Syntax

```json
{
  "capacityProvider": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common
Parameters](p. 480).

The request accepts the following data in JSON format.

capacityProvider (p. 47)

The short name or full Amazon Resource Name (ARN) of the capacity provider to delete.

Type: String

Required: Yes

Response Syntax

```json
{
  "capacityProvider": {
    "autoScalingGroupProvider": {
      "autoScalingGroupArn": "string",
      "managedScaling": {
        "instanceWarmupPeriod": number,
        "maximumScalingStepSize": number,
        "minimumScalingStepSize": number,
        "status": "string",
        "targetCapacity": number
      },
      "managedTerminationProtection": "string"
    },
    "capacityProviderArn": "string",
    "name": "string"
  }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

capacityProvider (p. 47)

The details of the capacity provider.

Type: CapacityProvider (p. 316) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
See Also

- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteCluster

Deletes the specified cluster. The cluster transitions to the INACTIVE state. Clusters with an INACTIVE status might remain discoverable in your account for a period of time. However, this behavior is subject to change in the future. We don't recommend that you rely on INACTIVE clusters persisting.

You must deregister all container instances from this cluster before you may delete it. You can list the container instances in a cluster with ListContainerInstances (p. 148) and deregister them with DeregisterContainerInstance (p. 74).

Request Syntax

```
{
  "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 50)

The short name or full Amazon Resource Name (ARN) of the cluster to delete.

Type: String

Required: Yes

Response Syntax

```
{
  "cluster": {
    "activeServicesCount": number,
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ],
        "id": "string",
        "status": "string",
        "type": "string"
      }
    ],
    "attachmentsStatus": "string",
    "capacityProviders": [ "string" ],
    "clusterArn": "string",
    "clusterName": "string",
    "configuration": {
      "executeCommandConfiguration": {
```

API Version 2014-11-13
50
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

cluster (p. 50)

The full description of the deleted cluster.

Type: **Cluster (p. 320)** object

Errors

For information about the errors that are common to all actions, see **Common Errors (p. 482)**.
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterContainsContainerInstancesException

You can't delete a cluster that has registered container instances. First, deregister the container instances before you can delete the cluster. For more information, see DeregisterContainerInstance (p. 74).

HTTP Status Code: 400

ClusterContainsServicesException

You can't delete a cluster that contains services. First, update the service to reduce its desired task count to 0, and then delete the service. For more information, see UpdateService (p. 279) and DeleteService (p. 55).

HTTP Status Code: 400

ClusterContainsTasksException

You can't delete a cluster that has active tasks.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as PENDING or STAGING, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.
You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request deletes the cluster called My-cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 25
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeleteCluster
X-Amz-Date: 20150429T170952Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "cluster": "My-cluster"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:09:54 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 211
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "cluster": {
    "activeServicesCount": 0,
    "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/My-cluster",
    "clusterName": "My-cluster",
    "pendingTasksCount": 0,
    "registeredContainerInstancesCount": 0,
    "runningTasksCount": 0,
    "status": "INACTIVE"
  }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteService

Deletes a specified service within a cluster. You can delete a service if you have no running tasks in it and the desired task count is zero. If the service is actively maintaining tasks, you can't delete it, and you must update the service to a desired task count of zero. For more information, see UpdateService (p. 279).

Note
When you delete a service, if there are still running tasks that require cleanup, the service status moves from ACTIVE to DRAINING, and the service is no longer visible in the console or in the ListServices (p. 152) API operation. After all tasks have transitioned to either STOPPING or STOPPED status, the service status moves from DRAINING to INACTIVE. Services in the DRAINING or INACTIVE status can still be viewed with the DescribeServices (p. 102) API operation. However, in the future, INACTIVE services may be cleaned up and purged from Amazon ECS record keeping, and DescribeServices (p. 102) calls on those services return a ServiceNotFoundException error.

Important
If you attempt to create a new service with the same name as an existing service in either ACTIVE or DRAINING status, you receive an error.

Request Syntax

```
{
    "cluster": "string",
    "force": boolean,
    "service": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 55)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service to delete. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

force (p. 55)

If true, allows you to delete a service even if it wasn't scaled down to zero tasks. It's only necessary to use this if the service uses the REPLICA scheduling strategy.

Type: Boolean

Required: No

service (p. 55)

The name of the service to delete.
Type: String
Required: Yes

Response Syntax

```json
{
   "service": {
      "capacityProviderStrategy": [
         {
            "base": number,
            "capacityProvider": "string",
            "weight": number
         }
      ],
      "clusterArn": "string",
      "createdAt": number,
      "createdBy": "string",
      "deploymentConfiguration": {
         "alarms": {
            "alarmNames": [ "string" ],
            "enable": boolean,
            "rollback": boolean
         },
         "deploymentCircuitBreaker": {
            "enable": boolean,
            "rollback": boolean
         },
         "maximumPercent": number,
         "minimumHealthyPercent": number
      },
      "deploymentController": {
         "type": "string"
      },
      "deployments": [
         {
            "capacityProviderStrategy": [
               {
                  "base": number,
                  "capacityProvider": "string",
                  "weight": number
               }
            ],
            "createdAt": number,
            "desiredCount": number,
            "failedTasks": number,
            "id": "string",
            "launchType": "string",
            "networkConfiguration": {
               "awsvpcConfiguration": {
                  "assignPublicIp": "string",
                  "securityGroups": [ "string" ],
                  "subnets": [ "string" ]
               }
            },
            "pendingCount": number,
            "platformFamily": "string",
            "platformVersion": "string",
            "rolloutState": "string",
            "rolloutStateReason": "string",
            "runningCount": number,
            "serviceConnectConfiguration": {
               "enabled": boolean,
            }
         }
      }
   }
}
```
"logConfiguration": {
 "logDriver": "string",
 "options": {
 "string": "string"
 },
 "secretOptions": [
 {
 "name": "string",
 "ValueFrom": "string"
 }
]
},
"namespace": "string",
"services": [
 {
 "clientAliases": [
 {
 "dnsName": "string",
 "port": number
 }
],
 "discoveryName": "string",
 "IngressPortOverride": number,
 "portName": "string"
 }
],
"serviceConnectResources": [
 {
 "discoveryArn": "string",
 "discoveryName": "string"
 }
],
"status": "string",
"taskDefinition": "string",
"updatedAt": number
},
"desiredCount": number,
"enableECSManagedTags": boolean,
"enableExecuteCommand": boolean,
"events": [
 {
 "createdAt": number,
 "id": "string",
 "message": "string"
 }
],
"healthCheckGracePeriodSeconds": number,
"launchType": "string",
"loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "LoadBalancerName": "string",
 "TargetGroupArn": "string"
 }
],
"networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
},
"pendingCount": number,
"placementConstraints": [
 {
 "expression": "string",
 "type": "string"
 }
],
"placementStrategy": [
 {
 "field": "string",
 "type": "string"
 }
],
"platformFamily": "string",
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
"status": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
],
"taskDefinition": "string",
"taskSets": [
 {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "computedDesiredCount": number,
 "createdAt": "string",
 "computedCount": number,
 "id": "string",
 "launchType": "string",
 "loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 }
 }
]}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

service (p. 56)

The full description of the deleted service.

Type: Service (p. 422) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 152). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example API request deletes the test service from the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 19
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeleteService
X-Amz-Date: 20150429T172539Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "service": "test"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3

API Version 2014-11-13

61
DeleteTaskDefinitions

Deletes one or more task definitions.

You must deregister a task definition revision before you delete it. For more information, see DeregisterTaskDefinition.

When you delete a task definition revision, it is immediately transitions from the INACTIVE to DELETE_IN_PROGRESS. Existing tasks and services that reference a DELETE_IN_PROGRESS task definition revision continue to run without disruption. Existing services that reference a DELETE_IN_PROGRESS task definition revision can still scale up or down by modifying the service's desired count.

You can't use a DELETE_IN_PROGRESS task definition revision to run new tasks or create new services. You also can't update an existing service to reference a DELETE_IN_PROGRESS task definition revision.

A task definition revision will stay in DELETE_IN_PROGRESS status until all the associated tasks and services have been terminated.

When you delete all INACTIVE task definition revisions, the task definition name is not displayed in the console and not returned in the API. If a task definition revisions are in the DELETE_IN_PROGRESS state, the task definition name is displayed in the console and returned in the API. The task definition name is retained by Amazon ECS and the revision is incremented the next time you create a task definition with that name.

Request Syntax

```json
{
  "taskDefinitions": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

taskDefinitions (p. 62)

The family and revision (family:revision) or full Amazon Resource Name (ARN) of the task definition to delete. You must specify a revision.

You can specify up to 10 task definitions as a comma separated list.

Type: Array of strings

Required: Yes

Response Syntax

```json
{
  "failures": [
    {
      "arn": "string",
      "detail": "string",
    }
  ]
}
```
"reason": "string"
],
"taskDefinitions": [
{
"compatibilities": ["string"],
"ContainerDefinitions": [
{
"command": ["string"],
"cpu": number,
"credentialSpecs": ["string"],
"dependsOn": [
{
"condition": "string",
"containerName": "string"
}
],
"disableNetworking": boolean,
"dnsSearchDomains": ["string"],
"dnsServers": ["string"],
"dockerLabels": { "string": "string" },
"dockerSecurityOptions": ["string"],
"entryPoint": ["string"],
"environment": [
{
"name": "string",
"Value": "string"
}
],
"environmentFiles": [
{
"type": "string",
"value": "string"
}
],
"essential": boolean,
"extraHosts": [
{
"hostname": "string",
"IpAddress": "string"
}
],
"FirelensConfiguration": {
"options": {
"string": "string"
},
"type": "string"
},
"healthCheck": {
"command": ["string"],
"interval": number,
"retries": number,
"startPeriod": number,
"timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,
"links": ["string"],
"linuxParameters": { "capabilities": { "add": ["string"],
"drop": ["string"]
}
},
"reason": "string"}
"devices": [
 {
 "containerPath": "string",
 "hostPath": "string",
 "permissions": ["string"]
 }
],
"initProcessEnabled": boolean,
"maxSwap": number,
"sharedMemorySize": number,
"swappiness": number,
"tmpfs": [
 {
 "containerPath": "string",
 "hostPath": "string",
 "permissions": ["string"]
 }
],
"logConfiguration": {
 "logDriver": "string",
 "options": {
 "string": "string"
 },
 "secretOptions": [
 {
 "name": "string",
 "valueFrom": "string"
 }
]
},
"memory": number,
"memoryReservation": number,
"mountPoints": [
 {
 "containerPath": "string",
 "readOnly": boolean,
 "sourceVolume": "string"
 }
],
"name": "string",
"portMappings": [
 {
 "appProtocol": "string",
 "containerPort": number,
 "containerPortRange": "string",
 "hostPort": number,
 "name": "string",
 "protocol": "string"
 }
],
"privileged": boolean,
"pseudoTerminal": boolean,
"readonlyRootFilesystem": boolean,
"repositoryCredentials": {
 "credentialsParameter": "string"
},
"resourceRequirements": [
 {
 "type": "string",
 "value": "string"
 }
],
"secrets": [
 {
 "name": "string",
 "mountOptions": ["string"],
 "size": number
 }
]
"valueFrom": "string"
],
"startTimeout": number,
"stopTimeout": number,
"systemControls": [

 "namespace": "string",
 "value": "string"
]
],
"ulimits": [

 "hardLimit": number,
 "name": "string",
 "softLimit": number
]
],
"user": "string",
"volumesFrom": [

 "readOnly": boolean,
 "sourceContainer": "string"
]
],
"workingDirectory": "string"
],
"cpu": "string",
"deregisteredAt": number,
"ephemeralStorage": {

 "sizeInGiB": number
},
"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [

 "deviceName": "string",
 "deviceType": "string"
]
],
"ipcMode": "string",
"memory": "string",
"networkMode": "string",
"pidMode": "string",
"placementConstraints": [

 "expression": "string",
 "type": "string"
]
],
"proxyConfiguration": {

 "containerName": "string",
 "properties": [

 "name": "string",
 "value": "string"
]
],
"type": "string"
],
"registeredAt": number,
"registeredBy": "string",
"requiresAttributes": [

 "name": "string",

"targetId": "string",
"targetType": "string",
"value": "string"
}
],
"requiresCompatibilities": ["string"],
"revision": number,
"runtimePlatform": {
 "cpuArchitecture": "string",
 "operatingSystemFamily": "string"
},
"status": "string",
"taskDefinitionArn": "string",
"taskRoleArn": "string",
"volumes": [
 {
 "dockerVolumeConfiguration": {
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "string": "string"
 },
 "labels": {
 "string": "string"
 },
 "scope": "string"
 },
 "efsVolumeConfiguration": {
 "authorizationConfig": {
 "accessPointId": "string",
 "iam": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string",
 "transitEncryption": "string",
 "transitEncryptionPort": number
 },
 "fsxWindowsFileServerVolumeConfiguration": {
 "authorizationConfig": {
 "credentialsParameter": "string",
 "domain": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string"
 },
 "host": {
 "sourcePath": "string"
 },
 "name": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 62)

Any failures associated with the call.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request deletes the task definition named Example-task-definition:1.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 25
```
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeleteTaskDefinitions
X-Amz-Date: 20150429T170952Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "taskDefinitions": [
 "Example-task-definition:1"
]
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 7 Dec 2022 17:09:54 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 211
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
{
 "failures": [],
 "taskDefinitions": [
 {
 "containerDefinitions": [
 {
 "command": [
 "apt-get update; apt-get install stress; while true; do stress --cpu $((RANDOM % 4)) -t $((RANDOM % 10)); done"
],
 "cpu": 50,
 "entryPoint": [
 "bash",
 "-c"
],
 "environment": [],
 "essential": true,
 "image": "ubuntu",
 "memory": 100,
 "mountPoints": [],
 "name": "wave",
 "portMappings": [],
 "volumesFrom": []
 }
],
 "family": "cpu-wave",
 "revision": 1,
 "status": "DELETE_IN_PROGRESS",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:012345678910:task-definition/Example-task-definition:1",
 "volumes": []
 }
]
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
DeleteTaskSet

Deletes a specified task set within a service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
    "cluster": "string",
    "force": boolean,
    "service": "string",
    "taskSet": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

- **cluster (p. 70)**
 The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task set found in to delete.
 Type: String
 Required: Yes

- **force (p. 70)**
 If `true`, you can delete a task set even if it hasn’t been scaled down to zero.
 Type: Boolean
 Required: No

- **service (p. 70)**
 The short name or full Amazon Resource Name (ARN) of the service that hosts the task set to delete.
 Type: String
 Required: Yes

- **taskSet (p. 70)**
 The task set ID or full Amazon Resource Name (ARN) of the task set to delete.
 Type: String
 Required: Yes

Response Syntax

```
{
    "taskSet": {

```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

taskSet (p. 70)

Details about the task set.

Type: TaskSet (p. 460) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 16).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 152).

Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

TaskSetNotFoundException

The specified task set wasn't found. You can view your available task sets with DescribeTaskSets (p. 124).

Task sets are specific to each cluster, service and Region.

HTTP Status Code: 400
UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeregisterContainerInstance

Deregisters an Amazon ECS container instance from the specified cluster. This instance is no longer available to run tasks.

If you intend to use the container instance for some other purpose after deregistration, we recommend that you stop all of the tasks running on the container instance before deregistration. That prevents any orphaned tasks from consuming resources.

Deregistering a container instance removes the instance from a cluster, but it doesn't terminate the EC2 instance. If you are finished using the instance, be sure to terminate it in the Amazon EC2 console to stop billing.

Note
If you terminate a running container instance, Amazon ECS automatically deregisters the instance from your cluster (stopped container instances or instances with disconnected agents aren't automatically deregistered when terminated).

Request Syntax

```
{
  "cluster": "string",
  "containerInstance": "string",
  "force": boolean
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 74)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instance to deregister. If you do not specify a cluster, the default cluster is assumed.

Type: String
Required: No

containerInstance (p. 74)

The container instance ID or full ARN of the container instance to deregister. For more information about the ARN format, see Amazon Resource Name (ARN) in the Amazon ECS Developer Guide.

Type: String
Required: Yes

force (p. 74)

Forces the container instance to be deregistered. If you have tasks running on the container instance when you deregister it with the force option, these tasks remain running until you terminate the instance or the tasks stop through some other means, but they're orphaned (no longer monitored or accounted for by Amazon ECS). If an orphaned task on your container instance is part of an Amazon
ECS service, then the service scheduler starts another copy of that task, on a different container instance if possible.

Any containers in orphaned service tasks that are registered with a Classic Load Balancer or an Application Load Balancer target group are deregistered. They begin connection draining according to the settings on the load balancer or target group.

Type: Boolean

Required: No

Response Syntax

```json
{
  "containerInstance": {
    "agentConnected": boolean,
    "agentUpdateStatus": "string",
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ],
        "id": "string",
        "status": "string",
        "type": "string"
      }
    ],
    "attributes": [
      {
        "name": "string",
        "targetId": "string",
        "targetType": "string",
        "value": "string"
      }
    ],
    "capacityProviderName": "string",
    "containerInstanceArn": "string",
    "ec2InstanceId": "string",
    "healthStatus": {
      "details": [
        {
          "lastStatusChange": number,
          "lastUpdated": number,
          "status": "string",
          "type": "string"
        }
      ],
      "overallStatus": "string"
    },
    "pendingTasksCount": number,
    "registeredAt": number,
    "registeredResources": [
      {
        "doubleValue": number,
        "integerValue": number,
        "longValue": number,
        "name": "string",
        "stringSetValue": [ "string" ],
        "type": "string"
      }
    ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstance (p. 75)

The container instance that was deregistered.

Type: [ContainerInstance (p. 346)](p. 346) object

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)](p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with [ListClusters (p. 145)](p. 145).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400
InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request deregisters a container instance with the ID f4292606-fbed-4b53-833b-92cad7c687c2 in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 61
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeregisterContainerInstance
X-Amz-Date: 20151001T191224Z
User-Agent: aws-cli/1.8.7 Python/2.7.9 Darwin/14.5.0
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "containerInstance": "c9c9a6f2-8766-464b-8805-9c57b9368fb0"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Thu, 01 Oct 2015 19:12:25 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1613
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "containerInstance": {
    "agentConnected": true,
    "attributes": [
    }]
```
"name": "com.amazonaws.ecs.capability.privileged-container"
},
"name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
},
"name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
},
"name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
},
"name": "com.amazonaws.ecs.capability.logging-driver.json-file"
},
"name": "com.amazonaws.ecs.capability.logging-driver.syslog"
],
"containerInstanceArn": "arn:aws:ecs:us-west-2:012345678910:container-instance/default/c9c9a6f2-8766-464b-8805-9c57b9368fb0",
"ec2InstanceId": "i-0c3826c9",
"pendingTasksCount": 0,
"registeredResources": [
{
"doubleValue": 0,
"integerValue": 1024,
"name": "CPU",
"type": "INTEGER"
},
{
"doubleValue": 0,
"integerValue": 995,
"longValue": 0,
"name": "MEMORY",
"type": "INTEGER"
},
{
"doubleValue": 0,
"integerValue": 0,
"longValue": 0,
"name": "PORTS",
"stringSetValue": [
"22",
"2376",
"2375",
"51678"
],
"type": "STRINGSET"
},
{
"doubleValue": 0,
"integerValue": 0,
"longValue": 0,
"name": "PORTS_UDP",
"stringSetValue": [],
"type": "STRINGSET"
}
],
"remainingResources": [
{
"doubleValue": 0,
"integerValue": 1024,
"longValue": 0,
"name": "CPU",
"type": "INTEGER"
}]}
},
{
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "MEMORY",
 "type": "INTEGER"
},
{
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET"
},
{
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS_UDP",
 "stringSetValue": [],
 "type": "STRINGSET"
}
],
"runningTasksCount": 0,
"status": "INACTIVE",
"versionInfo": {
 "agentHash": "b197edd",
 "agentVersion": "1.5.0",
 "dockerVersion": "DockerVersion: 1.7.1"
}
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeregisterTaskDefinition

Deregisters the specified task definition by family and revision. Upon deregistration, the task definition is marked as INACTIVE. Existing tasks and services that reference an INACTIVE task definition continue to run without disruption. Existing services that reference an INACTIVE task definition can still scale up or down by modifying the service's desired count. If you want to delete a task definition revision, you must first deregister the task definition revision.

You can't use an INACTIVE task definition to run new tasks or create new services, and you can't update an existing service to reference an INACTIVE task definition. However, there may be up to a 10-minute window following deregistration where these restrictions have not yet taken effect.

Note
At this time, INACTIVE task definitions remain discoverable in your account indefinitely. However, this behavior is subject to change in the future. We don't recommend that you rely on INACTIVE task definitions persisting beyond the lifecycle of any associated tasks and services.

You must deregister a task definition revision before you delete it. For more information, see [DeleteTaskDefinitions](#).

Request Syntax

```
{
  "taskDefinition": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](#).

The request accepts the following data in JSON format.

taskDefinition (p. 80)

The family and revision (family:revision) or full Amazon Resource Name (ARN) of the task definition to deregister. You must specify a revision.

Type: String

Required: Yes

Response Syntax

```
{
  "taskDefinition": {
    "compatibilities": [ "string" ],
    "containerDefinitions": [
      {
        "command": [ "string" ],
        "cpu": number,
        "credentialSpecs": [ "string" ],
        "dependsOn": [
          {
            "condition": "string",
            ...
          }
        ]
      }
    ]
  }
}
```
"containerName": "string",
"disableNetworking": boolean,
"dnsSearchDomains": ["string"],
"dnsServers": ["string"],
"dockerLabels": {
 "string": "string"
},
"dockerSecurityOptions": ["string"],
"entryPoint": ["string"],
"environment": [
 {
 "name": "string",
 "value": "string"
 }
],
"environmentFiles": [{
 "type": "string",
 "value": "string"
}],
"essential": boolean,
"extraHosts": [{
 "hostname": "string",
 "ipAddress": "string"
}],
"firelensConfiguration": {
 "options": {
 "string": "string"
 },
 "type": "string"
},
"healthCheck": {
 "command": ["string"],
 "interval": number,
 "retries": number,
 "startPeriod": number,
 "timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,
"links": ["string"],
"linuxParameters": {
 "capabilities": {
 "add": ["string"],
 "drop": ["string"]
 },
 "devices": [{
 "containerPath": "string",
 "hostPath": "string",
 "permissions": ["string"]
 }]
},
"initProcessEnabled": boolean,
"maxSwap": number,
"sharedMemorySize": number,
"swappiness": number,
"tmpfs": [
 "containerPath": "string"]}
"mountOptions": ["string"],
"size": number
]
},
"logConfiguration": {
"logDriver": "string",
"options": {
"string": "string"
},
"secretOptions": [
{
"name": "string",
"valueFrom": "string"
}
],
"memory": number,
"memoryReservation": number,
"mountPoints": [
{
"containerPath": "string",
"readOnly": boolean,
"sourceVolume": "string"
}
],
"name": "string",
"portMappings": [
{
"appProtocol": "string",
"containerPort": number,
"containerPortRange": "string",
"hostPort": number,
"name": "string",
"protocol": "string"
}
],
"privileged": boolean,
"pseudoTerminal": boolean,
"readonlyRootFilesystem": boolean,
"repositoryCredentials": {
"credentialsParameter": "string"
},
"resourceRequirements": [
{
"type": "string",
"value": "string"
}
],
"secrets": [
{
"name": "string",
"valueFrom": "string"
}
],
"startTimeout": number,
"stopTimeout": number,
"systemControls": [
{
"namespace": "string",
"value": "string"
}
],
"ulimits": [
{
"hardLimit": number,
}
"name": "string",
"softLimit": number,

"user": "string",
"volumesFrom": [
 {
 "readOnly": boolean,
 "sourceContainer": "string"
 }
],

"workingDirectory": "string"
],

"cpu": "string",
"deregisteredAt": number,
"ephemeralStorage": {
 "sizeInGiB": number
},

"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
],

"ipcMode": "string",
"memory": "string",

"networkMode": "string",
"pidMode": "string",

"placementConstraints": [
 {
 "expression": "string",
 "type": "string"
 }
],

"proxyConfiguration": {
 "containerName": "string",
 "properties": [
 {
 "name": "string",
 "value": "string"
 }
],
 "type": "string"
},

"registeredAt": number,
"registeredBy": "string",

"requiresAttributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
]

"requiresCompatibilities": ["string"],

"revision": number,

"runtimePlatform": {
 "cpuArchitecture": "string",
 "operatingSystemFamily": "string"
},

"status": "string",
"taskDefinitionArn": "string",
"taskRoleArn": "string"
"volumes": [
 {
 "dockerVolumeConfiguration": {
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "string": "string"
 },
 "labels": {
 "string": "string"
 },
 "scope": "string"
 },
 "efsVolumeConfiguration": {
 "authorizationConfig": {
 "accessPointId": "string",
 "iam": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string",
 "transitEncryption": "string",
 "transitEncryptionPort": number
 },
 "fsxWindowsFileServerVolumeConfiguration": {
 "authorizationConfig": {
 "credentialsParameter": "string",
 "domain": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string"
 },
 "host": {
 "sourcePath": "string"
 },
 "name": "string"
 }
]
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

taskDefinition (p. 80)

The full description of the deregistered task.

Type: TaskDefinition (p. 450) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.
HTTP Status Code: 400
InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](https://docs.aws.amazon.com/AmazonS3/latest/userguide/aws-signature-version-4.html) in the *AWS General Reference*.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](https://aws.amazon.com/cli/) or one of the [AWS SDKs](https://aws.amazon.com/sdk-for-java/) to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

The following example request deregisters the first revision of the *cpu-wave* task definition family (*cpu-wave:1*). In the resulting output, the task definition status becomes INACTIVE.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 35
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeregisterTaskDefinition
X-Amz-Date: 20150429T184806Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "taskDefinition": "cpu-wave:1"
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Fri, 12 Jun 2015 23:07:39 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 491
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "taskDefinition": {
    "containerDefinitions": [
      {
        "command": [...
```
"apt-get update; apt-get install stress; while true; do stress --cpu $((RANDOM % 4)); -t $((RANDOM % 10)); done"
],
 "cpu": 50,
 "entryPoint": [
 "bash",
 "-c"
],
 "environment": [],
 "essential": true,
 "image": "ubuntu",
 "memory": 100,
 "mountPoints": [],
 "name": "wave",
 "portMappings": [],
 "volumesFrom": []
},
 "family": "cpu-wave",
 "revision": 1,
 "status": "INACTIVE",
 "taskDefinitionArn": "arn:aws:ecs:us-west-2:012345678910:task-definition/cpu-wave:1",
 "volumes": []
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeCapacityProviders

Describes one or more of your capacity providers.

Request Syntax

```json
{
    "capacityProviders": [ "string" ],
    "include": [ "string" ],
    "maxResults": number,
    "nextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

capacityProviders (p. 87)

The short name or full Amazon Resource Name (ARN) of one or more capacity providers. Up to 100 capacity providers can be described in an action.

Type: Array of strings

Required: No

include (p. 87)

Specifies whether or not you want to see the resource tags for the capacity provider. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

Type: Array of strings

Valid Values: TAGS

Required: No

maxResults (p. 87)

The maximum number of account setting results returned by DescribeCapacityProviders in paginated output. When this parameter is used, DescribeCapacityProviders only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another DescribeCapacityProviders request with the returned nextToken value. This value can be between 1 and 10. If this parameter is not used, then DescribeCapacityProviders returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

nextToken (p. 87)

The nextToken value returned from a previous paginated DescribeCapacityProviders request where maxResults was used and the results exceeded the value of that parameter. Pagination continues from the end of the previous results that returned the nextToken value.
Note
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String
Required: No

Response Syntax

```json
{
   "capacityProviders": [
      {
         "autoScalingGroupProvider": {
            "autoScalingGroupArn": "string",
            "managedScaling": {
               "instanceWarmupPeriod": "number",
               "maximumScalingStepSize": "number",
               "minimumScalingStepSize": "number",
               "status": "string",
               "targetCapacity": "number"
            },
            "managedTerminationProtection": "string"
         },
         "capacityProviderArn": "string",
         "name": "string",
         "status": "string",
         "tags": [
            {
               "key": "string",
               "value": "string"
            }
         ],
         "updateStatus": "string",
         "updateStatusReason": "string"
      }],
   "failures": [
      {
         "arn": "string",
         "detail": "string",
         "reason": "string"
      }
   ],
   "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

capacityProviders (p. 88)

The list of capacity providers.

Type: Array of [CapacityProvider (p. 316)] objects

failures (p. 88)

Any failures associated with the call.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeClusters

Describes one or more of your clusters.

Request Syntax

```json
{
  "clusters": [ "string" ],
  "include": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

clusters (p. 90)

A list of up to 100 cluster names or full cluster Amazon Resource Name (ARN) entries. If you do not specify a cluster, the default cluster is assumed.

Type: Array of strings

Required: No

include (p. 90)

Determines whether to include additional information about the clusters in the response. If this field is omitted, this information isn't included.

- If ATTACHMENTS is specified, the attachments for the container instances or tasks within the cluster are included, for example the capacity providers.
- If SETTINGS is specified, the settings for the cluster are included.
- If CONFIGURATIONS is specified, the configuration for the cluster is included.
- If STATISTICS is specified, the task and service count is included, separated by launch type.
- If TAGS is specified, the metadata tags associated with the cluster are included.

Type: Array of strings

Valid Values: ATTACHMENTS | CONFIGURATIONS | SETTINGS | STATISTICS | TAGS

Required: No

Response Syntax

```json
[
  { "clusters": [ 
    { "activeServicesCount": "number",
      "attachments": [ 
```
{ "details": [{ "name": "string", "value": "string" }], "id": "string", "status": "string", "type": "string" }, "attachmentsStatus": "string", "capacityProviders": ["string"], "clusterArn": "string", "clusterName": "string", "configuration": { "executeCommandConfiguration": { "kmsKeyId": "string", "logConfiguration": { "cloudWatchEncryptionEnabled": boolean, "cloudWatchLogGroupName": "string", "s3BucketName": "string", "s3EncryptionEnabled": boolean, "s3KeyPrefix": "string" }, "logging": "string" } }, "defaultCapacityProviderStrategy": [{ "base": number, "capacityProvider": "string", "weight": number }], "pendingTasksCount": number, "registeredContainerInstancesCount": number, "runningTasksCount": number, "serviceConnectDefaults": { "namespace": "string" }, "settings": [{ "name": "string", "value": "string" }], "statistics": [{ "name": "string", "value": "string" }], "status": "string", "tags": [{ "key": "string", "value": "string" }] }, "failures": [{ "arn": "string" }]}
Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

clusters (p. 90)

The list of clusters.

Type: Array of Cluster (p. 320) objects

failures (p. 90)

Any failures associated with the call.

Type: Array of Failure (p. 376) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signining Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.
Example

This example request provides descriptive information about the default cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 25
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeClusters
X-Amz-Date: 20150429T185014Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "clusters": [
    "default"
  ]
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 18:50:14 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 220
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "clusters": [  
    {  
      "activeServicesCount": 1,
      "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
      "clusterName": "default",
      "pendingTasksCount": 0,
      "registeredContainerInstancesCount": 0,
      "runningTasksCount": 0,
      "status": "ACTIVE"
    }
  ],
  "failures": []
}
```

Example

This example request provides descriptive information about a cluster that has an associated capacity provider with managed scaling turned on. The capacity provider and the scaling policy that Amazon ECS creates on your behalf are included as attachments in the response.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 25
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeClusters
X-Amz-Date: 20220429T185014Z

{x
  "clusters": [
    {
      "activeServicesCount": 1,
      "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
      "clusterName": "default",
      "pendingTasksCount": 0,
      "registeredContainerInstancesCount": 0,
      "runningTasksCount": 0,
      "status": "ACTIVE"
    }
  ],
  "failures": []
}
```
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "clusters": [
 "cluster-with-capacity-provider",
 "include": ["ATTACHMENTS"]
]
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2022 18:50:14 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 220
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "clusters": [
 {
 "clusterName": "cluster-with-capacity-provider",
 "status": "ACTIVE",
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "pendingTasksCount": 0,
 "activeServicesCount": 0,
 "statistics": [],
 "tags": [],
 "settings": [],
 "capacityProviders": [
 "FARGATE",
 "FARGATE_SPOT",
 "Infra-ECS-Cluster-45ff394c-615f-4496-a336-8019a3b38d7a-EC2CapacityProvider-EXAMPLE"
],
 "defaultCapacityProviderStrategy": [],
 "attachments": [
 {
 "id": "bf5ecfe0-f813-4356-b862-1dbe6025c57f",
 "type": "as_policy",
 "status": "CREATED",
 "details": [
 {
 "name": "capacityProviderName",
 "value": "Infra-ECS-Cluster-45ff394c-615f-4496-a336-8019a3b38d7a-EC2CapacityProvider-EXAMPLE"
 },
 {
 "name": "scalingPolicyName",
 "value": "ECSManagedAutoScalingPolicy-55c67464-7691-4310-a725-EXAMPLE"
 }
]
 }
],
 "attachmentsStatus": "UPDATE_COMPLETE"
 }
],
 "failures": []
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeContainerInstances

Describes one or more container instances. Returns metadata about each container instance requested.

Request Syntax

```json
{
  "cluster": "string",
  "containerInstances": [ "string" ],
  "include": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 96)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instances to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the container instance or container instances you are describing were launched in any cluster other than the default cluster.

Type: String

Required: No

containerInstances (p. 96)

A list of up to 100 container instance IDs or full Amazon Resource Name (ARN) entries.

Type: Array of strings

Required: Yes

include (p. 96)

Specifies whether you want to see the resource tags for the container instance. If TAGS is specified, the tags are included in the response. If CONTAINER_INSTANCE_HEALTH is specified, the container instance health is included in the response. If this field is omitted, tags and container instance health status aren't included in the response.

Type: Array of strings

Valid Values: TAGS | CONTAINER_INSTANCE_HEALTH

Required: No

Response Syntax

```json
{
  "containerInstances": [
  ]
}
```
"agentConnected": boolean,
"agentUpdateStatus": "string",
"attachments": [

 "details": [

 "name": "string",
 "value": "string"

],
"id": "string",
"status": "string",
"type": "string"

],
"attributes": [

 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"

]

],
"capacityProviderName": "string",
"containerInstanceArn": "string",
"ec2InstanceId": "string",
"healthStatus": {

 "details": [

 "lastStatusChange": number,
 "lastUpdated": number,
 "status": "string",
 "type": "string"

],
"overallStatus": "string"

],
"pendingTasksCount": number,
"registeredAt": number,
"registeredResources": [

 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringSetValue": ["string"],
 "type": "string"

]

],
"remainingResources": [

 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringSetValue": ["string"],
 "type": "string"

]

],
"runningTasksCount": number,
"status": "string",
"statusReason": "string",
"tags": [

 "key": "string",
 "value": "string"
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstances (p. 96)

The list of container instances.

Type: Array of ContainerInstance (p. 346) objects

failures (p. 96)

Any failures associated with the call.

Type: Array of Failure (p. 376) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides descriptive information about a container instance with an ID of f9cc75bb-0c94-46b9-bf6d-49d320bc1551 in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 64
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeContainerInstances
X-Amz-Date: 20160520T171518Z
User-Agent: aws-cli/1.10.30 Python/2.7.11 Darwin/15.4.0 botocore/1.4.17
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
    "containerInstances": [
        "f9cc75bb-8c94-46b9-bf6d-49d320bc1551"
    ]
}
```

Sample Response

```
{
    "containerInstances": [
        {
            "agentConnected": true,
            "attributes": [
                {
                    "name": "com.amazonaws.ecs.capability.privileged-container"
                },
                {
                    "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
                },
                {
                    "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
                },
                {
                    "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
                }
            ]
        }
    ]
}
```
{
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
},
{
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
},
{
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
},
{
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
},
{
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
},
{
 "name": "com.amazonaws.ecs.capability.ecr-auth"
}],
"ec2InstanceId": "i-042f39dc",
"pendingTasksCount": 0,
"registeredResources": [
 {
 "doubleValue": 0,
 "integerValue": 1024,
 "name": "CPU",
 "type": "INTEGER"
 },
 {
 "doubleValue": 0,
 "integerValue": 995,
 "name": "MEMORY",
 "type": "INTEGER"
 },
 {
 "doubleValue": 0,
 "integerValue": 0,
 "name": "PORTS",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET"
 },
 {
 "doubleValue": 0,
 "integerValue": 0,
 "name": "PORTS_UDP",
 "stringSetValue": [],
 "type": "STRINGSET"
 }
],
"remainingResources": [
 {
 "doubleValue": 0,
 "integerValue": 1024,
 "name": "CPU"
 }
}


```json
{
  "runningTasksCount": 0,
  "status": "ACTIVE",
  "version": 850,
  "versionInfo": {
    "agentHash": "0931217",
    "agentVersion": "1.9.0",
    "dockerVersion": "DockerVersion: 1.9.1"
  }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for Java V2
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeServices

Describes the specified services running in your cluster.

Request Syntax

```json
{
  "cluster": "string",
  "include": [ "string" ],
  "services": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 102)

The short name or full Amazon Resource Name (ARN) the cluster that hosts the service to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the service or services you are describing were launched in any cluster other than the default cluster.

Type: String

Required: No

include (p. 102)

Determines whether you want to see the resource tags for the service. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

Type: Array of strings

Valid Values: TAGS

Required: No

services (p. 102)

A list of services to describe. You may specify up to 10 services to describe in a single operation.

Type: Array of strings

Required: Yes

Response Syntax

```json
{
  "failures": [
    {
      "arn": "string",
      "detail": "string",
      "reason": "string"
    }
  ],
}
```

API Version 2014-11-13
"services": [
 {"capacityProviderStrategy": [
 {"base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "createdAt": number,
 "createdBy": "string",
 "deploymentConfiguration": {
 "alarms": {
 "alarmNames": ["string"],
 "enable": boolean,
 "rollback": boolean
 },
 "deploymentCircuitBreaker": {
 "enable": boolean,
 "rollback": boolean
 },
 "maximumPercent": number,
 "minimumHealthyPercent": number
 },
 "deploymentController": {
 "type": "string"
 },
 "deployments": [
 {"capacityProviderStrategy": [
 {"base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "createdAt": number,
 "desiredCount": number,
 "failedTasks": number,
 "id": "string",
 "launchType": "string",
 "networkConfiguration": {
 "awsVpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 },
 "pendingCount": number,
 "platformFamily": "string",
 "platformVersion": "string",
 "rolloutState": "string",
 "rolloutStateReason": "string",
 "runningCount": number,
 "serviceConnectConfiguration": {
 "enabled": boolean,
 "logConfiguration": {
 "logDriver": "string",
 "options": {
 "string": "string"
 },
 "secretOptions": [
 {"name": "string",
 "valueFrom": "string"
 }
]
 }
 }
 }
]


```
],

"namespace": "string",

"services": [

  { "clientAliases": [
    { "dnsName": "string",
      "port": number
    }
  ],

  "discoveryName": "string",

  "ingressPortOverride": number,

  "portName": "string"
  }
]},

"serviceConnectResources": [

  { "discoveryArn": "string",

  "discoveryName": "string"
  }
],

"status": "string",

"taskDefinition": "string",

"updatedAt": number
},

"desiredCount": number,

"enableECSManagedTags": boolean,

"enableExecuteCommand": boolean,

"events": [

  { "createdAt": number,

  "id": "string",

  "message": "string"
  }
],

"healthCheckGracePeriodSeconds": number,

"launchType": "string",

"loadBalancers": [

  { "containerName": "string",

  "containerPort": number,

  "loadBalancerName": "string",

  "targetGroupArn": "string"
  }
],

"networkConfiguration": {

  "awsvpcConfiguration": {

    "assignPublicIp": "string",

    "securityGroups": [ "string" ],

    "subnets": [ "string" ]

  }
},

"pendingCount": number,

"placementConstraints": [

  { "expression": "string",

  "type": "string"
  }
],

"placementStrategy": [

  { "field": "string",

```

API Version 2014-11-13
104
```
"type": "string"
],
"platformFamily": "string",
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
  {
    "containerName": "string",
    "containerPort": number,
    "port": number,
    "registryArn": "string"
  }
],
"status": "string",
"tags": [
  {
    "key": "string",
    "value": "string"
  }
],
"taskDefinition": "string",
"taskSets": [
  {
    "capacityProviderStrategy": [
      {
        "base": number,
        "CapacityProvider": "string",
        "weight": number
      }
    ],
    "clusterArn": "string",
    "computedDesiredCount": number,
    "createdAt": number,
    "externalId": "string",
    "id": "string",
    "launchType": "string",
    "loadBalancers": [
      {
        "containerName": "string",
        "containerPort": number,
        "loadBalancerName": "string",
        "targetGroupArn": "string"
      }
    ],
    "networkConfiguration": {
      "awsvpcConfiguration": {
        "assignPublicIp": "string",
        "securityGroups": [ "string" ],
        "subnets": [ "string" ]
      }
    },
    "pendingCount": number,
    "platformFamily": "string",
    "platformVersion": "string",
    "runningCount": number,
    "scale": {
      "unit": "string",
      "value": number
    },
    "serviceArn": "string"
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 102)

Any failures associated with the call.

Type: Array of Failure (p. 376) objects

services (p. 102)

The list of services described.

Type: Array of Service (p. 422) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.
HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides a full description of the bunker_buster service in the telemetry cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 55
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeServices
X-Amz-Date: 20150528T163859Z
User-Agent: aws-cli/1.7.30 Python/2.7.9 Darwin/14.3.0
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "services": [
 "bunker-buster"
],
 "cluster": "telemetry"
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:02:59 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 2449
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
```
"failures": [],
"services": [
    {
        "deploymentConfiguration": {
            "maximumPercent": 200,
            "minimumHealthyPercent": 100
        },
        "deployments": [
            {
                "createdAt": 1432829320.611,
                "desiredCount": 4,
                "id": "ecs-svc/9223370604025455196",
                "pendingCount": 0,
                "runningCount": 4,
                "status": "PRIMARY",
                "updatedAt": 1432829320.611
            }
        ],
        "desiredCount": 4,
        "events": [],
        "loadBalancers": [],
        "pendingCount": 0,
        "runningCount": 4,
        "serviceArn": "arn:aws:ecs:us-west-2:012345678910:service/default/bunker-buster",
        "serviceName": "bunker-buster",
        "status": "ACTIVE",
        "taskDefinition": "arn:aws:ecs:us-west-2:012345678910:task-definition/hpcc-t2-medium:1"
    }
]}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTaskDefinition

Describes a task definition. You can specify a family and revision to find information about a specific task definition, or you can simply specify the family to find the latest ACTIVE revision in that family.

**Note**
You can only describe INACTIVE task definitions while an active task or service references them.

**Request Syntax**

```json
{
 "include": ["string"],
 "taskDefinition": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**include (p. 109)**

Determines whether to see the resource tags for the task definition. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

Type: Array of strings

Valid Values: TAGS

Required: No

**taskDefinition (p. 109)**

The family for the latest ACTIVE revision, family and revision (family:revision) for a specific revision in the family, or full Amazon Resource Name (ARN) of the task definition to describe.

Type: String

Required: Yes

**Response Syntax**

```json
{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "taskDefinition": {
 "compatibilities": ["string"],
 "containerDefinitions": [
 "command": ["string"],
]
 }
}
```
"cpu": number,
"CredentialSpecs": [ "string" ],
"dependsOn": [
  {
    "condition": "string",
    "containerName": "string"
  }
],
"disableNetworking": boolean,
"dnsSearchDomains": [ "string" ],
"DnsServers": [ "string" ],
"dockerLabels": {
  "string": "string"
},
"dockerSecurityOptions": [ "string" ],
"entryPoint": [ "string" ],
"environment": [ 
  {
    "name": "string",
    "value": "string"
  }
],
"environmentFiles": [ 
  {
    "type": "string",
    "value": "string"
  }
],
"essential": boolean,
"extraHosts": [ 
  {
    "hostname": "string",
    "ipAddress": "string"
  }
],
"firelensConfiguration": { 
  "options": { 
    "string": "string"
  },
  "type": "string"
},
"healthCheck": { 
  "command": [ "string" ],
  "interval": number,
  "retries": number,
  "startPeriod": number,
  "timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,
"links": [ "string" ],
"linuxParameters": { 
  "capabilities": { 
    "add": [ "string" ],
    "drop": [ "string" ]
  },
  "devices": [ 
    {
      "containerPath": "string",
      "hostPath": "string",
      "permissions": [ "string" ]
    }
  ],
  "initProcessEnabled": boolean,
  "maxSwap": number,
"sharedMemorySize": number,
"swappiness": number,
"tmpfs": [
  {
    "containerPath": "string",
    "mountOptions": [ "string" ],
    "size": number
  }
],
"logConfiguration": {
  "logDriver": "string",
  "options": { "string" : "string" }
},
"secrets": [ {
  "name": "string",
  "valueFrom": "string"
} ],
"memory": number,
"memoryReservation": number,
"mountPoints": [
  {
    "containerPath": "string",
    "readOnly": boolean,
    "sourceVolume": "string"
  }
],
"privileged": boolean,
"pseudoTerminal": boolean,
"readOnlyRootFilesystem": boolean,
"repositoryCredentials": {
  "credentialsParameter": "string"
},
"resourceRequirements": [ {
  "type": "string",
  "value": "string"
} ],
"secrets": [ {
  "name": "string",
  "valueFrom": "string"
} ],
"startTimeout": number,
"stopTimeout": number,
"systemControls": [ {
  "namespace": "string",
  "value": "string"
} ]


},
    "limits": [
        {
            "hardLimit": number,
            "name": "string",
            "softLimit": number
        }
    ],
    "user": "string",
    "volumesFrom": [
        {
            "readOnly": boolean,
            "sourceContainer": "string"
        }
    ],
    "workingDirectory": "string"
],
    "cpu": "string",
    "deregisteredAt": number,
    "ephemeralStorage": {
        "sizeInGiB": number
    },
    "executionRoleArn": "string",
    "family": "string",
    "inferenceAccelerators": [
        {
            "deviceId": "string",
            "deviceType": "string"
        }
    ],
    "ipcMode": "string",
    "memory": "string",
    "networkMode": "string",
    "pidMode": "string",
    "placementConstraints": [
        {
            "expression": "string",
            "type": "string"
        }
    ],
    "proxyConfiguration": {
        "containerName": "string",
        "properties": [
            {
                "name": "string",
                "value": "string"
            }
        ],
        "type": "string"
    },
    "registeredAt": number,
    "registeredBy": "string",
    "requiresAttributes": [
        {
            "name": "string",
            "targetId": "string",
            "targetType": "string",
            "value": "string"
        }
    ],
    "requiresCompatibilities": [ "string" ],
    "revision": number,
    "runtimePlatform": {
        "cpuArchitecture": "string",
        "platform": "string"
    };
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

tags (p. 109)

The metadata that's applied to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
• If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
• Tag keys and values are case-sensitive.
• Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

**taskDefinition (p. 109)**

The full task definition description.

Type: TaskDefinition (p. 450) object

### Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

### Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example request provides descriptive information about the 10th revision of a task definition in the hello_world family.
Sample Request

POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 36
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeTaskDefinition
X-Amz-Date: 20150429T190902Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "taskDefinition": "hello_world:10"
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:09:03 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 574
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "taskDefinition": {
    "containerDefinitions": [ 
      {
        "cpu": 10,
        "environment": [],
        "essential": true,
        "image": "wordpress",
        "links": [
          "mysql"
        ],
        "memory": 500,
        "mountPoints": [],
        "name": "wordpress",
        "portMappings": [ 
          {
            "containerPort": 80,
            "hostPort": 80
          }
        ],
        "volumesFrom": []
      },
      {
        "cpu": 10,
        "environment": [
          {
            "name": "MYSQL_ROOT_PASSWORD",
            "value": "password"
          }
        ],
        "essential": true,
        "image": "mysql",
        "memory": 500,
        "mountPoints": [],
        "name": "mysql",
        "portMappings": [],
        "volumesFrom": []
      }
    ]
  }
}
```
],
 "family": "hello_world",
 "revision": 10,
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:10",
 "volumes": []
}
```

## See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
DescribeTasks

Describes a specified task or tasks.

Currently, stopped tasks appear in the returned results for at least one hour.

If you have tasks with tags, and then delete the cluster, the tagged tasks are returned in the response. If you create a new cluster with the same name as the deleted cluster, the tagged tasks are not included in the response.

Request Syntax

```json
{
 "cluster": "string",
 "include": ["string"],
 "tasks": ["string"]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 117)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the task or tasks to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the task or tasks you are describing were launched in any cluster other than the default cluster.

Type: String
Required: No

**include (p. 117)**

Specifies whether you want to see the resource tags for the task. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

Type: Array of strings
Valid Values: TAGS
Required: No

**tasks (p. 117)**

A list of up to 100 task IDs or full ARN entries.

Type: Array of strings
Required: Yes

Response Syntax

```
{
}
```
"failures": [
  {
    "arn": "string",
    "detail": "string",
    "reason": "string"
  }
],
"tasks": [
  {
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ],
        "id": "string",
        "status": "string",
        "type": "string"
      }
    ],
    "attributes": [
      {
        "name": "string",
        "targetId": "string",
        "targetType": "string",
        "value": "string"
      }
    ],
    "availabilityZone": "string",
    "capacityProviderName": "string",
    "clusterArn": "string",
    "connectivity": "string",
    "connectivityAt": number,
    "containerInstanceArn": "string",
    "containers": [
      {
        "containerArn": "string",
        "cpu": "string",
        "exitCode": number,
        "gpuIds": [ "string" ],
        "healthStatus": "string",
        "image": "string",
        "imageDigest": "string",
        "lastStatus": "string",
        "managedAgents": [
          {
            "lastStartedAt": number,
            "LastStatus": "string",
            "name": "string",
            "reason": "string"
          }
        ],
        "memory": "string",
        "memoryReservation": "string",
        "name": "string",
        "networkBindings": [
          {
            "bindIP": "string",
            "ContainerPort": number,
            "ContainerPortRange": "string",
            "HostPort": number,
            "HostPortRange": "string",
            "protocol": "string"
          }
        ]
      }
    ]
  }
]}
"networkInterfaces": [
  {
    "attachmentId": "string",
    "ipv6Address": "string",
    "privateIpV4Address": "string"
  }
],
"reason": "string",
"runtimeId": "string",
"taskArn": "string"
],
"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
  "sizeInGiB": number
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
  {
    "deviceName": "string",
    "deviceType": "string"
  }
],
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
  "containerOverrides": [
    {
      "command": [ "string" ],
      "cpu": number,
      "environment": [
        {
          "name": "string",
          "value": "string"
        }
      ],
      "environmentFiles": [
        {
          "type": "string",
          "value": "string"
        }
      ],
      "memory": number,
      "memoryReservation": number,
      "name": "string",
      "resourceRequirements": [
        {
          "type": "string",
          "value": "string"
        }
      ]
    }
  ]
},
"executionRoleArn": "string",
"inferenceAcceleratorOverrides": [
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 117)

Any failures associated with the call.

Type: Array of Failure (p. 376) objects

tasks (p. 117)

The list of tasks.

Type: Array of Task (p. 443) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides descriptive information about a task with an ID of 1dc5c17a-422b-4dc4-b493-371970c6c4d6 in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 51
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeTasks
X-Amz-Date: 20161121T214915Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "tasks": [
 "1dc5c17a-422b-4dc4-b493-371970c6c4d6"
]
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 21:49:16 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1238
Connection: keep-alive
```
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "failures": [],
  "tasks": [
    {
      "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/1dc5c17a-422b-4dc4-b493-371970c6c4d6",
      "overrides": {
        "containerOverrides": [
          {
            "name": "simple-app"
          },
          {
            "name": "busybox"
          }
        ]
      },
      "lastStatus": "RUNNING",
      "createdAt": 1476822811.295,
      "version": 0,
      "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
      "startedAt": 1476822833.998,
      "desiredStatus": "RUNNING",
      "startedBy": "ecs-svc/9223370560032507596",
      "containers": [
        {
          "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/4df26bb4-f057-467b-a079-961675296e64",
          "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/1dc5c17a-422b-4dc4-b493-371970c6c4d6",
          "lastStatus": "RUNNING",
          "name": "simple-app",
          "networkBindings": [
            {
              "protocol": "tcp",
              "bindIP": "0.0.0.0",
              "containerPort": 80,
              "hostPort": 32774
            }
          ]
        },
        {
          "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/e09064f7-7361-4c87-8ab9-8d073bbdbcb9",
          "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/1dc5c17a-422b-4dc4-b493-371970c6c4d6",
          "lastStatus": "RUNNING",
          "name": "busybox",
          "networkBindings": []
        }
      ]
    }
  ]
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTaskSets

Describes the task sets in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
 "cluster": "string",
 "Include": ["string"],
 "service": "string",
 "taskSets": ["string"]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 124)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task sets exist in.

Type: String

Required: Yes

include (p. 124)

Specifies whether to see the resource tags for the task set. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

Type: Array of strings

Valid Values: TAGS

Required: No

service (p. 124)

The short name or full Amazon Resource Name (ARN) of the service that the task sets exist in.

Type: String

Required: Yes

taskSets (p. 124)

The ID or full Amazon Resource Name (ARN) of task sets to describe.

Type: Array of strings

Required: No
Response Syntax

```json
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
],
 "taskSets": [
 {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "computedDesiredCount": number,
 "createdAt": "string",
 "id": "string",
 "launchType": "string",
 "loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 },
 "pendingCount": number,
 "platformFamily": "string",
 "platformVersion": "string",
 "runningCount": number,
 "scale": {
 "unit": "string",
 "value": number
 },
 "serviceArn": "string",
 "serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
 "stabilityStatus": "string",
 "stabilityStatusAt": number,
 "startedBy": "string",
 "status": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
 }
]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**failures (p. 125)**

Any failures associated with the call.

Type: Array of [Failure (p. 376)] objects

**taskSets (p. 125)**

The list of task sets described.

Type: Array of [TaskSet (p. 460)] objects

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)].

**AccessDeniedException**

You don't have authorization to perform the requested action.

HTTP Status Code: 400

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with [ListClusters (p. 145)]. Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.
HTTP Status Code: 500
ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 16).

HTTP Status Code: 400
ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 152). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400
UnsupportedFeatureException

The specified task isn't supported in this Region.

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DiscoverPollEndpoint

**Note**
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Returns an endpoint for the Amazon ECS agent to poll for updates.

**Request Syntax**

```json
{
 "cluster": "string",
 "containerInstance": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

- **cluster (p. 128)**
  The short name or full Amazon Resource Name (ARN) of the cluster that the container instance belongs to.
  
  Type: String
  
  Required: No

- **containerInstance (p. 128)**
  The container instance ID or full ARN of the container instance. For more information about the ARN format, see Amazon Resource Name (ARN) in the Amazon ECS Developer Guide.
  
  Type: String
  
  Required: No

**Response Syntax**

```json
{
 "endpoint": "string",
 "serviceConnectEndpoint": "string",
 "telemetryEndpoint": "string"
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
**endpoint (p. 128)**

The endpoint for the Amazon ECS agent to poll.

Type: String

**serviceConnectEndpoint (p. 128)**

The endpoint for the Amazon ECS agent to poll for Service Connect configuration. For more information, see [Service Connect](#) in the Amazon Elastic Container Service Developer Guide.

Type: String

**telemetryEndpoint (p. 128)**

The telemetry endpoint for the Amazon ECS agent.

Type: String

---

**Errors**

For information about the errors that are common to all actions, see [Common Errors (p. 482)](#).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

---

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
### ExecuteCommand

Runs a command remotely on a container within a task.

If you use a condition key in your IAM policy to refine the conditions for the policy statement, for example limit the actions to a specific cluster, you receive an `AccessDeniedException` when there is a mismatch between the condition key value and the corresponding parameter value.

For information about required permissions and considerations, see Using Amazon ECS Exec for debugging in the Amazon ECS Developer Guide.

### Request Syntax

```json
{
 "cluster": "string",
 "command": "string",
 "container": "string",
 "interactive": boolean,
 "task": "string"
}
```

### Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster** (p. 130)

The Amazon Resource Name (ARN) or short name of the cluster the task is running in. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

**command** (p. 130)

The command to run on the container.

Type: String

Required: Yes

**container** (p. 130)

The name of the container to execute the command on. A container name only needs to be specified for tasks containing multiple containers.

Type: String

Required: No

**interactive** (p. 130)

Use this flag to run your command in interactive mode.

Type: Boolean
Required: Yes

**Task (p. 130)**

The Amazon Resource Name (ARN) or ID of the task the container is part of.

Type: String

Required: Yes

### Response Syntax

```
{
 "clusterArn": "string",
 "containerArn": "string",
 "containerName": "string",
 "interactive": boolean,
 "session": {
 "sessionId": "string",
 "streamUrl": "string",
 "tokenValue": "string"
 },
 "taskArn": "string"
}
```

### Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**ClusterArn (p. 131)**

The Amazon Resource Name (ARN) of the cluster.

Type: String

**ContainerArn (p. 131)**

The Amazon Resource Name (ARN) of the container.

Type: String

**ContainerName (p. 131)**

The name of the container.

Type: String

**Interactive (p. 131)**

Determines whether the execute command session is running in interactive mode. Amazon ECS only supports initiating interactive sessions, so you must specify `true` for this value.

Type: Boolean

**Session (p. 131)**

The details of the SSM session that was created for this instance of execute-command.

Type: `Session (p. 438)` object
taskArn (p. 131)

The Amazon Resource Name (ARN) of the task.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

TargetNotConnectedException

The execute command cannot run. This error can be caused by any of the following configuration issues:

- Incorrect IAM permissions
- The SSM agent is not installed or is not running
- There is an interface Amazon VPC endpoint for Amazon ECS, but there is not one for Systems Manager Session Manager

For information about how to troubleshoot the issues, see Troubleshooting issues with ECS Exec in the Amazon Elastic Container Service Developer Guide.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
GetTaskProtection

Retrieves the protection status of tasks in an Amazon ECS service.

Request Syntax

```
{
 "cluster": "string",
 "tasks": ["string"]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 134)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task sets exist in.

Type: String

Required: Yes

**tasks (p. 134)**

A list of up to 100 task IDs or full ARN entries.

Type: Array of strings

Required: No

Response Syntax

```
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
],
 "protectedTasks": [
 {
 "expirationDate": number,
 "protectionEnabled": boolean,
 "taskArn": "string"
 }
]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

**failures (p. 134)**

Any failures associated with the call.

Type: Array of **Failure (p. 376)** objects

**protectedTasks (p. 134)**

A list of tasks with the following information.

- **taskArn**: The task ARN.
- **protectionEnabled**: The protection status of the task. If scale-in protection is turned on for a task, the value is true. Otherwise, it is false.
- **expirationDate**: The epoch time when protection for the task will expire.

Type: Array of **ProtectedTask (p. 412)** objects

### Errors

For information about the errors that are common to all actions, see **Common Errors (p. 482)**.

**AccessDeniedException**

You don't have authorization to perform the requested action.

HTTP Status Code: 400

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with **ListClusters (p. 145)**. Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ResourceNotFoundException**

The specified resource wasn't found.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500
UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request gets the protection status for a task.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length:81
X-Amz-Target: AmazonEC2ContainerServiceV20141113.GetTaskProtection
X-Amz-Date: 20221102T190406Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
 "cluster": "test-task-protection",
 "tasks": [
 "b8b1cf532d0e46ba8d44a40d1de16772"
]
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 02 Nov 2022 19:04:06 GMT
Content-Type: application/x-amz-json-1.1
Content-Length:177
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
{
 "protectedTasks": [
 {
 "taskArn": "arn:aws:ecs:us-west-2:012345678910:task/b8b1cf532d0e46ba8d44a40d1de16772",
 "protectionEnabled": true,
 "expirationDate": 1667416437.0
 }
],
 "failures": []
}
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListAccountSettings

Lists the account settings for a specified principal.

Request Syntax

```json
{
 "effectiveSettings": boolean,
 "maxResults": number,
 "name": "string",
 "nextToken": "string",
 "principalArn": "string",
 "value": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**effectiveSettings (p. 138)**

Determines whether to return the effective settings. If true, the account settings for the root user or the default setting for the principalArn are returned. If false, the account settings for the principalArn are returned if they're set. Otherwise, no account settings are returned.

Type: Boolean

Required: No

**maxResults (p. 138)**

The maximum number of account setting results returned by ListAccountSettings in paginated output. When this parameter is used, ListAccountSettings only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListAccountSettings request with the returned nextToken value. This value can be between 1 and 10. If this parameter isn't used, then ListAccountSettings returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

**name (p. 138)**

The name of the account setting you want to list the settings for.

Type: String


Required: No
**nextToken** *(p. 138)*

The `nextToken` value returned from a `ListAccountSettings` request indicating that more results are available to fulfill the request and further calls will be needed. If `maxResults` was provided, it's possible the number of results to be fewer than `maxResults`.

**Note**

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No

**principalArn** *(p. 138)*

The ARN of the principal, which can be a user, role, or the root user. If this field is omitted, the account settings are listed only for the authenticated user.

**Note**

Federated users assume the account setting of the root user and can't have explicit account settings set for them.

Type: String

Required: No

**value** *(p. 138)*

The value of the account settings to filter results with. You must also specify an account setting name to use this parameter.

Type: String

Required: No

**Response Syntax**

```
{
"nextToken": "string",
"settings": [
{
"name": "string",
"principalArn": "string",
"value": "string"
}
]
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**nextToken** *(p. 139)*

The `nextToken` value to include in a future `ListAccountSettings` request. When the results of a `ListAccountSettings` request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is `null` when there are no more results to return.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListAttributes

Lists the attributes for Amazon ECS resources within a specified target type and cluster. When you specify a target type and cluster, ListAttributes returns a list of attribute objects, one for each attribute on each resource. You can filter the list of results to a single attribute name to only return results that have that name. You can also filter the results by attribute name and value. You can do this, for example, to see which container instances in a cluster are running a Linux AMI (ecs.os-type=linux).

Request Syntax

```
{
 "attributeName": "string",
 "attributeValue": "string",
 "cluster": "string",
 "maxResults": number,
 "nextToken": "string",
 "targetType": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

attributeName (p. 141)

The name of the attribute to filter the results with.

Type: String

Required: No

attributeValue (p. 141)

The value of the attribute to filter results with. You must also specify an attribute name to use this parameter.

Type: String

Required: No

cluster (p. 141)

The short name or full Amazon Resource Name (ARN) of the cluster to list attributes. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

maxResults (p. 141)

The maximum number of cluster results that ListAttributes returned in paginated output. When this parameter is used, ListAttributes only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListAttributes request with the returned nextToken value. This value can be
between 1 and 100. If this parameter isn't used, then ListAttributes returns up to 100 results and a nextToken value if applicable.

Type: Integer
Required: No

nextToken (p. 141)

The nextToken value returned from a ListAttributes request indicating that more results are available to fulfill the request and further calls are needed. If maxResults was provided, it's possible the number of results to be fewer than maxResults.

Note
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String
Required: No

targetType (p. 141)

The type of the target to list attributes with.

Type: String
Valid Values: container-instance
Required: Yes

Response Syntax

```
{
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

attributes (p. 142)

A list of attribute objects that meet the criteria of the request.

Type: Array of Attribute (p. 312) objects

nextToken (p. 142)

The nextToken value to include in a future ListAttributes request. When the results of a ListAttributes request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example lists the attributes for container instances that have the stack=production attribute in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 122
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListAttributes
X-Amz-Date: 20161222T181559Z
User-Agent: aws-cli/1.11.30 Python/2.7.12 Darwin/16.3.0 botocore/1.4.87
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "cluster": "default",
 "attributeName": "stack",
 "attributeValue": "production",
 "targetType": "container-instance"
}
```

Sample Response

```
HTTP/1.1 200 OK
```

API Version 2014-11-13

143
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListClusters

Returns a list of existing clusters.

Request Syntax

```json
{
 "maxResults": number,
 "nextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**maxResults (p. 145)**

The maximum number of cluster results that ListClusters returned in paginated output. When this parameter is used, ListClusters only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListClusters request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListClusters returns up to 100 results and a nextToken value if applicable.

Type: Integer

Required: No

**nextToken (p. 145)**

The nextToken value returned from a ListClusters request indicating that more results are available to fulfill the request and further calls are needed. If maxResults was provided, it's possible the number of results to be fewer than maxResults.

*Note*

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No

Response Syntax

```json
{
 "clusterArns": ["string"],
 "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

**clusterArns (p. 145)**

The list of full Amazon Resource Name (ARN) entries for each cluster that's associated with your account.

Type: Array of strings

**nextToken (p. 145)**

The nextToken value to include in a future ListClusters request. When the results of a ListClusters request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

## Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

## Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

### Example

This example request lists the clusters for your account.

**Sample Request**

```plaintext
POST / HTTP/1.1
```
Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:06:21 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 126
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "clusterArns": [
    "arn:aws:ecs:us-east-1:012345678910:cluster/My-cluster",
    "arn:aws:ecs:us-east-1:012345678910:cluster/default"
  ]
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListContainerInstances

Returns a list of container instances in a specified cluster. You can filter the results of a ListContainerInstances operation with cluster query language statements inside the filter parameter. For more information, see Cluster Query Language in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
 "cluster": "string",
 "filter": "string",
 "maxResults": number,
 "nextToken": "string",
 "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 148)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instances to list. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

**filter (p. 148)**

You can filter the results of a ListContainerInstances operation with cluster query language statements. For more information, see Cluster Query Language in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

**maxResults (p. 148)**

The maximum number of container instance results that ListContainerInstances returned in paginated output. When this parameter is used, ListContainerInstances only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListContainerInstances request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListContainerInstances returns up to 100 results and a nextToken value if applicable.

Type: Integer

Required: No
nextToken (p. 148)

The nextToken value returned from a ListContainerInstances request indicating that more results are available to fulfill the request and further calls are needed. If maxResults was provided, it's possible the number of results to be fewer than maxResults.

Note
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String
Required: No

status (p. 148)

Filters the container instances by status. For example, if you specify the DRAINING status, the results include only container instances that have been set to DRAINING using UpdateContainerInstancesState (p. 271). If you don't specify this parameter, the default is to include container instances set to all states other than INACTIVE.

Type: String
Valid Values: ACTIVE | DRAINING | REGISTERING | Deregistering | REGISTRATION_FAILED
Required: No

Response Syntax

```
{
 "containerInstanceArns": ["string"],
 "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstanceArns (p. 149)

The list of container instances with full ARN entries for each container instance associated with the specified cluster.

Type: Array of strings

nextToken (p. 149)

The nextToken value to include in a future ListContainerInstances request. When the results of a ListContainerInstances request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists the container instances in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListContainerInstances
X-Amz-Date: 20150429T175306Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{}
```

Sample Response

```text
HTTP/1.1 200 OK
Server: Server
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListServices

Returns a list of services. You can filter the results by cluster, launch type, and scheduling strategy.

Request Syntax

```
{
 "cluster": "string",
 "launchType": "string",
 "maxResults": number,
 "nextToken": "string",
 "schedulingStrategy": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 152)

The short name or full Amazon Resource Name (ARN) of the cluster to use when filtering the ListServices results. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

launchType (p. 152)

The launch type to use when filtering the ListServices results.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

maxResults (p. 152)

The maximum number of service results that ListServices returned in paginated output. When this parameter is used, ListServices only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListServices request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListServices returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

nextToken (p. 152)

The nextToken value returned from a ListServices request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it is possible the number of results to be fewer than maxResults.
**Note**
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String
Required: No

`schedulingStrategy (p. 152)`

The scheduling strategy to use when filtering the `ListServices` results.

Type: String
Valid Values: REPLICA | DAEMON
Required: No

**Response Syntax**

```
{
 "nextToken": "string",
 "serviceArns": ["string"]
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

`nextToken (p. 153)`

The `nextToken` value to include in a future `ListServices` request. When the results of a `ListServices` request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

`serviceArns (p. 153)`

The list of full ARN entries for each service that's associated with the specified cluster.

Type: Array of strings

**Errors**

For information about the errors that are common to all actions, see [Common Errors (p. 482)](https://docs.aws.amazon.com/AmazonElasticContainerService/latest/APIReference/API_CommonErrors.html).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145).
Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists the services in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListServices
X-Amz-Date: 20150429T191342Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:13:42 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 138
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "serviceArns": []
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListServicesByNamespace

This operation lists all of the services that are associated with a AWS Cloud Map namespace. This list might include services in different clusters. In contrast, ListServices can only list services in one cluster at a time. If you need to filter the list of services in a single cluster by various parameters, use ListServices. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
 "maxResults": number,
 "namespace": "string",
 "nextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

maxResults (p. 156)

The maximum number of service results that ListServicesByNamespace returns in paginated output. When this parameter is used, ListServicesByNamespace only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListServicesByNamespace request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListServicesByNamespace returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

namespace (p. 156)

The namespace name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace to list the services in.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: Yes

nextToken (p. 156)

The nextToken value that's returned from a ListServicesByNamespace request. It indicates that more results are available to fulfill the request and further calls are needed. If maxResults is returned, it is possible the number of results is less than maxResults.

Type: String
Required: No

### Response Syntax

```
{
 "nextToken": "string",
 "serviceArns": ["string"]
}
```

### Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**nextToken** *(p. 157)*

The `nextToken` value to include in a future `ListServicesByNamespace` request. When the results of a `ListServicesByNamespace` request exceed `maxResults`, this value can be used to retrieve the next page of results. When there are no more results to return, this value is `null`.

- **Type:** String

**serviceArns** *(p. 157)*

The list of full ARN entries for each service that's associated with the specified namespace.

- **Type:** Array of strings

### Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)](#).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

- HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

- HTTP Status Code: 400

**NamespaceNotFoundException**

The specified namespace wasn't found.

- HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

- HTTP Status Code: 500
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTagsForResource

List the tags for an Amazon ECS resource.

Request Syntax

```json
{
 "resourceArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

`resourceArn (p. 159)`

The Amazon Resource Name (ARN) that identifies the resource to list the tags for. Currently, the supported resources are Amazon ECS tasks, services, task definitions, clusters, and container instances.

Type: String

Required: Yes

Response Syntax

```json
{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

`tags (p. 159)`

The tags for the resource.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example lists the tags for the dev cluster.

Sample Request

```bash
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTagsForResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T195430Z
Authorization: AUTHPARAMS
Content-Length: 72

{
 "resourceArn":"arn:aws:ecs:us-west-2:012345678910:cluster/dev"
}
```

Sample Response

```bash
HTTP/1.1 200 OK
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTaskDefinitionFamilies

Returns a list of task definition families that are registered to your account. This list includes task definition families that no longer have any ACTIVE task definition revisions.

You can filter out task definition families that don't contain any ACTIVE task definition revisions by setting the status parameter to ACTIVE. You can also filter the results with the familyPrefix parameter.

Request Syntax

```json
{
 "familyPrefix": "string",
 "maxResults": number,
 "nextToken": "string",
 "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**familyPrefix (p. 162)**

The familyPrefix is a string that's used to filter the results of ListTaskDefinitionFamilies. If you specify a familyPrefix, only task definition family names that begin with the familyPrefix string are returned.

Type: String

Required: No

**maxResults (p. 162)**

The maximum number of task definition family results that ListTaskDefinitionFamilies returned in paginated output. When this parameter is used, ListTaskDefinitions only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListTaskDefinitionFamilies request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListTaskDefinitionFamilies returns up to 100 results and a nextToken value if applicable.

Type: Integer

Required: No

**nextToken (p. 162)**

The nextToken value returned from a ListTaskDefinitionFamilies request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it is possible the number of results to be fewer than maxResults.

**Note**

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.
Response Syntax

```
{
"families": ["string"],
"nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**families (p. 163)**

The list of task definition family names that match the ListTaskDefinitionFamilies request.

Type: Array of strings

**nextToken (p. 163)**

The nextToken value to include in a future ListTaskDefinitionFamilies request. When the results of a ListTaskDefinitionFamilies request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)](#).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists all of the task definition families in your account in the current Region.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTaskDefinitionFamilies
X-Amz-Date: 20150429T191650Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:16:51 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 270
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
{
 "families": [
 "console-sample-app",
 "ecs-demo",
 "ecs-private",
 "hello_world",
 "hpcc",
 "hpcc-t2-medium",
 "image-dedupe",
]
}
```
Example

This example request lists all of the task definition families in your account in the current Region that begin with hpcc.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding:identity
Content-Length: 24
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTaskDefinitionFamilies
X-Amz-Date: 20150429T191825Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "familyPrefix": "hpcc"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:18:25 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 38
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "families": [
 "hpcc",
 "hpcc-t2-medium"
]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
See Also

- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTaskDefinitions

Returns a list of task definitions that are registered to your account. You can filter the results by family name with the familyPrefix parameter or by status with the status parameter.

Request Syntax

```
{
 "familyPrefix": "string",
 "maxResults": number,
 "nextToken": "string",
 "sort": "string",
 "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**familyPrefix (p. 167)**

The full family name to filter the ListTaskDefinitions results with. Specifying a familyPrefix limits the listed task definitions to task definition revisions that belong to that family.

Type: String

Required: No

**maxResults (p. 167)**

The maximum number of task definition results that ListTaskDefinitions returned in paginated output. When this parameter is used, ListTaskDefinitions only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListTaskDefinitions request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListTaskDefinitions returns up to 100 results and a nextToken value if applicable.

Type: Integer

Required: No

**nextToken (p. 167)**

The nextToken value returned from a ListTaskDefinitions request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it is possible the number of results to be fewer than maxResults.

**Note**

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No
**sort (p. 167)**

The order to sort the results in. Valid values are ASC and DESC. By default, (ASC) task definitions are listed lexicographically by family name and in ascending numerical order by revision so that the newest task definitions in a family are listed last. Setting this parameter to DESC reverses the sort order on family name and revision. This is so that the newest task definitions in a family are listed first.

Type: String

Valid Values: ASC | DESC

Required: No

**status (p. 167)**

The task definition status to filter the ListTaskDefinitions results with. By default, only ACTIVE task definitions are listed. By setting this parameter to INACTIVE, you can view task definitions that are INACTIVE as long as an active task or service still references them. If you paginate the resulting output, be sure to keep the status value constant in each subsequent request.

Type: String

Valid Values: ACTIVE | INACTIVE | DELETE_IN_PROGRESS

Required: No

---

**Response Syntax**

```
{
 "nextToken": "string",
 "taskDefinitionArns": ["string"]
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**nextToken (p. 168)**

The nextToken value to include in a future ListTaskDefinitions request. When the results of a ListTaskDefinitions request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

**taskDefinitionArns (p. 168)**

The list of task definition Amazon Resource Name (ARN) entries for the ListTaskDefinitions request.

Type: Array of strings

---

**Errors**

For information about the errors that are common to all actions, see Common Errors (p. 482).
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists all of the task definitions in the hello_world family.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 31
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTaskDefinitions
X-Amz-Date: 20150429T192041Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "familyPrefix": "hello_world"
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:20:41 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 695
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTasks

Returns a list of tasks. You can filter the results by cluster, task definition family, container instance, launch type, what IAM principal started the task, or by the desired status of the task.

Recently stopped tasks might appear in the returned results.

Request Syntax

```
{
 "cluster": "string",
 "containerInstance": "string",
 "desiredStatus": "string",
 "family": "string",
 "launchType": "string",
 "maxResults": number,
 "nextToken": "string",
 "serviceName": "string",
 "startedBy": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 171)**

The short name or full Amazon Resource Name (ARN) of the cluster to use when filtering the ListTasks results. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

**containerInstance (p. 171)**

The container instance ID or full ARN of the container instance to use when filtering the ListTasks results. Specifying a containerInstance limits the results to tasks that belong to that container instance.

Type: String

Required: No

**desiredStatus (p. 171)**

The task desired status to use when filtering the ListTasks results. Specifying a desiredStatus of STOPPED limits the results to tasks that Amazon ECS has set the desired status to STOPPED. This can be useful for debugging tasks that aren't starting properly or have died or finished. The default status filter is RUNNING, which shows tasks that Amazon ECS has set the desired status to RUNNING.

**Note**

Although you can filter results based on a desired status of PENDING, this doesn't return any results. Amazon ECS never sets the desired status of a task to that value (only a task's lastStatus may have a value of PENDING).
**family** (p. 171)

The name of the task definition family to use when filtering the ListTasks results. Specifying a family limits the results to tasks that belong to that family.

Type: String  
Required: No

**launchType** (p. 171)

The launch type to use when filtering the ListTasks results.

Type: String  
Valid Values: EC2 | FARGATE | EXTERNAL  
Required: No

**maxResults** (p. 171)

The maximum number of task results that ListTasks returned in paginated output. When this parameter is used, ListTasks only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListTasks request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListTasks returns up to 100 results and a nextToken value if applicable.

Type: Integer  
Required: No

**nextToken** (p. 171)

The nextToken value returned from a ListTasks request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it's possible the number of results to be fewer than maxResults.

*Note*  
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String  
Required: No

**serviceName** (p. 171)

The name of the service to use when filtering the ListTasks results. Specifying a serviceName limits the results to tasks that belong to that service.

Type: String  
Required: No

**startedBy** (p. 171)

The startedBy value to filter the task results with. Specifying a startedBy value limits the results to tasks that were started with that value.
When you specify `startedBy` as the filter, it must be the only filter that you use.

Type: String

Required: No

Response Syntax

```json
{
 "nextToken": "string",
 "taskArns": ["string"]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

### `nextToken` *(p. 173)*

The `nextToken` value to include in a future `ListTasks` request. When the results of a `ListTasks` request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is `null` when there are no more results to return.

Type: String

### `taskArns` *(p. 173)*

The list of task ARN entries for the `ListTasks` request.

Type: Array of strings

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)](#).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with [ListClusters (p. 145)](#).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 152).
Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists all of the tasks in the default cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTasks
X-Amz-Date: 20150429T192615Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:26:16 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 330
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "taskArns": [
 "arn:aws:ecs:us-east-1:012345678910:task/0b69d5c0-d655-4695-98cd-5d2d526d9d5a",
 "arn:aws:ecs:us-east-1:012345678910:task/51a01bdf-d00e-487e-ab14-7645330b6207",
 "arn:aws:ecs:us-east-1:012345678910:task/b0b28bb8-2be3-4810-b52b-88df129d893c",
 "arn:aws:ecs:us-east-1:012345678910:task/c09f0188-7f87-4b0f-bfc3-16296622b6fe"
]
}
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutAccountSetting

Modifies an account setting. Account settings are set on a per-Region basis.

If you change the root user account setting, the default settings are reset for users and roles that do not have specified individual account settings. For more information, see [Account Settings](#) in the [Amazon Elastic Container Service Developer Guide](#).

When you specify `serviceLongArnFormat`, `taskLongArnFormat`, or `containerInstanceLongArnFormat`, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

When you specify `awsvpcTrunking`, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If `awsvpcTrunking` is turned on, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see [Elastic Network Interface Trunking](#) in the [Amazon Elastic Container Service Developer Guide](#).

When you specify `containerInsights`, the default setting indicating whether AWS CloudWatch Container Insights is turned on for your clusters is changed. If `containerInsights` is turned on, any new clusters that are created will have Container Insights turned on unless you disable it during cluster creation. For more information, see [CloudWatch Container Insights](#) in the [Amazon Elastic Container Service Developer Guide](#).

Amazon ECS is introducing tagging authorization for resource creation. Users must have permissions for actions that create the resource, such as `ecsCreateCluster`. If tags are specified when you create a resource, AWS performs additional authorization to verify if users or roles have permissions to create tags. Therefore, you must grant explicit permissions to use the `ecs:TagResource` action. For more information, see [Grant permission to tag resources on creation](#) in the [Amazon ECS Developer Guide](#).

When AWS determines that a security or infrastructure update is needed for an Amazon ECS task hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them. Use `fargateTaskRetirementWaitPeriod` to configure the wait time to retire a Fargate task. For information about the Fargate tasks maintenance, see [AWS Fargate task maintenance](#) in the [Amazon ECS Developer Guide](#).

**Request Syntax**

```json
{
 "name": "string",
 "principalArn": "string",
 "value": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see [Common Parameters](#).

The request accepts the following data in JSON format.

**name (p. 176)**

The Amazon ECS resource name for which to modify the account setting. If you specify `serviceLongArnFormat`, the ARN for your Amazon ECS services is affected. If you specify
taskLongArnFormat, the ARN and resource ID for your Amazon ECS tasks is affected. If you specify containerInstanceLongArnFormat, the ARN and resource ID for your Amazon ECS container instances is affected. If you specify awsvpcTrunking, the elastic network interface (ENI) limit for your Amazon ECS container instances is affected. If you specify containerInsights, the default setting for AWS CloudWatch Container Insights for your clusters is affected. If you specify fargateFIPSMode, AWS Fargate FIPS 140 compliance is affected. If you specify tagResourceAuthorization, the opt-in option for tagging resources on creation is affected. For information about the opt-in timeline, see Tagging authorization timeline in the Amazon ECS Developer Guide. If you specify fargateTaskRetentionWaitPeriod, the wait time to retire a Fargate task is affected.

Type: String


Required: Yes

principalArn (p. 176)

The ARN of the principal, which can be a user, role, or the root user. If you specify the root user, it modifies the account setting for all users, roles, and the root user of the account unless a user or role explicitly overrides these settings. If this field is omitted, the setting is changed only for the authenticated user.

Note

You must use the root user when you set the Fargate wait time (fargateTaskRetentionWaitPeriod). Federated users assume the account setting of the root user and can't have explicit account settings set for them.

Type: String

Required: No

value (p. 176)

The account setting value for the specified principal ARN. Accepted values are enabled, disabled, on, and off.

When you specify fargateTaskRetentionWaitPeriod for the name, the following are the valid values:
- 0 - AWS sends the notification, and immediately retires the affected tasks.
- 7 - AWS sends the notification, and waits 7 calendar days to retire the tasks.
- 14 - AWS sends the notification, and waits 14 calendar days to retire the tasks.

Type: String

Required: Yes

Response Syntax

```json
{
 "setting": {
 "name": "string",
 "principalArn": "string",
 "value": "string"
 }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

setting (p. 177)

The current account setting for a resource.

Type: Setting (p. 439) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutAccountSettingDefault

Modifies an account setting for all users on an account for whom no individual account setting has been specified. Account settings are set on a per-Region basis.

Request Syntax

```
{
 "name": "string",
 "value": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**name (p. 179)**

The resource name for which to modify the account setting. If you specify serviceLongArnFormat, the ARN for your Amazon ECS services is affected. If you specify taskLongArnFormat, the ARN and resource ID for your Amazon ECS tasks is affected. If you specify containerInstanceLongArnFormat, the ARN and resource ID for your Amazon ECS container instances is affected. If you specify awsvpcTrunking, the ENI limit for your Amazon ECS container instances is affected. If you specify containerInsights, the default setting for AWS CloudWatch Container Insights for your clusters is affected. If you specify tagResourceAuthorization, the opt-in option for tagging resources on creation is affected. For information about the opt-in timeline, see Tagging authorization timeline in the Amazon ECS Developer Guide. If you specify fargateTaskRetirementWaitPeriod, the default wait time to retire a Fargate task due to required maintenance is affected.

When you specify fargateFIPSMode for the name and enabled for the value, AWS Fargate uses FIPS-140 compliant cryptographic algorithms on your tasks. For more information about FIPS-140 compliance with Fargate, see AWS Fargate Federal Information Processing Standard (FIPS) 140-2 compliance in the Amazon Elastic Container Service Developer Guide.

When AWS determines that a security or infrastructure update is needed for an Amazon ECS task hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them. Use fargateTaskRetirementWaitPeriod to set the wait time to retire a Fargate task to the default. For information about the Fargate tasks maintenance, see AWS Fargate task maintenance in the Amazon ECS Developer Guide.

Type: String


Required: Yes

**value (p. 179)**

The account setting value for the specified principal ARN. Accepted values are enabled, disabled, on, and off.
When you specify `fargateTaskRetirementWaitPeriod` for the `name`, the following are the valid values:

- 0 - AWS sends the notification, and immediately retires the affected tasks.
- 7 - AWS sends the notification, and waits 7 calendar days to retire the tasks.
- 14 - AWS sends the notification, and waits 14 calendar days to retire the tasks.

Type: String

Required: Yes

Response Syntax

```
{
 "setting": {
 "name": "string",
 "principalArn": "string",
 "value": "string"
 }
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**setting (p. 180)**

The current setting for a resource.

Type: [Setting (p. 439)] object

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)].

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutAttributes

Create or update an attribute on an Amazon ECS resource. If the attribute doesn't exist, it's created. If the attribute exists, its value is replaced with the specified value. To delete an attribute, use DeleteAttributes (p. 44). For more information, see Attributes in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
 "attributes": [
 {
 "name": "string",
 "TargetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**attributes (p. 182)**

The attributes to apply to your resource. You can specify up to 10 custom attributes for each resource. You can specify up to 10 attributes in a single call.

Type: Array of Attribute (p. 312) objects

Required: Yes

**cluster (p. 182)**

The short name or full Amazon Resource Name (ARN) of the cluster that contains the resource to apply attributes. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

Response Syntax

```
{
 "attributes": [
 {
 "name": "string",
 "TargetId": "string",
 "targetType": "string",
 "value": "string"
 }
]
}
```

API Version 2014-11-13
Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

(attributes (p. 182))

The attributes applied to your resource.

Type: Array of Attribute (p. 312) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AttributeLimitExceededException

You can apply up to 10 custom attributes for each resource. You can view the attributes of a resource with ListAttributes (p. 141). You can remove existing attributes on a resource with DeleteAttributes (p. 44).

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

TargetNotFoundException

The specified target wasn't found. You can view your available container instances with ListContainerInstances (p. 148). Amazon ECS container instances are cluster-specific and Region-specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don’t have to sign requests yourself.
Example

This example applies an attribute with the name stack and the value production to a container instance.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 192
X-Amz-Target: AmazonEC2ContainerServiceV20141113.PutAttributes
X-Amz-Date: 20161222T180005Z
User-Agent: aws-cli/1.11.30 Python/2.7.12 Darwin/16.3.0 botocore/1.4.87
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "cluster": "default-gamma",
 "attributes": [
 {
 "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-df30-47b4-8f1e-6e68ebd01f34",
 "name": "stack",
 "value": "production"
 }
]
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Thu, 22 Dec 2016 18:00:06 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 158
Connection: keep-alive
x-amzn-RequestId: 7835c1be-c870-11e6-a3b0-295902c79de2

{
 "attributes": [
 {
 "name": "stack",
 "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-df30-47b4-8f1e-6e68ebd01f34",
 "value": "production"
 }
]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
See Also

- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutClusterCapacityProviders

Modifies the available capacity providers and the default capacity provider strategy for a cluster.

You must specify both the available capacity providers and a default capacity provider strategy for the cluster. If the specified cluster has existing capacity providers associated with it, you must specify all existing capacity providers in addition to any new ones you want to add. Any existing capacity providers that are associated with a cluster that are omitted from a PutClusterCapacityProviders API call will be disassociated with the cluster. You can only disassociate an existing capacity provider from a cluster if it's not being used by any existing tasks.

When creating a service or running a task on a cluster, if no capacity provider or launch type is specified, then the cluster's default capacity provider strategy is used. We recommend that you define a default capacity provider strategy for your cluster. However, you must specify an empty array ([]) to bypass defining a default strategy.

Request Syntax

```
{
 "capacityProviders": ["string"],
 "cluster": "string",
 "defaultCapacityProviderStrategy": [
 {
 "base": number,
 "CapacityProvider": "string",
 "weight": number
 }
]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

**capacityProviders (p. 186)**

The name of one or more capacity providers to associate with the cluster.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

Type: Array of strings

Required: Yes

**cluster (p. 186)**

The short name or full Amazon Resource Name (ARN) of the cluster to modify the capacity provider settings for. If you don't specify a cluster, the default cluster is assumed.
Type: String

Required: Yes

defaultCapacityProviderStrategy (p. 186)

The capacity provider strategy to use by default for the cluster.

When creating a service or running a task on a cluster, if no capacity provider or launch type is specified then the default capacity provider strategy for the cluster is used.

A capacity provider strategy consists of one or more capacity providers along with the base and weight to assign to them. A capacity provider must be associated with the cluster to be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 186) API is used to associate a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status can be used.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 7) API operation.

To use an AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: Yes

Response Syntax

```
{
 "cluster": {
 "activeServicesCount": number,
 "attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
 "attachmentsStatus": "string",
 "capacityProviders": ["string"],
 "clusterArn": "string",
 "clusterName": "string",
 "configuration": {
 "executeCommandConfiguration": {
 "kmsKeyId": "string",
 "logConfiguration": {
 "cloudWatchEncryptionEnabled": boolean,
 "cloudWatchLogGroupName": "string",
 "s3BucketName": "string",
 "s3EncryptionEnabled": boolean,
 "s3KeyPrefix": "string"
 }
 }
 }
 },
```

API Version 2014-11-13

187
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Cluster (p. 187)

Details about the cluster.

Type: Cluster (p. 320) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145).
Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ResourceInUseException

The specified resource is in-use and can't be removed.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as PENDING or STAGING, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RegisterContainerInstance

Note
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Registers an EC2 instance into the specified cluster. This instance becomes available to place containers on.

Request Syntax

```json
{
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "cluster": "string",
 "containerInstanceArn": "string",
 "instanceIdentityDocument": "string",
 "instanceIdentityDocumentSignature": "string",
 "platformDevices": [
 {
 "id": "string",
 "type": "string"
 }
],
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "totalResources": [
 {
 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringValue": ["string"],
 "type": "string"
 }
],
 "versionInfo": {
 "agentHash": "string",
 "agentVersion": "string",
 "dockerVersion": "string"
 }
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.
attributes (p. 190)
The container instance attributes that this container instance supports.
Type: Array of Attribute (p. 312) objects
Required: No

cluster (p. 190)
The short name or full Amazon Resource Name (ARN) of the cluster to register your container instance with. If you do not specify a cluster, the default cluster is assumed.
Type: String
Required: No

containerInstanceArn (p. 190)
The ARN of the container instance (if it was previously registered).
Type: String
Required: No

instanceIdentityDocument (p. 190)
The instance identity document for the EC2 instance to register. This document can be found by running the following command from the instance:
Type: String
Required: No

instanceIdentityDocumentSignature (p. 190)
The instance identity document signature for the EC2 instance to register. This signature can be found by running the following command from the instance:
Type: String
Required: No

platformDevices (p. 190)
The devices that are available on the container instance. The only supported device type is a GPU.
Type: Array of PlatformDevice (p. 408) objects
Required: No

tags (p. 190)
The metadata that you apply to the container instance to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:
- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
• Maximum value length - 256 Unicode characters in UTF-8
• If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
• Tag keys and values are case-sensitive.
• Do not use `aws:` or `AWS:` or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of `Tag (p. 441)` objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

`totalResources (p. 190)`

The resources available on the instance.

Type: Array of `Resource (p. 416)` objects

Required: No

`versionInfo (p. 190)`

The version information for the Amazon ECS container agent and Docker daemon that runs on the container instance.

Type: `VersionInfo (p. 467)` object

Required: No

**Response Syntax**

```json
{
 "containerInstance": {
 "agentConnected": boolean,
 "agentUpdateStatus": "string",
 "attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "capacityProviderName": "string",
 }
}
```
"containerInstanceArn": "string",
"ec2InstanceId": "string",
"healthStatus": {
  "details": [
    {
      "lastStatusChange": "number",
      "lastUpdated": "number",
      "status": "string",
      "type": "string"
    }
  ],
  "overallStatus": "string"
},
"pendingTasksCount": "number",
"registeredAt": "number",
"registeredResources": [
  {
    "doubleValue": "number",
    "integerValue": "number",
    "longValue": "number",
    "name": "string",
    "stringValue": [ "string" ],
    "type": "string"
  }
],
"remainingResources": [
  {
    "doubleValue": "number",
    "integerValue": "number",
    "longValue": "number",
    "name": "string",
    "stringValue": [ "string" ],
    "type": "string"
  }
],
"runningTasksCount": "number",
"status": "string",
"statusReason": "string",
"tags": [
  {
    "key": "string",
    "value": "string"
  }
],
"version": "number",
"versionInfo": {
  "agentHash": "string",
  "agentVersion": "string",
  "dockerVersion": "string"
}
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**containerInstance** (p. 192)

The container instance that was registered.

Type: ContainerInstance (p. 346) object
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RegisterTaskDefinition

Registers a new task definition from the supplied family and containerDefinitions. Optionally, you can add data volumes to your containers with the volumes parameter. For more information about task definition parameters and defaults, see Amazon ECS Task Definitions in the Amazon Elastic Container Service Developer Guide.

You can specify a role for your task with the taskRoleArn parameter. When you specify a role for a task, its containers can then use the latest versions of the AWS CLI or SDKs to make API requests to the AWS services that are specified in the policy that's associated with the role. For more information, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

You can specify a Docker networking mode for the containers in your task definition with the networkMode parameter. The available network modes correspond to those described in Network settings in the Docker run reference. If you specify the awsvpc network mode, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration (p. 404) when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
 "containerDefinitions": [
 {
 "command": ["string"],
 "cpu": number,
 "credentialSpecs": ["string"],
 "dependsOn": [
 {
 "condition": "string",
 "containerName": "string"
 }
],
 "disableNetworking": boolean,
 "dnsSearchDomains": ["string"],
 "dnsServers": ["string"],
 "dockerLabels": {
 "string": "string"
 },
 "dockerSecurityOptions": ["string"],
 "entryPoint": ["string"],
 "environment": [
 {
 "name": "string",
 "value": "string"
 }
],
 "environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
 "essential": boolean,
 "extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
],
 "firelensConfiguration": {
```

API Version 2014-11-13
195
"options": {  
  "string": "string"
},  
"type": "string"
},
"healthCheck": {  
  "command": [ "string" ],  
  "interval": number,  
  "retries": number,  
  "startPeriod": number,  
  "timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,  
"links": [ "string" ],
"linuxParameters": {  
  "capabilities": {  
    "add": [ "string" ],  
    "drop": [ "string" ]
  },
  "devices": [  
    {  
      "containerPath": "string",
      "hostPath": "string",
      "permissions": [ "string" ]
    }
  ],
  "initProcessEnabled": boolean,  
  "maxSwap": number,  
  "sharedMemorySize": number,  
  "swappiness": number,
 "tmpfs": [  
    {  
      "containerPath": "string",
      "mountOptions": [ "string" ],
      "size": number
    }
  ]
},
"logConfiguration": {  
  "logDriver": "string",
  "options": {  
    "string": "string"
  },
  "secretOptions": [  
    {  
      "name": "string",
      "valueFrom": "string"
    }
  ]
},
"memory": number,  
"memoryReservation": number,  
"mountPoints": [
  {  
    "containerPath": "string",
    "readOnly": boolean,  
    "sourceVolume": "string"
  }
],
"name": "string",
"portMappings": [
  {  
    "appProtocol": "string",
    "containerPort": number,
"containerPortRange": "string",
"hostPort": "number",
"name": "string",
"protocol": "string"
"
"privileged": boolean,
"pseudoTerminal": boolean,
"readOnlyRootFilesystem": boolean,
"repositoryCredentials": {
  "credentialsParameter": "string"
},
"resourceRequirements": [
  {
    "type": "string",
    "value": "string"
  }
],
"secrets": [
  {
    "name": "string",
    "valueFrom": "string"
  }
],
"startTimeout": "number",
"stopTimeout": "number",
"systemControls": [
  {
    "namespace": "string",
    "value": "string"
  }
],
"ulimits": [
  {
    "hardLimit": "number",
    "name": "string",
    "softLimit": "number"
  }
],
"user": "string",
"volumesFrom": [
  {
    "readOnly": boolean,
    "sourceContainer": "string"
  }
],
"workingDirectory": "string"
"
"cpu": "string",
"ephemeralStorage": {
  "sizeInGiB": "number"
},
"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [
  {
    "deviceName": "string",
    "deviceType": "string"
  }
],
"ipcMode": "string",
"memory": "string",
"networkMode": "string",
"pidMode": "string",
"placementConstraints": [}
{  "expression": "string",
   "type": "string"
}

],
"proxyConfiguration": {
   "containerName": "string",
   "properties": [
      {
         "name": "string",
         "value": "string"
      }
   ],
   "type": "string"
},
"requiresCompatibilities": [ "string" ],
"runtimePlatform": {
   "cpuArchitecture": "string",
   "operatingSystemFamily": "string"
},
"taskRoleArn": "string",
"volumes": [
   {
      "dockerVolumeConfiguration": {
         "autoprovision": boolean,
         "driver": "string",
         "driverOpts": {
            "string": "string"
         },
         "labels": {
            "string": "string"
         },
         "scope": "string"
      },
      "efsVolumeConfiguration": {
         "authorizationConfig": {
            "accessPointId": "string",
            "iam": "string"
         },
         "fileSystemId": "string",
         "rootDirectory": "string",
         "transitEncryption": "string",
         "transitEncryptionPort": number
      },
      "fsxWindowsFileServerVolumeConfiguration": {
         "authorizationConfig": {
            "credentialsParameter": "string",
            "domain": "string"
         },
         "fileSystemId": "string",
         "rootDirectory": "string"
      },
      "host": {
         "sourcePath": "string"
      },
      "name": "string"
   }
}
Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](#).

The request accepts the following data in JSON format.

**containerDefinitions** *(p. 195)*

A list of container definitions in JSON format that describe the different containers that make up your task.

Type: Array of [ContainerDefinition](#) objects

Required: Yes

**cpu** *(p. 195)*

The number of CPU units used by the task. It can be expressed as an integer using CPU units (for example, 1024) or as a string using vCPUs (for example, 1 vCPU or 1 vcpu) in a task definition. String values are converted to an integer indicating the CPU units when the task definition is registered.

**Note**

Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.

If you're using the EC2 launch type, this field is optional. Supported values are between 128 CPU units (0.125 vCPUs) and 10240 CPU units (10 vCPUs). If you do not specify a value, the parameter is ignored.

If you're using the Fargate launch type, this field is required and you must use one of the following values, which determines your range of supported values for the memory parameter:

The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.

- 256 (.25 vCPU) - Available memory values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available memory values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available memory values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available memory values: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available memory values: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)
- 8192 (8 vCPU) - Available memory values: 16 GB and 60 GB in 4 GB increments

This option requires Linux platform 1.4.0 or later.

- 16384 (16vCPU) - Available memory values: 32GB and 120 GB in 8 GB increments

This option requires Linux platform 1.4.0 or later.

Type: String

Required: No

**ephemeralStorage** *(p. 195)*

The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on AWS Fargate. For more information, see [Fargate task storage](#) in the *Amazon ECS User Guide for AWS Fargate*. 
Note
For tasks using the Fargate launch type, the task requires the following platforms:

- Linux platform version 1.4.0 or later.
- Windows platform version 1.0.0 or later.

Type: EphemeralStorage (p. 372) object

Required: No

**executionRoleArn (p. 195)**

The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make AWS API calls on your behalf. The task execution IAM role is required depending on the requirements of your task. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

**family (p. 195)**

You must specify a family for a task definition. You can use it to track multiple versions of the same task definition. The family is used as a name for your task definition. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.

Type: String

Required: Yes

**inferenceAccelerators (p. 195)**

The Elastic Inference accelerators to use for the containers in the task.

Type: Array of InferenceAccelerator (p. 385) objects

Required: No

**ipcMode (p. 195)**

The IPC resource namespace to use for the containers in the task. The valid values are host, task, or none. If host is specified, then all containers within the tasks that specified the host IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If task is specified, all containers within the specified task share the same IPC resources. If none is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance. For more information, see IPC settings in the Docker run reference.

If the host IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose. For more information, see Docker security.

If you are setting namespaced kernel parameters using systemControls for the containers in the task, the following will apply to your IPC resource namespace. For more information, see System Controls in the Amazon Elastic Container Service Developer Guide.

- For tasks that use the host IPC mode, IPC namespace related systemControls are not supported.
- For tasks that use the task IPC mode, IPC namespace related systemControls will apply to all containers within a task.

Note
This parameter is not supported for Windows containers or tasks run on AWS Fargate.
Type: String

Valid Values: host  |  task  |  none

Required: No

memory (p. 195)

The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB (for example, 1024) or as a string using GB (for example, 1GB or 1 GB) in a task definition. String values are converted to an integer indicating the MiB when the task definition is registered.

Note

Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.

If using the EC2 launch type, this field is optional.

If using the Fargate launch type, this field is required and you must use one of the following values. This determines your range of supported values for the cpu parameter.

The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.

• 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available cpu values: 256 (.25 vCPU)
• 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available cpu values: 512 (.5 vCPU)
• 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available cpu values: 1024 (1 vCPU)
• Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available cpu values: 2048 (2 vCPU)
• Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available cpu values: 4096 (4 vCPU)
• Between 16 GB and 60 GB in 4 GB increments - Available cpu values: 8192 (8 vCPU)

This option requires Linux platform 1.4.0 or later.

• Between 32GB and 120 GB in 8 GB increments - Available cpu values: 16384 (16 vCPU)

This option requires Linux platform 1.4.0 or later.

Type: String

Required: No

networkMode (p. 195)

The Docker networking mode to use for the containers in the task. The valid values are none, bridge, awsvpc, and host. If no network mode is specified, the default is bridge.

For Amazon ECS tasks on Fargate, the awsvpc network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <default> or awsvpc can be used. If the network mode is set to none, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The host and awsvpc network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the bridge mode.

With the host and awsvpc network modes, exposed container ports are mapped directly to the corresponding host port (for the host network mode) or the attached elastic network interface port (for the awsvpc network mode), so you cannot take advantage of dynamic host port mappings.

Important

When using the host network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.
If the network mode is `awsvpc`, the task is allocated an elastic network interface, and you must specify a [NetworkConfiguration](#) value when you create a service or run a task with the task definition. For more information, see [Task Networking](#) in the [Amazon Elastic Container Service Developer Guide](#).

If the network mode is `host`, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.

For more information, see [Network settings](#) in the [Docker run reference](#).

**Type:** String

**Valid Values:** `bridge` | `host` | `awsvpc` | `none`

**Required:** No

**pidMode (p. 195)**

The process namespace to use for the containers in the task. The valid values are `host` or `task`. On Fargate for Linux containers, the only valid value is `task`. For example, monitoring sidecars might need `pidMode` to access information about other containers running in the same task.

If `host` is specified, all containers within the tasks that specified the `host` PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.

If `task` is specified, all containers within the specified task share the same process namespace.

If no value is specified, the default is a private namespace for each container. For more information, see [PID settings](#) in the [Docker run reference](#).

If the `host` PID mode is used, there's a heightened risk of undesired process namespace exposure. For more information, see [Docker security](#).

**Note**

This parameter is not supported for Windows containers.

**Note**

This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks are using platform version 1.4.0 or later (Linux). This isn't supported for Windows containers on Fargate.

**Type:** String

**Valid Values:** `host` | `task`

**Required:** No

**placementConstraints (p. 195)**

An array of placement constraint objects to use for the task. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.

**Type:** Array of [TaskDefinitionPlacementConstraint](#) objects

**Required:** No

**proxyConfiguration (p. 195)**

The configuration details for the App Mesh proxy.

For tasks hosted on Amazon EC2 instances, the container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the `ecs-init` package to use a proxy configuration. If your container instances are launched from the Amazon ECS-optimized AMI version...
Type: \texttt{ProxyConfiguration (p. 413)} object

Required: No

\textbf{requiresComaptibilities (p. 195)}

The task launch type that Amazon ECS validates the task definition against. A client exception is returned if the task definition doesn't validate against the compatibilities specified. If no value is specified, the parameter is omitted from the response.

Type: Array of strings

Valid Values: \texttt{EC2} | \texttt{FARGATE} | \texttt{EXTERNAL}

Required: No

\textbf{runtimePlatform (p. 195)}

The operating system that your tasks definitions run on. A platform family is specified only for tasks using the Fargate launch type.

When you specify a task definition in a service, this value must match the \texttt{runtimePlatform} value of the service.

Type: \texttt{RuntimePlatform (p. 419)} object

Required: No

\textbf{tags (p. 195)}

The metadata that you apply to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both of them.

The following basic restrictions apply to tags:

\begin{itemize}
  \item Maximum number of tags per resource - 50
  \item For each resource, each tag key must be unique, and each tag key can have only one value.
  \item Maximum key length - 128 Unicode characters in UTF-8
  \item Maximum value length - 256 Unicode characters in UTF-8
  \item If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
  \item Tag keys and values are case-sensitive.
  \item Do not use \texttt{aws:}, \texttt{AWS:}, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.
\end{itemize}

Type: Array of \texttt{Tag (p. 441)} objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

\textbf{taskRoleArn (p. 195)}

The short name or full Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see \texttt{IAM Roles for Tasks} in the Amazon Elastic Container Service Developer Guide.
Type: String
Required: No

**volumes (p. 195)**

A list of volume definitions in JSON format that containers in your task might use.

Type: Array of **Volume (p. 468)** objects
Required: No

---

**Response Syntax**

```json
{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "taskDefinition": {
 "compatibilities": ["string"],
 "containerDefinitions": [
 {
 "command": ["string"],
 "cpu": number,
 "credentialSpecs": ["string"],
 "dependsOn": [
 {
 "condition": "string",
 "containerName": "string"
 }
],
 "disableNetworking": boolean,
 "dnsSearchDomains": ["string"],
 "dnsServers": ["string"],
 "dockerLabels": {
 "string": "string"
 },
 "dockerSecurityOptions": ["string"],
 "entryPoint": ["string"],
 "environment": [
 {
 "name": "string",
 "value": "string"
 }
],
 "environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
 "essential": boolean,
 "extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
],
 "firelensConfiguration": {
 "options": {
```
"string" : "string"
},
"type" : "string"
},
"healthCheck" : {
"command" : [ "string" ],
"interval" : number,
"retries" : number,
"startPeriod" : number,
"timeout" : number
},
"hostname" : "string",
"image" : "string",
"interactive" : boolean,
"links" : [ "string" ],
"linuxParameters" : {
"capabilities" : {
"add" : [ "string" ],
"drop" : [ "string" ]
},
"devices" : [ {
"containerPath" : "string",
"hostPath" : "string",
"permissions" : [ "string" ]
} ]
},
"initProcessEnabled" : boolean,
"maxSwap" : number,
"sharedMemorySize" : number,
"swappiness" : number,
"tmpfs" : [ {
"containerPath" : "string",
"mountOptions" : [ "string" ],
"size" : number
} ]
},
"logConfiguration" : {
"logDriver" : "string",
"options" : {
"string" : "string"
},
"secretOptions" : [ {
"name" : "string",
"valueFrom" : "string"
} ]
},
"memory" : number,
"memoryReservation" : number,
"mountPoints" : [ {
"containerPath" : "string",
"readOnly" : boolean,
"sourceVolume" : "string"
} ]
},
"name" : "string",
"portMappings" : [ {
"appProtocol" : "string",
"containerPort" : number,
"containerPortRange" : "string",
"protocol" : "string"
} ]
}
"hostPort": number,
"name": "string",
"protocol": "string"
],
"privileged": boolean,
"pseudoTerminal": boolean,
"readOnlyRootFilesystem": boolean,
"RepositoryCredentials": {
  "credentialsParameter": "string"
},
"resourceRequirements": [
  {
    "type": "string",
    "value": "string"
  }
],
"secrets": [
  {
    "name": "string",
    "valueFrom": "string"
  }
],
"startTimeout": number,
"stopTimeout": number,
"SystemControls": [
  {
    "namespace": "string",
    "value": "string"
  }
],
"ulimits": [
  {
    "hardLimit": number,
    "name": "string",
    "softLimit": number
  }
],
"user": "string",
"volumesFrom": [
  {
    "readOnly": boolean,
    "sourceContainer": "string"
  }
],
"workingDirectory": "string"
],
"cpu": "string",
"deregisteredAt": number,
"ephemeralStorage": {
  "sizeInGiB": number
},
"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [
  {
    "deviceName": "string",
    "deviceType": "string"
  }
],
"ipcMode": "string",
"memory": "string",
"networkMode": "string",
"pidMode": "string",
"placementConstraints": [
Response Syntax

```json
{
 "expression": "string",
 "type": "string"
},

"proxyConfiguration": {
 "containerName": "string",
 "properties": [
 {
 "name": "string",
 "value": "string"
 }
],
 "type": "string"
},

"registeredAt": number,
"registeredBy": "string",
"requiresAttributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],

"requiresCompatibilities": ["string"],
"revision": number,
"runtimePlatform": {
 "cpuArchitecture": "string",
 "operatingSystemFamily": "string"
},

"status": "string",
"taskDefinitionArn": "string",
"taskRoleArn": "string",
"volumes": [
 {
 "dockerVolumeConfiguration": {
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "string": "string"
 },
 "labels": {
 "string": "string"
 },
 "scope": "string"
 },
 "efsVolumeConfiguration": {
 "authorizationConfig": {
 "accessPointId": "string",
 "iam": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string",
 "transitEncryption": "string",
 "transitEncryptionPort": number
 },
 "fsxWindowsFileServerVolumeConfiguration": {
 "authorizationConfig": {
 "credentialsParameter": "string",
 "domain": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string"
 },
 "host": {
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**tags (p. 204)**

The list of tags associated with the task definition.

Type: Array of [Tag](p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

**taskDefinition (p. 204)**

The full description of the registered task definition.

Type: [TaskDefinition](p. 450) object

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)].

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](p. 46) in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](p. 206) or one of the AWS SDKs to make requests to AWS, these tools
automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request registers a task definition in the hello_world family with the host networking mode.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 486
X-Amz-Target: AmazonEC2ContainerServiceV20141113.RegisterTaskDefinition
X-Amz-Date: 20150429T193109Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "networkMode": "host",
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 500,
 "cpu": 10
 },
 {
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "memory": 500,
 "healthCheck": {
 "retries": 3,
 "command": [
 "CMD-SHELL",
 "curl -f http://localhost:8080/ || exit 1"
],
 "timeout": 5,
 "interval": 30,
 "essential": true
 }
 }
],
 "family": "hello_world"
}
```
Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Fri, 12 Aug 2016 22:17:20 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 714
Connection: keep-alive
x-amzn-RequestId: 896d7e0f-60da-11e6-8e21-55c97a4b6423
{
    "taskDefinition": {
        "containerDefinitions": [
            {
                "cpu": 10,
                "environment": [],
                "healthCheck": {
                    "retries": 3,
                    "command": [
                        "CMD-SHELL",
                        "curl -f http://localhost:8080/ || exit 1"
                    ],
                    "timeout": 5,
                    "interval": 30,
                    "startPeriod": null
                },
                "essential": true,
                "image": "wordpress",
                "links": [
                    "mysql"
                ],
                "memory": 500,
                "mountPoints": [],
                "name": "wordpress",
                "portMappings": [
                    {
                        "containerPort": 80,
                        "hostPort": 80,
                        "protocol": "tcp"
                    }
                ],
                "volumesFrom": []
            },
            {
                "cpu": 10,
                "environment": [
                    {
                        "name": "MYSQL_ROOT_PASSWORD",
                        "value": "password"
                    }
                ],
                "essential": true,
                "image": "mysql",
                "memory": 500,
                "mountPoints": [],
                "name": "mysql",
                "portMappings": [],
                "volumesFrom": []
            }
        ],
        "family": "hello_world",
        "networkMode": "host",
        "runtimePlatform": "LINUX",
        "requiresAttributes": [
        ]
    }
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RunTask

Starts a new task using the specified task definition.

You can allow Amazon ECS to place tasks for you, or you can customize how Amazon ECS places tasks using placement constraints and placement strategies. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.

Alternatively, you can use StartTask (p. 224) to use your own scheduler or place tasks manually on specific container instances.

Note
Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.

The Amazon ECS API follows an eventual consistency model. This is because of the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your Amazon ECS resources might not be immediately visible to all subsequent commands you run. Keep this in mind when you carry out an API command that immediately follows a previous API command.

To manage eventual consistency, you can do the following:

• Confirm the state of the resource before you run a command to modify it. Run the DescribeTasks command using an exponential backoff algorithm to ensure that you allow enough time for the previous command to propagate through the system. To do this, run the DescribeTasks command repeatedly, starting with a couple of seconds of wait time and increasing gradually up to five minutes of wait time.
• Add wait time between subsequent commands, even if the DescribeTasks command returns an accurate response. Apply an exponential backoff algorithm starting with a couple of seconds of wait time, and increase gradually up to about five minutes of wait time.

Request Syntax

```json
{
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clientToken": "string",
 "cluster": "string",
 "count": number,
 "enableECSManagedTags": boolean,
 "enableExecuteCommand": boolean,
 "group": "string",
 "launchType": "string",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 }
}
```

API Version 2014-11-13

212
"overrides": {
  "containerOverrides": [
    {
      "command": [ "string" ],
      "cpu": number,
      "environment": [
        {
          "name": "string",
          "value": "string"
        }
      ],
      "environmentFiles": [
        {
          "type": "string",
          "value": "string"
        }
      ],
      "memory": number,
      "memoryReservation": number,
      "name": "string",
      "resourceRequirements": [
        {
          "type": "string",
          "value": "string"
        }
      ]
    }
  ],
  "cpu": "string",
  "ephemeralStorage": {
    "sizeInGiB": number
  },
  "executionRoleArn": "string",
  "inferenceAcceleratorOverrides": [
    {
      "deviceName": "string",
      "deviceType": "string"
    }
  ],
  "memory": "string",
  "taskRoleArn": "string"
},
"placementConstraints": [
  {
    "expression": "string",
    "type": "string"
  }
],
"placementStrategy": [
  {
    "field": "string",
    "type": "string"
  }
],
"platformVersion": "string",
"propagateTags": "string",
"referenceId": "string",
"startedBy": "string",
"tags": {
  "key": "string",
  "value": "string"
}
],
"taskDefinition": "string"
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

capacityProviderStrategy (p. 212)

The capacity provider strategy to use for the task.

If a capacityProviderStrategy is specified, the launchType parameter must be omitted. If no capacityProviderStrategy or launchType is specified, the defaultCapacityProviderStrategy for the cluster is used.

When you use cluster auto scaling, you must specify capacityProviderStrategy and not launchType.

A capacity provider strategy may contain a maximum of 6 capacity providers.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: No

clientToken (p. 212)

An identifier that you provide to ensure the idempotency of the request. It must be unique and is case sensitive. Up to 64 characters are allowed. The valid characters are characters in the range of 33–126, inclusive. For more information, see Ensuring idempotency.

Type: String

Required: No

cluster (p. 212)

The short name or full Amazon Resource Name (ARN) of the cluster to run your task on. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

count (p. 212)

The number of instantiations of the specified task to place on your cluster. You can specify up to 10 tasks for each call.

Type: Integer

Required: No

enableECSManagedTags (p. 212)

Specifies whether to use Amazon ECS managed tags for the task. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Type: Boolean

Required: No
enableExecuteCommand (p. 212)

Determines whether to use the execute command functionality for the containers in this task. If `true`, this enables execute command functionality on all containers in the task.

If `true`, then the task definition must have a task role, or you must provide one as an override.

Type: Boolean

Required: No

group (p. 212)

The name of the task group to associate with the task. The default value is the family name of the task definition (for example, `family:my-family-name`).

Type: String

Required: No

launchType (p. 212)

The infrastructure to run your standalone task on. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

The FARGATE launch type runs your tasks on AWS Fargate On-Demand infrastructure.

Note
Fargate Spot infrastructure is available for use but a capacity provider strategy must be used. For more information, see AWS Fargate capacity providers in the Amazon ECS User Guide for AWS Fargate.

The EC2 launch type runs your tasks on Amazon EC2 instances registered to your cluster.

The EXTERNAL launch type runs your tasks on your on-premises server or virtual machine (VM) capacity registered to your cluster.

A task can use either a launch type or a capacity provider strategy. If a `launchType` is specified, the `capacityProviderStrategy` parameter must be omitted.

When you use cluster auto scaling, you must specify `capacityProviderStrategy` and not `launchType`.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

networkConfiguration (p. 212)

The network configuration for the task. This parameter is required for task definitions that use the `awsvpc` network mode to receive their own elastic network interface, and it isn't supported for other network modes. For more information, see Task networking in the Amazon Elastic Container Service Developer Guide.

Type: NetworkConfiguration (p. 404) object

Required: No

overrides (p. 212)

A list of container overrides in JSON format that specify the name of a container in the specified task definition and the overrides it should receive. You can override the default command for a
container (that's specified in the task definition or Docker image) with a command override. You can also override existing environment variables (that are specified in the task definition or Docker image) on a container or add new environment variables to it with an environment override.

A total of 8192 characters are allowed for overrides. This limit includes the JSON formatting characters of the override structure.

Type: TaskOverride (p. 458) object

Required: No

placementConstraints (p. 212)

An array of placement constraint objects to use for the task. You can specify up to 10 constraints for each task (including constraints in the task definition and those specified at runtime).

Type: Array of PlacementConstraint (p. 406) objects

Required: No

placementStrategy (p. 212)

The placement strategy objects to use for the task. You can specify a maximum of 5 strategy rules for each task.

Type: Array of PlacementStrategy (p. 407) objects

Required: No

platformVersion (p. 212)

The platform version the task uses. A platform version is only specified for tasks hosted on Fargate. If one isn't specified, the LATEST platform version is used. For more information, see AWS Fargate platform versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

propagateTags (p. 212)

Specifies whether to propagate the tags from the task definition to the task. If no value is specified, the tags aren't propagated. Tags can only be propagated to the task during task creation. To add tags to a task after task creation, use the TagResource (p. 249) API action.

Note
An error will be received if you specify the SERVICE option when running a task.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No

referenceId (p. 212)

The reference ID to use for the task. The reference ID can have a maximum length of 1024 characters.

Type: String

Required: No
**startedBy (p. 212)**

An optional tag specified when a task is started. For example, if you automatically trigger a task to run a batch process job, you could apply a unique identifier for that job to your task with the `startedBy` parameter. You can then identify which tasks belong to that job by filtering the results of a `ListTasks` call with the `startedBy` value. Up to 128 letters (uppercase and lowercase), numbers, hyphens (-), and underscores (_) are allowed.

If a task is started by an Amazon ECS service, then the `startedBy` parameter contains the deployment ID of the service that starts it.

Type: String

Required: No

**tags (p. 212)**

The metadata that you apply to the task to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

The following basic restrictions apply to tags:
- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of [Tag (p. 441)] objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

**taskDefinition (p. 212)**

The family and revision (`family:revision`) or full ARN of the task definition to run. If a revision isn't specified, the latest ACTIVE revision is used.

When you create a policy for run-task, you can set the resource to be the latest task definition revision, or a specific revision.

The full ARN value must match the value that you specified as the `Resource` of the principal's permissions policy.

When you specify the policy resource as the latest task definition version (by setting the `Resource` in the policy to `arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName`), then set this value to `arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName`.

When you specify the policy resource as a specific task definition version (by setting the `Resource` in the policy to `arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName:1` or `arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName:*`), then set this value to `arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName:1`.
For more information, see Policy Resources for Amazon ECS in the Amazon Elastic Container Service developer Guide.

Type: String

Required: Yes

Response Syntax

```json
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
],
 "tasks": [
 {
 "attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "availabilityZone": "string",
 "capacityProviderName": "string",
 "clusterArn": "string",
 "connectivity": "string",
 "connectivityAt": number,
 "containerInstanceArn": "string",
 "containers": [
 {
 "containerArn": "string",
 "cpu": "string",
 "exitCode": number,
 "gpuIds": ["string"],
 "healthStatus": "string",
 "image": "string",
 "imageDigest": "string",
 "lastStatus": "string",
 "managedAgents": [
 {
 "lastStartedAt": number,
 "LastStatus": "string",
 "name": "string",
 "reason": "string"
 }
]
 }
]
 }
]
}
```
"memory": "string",
"memoryReservation": "string",
"name": "string",
"networkBindings": [

  {
    "bindIP": "string",
    "containerPort": number,
    "containerPortRange": "string",
    "hostPort": number,
    "hostPortRange": "string",
    "protocol": "string"
  }
],

"networkInterfaces": [

  {
    "attachmentId": "string",
    "ipv6Address": "string",
    "privateIPv4Address": "string"
  }
],

"reason": "string",
"runtimeId": "string",
"taskArn": "string"
],

"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
  "sizeInGiB": number
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [

  {
    "deviceId": "string",
    "deviceType": "string"
  }
],

"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
  "containerOverrides": [

    {
      "command": [ "string" ],
      "cpu": number,
      "environment": [

        {
          "name": "string",
          "value": "string"
        }
      ],
      "environmentFiles": [

        {
          "type": "string",
          "value": "string"
        }
      ],
      "memory": number,
      "memoryReservation": number,
      "name": "string",
      "resourceRequirements": [n

    }
],

    

}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 218)

Any failures associated with the call.

Type: Array of Failure (p. 376) objects

tasks (p. 218)

A full description of the tasks that were run. The tasks that were successfully placed on your cluster are described here.

Type: Array of Task (p. 443) objects
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**AccessDeniedException**

You don't have authorization to perform the requested action.

HTTP Status Code: 400

**BlockedException**

Your AWS account was blocked. For more information, contact AWS Support.

HTTP Status Code: 400

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**ConflictException**

The RunTask request could not be processed due to conflicts. The provided clientToken is already in use with a different RunTask request. The resourceIds are the existing task ARNs which are already associated with the clientToken.

To fix this issue:
- Run RunTask with a unique clientToken.
- Run RunTask with the clientToken and the original set of parameters

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**PlatformTaskDefinitionIncompatibilityException**

The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400

**PlatformUnknownException**

The specified platform version doesn't exist.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500
UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request runs the latest ACTIVE revision of the hello_world task definition family in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 45
X-Amz-Target: AmazonEC2ContainerServiceV20141113.RunTask
X-Amz-Date: 20161121T215740Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "count": 1,
 "taskDefinition": "hello_world",
 "clientToken": "550e8400-e29b-41d4-a716-446655440000"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 21:57:40 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1025
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "failures": [],
 "tasks": [
 {
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:012345678910:container-instance/default/4c543eed-f83f-47da-b1d8-3d23f1da4c64",
 "containers": []
 }
]
}
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
StartTask

Starts a new task from the specified task definition on the specified container instance or instances.

**Note**
Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.

Alternatively, you can use RunTask (p. 212) to place tasks for you. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.

**Request Syntax**

```
{
 "cluster": "string",
 "containerInstances": ["string"],
 "enableECSManagedTags": boolean,
 "enableExecuteCommand": boolean,
 "group": "string",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 },
 "overrides": {
 "containerOverrides": {
 "command": ["string"],
 "cpu": number,
 "environment": [{
 "name": "string",
 "value": "string"
 }],
 "environmentFiles": [{
 "type": "string",
 "value": "string"
 }],
 "memory": number,
 "memoryReservation": number,
 "name": "string",
 "ResourceRequirements": [{
 "type": "string",
 "value": "string"
 }]
 }
 }
}
```

API Version 2014-11-13
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 224)**

The short name or full Amazon Resource Name (ARN) of the cluster where to start your task. If you do not specify a cluster, the default cluster is assumed.

Type: String  
Required: No

**containerInstances (p. 224)**

The container instance IDs or full ARN entries for the container instances where you would like to place your task. You can specify up to 10 container instances.

Type: Array of strings  
Required: Yes

**enableECSManagedTags (p. 224)**

Specifies whether to use Amazon ECS managed tags for the task. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Type: Boolean  
Required: No

**enableExecuteCommand (p. 224)**

Whether or not the execute command functionality is turned on for the task. If true, this turns on the execute command functionality on all containers in the task.

Type: Boolean  
Required: No
group (p. 224)

The name of the task group to associate with the task. The default value is the family name of the task definition (for example, family:my-family-name).

Type: String

Required: No

networkConfiguration (p. 224)

The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the awsvpc networking mode.

Type: NetworkConfiguration (p. 404) object

Required: No

overrides (p. 224)

A list of container overrides in JSON format that specify the name of a container in the specified task definition and the overrides it receives. You can override the default command for a container (that's specified in the task definition or Docker image) with a command override. You can also override existing environment variables (that are specified in the task definition or Docker image) on a container or add new environment variables to it with an environment override.

**Note**
A total of 8192 characters are allowed for overrides. This limit includes the JSON formatting characters of the override structure.

Type: TaskOverride (p. 458) object

Required: No

propagateTags (p. 224)

Specifies whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren't propagated.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No

referenceId (p. 224)

The reference ID to use for the task.

Type: String

Required: No

startedBy (p. 224)

An optional tag specified when a task is started. For example, if you automatically trigger a task to run a batch process job, you could apply a unique identifier for that job to your task with the startedBy parameter. You can then identify which tasks belong to that job by filtering the results of a ListTasks (p. 171) call with the startedBy value. Up to 36 letters (uppercase and lowercase), numbers, hyphens (-), and underscores (_) are allowed.

If a task is started by an Amazon ECS service, the startedBy parameter contains the deployment ID of the service that starts it.
The metadata that you apply to the task to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

The following basic restrictions apply to tags:
- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
"failures": [
 {
"arn": "string",
"detail": "string",
"reason": "string"
 }
],
"tasks": [
 {
"attachments": [
 {
"details": [
 {
"name": "string",
"value": "string"
 }
],
"id": "string",
"status": "string"
 }
]
}
```
"type": "string"
]}
"attributes": [
{
"name": "string",
"TargetId": "string",
"TargetType": "string",
"value": "string"
}
],
"availabilityZone": "string",
"capacityProviderName": "string",
"clusterArn": "string",
"connectivity": "string",
"connectivityAt": number,
"containerInstanceArn": "string",
"containers": [
{
"containerArn": "string",
"cpu": "string",
"exitCode": number,
"gpuIds": [ "string" ],
"healthStatus": "string",
"image": "string",
"imageDigest": "string",
"lastStatus": "string",
"managedAgents": [
{
"lastStartedAt": number,
"lastStatus": "string",
"name": "string",
"reason": "string"
}
],
"memory": "string",
"memoryReservation": "string",
"name": "string",
"networkBindings": [
{
"bindIP": "string",
"containerPort": number,
"containerPortRange": "string",
"hostPort": number,
"hostPortRange": "string",
"protocol": "string"
}
],
"networkInterfaces": [
{
"attachmentId": "string",
"ipv6Address": "string",
"privateIpv4Address": "string"
}
],
"reason": "string",
"runtimeId": "string",
"taskArn": "string"
}]
"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
"sizeInGiB": number
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
    {
        "deviceName": "string",
        "deviceType": "string"
    }
],
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
    "containerOverrides": [
        {
            "command": [ "string" ],
            "cpu": number,
            "environment": [
                {
                    "name": "string",
                    "value": "string"
                }
            ],
            "environmentFiles": [
                {
                    "type": "string",
                    "value": "string"
                }
            ],
            "memory": number,
            "memoryReservation": number,
            "name": "string",
            "resourceRequirements": [
                {
                    "type": "string",
                    "value": "string"
                }
            ]
        }
    ],
    "cpu": "string",
    "ephemeralStorage": {
        "sizeInGiB": number
    },
    "executionRoleArn": "string",
    "InferenceAcceleratorOverrides": [
        {
            "deviceName": "string",
            "deviceType": "string"
        }
    ],
    "memory": "string",
    "taskRoleArn": "string"
},
"platformFamily": "string",
"platformVersion": "string",
"pullStartedAt": number,
"pullStoppedAt": number,
"startedAt": number,
"startedBy": "string",
"stopCode": "string",
"stoppedAt": number,
"stoppedReason": "string",
"stoppingAt": number,
"tags": ["string"]
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**failures (p. 227)**

Any failures associated with the call.

Type: Array of [Failure (p. 376)] objects

**tasks (p. 227)**

A full description of the tasks that were started. Each task that was successfully placed on your container instances is described.

Type: Array of [Task (p. 443)] objects

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)].

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with [ListClusters (p. 145)]. Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500
Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request starts the latest ACTIVE revision of the hello_world task definition family in the default cluster on the container instance with the ID 4c543eed-f83f-47da-b1d8-3d23f1da4c64.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 97
X-Amz-Target: AmazonEC2ContainerServiceV20141113.StartTask
X-Amz-Date: 20161121T220032Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "containerInstances": ["4c543eed-f83f-47da-b1d8-3d23f1da4c64"],
 "taskDefinition": "hello_world"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 22:00:32 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1025
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "failures": [],
 "tasks": [
 {
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:012345678910:container-instance/default/4c543eed-f83f-47da-b1d8-3d23f1da4c64",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/e76594d4-27e1-4c74-98b5-46a6435eb769",
 "lastStatus": "PENDING",
 "name": "wordpress",
 "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/fdf2c302-468c-4e55-b884-5331d816e7fb"
 }
]
 }
]
}
```
},
{
  "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/default/b19106ea-4fa8-4f1d-9767-96922c82b070",
  "lastStatus": "PENDING",
  "name": "mysql",
  "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/fdf2c302-468c-4e55-b884-5331d816e7fb"
}
],
"createdAt": 1479765460.842,
"desiredStatus": "RUNNING",
"lastStatus": "PENDING",
"overrides": {
  "containerOverrides": [
    { "name": "wordpress" },
    { "name": "mysql" }
  ],
  "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/fdf2c302-468c-4e55-b884-5331d816e7fb",
  "taskDefinitionArn": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:6",
  "version": 1
}
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
StopTask

Stops a running task. Any tags associated with the task will be deleted.

When `StopTask (p. 233)` is called on a task, the equivalent of `docker stop` is issued to the containers running in the task. This results in a `SIGTERM` value and a default 30-second timeout, after which the `SIGKILL` value is sent and the containers are forcibly stopped. If the container handles the `SIGTERM` value gracefully and exits within 30 seconds from receiving it, no `SIGKILL` value is sent.

**Note**
The default 30-second timeout can be configured on the Amazon ECS container agent with the `ECS_CONTAINER_STOP_TIMEOUT` variable. For more information, see `Amazon ECS Container Agent Configuration` in the `Amazon Elastic Container Service Developer Guide`.

**Request Syntax**

```json
{
 "cluster": "string",
 "reason": "string",
 "task": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see [Common Parameters (p. 480)](#).

The request accepts the following data in JSON format.

**cluster (p. 233)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the task to stop. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

**reason (p. 233)**

An optional message specified when a task is stopped. For example, if you're using a custom scheduler, you can use this parameter to specify the reason for stopping the task here, and the message appears in subsequent `DescribeTasks (p. 117)` API operations on this task. Up to 255 characters are allowed in this message.

Type: String

Required: No

**task (p. 233)**

The task ID of the task to stop.

Type: String

Required: Yes
Response Syntax

```json
{
 "task": {
 "attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 },
 "id": "string",
 "status": "string",
 "type": "string"
]
 },
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "availabilityZone": "string",
 "capacityProviderName": "string",
 "clusterArn": "string",
 "connectivity": "string",
 "connectivityAt": number,
 "containerInstanceArn": "string",
 "containers": [
 {
 "containerArn": "string",
 "cpu": "string",
 "exitCode": number,
 "gpuids": ["string"],
 "healthStatus": "string",
 "image": "string",
 "imageDigest": "string",
 "lastStatus": "string",
 "managedAgents": [
 {
 "lastStartedAt": number,
 "lastStatus": "string",
 "name": "string",
 "reason": "string"
 }
],
 "memory": "string",
 "memoryReservation": "string",
 "name": "string",
 "networkBindings": [
 {
 "bindIP": "string",
 "containerPort": number,
 "containerPortRange": "string",
 "hostPort": number,
 "hostPortRange": "string",
 "protocol": "string"
 }
],
 "networkInterfaces": [
 {

 }]
 }
 }
]
 }
}
```
"attachmentId": "string",
"ipv6Address": "string",
"privateIpv4Address": "string"
}
],
"reason": "string",
"runtimeId": "string",
"taskId": "string"
}
],
"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
  "sizeInGiB": number
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
  {
    "deviceName": "string",
    "DeviceType": "string"
  }
],
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
  "containerOverrides": [
    {
      "command": [ "string" ],
      "cpu": number,
      "environment": [
        {
          "name": "string",
          "Value": "string"
        }
      ],
      "environmentFiles": [
        {
          "type": "string",
          "value": "string"
        }
      ],
      "memory": number,
      "memoryReservation": number,
      "name": "string",
      "resourceRequirements": [
        {
          "type": "string",
          "value": "string"
        }
      ]
    }
  ],
  "cpu": "string",
  "ephemeralStorage": {
    "sizeInGiB": number
  },
  "executionRoleArn": "string",
  "inferenceAcceleratorOverrides": [
    {
      "deviceName": "string",
      "deviceType": "string"
    }
  ]
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**task (p. 234)**

The task that was stopped.

Type: Task (p. 443) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.
HTTP Status Code: 400
**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

**Examples**

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](http://aws.amazon.com) in the *AWS General Reference*.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](http://aws.amazon.com) or one of the [AWS SDKs](http://aws.amazon.com) to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example request stops a task with the ID a126249b-b7e4-4b06-9d8f-1b56e75a99b5 in the default cluster.

**Sample Request**

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 88
X-Amz-Target: AmazonEC2ContainerServiceV20141113.StopTask
X-Amz-Date: 20161121T220318Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "task": "1dc5c17a-422b-4dc4-b493-371970c6c4d6"
}
```

**Sample Response**

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 22:03:18 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1260
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "task": {
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/4df26bb4-f057-467b-a079-9616752996e64"
 }
```
"lastStatus": "RUNNING",
"name": "simple-app",
"networkBindings": [
  {
    "bindIP": "0.0.0.0",
    "containerPort": 80,
    "hostPort": 32774,
    "protocol": "tcp"
  }
],
"taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/1dc5c17a-422b-4dc4-b493-371970c6c4d6"
},
{ "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/e09064f7-7361-4c87-8ab9-8d073bbdbcb9",
"lastStatus": "RUNNING",
"name": "busybox",
"networkBindings": [],
"taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/1dc5c17a-422b-4dc4-b493-371970c6c4d6"
}],
"createdAt": 1476822811.295,
"desiredStatus": "STOPPED",
"lastStatus": "RUNNING",
"overrides": {
  "containerOverrides": [
    { "name": "simple-app" },
    { "name": "busybox" }
  ]
},
"startedAt": 1476822833.998,
"startedBy": "ecs-svc/9223370560032507596",
"stoppedReason": "Task stopped by user",
"taskArn": "arn:aws:ecs:us-east-1:012345678910:task/default/1dc5c17a-422b-4dc4-b493-371970c6c4d6",
"version": 0
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
SubmitAttachmentStateChanges

**Note**
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Sent to acknowledge that an attachment changed states.

**Request Syntax**

```json
{
 "attachments": [
 {
 "attachmentArn": "string",
 "status": "string"
 }
],
 "cluster": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**attachments (p. 240)**

Any attachments associated with the state change request.

Type: Array of AttachmentStateChange (p. 311) objects

Required: Yes

**cluster (p. 240)**

The short name or full ARN of the cluster that hosts the container instance the attachment belongs to.

Type: String

Required: No

**Response Syntax**

```json
{
 "acknowledgment": "string"
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
**acknowledgment (p. 240)**

Acknowledgement of the state change.

Type: String

**Errors**

For information about the errors that are common to all actions, see Common Errors (p. 482).

**AccessDeniedException**

You don't have authorization to perform the requested action.

HTTP Status Code: 400

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
SubmitContainerStateChange

**Note**
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Sent to acknowledge that a container changed states.

**Request Syntax**

```
{
 "cluster": "string",
 "containerName": "string",
 "exitCode": number,
 "networkBindings": [
 {
 "bindIP": "string",
 "containerPort": number,
 "containerPortRange": "string",
 "hostPort": number,
 "hostPortRange": "string",
 "protocol": "string"
 }
],
 "reason": "string",
 "runtimeId": "string",
 "status": "string",
 "task": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster** (p. 242)

The short name or full ARN of the cluster that hosts the container.

Type: String

Required: No

**containerName** (p. 242)

The name of the container.

Type: String

Required: No

**exitCode** (p. 242)

The exit code that's returned for the state change request.

Type: Integer

Required: No
networkBindings (p. 242)

The network bindings of the container.

Type: Array of NetworkBinding (p. 402) objects

Required: No

reason (p. 242)

The reason for the state change request.

Type: String

Required: No

runtimeId (p. 242)

The ID of the Docker container.

Type: String

Required: No

status (p. 242)

The status of the state change request.

Type: String

Required: No

task (p. 242)

The task ID or full Amazon Resource Name (ARN) of the task that hosts the container.

Type: String

Required: No

Response Syntax

```
{
 "acknowledgment": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

acknowledgment (p. 243)

Acknowledgement of the state change.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).
AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
SubmitTaskStateChange

**Note**

This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Sent to acknowledge that a task changed states.

**Request Syntax**

```json
{
 "attachments": [
 {
 "attachmentArn": "string",
 "status": "string"
 }
],
 "cluster": "string",
 "containers": [
 {
 "containerName": "string",
 "exitCode": number,
 "imageDigest": "string",
 "networkBindings": [
 {
 "bindIP": "string",
 "containerPort": number,
 "containerPortRange": "string",
 "hostPort": number,
 "hostPortRange": "string",
 "protocol": "string"
 }
],
 "reason": "string",
 "runtimeId": "string",
 "status": "string"
 }
],
 "executionStoppedAt": number,
 "managedAgents": [
 {
 "containerName": "string",
 "managedAgentName": "string",
 "reason": "string",
 "status": "string"
 }
],
 "pullStartedAt": number,
 "pullStoppedAt": number,
 "reason": "string",
 "status": "string",
 "task": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.
**attachments (p. 245)**

Any attachments associated with the state change request.

Type: Array of [AttachmentStateChange (p. 311)] objects

Required: No

**cluster (p. 245)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the task.

Type: String

Required: No

**containers (p. 245)**

Any containers associated with the state change request.

Type: Array of [ContainerStateChange (p. 353)] objects

Required: No

**executionStoppedAt (p. 245)**

The Unix timestamp for the time when the task execution stopped.

Type: Timestamp

Required: No

**managedAgents (p. 245)**

The details for the managed agent associated with the task.

Type: Array of [ManagedAgentStateChange (p. 398)] objects

Required: No

**pullStartedAt (p. 245)**

The Unix timestamp for the time when the container image pull started.

Type: Timestamp

Required: No

**pullStoppedAt (p. 245)**

The Unix timestamp for the time when the container image pull completed.

Type: Timestamp

Required: No

**reason (p. 245)**

The reason for the state change request.

Type: String

Required: No

**status (p. 245)**

The status of the state change request.
Response Syntax

```json
{
 "acknowledgment": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

**acknowledgment (p. 247)**
- Acknowledgement of the state change.
- Type: String

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)](#).

**AccessDeniedException**
- You don't have authorization to perform the requested action.
- HTTP Status Code: 400

**ClientException**
- These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.
- HTTP Status Code: 400

**InvalidParameterException**
- The specified parameter isn't valid. Review the available parameters for the API request.
- HTTP Status Code: 400

**ServerException**
- These errors are usually caused by a server issue.
- HTTP Status Code: 500
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
TagResource

 Associates the specified tags to a resource with the specified resourceArn. If existing tags on a resource aren't specified in the request parameters, they aren't changed. When a resource is deleted, the tags that are associated with that resource are deleted as well.

Request Syntax

```
{
 "resourceArn": "string",
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

resourceArn (p. 249)

The Amazon Resource Name (ARN) of the resource to add tags to. Currently, the supported resources are Amazon ECS capacity providers, tasks, services, task definitions, clusters, and container instances.

Type: String

Required: Yes

tags (p. 249)

The tags to add to the resource. A tag is an array of key-value pairs.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: Yes
Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ResourceNotFoundException

The specified resource wasn't found.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example tags the dev cluster with key team and value dev.

Sample Request

| POST  | HTTP/1.1 |
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.TagResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T194744Z
Authorization: AUTHPARAMS
Content-Length: 115
{
    "tags": [
        {
            "key":"team",
            "value":"dev"
        }
    ]
}

**Sample Response**

HTTP/1.1 200 OK
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
Content-Type: application/x-amz-json-1.1
Content-Length: 2
Date: Fri, 26 Oct 2018 20:01:34 GMT
{}

**Example**

This example tags the dev cluster with key team and value dev and the key second-key and value dev-key2.

**Sample Request**

POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.TagResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T194744Z
Authorization: AUTHPARAMS
Content-Length: 115
{
    "tags": [
        {
            "key":"team",
            "value":"dev",
            "second-key",
            "dev-key2"
        }
    ]
}

**Sample Response**

HTTP/1.1 200 OK
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS Command Line Interface](#)
- [AWS SDK for .NET](#)
- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for JavaScript](#)
- [AWS SDK for PHP V3](#)
- [AWS SDK for Python](#)
- [AWS SDK for Ruby V3](#)
UntagResource

Deletes specified tags from a resource.

Request Syntax

```
{
 "resourceArn": "string",
 "tagKeys": ["string"]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**resourceArn (p. 253)**

The Amazon Resource Name (ARN) of the resource to delete tags from. Currently, the supported resources are Amazon ECS capacity providers, tasks, services, task definitions, clusters, and container instances.

Type: String

Required: Yes

**tagKeys (p. 253)**

The keys of the tags to be removed.

Type: Array of strings


Pattern: `^[\p{L}\p{Z}\p{N}_.:/=+@]*$`

Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ResourceNotFoundException

The specified resource wasn't found.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example tags the dev cluster with key team and value dev.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UntagResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T200134Z
Authorization: AUTHPARAMS
Content-Length: 93

{
 "tagKeys": [
 "team"
]
}
```

Sample Response

```
HTTP/1.1 200 OK
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateCapacityProvider

Modifies the parameters for a capacity provider.

Request Syntax

```
{
 "autoScalingGroupProvider": {
 "managedScaling": {
 "instanceWarmupPeriod": number,
 "maximumScalingStepSize": number,
 "minimumScalingStepSize": number,
 "status": "string",
 "targetCapacity": number
 },
 "managedTerminationProtection": "string"
 },
 "name": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**autoScalingGroupProvider (p. 256)**

An object that represent the parameters to update for the Auto Scaling group capacity provider.

Type: AutoScalingGroupProviderUpdate (p. 314) object

Required: Yes

**name (p. 256)**

The name of the capacity provider to update.

Type: String

Required: Yes

Response Syntax

```
{
 "capacityProvider": {
 "autoScalingGroupProvider": {
 "autoScalingGroupArn": "string",
 "managedScaling": {
 "instanceWarmupPeriod": number,
 "maximumScalingStepSize": number,
 "minimumScalingStepSize": number,
 "status": "string",
 "targetCapacity": number
 },
 "managedTerminationProtection": "string"
 }
 }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

capacityProvider (p. 256)
Details about the capacity provider.

Type: CapacityProvider (p. 316) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException
These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException
The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException
These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
See Also

- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateCluster

Updates the cluster.

Request Syntax

```
{
 "cluster": "string",
 "configuration": {
 "executeCommandConfiguration": {
 "kmsKeyId": "string",
 "logConfiguration": {
 "CloudWatchEncryptionEnabled": boolean,
 "CloudWatchLogGroupName": "string",
 "S3BucketName": "string",
 "S3EncryptionEnabled": boolean,
 "S3KeyPrefix": "string"
 },
 "logging": "string"
 }
 },
 "serviceConnectDefaults": {
 "namespace": "string"
 },
 "settings": [
 {
 "name": "string",
 "value": "string"
 }
]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 259)**

The name of the cluster to modify the settings for.

Type: String

Required: Yes

**configuration (p. 259)**

The execute command configuration for the cluster.

Type: ClusterConfiguration (p. 324) object

Required: No

**serviceConnectDefaults (p. 259)**

Use this parameter to set a default Service Connect namespace. After you set a default Service Connect namespace, any new services with Service Connect turned on that are created in the cluster are added as client services in the namespace. This setting only applies to new services that set the
enabled parameter to true in the ServiceConnectConfiguration. You can set the namespace of each service individually in the ServiceConnectConfiguration to override this default parameter.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: ClusterServiceConnectDefaultsRequest (p. 326) object

Required: No

settings (p. 259)

The cluster settings for your cluster.

Type: Array of ClusterSetting (p. 327) objects

Required: No

Response Syntax

```
{
 "cluster": {
 "activeServicesCount": number,
 "attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
 "attachmentsStatus": "string",
 "capacityProviders": ["string"],
 "clusterArn": "string",
 "clusterName": "string",
 "configuration": {
 "executeCommandConfiguration": {
 "kmsKeyId": "string",
 "logConfiguration": {
 "cloudWatchEncryptionEnabled": boolean,
 "cloudWatchLogGroupName": "string",
 "s3BucketName": "string",
 "s3EncryptionEnabled": boolean,
 "s3KeyPrefix": "string"
 },
 "logging": "string"
 }
 },
 "defaultCapacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
]
 }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

(cluster (p. 260))

Details about the cluster.

Type: Cluster (p. 320) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400
**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**NamespaceNotFoundException**

The specified namespace wasn't found.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateClusterSettings

Modifies the settings to use for a cluster.

Request Syntax

```
{
 "cluster": "string",
 "settings": [
 {
 "name": "string",
 "value": "string"
 }
]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster (p. 263)**

The name of the cluster to modify the settings for.

Type: String

Required: Yes

**settings (p. 263)**

The setting to use by default for a cluster. This parameter is used to turn on CloudWatch Container Insights for a cluster. If this value is specified, it overrides the containerInsights value set with PutAccountSetting (p. 176) or PutAccountSettingDefault (p. 179).

**Important**

Currently, if you delete an existing cluster that does not have Container Insights turned on, and then create a new cluster with the same name with Container Insights tuned on, Container Insights will not actually be turned on. If you want to preserve the same name for your existing cluster and turn on Container Insights, you must wait 7 days before you can re-create it.

Type: Array of ClusterSetting (p. 327) objects

Required: Yes

Response Syntax

```
{
 "cluster": {
 "activeServicesCount": number,
 "attachments": [
 {
 "details": [
]
 }
]
 }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

**cluster (p. 263)**

Details about the cluster

Type: Cluster (p. 320) object

---

### Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

---

### See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3

---

API Version 2014-11-13

265
UpdateContainerAgent

Updates the Amazon ECS container agent on a specified container instance. Updating the Amazon ECS container agent doesn't interrupt running tasks or services on the container instance. The process for updating the agent differs depending on whether your container instance was launched with the Amazon ECS-optimized AMI or another operating system.

**Note**
The `UpdateContainerAgent` API isn't supported for container instances using the Amazon ECS-optimized Amazon Linux 2 (arm64) AMI. To update the container agent, you can update the `ecs-init` package. This updates the agent. For more information, see Updating the Amazon ECS container agent in the Amazon Elastic Container Service Developer Guide.

**Note**
Agent updates with the `UpdateContainerAgent` API operation do not apply to Windows container instances. We recommend that you launch new container instances to update the agent version in your Windows clusters.

The `UpdateContainerAgent` API requires an Amazon ECS-optimized AMI or Amazon Linux AMI with the `ecs-init` service installed and running. For help updating the Amazon ECS container agent on other operating systems, see Manually updating the Amazon ECS container agent in the Amazon Elastic Container Service Developer Guide.

**Request Syntax**

```json
{
 "cluster": "string",
 "containerInstance": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster** (p. 266)

The short name or full Amazon Resource Name (ARN) of the cluster that your container instance is running on. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

**containerInstance** (p. 266)

The container instance ID or full ARN entries for the container instance where you would like to update the Amazon ECS container agent.

Type: String

Required: Yes

**Response Syntax**

```json
{}
```
"containerInstance": {  
  "agentConnected": boolean,  
  "agentUpdateStatus": "string",  
  "attachments": [  
    {  
      "details": [  
        {  
          "name": "string",  
          "value": "string"  
        }  
      ],  
      "id": "string",  
      "status": "string",  
      "type": "string"  
    }  
  ],  
  "attributes": [  
    {  
      "name": "string",  
      "targetId": "string",  
      "targetType": "string",  
      "value": "string"  
    }  
  ],  
  "capacityProviderName": "string",  
  "containerInstanceArn": "string",  
  "ec2InstanceId": "string",  
  "healthStatus": {  
    "details": [  
      {  
        "lastStatusChange": number,  
        "lastUpdated": number,  
        "status": "string",  
        "type": "string"  
      }  
    ],  
    "overallStatus": "string"  
  },  
  "pendingTasksCount": number,  
  "registeredAt": number,  
  "registeredResources": [  
    {  
      "doubleValue": number,  
      "integerValue": number,  
      "longValue": number,  
      "name": "string",  
      "stringValue": [ "string" ],  
      "type": "string"  
    }  
  ],  
  "remainingResources": [  
    {  
      "doubleValue": number,  
      "integerValue": number,  
      "longValue": number,  
      "name": "string",  
      "stringValue": [ "string" ],  
      "type": "string"  
    }  
  ],  
  "runningTasksCount": number,  
  "status": "string",  
  "statusReason": "string",  
  "tags": [  
    {  
      "key": "string",  
      "value": "string"  
    }  
  ]  
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**containerInstance** *(p. 266)*

The container instance that the container agent was updated for.

Type: [ContainerInstance](p. 346) object

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)].

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with [ListClusters](p. 145).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**MissingVersionException**

Amazon ECS can't determine the current version of the Amazon ECS container agent on the container instance and doesn't have enough information to proceed with an update. This could be because the agent running on the container instance is a previous or custom version that doesn't use our version information.

HTTP Status Code: 400

**NoUpdateAvailableException**

There's no update available for this Amazon ECS container agent. This might be because the agent is already running the latest version or because it's so old that there's no update path to the current version.
HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

**UpdateInProgressException**

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as PENDING or STAGING, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

**Examples**

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example updates the container agent version for the container instance with the ID 53ac7152-dcd1-4102-81f5-208962864132 in the update cluster.

**Sample Request**

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 82
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateContainerAgent
X-Amz-Date: 20150528T152756Z
User-Agent: aws-cli/1.7.30 Python/2.7.9 Darwin/14.3.0
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "cluster": "update",
 "containerInstance": "53ac7152-dcd1-4102-81f5-208962864132"
}
```

**Sample Response**

```
HTTP/1.1 200 OK
Server: Server
Date: Thu, 28 May 2015 15:27:54 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1033
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
```

API Version 2014-11-13

269
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateContainerInstancesState

Modifies the status of an Amazon ECS container instance.

Once a container instance has reached an ACTIVE state, you can change the status of a container instance to DRAINING to manually remove an instance from a cluster, for example to perform system updates, update the Docker daemon, or scale down the cluster size.

**Important**

A container instance can't be changed to DRAINING until it has reached an ACTIVE status. If the instance is in any other status, an error will be received.

When you set a container instance to DRAINING, Amazon ECS prevents new tasks from being scheduled for placement on the container instance and replacement service tasks are started on other container instances in the cluster if the resources are available. Service tasks on the container instance that are in the PENDING state are stopped immediately.

Service tasks on the container instance that are in the RUNNING state are stopped and replaced according to the service's deployment configuration parameters, minimumHealthyPercent and maximumPercent. You can change the deployment configuration of your service using UpdateService (p. 279).

- If minimumHealthyPercent is below 100%, the scheduler can ignore desiredCount temporarily during task replacement. For example, desiredCount is four tasks, a minimum of 50% allows the scheduler to stop two existing tasks before starting two new tasks. If the minimum is 100%, the service scheduler can't remove existing tasks until the replacement tasks are considered healthy. Tasks for services that do not use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer.
- The maximumPercent parameter represents an upper limit on the number of running tasks during task replacement. You can use this to define the replacement batch size. For example, if desiredCount is four tasks, a maximum of 200% starts four new tasks before stopping the four tasks to be drained, provided that the cluster resources required to do this are available. If the maximum is 100%, then replacement tasks can't start until the draining tasks have stopped.

Any PENDING or RUNNING tasks that do not belong to a service aren't affected. You must wait for them to finish or stop them manually.

A container instance has completed draining when it has no more RUNNING tasks. You can verify this using ListTasks (p. 171).

When a container instance has been drained, you can set a container instance to ACTIVE status and once it has reached that status the Amazon ECS scheduler can begin scheduling tasks on the instance again.

Request Syntax

```json
{
 "cluster": "string",
 "containerInstances": ["string"],
 "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).
The request accepts the following data in JSON format.

**cluster (p. 271)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instance to update. If you do not specify a cluster, the default cluster is assumed.

Type: String
Required: No

**containerInstances (p. 271)**

A list of up to 10 container instance IDs or full ARN entries.

Type: Array of strings
Required: Yes

**status (p. 271)**

The container instance state to update the container instance with. The only valid values for this action are ACTIVE and DRAINING. A container instance can only be updated to DRAINING status once it has reached an ACTIVE state. If a container instance is in REGISTERING, Deregistering, or REGISTRATION_FAILED state you can describe the container instance but can't update the container instance state.

Type: String
Required: Yes

**Valid Values:** ACTIVE | DRAINING | REGISTERING | Deregistering | REGISTRATION_FAILED

**Response Syntax**

```json
{
 "containerInstances": [
 {
 "agentConnected": boolean,
 "agentUpdateStatus": "string",
 "attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "capacityProviderName": "string",
 }
]
}
```
"containerInstanceArn": "string",
"ec2InstanceId": "string",
"healthStatus": {
  "details": [
    {
      "lastStatusChange": number,
      "lastUpdated": number,
      "status": "string",
      "type": "string"
    }
  ],
  "overallStatus": "string"
},
"pendingTasksCount": number,
"registeredAt": number,
"registeredResources": [
  {
    "doubleValue": number,
    "integerValue": number,
    "longValue": number,
    "name": "string",
    "stringSetValue": ["string"],
    "type": "string"
  }
],
"remainingResources": [
  {
    "doubleValue": number,
    "integerValue": number,
    "longValue": number,
    "name": "string",
    "stringSetValue": ["string"],
    "type": "string"
  }
],
"runningTasksCount": number,
"status": "string",
"statusReason": "string",
"tags": [
  {
    "key": "string",
    "value": "string"
  }
],
"version": number,
"versionInfo": {
  "agentHash": "string",
  "agentVersion": "string",
  "dockerVersion": "string"
}
],
"failures": [
  {
    "arn": "string",
    "detail": "string",
    "reason": "string"
  }
]
The following data is returned in JSON format by the service.

**containerInstances (p. 272)**

The list of container instances.

Type: Array of [ContainerInstance (p. 346)] objects

**failures (p. 272)**

Any failures associated with the call.

Type: Array of [Failure (p. 376)] objects

### Errors

For information about the errors that are common to all actions, see [Common Errors (p. 482)].

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with [ListClusters (p. 145)].

Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

### Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](#) in the [AWS General Reference](#).

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](#) or one of the [AWS SDKs](#) to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example sets a container instance in the default cluster with the ID 1c3be8ed-df30-47b4-8f1e-6e68ed01f34 to the DRAINING status so that it can't receive tasks for placement.
Sample Request

POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 114
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateContainerInstancesState
X-Amz-Date: 20161220T221142Z
User-Agent: aws-cli/1.11.31 Python/2.7.12 Darwin/16.3.0 botocore/1.4.88
Authorization: AUTHPARAMS

{
  "status": "DRAINING",
  "cluster": "default",
  "containerInstances": [
    "1c3be8ed-df30-47b4-8f1e-6e68ebd01f34"
  ]
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Tue, 20 Dec 2016 22:11:42 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 2344
Connection: keep-alive
x-amzn-RequestId: 49d68928-c701-11e6-8f99-6103d648cdad

{
  "containerInstances": [
    {
      "agentConnected": true,
      "attributes": [
        {
          "name": "ecs.availability-zone",
          "value": "us-west-2b"
        },
        {
          "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
        },
        {
          "name": "ecs.instance-type",
          "value": "c4.xlarge"
        },
        {
          "name": "ecs.ami-id",
          "value": "ami-a2ca61a2"
        },
        {
          "name": "com.amazonaws.ecs.capability.task-iam-role-network-host"
        },
        {
          "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
        },
        {
          "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
        },
        {
          "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
        }
      ]
    }
  ]
}
"name": "com.amazonaws.ecs.capability.privileged-container",
},
{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
},
{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
},
{ "name": "com.amazonaws.ecs.capability.ecr-auth"
},
{ "name": "ecs.os-type",
 "value": "linux"
},
{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
},
{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
},
{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.22"
},
{ "name": "com.amazonaws.ecs.capability.task-iam-role"
},
{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.23"
}], "containerInstanceArn": "arn:aws:ecs:us-west-2:012345678910:container-instance/default/1c3be8ed-df30-47b4-8f1e-6e68ebd01f34",
"ec2InstanceId": "i-05d99c76955727ec6",
"pendingTasksCount": 0,
"registeredResources": [
{ "doubleValue": 0,
 "integerValue": 4096,
 "longValue": 0,
 "name": "CPU",
 "type": "INTEGER"
},
{ "doubleValue": 0,
 "integerValue": 7482,
 "longValue": 0,
 "name": "MEMORY",
 "type": "INTEGER"
},
{ "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678",
 "51679"
 ],
 "type": "STRINGSET"
},
{ "doubleValue": 0,
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
UpdateService

Modifies the parameters of a service.

For services using the rolling update (ECS) you can update the desired count, deployment configuration, network configuration, load balancers, service registries, enable ECS managed tags option, propagate tags option, task placement constraints and strategies, and task definition. When you update any of these parameters, Amazon ECS starts new tasks with the new configuration.

For services using the blue/green (CODE_DEPLOY) deployment controller, only the desired count, deployment configuration, health check grace period, task placement constraints and strategies, enable ECS managed tags option, and propagate tags option can be updated using this API. If the network configuration, platform version, task definition, or load balancer need to be updated, create a new AWS CodeDeploy deployment. For more information, see CreateDeployment in the AWS CodeDeploy API Reference.

For services using an external deployment controller, you can update only the desired count, task placement constraints and strategies, health check grace period, enable ECS managed tags option, and propagate tags option, using this API. If the launch type, load balancer, network configuration, platform version, or task definition need to be updated, create a new task set. For more information, see CreateTaskSet (p. 35).

You can add to or subtract from the number of instantiations of a task definition in a service by specifying the cluster that the service is running in and a new desiredCount parameter.

If you have updated the Docker image of your application, you can create a new task definition with that image and deploy it to your service. The service scheduler uses the minimum healthy percent and maximum percent parameters (in the service's deployment configuration) to determine the deployment strategy.

Note

If your updated Docker image uses the same tag as what is in the existing task definition for your service (for example, my_image:latest), you don't need to create a new revision of your task definition. You can update the service using the forceNewDeployment option. The new tasks launched by the deployment pull the current image/tag combination from your repository when they start.

You can also update the deployment configuration of a service. When a deployment is triggered by updating the task definition of a service, the service scheduler uses the deployment configuration parameters, minimumHealthyPercent and maximumPercent, to determine the deployment strategy.

- If minimumHealthyPercent is below 100%, the scheduler can ignore desiredCount temporarily during a deployment. For example, if desiredCount is four tasks, a minimum of 50% allows the scheduler to stop two existing tasks before starting two new tasks. Tasks for services that don't use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer.
- The maximumPercent parameter represents an upper limit on the number of running tasks during a deployment. You can use it to define the deployment batch size. For example, if desiredCount is four tasks, a maximum of 200% starts four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available).

When UpdateService (p. 279) stops a task during a deployment, the equivalent of docker stop is issued to the containers running in the task. This results in a SIGTERM and a 30-second timeout. After this, SIGKILL is sent and the containers are forcibly stopped. If the container handles the SIGTERM gracefully and exits within 30 seconds from receiving it, no SIGKILL is sent.
When the service scheduler launches new tasks, it determines task placement in your cluster with the following logic.

- Determine which of the container instances in your cluster can support your service's task definition. For example, they have the required CPU, memory, ports, and container instance attributes.
- By default, the service scheduler attempts to balance tasks across Availability Zones in this manner even though you can choose a different placement strategy.
  - Sort the valid container instances by the fewest number of running tasks for this service in the same Availability Zone as the instance. For example, if zone A has one running service task and zones B and C each have zero, valid container instances in either zone B or C are considered optimal for placement.
  - Place the new service task on a valid container instance in an optimal Availability Zone (based on the previous steps), favoring container instances with the fewest number of running tasks for this service.

When the service scheduler stops running tasks, it attempts to maintain balance across the Availability Zones in your cluster using the following logic:

- Sort the container instances by the largest number of running tasks for this service in the same Availability Zone as the instance. For example, if zone A has one running service task and zones B and C each have two, container instances in either zone B or C are considered optimal for termination.
- Stop the task on a container instance in an optimal Availability Zone (based on the previous steps), favoring container instances with the largest number of running tasks for this service.

**Note**
You must have a service-linked role when you update any of the following service properties:

- loadBalancers,
- serviceRegistries

For more information about the role see the CreateService request parameter `role`.

**Request Syntax**

```json
{
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "cluster": "string",
 "deploymentConfiguration": {
 "alarms": {
 "alarmNames": ["string"],
 "enable": boolean,
 "rollback": boolean
 },
 "deploymentCircuitBreaker": {
 "enable": boolean,
 "rollback": boolean
 },
 "maximumPercent": number,
 "minimumHealthyPercent": number
 }
}
```
"desiredCount": number,
"enableECSManagedTags": boolean,
"enableExecuteCommand": boolean,
"forceNewDeployment": boolean,
"healthCheckGracePeriodSeconds": number,
"loadBalancers": [
  {
    "containerName": "string",
    "containerPort": number,
    "loadBalancerName": "string",
    "targetGroupArn": "string"
  }
],
"networkConfiguration": {
  "awsVpcConfiguration": {
    "assignPublicIp": "string",
    "securityGroups": [ "string" ],
    "subnets": [ "string" ]
  }
},
"placementConstraints": [
  {
    "expression": "string",
    "type": "string"
  }
],
"placementStrategy": [
  {
    "field": "string",
    "type": "string"
  }
],
"platformVersion": "string",
"propagateTags": "string",
"service": "string",
"serviceConnectConfiguration": {
  "enabled": boolean,
  "logConfiguration": {
    "logDriver": "string",
    "options": {
      "string": "string"
    },
    "secretOptions": [ {
      "name": "string",
      "valueFrom": "string"
    }
  ]
},
"namespace": "string",
"services": [ {
  "clientAliases": [ {
    "dnsName": "string",
    "port": number
  }
],
  "discoveryName": "string",
  "ingressPortOverride": number,
  "portName": "string"
}
],
"serviceRegistries": [ {
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**capacityProviderStrategy (p. 280)**

The capacity provider strategy to update the service to use.

if the service uses the default capacity provider strategy for the cluster, the service can be updated to use one or more capacity providers as opposed to the default capacity provider strategy. However, when a service is using a capacity provider strategy that's not the default capacity provider strategy, the service can't be updated to use the cluster's default capacity provider strategy.

A capacity provider strategy consists of one or more capacity providers along with the base and weight to assign to them. A capacity provider must be associated with the cluster to be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 186) API is used to associate a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status can be used.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 7) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

The PutClusterCapacityProviders (p. 186) API operation is used to update the list of available capacity providers for a cluster after the cluster is created.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: No

**cluster (p. 280)**

The short name or full Amazon Resource Name (ARN) of the cluster that your service runs on. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

**deploymentConfiguration (p. 280)**

Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.

Type: DeploymentConfiguration (p. 361) object
Required: No

desiredCount (p. 280)

The number of instantiations of the task to place and keep running in your service.

Type: Integer

Required: No

disableECSManagedTags (p. 280)

Determines whether to turn on Amazon ECS managed tags for the tasks in the service. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Only tasks launched after the update will reflect the update. To update the tags on all tasks, set forceNewDeployment to true, so that Amazon ECS starts new tasks with the updated tags.

Type: Boolean

Required: No

disableExecuteCommand (p. 280)

If true, this enables execute command functionality on all task containers.

If you do not want to override the value that was set when the service was created, you can set this to null when performing this action.

Type: Boolean

Required: No

forceNewDeployment (p. 280)

Determines whether to force a new deployment of the service. By default, deployments aren't forced. You can use this option to start a new deployment with no service definition changes. For example, you can update a service's tasks to use a newer Docker image with the same image/tag combination (my_image:latest) or to roll Fargate tasks onto a newer platform version.

Type: Boolean

Required: No

healthCheckGracePeriodSeconds (p. 280)

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started. This is only valid if your service is configured to use a load balancer. If your service's tasks take a while to start and respond to Elastic Load Balancing health checks, you can specify a health check grace period of up to 2,147,483,647 seconds. During that time, the Amazon ECS service scheduler ignores the Elastic Load Balancing health check status. This grace period can prevent the ECS service scheduler from marking tasks as unhealthy and stopping them before they have time to come up.

Type: Integer

Required: No

loadBalancers (p. 280)

A list of Elastic Load Balancing load balancer objects. It contains the load balancer name, the container name, and the container port to access from the load balancer. The container name is as it appears in a container definition.
When you add, update, or remove a load balancer configuration, Amazon ECS starts new tasks with the updated Elastic Load Balancing configuration, and then stops the old tasks when the new tasks are running.

For services that use rolling updates, you can add, update, or remove Elastic Load Balancing target groups. You can update from a single target group to multiple target groups and from multiple target groups to a single target group.

For services that use blue/green deployments, you can update Elastic Load Balancing target groups by using CreateDeployment through AWS CodeDeploy. Note that multiple target groups are not supported for blue/green deployments. For more information see Register multiple target groups with a service in the Amazon Elastic Container Service Developer Guide.

For services that use the external deployment controller, you can add, update, or remove load balancers by using CreateTaskSet. Note that multiple target groups are not supported for external deployments. For more information see Register multiple target groups with a service in the Amazon Elastic Container Service Developer Guide.

You can remove existing loadBalancers by passing an empty list.

Type: Array of LoadBalancer (p. 393) objects

Required: No

networkConfiguration (p. 280)

An object representing the network configuration for the service.

Type: NetworkConfiguration (p. 404) object

Required: No

placementConstraints (p. 280)

An array of task placement constraint objects to update the service to use. If no value is specified, the existing placement constraints for the service will remain unchanged. If this value is specified, it will override any existing placement constraints defined for the service. To remove all existing placement constraints, specify an empty array.

You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.

Type: Array of PlacementConstraint (p. 406) objects

Required: No

placementStrategy (p. 280)

The task placement strategy objects to update the service to use. If no value is specified, the existing placement strategy for the service will remain unchanged. If this value is specified, it will override the existing placement strategy defined for the service. To remove an existing placement strategy, specify an empty object.

You can specify a maximum of five strategy rules for each service.

Type: Array of PlacementStrategy (p. 407) objects

Required: No

platformVersion (p. 280)

The platform version that your tasks in the service run on. A platform version is only specified for tasks using the Fargate launch type. If a platform version is not specified, the LATEST platform
version is used. For more information, see AWS Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

**propagateTags (p. 280)**

Determines whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren't propagated.

Only tasks launched after the update will reflect the update. To update the tags on all tasks, set forceNewDeployment to true, so that Amazon ECS starts new tasks with the updated tags.

Type: String
Valid Values: TASK_DEFINITION | SERVICE | NONE
Required: No

**service (p. 280)**

The name of the service to update.

Type: String
Required: Yes

**serviceConnectConfiguration (p. 280)**

The configuration for this service to discover and connect to services, and be discovered by, and connected from, other services within a namespace.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: ServiceConnectConfiguration (p. 430) object
Required: No

**serviceRegistries (p. 280)**

The details for the service discovery registries to assign to this service. For more information, see Service Discovery.

When you add, update, or remove the service registries configuration, Amazon ECS starts new tasks with the updated service registries configuration, and then stops the old tasks when the new tasks are running.

You can remove existing serviceRegistries by passing an empty list.

Type: Array of ServiceRegistry (p. 436) objects
Required: No

**taskDefinition (p. 280)**

The family and revision (family:revision) or full ARN of the task definition to run in your service. If a revision is not specified, the latest ACTIVE revision is used. If you modify the task definition with UpdateService, Amazon ECS spawns a task with the new version of the task definition and then stops an old task after the new version is running.
Response Syntax

```json
{
 "service": {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "createdAt": number,
 "createdBy": "string",
 "deploymentConfiguration": {
 "alarms": {
 "alarmNames": ["string"],
 "enable": boolean,
 "rollback": boolean
 },
 "deploymentCircuitBreaker": {
 "enable": boolean,
 "rollback": boolean
 },
 "maximumPercent": number,
 "minimumHealthyPercent": number
 },
 "deploymentController": {
 "type": "string"
 },
 "deployments": [
 {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "createdAt": number,
 "desiredCount": number,
 "failedTasks": number,
 "id": "string",
 "launchType": "string",
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 },
 "pendingCount": number,
 "platformFamily": "string",
 "platformVersion": "string",
 "rolloutState": "string",
 "rolloutStateReason": "string",
 "runningCount": number,
 "serviceConnectConfiguration": {
 "enabled": boolean,
 "serviceName": "string",
 "serviceArn": "string",
 "port": number,
 "targetContainerName": "string"
 }
 }
]
 }
}
```
"logConfiguration": {
  "logDriver": "string",
  "options": {
    "string": "string"
  },
  "secretOptions": [
    {
      "name": "string",
      "ValueFrom": "string"
    }
  ],
  "namespace": "string",
  "services": [
    {
      "clientAliases": [
        {
          "dnsName": "string",
          "port": number
        }
      ],
      "discoveryName": "string",
      "IngressPortOverride": number,
      "portName": "string"
    }
  ],
  "serviceConnectResources": [
    {
      "discoveryArn": "string",
      "discoveryName": "string"
    }
  ],
  "status": "string",
  "taskDefinition": "string",
  "updatedAt": number
},
"desiredCount": number,
"enableECSManagedTags": boolean,
"enableExecuteCommand": boolean,
"events": [
  {
    "createdAt": number,
    "id": "string",
    "message": "string"
  }
],
"healthCheckGracePeriodSeconds": number,
"launchType": "string",
"loadBalancers": [
  {
    "containerName": "string",
    "containerPort": number,
    "LoadBalancerName": "string",
    "TargetGroupArn": "string"
  }
],
"networkConfiguration": {
  "awsvpcConfiguration": {
    "assignPublicIp": "string",
    "securityGroups": ["string"],
    "subnets": ["string"
  }
},
"pendingCount": number,
"placementConstraints": [
  {
    "expression": "string",
    "type": "string"
  }
],
"placementStrategy": [
  {
    "field": "string",
    "type": "string"
  }
],
"platformFamily": "string",
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
  {
    "containerName": "string",
    "containerPort": number,
    "port": number,
    "registryArn": "string"
  }
],
"status": "string",
"tags": [
  {
    "key": "string",
    "value": "string"
  }
],
"taskDefinition": "string",
"taskSets": [
  {
    "capacityProviderStrategy": [
      {
        "base": number,
        "capacityProvider": "string",
        "weight": number
      }
    ],
    "clusterArn": "string",
    "computedDesiredCount": number,
    "createdAt": number,
    "externalId": "string",
    "id": "string",
    "launchType": "string",
    "loadBalancers": [
      {
        "containerName": "string",
        "containerPort": number,
        "loadBalancerName": "string",
        "targetGroupArn": "string"
      }
    ],
    "networkConfiguration": {
      "awsvpcConfiguration": {
        "assignPublicIp": "string",
        "securityGroups": [ "string" ],
        "subnets": [ "string" ]
      }
    }
  }
]}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**service (p. 286)**

The full description of your service following the update call.

Type: Service (p. 422) object

**Errors**

For information about the errors that are common to all actions, see Common Errors (p. 482).

**AccessDeniedException**

You don't have authorization to perform the requested action.

HTTP Status Code: 400

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.
HTTP Status Code: 400

**ClusterNotFoundException**

The specified cluster wasn't found. You can view your available clusters with `ListClusters (p. 145)`. Amazon ECS clusters are Region specific.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**NamespaceNotFoundException**

The specified namespace wasn't found.

HTTP Status Code: 400

**PlatformTaskDefinitionIncompatibilityException**

The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400

**PlatformUnknownException**

The specified platform version doesn't exist.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

**ServiceNotActiveException**

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with `CreateService (p. 16)`.

HTTP Status Code: 400

**ServiceNotFoundException**

The specified service wasn't found. You can view your available services with `ListServices (p. 152)`. Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

**Examples**

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see `Signature Version 4 Signing Process` in the `AWS General Reference`.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the `AWS Command Line Interface` or one of the `AWS SDKs` to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example request updates the `hello_world` service to a desired count of 3.
Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 45
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateService
X-Amz-Date: 20150429T194543Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "service": "hello_world",
 "desiredCount": 3
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:45:43 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 13376
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "service": {
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "createdAt": 1430333711.033,
 "desiredCount": 3,
 "id": "ecs-svc/9223370606521064774",
 "pendingCount": 0,
 "runningCount": 0,
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:10",
 "updatedAt": 1430336267.173
 }
],
 "desiredCount": 3,
 "events": [],
 "loadBalancers": [],
 "pendingCount": 0,
 "runningCount": 0,
 "serviceArn": "arn:aws:ecs:us-east-1:012345678910:service/default/hello_world",
 "serviceName": "hello_world",
 "status": "ACTIVE",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:10"
 }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
UpdateServicePrimaryTaskSet

Modifies which task set in a service is the primary task set. Any parameters that are updated on the primary task set in a service will transition to the service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
 "cluster": "string",
 "primaryTaskSet": "string",
 "service": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

**cluster** *(p. 293)*

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task set exists in.

Type: String

Required: Yes

**primaryTaskSet** *(p. 293)*

The short name or full Amazon Resource Name (ARN) of the task set to set as the primary task set in the deployment.

Type: String

Required: Yes

**service** *(p. 293)*

The short name or full Amazon Resource Name (ARN) of the service that the task set exists in.

Type: String

Required: Yes

Response Syntax

```
{
 "taskSet": {
 "_capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
]
 }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**taskSet (p. 293)**

The details about the task set.
Type: TaskSet (p. 460) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 16).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 152). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

TaskSetNotFoundException

The specified task set wasn't found. You can view your available task sets with DescribeTaskSets (p. 124). Task sets are specific to each cluster, service and Region.

HTTP Status Code: 400

UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateTaskProtection

Updates the protection status of a task. You can set `protectionEnabled` to `true` to protect your task from termination during scale-in events from Service Autoscaling or deployments.

Task-protection, by default, expires after 2 hours at which point Amazon ECS clears the `protectionEnabled` property making the task eligible for termination by a subsequent scale-in event.

You can specify a custom expiration period for task protection from 1 minute to up to 2,880 minutes (48 hours). To specify the custom expiration period, set the `expiresInMinutes` property. The `expiresInMinutes` property is always reset when you invoke this operation for a task that already has `protectionEnabled` set to `true`. You can keep extending the protection expiration period of a task by invoking this operation repeatedly.

To learn more about Amazon ECS task protection, see [Task scale-in protection](https://docs.aws.amazon.com/elasticcontainerservice/latest/developerguide/task-scale-in-protection.html) in the Amazon Elastic Container Service Developer Guide.

**Note**
This operation is only supported for tasks belonging to an Amazon ECS service. Invoking this operation for a standalone task will result in a `TASK_NOT_VALID` failure. For more information, see [API failure reasons](https).

**Important**
If you prefer to set task protection from within the container, we recommend using the [Task scale-in protection endpoint](https).

**Request Syntax**

```json
{
 "cluster": "string",
 "expiresInMinutes": number,
 "protectionEnabled": boolean,
 "tasks": ["string"]
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see [Common Parameters](p. 480).

The request accepts the following data in JSON format.

**cluster (p. 297)**

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task sets exist in.

Type: String

Required: Yes

**expiresInMinutes (p. 297)**

If you set `protectionEnabled` to `true`, you can specify the duration for task protection in minutes. You can specify a value from 1 minute to up to 2,880 minutes (48 hours). During this time, your task will not be terminated by scale-in events from Service Auto Scaling or deployments. After this time period lapses, `protectionEnabled` will be reset to `false`.

If you don't specify the time, then the task is automatically protected for 120 minutes (2 hours).
Type: Integer
Required: No

**protectionEnabled (p. 297)**

Specify `true` to mark a task for protection and `false` to unset protection, making it eligible for termination.

Type: Boolean
Required: Yes

**tasks (p. 297)**

A list of up to 10 task IDs or full ARN entries.

Type: Array of strings
Required: Yes

### Response Syntax

```json
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
],
 "protectedTasks": [
 {
 "expirationDate": number,
 "protectionEnabled": boolean,
 "taskArn": "string"
 }
]
}
```

### Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**failures (p. 298)**

Any failures associated with the call.

Type: Array of Failure (p. 376) objects

**protectedTasks (p. 298)**

A list of tasks with the following information.
- taskArn: The task ARN.
- protectionEnabled: The protection status of the task. If scale-in protection is turned on for a task, the value is `true`. Otherwise, it is `false`.
- expirationDate: The epoch time when protection for the task will expire.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ResourceNotFoundException

The specified resource wasn't found.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.
Example 1

This example request enables scale-in protection for a task for 60 minutes.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 132
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateTaskProtection
X-Amz-Date: 20221102T184632Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "cluster": "test-task-protection",
 "tasks": [
 "b8b1cf532d0e46ba8d44a40d1de16772"
],
 "protectionEnabled": true,
 "expiresInMinutes": 60
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 02 Nov 2022 17:56:32 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 180
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "protectedTasks": [
 {
 "taskArn": "arn:aws:ecs:us-west-2:012345678910:task/default/b8b1cf532d0e46ba8d44a40d1de16772",
 "protectionEnabled": true,
 "expirationDate": 1667415392.553
 }
],
 "failures": []
}
```

Example 2

This example request enables scale-in protection for a task without specifying the `expiresInMinutes` parameter. By default, the task will be protected from scale-in events for 120 minutes.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 132
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateTaskProtection
X-Amz-Date: 20221103T212558Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "cluster": "test-task-protection",
 "tasks": [
 "b8b1cf532d0e46ba8d44a40d1de16772"
],
 "protectionEnabled": true
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 02 Nov 2022 17:56:32 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 180
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "protectedTasks": [
 {
 "taskArn": "arn:aws:ecs:us-west-2:012345678910:task/default/b8b1cf532d0e46ba8d44a40d1de16772",
 "protectionEnabled": true,
 "expirationDate": 1667415392.553
 }
],
 "failures": []
}
```
Authorization: AUTHPARAMS

{
    "cluster": "test-task-protection",
    "tasks": [
        "b8b1cf532d0e46ba8d44a40d1de16772"
    ],
    "protectionEnabled": true
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Thu, 03 Nov 2022 21:25:57 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 180
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
    "protectedTasks": [
        {
            "taskArn": "arn:aws:ecs:us-west-2:012345678910:task/default/b8b1cf532d0e46ba8d44a40d1de16772",
            "protectionEnabled": true,
            "expirationDate": 1667517958.355
        }
    ],
    "failures": []
}

Example 3

This example request turns off scale-in protection for a task.

Sample Request

POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length:109
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateTaskProtection
X-Amz-Date: 20221103T213134Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
    "cluster": "test-task-protection",
    "tasks": [
        "b8b1cf532d0e46ba8d44a40d1de16772"
    ],
    "protectionEnabled":false
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Thu, 03 Nov 2022 21:31:34 GMT
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateTaskSet

Modifies a task set. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

{
   "cluster": "string",
   "scale": {
      "unit": "string",
      "value": number
   },
   "service": "string",
   "taskSet": "string"
}

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 480).

The request accepts the following data in JSON format.

cluster (p. 303)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task set is found in.

Type: String

Required: Yes

scale (p. 303)

A floating-point percentage of the desired number of tasks to place and keep running in the task set.

Type: Scale (p. 420) object

Required: Yes

service (p. 303)

The short name or full Amazon Resource Name (ARN) of the service that the task set is found in.

Type: String

Required: Yes

taskSet (p. 303)

The short name or full Amazon Resource Name (ARN) of the task set to update.

Type: String

Required: Yes

Response Syntax

{
   "taskSet": {
      "taskSet": "string"
   }
}
"capacityProviderStrategy": [
  {
    "base": number,
    "CapacityProvider": "string",
    "weight": number
  }
],
"clusterArn": "string",
"computedDesiredCount": number,
"createdAt": number,
"externalId": "string",
"id": "string",
"launchType": "string",
"loadBalancers": [
  {
    "containerName": "string",
    "containerPort": number,
    "loadBalancerName": "string",
    "targetGroupArn": "string"
  }
],
"networkConfiguration": {
  "awsvpcConfiguration": {
    "assignPublicIp": "string",
    "securityGroups": [ "string" ],
    "subnets": [ "string" ]
  }
},
"pendingCount": number,
"platformFamily": "string",
"platformVersion": "string",
"runningCount": number,
"scale": {
  "unit": "string",
  "value": number
},
"serviceArn": "string",
"serviceRegistries": [
  {
    "containerName": "string",
    "containerPort": number,
    "port": number,
    "registryArn": "string"
  }
],
"stabilityStatus": "string",
"stabilityStatusAt": number,
"startedBy": "string",
"status": "string",
"tags": [
  {
    "key": "string",
    "value": "string"
  }
],
"taskDefinition": "string",
"taskSetArn": "string",
"updatedAt": number
}
Errors

For information about the errors that are common to all actions, see Common Errors (p. 482).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 145). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 16).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 152). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

TaskSetNotFoundException

The specified task set wasn't found. You can view your available task sets with DescribeTaskSets (p. 124). Task sets are specific to each cluster, service and Region.

HTTP Status Code: 400
UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
Data Types

The Amazon EC2 Container Service API contains several data types that various actions use. This section describes each data type in detail.

Note
The order of each element in a data type structure is not guaranteed. Applications should not assume a particular order.

The following data types are supported:

- Attachment (p. 310)
- AttachmentStateChange (p. 311)
- Attribute (p. 312)
- AutoScalingGroupProvider (p. 313)
- AutoScalingGroupProviderUpdate (p. 314)
- AwsVpcConfiguration (p. 315)
- CapacityProvider (p. 316)
- CapacityProviderStrategyItem (p. 318)
- Cluster (p. 320)
- ClusterConfiguration (p. 324)
- ClusterServiceConnectDefaults (p. 325)
- ClusterServiceConnectDefaultsRequest (p. 326)
- ClusterSetting (p. 327)
- Container (p. 328)
- ContainerDefinition (p. 331)
- ContainerDependency (p. 344)
- ContainerInstance (p. 346)
- ContainerInstanceStateChange (p. 350)
- ContainerOverride (p. 351)
- ContainerStateChange (p. 353)
- Deployment (p. 355)
- DeploymentAlarms (p. 359)
- DeploymentCircuitBreaker (p. 360)
- DeploymentConfiguration (p. 361)
- DeploymentController (p. 363)
- Device (p. 364)
- DockerVolumeConfiguration (p. 365)
- EFSAuthorizationConfig (p. 367)
- EFSVolumeConfiguration (p. 368)
- EnvironmentFile (p. 370)
- EphemeralStorage (p. 372)
- ExecuteCommandConfiguration (p. 373)
- ExecuteCommandLogConfiguration (p. 374)
- Failure (p. 376)
- FirelensConfiguration (p. 377)
- FSxWindowsFileServerAuthorizationConfig (p. 378)
- FSxWindowsFileServerVolumeConfiguration (p. 379)
- HealthCheck (p. 380)
- HostEntry (p. 383)
- HostVolumeProperties (p. 384)
- InferenceAccelerator (p. 385)
- InferenceAcceleratorOverride (p. 386)
- InstanceHealthCheckResult (p. 387)
- KernelCapabilities (p. 388)
-KeyValuePair (p. 390)
- LinuxParameters (p. 391)
- LoadBalancer (p. 393)
- LogConfiguration (p. 395)
- ManagedAgent (p. 397)
- ManagedAgentStateChange (p. 398)
- ManagedScaling (p. 399)
- MountPoint (p. 401)
- NetworkBinding (p. 402)
- NetworkConfiguration (p. 404)
- NetworkInterface (p. 405)
- PlacementConstraint (p. 406)
- PlacementStrategy (p. 407)
- PlatformDevice (p. 408)
- PortMapping (p. 409)
- ProtectedTask (p. 412)
- ProxyConfiguration (p. 413)
- RepositoryCredentials (p. 415)
- Resource (p. 416)
- ResourceRequirement (p. 418)
- RuntimePlatform (p. 419)
- Scale (p. 420)
- Secret (p. 421)
- Service (p. 422)
- ServiceConnectClientAlias (p. 428)
- ServiceConnectConfiguration (p. 430)
- ServiceConnectService (p. 432)
- ServiceConnectServiceResource (p. 434)
- ServiceEvent (p. 435)
- ServiceRegistry (p. 436)
- Session (p. 438)
- Setting (p. 439)
- SystemControl (p. 440)
- Tag (p. 441)
- Task (p. 443)
- TaskDefinition (p. 450)
- TaskDefinitionPlacementConstraint (p. 457)
• TaskOverride (p. 458)
• TaskSet (p. 460)
• Tmpfs (p. 465)
• Ulimit (p. 466)
• VersionInfo (p. 467)
• Volume (p. 468)
• VolumeFrom (p. 470)
Attachment

An object representing a container instance or task attachment.

Contents

details

Details of the attachment. For elastic network interfaces, this includes the network interface ID, the MAC address, the subnet ID, and the private IPv4 address.

Type: Array of **KeyValuePair** objects

id

The unique identifier for the attachment.

Type: String

status

The status of the attachment. Valid values are PRECREATED, CREATED, ATTACHING, ATTACHED, DETACHING, DETACHED, DELETED, and FAILED.

Type: String

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AttachmentStateChange

An object representing a change in state for a task attachment.

Contents

attachmentArn

The Amazon Resource Name (ARN) of the attachment.

Type: String

Required: Yes

status

The status of the attachment.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Attribute

An attribute is a name-value pair that's associated with an Amazon ECS object. Use attributes to extend the Amazon ECS data model by adding custom metadata to your resources. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide.

Contents

name

The name of the attribute. The name must contain between 1 and 128 characters. The name may contain letters (uppercase and lowercase), numbers, hyphens (-), underscores (_), forward slashes (/), back slashes (\), or periods (.)

Type: String
Required: Yes

targetId

The ID of the target. You can specify the short form ID for a resource or the full Amazon Resource Name (ARN).

Type: String
Required: No

targetType

The type of the target to attach the attribute with. This parameter is required if you use the short form ID for a resource instead of the full ARN.

Type: String
Valid Values: container-instance
Required: No

value

The value of the attribute. The value must contain between 1 and 128 characters. It can contain letters (uppercase and lowercase), numbers, hyphens (-), underscores (_), periods (.), at signs (@), forward slashes (/), back slashes (\), colons (:), or spaces. The value can't start or end with a space.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AutoScalingGroupProvider

The details of the Auto Scaling group for the capacity provider.

Contents

autoScalingGroupArn

The Amazon Resource Name (ARN) that identifies the Auto Scaling group, or the Auto Scaling group name.

Type: String
Required: Yes

managedScaling

The managed scaling settings for the Auto Scaling group capacity provider.

Type: ManagedScaling (p. 399) object
Required: No

managedTerminationProtection

The managed termination protection setting to use for the Auto Scaling group capacity provider. This determines whether the Auto Scaling group has managed termination protection. The default is off.

Important
When using managed termination protection, managed scaling must also be used otherwise managed termination protection doesn't work.

When managed termination protection is on, Amazon ECS prevents the Amazon EC2 instances in an Auto Scaling group that contain tasks from being terminated during a scale-in action. The Auto Scaling group and each instance in the Auto Scaling group must have instance protection from scale-in actions on as well. For more information, see Instance Protection in the AWS Auto Scaling User Guide.

When managed termination protection is off, your Amazon EC2 instances aren't protected from termination when the Auto Scaling group scales in.

Type: String
Valid Values: ENABLED | DISABLED
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3

API Version 2014-11-13
313
AutoScalingGroupProviderUpdate

The details of the Auto Scaling group capacity provider to update.

Contents

managedScaling

The managed scaling settings for the Auto Scaling group capacity provider.

Type: ManagedScaling (p. 399) object

Required: No

managedTerminationProtection

The managed termination protection setting to use for the Auto Scaling group capacity provider. This determines whether the Auto Scaling group has managed termination protection.

Important

When using managed termination protection, managed scaling must also be used otherwise managed termination protection doesn't work.

When managed termination protection is on, Amazon ECS prevents the Amazon EC2 instances in an Auto Scaling group that contain tasks from being terminated during a scale-in action. The Auto Scaling group and each instance in the Auto Scaling group must have instance protection from scale-in actions on. For more information, see Instance Protection in the AWS Auto Scaling User Guide.

When managed termination protection is off, your Amazon EC2 instances aren't protected from termination when the Auto Scaling group scales in.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AwsVpcConfiguration

An object representing the networking details for a task or service.

Contents

subnets

The IDs of the subnets associated with the task or service. There's a limit of 16 subnets that can be specified per AwsVpcConfiguration.

Note
All specified subnets must be from the same VPC.

Type: Array of strings

Required: Yes

assignPublicIp

Whether the task's elastic network interface receives a public IP address. The default value is DISABLED.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

securityGroups

The IDs of the security groups associated with the task or service. If you don't specify a security group, the default security group for the VPC is used. There's a limit of 5 security groups that can be specified per AwsVpcConfiguration.

Note
All specified security groups must be from the same VPC.

Type: Array of strings

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
CapacityProvider

The details for a capacity provider.

Contents

capacityProvider

autoScalingGroupProvider

The Auto Scaling group settings for the capacity provider.

Type: AutoScalingGroupProvider (p. 313) object

Required: No

capacityProviderArn

The Amazon Resource Name (ARN) that identifies the capacity provider.

Type: String

Required: No

name

The name of the capacity provider.

Type: String

Required: No

status

The current status of the capacity provider. Only capacity providers in an ACTIVE state can be used in a cluster. When a capacity provider is successfully deleted, it has an INACTIVE status.

Type: String

Valid Values: ACTIVE | INACTIVE

Required: No

tags

The metadata that you apply to the capacity provider to help you categorize and organize it. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects
Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

**updateStatus**

The update status of the capacity provider. The following are the possible states that is returned.

**DELETE_IN_PROGRESS**

The capacity provider is in the process of being deleted.

**DELETE_COMPLETE**

The capacity provider was successfully deleted and has an INACTIVE status.

**DELETE_FAILED**

The capacity provider can't be deleted. The update status reason provides further details about why the delete failed.

Type: String

Valid Values: DELETE_IN_PROGRESS | DELETE_COMPLETE | DELETE_FAILED | UPDATE_IN_PROGRESS | UPDATE_COMPLETE | UPDATE_FAILED

Required: No

**updateStatusReason**

The update status reason. This provides further details about the update status for the capacity provider.

Type: String

Required: No

### See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
CapacityProviderStrategyItem

The details of a capacity provider strategy. A capacity provider strategy can be set when using the RunTask (p. 212) or CreateCluster (p. 10) APIs or as the default capacity provider strategy for a cluster with the CreateCluster (p. 10) API.

Only capacity providers that are already associated with a cluster and have an ACTIVE or UPDATING status can be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 186) API is used to associate a capacity provider with a cluster.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider (p. 7) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used in a capacity provider strategy.

A capacity provider strategy may contain a maximum of 6 capacity providers.

Contents

capacityProvider

The short name of the capacity provider.

Type: String

Required: Yes

base

The base value designates how many tasks, at a minimum, to run on the specified capacity provider. Only one capacity provider in a capacity provider strategy can have a base defined. If no value is specified, the default value of 0 is used.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100000.

Required: No

weight

The weight value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider. The weight value is taken into consideration after the base value, if defined, is satisfied.

If no weight value is specified, the default value of 0 is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of 0 can’t be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of 0, any RunTask or CreateService actions using the capacity provider strategy will fail.

An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of 1, then when the base is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of 1 for capacityProviderA and a weight of 4 for capacityProviderB, then for every one task that’s run using capacityProviderA, four tasks would use capacityProviderB.
Type: Integer

Valid Range: Minimum value of 0. Maximum value of 1000.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
Cluster

A regional grouping of one or more container instances where you can run task requests. Each account receives a default cluster the first time you use the Amazon ECS service, but you may also create other clusters. Clusters may contain more than one instance type simultaneously.

Contents

### activeServicesCount

The number of services that are running on the cluster in an ACTIVE state. You can view these services with [ListServices](p. 152).

Type: Integer

Required: No

### attachments

The resources attached to a cluster. When using a capacity provider with a cluster, the capacity provider and associated resources are returned as cluster attachments.

Type: Array of [Attachment](p. 310) objects

Required: No

### attachmentsStatus

The status of the capacity providers associated with the cluster. The following are the states that are returned.

- **UPDATE_IN_PROGRESS**
  
  The available capacity providers for the cluster are updating.

- **UPDATE_COMPLETE**
  
  The capacity providers have successfully updated.

- **UPDATE_FAILED**
  
  The capacity provider updates failed.

Type: String

Required: No

### capacityProviders

The capacity providers associated with the cluster.

Type: Array of strings

Required: No

### clusterArn

The Amazon Resource Name (ARN) that identifies the cluster. For more information about the ARN format, see [Amazon Resource Name (ARN)] in the [Amazon ECS Developer Guide](p. 310).

Type: String

Required: No
clusterName

A user-generated string that you use to identify your cluster.

Type: String
Required: No

configuration

The execute command configuration for the cluster.

Type: ClusterConfiguration (p. 324) object
Required: No

defaultCapacityProviderStrategy

The default capacity provider strategy for the cluster. When services or tasks are run in the cluster with no launch type or capacity provider strategy specified, the default capacity provider strategy is used.

Type: Array of CapacityProviderStrategyItem (p. 318) objects
Required: No

pendingTasksCount

The number of tasks in the cluster that are in the PENDING state.

Type: Integer
Required: No

registeredContainerInstancesCount

The number of container instances registered into the cluster. This includes container instances in both ACTIVE and DRAINING status.

Type: Integer
Required: No

runningTasksCount

The number of tasks in the cluster that are in the RUNNING state.

Type: Integer
Required: No

serviceConnectDefaults

Use this parameter to set a default Service Connect namespace. After you set a default Service Connect namespace, any new services with Service Connect turned on that are created in the cluster are added as client services in the namespace. This setting only applies to new services that set the enabled parameter to true in the ServiceConnectConfiguration. You can set the namespace of each service individually in the ServiceConnectConfiguration to override this default parameter.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.
Type: ClusterServiceConnectDefaults \((p. \, 325)\) object

Required: No

**settings**

The settings for the cluster. This parameter indicates whether CloudWatch Container Insights is on or off for a cluster.

Type: Array of ClusterSetting \((p. \, 327)\) objects

Required: No

**statistics**

Additional information about your clusters that are separated by launch type. They include the following:
- runningEC2TasksCount
- RunningFargateTasksCount
- pendingEC2TasksCount
- pendingFargateTasksCount
- activeEC2ServiceCount
- activeFargateServiceCount
- drainingEC2ServiceCount
- drainingFargateServiceCount

Type: Array of KeyValuePair \((p. \, 390)\) objects

Required: No

**status**

The status of the cluster. The following are the possible states that are returned.

**ACTIVE**

The cluster is ready to accept tasks and if applicable you can register container instances with the cluster.

**PROVISIONING**

The cluster has capacity providers that are associated with it and the resources needed for the capacity provider are being created.

**DEPROVISIONING**

The cluster has capacity providers that are associated with it and the resources needed for the capacity provider are being deleted.

**FAILED**

The cluster has capacity providers that are associated with it and the resources needed for the capacity provider have failed to create.

**INACTIVE**

The cluster has been deleted. Clusters with an INACTIVE status may remain discoverable in your account for a period of time. However, this behavior is subject to change in the future. We don't recommend that you rely on INACTIVE clusters persisting.

Type: String

Required: No
tags

The metadata that you apply to the cluster to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ClusterConfiguration

The execute command configuration for the cluster.

Contents

executeCommandConfiguration

The details of the execute command configuration.

Type: ExecuteCommandConfiguration (p. 373) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ClusterServiceConnectDefaults

Use this parameter to set a default Service Connect namespace. After you set a default Service Connect namespace, any new services with Service Connect turned on that are created in the cluster are added as client services in the namespace. This setting only applies to new services that set the enabled parameter to true in the ServiceConnectConfiguration. You can set the namespace of each service individually in the ServiceConnectConfiguration to override this default parameter.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Contents

namespace

The namespace name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace. When you create a service and don’t specify a Service Connect configuration, this namespace is used.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ClusterServiceConnectDefaultsRequest

Use this parameter to set a default Service Connect namespace. After you set a default Service Connect namespace, any new services with Service Connect turned on that are created in the cluster are added as client services in the namespace. This setting only applies to new services that set the enabled parameter to true in the ServiceConnectConfiguration. You can set the namespace of each service individually in the ServiceConnectConfiguration to override this default parameter.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Contents

namespace

The namespace name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace that's used when you create a service and don't specify a Service Connect configuration. The namespace name can include up to 1024 characters. The name is case-sensitive. The name can't include hyphens (-), tilde (~), greater than (>), less than (<), or slash (/).

If you enter an existing namespace name or ARN, then that namespace will be used. Any namespace type is supported. The namespace must be in this account and this AWS Region.

If you enter a new name, a AWS Cloud Map namespace will be created. Amazon ECS creates a AWS Cloud Map namespace with the "API calls" method of instance discovery only. This instance discovery method is the "HTTP" namespace type in the AWS Command Line Interface. Other types of instance discovery aren't used by Service Connect.

If you update the cluster with an empty string "" for the namespace name, the cluster configuration for Service Connect is removed. Note that the namespace will remain in AWS Cloud Map and must be deleted separately.

For more information about AWS Cloud Map, see Working with Services in the AWS Cloud Map Developer Guide.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ClusterSetting

The settings to use when creating a cluster. This parameter is used to turn on CloudWatch Container Insights for a cluster.

Contents

name

The name of the cluster setting. The value is containerInsights.

Type: String

Valid Values: containerInsights

Required: No

value

The value to set for the cluster setting. The supported values are enabled and disabled.

If you set name to containerInsights and value to enabled, CloudWatch Container Insights will be on for the cluster, otherwise it will be off unless the containerInsights account setting is turned on. If a cluster value is specified, it will override the containerInsights value set with PutAccountSetting or PutAccountSettingDefault.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Container

A Docker container that's part of a task.

Contents

containerArn

The Amazon Resource Name (ARN) of the container.

Type: String

Required: No

cpu

The number of CPU units set for the container. The value is 0 if no value was specified in the container definition when the task definition was registered.

Type: String

Required: No

exitCode

The exit code returned from the container.

Type: Integer

Required: No

gpuIds

The IDs of each GPU assigned to the container.

Type: Array of strings

Required: No

healthStatus

The health status of the container. If health checks aren't configured for this container in its task definition, then it reports the health status as UNKNOWN.

Type: String

Valid Values: HEALTHY | UNHEALTHY | UNKNOWN

Required: No

image

The image used for the container.

Type: String

Required: No

imageDigest

The container image manifest digest.

Type: String
Required: No

lastStatus

The last known status of the container.

Type: String

Required: No

managedAgents

The details of any Amazon ECS managed agents associated with the container.

Type: Array of ManagedAgent (p. 397) objects

Required: No

memory

The hard limit (in MiB) of memory set for the container.

Type: String

Required: No

memoryReservation

The soft limit (in MiB) of memory set for the container.

Type: String

Required: No

name

The name of the container.

Type: String

Required: No

networkBindings

The network bindings associated with the container.

Type: Array of NetworkBinding (p. 402) objects

Required: No

networkInterfaces

The network interfaces associated with the container.

Type: Array of NetworkInterface (p. 405) objects

Required: No

reason

A short (255 max characters) human-readable string to provide additional details about a running or stopped container.

Type: String

Required: No
runtimeId

The ID of the Docker container.

Type: String

Required: No

taskArn

The ARN of the task.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerDefinition

Container definitions are used in task definitions to describe the different containers that are launched as part of a task.

Contents

command

The command that's passed to the container. This parameter maps to Cmd in the Create a container section of the Docker Remote API and the COMMAND parameter to docker run. For more information, see [https://docs.docker.com/engine/reference/builder/#cmd](https://docs.docker.com/engine/reference/builder/#cmd). If there are multiple arguments, each argument is a separated string in the array.

Type: Array of strings

Required: No

cpu

The number of cpu units reserved for the container. This parameter maps to CpuShares in the Create a container section of the Docker Remote API and the --cpu-shares option to docker run.

This field is optional for tasks using the Fargate launch type, and the only requirement is that the total amount of CPU reserved for all containers within a task be lower than the task-level cpu value.

**Note**
You can determine the number of CPU units that are available per EC2 instance type by multiplying the vCPUs listed for that instance type on the Amazon EC2 Instances detail page by 1,024.

Linux containers share unallocated CPU units with other containers on the container instance with the same ratio as their allocated amount. For example, if you run a single-container task on a single-core instance type with 512 CPU units specified for that container, and that's the only task running on the container instance, that container could use the full 1,024 CPU unit share at any given time. However, if you launched another copy of the same task on that container instance, each task is guaranteed a minimum of 512 CPU units when needed. Moreover, each container could float to higher CPU usage if the other container was not using it. If both tasks were 100% active all of the time, they would be limited to 512 CPU units.

On Linux container instances, the Docker daemon on the container instance uses the CPU value to calculate the relative CPU share ratios for running containers. For more information, see [CPU share constraint](https://docs.docker.com/engine/reference/run/#cpu-share-constraint) in the Docker documentation. The minimum valid CPU share value that the Linux kernel allows is 2. However, the CPU parameter isn't required, and you can use CPU values below 2 in your container definitions. For CPU values below 2 (including null), the behavior varies based on your Amazon ECS container agent version:

- **Agent versions less than or equal to 1.1.0:** Null and zero CPU values are passed to Docker as 0, which Docker then converts to 1,024 CPU shares. CPU values of 1 are passed to Docker as 1, which the Linux kernel converts to two CPU shares.

- **Agent versions greater than or equal to 1.2.0:** Null, zero, and CPU values of 1 are passed to Docker as 2.

On Windows container instances, the CPU limit is enforced as an absolute limit, or a quota. Windows containers only have access to the specified amount of CPU that's described in the task definition. A null or zero CPU value is passed to Docker as 0, which Windows interprets as 1% of one CPU.

Type: Integer
credentialSpecs

A list of ARNs in SSM or Amazon S3 to a credential spec (CredSpec) file that configures the container for Active Directory authentication. We recommend that you use this parameter instead of the dockerSecurityOptions. The maximum number of ARNs is 1.

There are two formats for each ARN.

credibleSpecdomainless:MyARN

You use credibleSpecdomainless:MyARN to provide a CredSpec with an additional section for a secret in AWS Secrets Manager. You provide the login credentials to the domain in the secret.

Each task that runs on any container instance can join different domains.

You can use this format without joining the container instance to a domain.

credentialSpec:MyARN

You use credentialSpec:MyARN to provide a CredSpec for a single domain.

You must join the container instance to the domain before you start any tasks that use this task definition.

In both formats, replace MyARN with the ARN in SSM or Amazon S3.

If you provide a credibleSpecdomainless:MyARN, the credspec must provide a ARN in AWS Secrets Manager for a secret containing the username, password, and the domain to connect to. For better security, the instance isn't joined to the domain for domainless authentication. Other applications on the instance can't use the domainless credentials. You can use this parameter to run tasks on the same instance, even if the tasks need to join different domains. For more information, see Using gMSAs for Windows Containers and Using gMSAs for Linux Containers.

Type: Array of strings

dependsOn

The dependencies defined for container startup and shutdown. A container can contain multiple dependencies on other containers in a task definition. When a dependency is defined for container startup, for container shutdown it is reversed.

For tasks using the EC2 launch type, the container instances require at least version 1.26.0 of the container agent to turn on container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

For tasks using the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

Type: Array of ContainerDependency (p. 344) objects

Required: No
disableNetworking

When this parameter is true, networking is off within the container. This parameter maps to NetworkDisabled in the Create a container section of the Docker Remote API.

Note
This parameter is not supported for Windows containers.

Type: Boolean
Required: No

dnsSearchDomains

A list of DNS search domains that are presented to the container. This parameter maps to DnsSearch in the Create a container section of the Docker Remote API and the --dns-search option to docker run.

Note
This parameter is not supported for Windows containers.

Type: Array of strings
Required: No

dnsServers

A list of DNS servers that are presented to the container. This parameter maps to Dns in the Create a container section of the Docker Remote API and the --dns option to docker run.

Note
This parameter is not supported for Windows containers.

Type: Array of strings
Required: No

dockerLabels

A key/value map of labels to add to the container. This parameter maps to Labels in the Create a container section of the Docker Remote API and the --label option to docker run. This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: sudo docker version --format '{\,.Server.APIVersion}'

Type: String to string map
Required: No

dockerSecurityOptions

A list of strings to provide custom configuration for multiple security systems. For more information about valid values, see Docker Run Security Configuration. This field isn't valid for containers in tasks using the Fargate launch type.

For Linux tasks on EC2, this parameter can be used to reference custom labels for SELinux and AppArmor multi-level security systems.

For any tasks on EC2, this parameter can be used to reference a credential spec file that configures a container for Active Directory authentication. For more information, see Using gMSAs for Windows Containers and Using gMSAs for Linux Containers in the Amazon Elastic Container Service Developer Guide.

This parameter maps to SecurityOpt in the Create a container section of the Docker Remote API and the --security-opt option to docker run.
Note
The Amazon ECS container agent running on a container instance must register with the ECS_SELINUX_CAPABLE=true or ECS_APPARMOR_CAPABLE=true environment variables before containers placed on that instance can use these security options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.

For more information about valid values, see Docker Run Security Configuration.

Valid values: "no-new-privileges" | "apparmor:PROFILE" | "label:value" | "credentialspec:CredentialSpecFilePath"

Type: Array of strings

Required: No

entryPoint

Important
Early versions of the Amazon ECS container agent don't properly handle entryPoint parameters. If you have problems using entryPoint, update your container agent or enter your commands and arguments as command array items instead.

The entry point that's passed to the container. This parameter maps to Entrypoint in the Create a container section of the Docker Remote API and the --entrypoint option to docker run. For more information, see https://docs.docker.com/engine/reference/builder/#entrypoint.

Type: Array of strings

Required: No

environment

The environment variables to pass to a container. This parameter maps to Env in the Create a container section of the Docker Remote API and the --env option to docker run.

Important
We don't recommend that you use plaintext environment variables for sensitive information, such as credential data.

Type: Array of KeyValuePair (p. 390) objects

Required: No

environmentFiles

A list of files containing the environment variables to pass to a container. This parameter maps to the --env-file option to docker run.

You can specify up to ten environment files. The file must have a .env file extension. Each line in an environment file contains an environment variable in VARIABLE=VALUE format. Lines beginning with # are treated as comments and are ignored. For more information about the environment variable file syntax, see Declare default environment variables in file.

If there are environment variables specified using the environment parameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they're processed from the top down. We recommend that you use unique variable names. For more information, see Specifying Environment Variables in the Amazon Elastic Container Service Developer Guide.

Type: Array of EnvironmentFile (p. 370) objects

Required: No
essential

If the `essential` parameter of a container is marked as `true`, and that container fails or stops for any reason, all other containers that are part of the task are stopped. If the `essential` parameter of a container is marked as `false`, its failure doesn't affect the rest of the containers in a task. If this parameter is omitted, a container is assumed to be essential.

All tasks must have at least one essential container. If you have an application that's composed of multiple containers, group containers that are used for a common purpose into components, and separate the different components into multiple task definitions. For more information, see Application Architecture in the Amazon Elastic Container Service Developer Guide.

Type: Boolean
Required: No

extraHosts

A list of hostnames and IP address mappings to append to the `/etc/hosts` file on the container. This parameter maps to `ExtraHosts` in the Create a container section of the Docker Remote API and the `--add-host` option to `docker run`.

Note
This parameter isn't supported for Windows containers or tasks that use the awsvpc network mode.

Type: Array of `HostEntry (p. 383)` objects
Required: No

firelensConfiguration

The FireLens configuration for the container. This is used to specify and configure a log router for container logs. For more information, see Custom Log Routing in the Amazon Elastic Container Service Developer Guide.

Type: `FirelensConfiguration (p. 377)` object
Required: No

healthCheck

The container health check command and associated configuration parameters for the container. This parameter maps to `HealthCheck` in the Create a container section of the Docker Remote API and the `HEALTHCHECK` parameter of `docker run`.

Type: `HealthCheck (p. 380)` object
Required: No

hostname

The hostname to use for your container. This parameter maps to `Hostname` in the Create a container section of the Docker Remote API and the `--hostname` option to `docker run`.

Note
The hostname parameter is not supported if you're using the awsvpc network mode.

Type: String
Required: No

image

The image used to start a container. This string is passed directly to the Docker daemon. By default, images in the Docker Hub registry are available. Other repositories are specified with either
repository-url/image:tag or repository-url/image@digest. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to Image in the Create a container section of the Docker Remote API and the IMAGE parameter of docker run.

- When a new task starts, the Amazon ECS container agent pulls the latest version of the specified image and tag for the container to use. However, subsequent updates to a repository image aren't propagated to already running tasks.
- Images in Amazon ECR repositories can be specified by either using the full registry/repository:tag or registry/repository@digest. For example, 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>:latest or 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>@sha256:94afd1f2e64d908bc90dbca0035a5b567EXAMPLE.
- Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).
- Images in other repositories on Docker Hub are qualified with an organization name (for example, amazon/amazon-ecs-agent).
- Images in other online repositories are qualified further by a domain name (for example, quay.io/assemblyline/ubuntu).

Type: String

Required: No

interactive

When this parameter is true, you can deploy containerized applications that require stdin or a tty to be allocated. This parameter maps to OpenStdin in the Create a container section of the Docker Remote API and the --interactive option to docker run.

Type: Boolean

Required: No

links

The links parameter allows containers to communicate with each other without the need for port mappings. This parameter is only supported if the network mode of a task definition is bridge. The name:internalName construct is analogous to name:alias in Docker links. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. For more information about linking Docker containers, go to Legacy container links in the Docker documentation. This parameter maps to Links in the Create a container section of the Docker Remote API and the --link option to docker run.

Note
This parameter is not supported for Windows containers.

Important
Containers that are collocated on a single container instance may be able to communicate with each other without requiring links or host port mappings. Network isolation is achieved on the container instance using security groups and VPC settings.

Type: Array of strings

Required: No

linuxParameters

Linux-specific modifications that are applied to the container, such as Linux kernel capabilities. For more information see KernelCapabilities (p. 388).

Note
This parameter is not supported for Windows containers.
Type: `LinuxParameters` (p. 391) object

Required: No

**logConfiguration**

The log configuration specification for the container.

This parameter maps to LogConfig in the Create a container section of the Docker Remote API and the `--log-driver` option to `docker run`. By default, containers use the same logging driver that the Docker daemon uses. However, the container can use a different logging driver than the Docker daemon by specifying a log driver with this parameter in the container definition. To use a different logging driver for a container, the log system must be configured properly on the container instance (or on a different log server for remote logging options). For more information about the options for different supported log drivers, see Configure logging drivers in the Docker documentation.

**Note**

Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon (shown in the `LogConfiguration` (p. 395) data type). Additional log drivers may be available in future releases of the Amazon ECS container agent.

This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: `sudo docker version --format '{{.Server.APIVersion}}'`

**Note**

The Amazon ECS container agent running on a container instance must register the logging drivers available on that instance with the `EC2_AVAILABLE_LOGGING_DRIVERS` environment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.

Type: `LogConfiguration` (p. 395) object

Required: No

**memory**

The amount (in MiB) of memory to present to the container. If your container attempts to exceed the memory specified here, the container is killed. The total amount of memory reserved for all containers within a task must be lower than the task memory value, if one is specified. This parameter maps to Memory in the Create a container section of the Docker Remote API and the `--memory` option to `docker run`.

If using the Fargate launch type, this parameter is optional.

If using the EC2 launch type, you must specify either a task-level memory value or a container-level memory value. If you specify both a container-level memory and `memoryReservation` value, `memory` must be greater than `memoryReservation`. If you specify `memoryReservation`, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of `memory` is used.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container. So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container. So, don't specify less than 4 MiB of memory for your containers.

Type: Integer

Required: No
memoryReservation

The soft limit (in MiB) of memory to reserve for the container. When system memory is under heavy contention, Docker attempts to keep the container memory to this soft limit. However, your container can consume more memory when it needs to, up to either the hard limit specified with the memory parameter (if applicable), or all of the available memory on the container instance, whichever comes first. This parameter maps to MemoryReservation in the Create a container section of the Docker Remote API and the --memory-reservation option to docker run.

If a task-level memory value is not specified, you must specify a non-zero integer for one or both of memory or memoryReservation in a container definition. If you specify both, memory must be greater than memoryReservation. If you specify memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of memory is used.

For example, if your container normally uses 128 MiB of memory, but occasionally bursts to 256 MiB of memory for short periods of time, you can set a memoryReservation of 128 MiB, and a memory hard limit of 300 MiB. This configuration would allow the container to only reserve 128 MiB of memory from the remaining resources on the container instance, but also allow the container to consume more memory resources when needed.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container. So, don't specify less than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container. So, don't specify less than 4 MiB of memory for your containers.

Type: Integer
Required: No

mountPoints

The mount points for data volumes in your container.

This parameter maps to Volumes in the Create a container section of the Docker Remote API and the --volume option to docker run.

Windows containers can mount whole directories on the same drive as $env:ProgramData. Windows containers can't mount directories on a different drive, and mount point can't be across drives.

Type: Array of MountPoint objects
Required: No

name

The name of a container. If you're linking multiple containers together in a task definition, the name of one container can be entered in the links of another container to connect the containers. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. This parameter maps to name in the Create a container section of the Docker Remote API and the --name option to docker run.

Type: String
Required: No

portMappings

The list of port mappings for the container. Port mappings allow containers to access ports on the host container instance to send or receive traffic.
For task definitions that use the awsvpc network mode, only specify the containerPort. The hostPort can be left blank or it must be the same value as the containerPort.

Port mappings on Windows use the NetNAT gateway address rather than localhost. There's no loopback for port mappings on Windows, so you can't access a container's mapped port from the host itself.

This parameter maps to PortBindings in the Create a container section of the Docker Remote API and the --publish option to docker run. If the network mode of a task definition is set to none, then you can't specify port mappings. If the network mode of a task definition is set to host, then host ports must either be undefined or they must match the container port in the port mapping.

**Note**

After a task reaches the RUNNING status, manual and automatic host and container port assignments are visible in the Network Bindings section of a container description for a selected task in the Amazon ECS console. The assignments are also visible in the networkBindings section DescribeTasks (p. 117) responses.

Type: Array of [PortMapping](p. 409) objects

Required: No

privileged

When this parameter is true, the container is given elevated privileges on the host container instance (similar to the root user). This parameter maps to Privileged in the Create a container section of the Docker Remote API and the --privileged option to docker run.

**Note**

This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: Boolean

Required: No

pseudoTerminal

When this parameter is true, a TTY is allocated. This parameter maps to Tty in the Create a container section of the Docker Remote API and the --tty option to docker run.

Type: Boolean

Required: No

readonlyRootFilesystem

When this parameter is true, the container is given read-only access to its root file system. This parameter maps to ReadonlyRootfs in the Create a container section of the Docker Remote API and the --read-only option to docker run.

**Note**

This parameter is not supported for Windows containers.

Type: Boolean

Required: No

repositoryCredentials

The private repository authentication credentials to use.

Type: [RepositoryCredentials](p. 415) object

Required: No
resourceRequirements

The type and amount of a resource to assign to a container. The only supported resource is a GPU.

Type: Array of ResourceRequirement (p. 418) objects

Required: No

secrets

The secrets to pass to the container. For more information, see Specifying Sensitive Data in the Amazon Elastic Container Service Developer Guide.

Type: Array of Secret (p. 421) objects

Required: No

startTimeout

Time duration (in seconds) to wait before giving up on resolving dependencies for a container. For example, you specify two containers in a task definition with containerA having a dependency on containerB reaching a COMPLETE, SUCCESS, or HEALTHY status. If a startTimeout value is specified for containerB and it doesn't reach the desired status within that time then containerA gives up and not start. This results in the task transitioning to a STOPPED state.

Note
When the ECS_CONTAINER_START_TIMEOUT container agent configuration variable is used, it's enforced independently from this start timeout value.

For tasks using the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

For tasks using the EC2 launch type, your container instances require at least version 1.26.0 of the container agent to use a container start timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

The valid values are 2-120 seconds.

Type: Integer

Required: No

stopTimeout

Time duration (in seconds) to wait before the container is forcefully killed if it doesn't exit normally on its own.

For tasks using the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

The max stop timeout value is 120 seconds and if the parameter is not specified, the default value of 30 seconds is used.
For tasks that use the EC2 launch type, if the stopTimeout parameter isn't specified, the value set for the Amazon ECS container agent configuration variable ECS_CONTAINER_STOP_TIMEOUT is used. If neither the stopTimeout parameter or the ECS_CONTAINER_STOP_TIMEOUT agent configuration variable are set, then the default values of 30 seconds for Linux containers and 30 seconds on Windows containers are used. Your container instances require at least version 1.26.0 of the container agent to use a container stop timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

The valid values are 2-120 seconds.

Type: Integer

Required: No

**systemControls**

A list of namespaced kernel parameters to set in the container. This parameter maps to Sysctls in the Create a container section of the Docker Remote API and the --sysctl option to docker run. For example, you can configure net.ipv4.tcp_keepalive_time setting to maintain longer lived connections.

**Note**

We don't recommended that you specify network-related systemControls parameters for multiple containers in a single task that also uses either the awsvpc or host network modes. For tasks that use the awsvpc network mode, the container that's start last determines which systemControls parameters take effect. For tasks that use the host network mode, it changes the container instance's namespaced kernel parameters as well as the containers.

**Note**

This parameter is not supported for Windows containers.

**Note**

This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks are using platform version 1.4.0 or later (Linux). This isn't supported for Windows containers on Fargate.

Type: Array of SystemControl (p. 440) objects

Required: No

**ulimits**

A list of ulimits to set in the container. If a ulimit value is specified in a task definition, it overrides the default values set by Docker. This parameter maps to Ulimits in the Create a container section of the Docker Remote API and the --ulimit option to docker run. Valid naming values are displayed in the Ulimit (p. 466) data type.

Amazon ECS tasks hosted on AWS Fargate use the default resource limit values set by the operating system with the exception of the nofile resource limit parameter which AWS Fargate overrides. The nofile resource limit sets a restriction on the number of open files that a container can use. The default nofile soft limit is 1024 and the default hard limit is 4096.

This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your...
container instance and run the following command:

```
sudo docker version --format '{{.Server.APIVersion}}'
```

**Note**
This parameter is not supported for Windows containers.

Type: Array of [Ulimit](p. 466) objects

Required: No

**user**

The user to use inside the container. This parameter maps to `User` in the Create a container section of the [Docker Remote API](http://docs.docker.com) and the `--user` option to [docker run](http://docs.docker.com).

**Important**
When running tasks using the host network mode, don't run containers using the root user (UID 0). We recommend using a non-root user for better security.

You can specify the `user` using the following formats. If specifying a UID or GID, you must specify it as a positive integer.

- `user`
- `user:group`
- `uid`
- `uid:gid`
- `user:gid`
- `uid:group`

**Note**
This parameter is not supported for Windows containers.

Type: String

Required: No

**volumesFrom**

Data volumes to mount from another container. This parameter maps to `VolumesFrom` in the Create a container section of the [Docker Remote API](http://docs.docker.com) and the `--volumes-from` option to [docker run](http://docs.docker.com).

Type: Array of [VolumeFrom](p. 470) objects

Required: No

**workingDirectory**

The working directory to run commands inside the container in. This parameter maps to `WorkingDir` in the Create a container section of the [Docker Remote API](http://docs.docker.com) and the `--workdir` option to [docker run](http://docs.docker.com).

Type: String

Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](http://docs.aws.amazon.com)
See Also

- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerDependency

The dependencies defined for container startup and shutdown. A container can contain multiple dependencies. When a dependency is defined for container startup, for container shutdown it is reversed.

Your Amazon ECS container instances require at least version 1.26.0 of the container agent to use container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

Note

For tasks that use the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

Contents

condition

The dependency condition of the container. The following are the available conditions and their behavior:

- START - This condition emulates the behavior of links and volumes today. It validates that a dependent container is started before permitting other containers to start.
- COMPLETE - This condition validates that a dependent container runs to completion (exits) before permitting other containers to start. This can be useful for nonessential containers that run a script and then exit. This condition can't be set on an essential container.
- SUCCESS - This condition is the same as COMPLETE, but it also requires that the container exits with a zero status. This condition can't be set on an essential container.
- HEALTHY - This condition validates that the dependent container passes its Docker health check before permitting other containers to start. This requires that the dependent container has health checks configured. This condition is confirmed only at task startup.

Type: String

Valid Values: START | COMPLETE | SUCCESS | HEALTHY

Required: Yes

containerName

The name of a container.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerInstance

An Amazon EC2 or External instance that's running the Amazon ECS agent and has been registered with a cluster.

Contents

agentConnected

This parameter returns true if the agent is connected to Amazon ECS. An instance with an agent that may be unhealthy or stopped return false. Only instances connected to an agent can accept task placement requests.

Type: Boolean
Required: No

agentUpdateStatus

The status of the most recent agent update. If an update wasn't ever requested, this value is NULL.

Type: String
Valid Values: PENDING | STAGING | STAGED | UPDATING | UPDATED | FAILED
Required: No

attachments

The resources attached to a container instance, such as an elastic network interface.

Type: Array of Attachment (p. 310) objects
Required: No

attributes

The attributes set for the container instance, either by the Amazon ECS container agent at instance registration or manually with the PutAttributes (p. 182) operation.

Type: Array of Attribute (p. 312) objects
Required: No

capacityProviderName

The capacity provider that's associated with the container instance.

Type: String
Required: No

containerInstanceArn

The Amazon Resource Name (ARN) of the container instance. For more information about the ARN format, see Amazon Resource Name (ARN) in the Amazon ECS Developer Guide.

Type: String
Required: No

ec2InstanceId

The ID of the container instance. For Amazon EC2 instances, this value is the Amazon EC2 instance ID. For external instances, this value is the AWS Systems Manager managed instance ID.
Type: String
Required: No

**healthStatus**

An object representing the health status of the container instance.

Type: `ContainerInstanceHealthStatus (p. 350)` object
Required: No

**pendingTasksCount**

The number of tasks on the container instance that are in the PENDING status.

Type: Integer
Required: No

**registeredAt**

The Unix timestamp for the time when the container instance was registered.

Type: Timestamp
Required: No

**registeredResources**

For CPU and memory resource types, this parameter describes the amount of each resource that was available on the container instance when the container agent registered it with Amazon ECS. This value represents the total amount of CPU and memory that can be allocated on this container instance to tasks. For port resource types, this parameter describes the ports that were reserved by the Amazon ECS container agent when it registered the container instance with Amazon ECS.

Type: Array of `Resource (p. 416)` objects
Required: No

**remainingResources**

For CPU and memory resource types, this parameter describes the remaining CPU and memory that wasn't already allocated to tasks and is therefore available for new tasks. For port resource types, this parameter describes the ports that were reserved by the Amazon ECS container agent (at instance registration time) and any task containers that have reserved port mappings on the host (with the host or bridge network mode). Any port that's not specified here is available for new tasks.

Type: Array of `Resource (p. 416)` objects
Required: No

**runningTasksCount**

The number of tasks on the container instance that have a desired status (desiredStatus) of RUNNING.

Type: Integer
Required: No

**status**

The status of the container instance. The valid values are REGISTERING, REGISTRATION_FAILED, ACTIVE, INACTIVE, DEREGISTERING, or DRAINING.
If your account has opted in to the awsvpcTrunking account setting, then any newly registered container instance will transition to a REGISTERING status while the trunk elastic network interface is provisioned for the instance. If the registration fails, the instance will transition to a REGISTRATION_FAILED status. You can describe the container instance and see the reason for failure in the statusReason parameter. Once the container instance is terminated, the instance transitions to a Deregistering status while the trunk elastic network interface is deprovisioned. The instance then transitions to an INACTIVE status.

The ACTIVE status indicates that the container instance can accept tasks. The DRAINING indicates that new tasks aren’t placed on the container instance and any service tasks running on the container instance are removed if possible. For more information, see Container instance draining in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

statusReason

The reason that the container instance reached its current status.

Type: String
Required: No

tags

The metadata that you apply to the container instance to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:
- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.
 Required: No

version

The version counter for the container instance. Every time a container instance experiences a change that triggers a CloudWatch event, the version counter is incremented. If you’re replicating your Amazon ECS container instance state with CloudWatch Events, you can compare the version of a container instance reported by the Amazon ECS APIs with the version reported in CloudWatch Events for the container instance (inside the detail object) to verify that the version in your event stream is current.

Type: Long
Required: No

**versionInfo**

The version information for the Amazon ECS container agent and Docker daemon running on the container instance.

Type: [VersionInfo (p. 467)](#) object

Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
ContainerInstanceHealthStatus

An object representing the health status of the container instance.

Contents

details

An array of objects representing the details of the container instance health status.

Type: Array of InstanceHealthCheckResult (p. 387) objects

Required: No

overallStatus

The overall health status of the container instance. This is an aggregate status of all container instance health checks.

Type: String

Valid Values: OK | IMPAIRED | INSUFFICIENT_DATA | INITIALIZING

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerOverride

The overrides that are sent to a container. An empty container override can be passed in. An example of an empty container override is 

```
{"containerOverrides": []}
```

If a non-empty container override is specified, the name parameter must be included.

You can use Secrets Manager or AWS Systems Manager Parameter Store to store the sensitive data. For more information, see Retrieve secrets through environment variables in the Amazon ECS Developer Guide.

## Contents

### command

The command to send to the container that overrides the default command from the Docker image or the task definition. You must also specify a container name.

- **Type:** Array of strings
- **Required:** No

### cpu

The number of CPU units reserved for the container, instead of the default value from the task definition. You must also specify a container name.

- **Type:** Integer
- **Required:** No

### environment

The environment variables to send to the container. You can add new environment variables, which are added to the container at launch, or you can override the existing environment variables from the Docker image or the task definition. You must also specify a container name.

- **Type:** Array of KeyValuePair (p. 390) objects
- **Required:** No

### environmentFiles

A list of files containing the environment variables to pass to a container, instead of the value from the container definition.

- **Type:** Array of EnvironmentFile (p. 370) objects
- **Required:** No

### memory

The hard limit (in MiB) of memory to present to the container, instead of the default value from the task definition. If your container attempts to exceed the memory specified here, the container is killed. You must also specify a container name.

- **Type:** Integer
- **Required:** No

### memoryReservation

The soft limit (in MiB) of memory to reserve for the container, instead of the default value from the task definition. You must also specify a container name.
Type: Integer
Required: No

name
The name of the container that receives the override. This parameter is required if any override is specified.
Type: String
Required: No

resourceRequirements
The type and amount of a resource to assign to a container, instead of the default value from the task definition. The only supported resource is a GPU.
Type: Array of ResourceRequirement (p. 418) objects
Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerStateChange

An object that represents a change in state for a container.

Contents

containerName

The name of the container.

Type: String

Required: No

exitCode

The exit code for the container, if the state change is a result of the container exiting.

Type: Integer

Required: No

imageDigest

The container image SHA 256 digest.

Type: String

Required: No

networkBindings

Any network bindings that are associated with the container.

Type: Array of NetworkBinding (p. 402) objects

Required: No

reason

The reason for the state change.

Type: String

Required: No

runtimeld

The ID of the Docker container.

Type: String

Required: No

status

The status of the container.

Type: String

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Deployment

The details of an Amazon ECS service deployment. This is used only when a service uses the ECS deployment controller type.

Contents

capacityProviderStrategy

The capacity provider strategy that the deployment is using.

Type: Array of `CapacityProviderStrategyItem (p. 318)` objects

Required: No

createdAt

The Unix timestamp for the time when the service deployment was created.

Type: Timestamp

Required: No

desiredCount

The most recent desired count of tasks that was specified for the service to deploy or maintain.

Type: Integer

Required: No

failedTasks

The number of consecutively failed tasks in the deployment. A task is considered a failure if the service scheduler can't launch the task, the task doesn't transition to a RUNNING state, or if it fails any of its defined health checks and is stopped.

**Note**

Once a service deployment has one or more successfully running tasks, the failed task count resets to zero and stops being evaluated.

Type: Integer

Required: No

id

The ID of the deployment.

Type: String

Required: No

launchType

The launch type the tasks in the service are using. For more information, see Amazon ECS Launch Types in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No
networkConfiguration

The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the awsvpc networking mode.

Type: NetworkConfiguration (p. 404) object

Required: No

pendingCount

The number of tasks in the deployment that are in the PENDING status.

Type: Integer

Required: No

platformFamily

The operating system that your tasks in the service, or tasks are running on. A platform family is specified only for tasks using the Fargate launch type.

All tasks that run as part of this service must use the same platformFamily value as the service, for example, LINUX.

Type: String

Required: No

platformVersion

The platform version that your tasks in the service run on. A platform version is only specified for tasks using the Fargate launch type. If one isn't specified, the LATEST platform version is used. For more information, see AWS Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

rolloutState

Note

The rolloutState of a service is only returned for services that use the rolling update (ECS) deployment type that aren't behind a Classic Load Balancer.

The rollout state of the deployment. When a service deployment is started, it begins in an IN_PROGRESS state. When the service reaches a steady state, the deployment transitions to a COMPLETED state. If the service fails to reach a steady state and circuit breaker is turned on, the deployment transitions to a FAILED state. A deployment in FAILED state doesn't launch any new tasks. For more information, see DeploymentCircuitBreaker (p. 360).

Type: String

Valid Values: COMPLETED | FAILED | IN_PROGRESS

Required: No

rolloutStateReason

A description of the rollout state of a deployment.

Type: String

Required: No
runningCount

The number of tasks in the deployment that are in the RUNNING status.

Type: Integer

Required: No

serviceConnectConfiguration

The details of the Service Connect configuration that’s used by this deployment. Compare the configuration between multiple deployments when troubleshooting issues with new deployments.

The configuration for this service to discover and connect to services, and be discovered by, and connected from, other services within a namespace.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: ServiceConnectConfiguration (p. 430) object

Required: No

serviceConnectResources

The list of Service Connect resources that are associated with this deployment. Each list entry maps a discovery name to a AWS Cloud Map service name.

Type: Array of ServiceConnectServiceResource (p. 434) objects

Required: No

status

The status of the deployment. The following describes each state.

PRIMARY

The most recent deployment of a service.

ACTIVE

A service deployment that still has running tasks, but are in the process of being replaced with a new PRIMARY deployment.

INACTIVE

A deployment that has been completely replaced.

Type: String

Required: No

taskDefinition

The most recent task definition that was specified for the tasks in the service to use.

Type: String

Required: No

updatedAt

The Unix timestamp for the time when the service deployment was last updated.
Type: Timestamp
Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
DeploymentAlarms

One of the methods which provide a way for you to quickly identify when a deployment has failed, and then to optionally roll back the failure to the last working deployment.

When the alarms are generated, Amazon ECS sets the service deployment to failed. Set the rollback parameter to have Amazon ECS to roll back your service to the last completed deployment after a failure.

You can only use the DeploymentAlarms method to detect failures when the DeploymentController is set to ECS (rolling update).

For more information, see Rolling update in the Amazon Elastic Container Service Developer Guide.

Contents

alarmNames

One or more CloudWatch alarm names. Use a "," to separate the alarms.

Type: Array of strings
Required: Yes

enable

Determines whether to use the CloudWatch alarm option in the service deployment process.

Type: Boolean
Required: Yes

rollback

Determines whether to configure Amazon ECS to roll back the service if a service deployment fails. If rollback is used, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.

Type: Boolean
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DeploymentCircuitBreaker

**Note**

The deployment circuit breaker can only be used for services using the rolling update (ECS) deployment type.

The deployment circuit breaker determines whether a service deployment will fail if the service can’t reach a steady state. If it is turned on, a service deployment will transition to a failed state and stop launching new tasks. You can also configure Amazon ECS to roll back your service to the last completed deployment after a failure. For more information, see [Rolling update](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/rolling-update.html) in the *Amazon Elastic Container Service Developer Guide*.

For more information about API failure reasons, see [API failure reasons](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/api-failure-reasons.html) in the *Amazon Elastic Container Service Developer Guide*.

**Contents**

**enable**

Determines whether to use the deployment circuit breaker logic for the service.

Type: Boolean

Required: Yes

**rollback**

Determines whether to configure Amazon ECS to roll back the service if a service deployment fails. If rollback is on, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.

Type: Boolean

Required: Yes

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/index.html)
- [AWS SDK for Go](https://docs.aws.amazon.com/sdk-for-golang/v1/developer-guide/index.html)
- [AWS SDK for Java V2](https://docs.aws.amazon.com/sdk-for-java/2.0.0/api/index.html)
- [AWS SDK for Ruby V3](https://docs.aws.amazon.com/sdk-for-ruby/v3/api/index.html)
DeploymentConfiguration

Optional deployment parameters that control how many tasks run during a deployment and the ordering of stopping and starting tasks.

Contents

alarms

Information about the CloudWatch alarms.

Type: DeploymentAlarms (p. 359) object

Required: No

deploymentCircuitBreaker

Note
The deployment circuit breaker can only be used for services using the rolling update (ECS) deployment type.

The deployment circuit breaker determines whether a service deployment will fail if the service can’t reach a steady state. If you use the deployment circuit breaker, a service deployment will transition to a failed state and stop launching new tasks. If you use the rollback option, when a service deployment fails, the service is rolled back to the last deployment that completed successfully. For more information, see Rolling update in the Amazon Elastic Container Service Developer Guide

Type: DeploymentCircuitBreaker (p. 360) object

Required: No

maximumPercent

If a service is using the rolling update (ECS) deployment type, the maximumPercent parameter represents an upper limit on the number of your service's tasks that are allowed in the RUNNING or PENDING state during a deployment, as a percentage of the desiredCount (rounded down to the nearest integer). This parameter enables you to define the deployment batch size. For example, if your service is using the REPLICA service scheduler and has a desiredCount of four tasks and a maximumPercent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default maximumPercent value for a service using the REPLICA service scheduler is 200%.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types and tasks that use the EC2 launch type, the maximum percent value is set to the default value and is used to define the upper limit on the number of the tasks in the service that remain in the RUNNING state while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the maximum percent value is not used, although it is returned when describing your service.

Type: Integer

Required: No

minimumHealthyPercent

If a service is using the rolling update (ECS) deployment type, the minimumHealthyPercent parameter represents a lower limit on the number of your service's tasks that must remain in the RUNNING state during a deployment, as a percentage of the desiredCount (rounded up to the nearest integer). This parameter enables you to deploy without using additional cluster capacity. For example, if your
service has a desiredCount of four tasks and a minimumHealthyPercent of 50%, the service scheduler may stop two existing tasks to free up cluster capacity before starting two new tasks.

For services that do not use a load balancer, the following should be noted:

- A service is considered healthy if all essential containers within the tasks in the service pass their health checks.
- If a task has no essential containers with a health check defined, the service scheduler will wait for 40 seconds after a task reaches a RUNNING state before the task is counted towards the minimum healthy percent total.
- If a task has one or more essential containers with a health check defined, the service scheduler will wait for the task to reach a healthy status before counting it towards the minimum healthy percent total. A task is considered healthy when all essential containers within the task have passed their health checks. The amount of time the service scheduler can wait for is determined by the container health check settings.

For services that do use a load balancer, the following should be noted:

- If a task has no essential containers with a health check defined, the service scheduler will wait for the load balancer target group health check to return a healthy status before counting the task towards the minimum healthy percent total.
- If a task has an essential container with a health check defined, the service scheduler will wait for both the task to reach a healthy status and the load balancer target group health check to return a healthy status before counting the task towards the minimum healthy percent total.

If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types and is running tasks that use the EC2 launch type, the minimum healthy percent value is set to the default value and is used to define the lower limit on the number of the tasks in the service that remain in the RUNNING state while the container instances are in the DRAINING state. If a service is using either the blue/green (CODE_DEPLOY) or EXTERNAL deployment types and is running tasks that use the Fargate launch type, the minimum healthy percent value is not used, although it is returned when describing your service.

Type: Integer

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DeploymentController

The deployment controller to use for the service. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide.

Contents

type

The deployment controller type to use.

There are three deployment controller types available:

ECS

The rolling update (ECS) deployment type involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from the service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during a service deployment, as specified in the DeploymentConfiguration (p. 361).

CODE_DEPLOY

The blue/green (CODE_DEPLOY) deployment type uses the blue/green deployment model powered by AWS CodeDeploy, which allows you to verify a new deployment of a service before sending production traffic to it.

EXTERNAL

The external (EXTERNAL) deployment type enables you to use any third-party deployment controller for full control over the deployment process for an Amazon ECS service.

Type: String

Valid Values: ECS | CODE_DEPLOY | EXTERNAL

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Device

An object representing a container instance host device.

Contents

**hostPath**

The path for the device on the host container instance.

Type: String

Required: Yes

**containerPath**

The path inside the container at which to expose the host device.

Type: String

Required: No

**permissions**

The explicit permissions to provide to the container for the device. By default, the container has permissions for read, write, and mknod for the device.

Type: Array of strings

Valid Values: read | write | mknod

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DockerVolumeConfiguration

This parameter is specified when you're using Docker volumes. Docker volumes are only supported when you're using the EC2 launch type. Windows containers only support the use of the `local` driver. To use bind mounts, specify a host instead.

Contents

**autoprovision**

If this value is `true`, the Docker volume is created if it doesn't already exist.

**Note**

This field is only used if the scope is `shared`.

Type: Boolean

Required: No

**driver**

The Docker volume driver to use. The driver value must match the driver name provided by Docker because it is used for task placement. If the driver was installed using the Docker plugin CLI, use `docker plugin ls` to retrieve the driver name from your container instance. If the driver was installed using another method, use Docker plugin discovery to retrieve the driver name. For more information, see Docker plugin discovery. This parameter maps to `Driver` in the Create a volume section of the Docker Remote API and the `xXdrier` option to `docker volume create`.

Type: String

Required: No

**driverOpts**

A map of Docker driver-specific options passed through. This parameter maps to `DriverOpts` in the Create a volume section of the Docker Remote API and the `xXopt` option to `docker volume create`.

Type: String to string map

Required: No

**labels**

Custom metadata to add to your Docker volume. This parameter maps to `Labels` in the Create a volume section of the Docker Remote API and the `xXlabel` option to `docker volume create`.

Type: String to string map

Required: No

**scope**

The scope for the Docker volume that determines its lifecycle. Docker volumes that are scoped to a task are automatically provisioned when the task starts and destroyed when the task stops. Docker volumes that are scoped as `shared` persist after the task stops.

Type: String

Valid Values: task | shared

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EFSAuthorizationConfig

The authorization configuration details for the Amazon EFS file system.

Contents

accessPointId

The Amazon EFS access point ID to use. If an access point is specified, the root directory value specified in the EFSVolumeConfiguration must either be omitted or set to / which will enforce the path set on the EFS access point. If an access point is used, transit encryption must be on in the EFSVolumeConfiguration. For more information, see Working with Amazon EFS access points in the Amazon Elastic File System User Guide.

Type: String
Required: No

iam

Determines whether to use the Amazon ECS task role defined in a task definition when mounting the Amazon EFS file system. If it is turned on, transit encryption must be turned on in the EFSVolumeConfiguration. If this parameter is omitted, the default value of DISABLED is used. For more information, see Using Amazon EFS access points in the Amazon Elastic Container Service Developer Guide.

Type: String
Valid Values: ENABLED | DISABLED
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EFSVolumeConfiguration

This parameter is specified when you’re using an Amazon Elastic File System file system for task storage. For more information, see Amazon EFS volumes in the Amazon Elastic Container Service Developer Guide.

Contents

**fileSystemId**

The Amazon EFS file system ID to use.

Type: String

Required: Yes

**authorizationConfig**

The authorization configuration details for the Amazon EFS file system.

Type: EFSAuthorizationConfig (p. 367) object

Required: No

**rootDirectory**

The directory within the Amazon EFS file system to mount as the root directory inside the host. If this parameter is omitted, the root of the Amazon EFS volume will be used. Specifying / will have the same effect as omitting this parameter.

**Important**

If an EFS access point is specified in the authorizationConfig, the root directory parameter must either be omitted or set to / which will enforce the path set on the EFS access point.

Type: String

Required: No

**transitEncryption**

Determines whether to use encryption for Amazon EFS data in transit between the Amazon ECS host and the Amazon EFS server. Transit encryption must be turned on if Amazon EFS IAM authorization is used. If this parameter is omitted, the default value of DISABLED is used. For more information, see Encrypting data in transit in the Amazon Elastic File System User Guide.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

**transitEncryptionPort**

The port to use when sending encrypted data between the Amazon ECS host and the Amazon EFS server. If you do not specify a transit encryption port, it will use the port selection strategy that the Amazon EFS mount helper uses. For more information, see EFS mount helper in the Amazon Elastic File System User Guide.

Type: Integer

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EnvironmentFile

A list of files containing the environment variables to pass to a container. You can specify up to ten environment files. The file must have a .env file extension. Each line in an environment file should contain an environment variable in VARIABLE=VALUE format. Lines beginning with # are treated as comments and are ignored.

If there are environment variables specified using the environment parameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they're processed from the top down. We recommend that you use unique variable names. For more information, see Specifying environment variables in the Amazon Elastic Container Service Developer Guide.

You must use the following platforms for the Fargate launch type:

- Linux platform version 1.4.0 or later.
- Windows platform version 1.0.0 or later.

Consider the following when using the Fargate launch type:

- The file is handled like a native Docker env-file.
- There is no support for shell escape handling.
- The container entry point interprets the VARIABLE values.

Contents

type

The file type to use. The only supported value is s3.

Type: String

Valid Values: s3

Required: Yes

value

The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment variable file.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EphemeralStorage

The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on AWS Fargate. For more information, see Fargate task storage in the Amazon ECS User Guide for AWS Fargate.

Note
For tasks using the Fargate launch type, the task requires the following platforms:

- Linux platform version 1.4.0 or later.
- Windows platform version 1.0.0 or later.

Contents

sizeInGiB

The total amount, in GiB, of ephemeral storage to set for the task. The minimum supported value is 21 GiB and the maximum supported value is 200 GiB.

Type: Integer

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ExecuteCommandConfiguration

The details of the execute command configuration.

Contents

kmsKeyId

Specify an AWS Key Management Service key ID to encrypt the data between the local client and the container.

Type: String

Required: No

logConfiguration

The log configuration for the results of the execute command actions. The logs can be sent to CloudWatch Logs or an Amazon S3 bucket. When logging=OVERRIDE is specified, a logConfiguration must be provided.

Type: ExecuteCommandLogConfiguration (p. 374) object

Required: No

logging

The log setting to use for redirecting logs for your execute command results. The following log settings are available.

- NONE: The execute command session is not logged.
- DEFAULT: The awslogs configuration in the task definition is used. If no logging parameter is specified, it defaults to this value. If no awslogs log driver is configured in the task definition, the output won't be logged.
- OVERRIDE: Specify the logging details as a part of logConfiguration. If the OVERRIDE logging option is specified, the logConfiguration is required.

Type: String

Valid Values: NONE | DEFAULT | OVERRIDE

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ExecuteCommandLogConfiguration

The log configuration for the results of the execute command actions. The logs can be sent to CloudWatch Logs or an Amazon S3 bucket.

**Contents**

cloudWatchEncryptionEnabled

Determines whether to use encryption on the CloudWatch logs. If not specified, encryption will be off.

Type: Boolean

Required: No

cloudWatchLogGroupName

The name of the CloudWatch log group to send logs to.

*Note*
The CloudWatch log group must already be created.

Type: String

Required: No

s3BucketName

The name of the S3 bucket to send logs to.

*Note*
The S3 bucket must already be created.

Type: String

Required: No

s3EncryptionEnabled

Determines whether to use encryption on the S3 logs. If not specified, encryption is not used.

Type: Boolean

Required: No

s3KeyPrefix

An optional folder in the S3 bucket to place logs in.

Type: String

Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
See Also

- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
Failure

A failed resource. For a list of common causes, see API failure reasons in the Amazon Elastic Container Service Developer Guide.

Contents

arn
The Amazon Resource Name (ARN) of the failed resource.
Type: String
Required: No
detail
The details of the failure.
Type: String
Required: No
reason
The reason for the failure.
Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FirelensConfiguration

The FireLens configuration for the container. This is used to specify and configure a log router for container logs. For more information, see Custom log routing in the Amazon Elastic Container Service Developer Guide.

Contents

type

The log router to use. The valid values are fluentd or fluentbit.

Type: String

Valid Values: fluentd | fluentbit

Required: Yes

options

The options to use when configuring the log router. This field is optional and can be used to specify a custom configuration file or to add additional metadata, such as the task, task definition, cluster, and container instance details to the log event. If specified, the syntax to use is "options": 

{"enable-ecs-log-metadata":"true|false","config-file-type":"s3|file","config-file-value":"arn:aws:s3:::mybucket/fluent.conf|filepath"}. For more information, see Creating a task definition that uses a FireLens configuration in the Amazon Elastic Container Service Developer Guide.

Note

Tasks hosted on AWS Fargate only support the file configuration file type.

Type: String to string map

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
The authorization configuration details for Amazon FSx for Windows File Server file system. See `FSxWindowsFileServerVolumeConfiguration` in the Amazon ECS API Reference.

For more information and the input format, see Amazon FSx for Windows File Server Volumes in the Amazon Elastic Container Service Developer Guide.

**Contents**

**credentialsParameter**

The authorization credential option to use. The authorization credential options can be provided using either the Amazon Resource Name (ARN) of an AWS Secrets Manager secret or SSM Parameter Store parameter. The ARN refers to the stored credentials.

Type: String

Required: Yes

**domain**

A fully qualified domain name hosted by an AWS Directory Service Managed Microsoft AD (Active Directory) or self-hosted AD on Amazon EC2.

Type: String

Required: Yes

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FSxWindowsFileServerVolumeConfiguration

This parameter is specified when you're using Amazon FSx for Windows File Server file system for task storage.

For more information and the input format, see Amazon FSx for Windows File Server volumes in the Amazon Elastic Container Service Developer Guide.

Contents

authorizationConfig

The authorization configuration details for the Amazon FSx for Windows File Server file system.

Type: FSxWindowsFileServerAuthorizationConfig (p. 378) object

Required: Yes

fileSystemId

The Amazon FSx for Windows File Server file system ID to use.

Type: String

Required: Yes

rootDirectory

The directory within the Amazon FSx for Windows File Server file system to mount as the root directory inside the host.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
HealthCheck

An object representing a container health check. Health check parameters that are specified in a container definition override any Docker health checks that exist in the container image (such as those specified in a parent image or from the image's Dockerfile). This configuration maps to the HEALTHCHECK parameter of `docker run`.

**Note**
The Amazon ECS container agent only monitors and reports on the health checks specified in the task definition. Amazon ECS does not monitor Docker health checks that are embedded in a container image and not specified in the container definition. Health check parameters that are specified in a container definition override any Docker health checks that exist in the container image.

You can view the health status of both individual containers and a task with the DescribeTasks API operation or when viewing the task details in the console.

The health check is designed to make sure that your containers survive agent restarts, upgrades, or temporary unavailability.

The following describes the possible `healthStatus` values for a container:

- **HEALTHY**—The container health check has passed successfully.
- **UNHEALTHY**—The container health check has failed.
- **UNKNOWN**—The container health check is being evaluated, there's no container health check defined, or Amazon ECS doesn't have the health status of the container.

The following describes the possible `healthStatus` values based on the container health checker status of essential containers in the task with the following priority order (high to low):

- **UNHEALTHY**—One or more essential containers have failed their health check.
- **UNKNOWN**—Any essential container running within the task is in an `UNKNOWN` state and no other essential containers have an `UNHEALTHY` state.
- **HEALTHY**—All essential containers within the task have passed their health checks.

Consider the following task health example with 2 containers.

- If Container1 is `UNHEALTHY` and Container2 is `UNKNOWN`, the task health is `UNHEALTHY`.
- If Container1 is `UNHEALTHY` and Container2 is `HEALTHY`, the task health is `UNHEALTHY`.
- If Container1 is `HEALTHY` and Container2 is `UNKNOWN`, the task health is `UNKNOWN`.
- If Container1 is `HEALTHY` and Container2 is `HEALTHY`, the task health is `HEALTHY`.

Consider the following task health example with 3 containers.

- If Container1 is `UNHEALTHY` and Container2 is `UNKNOWN` and Container3 is `UNKNOWN`, the task health is `UNHEALTHY`.
- If Container1 is `UNHEALTHY` and Container2 is `UNKNOWN` and Container3 is `HEALTHY`, the task health is `UNHEALTHY`.
- If Container1 is `UNHEALTHY` and Container2 is `HEALTHY` and Container3 is `HEALTHY`, the task health is `UNHEALTHY`.
- If Container1 is `HEALTHY` and Container2 is `UNKNOWN` and Container3 is `HEALTHY`, the task health is `UNKNOWN`.
• If Container1 is HEALTHY and Container2 is UNKNOWN, and Container3 is UNKNOWN, the task health is UNKNOWN.
• If Container1 is HEALTHY and Container2 is HEALTHY, and Container3 is HEALTHY, the task health is HEALTHY.

If a task is run manually, and not as part of a service, the task will continue its lifecycle regardless of its health status. For tasks that are part of a service, if the task reports as unhealthy then the task will be stopped and the service scheduler will replace it.

The following are notes about container health check support:

• When the Amazon ECS agent cannot connect to the Amazon ECS service, the service reports the container as UNHEALTHY.
• The health check statuses are the “last heard from” response from the Amazon ECS agent. There are no assumptions made about the status of the container health checks.
• Container health checks require version 1.17.0 or greater of the Amazon ECS container agent. For more information, see Updating the Amazon ECS container agent.
• Container health checks are supported for Fargate tasks if you're using platform version 1.1.0 or greater. For more information, see AWS Fargate platform versions.
• Container health checks aren't supported for tasks that are part of a service that's configured to use a Classic Load Balancer.

**Contents**

**command**

A string array representing the command that the container runs to determine if it is healthy. The string array must start with CMD to run the command arguments directly, or CMD-SHELL to run the command with the container's default shell.

When you use the AWS Management Console JSON panel, the AWS Command Line Interface, or the APIs, enclose the list of commands in double quotes and brackets.

```
["CMD-SHELL", "curl -f http://localhost/ || exit 1"]
```

You don't include the double quotes and brackets when you use the AWS Management Console.

```
CMD-SHELL, curl -f http://localhost/ || exit 1
```

An exit code of 0 indicates success, and non-zero exit code indicates failure. For more information, see HealthCheck in the Create a container section of the Docker Remote API.

Type: Array of strings

Required: Yes

**interval**

The time period in seconds between each health check execution. You may specify between 5 and 300 seconds. The default value is 30 seconds.

Type: Integer

Required: No

**retries**

The number of times to retry a failed health check before the container is considered unhealthy. You may specify between 1 and 10 retries. The default value is 3.
Type: Integer
Required: No

**startPeriod**

The optional grace period to provide containers time to bootstrap before failed health checks count towards the maximum number of retries. You can specify between 0 and 300 seconds. By default, the *startPeriod* is off.

**Note**

If a health check succeeds within the *startPeriod*, then the container is considered healthy and any subsequent failures count toward the maximum number of retries.

Type: Integer
Required: No

**timeout**

The time period in seconds to wait for a health check to succeed before it is considered a failure. You may specify between 2 and 60 seconds. The default value is 5.

Type: Integer
Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
HostEntry

Hostnames and IP address entries that are added to the /etc/hosts file of a container via the extraHosts parameter of its ContainerDefinition (p. 331).

Contents

hostname

The hostname to use in the /etc/hosts entry.

Type: String

Required: Yes

ipAddress

The IP address to use in the /etc/hosts entry.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
HostVolumeProperties

Details on a container instance bind mount host volume.

Contents

sourcePath

When the host parameter is used, specify a sourcePath to declare the path on the host container instance that's presented to the container. If this parameter is empty, then the Docker daemon has assigned a host path for you. If the host parameter contains a sourcePath file location, then the data volume persists at the specified location on the host container instance until you delete it manually. If the sourcePath value doesn't exist on the host container instance, the Docker daemon creates it. If the location does exist, the contents of the source path folder are exported.

If you're using the Fargate launch type, the sourcePath parameter is not supported.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
InferenceAccelerator

Details on an Elastic Inference accelerator. For more information, see Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Contents

deviceName

The Elastic Inference accelerator device name. The deviceName must also be referenced in a container definition as a ResourceRequirement.

Type: String

Required: Yes

deviceType

The Elastic Inference accelerator type to use.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
InferenceAcceleratorOverride

Details on an Elastic Inference accelerator task override. This parameter is used to override the Elastic Inference accelerator specified in the task definition. For more information, see Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Contents

deviceName

The Elastic Inference accelerator device name to override for the task. This parameter must match a deviceName specified in the task definition.

Type: String
Required: No

deviceType

The Elastic Inference accelerator type to use.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
InstanceHealthCheckResult

An object representing the result of a container instance health status check.

Contents

lastStatusChange

The Unix timestamp for when the container instance health status last changed.

Type: Timestamp

Required: No

lastUpdated

The Unix timestamp for when the container instance health status was last updated.

Type: Timestamp

Required: No

status

The container instance health status.

Type: String

Valid Values: OK | IMPAIRED | INSUFFICIENT_DATA | INITIALIZING

Required: No

type

The type of container instance health status that was verified.

Type: String

Valid Values: CONTAINER_RUNTIME

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
KernelCapabilities

The Linux capabilities for the container that are added to or dropped from the default configuration provided by Docker. For more information about the default capabilities and the non-default available capabilities, see Runtime privilege and Linux capabilities in the Docker run reference. For more detailed information about these Linux capabilities, see the capabilities(7) Linux manual page.

Contents

add

The Linux capabilities for the container that have been added to the default configuration provided by Docker. This parameter maps to CapAdd in the Create a container section of the Docker Remote API and the --cap-add option to docker run.

Note

Tasks launched on AWS Fargate only support adding the SYS_PTRACE kernel capability.

Valid values:
"ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID"
| "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE" |
| "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE"
| "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETID" | "SETPCAP" | "SETPCAP" | "SETUID"
| "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" |
| "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME" |
| "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Type: Array of strings

Required: No

drop

The Linux capabilities for the container that have been removed from the default configuration provided by Docker. This parameter maps to CapDrop in the Create a container section of the Docker Remote API and the --cap-drop option to docker run.

Valid values:
"ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID"
| "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE" |
| "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE"
| "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETID" | "SETPCAP" | "SETPCAP" | "SETUID"
| "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE" |
| "SYS_PACCT" | "SYS_PTRACE" | "SYS.RawIO" | "SYS_RESOURCE" | "SYS_TIME" |
| "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Type: Array of strings

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
KeyValuePair

A key-value pair object.

Contents

name

The name of the key-value pair. For environment variables, this is the name of the environment variable.

Type: String
Required: No

value

The value of the key-value pair. For environment variables, this is the value of the environment variable.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LinuxParameters

The Linux-specific options that are applied to the container, such as Linux KernelCapabilities.

Contents

capabilities

The Linux capabilities for the container that are added to or dropped from the default configuration provided by Docker.

**Note**
For tasks that use the Fargate launch type, capabilities is supported for all platform versions but the add parameter is only supported if using platform version 1.4.0 or later.

Type: KernelCapabilities (p. 388) object

Required: No

devices

Any host devices to expose to the container. This parameter maps to Devices in the Create a container section of the Docker Remote API and the --device option to docker run.

**Note**
If you're using tasks that use the Fargate launch type, the devices parameter isn't supported.

Type: Array of Device (p. 364) objects

Required: No

initProcessEnabled

Run an init process inside the container that forwards signals and reaps processes. This parameter maps to the --init option to docker run. This parameter requires version 1.25 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: sudo docker version --format '{{.Server.APIVersion}}'

Type: Boolean

Required: No

maxSwap

The total amount of swap memory (in MiB) a container can use. This parameter will be translated to the --memory-swap option to docker run where the value would be the sum of the container memory plus the maxSwap value.

If a maxSwap value of 0 is specified, the container will not use swap. Accepted values are 0 or any positive integer. If the maxSwap parameter is omitted, the container will use the swap configuration for the container instance it is running on. A maxSwap value must be set for the swappiness parameter to be used.

**Note**
If you're using tasks that use the Fargate launch type, the maxSwap parameter isn't supported.

If you're using tasks on Amazon Linux 2023 the swappiness parameter isn't supported.

Type: Integer
sharedMemorySize

The value for the size (in MiB) of the /dev/shm volume. This parameter maps to the --shm-size option to `docker run`.

**Note**
If you are using tasks that use the Fargate launch type, the sharedMemorySize parameter is not supported.

Type: Integer
Required: No

swappiness

This allows you to tune a container's memory swappiness behavior. A swappiness value of 0 will cause swapping to not happen unless absolutely necessary. A swappiness value of 100 will cause pages to be swapped very aggressively. Accepted values are whole numbers between 0 and 100. If the swappiness parameter is not specified, a default value of 60 is used. If a value is not specified for maxSwap then this parameter is ignored. This parameter maps to the --memory-swappiness option to `docker run`.

**Note**
If you're using tasks that use the Fargate launch type, the swappiness parameter isn't supported.
If you're using tasks on Amazon Linux 2023 the swappiness parameter isn't supported.

Type: Integer
Required: No

tmpfs

The container path, mount options, and size (in MiB) of the tmpfs mount. This parameter maps to the --tmpfs option to `docker run`.

**Note**
If you're using tasks that use the Fargate launch type, the tmpfs parameter isn't supported.

Type: Array of `Tmpfs` objects
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
LoadBalancer

The load balancer configuration to use with a service or task set.

When you add, update, or remove a load balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load Balancing configuration. This causes tasks to register to and deregister from load balancers.

We recommend that you verify this on a test environment before you update the Elastic Load Balancing configuration.

A service-linked role is required for services that use multiple target groups. For more information, see Using service-linked roles in the Amazon Elastic Container Service Developer Guide.

Contents

ccontainerName

The name of the container (as it appears in a container definition) to associate with the load balancer.

Type: String
Required: No

ccontainerPort

The port on the container to associate with the load balancer. This port must correspond to a containerPort in the task definition the tasks in the service are using. For tasks that use the EC2 launch type, the container instance they're launched on must allow ingress traffic on the hostPort of the port mapping.

Type: Integer
Required: No

cloadBalancerName

The name of the load balancer to associate with the Amazon ECS service or task set.

If you are using an Application Load Balancer or a Network Load Balancer the load balancer name parameter should be omitted.

Type: String
Required: No

ttargetGroupArn

The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group or groups associated with a service or task set.

A target group ARN is only specified when using an Application Load Balancer or Network Load Balancer.

For services using the ECS deployment controller, you can specify one or multiple target groups. For more information, see Registering multiple target groups with a service in the Amazon Elastic Container Service Developer Guide.

For services using the CODE_DEPLOY deployment controller, you're required to define two target groups for the load balancer. For more information, see Blue/green deployment with CodeDeploy in the Amazon Elastic Container Service Developer Guide.
Important
If your service's task definition uses the awsvpc network mode, you must choose ip as the target type, not instance. Do this when creating your target groups because tasks that use the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2 instance. This network mode is required for the Fargate launch type.

Type: String
Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LogConfiguration

The log configuration for the container. This parameter maps to LogConfig in the Create a container section of the Docker Remote API and the --log-driver option to docker run.

By default, containers use the same logging driver that the Docker daemon uses. However, the container might use a different logging driver than the Docker daemon by specifying a log driver configuration in the container definition. For more information about the options for different supported log drivers, see Configure logging drivers in the Docker documentation.

Understand the following when specifying a log configuration for your containers.

- **Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon.** Additional log drivers may be available in future releases of the Amazon ECS container agent.
  
  For tasks on AWS Fargate, the supported log drivers are awslogs, splunk, and awsfirelens.
  
  For tasks hosted on Amazon EC2 instances, the supported log drivers are awslogs, fluentd, gelf, json-file, journald, logentries, syslog, splunk, and awsfirelens.

- This parameter requires version 1.18 of the Docker Remote API or greater on your container instance.

- For tasks that are hosted on Amazon EC2 instances, the Amazon ECS container agent must register the available logging drivers with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS container agent configuration in the Amazon Elastic Container Service Developer Guide.

- For tasks that are on AWS Fargate, because you don't have access to the underlying infrastructure your tasks are hosted on, any additional software needed must be installed outside of the task. For example, the Fluentd output aggregators or a remote host running Logstash to send Gelf logs to.

**Contents**

**logDriver**

The log driver to use for the container.

For tasks on AWS Fargate, the supported log drivers are awslogs, splunk, and awsfirelens.

For tasks hosted on Amazon EC2 instances, the supported log drivers are awslogs, fluentd, gelf, json-file, journald, logentries, syslog, splunk, and awsfirelens.

For more information about using the awslogs log driver, see Using the awslogs log driver in the Amazon Elastic Container Service Developer Guide.

For more information about using the awsfirelens log driver, see Custom log routing in the Amazon Elastic Container Service Developer Guide.

**Note**

If you have a custom driver that isn't listed, you can fork the Amazon ECS container agent project that's available on GitHub and customize it to work with that driver. We encourage you to submit pull requests for changes that you would like to have included. However, we don't currently provide support for running modified copies of this software.

Type: String

Valid Values: json-file | syslog | journald | gelf | fluentd | awslogs | splunk | awsfirelens

Required: Yes
**options**

The configuration options to send to the log driver. This parameter requires version 1.19 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: `sudo docker version --format '{{.Server.APIVersion}}'`

Type: String to string map

Required: No

**secretOptions**

The secrets to pass to the log configuration. For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide.

Type: Array of Secret (p. 421) objects

Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ManagedAgent

Details about the managed agent status for the container.

Contents

**lastStartedAt**

The Unix timestamp for the time when the managed agent was last started.

Type: Timestamp

Required: No

**lastStatus**

The last known status of the managed agent.

Type: String

Required: No

**name**

The name of the managed agent. When the execute command feature is turned on, the managed agent name is `ExecuteCommandAgent`.

Type: String

Valid Values: `ExecuteCommandAgent`

Required: No

**reason**

The reason for why the managed agent is in the state it is in.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ManagedAgentStateChange

An object representing a change in state for a managed agent.

Contents

containerName

The name of the container that's associated with the managed agent.
Type: String
Required: Yes

managedAgentName

The name of the managed agent.
Type: String
Valid Values: ExecuteCommandAgent
Required: Yes

status

The status of the managed agent.
Type: String
Required: Yes

reason

The reason for the status of the managed agent.
Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
ManagedScaling

The managed scaling settings for the Auto Scaling group capacity provider.

When managed scaling is turned on, Amazon ECS manages the scale-in and scale-out actions of the Auto Scaling group. Amazon ECS manages a target tracking scaling policy using an Amazon ECS managed CloudWatch metric with the specified targetCapacity value as the target value for the metric. For more information, see Using managed scaling in the Amazon Elastic Container Service Developer Guide.

If managed scaling is off, the user must manage the scaling of the Auto Scaling group.

Contents

instanceWarmupPeriod

The period of time, in seconds, after a newly launched Amazon EC2 instance can contribute to CloudWatch metrics for Auto Scaling group. If this parameter is omitted, the default value of 300 seconds is used.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 10000.

Required: No

maximumScalingStepSize

The maximum number of Amazon EC2 instances that Amazon ECS will scale out at one time. The scale in process is not affected by this parameter. If this parameter is omitted, the default value of 10000 is used.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

minimumScalingStepSize

The minimum number of Amazon EC2 instances that Amazon ECS will scale out at one time. The scale in process is not affected by this parameter If this parameter is omitted, the default value of 1 is used.

When additional capacity is required, Amazon ECS will scale up the minimum scaling step size even if the actual demand is less than the minimum scaling step size.

If you use a capacity provider with an Auto Scaling group configured with more than one Amazon EC2 instance type or Availability Zone, Amazon ECS will scale up by the exact minimum scaling step size value and will ignore both the maximum scaling step size as well as the capacity demand.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

status

Determines whether to use managed scaling for the capacity provider.

Type: String
Valid Values: ENABLED | DISABLED

Required: No

**targetCapacity**

The target capacity utilization as a percentage for the capacity provider. The specified value must be greater than 0 and less than or equal to 100. For example, if you want the capacity provider to maintain 10% spare capacity, then that means the utilization is 90%, so use a `targetCapacity` of 90. The default value of 100 percent results in the Amazon EC2 instances in your Auto Scaling group being completely used.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
MountPoint

The details for a volume mount point that's used in a container definition.

Contents

ccontainerPath
*

The path on the container to mount the host volume at.

Type: String

Required: No

readOnly

If this value is true, the container has read-only access to the volume. If this value is false, then the container can write to the volume. The default value is false.

Type: Boolean

Required: No

sourceVolume

The name of the volume to mount. Must be a volume name referenced in the name parameter of task definition volume.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
NetworkBinding

Details on the network bindings between a container and its host container instance. After a task reaches the RUNNING status, manual and automatic host and container port assignments are visible in the networkBindings section of DescribeTasks API responses.

Contents

bindIP

The IP address that the container is bound to on the container instance.

Type: String

Required: No

containerPort

The port number on the container that's used with the network binding.

Type: Integer

Required: No

containerPortRange

The port number range on the container that's bound to the dynamically mapped host port range.

The following rules apply when you specify a containerPortRange:

• You must use either the bridge network mode or the awsvpc network mode.
• This parameter is available for both the EC2 and AWS Fargate launch types.
• This parameter is available for both the Linux and Windows operating systems.
• The container instance must have at least version 1.67.0 of the container agent and at least version 1.67.0-1 of the ecs-init package.
• You can specify a maximum of 100 port ranges per container.
• You do not specify a hostPortRange. The value of the hostPortRange is set as follows:
  • For containers in a task with the awsvpc network mode, the hostPortRange is set to the same value as the containerPortRange. This is a static mapping strategy.
  • For containers in a task with the bridge network mode, the Amazon ECS agent finds open host ports from the default ephemeral range and passes it to docker to bind them to the container ports.
• The containerPortRange valid values are between 1 and 65535.
• A port can only be included in one port mapping per container.
• You cannot specify overlapping port ranges.
• The first port in the range must be less than last port in the range.
• Docker recommends that you turn off the docker-proxy in the Docker daemon config file when you have a large number of ports.

For more information, see Issue #11185 on the Github website.

For information about how to turn off the docker-proxy in the Docker daemon config file, see Docker daemon in the Amazon ECS Developer Guide.

You can call DescribeTasks to view the hostPortRange which are the host ports that are bound to the container ports.
Type: String
Required: No

**hostPort**

The port number on the host that's used with the network binding.

Type: Integer
Required: No

**hostPortRange**

The port number range on the host that's used with the network binding. This is assigned by Docker and delivered by the Amazon ECS agent.

Type: String
Required: No

**protocol**

The protocol used for the network binding.

Type: String

Valid Values: tcp | udp

Required: No

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NetworkConfiguration

The network configuration for a task or service.

Contents

awsVpcConfiguration

The VPC subnets and security groups that are associated with a task.

**Note**

All specified subnets and security groups must be from the same VPC.

Type: [AwsVpcConfiguration](p. 315) object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NetworkInterface

An object representing the elastic network interface for tasks that use the awsvpc network mode.

Contents

attachmentId

The attachment ID for the network interface.
Type: String
Required: No

ipv6Address

The private IPv6 address for the network interface.
Type: String
Required: No

privateIp

The private IPv4 address for the network interface.
Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PlacementConstraint

An object representing a constraint on task placement. For more information, see Task placement constraints in the Amazon Elastic Container Service Developer Guide.

Note
If you're using the Fargate launch type, task placement constraints aren't supported.

Contents

expression

A cluster query language expression to apply to the constraint. The expression can have a maximum length of 2000 characters. You can't specify an expression if the constraint type is distinctInstance. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

type

The type of constraint. Use distinctInstance to ensure that each task in a particular group is running on a different container instance. Use memberOf to restrict the selection to a group of valid candidates.

Type: String
Valid Values: distinctInstance | memberOf
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PlacementStrategy

The task placement strategy for a task or service. For more information, see Task placement strategies in the Amazon Elastic Container Service Developer Guide.

Contents

field

The field to apply the placement strategy against. For the spread placement strategy, valid values are instanceId (or host, which has the same effect), or any platform or custom attribute that's applied to a container instance, such as attribute:ecs.availability-zone. For the binpack placement strategy, valid values are cpu and memory. For the random placement strategy, this field is not used.

Type: String
Required: No

type

The type of placement strategy. The random placement strategy randomly places tasks on available candidates. The spread placement strategy spreads placement across available candidates evenly based on the field parameter. The binpack strategy places tasks on available candidates that have the least available amount of the resource that's specified with the field parameter. For example, if you binpack on memory, a task is placed on the instance with the least amount of remaining memory but still enough to run the task.

Type: String
Valid Values: random | spread | binpack
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PlatformDevice

The devices that are available on the container instance. The only supported device type is a GPU.

Contents

id

The ID for the GPUs on the container instance. The available GPU IDs can also be obtained on the container instance in the /var/lib/ecs/gpu/nvidia_gpu_info.json file.

Type: String
Required: Yes

type

The type of device that's available on the container instance. The only supported value is GPU.

Type: String
Valid Values: GPU
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PortMapping

Port mappings allow containers to access ports on the host container instance to send or receive traffic. Port mappings are specified as part of the container definition.

If you use containers in a task with the awsvpc or host network mode, specify the exposed ports using containerPort. The hostPort can be left blank or it must be the same value as the containerPort.

Most fields of this parameter (containerPort, hostPort, protocol) maps to PortBindings in the Create a container section of the Docker Remote API and the --publish option to docker run. If the network mode of a task definition is set to host, host ports must either be undefined or match the container port in the port mapping.

**Note**

You can't expose the same container port for multiple protocols. If you attempt this, an error is returned.

After a task reaches the RUNNING status, manual and automatic host and container port assignments are visible in the networkBindings section of DescribeTasks (p. 117) API responses.

### Contents

**appProtocol**

The application protocol that's used for the port mapping. This parameter only applies to Service Connect. We recommend that you set this parameter to be consistent with the protocol that your application uses. If you set this parameter, Amazon ECS adds protocol-specific connection handling to the Service Connect proxy. If you set this parameter, Amazon ECS adds protocol-specific telemetry in the Amazon ECS console and CloudWatch.

If you don't set a value for this parameter, then TCP is used. However, Amazon ECS doesn't add protocol-specific telemetry for TCP.

appProtocol is immutable in a Service Connect service. Updating this field requires a service deletion and redeployment.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: http | http2 | grpc

Required: No

**containerPort**

The port number on the container that's bound to the user-specified or automatically assigned host port.

If you use containers in a task with the awsvpc or host network mode, specify the exposed ports using containerPort.

If you use containers in a task with the bridge network mode and you specify a container port and not a host port, your container automatically receives a host port in the ephemeral port range. For...
more information, see hostPort. Port mappings that are automatically assigned in this way do not count toward the 100 reserved ports limit of a container instance.

Type: Integer
Required: No

creatorPostRange

The port number range on the container that's bound to the dynamically mapped host port range.

The following rules apply when you specify a containerPortRange:

• You must use either the bridge network mode or the awsvpc network mode.
• This parameter is available for both the EC2 and AWS Fargate launch types.
• This parameter is available for both the Linux and Windows operating systems.
• The container instance must have at least version 1.67.0 of the container agent and at least version 1.67.0-1 of the ecs-init package
• You can specify a maximum of 100 port ranges per container.
• You do not specify a hostPortRange. The value of the hostPortRange is set as follows:
  • For containers in a task with the awsvpc network mode, the hostPortRange is set to the same value as the containerPortRange. This is a static mapping strategy.
  • For containers in a task with the bridge network mode, the Amazon ECS agent finds open host ports from the default ephemeral range and passes it to docker to bind them to the container ports.
• The containerPortRange valid values are between 1 and 65535.
• A port can only be included in one port mapping per container.
• You cannot specify overlapping port ranges.
• The first port in the range must be less than last port in the range.
• Docker recommends that you turn off the docker-proxy in the Docker daemon config file when you have a large number of ports.

For more information, see Issue #11185 on the Github website.

For information about how to turn off the docker-proxy in the Docker daemon config file, see Docker daemon in the Amazon ECS Developer Guide.

You can call DescribeTasks to view the hostPortRange which are the host ports that are bound to the container ports.

Type: String
Required: No

hostPort

The port number on the container instance to reserve for your container.

If you specify a containerPortRange, leave this field empty and the value of the hostPort is set as follows:

• For containers in a task with the awsvpc network mode, the hostPort is set to the same value as the containerPort. This is a static mapping strategy.
• For containers in a task with the bridge network mode, the Amazon ECS agent finds open ports on the host and automatically binds them to the container ports. This is a dynamic mapping strategy.

If you use containers in a task with the awsvpc or host network mode, the hostPort can either be left blank or set to the same value as the containerPort.
If you use containers in a task with the bridge network mode, you can specify a non-reserved host port for your container port mapping, or you can omit the hostPort (or set it to 0) while specifying a containerPort and your container automatically receives a port in the ephemeral port range for your container instance operating system and Docker version.

The default ephemeral port range for Docker version 1.6.0 and later is listed on the instance under /proc/sys/net/ipv4/ip_local_port_range. If this kernel parameter is unavailable, the default ephemeral port range from 49153 through 65535 (Linux) or 49152 through 65535 (Windows) is used. Do not attempt to specify a host port in the ephemeral port range as these are reserved for automatic assignment. In general, ports below 32768 are outside of the ephemeral port range.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the Amazon ECS container agent ports 51678-51680. Any host port that was previously specified in a running task is also reserved while the task is running. That is, after a task stops, the host port is released. The current reserved ports are displayed in the remainingResources of DescribeContainerInstances output. A container instance can have up to 100 reserved ports at a time. This number includes the default reserved ports. Automatically assigned ports aren't included in the 100 reserved ports quota.

Type: Integer
Required: No

name

The name that's used for the port mapping. This parameter only applies to Service Connect. This parameter is the name that you use in the serviceConnectConfiguration of a service. The name can include up to 64 characters. The characters can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen.

For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

protocol

The protocol used for the port mapping. Valid values are tcp and udp. The default is tcp. protocol is immutable in a Service Connect service. Updating this field requires a service deletion and redeployment.

Type: String
Valid Values: tcp | udp
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ProtectedTask

An object representing the protection status details for a task. You can set the protection status with the `UpdateTaskProtection (p. 297)` API and get the status of tasks with the `GetTaskProtection (p. 134)` API.

## Contents

**expirationDate**

The epoch time when protection for the task will expire.

Type: Timestamp  
Required: No

**protectionEnabled**

The protection status of the task. If scale-in protection is on for a task, the value is `true`. Otherwise, it is `false`.

Type: Boolean  
Required: No

**taskArn**

The task ARN.

Type: String  
Required: No

## See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ProxyConfiguration

The configuration details for the App Mesh proxy.

For tasks that use the EC2 launch type, the container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the ecs-init package to use a proxy configuration. If your container instances are launched from the Amazon ECS optimized AMI version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI

Contents

containerName

The name of the container that will serve as the App Mesh proxy.

Type: String

Required: Yes

properties

The set of network configuration parameters to provide the Container Network Interface (CNI) plugin, specified as key-value pairs.

- IgnoredUID - (Required) The user ID (UID) of the proxy container as defined by the user parameter in a container definition. This is used to ensure the proxy ignores its own traffic. If IgnoredGID is specified, this field can be empty.

- IgnoredGID - (Required) The group ID (GID) of the proxy container as defined by the user parameter in a container definition. This is used to ensure the proxy ignores its own traffic. If IgnoredUID is specified, this field can be empty.

- AppPorts - (Required) The list of ports that the application uses. Network traffic to these ports is forwarded to the ProxyIngressPort and ProxyEgressPort.

- ProxyIngressPort - (Required) Specifies the port that incoming traffic to the AppPorts is directed to.

- ProxyEgressPort - (Required) Specifies the port that outgoing traffic from the AppPorts is directed to.

- EgressIgnoredPorts - (Required) The egress traffic going to the specified ports is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

- EgressIgnoredIPs - (Required) The egress traffic going to the specified IP addresses is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

Type: Array of KeyValuePair (p. 390) objects

Required: No

type

The proxy type. The only supported value is APPMESH.

Type: String

Valid Values: APPMESH

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
RepositoryCredentials

The repository credentials for private registry authentication.

Contents

credentialsParameter

The Amazon Resource Name (ARN) of the secret containing the private repository credentials.

Note
When you use the Amazon ECS API, AWS CLI, or AWS SDK, if the secret exists in the same Region as the task that you're launching then you can use either the full ARN or the name of the secret. When you use the AWS Management Console, you must specify the full ARN of the secret.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Resource

Describes the resources available for a container instance.

Contents

doubleValue

When the doubleValue type is set, the value of the resource must be a double precision floating-point type.

Type: Double
Required: No

integerValue

When the integerValue type is set, the value of the resource must be an integer.

Type: Integer
Required: No

longValue

When the longValue type is set, the value of the resource must be an extended precision floating-point type.

Type: Long
Required: No

name

The name of the resource, such as CPU, MEMORY, PORTS, PORTS_UDP, or a user-defined resource.

Type: String
Required: No

stringSetValue

When the stringSetValue type is set, the value of the resource must be a string type.

Type: Array of strings
Required: No

type

The type of the resource. Valid values: INTEGER, DOUBLE, LONG, or STRINGSET.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
ResourceRequirement

The type and amount of a resource to assign to a container. The supported resource types are GPUs and Elastic Inference accelerators. For more information, see Working with GPUs on Amazon ECS or Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Contents

type

The type of resource to assign to a container. The supported values are GPU or InferenceAccelerator.

Type: String

Valid Values: GPU | InferenceAccelerator

Required: Yes

value

The value for the specified resource type.

If the GPU type is used, the value is the number of physical GPUs the Amazon ECS container agent reserves for the container. The number of GPUs that's reserved for all containers in a task can't exceed the number of available GPUs on the container instance that the task is launched on.

If the InferenceAccelerator type is used, the value matches the deviceName for an InferenceAccelerator specified in a task definition.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
RuntimePlatform

Information about the platform for the Amazon ECS service or task.

For more information about RuntimePlatform, see RuntimePlatform in the Amazon Elastic Container Service Developer Guide.

Contents

cpuArchitecture

The CPU architecture.

You can run your Linux tasks on an ARM-based platform by setting the value to ARM64. This option is available for tasks that run on Linux Amazon EC2 instance or Linux containers on Fargate.

Type: String

Valid Values: X86_64 | ARM64

Required: No

operatingSystemFamily

The operating system.

Type: String


Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Scale

A floating-point percentage of the desired number of tasks to place and keep running in the task set.

Contents

unit

The unit of measure for the scale value.
Type: String
Valid Values: PERCENT
Required: No

value

The value, specified as a percent total of a service's desiredCount, to scale the task set. Accepted values are numbers between 0 and 100.
Type: Double
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Secret

An object representing the secret to expose to your container. Secrets can be exposed to a container in the following ways:

- To inject sensitive data into your containers as environment variables, use the secrets container definition parameter.
- To reference sensitive information in the log configuration of a container, use the secretOptions container definition parameter.

For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide.

Contents

name

The name of the secret.

Type: String

Required: Yes

valueFrom

The secret to expose to the container. The supported values are either the full ARN of the AWS Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store.

For information about the require AWS Identity and Access Management permissions, see Required IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service Developer Guide.

Note

If the SSM Parameter Store parameter exists in the same Region as the task you're launching, then you can use either the full ARN or name of the parameter. If the parameter exists in a different Region, then the full ARN must be specified.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://aws-sdk-cpp.github.io/api/latest/APIReference/)
- [AWS SDK for Go](https://docs.aws.amazon.com/sdk-for-go/api/)
- [AWS SDK for Java V2](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/)
- [AWS SDK for Ruby V3](https://docs.aws.amazon.com/sdk-for-ruby/api/)

---

API Version 2014-11-13

421
Service

Details on a service within a cluster.

Contents

capacityProviderStrategy

The capacity provider strategy the service uses. When using the DescribeServices API, this field is omitted if the service was created using a launch type.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: No

clusterArn

The Amazon Resource Name (ARN) of the cluster that hosts the service.

Type: String

Required: No

createdAt

The Unix timestamp for the time when the service was created.

Type: Timestamp

Required: No

createdBy

The principal that created the service.

Type: String

Required: No

deploymentConfiguration

Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.

Type: DeploymentConfiguration (p. 361) object

Required: No

deploymentController

The deployment controller type the service is using.

Type: DeploymentController (p. 363) object

Required: No

deployments

The current state of deployments for the service.

Type: Array of Deployment (p. 355) objects

Required: No
desiredCount

The desired number of instantiations of the task definition to keep running on the service. This value is specified when the service is created with CreateService (p. 16), and it can be modified with UpdateService (p. 279).

Type: Integer
Required: No

enableECSManagedTags

Determines whether to use Amazon ECS managed tags for the tasks in the service. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Type: Boolean
Required: No

enableExecuteCommand

Determines whether the execute command functionality is turned on for the service. If true, the execute command functionality is turned on for all containers in tasks as part of the service.

Type: Boolean
Required: No

events

The event stream for your service. A maximum of 100 of the latest events are displayed.

Type: Array of ServiceEvent (p. 435) objects
Required: No

healthCheckGracePeriodSeconds

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started.

Type: Integer
Required: No

launchType

The launch type the service is using. When using the DescribeServices API, this field is omitted if the service was created using a capacity provider strategy.

Type: String
Valid Values: EC2 | FARGATE | EXTERNAL
Required: No

loadBalancers

A list of Elastic Load Balancing load balancer objects. It contains the load balancer name, the container name, and the container port to access from the load balancer. The container name is as it appears in a container definition.

Type: Array of LoadBalancer (p. 393) objects
Required: No
networkConfiguration

The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the awsvpc networking mode.

Type: NetworkConfiguration (p. 404) object

Required: No

pendingCount

The number of tasks in the cluster that are in the PENDING state.

Type: Integer

Required: No

placementConstraints

The placement constraints for the tasks in the service.

Type: Array of PlacementConstraint (p. 406) objects

Required: No

placementStrategy

The placement strategy that determines how tasks for the service are placed.

Type: Array of PlacementStrategy (p. 407) objects

Required: No

platformFamily

The operating system that your tasks in the service run on. A platform family is specified only for tasks using the Fargate launch type.

All tasks that run as part of this service must use the same platformFamily value as the service (for example, LINUX).

Type: String

Required: No

platformVersion

The platform version to run your service on. A platform version is only specified for tasks that are hosted on AWS Fargate. If one isn't specified, the LATEST platform version is used. For more information, see AWS Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

propagateTags

Determines whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren't propagated.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No
roleArn

The ARN of the IAM role that's associated with the service. It allows the Amazon ECS container agent to register container instances with an Elastic Load Balancing load balancer.

Type: String

Required: No

runningCount

The number of tasks in the cluster that are in the RUNNING state.

Type: Integer

Required: No

schedulingStrategy

The scheduling strategy to use for the service. For more information, see Services.

There are two service scheduler strategies available.
- REPLICA-The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions.
- DAEMON-The daemon scheduling strategy deploys exactly one task on each active container instance. This task meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It stop tasks that don't meet the placement constraints.

Note
Fargate tasks don't support the DAEMON scheduling strategy.

Type: String

Valid Values: REPLICA | DAEMON

Required: No

serviceArn

The ARN that identifies the service. For more information about the ARN format, see Amazon Resource Name (ARN) in the Amazon ECS Developer Guide.

Type: String

Required: No

serviceName

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. Service names must be unique within a cluster. However, you can have similarly named services in multiple clusters within a Region or across multiple Regions.

Type: String

Required: No

serviceRegistries

The details for the service discovery registries to assign to this service. For more information, see Service Discovery.

Type: Array of ServiceRegistry (p. 436) objects
status

The status of the service. The valid values are ACTIVE, DRAINING, or INACTIVE.

Type: String

Required: No

tags

The metadata that you apply to the service to help you categorize and organize them. Each tag consists of a key and an optional value. You define both the key and value.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition

The task definition to use for tasks in the service. This value is specified when the service is created with CreateService (p. 16), and it can be modified with UpdateService (p. 279).

Type: String

Required: No

taskSets

Information about a set of Amazon ECS tasks in either an AWS CodeDeploy or an EXTERNAL deployment. An Amazon ECS task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.

Type: Array of TaskSet objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
ServiceConnectClientAlias

Each alias ("endpoint") is a fully-qualified name and port number that other tasks ("clients") can use to connect to this service.

Each name and port mapping must be unique within the namespace.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Contents

port

The listening port number for the Service Connect proxy. This port is available inside of all of the tasks within the same namespace.

To avoid changing your applications in client Amazon ECS services, set this to the same port that the client application uses by default. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 65535.

Required: Yes

dnsName

The dnsName is the name that you use in the applications of client tasks to connect to this service. The name must be a valid DNS name but doesn't need to be fully-qualified. The name can include up to 127 characters. The name can include lowercase letters, numbers, underscores (_), hyphens (-), and periods (.). The name can't start with a hyphen.

If this parameter isn't specified, the default value of discoveryName.namespace is used. If the discoveryName isn't specified, the port mapping name from the task definition is used in portName.namespace.

To avoid changing your applications in client Amazon ECS services, set this to the same name that the client application uses by default. For example, a few common names are database, db, or the lowercase name of a database, such as mysql or redis. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
• AWS SDK for Ruby V3
ServiceConnectConfiguration

The Service Connect configuration of your Amazon ECS service. The configuration for this service to discover and connect to services, and be discovered by, and connected from, other services within a namespace.

Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Contents

enabled

Specifies whether to use Service Connect with this service.

Type: Boolean

Required: Yes

logConfiguration

The log configuration for the container. This parameter maps to LogConfig in the Create a container section of the Docker Remote API and the --log-driver option to docker run.

By default, containers use the same logging driver that the Docker daemon uses. However, the container might use a different logging driver than the Docker daemon by specifying a log driver configuration in the container definition. For more information about the options for different supported log drivers, see Configure logging drivers in the Docker documentation.

Understand the following when specifying a log configuration for your containers.

- Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon. Additional log drivers may be available in future releases of the Amazon ECS container agent.

  For tasks on AWS Fargate, the supported log drivers are awslogs, splunk, and awsfirelens.

  For tasks hosted on Amazon EC2 instances, the supported log drivers are awslogs, fluentd, gelf, json-file, journald, logentries, syslog, splunk, and awsfirelens.

- This parameter requires version 1.18 of the Docker Remote API or greater on your container instance.

- For tasks that are hosted on Amazon EC2 instances, the Amazon ECS container agent must register the available logging drivers with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS container agent configuration in the Amazon Elastic Container Service Developer Guide.

- For tasks that are on AWS Fargate, because you don't have access to the underlying infrastructure your tasks are hosted on, any additional software needed must be installed outside of the task. For example, the Fluentd output aggregators or a remote host running Logstash to send Gelf logs to.

Type: LogConfiguration (p. 395) object

Required: No

namespace

The namespace name or full Amazon Resource Name (ARN) of the AWS Cloud Map namespace for use with Service Connect. The namespace must be in the same AWS Region as the Amazon ECS
service and cluster. The type of namespace doesn't affect Service Connect. For more information about AWS Cloud Map, see Working with Services in the AWS Cloud Map Developer Guide.

Type: String
Required: No

services
The list of Service Connect service objects. These are names and aliases (also known as endpoints) that are used by other Amazon ECS services to connect to this service.

This field is not required for a "client" Amazon ECS service that's a member of a namespace only to connect to other services within the namespace. An example of this would be a frontend application that accepts incoming requests from either a load balancer that's attached to the service or by other means.

An object selects a port from the task definition, assigns a name for the AWS Cloud Map service, and a list of aliases (endpoints) and ports for client applications to refer to this service.

Type: Array of ServiceConnectService (p. 432) objects
Required: No

See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ServiceConnectService

The Service Connect service object configuration. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide.

Contents

portName

The `portName` must match the name of one of the `portMappings` from all the containers in the task definition of this Amazon ECS service.

Type: String

Required: Yes

clientAliases

The list of client aliases for this Service Connect service. You use these to assign names that can be used by client applications. The maximum number of client aliases that you can have in this list is 1.

Each alias ("endpoint") is a fully-qualified name and port number that other Amazon ECS tasks ("clients") can use to connect to this service.

Each name and port mapping must be unique within the namespace.

For each ServiceConnectService, you must provide at least one `clientAlias` with one port.

Type: Array of ServiceConnectClientAlias (p. 428) objects

Required: No

discoveryName

The `discoveryName` is the name of the new AWS Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the AWS Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen.

If the `discoveryName` isn't specified, the port mapping name from the task definition is used in `portName.namespace`.

Type: String

Required: No

ingressPortOverride

The port number for the Service Connect proxy to listen on.

Use the value of this field to bypass the proxy for traffic on the port number specified in the named `portMapping` in the task definition of this application, and then use it in your VPC security groups to allow traffic into the proxy for this Amazon ECS service.

In aws/vpc mode and Fargate, the default value is the container port number. The container port number is in the `portMapping` in the task definition. In bridge mode, the default value is the ephemeral port of the Service Connect proxy.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 65535.
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](#)
- [AWS SDK for Go](#)
- [AWS SDK for Java V2](#)
- [AWS SDK for Ruby V3](#)
ServiceConnectServiceResource

The Service Connect resource. Each configuration maps a discovery name to a AWS Cloud Map service name. The data is stored in AWS Cloud Map as part of the Service Connect configuration for each discovery name of this Amazon ECS service.

A task can resolve the dnsName for each of the clientAliases of a service. However a task can't resolve the discovery names. If you want to connect to a service, refer to the ServiceConnectConfiguration of that service for the list of clientAliases that you can use.

Contents

discoveryArn

The Amazon Resource Name (ARN) for the namespace in AWS Cloud Map that matches the discovery name for this Service Connect resource. You can use this ARN in other integrations with AWS Cloud Map. However, Service Connect can't ensure connectivity outside of Amazon ECS.

Type: String
Required: No
discoveryName

The discovery name of this Service Connect resource.

The discoveryName is the name of the new AWS Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the AWS Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen.

If the discoveryName isn't specified, the port mapping name from the task definition is used in portName.namespace.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ServiceEvent

The details for an event that's associated with a service.

Contents

createdAt

The Unix timestamp for the time when the event was triggered.

Type: Timestamp

Required: No

id

The ID string for the event.

Type: String

Required: No

message

The event message.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ServiceRegistry

The details for the service registry.

Each service may be associated with one service registry. Multiple service registries for each service are not supported.

When you add, update, or remove the service registries configuration, Amazon ECS starts a new deployment. New tasks are registered and deregistered to the updated service registry configuration.

Contents

cfullname

The container name value to be used for your service discovery service. It's already specified in the task definition. If the task definition that your service task specifies uses the bridge or host network mode, you must specify a containerName and containerPort combination from the task definition. If the task definition that your service task specifies uses the awsvpc network mode and a type SRV DNS record is used, you must specify either a containerName and containerPort combination or a port value. However, you can't specify both.

Type: String

Required: No

ccontainerPort

The port value to be used for your service discovery service. It's already specified in the task definition. If the task definition your service task specifies uses the bridge or host network mode, you must specify a containerName and containerPort combination from the task definition. If the task definition your service task specifies uses the awsvpc network mode and a type SRV DNS record is used, you must specify either a containerName and containerPort combination or a port value. However, you can't specify both.

Type: Integer

Required: No

port

The port value used if your service discovery service specified an SRV record. This field might be used if both the awsvpc network mode and SRV records are used.

Type: Integer

Required: No

registryArn

The Amazon Resource Name (ARN) of the service registry. The currently supported service registry is AWS Cloud Map. For more information, see CreateService.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Session

The details for the execute command session.

Contents

sessionId

The ID of the execute command session.

Type: String
Required: No

streamUrl

A URL to the managed agent on the container that the SSM Session Manager client uses to send commands and receive output from the container.

Type: String
Required: No

tokenValue

An encrypted token value containing session and caller information. It's used to authenticate the connection to the container.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Setting

The current account setting for a resource.

Contents

name

The Amazon ECS resource name.

Type: String


Required: No

principalArn

The ARN of the principal. It can be a user, role, or the root user. If this field is omitted, the authenticated user is assumed.

Type: String

Required: No

value

Determines whether the account setting is on or off for the specified resource.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
SystemControl

A list of namespaces kernel parameters to set in the container. This parameter maps to Sysctls in the Create a container section of the Docker Remote API and the --sysctl option to docker run.

We don't recommend that you specify network-related systemControls parameters for multiple containers in a single task. This task also uses either the awsvpc or host network mode. It does it for the following reasons.

- For tasks that use the awsvpc network mode, if you set systemControls for any container, it applies to all containers in the task. If you set different systemControls for multiple containers in a single task, the container that's started last determines which systemControls take effect.
- For tasks that use the host network mode, the systemControls parameter applies to the container instance's kernel parameter and that of all containers of any tasks running on that container instance.

Contents

namespace

The namespaced kernel parameter to set a value for.

Type: String

Required: No

value

The namespaced kernel parameter to set a value for.

Valid IPC namespace values: "kernel.msgmax" | "kernel.msgmnb" | "kernel.msgmni" | "kernel.sem" | "kernel.shmall" | "kernel.shmax" | "kernel.shmmni" | "kernel.shm_rmid_forced", and Sysctls that start with "fs.mqueue.*"

Valid network namespace values: Sysctls that start with "net.**"

All of these values are supported by Fargate.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Tag

The metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value. You define them.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Contents

definitions:

key

One part of a key-value pair that make up a tag. A key is a general label that acts like a category for more specific tag values.

Type: String


Pattern: `^[\p{L}\p{Z}\p{N}_.:/=\-@]*$`

Required: No

definitions:

value

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within a tag category (key).

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Pattern: `^[\p{L}\p{Z}\p{N}_.:/=\-@]*$`

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
• AWS SDK for Ruby V3
Task

Details on a task in a cluster.

Contents

attachments

The Elastic Network Adapter that's associated with the task if the task uses the awsvpc network mode.

Type: Array of Attachment (p. 310) objects

Required: No

attributes

The attributes of the task

Type: Array of Attribute (p. 312) objects

Required: No

availabilityZone

The Availability Zone for the task.

Type: String

Required: No

capacityProviderName

The capacity provider that's associated with the task.

Type: String

Required: No

clusterArn

The ARN of the cluster that hosts the task.

Type: String

Required: No

connectivity

The connectivity status of a task.

Type: String

Valid Values: CONNECTED | DISCONNECTED

Required: No

connectivityAt

The Unix timestamp for the time when the task last went into CONNECTED status.

Type: Timestamp

Required: No
containerInstanceArn

The ARN of the container instances that host the task.

Type: String
 Required: No

containers

The containers that's associated with the task.

Type: Array of Container (p. 328) objects
 Required: No

cpu

The number of CPU units used by the task as expressed in a task definition. It can be expressed as an integer using CPU units (for example, 1024). It can also be expressed as a string using vCPUs (for example, 1 vCPU or 1 vcpu). String values are converted to an integer that indicates the CPU units when the task definition is registered.

If you use the EC2 launch type, this field is optional. Supported values are between 128 CPU units (0.125 vCPUs) and 10240 CPU units (10 vCPUs).

If you use the Fargate launch type, this field is required. You must use one of the following values. These values determine the range of supported values for the memory parameter:

The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.

- 256 (.25 vCPU) - Available memory values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available memory values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available memory values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available memory values: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available memory values: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)
- 8192 (8 vCPU) - Available memory values: 16 GB and 60 GB in 4 GB increments

This option requires Linux platform 1.4.0 or later.

- 16384 (16vCPU) - Available memory values: 32GB and 120 GB in 8 GB increments

This option requires Linux platform 1.4.0 or later.

Type: String
 Required: No

createdAt

The Unix timestamp for the time when the task was created. More specifically, it's for the time when the task entered the PENDING state.

Type: Timestamp
 Required: No

desiredStatus

The desired status of the task. For more information, see Task Lifecycle.
Type: String  
Required: No

**enableExecuteCommand**

Determine whether execute command functionality is turned on for this task. If true, execute command functionality is turned on all the containers in the task.

Type: Boolean  
Required: No

**ephemeralStorage**

The ephemeral storage settings for the task.

Type: [EphemeralStorage](p. 372) object  
Required: No

**executionStoppedAt**

The Unix timestamp for the time when the task execution stopped.

Type: Timestamp  
Required: No

**group**

The name of the task group that's associated with the task.

Type: String  
Required: No

**healthStatus**

The health status for the task. It's determined by the health of the essential containers in the task. If all essential containers in the task are reporting as HEALTHY, the task status also reports as HEALTHY. If any essential containers in the task are reporting as UNHEALTHY or UNKNOWN, the task status also reports as UNHEALTHY or UNKNOWN.

Type: String  
Valid Values: HEALTHY | UNHEALTHY | UNKNOWN  
Required: No

**inferenceAccelerators**

The Elastic Inference accelerator that's associated with the task.

Type: Array of [InferenceAccelerator](p. 385) objects  
Required: No
lastStatus
The last known status for the task. For more information, see Task Lifecycle.

Type: String
Required: No

launchType
The infrastructure where your task runs on. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

memory
The amount of memory (in MiB) that the task uses as expressed in a task definition. It can be expressed as an integer using MiB (for example, 1024). If it's expressed as a string using GB (for example, 1GB or 1 GB), it's converted to an integer indicating the MiB when the task definition is registered.

If you use the EC2 launch type, this field is optional.

If you use the Fargate launch type, this field is required. You must use one of the following values. The value that you choose determines the range of supported values for the cpu parameter.

- 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available cpu values: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available cpu values: 512 (.5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available cpu values: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available cpu values: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available cpu values: 4096 (4 vCPU)
- Between 16 GB and 60 GB in 4 GB increments - Available cpu values: 8192 (8 vCPU)

This option requires Linux platform 1.4.0 or later.

- Between 32GB and 120 GB in 8 GB increments - Available cpu values: 16384 (16 vCPU)

This option requires Linux platform 1.4.0 or later.

Type: String
Required: No

overrides
One or more container overrides.

Type: TaskOverride (p. 458) object
Required: No

platformFamily
The operating system that your tasks are running on. A platform family is specified only for tasks that use the Fargate launch type.
All tasks that run as part of this service must use the same platformFamily value as the service (for example, LINUX.).

Type: String
Required: No

**platformVersion**

The platform version where your task runs on. A platform version is only specified for tasks that use the Fargate launch type. If you didn't specify one, the LATEST platform version is used. For more information, see [AWS Fargate Platform Versions](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-platform-versions.html) in the *Amazon Elastic Container Service Developer Guide*.

Type: String
Required: No

**pullStartedAt**

The Unix timestamp for the time when the container image pull began.

Type: Timestamp
Required: No

**pullStoppedAt**

The Unix timestamp for the time when the container image pull completed.

Type: Timestamp
Required: No

**startedAt**

The Unix timestamp for the time when the task started. More specifically, it's for the time when the task transitioned from the PENDING state to the RUNNING state.

Type: Timestamp
Required: No

**startedBy**

The tag specified when a task is started. If an Amazon ECS service started the task, the startedBy parameter contains the deployment ID of that service.

Type: String
Required: No

**stopCode**

The stop code indicating why a task was stopped. The stoppedReason might contain additional details.

For more information about stop code, see [Stopped tasks error codes](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/stop-code-status.html) in the *Amazon ECS User Guide*.

The following are valid values:
- TaskFailedToStart
- EssentialContainerExited
- UserInitiated
• TerminationNotice
• ServiceSchedulerInitiated
• SpotInterruption

Type: String

Valid Values: TaskFailedToStart | EssentialContainerExited | UserInitiated | ServiceSchedulerInitiated | SpotInterruption | TerminationNotice

Required: No

stoppedAt

The Unix timestamp for the time when the task was stopped. More specifically, it's for the time when the task transitioned from the RUNNING state to the STOPPED state.

Type: Timestamp

Required: No

stoppedReason

The reason that the task was stopped.

Type: String

Required: No

stoppingAt

The Unix timestamp for the time when the task stops. More specifically, it's for the time when the task transitions from the RUNNING state to STOPPING.

Type: Timestamp

Required: No

tags

The metadata that you apply to the task to help you categorize and organize the task. Each tag consists of a key and an optional value. You define both the key and value.

The following basic restrictions apply to tags:
• Maximum number of tags per resource - 50
• For each resource, each tag key must be unique, and each tag key can have only one value.
• Maximum key length - 128 Unicode characters in UTF-8
• Maximum value length - 256 Unicode characters in UTF-8
• If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
• Tag keys and values are case-sensitive.
• Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 441) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No
taskArn

The Amazon Resource Name (ARN) of the task.

Type: String

Required: No

taskDefinitionArn

The ARN of the task definition that creates the task.

Type: String

Required: No

version

The version counter for the task. Every time a task experiences a change that starts a CloudWatch event, the version counter is incremented. If you replicate your Amazon ECS task state with CloudWatch Events, you can compare the version of a task reported by the Amazon ECS API actions with the version reported in CloudWatch Events for the task (inside the detail object) to verify that the version in your event stream is current.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskDefinition

The details of a task definition which describes the container and volume definitions of an Amazon Elastic Container Service task. You can specify which Docker images to use, the required resources, and other configurations related to launching the task definition through an Amazon ECS service or task.

Contents

compatibilities

The task launch types the task definition validated against during task definition registration. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

Type: Array of strings

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

containerDefinitions

A list of container definitions in JSON format that describe the different containers that make up your task. For more information about container definition parameters and defaults, see Amazon ECS Task Definitions in the Amazon Elastic Container Service Developer Guide.

Type: Array of ContainerDefinition (p. 331) objects

Required: No

cpu

The number of cpu units used by the task. If you use the EC2 launch type, this field is optional. Any value can be used. If you use the Fargate launch type, this field is required. You must use one of the following values. The value that you choose determines your range of valid values for the memory parameter.

The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.

- 256 (.25 vCPU) - Available memory values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available memory values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available memory values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available memory values: 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available memory values: 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)
- 8192 (8 vCPU) - Available memory values: 16 GB and 60 GB in 4 GB increments

This option requires Linux platform 1.4.0 or later.

- 16384 (16vCPU) - Available memory values: 32GB and 120 GB in 8 GB increments

This option requires Linux platform 1.4.0 or later.

Type: String

Required: No
deregisteredAt
The Unix timestamp for the time when the task definition was deregistered.
Type: Timestamp
Required: No

ephemeralStorage
The ephemeral storage settings to use for tasks run with the task definition.
Type: EphemeralStorage (p. 372) object
Required: No

executionRoleArn
The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make AWS API calls on your behalf. The task execution IAM role is required depending on the requirements of your task. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic Container Service Developer Guide.
Type: String
Required: No

family
The name of a family that this task definition is registered to. Up to 255 characters are allowed. Letters (both uppercase and lowercase letters), numbers, hyphens (-), and underscores (_) are allowed.

A family groups multiple versions of a task definition. Amazon ECS gives the first task definition that you registered to a family a revision number of 1. Amazon ECS gives sequential revision numbers to each task definition that you add.
Type: String
Required: No

inferenceAccelerators
The Elastic Inference accelerator that's associated with the task.
Type: Array of InferenceAccelerator (p. 385) objects
Required: No

ipcMode
The IPC resource namespace to use for the containers in the task. The valid values are host, task, or none. If host is specified, then all containers within the tasks that specified the host IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If task is specified, all containers within the specified task share the same IPC resources. If none is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance. For more information, see IPC settings in the Docker run reference.

If the host IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose. For more information, see Docker security.
If you are setting namespaced kernel parameters using systemControls for the containers in the task, the following will apply to your IPC resource namespace. For more information, see System Controls in the Amazon Elastic Container Service Developer Guide.

- For tasks that use the host IPC mode, IPC namespace related systemControls are not supported.
- For tasks that use the task IPC mode, IPC namespace related systemControls will apply to all containers within a task.

Note
This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: String

Valid Values: host | task | none

Required: No

memory
The amount (in MiB) of memory used by the task.

If your tasks runs on Amazon EC2 instances, you must specify either a task-level memory value or a container-level memory value. This field is optional and any value can be used. If a task-level memory value is specified, the container-level memory value is optional. For more information regarding container-level memory and memory reservation, see ContainerDefinition.

If your tasks runs on AWS Fargate, this field is required. You must use one of the following values. The value you choose determines your range of valid values for the cpu parameter.

- 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available cpu values: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available cpu values: 512 (5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available cpu values: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available cpu values: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available cpu values: 4096 (4 vCPU)
- Between 16 GB and 60 GB in 4 GB increments - Available cpu values: 8192 (8 vCPU)

This option requires Linux platform 1.4.0 or later.

- Between 32GB and 120 GB in 8 GB increments - Available cpu values: 16384 (16 vCPU)

This option requires Linux platform 1.4.0 or later.

Type: String

Required: No

networkMode
The Docker networking mode to use for the containers in the task. The valid values are none, bridge, awsvpc, and host. If no network mode is specified, the default is bridge.

For Amazon ECS tasks on Fargate, the awsvpc network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <default> or awsvpc can be used. If the network mode is set to none, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The host and awsvpc network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the bridge mode.
With the host and awsvpc network modes, exposed container ports are mapped directly to the corresponding host port (for the host network mode) or the attached elastic network interface port (for the awsvpc network mode), so you cannot take advantage of dynamic host port mappings.

**Important**
When using the host network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.

If the network mode is awsvpc, the task is allocated an elastic network interface, and you must specify a `NetworkConfiguration` (p. 404) value when you create a service or run a task with the task definition. For more information, see `Task Networking` in the *Amazon Elastic Container Service Developer Guide*.

If the network mode is host, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.

For more information, see `Network settings` in the *Docker run reference*.

**pidMode**

The process namespace to use for the containers in the task. The valid values are host or task. On Fargate for Linux containers, the only valid value is task. For example, monitoring sidecars might need pidMode to access information about other containers running in the same task.

If host is specified, all containers within the tasks that specified the host PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance.

If task is specified, all containers within the specified task share the same process namespace.

If no value is specified, the default is a private namespace for each container. For more information, see `PID settings` in the *Docker run reference*.

If the host PID mode is used, there's a heightened risk of undesired process namespace exposure. For more information, see `Docker security`.

**Note**
This parameter is not supported for Windows containers.

**Note**
This parameter is only supported for tasks that are hosted on AWS Fargate if the tasks are using platform version 1.4.0 or later (Linux). This isn't supported for Windows containers on Fargate.

**placementConstraints**

An array of placement constraint objects to use for tasks.

**Note**
This parameter isn't supported for tasks run on AWS Fargate.

**Type:** Array of `TaskDefinitionPlacementConstraint` (p. 457) objects
**proxyConfiguration**

The configuration details for the App Mesh proxy.

Your Amazon ECS container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the `ecs-init` package to use a proxy configuration. If your container instances are launched from the Amazon ECS optimized AMI version 20190301 or later, they contain the required versions of the container agent and `ecs-init`. For more information, see [Amazon ECS-optimized Linux AMI](https://docs.aws.amazon.com/elasticcontainerservice/latest/developerguide/amazon-ecs-optimized-linux-ami.html) in the *Amazon Elastic Container Service Developer Guide*.

Type: `ProxyConfiguration (p. 413)` object

**registeredAt**

The Unix timestamp for the time when the task definition was registered.

Type: Timestamp

**registeredBy**

The principal that registered the task definition.

Type: String

**requiresAttributes**

The container instance attributes required by your task. When an Amazon EC2 instance is registered to your cluster, the Amazon ECS container agent assigns some standard attributes to the instance. You can apply custom attributes. These are specified as key-value pairs using the Amazon ECS console or the `PutAttributes (p. 182)` API. These attributes are used when determining task placement for tasks hosted on Amazon EC2 instances. For more information, see [Attributes](https://docs.aws.amazon.com/elasticcontainerservice/latest/developerguide/ecs-manage-attributes.html) in the *Amazon Elastic Container Service Developer Guide*.

**Note**

This parameter isn’t supported for tasks run on AWS Fargate.

Type: Array of `Attribute (p. 312)` objects

**requiresCompatibilities**

The task launch types the task definition was validated against. The valid values are EC2, FARGATE, and EXTERNAL. For more information, see [Amazon ECS launch types](https://docs.aws.amazon.com/elasticcontainerservice/latest/developerguide/ecs-limits.html) in the *Amazon Elastic Container Service Developer Guide*.

Type: Array of strings

Valid Values: EC2 | FARGATE | EXTERNAL

**revision**

The revision of the task in a particular family. The revision is a version number of a task definition in a family. When you register a task definition for the first time, the revision is 1. Each time that you register a new revision of a task definition in the same family, the revision value always increases by one. This is even if you deregistered previous revisions in this family.
Type: Integer
Required: No

runtimePlatform

The operating system that your task definitions are running on. A platform family is specified only for tasks using the Fargate launch type.

When you specify a task in a service, this value must match the runtimePlatform value of the service.

Type: RuntimePlatform (p. 419) object
Required: No

status

The status of the task definition.

Type: String
Valid Values: ACTIVE | INACTIVE | DELETE_IN_PROGRESS
Required: No

taskDefinitionArn

The full Amazon Resource Name (ARN) of the task definition.

Type: String
Required: No

taskRoleArn

The short name or full Amazon Resource Name (ARN) of the AWS Identity and Access Management role that grants containers in the task permission to call AWS APIs on your behalf. For more information, see Amazon ECS Task Role in the Amazon Elastic Container Service Developer Guide.

IAM roles for tasks on Windows require that the -EnableTaskIAMRole option is set when you launch the Amazon ECS-optimized Windows AMI. Your containers must also run some configuration code to use the feature. For more information, see Windows IAM roles for tasks in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

volumes

The list of data volume definitions for the task. For more information, see Using data volumes in tasks in the Amazon Elastic Container Service Developer Guide.

Note

The host and sourcePath parameters aren't supported for tasks run on AWS Fargate.

Type: Array of Volume (p. 468) objects
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
TaskDefinitionPlacementConstraint

The constraint on task placement in the task definition. For more information, see Task placement constraints in the Amazon Elastic Container Service Developer Guide.

Note
Task placement constraints aren’t supported for tasks run on AWS Fargate.

Contents

expression

A cluster query language expression to apply to the constraint. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

type

The type of constraint. The MemberOf constraint restricts selection to be from a group of valid candidates.

Type: String
Valid Values: memberOf
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskOverride

The overrides that are associated with a task.

Contents

containerOverrides

One or more container overrides that are sent to a task.

Type: Array of ContainerOverride (p. 351) objects

Required: No
cpu

The CPU override for the task.

Type: String

Required: No
ephemeralStorage

The ephemeral storage setting override for the task.

Note

This parameter is only supported for tasks hosted on Fargate that use the following platform versions:

• Linux platform version 1.4.0 or later.
• Windows platform version 1.0.0 or later.

Type: EphemeralStorage (p. 372) object

Required: No
executionRoleArn

The Amazon Resource Name (ARN) of the task execution role override for the task. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No
inferenceAcceleratorOverrides

The Elastic Inference accelerator override for the task.

Type: Array of InferenceAcceleratorOverride (p. 386) objects

Required: No
memory

The memory override for the task.

Type: String

Required: No
taskRoleArn

The Amazon Resource Name (ARN) of the role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see IAM Role for Tasks in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskSet

Information about a set of Amazon ECS tasks in either an AWS CodeDeploy or an EXTERNAL deployment. An Amazon ECS task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.

Contents

capacityProviderStrategy

The capacity provider strategy that are associated with the task set.

Type: Array of CapacityProviderStrategyItem (p. 318) objects

Required: No

clusterArn

The Amazon Resource Name (ARN) of the cluster that the service that hosts the task set exists in.

Type: String

Required: No

computedDesiredCount

The computed desired count for the task set. This is calculated by multiplying the service's desiredCount by the task set's scale percentage. The result is always rounded up. For example, if the computed desired count is 1.2, it rounds up to 2 tasks.

Type: Integer

Required: No

createdAt

The Unix timestamp for the time when the task set was created.

Type: Timestamp

Required: No

externalId

The external ID associated with the task set.

If an AWS CodeDeploy deployment created a task set, the externalId parameter contains the AWS CodeDeploy deployment ID.

If a task set is created for an external deployment and is associated with a service discovery registry, the externalId parameter contains the ECS_TASK_SET_EXTERNAL_ID AWS Cloud Map attribute.

Type: String

Required: No

id

The ID of the task set.

Type: String

Required: No
launchType

The launch type the tasks in the task set are using. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

loadBalancers

Details on a load balancer that are used with a task set.

Type: Array of LoadBalancer (p. 393) objects

Required: No

networkConfiguration

The network configuration for the task set.

Type: NetworkConfiguration (p. 404) object

Required: No

pendingCount

The number of tasks in the task set that are in the PENDING status during a deployment. A task in the PENDING state is preparing to enter the RUNNING state. A task set enters the PENDING status when it launches for the first time or when it's restarted after being in the STOPPED state.

Type: Integer

Required: No

platformFamily

The operating system that your tasks in the set are running on. A platform family is specified only for tasks that use the Fargate launch type.

All tasks in the set must have the same value.

Type: String

Required: No

platformVersion

The AWS Fargate platform version where the tasks in the task set are running. A platform version is only specified for tasks run on AWS Fargate. For more information, see AWS Fargate platform versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

runningCount

The number of tasks in the task set that are in the RUNNING status during a deployment. A task in the RUNNING state is running and ready for use.

Type: Integer

Required: No
scale

A floating-point percentage of your desired number of tasks to place and keep running in the task
set.

Type: Scale (p. 420) object

Required: No

serviceArn

The Amazon Resource Name (ARN) of the service the task set exists in.

Type: String

Required: No

serviceRegistries

The details for the service discovery registries to assign to this task set. For more information, see
Service discovery.

Type: Array of ServiceRegistry (p. 436) objects

Required: No

stabilityStatus

The stability status. This indicates whether the task set has reached a steady state. If the following
conditions are met, the task set are in STEADY_STATE:
• The task runningCount is equal to the computedDesiredCount.
• The pendingCount is 0.
• There are no tasks that are running on container instances in the DRAINING status.
• All tasks are reporting a healthy status from the load balancers, service discovery, and container
  health checks.

If any of those conditions aren't met, the stability status returns STABILIZING.

Type: String

Valid Values: STEADY_STATE | STABILIZING

Required: No

stabilityStatusAt

The Unix timestamp for the time when the task set stability status was retrieved.

Type: Timestamp

Required: No

startedBy

The tag specified when a task set is started. If an AWS CodeDeploy deployment created the task set,
the startedBy parameter is CODE_DEPLOY. If an external deployment created the task set, the
startedBy field isn't used.

Type: String

Required: No

status

The status of the task set. The following describes each state.
PRIMARY

The task set is serving production traffic.

ACTIVE

The task set isn't serving production traffic.

DRAINING

The tasks in the task set are being stopped, and their corresponding targets are being
deregistered from their target group.

Type: String

Required: No

tags

The metadata that you apply to the task set to help you categorize and organize them. Each tag
consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other
  services may have restrictions on allowed characters. Generally allowed characters are: letters,
  numbers, and spaces representable in UTF-8, and the following characters: + - . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys
  or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix.
  Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition

The task definition that the task set is using.

Type: String

Required: No

taskSetArn

The Amazon Resource Name (ARN) of the task set.

Type: String

Required: No

updatedAt

The Unix timestamp for the time when the task set was last updated.

Type: Timestamp
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Tmpsfs

The container path, mount options, and size of the tmpfs mount.

Contents

columnPath

The absolute file path where the tmpfs volume is to be mounted.

Type: String

Required: Yes

size

The maximum size (in MiB) of the tmpfs volume.

Type: Integer

Required: Yes

mountOptions

The list of tmpfs volume mount options.

Valid values: "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev" | "nodev" |
"exec" | "noexec" | "sync" | "async" | "désync" | "remount" | "mand" |
"nomand" | "atime" | "noatime" | "diratime" | "nodiratime" | "bind" | "rbind" | "unbindable" |
"runbindable" | "private" | "rprivate" | "shared" |
"rshared" | "slave" | "rslave" | "relatime" | "norelatime" | "strictatime" |
"nostRICTatime" | "mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"

Type: Array of strings

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Amazon Elastic Container Service API Reference

Ulimit

The ulimit settings to pass to the container.

Amazon ECS tasks hosted on AWS Fargate use the default resource limit values set by the operating system with the exception of the nofile resource limit parameter which AWS Fargate overrides. The nofile resource limit sets a restriction on the number of open files that a container can use. The default nofile soft limit is 1024 and the default hard limit is 4096.

You can specify the ulimit settings for a container in a task definition.

Contents

hardLimit

The hard limit for the ulimit type.

Type: Integer

Required: Yes

name

The type of the ulimit.

Type: String

Valid Values: core | cpu | data | fsize | locks | memlock | msgqueue | nice | nofile | nproc | rss | rtprio | rtttime | sigpending | stack

Required: Yes

softLimit

The soft limit for the ulimit type.

Type: Integer

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
VersionInfo

The Docker and Amazon ECS container agent version information about a container instance.

Contents

agentHash

The Git commit hash for the Amazon ECS container agent build on the amazon-ecs-agent GitHub repository.

Type: String
Required: No

agentVersion

The version number of the Amazon ECS container agent.

Type: String
Required: No

dockerVersion

The Docker version that's running on the container instance.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Volume

A data volume that's used in a task definition. For tasks that use the Amazon Elastic File System (Amazon EFS), specify an efsVolumeConfiguration. For Windows tasks that use Amazon FSx for Windows File Server file system, specify a fsxWindowsFileServerVolumeConfiguration. For tasks that use a Docker volume, specify a DockerVolumeConfiguration. For tasks that use a bind mount host volume, specify a host and optional sourcePath. For more information, see Using Data Volumes in Tasks.

Contents

dockerVolumeConfiguration

This parameter is specified when you use Docker volumes.

Windows containers only support the use of the local driver. To use bind mounts, specify the host parameter instead.

**Note**
Docker volumes aren't supported by tasks run on AWS Fargate.

Type: [DockerVolumeConfiguration](p. 365) object

Required: No

efsVolumeConfiguration

This parameter is specified when you use an Amazon Elastic File System file system for task storage.

Type: [EFSVolumeConfiguration](p. 368) object

Required: No

fsxWindowsFileServerVolumeConfiguration

This parameter is specified when you use Amazon FSx for Windows File Server file system for task storage.

Type: [FSxWindowsFileServerVolumeConfiguration](p. 379) object

Required: No

host

This parameter is specified when you use bind mount host volumes. The contents of the host parameter determine whether your bind mount host volume persists on the host container instance and where it's stored. If the host parameter is empty, then the Docker daemon assigns a host path for your data volume. However, the data isn't guaranteed to persist after the containers that are associated with it stop running.

Windows containers can mount whole directories on the same drive as $env:ProgramData. Windows containers can't mount directories on a different drive, and mount point can't be across drives. For example, you can mount C:\my\path:C:\my\path and D:\D:\, but not D:\my\path:C:\my\path or D:\:C:\my\path.

Type: [HostVolumeProperties](p. 384) object

Required: No

name

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. This name is referenced in the sourceVolume parameter of container definition mountPoints.
This is required when you use an Amazon EFS volume.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
VolumeFrom

Details on a data volume from another container in the same task definition.

Contents

**readOnly**

If this value is `true`, the container has read-only access to the volume. If this value is `false`, then the container can write to the volume. The default value is `false`.

Type: Boolean

Required: No

**sourceContainer**

The name of another container within the same task definition to mount volumes from.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- [AWS SDK for C++](https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/api-reference.html)
- [AWS SDK for Go](https://docs.aws.amazon.com/sdk-for-go/api/)
- [AWS SDK for Java V2](https://docs.aws.amazon.com/java/api-reference/)
- [AWS SDK for Ruby V3](https://docs.aws.amazon.com/sdk-for-ruby/api-reference/)

470
Request throttling for the Amazon ECS API

Amazon Elastic Container Service throttles all API requests for each AWS account on a per-Region basis. We do this to ensure consistent performance and fair usage of the service for all Amazon ECS customers. Throttling ensures that calls to the Amazon ECS API do not exceed the maximum allowed API request quotas for both Amazon ECS and the other AWS services that it integrates with. API calls are subject to the request quotas whether they originate from:

- A third-party application
- A command line tool
- The Amazon ECS console

If you exceed an API throttling quota, you get the ThrottlingException error code.

An error occurred (ThrottlingException) when calling the DescribeClusters operation (reached max retries: 4): Rate exceeded.
com.amazonaws.services.ecs.model.AmazonECSException: Rate exceeded (Service: AmazonECS; Status Code: 400; Error Code: ThrottlingException; Request ID: 5ed90669-e454-464d-9b2f-6523bc86f537; Proxy: null)

How throttling Is applied

Amazon ECS uses the token bucket algorithm to implement API throttling. With this algorithm, your account has a bucket that holds a specific number of tokens. The number of tokens in the bucket represents your throttling quota at any given second.

Amazon ECS examines the rate of API request submissions for all Amazon ECS APIs in your account, per Region, and applies two types of API throttling quotas: sustained and burst. The sustained rate is the average number of API requests allowed per second over time for an operation. The burst rate is the maximum number of API requests allowed in any one second. With burst, you can periodically make a higher number of API requests than the sustained rate. Following which, Amazon ECS throttles subsequent API requests until the rate of API requests allowed over time stabilizes to the sustained rate. In the token bucket algorithm, the bucket maximum capacity signifies the burst rate and the bucket refill rate is the sustained rate. We will use these terms to provide you an illustration of Amazon ECS API request throttling in the following example.

You are throttled on the number of API requests you make and each request removes one token from the token bucket. For example, the bucket size for Cluster read actions, such as the DescribeClusters API, is 50 tokens, so you can make up to 50 DescribeClusters requests in one second. If you exceed 50 requests in a second, you are throttled and the remaining requests within that second fail.

Buckets automatically refill at a set rate. If the bucket is below its maximum capacity, a set number of tokens is added back to it every second until it reaches its maximum capacity. If the bucket is full when refill tokens arrive, they are discarded. The bucket cannot hold more than its maximum number of tokens. For example, the bucket size for Cluster read actions, such as the DescribeClusters API, is 50 tokens, and the refill rate is 20 tokens per second. If you make 50 DescribeClusters API requests in a second, the bucket is immediately reduced to zero tokens. The bucket is then refilled by 20 tokens every second, until it reaches its maximum capacity of 50 tokens. This means that the previously empty bucket reaches its maximum capacity after 2.5 seconds.
You do not need to wait for the bucket to be completely full before you can make API requests. You can use tokens as they are added to the bucket. If you immediately use the refill tokens, the bucket does not reach its maximum capacity. For example, the bucket size for Cluster read actions, such as the DescribeClusters API, is 50 tokens, and the refill rate is 20 tokens per second. If you deplete the bucket by making 50 API requests in a second, you can continue to make 20 API requests per second. The bucket can refill to the maximum capacity only if you make fewer than 20 API requests per second.

Request Token Bucket Sizes and Refill Rates

For request rate limiting purposes, API actions are grouped into categories. All API actions in a category share the same token bucket. For instance, DescribeClusters and ListClusters APIs share the Cluster read actions bucket, for which capacity is 50 and refill rate is 20. This means that the cumulative number of API requests for all Cluster read actions is throttled by the same burst rate quota of 50 API requests. Thus, you can make 25 DescribeClusters and 25 ListClusters API requests in one second, or 30 DescribeClusters and 20 ListClusters, or 50 DescribeClusters and 0 ListClusters, or 0 DescribeClusters and 50 ListClusters, but you cannot make 50 DescribeClusters and 50 ListClusters requests at the same time. Sustained rate is similarly applied cumulatively to all API requests within a bucket.

The following table shows the bucket capacity (or burst) and refill rate (or sustained) for all AWS Regions. All API action categories enforce rate quotas for each AWS account on a per-Region basis.

<table>
<thead>
<tr>
<th>API action category</th>
<th>Actions</th>
<th>Bucket maximum capacity (or Burst rate)</th>
<th>Bucket refill rate (or Sustained rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster modify actions</td>
<td>• CreateCluster</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• DeleteCluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PutClusterCapacityProviders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateCluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateClusterSettings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster read actions</td>
<td>• DescribeClusters</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>• ListClusters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task definition modify</td>
<td>• DeregisterTaskDefinition</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>actions</td>
<td>• RegisterTaskDefinition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task definition read</td>
<td>• DescribeTaskDefinition</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>actions</td>
<td>• ListTaskDefinitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ListTaskDefinitionFamilies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task definition deletion</td>
<td>• DeleteTaskDefinitions</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity provider modify</td>
<td>• CreateCapacityProvider</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>actions</td>
<td>• DeleteCapacityProvider</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateCapacityProvider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity provider read</td>
<td>• DescribeCapacityProviders</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag modify actions</td>
<td>• TagResource</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>API action category</td>
<td>Actions</td>
<td>Bucket maximum capacity (or Burst rate)</td>
<td>Bucket refill rate (or Sustained rate)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------------------------------------</td>
<td>----------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td></td>
<td>• UntagResource</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag read actions</td>
<td>• ListTagsForResource</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Setting modify actions</td>
<td>• DeleteAccountSetting</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• PutAccountSetting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PutAccountSettingDefault</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RunTask(^1) (p. 473)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting read actions</td>
<td>• ListAccountSettings</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Cluster resource modify actions</td>
<td>• DeleteAttributes</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>• DeregisterContainerInstance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ExecuteCommand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PutAttributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RunTask(^1) (p. 473)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• StartTask</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• StopTask</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateContainerAgent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateContainerInstancesStates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster resource read actions</td>
<td>• DescribeContainerInstances</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>• DescribeTasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ListAttributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ListContainerInstances</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ListTasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent modify actions</td>
<td>• RegisterContainerInstance</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>• SubmitAttachmentStateChanges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SubmitContainerStateChange</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SubmitTaskStateChange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service modify actions</td>
<td>• CreateService</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>• DeleteService</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateService</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service read actions</td>
<td>• DescribeServices</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>• ListServices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task protection actions</td>
<td>• UpdateTaskProtection</td>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>• GetTaskProtection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster service resource read actions</td>
<td>• ListServicesByNamespace</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^1\) AWS Fargate (Fargate) additionally throttles Amazon ECS RunTask API to the rates listed [here](#) in the *User Guide for Fargate*.  

API Version 2014-11-13

473
Adjusting API throttling quotas

You can request an increase for API throttling quotas for your AWS account. To request a quota adjustment, contact the [AWS Support Center](https://aws.amazon.com/support/).  

Handling API throttling

You can implement an error retry and exponential back-off strategy to avoid the impact of throttling errors on your workloads. If you use AWS SDK, the automatic retry logic is already built-in and configurable. You can refer to the following resources for more details:

- [Exponential backoff and jitter](https://aws.amazon.com/blogs/aws/) blog post
- [Timeouts, retries, and backoff with jitter](https://aws.amazon.com/builders-library/) article in the Amazon Builder’s Library
Ensuring idempotency

When you perform a mutating operation, you might see an exception because of timeouts or server issues occurring after the resources are mutated. This can make it difficult to determine whether the mutation occurred, and could lead to multiple retries. However, if the original operation and the subsequent retries actually performed the mutations you might have applied stacking changes or created more resources than you intended to. Idempotency ensures that an operation mutates resources no more than one time. With an idempotent request, if the original request mutated successfully, any subsequent retries complete successfully without performing any further mutation.

Topics

• Idempotency in Amazon ECS (p. 475)
• Idempotency for RunTask (p. 475)
• Examples (p. 476)
• Retry recommendations for idempotent requests (p. 479)

Idempotency in Amazon ECS

The following API actions optionally support idempotency using a client token. The corresponding AWS CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string. To make an idempotent API request using one of these actions, specify a client token in the request. You should not reuse the same client token for other API requests. If you retry a request that completed successfully using the same client token and the same parameters, the retry succeeds without performing any further actions.

Idempotent using a client token

• CreateService
  
  The client token can be up to 36 ASCII characters in the range of 33-126 (inclusive).

• CreateTaskSet
  
  The client token can be up to 36 ASCII characters in the range of 33-126 (inclusive).

• RunTask
  
  The client token can be up to 64 ASCII characters in the range of 33-126 (inclusive).

Types of idempotency

• cluster – Requests with the same token in the same cluster are idempotent. For example, ClientToken A can only be used as a request parameter one time for RunTask requests in Cluster X. RunTask requests to other clusters are considered a separate request. Therefore, you can use ClientToken A for a RunTask request for cluster Y.

Idempotency for RunTask

The RunTask API supports idempotency using a client token. A client token is a unique string that you specify when you make an API request. If you retry an API request with the same client token and the same request parameters after it has completed successfully, the result of the original request is returned. If you retry a successful request using the same client token, but one or more
of the parameters are different, other than the Region or Availability Zone, the retry fails with a
ConflictException. If you do not specify your own client token, the AWS SDK and AWS Command
Line Interface automatically generate a client token for the request to ensure that it is idempotent. A
client token can be any string that includes up to 64 ASCII characters in the range of 33-126 (inclusive).

The time to live (TTL) for the RunTask client token is 24 hours. You should not reuse the same client
token for different requests. The client token maximum TTL is valid for whichever of the following two
values is lower:

- 24 hours
- The lifetime of the resource plus one hour

The lifetime of a resource is the timestamp at which the task was created to the timestamp at which
the last status (lastStatus) transitioned to STOPPED. When you use RunTask to launch more than
one task, the lifetime of the resource equals the lifetime of the last task that transitioned to STOPPED.

RunTask retry rules and responses

When you retry a request because you received a 5xx exception, the retried successful response normally
includes all of the information that the original request would have returned. Tasks that have been
stopped for under an hour only include the task ARN, last status, and desired status.

The following is an example snippet of the response from a retry when there is one running task, one
stopped task, and one task that failed to launch.

```json
{
 "failures": [
 {
 "arn": "arn:aws:ecs:us-east-1:123456789012:container/4df26bb4-f057-467b-a079-961675296e64",
 "reason": "RESOURCE:MEMORY"
 }
],
 "tasks": [
 {
 "desiredStatus": "RUNNING",
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/default/fdf2c302-468c-4e55-b884-5331d816e7fb",
 ...
 },
 {
 "taskArn": "arn:aws:ecs:us-east-1:123456789012:task/default/fdf2c302-468c-4e55-b884-5331d819999",
 "lastStatus": "STOPPED",
 ...
 }
]
}
```

Failures that are over an hour old only include the number of failed tasks.

Examples

AWS CLI command examples

To make an AWS CLI command idempotent, add the --client-token option.
Example: create-service

The following `create-service` command uses idempotency as it includes a client token.

```bash
aws ecs create-service
 --cluster MyCluster
 --service MyService
 --task-definition MyTaskDefinition:2
 --desired-count 2
 --launch-type FARGATE
 --platform-version LATEST
 --network-configuration
 "awsvpcConfiguration={subnets=["subnet-12344321"],securityGroups=["sg-12344321"],assignPublicIp="ENABLED"}
 --client-token 550e8400-e29b-41d4-a716-44665544
```

Example: create-task-set

The following `create-task-set` command uses idempotency as it includes a client token.

```bash
aws ecs create-task-set
 --cluster MyCluster
 --service MyService
 --task-definition MyTaskDefinition:2
 --network-configuration
 "awsvpcConfiguration={subnets=["subnet-12344321"],securityGroups=["sg-12344321"]}"
 --client-token 550e8400-e29b-41d4-a716-44665544
```

Example: run-task

The following `run-task` command uses idempotency as it includes a client token.

```bash
aws ecs run-task
 --cluster MyCluster
 --task-definition MyTaskDefinition:2
 --client-token 550e8400-e29b-41d4-a716-446655440000
```

API request examples

To make an API request idempotent, add the `clientToken` parameter.

Example: CreateService

The following `CreateService` API request uses idempotency as it includes a client token.

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 87
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateService
X-Amz-Date: 20150429T170125Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "serviceName": "MyService",
 "taskDefinition": "MyTaskDefinition:2",
 "desiredCount": 10,
 "capacityProviderStrategy": [

```
Example: CreateTaskSet

The following `CreateTaskSet` API request uses idempotency as it includes a client token.

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 87
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateTaskSet
X-Amz-Date: 20150429T170125Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "serviceName": "MyService",
 "taskDefinition": "mytask:1",
 "desiredCount": 1,
 "capacityProviderStrategy": [
 {
 "base": "number",
 "capacityProvider": "FARGATE",
 "weight": 1
 }
],
 "capacityProviderStrategy": [
 {
 "base": "number",
 "capacityProvider": "FARGATE_SPOT",
 "weight": 1
 }
],
 "clientToken": "550e8400-e29b-41d4-a716-44665544"
}
```

Example: RunTask

The following `RunTask` API request uses idempotency as it includes a client token.

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 45
X-Amz-Target: AmazonEC2ContainerServiceV20141113.RunTask
X-Amz-Date: 20161121T215740Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "serviceName": "MyService",
 "taskDefinition": "mytask:1",
 "desiredCount": 1,
 "capacityProviderStrategy": [
 {
 "base": "number",
 "capacityProvider": "FARGATE",
 "weight": 1
 }
],
 "capacityProviderStrategy": [
 {
 "base": "number",
 "capacityProvider": "FARGATE_SPOT",
 "weight": 1
 }
],
 "clientToken": "550e8400-e29b-41d4-a716-44665544"
}
```
Retry recommendations for idempotent requests

The following table shows some common responses that you might get for idempotent API requests, and provides retry recommendations.

<table>
<thead>
<tr>
<th>Response</th>
<th>Recommendation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 (OK)</td>
<td>Do not retry</td>
<td>The original request completed successfully. Any subsequent retries return successfully.</td>
</tr>
<tr>
<td>400-series response codes (client errors)</td>
<td>Do not retry</td>
<td>There is a problem with the request, from among the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• It includes a parameter or parameter combination that is not valid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• It uses an action or resource for which you do not have permissions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• It uses a resource that is in the process of changing states.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the request involves a resource that is in the process of changing states, retrying the request could possibly succeed.</td>
</tr>
<tr>
<td>500-series response codes (server errors)</td>
<td>Retry</td>
<td>The error is caused by an AWS server-side issue and is generally transient. Repeat the request with an appropriate back-off strategy.</td>
</tr>
</tbody>
</table>
Common Parameters

The following list contains the parameters that all actions use for signing Signature Version 4 requests with a query string. Any action-specific parameters are listed in the topic for that action. For more information about Signature Version 4, see Signing AWS API requests in the IAM User Guide.

**Action**
- The action to be performed.
  - Type: string
  - Required: Yes

**Version**
- The API version that the request is written for, expressed in the format YYYY-MM-DD.
  - Type: string
  - Required: Yes

**X-Amz-Algorithm**
- The hash algorithm that you used to create the request signature.
  - Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.
  - Type: string
  - Valid Values: AWS4-HMAC-SHA256
  - Required: Conditional

**X-Amz-Credential**
- The credential scope value, which is a string that includes your access key, the date, the region you are targeting, the service you are requesting, and a termination string ("aws4_request"). The value is expressed in the following format: access_key/YYYYMMDD/region/service/aws4_request.
  - For more information, see Create a signed AWS API request in the IAM User Guide.
  - Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.
  - Type: string
  - Required: Conditional

**X-Amz-Date**
- The date that is used to create the signature. The format must be ISO 8601 basic format (YYYYMMDD'T'HHMMSS'Z'). For example, the following date time is a valid X-Amz-Date value: 20120325T120000Z.
  - Condition: X-Amz-Date is optional for all requests; it can be used to override the date used for signing requests. If the Date header is specified in the ISO 8601 basic format, X-Amz-Date is not required. When X-Amz-Date is used, it always overrides the value of the Date header. For more information, see Elements of an AWS API request signature in the IAM User Guide.
Type: string
Required: Conditional

**X-Amz-Security-Token**

The temporary security token that was obtained through a call to AWS Security Token Service (AWS STS). For a list of services that support temporary security credentials from AWS STS, see [AWS services that work with IAM](https://docs.aws.amazon.com/iam/latest_userguide/services-supported-by-iam.html) in the IAM User Guide.

Condition: If you're using temporary security credentials from AWS STS, you must include the security token.

Type: string
Required: Conditional

**X-Amz-Signature**

Specifies the hex-encoded signature that was calculated from the string to sign and the derived signing key.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

Type: string
Required: Conditional

**X-Amz-SignedHeaders**

Specifies all the HTTP headers that were included as part of the canonical request. For more information about specifying signed headers, see [Create a signed AWS API request](https://docs.aws.amazon.com/iam/latest_userguide/create-signed-api-request.html) in the IAM User Guide.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

Type: string
Required: Conditional
Common Errors

This section lists the errors common to the API actions of all AWS services. For errors specific to an API action for this service, see the topic for that API action.

**AccessDeniedException**

You do not have sufficient access to perform this action.

HTTP Status Code: 400

**IncompleteSignature**

The request signature does not conform to AWS standards.

HTTP Status Code: 400

**InternalFailure**

The request processing has failed because of an unknown error, exception or failure.

HTTP Status Code: 500

**InvalidAction**

The action or operation requested is invalid. Verify that the action is typed correctly.

HTTP Status Code: 400

**InvalidClientTokenId**

The X.509 certificate or AWS access key ID provided does not exist in our records.

HTTP Status Code: 403

**NotAuthorized**

You do not have permission to perform this action.

HTTP Status Code: 400

**OptInRequired**

The AWS access key ID needs a subscription for the service.

HTTP Status Code: 403

**RequestExpired**

The request reached the service more than 15 minutes after the date stamp on the request or more than 15 minutes after the request expiration date (such as for pre-signed URLs), or the date stamp on the request is more than 15 minutes in the future.

HTTP Status Code: 400

**ServiceUnavailable**

The request has failed due to a temporary failure of the server.

HTTP Status Code: 503

**ThrottlingException**

The request was denied due to request throttling.
HTTP Status Code: 400

**ValidationError**

The input fails to satisfy the constraints specified by an AWS service.

HTTP Status Code: 400