
Best Practices Guide

Amazon Elastic Container Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Elastic Container Service Best Practices Guide

Amazon Elastic Container Service: Best Practices Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Elastic Container Service Best Practices Guide

Table of Contents

Introduction ... 1
Running your application ... 2

Container image ... 2
Make container images complete and static ... 3
Maintain fast container launch times by keeping container images as small as possible 4
Only run a single application process with a container image .. 5
Handle SIGTERM within the application .. 6
Configure containerized applications to write logs to stdout and stderr 7
Version container images using tags .. 8

Task definition ... 9
Use each task definition family for only one business purpose .. 9
Match each application version with a task definition revision within a task definition
family ... 10
Use different IAM roles for each task definition family .. 11

Amazon ECS service .. 12
Use awsvpc network mode and give each service its own security group 12
Turn on Amazon ECS managed tags and tag propagation .. 13

Networking .. 14
Connecting to the internet .. 14

Using a public subnet and internet gateway .. 15
Using a private subnet and NAT gateway ... 17

Receiving inbound connections from the internet .. 18
Application Load Balancer .. 19
Network Load Balancer ... 20
Amazon API Gateway HTTP API .. 22

Choosing a network mode ... 23
Host mode .. 24
Bridge mode ... 25
AWSVPC mode ... 27

Connecting to AWS services .. 32
NAT gateway .. 32
AWS PrivateLink .. 33

Networking between Amazon ECS services ... 35
Using Service Connect ... 35

iii

Amazon Elastic Container Service Best Practices Guide

Using service discovery .. 36
Using an internal load balancer .. 38

Networking services across AWS accounts and VPCs ... 40
Optimizing and troubleshooting .. 41

CloudWatch Container Insights .. 41
AWS X-Ray .. 41
VPC Flow Logs ... 42
Network tuning tips ... 42

Auto scaling and capacity management .. 44
Determining task size .. 44

Stateless applications ... 45
Other applications .. 45

Configuring service auto scaling ... 45
Characterizing your application ... 46

Capacity and availability ... 51
Maximizing scaling speed .. 52
Handling demand shocks .. 54

Cluster capacity .. 55
Choosing Fargate task sizes ... 56
Speeding up cluster auto scaling ... 56

Capacity provider step scaling sizes ... 56
Instance warm-up period .. 57
Spare capacity ... 57

Choosing the Amazon EC2 instance type ... 58
Using Amazon EC2 Spot and FARGATE_SPOT ... 58

Persistent storage .. 60
Choosing the right storage type ... 62
Amazon EFS ... 63

Security and access controls ... 65
Performance ... 67
Throughput ... 67
Cost optimization .. 68
Data protection ... 69
Use cases .. 69

Docker volumes .. 70
Amazon EBS volume lifecycle .. 70

iv

Amazon Elastic Container Service Best Practices Guide

Amazon EBS data availability .. 71
Docker volume plugins .. 72

FSx for Windows File Server .. 72
Security and access controls ... 73
Use cases .. 74

Speeding up task launch .. 75
Task launch workflow ... 75
Service workflow .. 75
... 76

Speeding up deployment .. 78
Load balancer health check parameters ... 78
Load balancer connection draining .. 80

SIGTERM responsiveness ... 82
Container image type .. 83
Container image pull behavior .. 83

Container image pull behavior for Fargate launch types ... 83
Container image pull behavior for Fargate Windows launch types .. 84
Container image pull behavior for Amazon EC2 launch types .. 84

Task deployment .. 86
Operating at scale ... 90

Service quotas and API throttling limits ... 90
Elastic Load Balancing ... 91
Elastic network interfaces ... 92
AWS Cloud Map .. 94

Handling throttling issues .. 95
Synchronous throttling .. 95
Asynchronous throttling .. 96
Monitoring throttling ... 97
Using CloudWatch to monitor throttling ... 98

Security .. 99
Shared responsibility model .. 99
AWS Identity and Access Management ... 101

Managing access to Amazon ECS .. 101
Recommendations .. 101

Using IAM roles with Amazon ECS tasks .. 104
Task execution role .. 106

v

Amazon Elastic Container Service Best Practices Guide

Amazon EC2 container instance role .. 107
Service-linked roles .. 108
Recommendations .. 108

Network security .. 110
Encryption in transit .. 110
Task networking .. 112
Service mesh and Mutual Transport Layer Security (mTLS) .. 112
AWS PrivateLink .. 113
Amazon ECS container agent settings ... 114
Recommendations .. 114

Secrets management .. 116
Recommendations .. 116
Additional resources ... 118

Using temporary security credentials with API operations ... 118
Compliance and security .. 118

Payment Card Industry Data Security Standards (PCI DSS) ... 119
HIPAA (U.S. Health Insurance Portability and Accountability Act) ... 119
AWS Security Hub .. 120
Recommendations .. 120

Logging and monitoring .. 120
Container logging with Fluent Bit .. 121
Custom log routing - FireLens for Amazon ECS .. 121

AWS Fargate security .. 122
Use AWS KMS to encrypt ephemeral storage .. 122
SYS_PTRACE capability for kernel syscall tracing .. 123
AWS Fargate security considerations ... 123

Task and container security ... 124
Recommendations .. 124

Runtime security .. 130
Recommendations .. 131

AWS Partners .. 131
Document history .. 133

vi

Amazon Elastic Container Service Best Practices Guide

Introduction

Amazon Elastic Container Service (Amazon ECS) is a highly scalable and fast container
management service that you can use to manage containers on a cluster. This guide covers
many of the most important operational best practices for Amazon ECS. It also describes several
core concepts that are involved in how Amazon ECS based applications work. The goal is to
provide a concrete and actionable approach to operating and troubleshooting Amazon ECS based
applications.

• Best Practices - Running your application with Amazon ECS

• Best Practices - Networking

• Best Practices - Auto scaling and capacity management

• Best Practices - Persistent storage

• Best Practices - Speeding up task launch

• Best Practices - Speeding up deployments

• Best Practices - Operating Amazon ECS at scale

• Best Practices - Security

1

Amazon Elastic Container Service Best Practices Guide

Best Practices - Running your application with Amazon
ECS

Before you run an application using Amazon Elastic Container Service, make sure that you
understand how the various aspects of your application work with features in Amazon ECS. This
guide covers the main Amazon ECS resources types, what they're used for, and best practices for
using each of these resource types.

Container image

A container image holds your application code and all the dependencies that your application code
requires to run. Application dependencies include the source code packages that your application
code relies on, a language runtime for interpreted languages, and binary packages that your
dynamically linked code relies on.

Container images go through a three-step process.

1. Build - Gather your application and all its dependencies into one container image.

2. Store - Upload the container image to a container registry.

3. Run - Download the container image on some compute, unpack it, and start the application.

Container image 2

Amazon Elastic Container Service Best Practices Guide

When you create your own container image, keep in mind the best practices described in the
following sections.

Make container images complete and static

Ideally, a container image is intended to be a complete snapshot of everything that the application
requires to function. With a complete container image, you can run an application by downloading
one container image from one place. You don't need to download several separate pieces from
different locations. Therefore, as a best practice, store all application dependencies as static files
inside the container image.

At the same time, don't dynamically download libraries, dependencies, or critical data during
application startup. Instead, include these things as static files in the container image. Later on,
if you want to change something in the container image, build a new container image with the
changes applied to it.

There are a few reasons why we recommend this best practice.

• Including all dependencies as static files in the container image reduces the number of
potentially breaking events that can happen during deployments. As you scale out to tens,
hundreds, or even thousands of copies of your container, downloading a single container
image rather than downloading from two or three different places simplifies your workload by
limiting potential breaking points. For example, assume that you're deploying 100 copies of
your application, and each copy of the application has to download pieces from three different
sources. There are 300 downloads that can fail. If you're downloading a container image, there's
only 100 dependencies that can break.

• Container image downloads are optimized for downloading the application dependencies
in parallel. By default, a container image is made up of layers that can be downloaded
and unpacked in parallel. This means that a container image download can get all of your

Make container images complete and static 3

Amazon Elastic Container Service Best Practices Guide

dependencies onto your compute faster than a hand coded script that downloads each
dependency in a series.

• By keeping all your dependencies inside of the image, your deployments are more reliable and
reproducible. If you change a dynamically loaded dependency, it might break the application
inside the container image. However, if the container is truly standalone, you can always
redeploy it, even in the future. This is because it already has the right versions and right
dependencies inside of it.

Maintain fast container launch times by keeping container images as
small as possible

Complete containers hold everything that's needed to run your application, but they don't need
to include your build tools. Consider this example. Assume that you're building a container for a
Node.js application. You must have the NPM package manager to download packages for your
application. However, you no longer need NPM itself when the application runs. You can use a
multistage Docker build to solve this.

The following is an example of what such a multistage Dockerfile might look like for a Node.js
application that has dependencies in NPM.

FROM node:14 AS build
WORKDIR /srv
ADD package.json .
RUN npm install

FROM node:14-slim
COPY --from=build /srv .
ADD . .
EXPOSE 3000
CMD ["node", "index.js"]

The first stage uses a full Node.js environment that has NPM, and a compiler for building native
code bindings for packages. The second stage includes nothing but the Node.js runtime. It can copy
the downloaded NPM packages out of the first stage. The final product is a minimal image that has
the Node.js runtime, the NPM packages, and the application code. It doesn't include the full NPM
build toolchain.

Maintain fast container launch times by keeping container images as small as possible 4

Amazon Elastic Container Service Best Practices Guide

Keep your container images as small as possible and use shared layers. For example, if you have
multiple applications that use the same data set, you can create a shared base image that has that
data set. Then, build two different image variants off of the same shared base image. This allows
the container image layer with the dataset to be downloaded one time, rather than twice.

The main benefit of using smaller container images is that these images can be downloaded onto
compute hardware faster. This allows your application to scale out faster and quickly recover from
unexpected crashes or restarts.

Only run a single application process with a container image

In a traditional virtual machine environment, it's typical to run a high-level daemon like systemd
as the root process. This daemon is then responsible for starting your application process, and
restarting the application process if it crashes. We don't recommend this when using containers.
Instead, only run a single application process with a container.

If the application process crashes or ends, the container also ends. If the application must be
restarted on crash, let Amazon ECS manage the application restart externally. The Amazon ECS
agent reports to the Amazon ECS control plane that the application container crashed. Then, the
control plane determines whether to launch a replacement container, and if so where to launch
it. The replacement container may be placed onto the same host, or onto a different host in the
cluster.

Treat containers as ephemeral resources. They only last for the lifetime of the main application
process. Don't keep restarting application processes inside of a container, to try to keep the
container up and running. Let Amazon ECS replace containers as needed.

This best practice has two key benefits.

Only run a single application process with a container image 5

Amazon Elastic Container Service Best Practices Guide

• It mitigates scenarios where an application crashed because of a mutation to the local container
filesystem. Instead of reusing the same mutated container environment, the orchestrator
launches a new container based off the original container image. This means that you can be
confident that the replacement container is running a clean, baseline environment.

• Crashed processes are replaced through a centralized decision making process in the Amazon
ECS control plane. The control plane makes smarter choices about where to launch the
replacement process. For example, the control plane can attempt to launch the replacement
onto different hardware in a different Availability Zone. This makes the overall deployment more
resilient than if each individual compute instance attempts to relaunch its own processes locally.

Handle SIGTERM within the application

When you're following the guidance of the previous section, you're allowing Amazon ECS to replace
tasks elsewhere in the cluster, rather than restart the crashing application. There are other times
when a task may be stopped that are outside the application's control. Tasks may be stopped due
to application errors, health check failures, completion of business workflows or even manual
termination by a user.

When a task is stopped by ECS, ECS follows the steps and configuration shown in SIGTERM
responsiveness.

To prepare your application, you need to identify how long it takes your application to complete
its work, and ensure that your applications handles the SIGTERM signal. Within the application's
signal handling, you need to stop the application from taking new work and complete the work
that is in-progress, or save unfinished work to storage outside of the task if it would take too long
to complete.

After sending the SIGTERM signal, Amazon ECS will wait for the time specified in the
StopTimeout in the task definition. Then, the SIGKILL signal will be sent. Set the StopTimeout
long enough that your application completes the SIGTERM handler in all situations before the
SIGKILL is sent.

For web applications, you also need to consider open connections that are idle. See the following
page of this guide for more details Network Load Balancer.

Handle SIGTERM within the application 6

Amazon Elastic Container Service Best Practices Guide

If you use an init process in your container, use a lightweight init process such as tini. This init
process takes on the responsibility of reaping zombie processes if your application spawns worker
processes. If your application doesn't handle the SIGTERM signal properly, tini can catch that
signal for you and terminate your application process. However, if your application process crashes
tini doesn't restart it. Instead tini exits, allowing the container to end and be replaced by
container orchestration. For more information, see tini on GitHub.

Configure containerized applications to write logs to stdout and
stderr

There are many different ways to do logging. For some application frameworks, it's common to
use an application logging library that writes directly to disk files. It's also common to use one
that streams logs directly to an ELK (OpenSearch, Logstash, Kibana) stack or a similar logging
setup. However, we recommend that, when an application is containerized, you configure it to write
application logs directly to the stdout and stderr streams.

Configure containerized applications to write logs to stdout and stderr 7

https://github.com/krallin/tini

Amazon Elastic Container Service Best Practices Guide

Docker includes a variety of logging drivers that take the stdout and stderr log streams and
handle them. You can choose to write the streams to syslog, to disk on the local instance that's
running the container, or use a logging driver to send the logs to Fluentd, Splunk, CloudWatch, and
other destinations. With Amazon ECS, you can choose to configure the FireLens logging driver. This
driver can attach Amazon ECS metadata to logs, filter logs, and route logs to different destinations
based on criteria such as HTTP status code. For more information about Docker logging drivers, see
Configure logging drivers. For more information about FireLens, see Using FireLens.

When you decouple log handling from your application code, it gives you greater flexibility to
adjust log handling at the infrastructure level. Assume that you want to switch from one logging
system to another. You can do so by adjusting a few settings at the container orchestrator level,
rather than having to change code in all your services, build a new container image, and deploy it.

Version container images using tags

Container images are stored in a container registry. Each image in a registry is identified by a tag.
There's a tag called latest. This tag functions as a pointer to the latest version of the application
container image, similar to the HEAD in a git repository. We recommend that you use the latest
tag only for testing purposes. As a best practice, tag container images with a unique tag for each
build. We recommend that you tag your images using the git SHA for the git commit that was used
to build the image.

You don’t need to build a container image for every commit. However, we recommend that you
build a new container image each time you release a particular code commit to the production
environment. We also recommend that you tag the image with a tag that corresponds to the git
commit of the code that's inside the image. If you tagged the image with the git commit, you can
more quickly find which version of the code the image is running.

Version container images using tags 8

https://docs.docker.com/config/containers/logging/configure/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_firelens.html

Amazon Elastic Container Service Best Practices Guide

We also recommend that you turn on immutable image tags in Amazon Elastic Container Registry.
With this setting, you can't change the container image that a tag points at. Instead Amazon ECR
enforces that a new image must be uploaded to a new tag, rather than overwriting a pre-existing
tag. For more information, see Image tag mutability in the Amazon ECR User Guide.

Task definition

The task definition is a document that describes what container images to run together, and what
settings to use when running the container images. These settings include the amount of CPU and
memory that the container needs. They also include any environment variables that are supplied
to the container and any data volumes that are mounted to the container. Task definitions are
grouped based on the dimensions of family and revision.

Use each task definition family for only one business purpose

You can use an Amazon ECS task definition to specify multiple containers. All the containers
that you specify are deployed along the same compute capacity. Don't use this feature to add
multiple application containers to the same task definition because this prevents copies of each
application scaling separately. For example, consider this situation. Assume that you have a web
server container, an API container, and a worker service container. As a best practice, use a separate
task definition family for each of these pieces of containerized code.

If you group multiple types of application container together in the same task definition, you can’t
independently scale those containers. For example, it's unlikely that both a website and an API
require scaling out at the same rate. As traffic increases, there will be a different number of web

Task definition 9

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html

Amazon Elastic Container Service Best Practices Guide

containers required than API containers. If these two containers are being deployed in the same
task definition, every task runs the same number of web containers and API containers.

We recommend that you scale each type of container independently based on demand.

We don't recommend that you use multiple containers in a single task definition for grouping
different types of application container. The purpose of having multiple containers in a single task
definition is so that you can deploy sidecars, small addon containers that enhance a single type
of container. A sidecar might help with logging and observability, traffic routing, or other addon
features.

We recommend that you use sidecars to attach extra functionality, but that the task has a single
business function.

Match each application version with a task definition revision within a
task definition family

A task definition can be configured to point at any container image tag, including the “latest” tag.
However, we don't recommend that you use the “latest” tag in your task definition. This is because
“latest” tag functions as a mutable pointer, so the contents of the image it points at can change
while Amazon ECS doesn't identify the modification.

Within a task definition family, consider each task definition revision as a point in time snapshot of
the settings for a particular container image. This is similar to how the container is a snapshot of all
the things that are needed to run a particular version of your application code.

Match each application version with a task definition revision within a task definition family 10

Amazon Elastic Container Service Best Practices Guide

Make sure that there's a one-to-one mapping between a version of application code, a container
image tag, and a task definition revision. A typical release process involves a git commit that gets
turned into a container image that's tagged with the git commit SHA. Then, that container image
tag gets its own Amazon ECS task definition revision. Last, the Amazon ECS service is updated to
tell it to deploy the new task definition revision.

By using this approach, you can maintain consistency between settings and application code when
rolling out new versions of your application. For example, assume that you make a new version of
your application that uses a new environment variable. The new task definition that corresponds to
that change also defines the value for the environment variable.

Use different IAM roles for each task definition family

You can define different IAM roles for different tasks in Amazon ECS. Use the task definition to
specify an IAM role for that application. When the containers in that task definition are run, they
can call AWS APIs based on the policies that are defined in the IAM role. For more information, see
IAM roles for tasks.

Use different IAM roles for each task definition family 11

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

Amazon Elastic Container Service Best Practices Guide

Define each task definition with its own IAM role. This recommendation should be done in tandem
with our recommendation for providing each business component its own task definition family.
By implementing both of these best practices, you can limit how much access each service has to
resources in your AWS account. For example, you can give your authentication service access to
connect to your passwords database. At the same time, you can also ensure that only your order
service has access to the credit card payment information.

Amazon ECS service

ECS uses the service resource to group, monitor, replace, and scale identical tasks. The service
resource determines what task definition and revision that Amazon ECS launches. It also
determines how many copies of the task definition are launched and what resources are connected
to the launched tasks. These connected resources include load balancers and service discovery. The
service resource also defines rules for networking and placement of the tasks on hardware.

Use awsvpc network mode and give each service its own security group

We recommend that you use awsvpc network mode for tasks on Amazon EC2. This allows each
task to have a unique IP address with a service-level security group. Doing so creates per-service
security group rules, instead of instance-level security groups that are used in other network
modes. Using per-service security group rules, you can, for example, authorize one service to

Amazon ECS service 12

Amazon Elastic Container Service Best Practices Guide

talk to an Amazon RDS database. Another service with a different security group is denied from
opening a connection to that Amazon RDS database.

Turn on Amazon ECS managed tags and tag propagation

After you turn on Amazon ECS managed tags and tag propagation, Amazon ECS can attach
and propagate tags on the tasks that the service launches. You can customize these tags and
use them to create tag dimensions such as environment=production or team=web or
application=storefront. These tags are used in usage and billing reports. If you set up
the tags correctly, you can use them to see how many vCPU hours or GB hours that a particular
environment, team, or application used. This can help you to estimate the overall cost of your
infrastructure along different dimensions.

Turn on Amazon ECS managed tags and tag propagation 13

Amazon Elastic Container Service Best Practices Guide

Best Practices - Networking

Modern applications are typically built out of multiple distributed components that communicate
with each other. For example, a mobile or web application might communicate with an API
endpoint, and the API might be powered by multiple microservices that communicate over the
internet.

This guide presents the best practices for building a network where the components of your
application can communicate with each other securely and in a scalable manner.

Topics

• Connecting to the internet

• Receiving inbound connections from the internet

• Choosing a network mode

• Connecting to AWS services from inside your VPC

• Networking between Amazon ECS services in a VPC

• Networking services across AWS accounts and VPCs

• Optimizing and troubleshooting

Connecting to the internet

Most containerized applications have a least some components that need outbound access
to the internet. For example, the backend for a mobile app requires outbound access to push
notifications.

Amazon Virtual Private Cloud has two main methods for facilitating communication between your
VPC and the internet.

Topics

• Using a public subnet and internet gateway

• Using a private subnet and NAT gateway

Connecting to the internet 14

Amazon Elastic Container Service Best Practices Guide

Using a public subnet and internet gateway

By using a public subnet that has a route to an internet gateway, your containerized application
can run on a host inside a VPC on a public subnet. The host that runs your container is assigned a
public IP address. This public IP address is routable from the internet. For more information, see
Internet gateways in the Amazon VPC User Guide.

This network architecture facilitates direct communication between the host that runs your
application and other hosts on the internet. The communication is bi-directional. This means that
not only can you establish an outbound connection to any other host on the internet, but other
hosts on the internet might also attempt to connect to your host. Therefore, you should pay close

Using a public subnet and internet gateway 15

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

Amazon Elastic Container Service Best Practices Guide

attention to your security group and firewall rules. This is to ensure that other hosts on the internet
can’t open any connections that you don't want to be opened.

For example, if your application is running on Amazon EC2, make sure that port 22 for SSH access
is not open. Otherwise, your instance could receive constant SSH connection attempts from
malicious bots on the internet. These bots trawl through public IP addresses. After they find an
open SSH port, they attempt to brute-force passwords to try to access your instance. Because of
this, many organizations limit the usage of public subnets and prefer to have most, if not all, of
their resources inside of private subnets.

Using public subnets for networking is suitable for public applications that require large amounts
of bandwidth or minimal latency. Applicable use cases include video streaming and gaming
services.

This networking approach is supported both when you use Amazon ECS on Amazon EC2 and when
you use it on AWS Fargate.

• Using Amazon EC2 — You can launch EC2 instances on a public subnet. Amazon ECS uses these
EC2 instances as cluster capacity, and any containers that are running on the instances can use
the underlying public IP address of the host for outbound networking. This applies to both the
host and bridge network modes. However, the awsvpc network mode doesn't provide task
ENIs with public IP addresses. Therefore, they can’t make direct use of an internet gateway.

• Using Fargate — When you create your Amazon ECS service, specify public subnets for the
networking configuration of your service, and ensure that the Assign public IP address option is
enabled. Each Fargate task is networked in the public subnet, and has its own public IP address
for direct communication with the internet.

Using a public subnet and internet gateway 16

Amazon Elastic Container Service Best Practices Guide

Using a private subnet and NAT gateway

By using a private subnet and a NAT gateway, you can run your containerized application on a host
that's in a private subnet. As such, this host has a private IP address that's routable inside your
VPC, but isn't routable from the internet. This means that other hosts inside the VPC can make
connections to the host using its private IP address, but other hosts on the internet can't make any
inbound communications to the host.

With a private subnet, you can use a Network Address Translation (NAT) gateway to enable a
host inside a private subnet to connect to the internet. Hosts on the internet receive an inbound
connection that appears to be coming from the public IP address of the NAT gateway that's inside a
public subnet. The NAT gateway is responsible for serving as a bridge between the internet and the
private VPC. This configuration is often preferred for security reasons because it means that your
VPC is protected from direct access by attackers on the internet. For more information, see NAT
gateways in the Amazon VPC User Guide.

This private networking approach is suitable for scenarios where you want to protect your
containers from direct external access. Applicable scenarios include payment processing systems or

Using a private subnet and NAT gateway 17

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

Amazon Elastic Container Service Best Practices Guide

containers storing user data and passwords. You're charged for creating and using a NAT gateway
in your account. NAT gateway hourly usage and data processing rates also apply. For redundancy
purposes, you should have a NAT gateway in each Availability Zone. This way, the loss in availability
of a single Availability Zone doesn't compromise your outbound connectivity. Because of this, if you
have a small workload, it might be more cost effective to use private subnets and NAT gateways.

This networking approach is supported both when using Amazon ECS on Amazon EC2 and when
using it on AWS Fargate.

• Using Amazon EC2 — You can launch EC2 instances on a private subnet. The containers that run
on these EC2 hosts use the underlying hosts networking, and outbound requests go through the
NAT gateway.

• Using Fargate — When you create your Amazon ECS service, specify private subnets for the
networking configuration of your service, and don't enable the Assign public IP address option.
Each Fargate task is hosted in a private subnet. Its outbound traffic is routed through any NAT
gateway that you have associated with that private subnet.

Receiving inbound connections from the internet

If you run a public service, you must accept inbound traffic from the internet. For example, your
public website must accept inbound HTTP requests from browsers. In such case, other hosts on the
internet must also initiate an inbound connection to the host of your application.

One approach to this problem is to launch your containers on hosts that are in a public subnet
with a public IP address. However, we don't recommend this for large-scale applications. For
these, a better approach is to have a scalable input layer that sits between the internet and your
application. For this approach, you can use any of the AWS services listed in this section as an
input.

Topics

• Application Load Balancer

• Network Load Balancer

• Amazon API Gateway HTTP API

Receiving inbound connections from the internet 18

Amazon Elastic Container Service Best Practices Guide

Application Load Balancer

An Application Load Balancer functions at the application layer. It's the seventh layer of the Open
Systems Interconnection (OSI) model. This makes an Application Load Balancer suitable for public
HTTP services. If you have a website or an HTTP REST API, then an Application Load Balancer is a
suitable load balancer for this workload. For more information, see What is an Application Load
Balancer? in the User Guide for Application Load Balancers.

With this architecture, you create an Application Load Balancer in a public subnet so that it has a
public IP address and can receive inbound connections from the internet. When the Application
Load Balancer receives an inbound connection, or more specifically an HTTP request, it opens a
connection to the application using its private IP address. Then, it forwards the request over the
internal connection.

An Application Load Balancer has the following advantages.

• SSL/TLS termination — An Application Load Balancer can sustain secure HTTPS communication
and certificates for communications with clients. It can optionally terminate the SSL connection
at the load balancer level so that you don’t have to handle certificates in your own application.

• Advanced routing — An Application Load Balancer can have multiple DNS hostnames. It also has
advanced routing capabilities to send incoming HTTP requests to different destinations based on
metrics such as the hostname or the path of the request. This means that you can use a single

Application Load Balancer 19

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html

Amazon Elastic Container Service Best Practices Guide

Application Load Balancer as the input for many different internal services, or even microservices
on different paths of a REST API.

• gRPC support and websockets — An Application Load Balancer can handle more than just HTTP.
It can also load balance gRPC and websocket based services, with HTTP/2 support.

• Security — An Application Load Balancer helps protect your application from malicious traffic. It
includes features such as HTTP de sync mitigations, and is integrated with AWS Web Application
Firewall (AWS WAF). AWS WAF can further filter out malicious traffic that might contain attack
patterns, such as SQL injection or cross-site scripting.

Network Load Balancer

A Network Load Balancer functions at the fourth layer of the Open Systems Interconnection (OSI)
model. It's suitable for non-HTTP protocols or scenarios where end-to-end encryption is necessary,
but doesn’t have the same HTTP-specific features of an Application Load Balancer. Therefore, a
Network Load Balancer is best suited for applications that don’t use HTTP. For more information,
see What is a Network Load Balancer? in the User Guide for Network Load Balancers.

Network Load Balancer 20

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

Amazon Elastic Container Service Best Practices Guide

When a Network Load Balancer is used as an input, it functions similarly to an Application Load
Balancer. This is because it's created in a public subnet and has a public IP address that can be
accessed on the internet. The Network Load Balancer then opens a connection to the private IP
address of the host running your container, and sends the packets from the public side to the
private side.

Network Load Balancer features

Because the Network Load Balancer operates at a lower level of the networking stack, it doesn't
have the same set of features that Application Load Balancer does. However, it does have the
following important features.

• End-to-end encryption — Because a Network Load Balancer operates at the fourth layer of the
OSI model, it doesn't read the contents of packets. This makes it suitable for load balancing
communications that need end-to-end encryption.

• TLS encryption — In addition to end-to-end encryption, Network Load Balancer can also
terminate TLS connections. This way, your backend applications don’t have to implement their
own TLS.

• UDP support — Because a Network Load Balancer operates at the fourth layer of the OSI model,
it's suitable for non HTTP workloads and protocols other than TCP.

Closing connections

Because the Network Load Balancer does not observe the application protocol at the higher layers
of the OSI model, it cannot send closure messages to the clients in those protocols. Unlike the
Application Load Balancer, those connections need to be closed by the application or you can
configure the Network Load Balancer to close the fourth layer connections when a task is stopped
or replaced. See the connection termination setting for Network Load Balancer target groups in the
Network Load Balancer documentation.

Letting the Network Load Balancer close connections at the fourth layer can cause clients to
display undesired error messages, if the client does not handle them. See the Builders Library for
more information on recommended client configuration here.

The methods to close connections will vary by application, however one way is to ensure that the
Network Load Balancer target deregistration delay is longer than client connection timeout. The
client would timeout first and reconnect gracefully through the Network Load Balancer to the next

Network Load Balancer 21

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#deregistration-delay
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter

Amazon Elastic Container Service Best Practices Guide

task while the old task slowly drains all of its clients. For more information about the Network Load
Balancer target deregistration delay, see the Network Load Balancer documentation.

Amazon API Gateway HTTP API

Amazon API Gateway HTTP API is a serverless ingress that's suitable for HTTP applications with
sudden bursts in request volumes or low request volumes. For more information, see What is
Amazon API Gateway? in the API Gateway Developer Guide.

The pricing model for both Application Load Balancer and Network Load Balancer include an
hourly price to keep the load balancers available for accepting incoming connections at all times. In
contrast, API Gateway charges for each request separately. This has the effect that, if no requests
come in, there are no charges. Under high traffic loads, an Application Load Balancer or Network
Load Balancer can handle a greater volume of requests at a cheaper per-request price than API
Gateway. However, if you have a low number of requests overall or have periods of low traffic, then
the cumulative price for using the API Gateway should be more cost effective than paying a hourly
charge to maintain a load balancer that's being underutilized. The API Gateway can also cache API
responses, which might result in lower backend request rates.

API Gateway functions which use a VPC link that allows the AWS managed service to connect to
hosts inside the private subnet of your VPC, using its private IP address. It can detect these private
IP addresses by looking at AWS Cloud Map service discovery records that are managed by Amazon
ECS service discovery.

API Gateway supports the following features.

Amazon API Gateway HTTP API 22

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#deregistration-delay
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

Amazon Elastic Container Service Best Practices Guide

• The API Gateway operation is similar to a load balancer, but has additional capabilities unique to
API management

• The API Gateway provides additional capabilities around client authorization, usage tiers, and
request/response modification. For more information, see Amazon API Gateway features.

• The API Gateway can support edge, regional, and private API gateway endpoints. Edge endpoints
are available through a managed CloudFront distribution. Regional and private endpoints are
both local to a Region.

• SSL/TLS termination

• Routing different HTTP paths to different backend microservices

Besides the preceding features, API Gateway also supports using custom Lambda authorizers that
you can use to protect your API from unauthorized usage. For more information, see Field Notes:
Serverless Container-based APIs with Amazon ECS and Amazon API Gateway.

Choosing a network mode

The approaches previously mentioned for architecting inbound and outbound network connections
can apply to any of your workloads on AWS, even if they aren’t inside a container. When running
containers on AWS, you need to consider another level of networking. One of the main advantages
of using containers is that you can pack multiple containers onto a single host. When doing this,
you need to choose how you want to network the containers that are running on the same host.
The following are the options to choose from.

• the section called “Host mode” - The host network mode is the most basic network mode that's
supported in Amazon ECS.

• the section called “Bridge mode” - The bridge network mode allows you to use a virtual
network bridge to create a layer between the host and the networking of the container.

• the section called “AWSVPC mode” - With the awsvpc network mode, Amazon ECS creates and
manages an Elastic Network Interface (ENI) for each task and each task receives its own private
IP address within the VPC.

Choosing a network mode 23

https://aws.amazon.com/api-gateway/features/
https://aws.amazon.com/blogs/architecture/field-notes-serverless-container-based-apis-with-amazon-ecs-and-amazon-api-gateway/
https://aws.amazon.com/blogs/architecture/field-notes-serverless-container-based-apis-with-amazon-ecs-and-amazon-api-gateway/

Amazon Elastic Container Service Best Practices Guide

Host mode

The host network mode is the most basic network mode that's supported in Amazon ECS. Using
host mode, the networking of the container is tied directly to the underlying host that's running
the container.

Assume that you're running a Node.js container with an Express application that listens on port
3000 similar to the one illustrated in the preceding diagram. When the host network mode
is used, the container receives traffic on port 3000 using the IP address of the underlying host
Amazon EC2 instance. We do not recommend using this mode.

There are significant drawbacks to using this network mode. You can’t run more than a single
instantiation of a task on each host. This is because only the first task can bind to its required port
on the Amazon EC2 instance. There's also no way to remap a container port when it's using host
network mode. For example, if an application needs to listen on a particular port number, you can't
remap the port number directly. Instead, you must manage any port conflicts through changing
the application configuration.

Host mode 24

Amazon Elastic Container Service Best Practices Guide

There are also security implications when using the host network mode. This mode allows
containers to impersonate the host, and it allows containers to connect to private loopback
network services on the host.

The host network mode is only supported for Amazon ECS tasks hosted on Amazon EC2 instances.
It's not supported when using Amazon ECS on Fargate.

Bridge mode

With bridge mode, you're using a virtual network bridge to create a layer between the host and
the networking of the container. This way, you can create port mappings that remap a host port to
a container port. The mappings can be either static or dynamic.

With a static port mapping, you can explicitly define which host port you want to map to a
container port. Using the example above, port 80 on the host is being mapped to port 3000 on

Bridge mode 25

Amazon Elastic Container Service Best Practices Guide

the container. To communicate to the containerized application, you send traffic to port 80 to the
Amazon EC2 instance's IP address. From the containerized application’s perspective it sees that
inbound traffic on port 3000.

If you only want to change the traffic port, then static port mappings is suitable. However, this
still has the same disadvantage as using the host network mode. You can't run more than a single
instantiation of a task on each host. This is because a static port mapping only allows a single
container to be mapped to port 80.

To solve this problem, consider using the bridge network mode with a dynamic port mapping as
shown in the following diagram.

By not specifying a host port in the port mapping, you can have Docker choose a random, unused
port from the ephemeral port range and assign it as the public host port for the container. For
example, the Node.js application listening on port 3000 on the container might be assigned a
random high number port such as 47760 on the Amazon EC2 host. Doing this means that you can
run multiple copies of that container on the host. Moreover, each container can be assigned its own
port on the host. Each copy of the container receives traffic on port 3000. However, clients that
send traffic to these containers use the randomly assigned host ports.

Bridge mode 26

Amazon Elastic Container Service Best Practices Guide

Amazon ECS helps you to keep track of the randomly assigned ports for each task. It does this by
automatically updating load balancer target groups and AWS Cloud Map service discovery to have
the list of task IP addresses and ports. This makes it easier to use services operating using bridge
mode with dynamic ports.

However, one disadvantage of using the bridge network mode is that it's difficult to lock down
service to service communications. Because services might be assigned to any random, unused
port, it's necessary to open broad port ranges between hosts. However, it's not easy to create
specific rules so that a particular service can only communicate to one other specific service. The
services have no specific ports to use for security group networking rules.

The bridge network mode is only supported for Amazon ECS tasks hosted on Amazon EC2
instances. It is not supported when using Amazon ECS on Fargate.

AWSVPC mode

With the awsvpc network mode, Amazon ECS creates and manages an Elastic Network Interface
(ENI) for each task and each task receives its own private IP address within the VPC. This ENI is
separate from the underlying hosts ENI. If an Amazon EC2 instance is running multiple tasks, then
each task’s ENI is separate as well.

In the preceding example, the Amazon EC2 instance is assigned to an ENI. The ENI represents the IP
address of the EC2 instance used for network communications at the host level. Each task also has

AWSVPC mode 27

Amazon Elastic Container Service Best Practices Guide

a corresponding ENI and a private IP address. Because each ENI is separate, each container can bind
to port 80 on the task ENI. Therefore, you don't need to keep track of port numbers. Instead, you
can send traffic to port 80 at the IP address of the task ENI.

The advantage of using the awsvpc network mode is that each task has a separate security group
to allow or deny traffic. This means you have greater flexibility to control communications between
tasks and services at a more granular level. You can also configure a task to deny incoming traffic
from another task located on the same host.

The awsvpc network mode is supported for Amazon ECS tasks hosted on both Amazon EC2 and
Fargate. Be mindful that, when using Fargate, the awsvpc network mode is required.

When using the awsvpc network mode there are a few challenges you should be mindful of.

Increasing task density with ENI Trunking

The biggest disadvantage of using the awsvpc network mode with tasks that are hosted on
Amazon EC2 instances is that EC2 instances have a limit on the number of ENIs that can be
attached to them. This limits how many tasks you can place on each instance. Amazon ECS
provides the ENI trunking feature which increases the number of available ENIs to achieve more
task density.

AWSVPC mode 28

Amazon Elastic Container Service Best Practices Guide

When using ENI trunking, two ENI attachments are used by default. The first is the primary ENI of
the instance, which is used for any host level processes. The second is the trunk ENI, which Amazon
ECS creates. This feature is only supported on specific Amazon EC2 instance types.

Consider this example. Without ENI trunking, a c5.large instance that has two vCPUs can only
host two tasks. However, with ENI trunking, a c5.large instance that has two vCPU’s can host
up to ten tasks. Each task has a different IP address and security group. For more information
about available instance types and their density, see Supported Amazon EC2 instance types in the
Amazon Elastic Container Service Developer Guide.

ENI trunking has no impact on runtime performance in terms of latency or bandwidth.

For more information, see Elastic network interface trunking in the Amazon Elastic Container
Service Developer Guide.

AWSVPC mode 29

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html#eni-trunking-supported-instance-types
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html

Amazon Elastic Container Service Best Practices Guide

Preventing IP address exhaustion

By assigning a separate IP address to each task, you can simplify your overall infrastructure and
maintain security groups that provide a great level of security. However, this configuration can lead
to IP exhaustion.

The default VPC on your AWS account has pre-provisioned subnets that have a /20 CIDR range.
This means each subnet has 4,091 available IP addresses. Note that several IP addresses within
the /20 range are reserved for AWS specific usage. Consider this example. You distribute your
applications across three subnets in three Availability Zones for high availability. In this case, you
can use approximately 12,000 IP addresses across the three subnets.

Using ENI trunking, each Amazon EC2 instance that you launch requires two IP addresses. One
IP address is used for the primary ENI, and the other IP address is used for the trunk ENI. Each
Amazon ECS task on the instance requires one IP address. If you're launching an extremely large
workload, you could run out of available IP addresses. This might result in Amazon EC2 launch
failures or task launch failures. These errors occur because the ENIs can't add IP addresses inside
the VPC if there are no available IP addresses.

When using the awsvpc network mode, you should evaluate your IP address requirements and
ensure that your subnet CIDR ranges meet your needs. If you have already started using a VPC that
has small subnets and begins to run out of address space, you can add a secondary subnet.

AWSVPC mode 30

Amazon Elastic Container Service Best Practices Guide

By using ENI trunking, the Amazon VPC CNI can be configured to use ENIs in a different IP address
space than the host. By doing this, you can give your Amazon EC2 host and your tasks different IP
address ranges that don't overlap. In the example diagram, the EC2 host IP address is in a subnet
that has the 172.31.16.0/20 IP range. However, tasks that are running on the host are assigned
IP addresses in the 100.64.0.0/19 range. By using two independent IP ranges, you don’t need
to worry about tasks consuming too many IP addresses and not leaving enough IP addresses for
instances.

Using IPv6 dual stack mode

The awsvpc network mode is compatible with VPCs that are configured for IPv6 dual stack mode.
A VPC using dual stack mode can communicate over IPv4, IPv6, or both. Each subnet in the VPC
can have both an IPv4 CIDR range and an IPv6 CIDR range. For more information, see IP addressing
in your VPC in the Amazon VPC User Guide.

You can't disable IPv4 support for your VPC and subnets to address IPv4 exhaustion issues.
However, with the IPv6 support, you can use some new capabilities, specifically the egress-only
internet gateway. An egress-only internet gateway allows tasks to use their publicly routable IPv6
address to initiate outbound connections to the internet. But the egress-only internet gateway

AWSVPC mode 31

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html

Amazon Elastic Container Service Best Practices Guide

doesn't allow connections from the internet. For more information, see Egress-only internet
gateways in the Amazon VPC User Guide.

Connecting to AWS services from inside your VPC

For Amazon ECS to function properly, the ECS container agent that runs on each host must
communicate with the Amazon ECS control plane. If you're storing your container images in
Amazon ECR, the Amazon EC2 hosts must communicate to the Amazon ECR service endpoint,
and to Amazon S3, where the image layers are stored. If you use other AWS services for your
containerized application, such as persisting data stored in DynamoDB, double-check that these
services also have the necessary networking support.

Topics

• NAT gateway

• AWS PrivateLink

NAT gateway

Using a NAT gateway is the easiest way to ensure that your Amazon ECS tasks can access other
AWS services. For more information about this approach, see Using a private subnet and NAT
gateway.

Connecting to AWS services 32

https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html

Amazon Elastic Container Service Best Practices Guide

The following are the disadvantages to using this approach:

• You can't limit what destinations the NAT gateway can communicate with. You also can't limit
which destinations your backend tier can communicate to without disrupting all outbound
communications from your VPC.

• NAT gateways charge for every GB of data that passes through. If you use the NAT gateway
for downloading large files from Amazon S3, or doing a high volume of database queries to
DynamoDB, you're charged for every GB of bandwidth. Additionally, NAT gateways support 5
Gbps of bandwidth and automatically scale up to 45 Gbps. If you route through a single NAT
gateway, applications that require very high bandwidth connections might encounter networking
constraints. As a workaround, you can divide your workload across multiple subnets and give
each subnet its own NAT gateway.

AWS PrivateLink

AWS PrivateLink provides private connectivity between VPCs, AWS services, and your on-premises
networks without exposing your traffic to the public internet.

One of the technologies used to accomplish this is the VPC endpoint. A VPC endpoint enables
private connections between your VPC and supported AWS services and VPC endpoint services.

AWS PrivateLink 33

Amazon Elastic Container Service Best Practices Guide

Traffic between your VPC and the other service doesn't leave the Amazon network. A VPC endpoint
doesn't require an internet gateway, virtual private gateway, NAT device, VPN connection, or AWS
Direct Connect connection. Amazon EC2 instances in your VPC don't require public IP addresses to
communicate with resources in the service.

The following diagram shows how communication to AWS services works when you are using VPC
endpoints instead of an internet gateway. AWS PrivateLink provisions elastic network interfaces
(ENIs) inside of the subnet, and VPC routing rules are used to send any communication to the
service hostname through the ENI, directly to the destination AWS service. This traffic no longer
needs to use the NAT gateway or internet gateway.

The following are some of the common VPC endpoints that are used with the Amazon ECS service.

• S3 gateway VPC endpoint

• DynamoDB VPC endpoint

• Amazon ECS VPC endpoint

• Amazon ECR VPC endpoint

Many other AWS services support VPC endpoints. If you make heavy usage of any AWS service, you
should look up the specific documentation for that service and how to create a VPC endpoint for
that traffic.

AWS PrivateLink 34

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/vpc-endpoints-dynamodb.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html

Amazon Elastic Container Service Best Practices Guide

Networking between Amazon ECS services in a VPC

Using Amazon ECS tasks in a VPC, you can split monolithic applications into separate parts that can
be deployed and scaled independently in a secure environment. This architecture is called service-
oriented architecture (SOA) or microservices. However, it can be challenging to make sure that all
of these parts, both in and outside of a VPC, can communicate with each other. There are several
approaches for facilitating communication, all with different advantages and disadvantages.

Using Service Connect

We recommend Amazon ECS Service Connect, which provides Amazon ECS configuration for
service discovery, connectivity, and traffic monitoring. With Service Connect, your applications can
use short names and standard ports to connect to ECS services in the same cluster, other clusters,
including across VPCs in the same AWS Region. For more information, see Amazon ECS Service
Connect in the Amazon Elastic Container Service Developer Guide.

When you use Service Connect, ECS manages all of the parts of service discovery: creating the
names that can be discovered, dynamically managing entries for each task as the tasks start and
stop, running an agent in each task that is configured to discover the names. Your application can
look up the names by using the standard functionality for DNS names and making connections.
If your application does this already, you don't need to modify your application to use Service
Connect.

Networking between Amazon ECS services 35

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect.html

Amazon Elastic Container Service Best Practices Guide

Changes only happen during deployments

You provide the complete configuration inside each ECS service and task definition. ECS manages
changes to this configuration in each service deployment, to ensure that all tasks in a deployment
behave in the same way. For example, a common problem with DNS as service discovery is
controlling a migration. If you change a DNS name to point to the new replacement IP addresses, it
might take the maximum TTL time before all the clients begin using the new service. With Service
Connect, the client deployment updates the configuration by replacing the client tasks. You can
configure the deployment circuit breaker and other deployment configuration to affect Service
Connect changes in the same way as any other deployment.

Using service discovery

Another approach for service-to-service communication is direct communication using service
discovery. In this approach, you can use the AWS Cloud Map service discovery integration with
Amazon ECS. Using service discovery, Amazon ECS syncs the list of launched tasks to AWS Cloud
Map, which maintains a DNS hostname that resolves to the internal IP addresses of one or more

Using service discovery 36

Amazon Elastic Container Service Best Practices Guide

tasks from that particular service. Other services in the Amazon VPC can use this DNS hostname
to send traffic directly to another container using its internal IP address. For more information, see
Service discovery in the Amazon Elastic Container Service Developer Guide.

In the preceding diagram, there are three services. serviceA has one container and communicates
with serviceB, which has two containers. serviceB must also communicate with serviceC,
which has one container. Each container in all three of these services can use the internal DNS
names from AWS Cloud Map to find the internal IP addresses of a container from the downstream
service that it needs to communicate to.

This approach to service-to-service communication provides low latency. At first glance, it's also
simple as there are no extra components between the containers. Traffic travels directly from one
container to the other container.

This approach is suitable when using the awsvpc network mode, where each task has its own
unique IP address. Most software only supports the use of DNS A records, which resolve directly
to IP addresses. When using the awsvpc network mode, the IP address for each task are an A
record. However, if you're using bridge network mode, multiple containers could be sharing
the same IP address. Additionally, dynamic port mappings cause the containers to be randomly
assigned port numbers on that single IP address. At this point, an A record is no longer be enough

Using service discovery 37

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html

Amazon Elastic Container Service Best Practices Guide

for service discovery. You must also use an SRV record. This type of record can keep track of both
IP addresses and port numbers but requires that you configure applications appropriately. Some
prebuilt applications that you use might not support SRV records.

Another advantage of the awsvpc network mode is that you have a unique security group for each
service. You can configure this security group to allow incoming connections from only the specific
upstream services that need to talk to that service.

The main disadvantage of direct service-to-service communication using service discovery is that
you must implement extra logic to have retries and deal with connection failures. DNS records have
a time-to-live (TTL) period that controls how long they are cached for. It takes some time for the
DNS record to be updated and for the cache to expire so that your applications can pick up the
latest version of the DNS record. So, your application might end up resolving the DNS record to
point at another container that's no longer there. Your application needs to handle retries and have
logic to ignore bad backends.

Using an internal load balancer

Another approach to service-to-service communication is to use an internal load balancer. An
internal load balancer exists entirely inside of your VPC and is only accessible to services inside of
your VPC.

Using an internal load balancer 38

Amazon Elastic Container Service Best Practices Guide

The load balancer maintains high availability by deploying redundant resources into each subnet.
When a container from serviceA needs to communicate with a container from serviceB, it
opens a connection to the load balancer. The load balancer then opens a connection to a container
from service B. The load balancer serves as a centralized place for managing all connections
between each service.

If a container from serviceB stops, then the load balancer can remove that container from the
pool. The load balancer also does health checks against each downstream target in its pool and can
automatically remove bad targets from the pool until they become healthy again. The applications
no longer need to be aware of how many downstream containers there are. They just open their
connections to the load balancer.

This approach is advantageous to all network modes. The load balancer can keep track of task IP
addresses when using the awsvpc network mode, as well as more advanced combinations of IP
addresses and ports when using the bridge network mode. It evenly distributes traffic across all

Using an internal load balancer 39

Amazon Elastic Container Service Best Practices Guide

the IP address and port combinations, even if several containers are actually hosted on the same
Amazon EC2 instance, just on different ports.

The one disadvantage of this approach is cost. To be highly available, the load balancer needs to
have resources in each Availability Zone. This adds extra cost because of the overhead of paying for
the load balancer and for the amount of traffic that goes through the load balancer.

However, you can reduce overhead costs by having multiple services share a load balancer. This
is particularly suitable for REST services that use an Application Load Balancer. You can create
path-based routing rules that route traffic to different services. For example, /api/user/* might
route to a container that's part of the user service, whereas /api/order/* might route to the
associated order service. With this approach, you only pay for one Application Load Balancer, and
have one consistent URL for your API. However, you can split the traffic off to various microservices
on the backend.

Networking services across AWS accounts and VPCs

If you're part of an organization with multiple teams and divisions, you probably deploy services
independently into separate VPCs inside a shared AWS account or into VPCs that are associated
with multiple individual AWS accounts. No matter which way you deploy your services, we
recommend that you supplement your networking components to help route traffic between VPCs.
For this, several AWS services can be used to supplement your existing networking components.

• AWS Transit Gateway — You should consider this networking service first. This service serves
as a central hub for routing your connections between Amazon VPCs, AWS accounts, and on-
premises networks. For more information, see What is a transit gateway? in the Amazon VPC
Transit Gateways Guide.

• Amazon VPC and VPN support — You can use this service to create site-to-site VPN connections
for connecting on-premises networks to your VPC. For more information, see What is AWS Site-
to-Site VPN? in the AWS Site-to-Site VPN User Guide.

• Amazon VPC — You can use Amazon VPC peering to help you to connect multiple VPCs, either
in the same account, or across accounts. For more information, see What is VPC peering? in the
Amazon VPC Peering Guide.

• Shared VPCs — You can use a VPC and VPC subnets across multiple AWS accounts. For more
information, see Working with shared VPCs in the Amazon VPC User Guide.

Networking services across AWS accounts and VPCs 40

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

Amazon Elastic Container Service Best Practices Guide

Optimizing and troubleshooting

The following services and features can help you to gain insights about your network and service
configurations. You can use this information to troubleshoot networking issues and better optimize
your services.

CloudWatch Container Insights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your
containerized applications and microservices. Metrics include the utilization of resources such as
CPU, memory, disk, and network. They're available in CloudWatch automatic dashboards. For more
information, see Setting up Container Insights on Amazon ECS in the Amazon CloudWatch User
Guide.

AWS X-Ray

AWS X-Ray is a tracing service that you can use to collect information about the network requests
that your application makes. You can use the SDK to instrument your application and capture
timings and response codes of traffic between your services, and between your services and AWS
service endpoints. For more information, see What is AWS X-Ray in the AWS X-Ray Developer Guide.

You can also explore AWS X-Ray graphs of how your services network with each other. Or, use
them to explore aggregate statistics about how each service-to-service link is performing. Last, you
can dive deeper into any specific transaction to see how segments representing network calls are
associated with that particular transaction.

Optimizing and troubleshooting 41

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

Amazon Elastic Container Service Best Practices Guide

You can use these features to identify if there's a networking bottleneck or if a specific service
within your network isn't performing as expected.

VPC Flow Logs

You can use Amazon VPC flow logs to analyze network performance and debug connectivity issues.
With VPC flow logs enabled, you can capture a log of all the connections in your VPC. These include
connections to networking interfaces that are associated with Elastic Load Balancing, Amazon RDS,
NAT gateways, and other key AWS services that you might be using. For more information, see VPC
Flow Logs in the Amazon VPC User Guide.

Network tuning tips

There are a few settings that you can fine tune in order to improve your networking.

nofile ulimit

If you expect your application to have high traffic and handle many concurrent connections, you
should take into account the system quota for the number of files allowed. When there are a lot
of network sockets open, each one must be represented by a file descriptor. If your file descriptor

VPC Flow Logs 42

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

Amazon Elastic Container Service Best Practices Guide

quota is too low, it will limit your network sockets. This results in failed connections or errors. You
can update the container specific quota for the number of files in the Amazon ECS task definition.
If you're running on Amazon EC2 (instead of AWS Fargate), then you might also need to adjust
these quotas on your underlying Amazon EC2 instance.

sysctl net

Another category of tunable setting is the sysctl net settings. You should refer to the specific
settings for your Linux distribution of choice. Many of these settings adjust the size of read and
write buffers. This can help in some situations when running large-scale Amazon EC2 instances that
have a lot of containers on them.

Network tuning tips 43

Amazon Elastic Container Service Best Practices Guide

Best Practices - Auto scaling and capacity management

Amazon ECS is used to run containerized application workloads of all sizes. This includes both
the extremes of minimal testing environments and large production environments operating at a
global scale.

With Amazon ECS, like all AWS services, you pay only for what you use. When architected
appropriately, you can save costs by having your application consume only the resources that it
needs at the time that it needs them. This best practices guide shows how to run your Amazon ECS
workloads in a way that meets your service-level objectives while still operating in a cost-effective
manner.

Topics

• Determining task size

• Configuring service auto scaling

• Capacity and availability

• Cluster capacity

• Choosing Fargate task sizes

• Speeding up cluster capacity provisioning with capacity providers on Amazon EC2

• Choosing the Amazon EC2 instance type

• Using Amazon EC2 Spot and FARGATE_SPOT

Determining task size

One of the most important choices to make when deploying containers on Amazon ECS is your
container and task sizes. Your container and task sizes are both essential for scaling and capacity
planning. In Amazon ECS, there are two resource metrics used for capacity: CPU and memory. CPU
is measured in units of 1/1024 of a full vCPU (where 1024 units is equal to 1 whole vCPU). Memory
is measured in megabytes. In your task definition, you can declare resource reservations and limits.

When you declare a reservation, you're declaring the minimum amount of resources that a task
requires. Your task receives at least the amount of resources requested. Your application might be
able to use more CPU or memory than the reservation that you declare. However, this is subject to
any limits that you also declared. Using more than the reservation amount is known as bursting.
In Amazon ECS, reservations are guaranteed. For example, if you use Amazon EC2 instances to

Determining task size 44

Amazon Elastic Container Service Best Practices Guide

provide capacity, Amazon ECS doesn't place a task on an instance where the reservation can't be
fulfilled.

A limit is the maximum amount of CPU units or memory that your container or task can use.
Any attempt to use more CPU more than this limit results in throttling. Any attempt to use more
memory results in your container being stopped.

Choosing these values can be challenging. This is because the values that are the most well suited
for your application greatly depend on the resource requirements of your application. Load testing
your application is the key to successful resource requirement planning and better understanding
your application's requirements.

Stateless applications

For stateless applications that scale horizontally, such as an application behind a load balancer,
we recommend that you first determine the amount of memory that your application consumes
when it serves requests. To do this, you can use traditional tools such as ps or top, or monitoring
solutions such as CloudWatch Container Insights.

When determining a CPU reservation, consider how you want to scale your application to meet
your business requirements. You can use smaller CPU reservations, such as 256 CPU units (or 1/4
vCPU), to scale out in a fine-grained way that minimizes cost. But, they might not scale fast enough
to meet significant spikes in demand. You can use larger CPU reservations to scale in and out more
quickly and therefore match demand spikes more quickly. However, larger CPU reservations are
more costly.

Other applications

For applications that don't scale horizontally, such as singleton workers or database servers,
available capacity and cost represent your most important considerations. You should choose the
amount of memory and CPU based on what load testing indicates you need to serve traffic to meet
your service-level objective. Amazon ECS ensures that the application is placed on a host that has
adequate capacity.

Configuring service auto scaling

An Amazon ECS service is a managed collection of tasks. Each service has an associated task
definition, a desired task count, and an optional placement strategy. Amazon ECS service auto
scaling is implemented through the Application Auto Scaling service. Application Auto Scaling

Stateless applications 45

Amazon Elastic Container Service Best Practices Guide

uses CloudWatch metrics as the source for scaling metrics. It also uses CloudWatch alarms to
set thresholds on when to scale your service in or out. You provide the thresholds for scaling,
either by setting a metric target, referred to as target tracking scaling, or by specifying thresholds,
referred to as step scaling. After Application Auto Scaling is configured, it continually calculates the
appropriate desired task count for the service. It also notifies Amazon ECS when the desired task
count should change, either by scaling it out or scaling it in.

To use service auto scaling effectively, you must choose an appropriate scaling metric. We discuss
how to choose a metric in the following sections.

Characterizing your application

Properly scaling an application requires knowing the conditions where the application should
be scaled in and when it should be scaled out. In essence, an application should be scaled out if
demand is forecasted to outstrip capacity. Conversely, an application can be scaled in to conserve
costs when resources exceed demand.

Identifying a utilization metric

To scale effectively, it's critical to identify a metric that indicates utilization or saturation. This
metric must exhibit the following properties to be useful for scaling.

• The metric must be correlated with demand. When resources are held steady, but demand
changes, the metric value must also change. The metric should increase or decrease when
demand increases or decreases.

• The metric value must scale in proportion to capacity. When demand holds constant, adding
more resources must result in a proportional change in the metric value. So, doubling the
number of tasks should cause the metric to decrease by 50%.

The best way to identify a utilization metric is through load testing in a pre-production
environment such as a staging environment. Commercial and open-source load testing solutions
are widely available. These solutions typically can either generate synthetic load or simulate real
user traffic.

To start the process of load testing, you should start by building dashboards for your application’s
utilization metrics. These metrics include CPU utilization, memory utilization, I/O operations, I/
O queue depth, and network throughput. You can collect these metrics with a service such as
CloudWatch Container Insights. Or, do so by using Amazon Managed Service for Prometheus

Characterizing your application 46

Amazon Elastic Container Service Best Practices Guide

together with Amazon Managed Grafana. During this process, make sure that you collect and plot
metrics for your application’s response times or work completion rates.

When load testing, begin with a small request or job insertion rate. Keep this rate steady for several
minutes to allow your application to warm up. Then, slowly increase the rate and hold it steady for
a few minutes. Repeat this cycle, increasing the rate each time until your application’s response or
completion times are too slow to meet your service-level objectives (SLOs).

While load testing, examine each of the utilization metrics. The metrics that increase along with
the load are the top candidates to serve as your best utilization metrics.

Next, identify the resource that reaches saturation. At the same time, also examine the utilization
metrics to see which one flattens out at a high level first. Or, examine which one reaches peak and
then crashes your application first. For example, if CPU utilization increases from 0% to 70-80%
as you add load, then stays at that level after even more load is added, then it's safe to say that
the CPU is saturated. Depending on the CPU architecture, it might never reach 100%. For example,
assume that memory utilization increases as you add load, and then your application suddenly
crashes when it reaches the task or Amazon EC2 instance memory limit. In this situation, it's likely
the case that memory has been fully consumed. Multiple resources might be consumed by your
application. Therefore, choose the metric that represents the resource that depletes first.

Last, try load testing again after doubling the number of tasks or Amazon EC2 instances. Assume
that the key metric increases, or decreases, at half the rate as before. If this is the case, then the
metric is proportional to capacity. This is a good utilization metric for auto scaling.

Now consider this hypothetical scenario. Suppose that you load test an application and find that
the CPU utilization eventually reaches 80% at 100 requests per second. When more load is added,
it doesn't make CPU utilization raise anymore. However, it does make your application respond
more slowly. Then, you run the load test again, doubling the number of tasks but holding the rate
at its previous peak value. If you find the average CPU utilization falls to about 40%, then average
CPU utilization is a good candidate for a scaling metric. On the other hand, if CPU utilization
remains at 80% after increasing the number of tasks, then average CPU utilization isn't a good
scaling metric. In that case, more research is needed to find a suitable metric.

Common application models and scaling properties

Software of all kinds are run on AWS. Many workloads are homegrown, whereas others are based
on popular open-source software. Regardless of where they originate, we have observed some
common design patterns for services. How to scale effectively depends in large part on the pattern.

Characterizing your application 47

Amazon Elastic Container Service Best Practices Guide

The efficient CPU-bound server

The efficient CPU-bound server utilizes almost no resources other than CPU and network
throughput. Each request can be handled by the application alone. Requests don't depend on
other services such as databases. The application can handle hundreds of thousands of concurrent
requests, and can efficiently utilize multiple CPUs to do so. Each request is either serviced by a
dedicated thread with low memory overhead, or there's an asynchronous event loop that runs
on each CPU that services requests. Each replica of the application is equally capable of handling
a request. The only resource that might be depleted before CPU is network bandwidth. In CPU
bound-services, memory utilization, even at peak throughput, is a fraction of the resources
available.

This type of application is suitable for CPU-based auto scaling. The application enjoys maximum
flexibility in terms of scaling. It can be scaled vertically by providing larger Amazon EC2 instances
or Fargate vCPUs to it. And, it can also be scaled horizontally by adding more replicas. Adding more
replicas, or doubling the instance size, cuts the average CPU utilization relative to capacity by half.

If you're using Amazon EC2 capacity for this application, consider placing it on compute-optimized
instances such as the c5 or c6g family.

The efficient memory-bound server

The efficient memory-bound server allocates a significant amount of memory per request. At
maximum concurrency, but not necessarily throughput, memory is depleted before the CPU
resources are depleted. Memory associated with a request is freed when the request ends.
Additional requests can be accepted as long as there is available memory.

This type of application is suitable for memory-based auto scaling. The application enjoys
maximum flexibility in terms of scaling. It can be scaled both vertically by providing larger
Amazon EC2 or Fargate memory resources to it. And, it can also be scaled horizontally by adding
more replicas. Adding more replicas, or doubling the instance size, can cut the average memory
utilization relative to capacity by half.

If you're using Amazon EC2 capacity for this application, consider placing it on memory-optimized
instances such as the r5 or r6g family.

Some memory-bound applications don't free the memory that's associated with a request when it
ends, so that a reduction in concurrency doesn't result in a reduction in the memory used. For this,
we don't recommend that you use memory-based scaling.

Characterizing your application 48

Amazon Elastic Container Service Best Practices Guide

The worker-based server

The worker-based server processes one request for each individual worker thread one after
another. The worker threads can be lightweight threads, such as POSIX threads. They can also be
heavier-weight threads, such as UNIX processes. No matter which thread they are, there's always
a maximum concurrency that the application can support. Usually the concurrency limit is set
proportionally to the memory resources that are available. If the concurrency limit is reached,
additional requests are placed into a backlog queue. If the backlog queue overflows, additional
incoming requests are immediately rejected. Common applications that fit this pattern include
Apache web server and Gunicorn.

Request concurrency is usually the best metric for scaling this application. Because there's a
concurrency limit for each replica, it's important to scale out before the average limit is reached.

The best way to obtain request concurrency metrics is to have your application report them to
CloudWatch. Each replica of your application can publish the number of concurrent requests as a
custom metric at a high frequency. We recommend that the frequency is set to be at least once
every minute. After several reports are collected, you can use the average concurrency as a scaling
metric. This metric is calculated by taking the total concurrency and dividing it by the number
of replicas. For example, if total concurrency is 1000 and the number of replicas is 10, then the
average concurrency is 100.

If your application is behind an Application Load Balancer, you can also use the
ActiveConnectionCount metric for the load balancer as a factor in the scaling metric. The
ActiveConnectionCount metric must be divided by the number of replicas to obtain an average
value. The average value must be used for scaling, as opposed to the raw count value.

For this design to work best, the standard deviation of response latency should be small at low
request rates. We recommend that, during periods of low demand, most requests are answered
within a short time, and there isn't a lot of requests that take significantly longer than average
time to respond. The average response time should be close to the 95th percentile response time.
Otherwise, queue overflows might occur as result. This leads to errors. We recommend that you
provide additional replicas where necessary to mitigate the risk of overflow.

The waiting server

The waiting server does some processing for each request, but it is highly dependent on one
or more downstream services to function. Container applications often make heavy use of
downstream services like databases and other API services. It can take some time for these services

Characterizing your application 49

Amazon Elastic Container Service Best Practices Guide

to respond, particularly in high capacity or high concurrency scenarios. This is because these
applications tend to use few CPU resources and utilize their maximum concurrency in terms of
available memory.

The waiting service is suitable either in the memory-bound server pattern or the worker-based
server pattern, depending on how the application is designed. If the application’s concurrency is
limited only by memory, then average memory utilization should be used as a scaling metric. If the
application’s concurrency is based on a worker limit, then average concurrency should be used as a
scaling metric.

The Java-based server

If your Java-based server is CPU-bound and scales proportionally to CPU resources, then it might
be suitable for the efficient CPU-bound server pattern. If that is the case, average CPU utilization
might be appropriate as a scaling metric. However, many Java applications aren't CPU-bound,
making them challenging to scale.

For the best performance, we recommend that you allocate as much memory as possible to the
Java Virtual Machine (JVM) heap. Recent versions of the JVM, including Java 8 update 191 or later,
automatically set the heap size as large as possible to fit within the container. This means that, in
Java, memory utilization is rarely proportional to application utilization. As the request rate and
concurrency increases, memory utilization remains constant. Because of this, we don't recommend
scaling Java-based servers based on memory utilization. Instead, we typically recommend scaling
on CPU utilization.

In some cases, Java-based servers encounter heap exhaustion before exhausting CPU. If your
application is prone to heap exhaustion at high concurrency, then average connections are the best
scaling metric. If your application is prone to heap exhaustion at high throughput, then average
request rate is the best scaling metric.

Servers that use other garbage-collected runtimes

Many server applications are based on runtimes that perform garbage collection such as .NET
and Ruby. These server applications might fit into one of the patterns described earlier. However,
as with Java, we don't recommend scaling these applications based on memory, because their
observed average memory utilization is often uncorrelated with throughput or concurrency.

For these applications, we recommend that you scale on CPU utilization if the application is CPU
bound. Otherwise, we recommend that you scale on average throughput or average concurrency,
based on your load testing results.

Characterizing your application 50

Amazon Elastic Container Service Best Practices Guide

Job processors

Many workloads involve asynchronous job processing. They include applications that don't receive
requests in real time, but instead subscribe to a work queue to receive jobs. For these types
of applications, the proper scaling metric is almost always queue depth. Queue growth is an
indication that pending work outstrips processing capacity, whereas an empty queue indicates that
there's more capacity than work to do.

AWS messaging services, such as Amazon SQS and Amazon Kinesis Data Streams,
provide CloudWatch metrics that can be used for scaling. For Amazon SQS,
ApproximateNumberOfMessagesVisible is the best metric. For Kinesis Data Streams, consider
using the MillisBehindLatest metric, published by the Kinesis Client Library (KCL). This metric
should be averaged across all consumers before using it for scaling.

Capacity and availability

Application availability is crucial for providing an error-free experience and for minimizing
application latency. Availability depends on having resources that are accessible and have
enough capacity to meet demand. AWS provides several mechanisms to manage availability.
For applications hosted on Amazon ECS, these include autoscaling and Availability Zones (AZs).
Autoscaling manages the number of tasks or instances based on metrics you define, while
Availability Zones allow you to host your application in isolated but geographically-close locations.

As with task sizes, capacity and availability present certain trade-offs you must consider. Ideally,
capacity would be perfectly aligned with demand. There would always be just enough capacity to
serve requests and process jobs to meet Service Level Objectives (SLOs) including a low latency and
error rate. Capacity would never be too high, leading to excessive cost; nor would it never be too
low, leading to high latency and error rates.

Autoscaling is a latent process. First, real-time metrics must be delivered to CloudWatch. Then,
they need to be aggregated for analysis, which can take up to several minutes depending on the
granularity of the metric. CloudWatch compares the metrics against alarm thresholds to identify a
shortage or excess of resources. To prevent instability, configure alarms to require the set threshold
be crossed for a few minutes before the alarm goes off. It also takes time to provision new tasks
and to terminate tasks that are no longer needed.

Because of these potential delays in the system described, it's important that you maintain some
headroom by over-provisioning. Doing this can help accommodate short-term bursts in demand.
This also helps your application to service additional requests without reaching saturation. As

Capacity and availability 51

Amazon Elastic Container Service Best Practices Guide

a good practice, you can set your scaling target between 60-80% of utilization. This helps your
application better handle bursts of extra demand while additional capacity is still in the process of
being provisioned.

Another reason we recommend that you over-provision is so that you can quickly respond to
Availability Zone failures. AWS recommends that production workloads be served from multiple
Availability Zones. This is because, if an Availability Zone failure occurs, your tasks that are running
in the remaining Availability Zones can still serve the demand. If your application runs in two
Availability Zones, you need to double your normal task count. This is so that you can provide
immediate capacity during any potential failure. If your application runs in three Availability Zones,
we recommend that you run 1.5 times your normal task count. That is, run three tasks for every
two that are needed for ordinary serving.

Maximizing scaling speed

Autoscaling is a reactive process that takes time to take effect. However, there are some ways to
help minimize the time that's needed to scale out.

Minimize image size. Larger images take longer to download from an image repository and
unpack. Therefore, keeping image sizes smaller reduces the amount of time that's needed for a
container to start. To reduce the image size, you can follow these specific recommendations:

• If you can build a static binary or use Golang, build your image FROM scratch and include only
your binary application in the resulting image.

• Use minimized base images from upstream distro vendors, such as Amazon Linux or Ubuntu.

• Don’t include any build artifacts in your final image. Using multi-stage builds can help with this.

• Compact RUN stages wherever possible. Each RUN stage creates a new image layer, leading to
an additional round trip to download the layer. A single RUN stage that has multiple commands
joined by && has fewer layers than one with multiple RUN stages.

• If you want to include data, such as ML inference data, in your final image, include only the data
that's needed to start up and begin serving traffic. If you fetch data on demand from Amazon S3
or other storage without impacting service, then store your data in those places instead.

Keep your images close. The higher the network latency, the longer it takes to download the
image. Host your images in a repository in the same AWS Region that your workload is in.
Amazon ECR is a high-performance image repository that's available in every Region that Amazon
ECS is available in. Avoid traversing the Internet or a VPN link to download container images.

Maximizing scaling speed 52

Amazon Elastic Container Service Best Practices Guide

Hosting your images in the same Region improves overall reliability. It mitigating the risk of
network connectivity issues and availability issues in a different Region. Alternatively, you can also
implement Amazon ECR cross-region replication to help with this.

Reduce load balancer health check thresholds. Load balancers perform health checks before
sending traffic to your application. The default health check configuration for a target group can
take 90 seconds or longer. During this, the load balancer checks the health status and receives
requests. Lowering the health check interval and threshold count can make your application accept
traffic quicker and reduce load on other tasks.

Consider cold-start performance. Some application use runtimes such as Java perform Just-
In-Time (JIT) compilation. The compilation process at least as it starts can show application
performance. A workaround is to rewrite the latency-critical parts of your workload in languages
that don't impose a cold-start performance penalty.

Use step scaling, not target-tracking scaling policies. You have several Application Auto Scaling
options for Amazon ECS tasks. Target tracking is the easiest mode to use. With it, all you need
to do is set a target value for a metric, such as CPU average utilization. Then, the auto scaler
automatically manages the number of tasks that are needed to attain that value. With step scaling
you can more quickly react to changes in demand, because you define the specific thresholds for
your scaling metrics, and how many tasks to add or remove when the thresholds are crossed. And,
more importantly, you can react very quickly to changes in demand by minimizing the amount of
time a threshold alarm is in breach. For more information, see Service Auto Scaling in the Amazon
Elastic Container Service Developer Guide.

If you're using Amazon EC2 instances to provide cluster capacity, consider the following
recommendations:

Use larger Amazon EC2 instances and faster Amazon EBS volumes. You can improve image
download and preparation speeds by using a larger Amazon EC2 instance and faster Amazon
EBS volume. Within a given Amazon EC2 instance family, the network and Amazon EBS
maximum throughput increases as the instance size increases (for example, from m5.xlarge
to m5.2xlarge). Additionally, you can also customize Amazon EBS volumes to increase their
throughput and IOPS. For example, if you’re using gp2 volumes, use larger volumes that offer more
baseline throughput. If you're using gp3 volumes, specify throughput and IOPS when you create
the volume.

Use bridge network mode for tasks running on Amazon EC2 instances. Tasks that use bridge
network mode on Amazon EC2 start faster than tasks that use the awsvpc network mode. When

Maximizing scaling speed 53

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html

Amazon Elastic Container Service Best Practices Guide

awsvpc network mode is used, Amazon ECS attaches an elastic network interface (ENI) to the
instance before launching the task. This introduces additional latency. There are several tradeoffs
for using bridge networking though. These tasks don't get their own security group, and there are
some implications for load balancing. For more information, see Load balancer target groups in the
Elastic Load Balancing User Guide.

Handling demand shocks

Some applications experience sudden large shocks in demand. This happens for a variety of
reasons: a news event, big sale, media event, or some other event that goes viral and causes traffic
to quickly and significantly increase in a very short span of time. If unplanned, this can cause
demand to quickly outstrip available resources.

The best way to handle demand shocks is to anticipate them and plan accordingly. Because
autoscaling can take time, we recommend that you scale out your application before the demand
shock begins. For the best results, we recommend having a business plan that involves tight
collaboration between teams that use a shared calender. The team that's planning the event should
work closely with the team in charge of the application in advance. This gives that team enough
time to have a clear scheduling plan. They can schedule capacity to scale out before the event and
to scale in after the event. For more information, see Scheduled scaling in the Application Auto
Scaling User Guide.

If you have an Enterprise Support plan, be sure also to work with your Technical Account Manager
(TAM). Your TAM can verify your service quotas and ensure that any necessary quotas are raised
before the event begins. This way, you don't accidentally hit any service quotas. They can also help
you by prewarming services such as load balancers to make sure your event goes smoothly.

Handling unscheduled demand shocks is a more difficult problem. Unscheduled shocks, if large
enough in amplitude, can quickly cause demand to outstrip capacity. It can also outpace the ability
for autoscaling to react. The best way to prepare for unscheduled shocks is to over-provision
resources. You must have enough resources to handle maximum anticipated traffic demand at any
time.

Maintaining maximum capacity in anticipation of unscheduled demand shocks can be costly. To
mitigate the cost impact, find a leading indicator metric or event that predicts a large demand
shock is imminent. If the metric or event reliably provides significant advance notice, begin the
scale-out process immediately when the event occurs or when the metric crosses the specific
threshold that you set.

Handling demand shocks 54

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html

Amazon Elastic Container Service Best Practices Guide

If your application is prone to sudden unscheduled demand shocks, consider adding a high-
performance mode to your application that sacrifices non-critical functionality but retains crucial
functionality for a customer. For example, assume that your application can switch from generating
expensive customized responses to serving a static response page. In this scenario, you can increase
throughput significantly without scaling the application at all.

Last, you can consider breaking apart monolithic services to better deal with demand shocks. If
your application is a monolithic service that's expensive to run and slow to scale, you might be
able to extract or rewrite performance-critical pieces and run them as separate services. These new
services then can be scaled independently from less-critical components. Having the flexibility to
scale out performance-critical functionality separately from other parts of your application can
both reduce the time it takes to add capacity and help conserve costs.

Cluster capacity

You can provide capacity to an Amazon ECS cluster in several ways. For example, you can launch
Amazon EC2 instances and register them with the cluster at start-up using the Amazon ECS
container agent. However, this method can be challenging because you need to manage scaling on
your own. Therefore, we recommend that you use Amazon ECS capacity providers. They manage
resource scaling for you. There are three kinds of capacity providers: Amazon EC2, Fargate, and
Fargate Spot. For more information about Amazon ECS capacity providers, see Amazon ECS
capacity providers in the Amazon Elastic Container Service Developer Guide.

The Fargate and Fargate Spot capacity providers handle the lifecycle of Fargate tasks for you.
Fargate provides on-demand capacity, and Fargate Spot provides Spot capacity. When a task is
launched, ECS provisions a Fargate resource for you. This Fargate resource comes with the memory
and CPU units that directly correspond to the task-level limits that you declared in your task
definition. Each task receives its own Fargate resource, making a 1:1 relationship between the task
and compute resources.

Tasks that run on Fargate Spot are subject to interruption. Interruptions come after a two-minute
warning. These occur during periods of heavy demand. Fargate Spot works best for interruption-
tolerant workloads such as batch jobs, development or staging environments. They're also suitable
for any other scenario where high availability and low latency isn't a requirement.

You can run Fargate Spot tasks alongside Fargate on-demand tasks. By using them together, you
receive provision “burst” capacity at a lower cost.

Cluster capacity 55

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html

Amazon Elastic Container Service Best Practices Guide

ECS can also manage the Amazon EC2 instance capacity for your tasks. Each Amazon EC2 Capacity
Provider is associated with an Amazon EC2 Auto Scaling Group that you specify. When you use the
Amazon EC2 Capacity Provider, ECS cluster auto scaling maintains the size of the Amazon EC2 Auto
Scaling Group to ensure all scheduled tasks can be placed.

Choosing Fargate task sizes

For AWS Fargate task definitions, you're required to specify CPU and memory at the task level, and
do not need to account for any overhead. You can also specify CPU and memory at the container
level for Fargate tasks. However, doing so isn't required. The resource limits must be greater than
or equal to any reservations that you declared. In most cases, you can set them to the sum of
the reservations of each of the container that's declared in your task definition. Then, round the
number up to the nearest Fargate size. For more information about the available sizes, see Task
CPU and memory in the Amazon Elastic Container Service Developer Guide.

Speeding up cluster capacity provisioning with capacity
providers on Amazon EC2

Customers who run Amazon ECS on Amazon EC2 can take advantage of Amazon ECS Cluster Auto
Scaling (CAS) to manage the scaling of Amazon EC2 Auto Scaling groups (ASG). With CAS, you
can configure Amazon ECS to scale your ASG automatically, and just focus on running your tasks.
Amazon ECS will ensure the ASG scales in and out as needed with no further intervention required.
Amazon ECS capacity providers are used to manage the infrastructure in your cluster by ensuring
there are enough container instances to meet the demands of your application. To learn how
Amazon ECS CAS works under the hood, see Deep Dive on Amazon ECS Cluster Auto Scaling.

Since CAS relies on a CloudWatch based integration with ASG for adjusting cluster capacity, it has
inherent latency associated with publishing the CloudWatch metrics, the time taken for the metric
CapacityProviderReservation to breach CloudWatch alarms (both high and low), and the
time taken by a newly launched Amazon EC2 instance to warm-up. You can take the following
actions to make Amazon ECS CAS more responsive for faster deployments:

Capacity provider step scaling sizes

Amazon ECS capacity providers will eventually grow/shrink the container instances to meet the
demands of your application. The minimum number of instances that Amazon ECS will launch
is set to 1 by default. This may add additional time to your deployments, if several instances are

Choosing Fargate task sizes 56

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-tasks-services.html#fargate-tasks-size
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-tasks-services.html#fargate-tasks-size
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://aws.amazon.com/blogs/containers/deep-dive-on-amazon-ecs-cluster-auto-scaling/

Amazon Elastic Container Service Best Practices Guide

required for placing your pending tasks. You can increase the minimumScalingStepSize via the
Amazon ECS API to increase the minimum number of instances that Amazon ECS scales in or out at
a time. A maximumScalingStepSize that is too low can limit how many container instances are
scaled in or out at a time, which can slow down your deployments.

Note

This configuration is currently only available via the CreateCapacityProvider or
UpdateCapacityProvider APIs.

Instance warm-up period

The instance warm-up period is the period of time after which a newly launched Amazon EC2
instance can contribute to CloudWatch metrics for the Auto Scaling group. Once the specified
warm-up period expires, the instance is counted toward the aggregated metrics of the ASG, and
CAS proceeds with its next iteration of calculations to estimate the number instances required.

The default value for instanceWarmupPeriod is 300 seconds, which you can configure to a
lower value via the CreateCapacityProvider or UpdateCapacityProvider APIs for more
responsive scaling.

Spare capacity

If your capacity provider has no container instances available for placing tasks, then it needs to
increase (scale out) cluster capacity by launching Amazon EC2 instances on the fly, and wait for
them to boot up before it can launch containers on them. This can significantly lower the task
launch rate. You have two options here.

In this case, having spare Amazon EC2 capacity already launched and ready to run tasks will
increase the effective task launch rate. You can use the Target Capacity configuration to
indicate that you wish to maintain spare capacity in your clusters. For example, by setting Target
Capacity at 80%, you indicate that your cluster needs 20% spare capacity at all times. This spare
capacity can allow any standalone tasks to be immediately launched, ensuring task launches are
not throttled. The trade-off for this approach is potential increased costs of keeping spare cluster
capacity.

An alternate approach you can consider is adding headroom to your service, not to the capacity
provider. This means that instead of reducing Target Capacity configuration to launch spare

Instance warm-up period 57

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedScaling.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedScaling.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCapacityProvider.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCapacityProvider.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ManagedScaling.html#ECS-Type-ManagedScaling-instanceWarmupPeriod
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_CreateCapacityProvider.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_UpdateCapacityProvider.html

Amazon Elastic Container Service Best Practices Guide

capacity, you can increase the number of replicas in your service by modifying the target tracking
scaling metric or the step scaling thresholds of the service auto scaling. Note that this approach
will only be helpful for spiky workloads, but won't have an effect when you’re deploying new
services and going from 0 to N tasks for the first time. For more information about the related
scaling policies, see Target Tracking Scaling Policies or Step Scaling Policies in the Amazon Elastic
Container Service Developer Guide.

Choosing the Amazon EC2 instance type

If you use Amazon EC2 to provide capacity for your ECS cluster, you can choose from a large
selection of instance types. All Amazon EC2 instance types and families are compatible with ECS.

To determine which instance types you can use, start by eliminating the instance types or instance
families that don't meet the specific requirements of your application. For example, if your
application requires a GPU, you can exclude any instance types that don't have a GPU. However,
you should also consider other requirements. For example, consider the CPU architecture, network
throughput, and if instance storage is a requirement. Next, examine the amount of CPU and
memory provided by each instance type. As a general rule, the CPU and memory must be large
enough to hold at least one replica of the task that you want to run.

You can choose from the instance types that are compatible with your application. With larger
instances, you can launch more tasks at the same time. And, with smaller instances, you can
scale out in a more fine-grained way to save costs. You don't need to choose a single Amazon
EC2 instance type to fit all the applications in your cluster. Instead, you can create multiple Auto
Scaling Groups. Each group can have a different instance type. Then, you can create an Amazon
EC2 Capacity Provider for each group. Last, in the Capacity Provider strategy of your service and
task, you can select the Capacity Provider that best suits your needs. For more information, see
Instance types in the Amazon EC2 User Guide for Linux Instances.

Using Amazon EC2 Spot and FARGATE_SPOT

Spot capacity can provide significant cost savings over on-demand instances. Spot capacity is
excess capacity that's priced significantly lower than on-demand or reserved capacity. Spot capacity
is suitable for batch processing and machine-learning workloads, and development and staging
environments. More generally, it's suitable for any workload that tolerates temporary downtime.

Understand that the following consequences because Spot capacity might not be available all the
time.

Choosing the Amazon EC2 instance type 58

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-autoscaling-targettracking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-autoscaling-stepscaling.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Container Service Best Practices Guide

• First, during periods of extremely high demand, Spot capacity might be unavailable. This can
cause Fargate Spot task and Amazon EC2 Spot instance launches to be delayed. In these events,
ECS services retry launching tasks, and Amazon EC2 Auto Scaling groups also retry launching
instances, until the required capacity becomes available. Fargate and Amazon EC2 don't replace
Spot capacity with on-demand capacity.

• Second, when the overall demand for capacity increases, Spot instances and tasks might be
terminated with only a two-minute warning. After the warning is sent, tasks should begin an
orderly shutdown if necessary before the instance is fully terminated. This helps minimize the
possibility of errors. For more information about a graceful shutdown, see Graceful shutdowns
with ECS .

To help minimize Spot capacity shortages, consider the following recommendations:

• Use multiple Regions and Availability Zones. Spot capacity varies by Region and Availability
Zone. You can improve Spot availability by running your workloads in multiple Regions and
Availability Zones. If possible, specify subnets in all the Availability Zones in the Regions where
you run your tasks and instances.

• Use multiple Amazon EC2 instance types. When you use Mixed Instance Policies with Amazon
EC2 Auto Scaling, multiple instance types are launched into your Auto Scaling Group. This
ensures that a request for Spot capacity can be fulfilled when needed. To maximize reliability
and minimize complexity, use instance types with roughly the same amount of CPU and memory
in your Mixed Instances Policy. These instances can be from a different generation, or variants of
the same base instance type. Note that they might come with additional features that you might
not require. An example of such a list could include m4.large, m5.large, m5a.large, m5d.large,
m5n.large, m5dn.large, and m5ad.large. For more information, see Auto Scaling groups with
multiple instance types and purchase options in the Amazon EC2 Auto Scaling User Guide.

• Use the capacity-optimized Spot allocation strategy. With Amazon EC2 Spot, you can choose
between the capacity- and cost-optimized allocation strategies. If you choose the capacity-
optimized strategy when launching a new instance, Amazon EC2 Spot selects the instance type
with the greatest availability in the selected Availability Zone. This helps reduce the possibility
that the instance is terminated soon after it launches.

Using Amazon EC2 Spot and FARGATE_SPOT 59

https://aws.amazon.com/blogs/containers/graceful-shutdowns-with-ecs/
https://aws.amazon.com/blogs/containers/graceful-shutdowns-with-ecs/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html

Amazon Elastic Container Service Best Practices Guide

Best Practices - Persistent storage

You can use Amazon ECS to run stateful containerized applications at scale by using AWS storage
services, such as Amazon EFS, Amazon EBS, or FSx for Windows File Server, that provide data
persistence to inherently ephemeral containers. The term data persistence means that the data
itself outlasts the process that created it. Data persistence in AWS is achieved by decoupling
compute and storage services. Similar to Amazon EC2, you can also use Amazon ECS to decouple
the lifecycle of your containerized applications from the data they consume and produce. Using
AWS storage services, Amazon ECS tasks can persist data even after tasks terminate.

By default, containers don't persist the data they produce. When a container is terminated, the
data that it wrote to its writable layer gets destroyed with the container. This makes containers
suitable for stateless applications that don't need to store data locally. Containerized applications
that require data persistence need a storage backend that isn't destroyed when the application’s
container terminates.

60

Amazon Elastic Container Service Best Practices Guide

A container image is built off a series of layers. Each layer represents an instruction in the
Dockerfile that the image was built from. Each layer is read-only, except for the container. That
is, when you create a container, a writable layer is added over the underlying layers. Any files
the container creates, deletes, or modifies are written to the writable layer. When the container
terminates, the writable layer is also deleted simultaneously. A new container that uses the same
image has its own writable layer. This layer doesn't include any changes. Therefore, a container’s
data must always be stored outside of the container writable layer.

With Amazon ECS, you can run stateful containers using volumes in four ways. Amazon ECS for
Linux containers is integrated with Amazon EFS natively. Amazon ECS for Windows and Linux tasks
hosted on container instances or on Fargate is integrated with Amazon EBS natively. Amazon EBS

61

Amazon Elastic Container Service Best Practices Guide

volumes attached to standalone tasks can be persisted by setting deleteOnTermination to
false. Both Windows and Linux Amazon EC2 container instances can also use Docker volumes
that are integrated with Amazon EBS. For Windows containers, Amazon ECS integrates with FSx for
Windows File Server to provide persistent storage.

Topics

• Choosing the right storage type for your containers

• Amazon EFS volumes

• Docker volumes

• FSx for Windows File Server

Choosing the right storage type for your containers

Applications that are running in an Amazon ECS cluster can use a variety of AWS storage services
and third-party products to provide persistent storage for stateful workloads. You should choose
your storage backend for your containerized application based on the architecture and storage
requirements of your application. For more information about AWS storage services, see Cloud
Storage on AWS.

For Amazon ECS clusters that contain Linux instances or Linux containers used with Fargate,
Amazon ECS integrates with Amazon EFS to provide container storage. The most distinctive
difference between Amazon EFS and Amazon EBS is that you can simultaneously mount an
Amazon EFS file system on thousands of Amazon ECS tasks. In contrast, Amazon EBS volumes
don't support concurrent access. Given this, Amazon EFS is the recommended storage option for
containerized applications that scale horizontally. This is because it supports concurrency. Amazon
EFS stores your data redundantly across multiple Availability Zones and offers low latency access
from Amazon ECS tasks, regardless of Availability Zone.

Suppose you have an application such as a transactional database that requires sub-millisecond
latency and doesn’t need a shared file system when it's scaled horizontally. For such an application,
we recommend using Amazon EBS volumes for persistent storage. Amazon ECS supports Amazon
EBS volumes for tasks hosted on Amazon EC2 and Fargate. Before using Amazon EBS volumes with
Amazon ECS tasks, you can either attach Amazon EBS volumes to container instances and manage
volumes separately from the lifecycle of the task, or you can configure an Amazon EBS volume for
attachment to an Amazon ECS task during deployment of a service or a standalone task.

Choosing the right storage type 62

https://aws.amazon.com/products/storage/
https://aws.amazon.com/products/storage/

Amazon Elastic Container Service Best Practices Guide

For clusters that contain Windows instances, FSx for Windows File Server provides persistent
storage for containers. FSx for Windows File Server file systems supports multi-AZ deployments.
Through these deployments, you can share a file system with Amazon ECS tasks running across
multiple Availability Zones.

You can also use Amazon EC2 instance storage for data persistence for Amazon ECS tasks that are
hosted on Amazon EC2 using bind mounts or Docker volumes. When using bind mounts or Docker
volumes, containers store data on the container instance file system. One limitation of using a host
file system for container storage is that the data is only available on a single container instance at a
time. This means that containers can only run on the host where the data resides. Therefore, using
host storage is only recommended in scenarios where data replication is handled at the application
level.

Amazon EFS volumes

Amazon Elastic File System (Amazon EFS) provides a simple, scalable, fully managed elastic NFS
file system. It's built to be able to scale on demand to petabytes without disrupting applications. It
can scale in or out as you add and remove files.

You can run your stateful applications in Amazon ECS by using Amazon EFS volumes to provide
persistent storage. Amazon ECS tasks that run on Amazon EC2 instances or on Fargate using
platform version 1.4.0 and later can mount an existing Amazon EFS file system. Given that
multiple containers can mount and access an Amazon EFS file system simultaneously, your tasks
have access to the same data set regardless of where they're hosted.

To mount an Amazon EFS file system in your container, you can reference the Amazon EFS file
system and container mount point in your Amazon ECS task definition. The following is a snippet
of a task definition that uses Amazon EFS for container storage.

...
"containerDefinitions": [
 {
 "mountPoints": [
 {
 "containerPath": "/opt/my-app",
 "sourceVolume": "Shared-EFS-Volume"
 }
]
 }

Amazon EFS 63

Amazon Elastic Container Service Best Practices Guide

]
...
"volumes": [
 {
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1234",
 "transitEncryption": "DISABLED",
 "rootDirectory": ""
 },
 "name": "Shared-EFS-Volume"
 }
]

Amazon EFS stores data redundantly across multiple Availability Zones within a single Region.
An Amazon ECS task mounts the Amazon EFS file system by using an Amazon EFS mount target
in its Availability Zone. An Amazon ECS task can only mount an Amazon EFS file system if the
Amazon EFS file system has a mount target in the Availability Zone the task runs in. Therefore, a
best practice is to create Amazon EFS mount targets in all the Availability Zones that you plan to
host Amazon ECS tasks in.

Amazon EFS 64

Amazon Elastic Container Service Best Practices Guide

For more information, see Amazon EFS volumes in the Amazon Elastic Container Service Developer
Guide.

Security and access controls

Amazon EFS offers access control features that you can use to ensure that the data stored in an
Amazon EFS file system is secure and accessible only from applications that need it. You can secure
data by enabling encryption at rest and in-transit. For more information, see Data encryption in
Amazon EFS in the Amazon Elastic File System User Guide.

Security and access controls 65

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/efs-volumes.html
https://docs.aws.amazon.com/efs/latest/ug/encryption.html
https://docs.aws.amazon.com/efs/latest/ug/encryption.html

Amazon Elastic Container Service Best Practices Guide

In addition to data encryption, you can also use Amazon EFS to restrict access to a file system.
There are three ways to implement access control in EFS.

• Security groups—With Amazon EFS mount targets, you can configure a security group that's
used to permit and deny network traffic. You can configure the security group attached to
Amazon EFS to permit NFS traffic (port 2049) from the security group that's attached to your
Amazon ECS instances or, when using the awsvpc network mode, the Amazon ECS task.

• IAM—You can restrict access to an Amazon EFS file system using IAM. When configured, Amazon
ECS tasks require an IAM role for file system access to mount an EFS file system. For more
information, see Using IAM to control file system data access in the Amazon Elastic File System
User Guide.

IAM policies can also enforce predefined conditions such as requiring a client to use TLS when
connecting to an Amazon EFS file system. For more information, see Amazon EFS condition keys
for clients in the Amazon Elastic File System User Guide.

• Amazon EFS access points—Amazon EFS access points are application-specific entry points into
an Amazon EFS file system. You can use access points to enforce a user identity, including the
user's POSIX groups, for all file system requests that are made through the access point. Access
points can also enforce a different root directory for the file system. This is so that clients can
only access data in the specified directory or its sub-directories.

Consider implementing all three access controls on an Amazon EFS file system for maximum
security. For example, you can configure the security group attached to an Amazon EFS mount
point to only permit ingress NFS traffic from a security group that's associated with your container
instance or Amazon ECS task. Additionally, you can configure Amazon EFS to require an IAM role to
access the file system, even if the connection originates from a permitted security group. Last, you
can use Amazon EFS access points to enforce POSIX user permissions and specify root directories
for applications.

The following task definition snippet shows how to mount an Amazon EFS file system using an
access point.

"volumes": [
 {
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-1234",
 "authorizationConfig": {
 "acessPointId": "fsap-1234",

Security and access controls 66

https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html#efs-condition-keys-for-nfs
https://docs.aws.amazon.com/efs/latest/ug/iam-access-control-nfs-efs.html#efs-condition-keys-for-nfs

Amazon Elastic Container Service Best Practices Guide

 "iam": "ENABLED"
 },
 "transitEncryption": "ENABLED",
 "rootDirectory": ""
 },
 "name": "my-filesystem"
 }
]

Performance

Amazon EFS offers two performance modes: General Purpose and Max I/O. General Purpose
is suitable for latency-sensitive applications such as content management systems and CI/CD
tools. In contrast, Max I/O file systems are suitable for workloads such as data analytics, media
processing, and machine learning. These workloads need to perform parallel operations from
hundreds or even thousands of containers and require the highest possible aggregate throughput
and IOPS. For more information, see Amazon EFS performance modes in the Amazon Elastic File
System User Guide.

Some latency sensitive workloads require both the higher I/O levels that are provided by Max I/
O performance mode and the lower latency that are provided by General Purpose performance
mode. For this type of workload, we recommend creating multiple General Purpose performance
mode file systems. That way, you can spread your application workload across all these file
systems, as long as the workload and applications can support it.

Throughput

All Amazon EFS file systems have an associated metered throughput that's determined by either
the amount of provisioned throughput for file systems using Provisioned Throughput or the amount
of data stored in the EFS Standard or One Zone storage class for file systems using Bursting
Throughput. For more information, see Understanding metered throughput in the Amazon Elastic
File System User Guide.

The default throughput mode for Amazon EFS file systems is bursting mode. With bursting mode,
the throughput that's available to a file system scales in or out as a file system grows. Because
file-based workloads typically spike, requiring high levels of throughput for periods of time and
lower levels of throughput the rest of the time, Amazon EFS is designed to burst to allow high
throughput levels for periods of time. Additionally, because many workloads are read-heavy, read
operations are metered at a 1:3 ratio to other NFS operations (like write).

Performance 67

https://docs.aws.amazon.com/efs/latest/ug/performance.html#performancemodes
https://docs.aws.amazon.com/efs/latest/ug/performance.html#read-write-throughput

Amazon Elastic Container Service Best Practices Guide

All Amazon EFS file systems deliver a consistent baseline performance of 50 MB/s for each TB of
Amazon EFS Standard or Amazon EFS One Zone storage. All file systems (regardless of size) can
burst to 100 MB/s. File systems with more than 1TB of EFS Standard or EFS One Zone storage can
burst to 100 MB/s for each TB. Because read operations are metered at a 1:3 ratio, you can drive up
to 300 MiBs/s for each TiB of read throughput. As you add data to your file system, the maximum
throughput that's available to the file system scales linearly and automatically with your storage
in the Amazon EFS Standard storage class. If you need more throughput than you can achieve with
your amount of data stored, you can configure Provisioned Throughput to the specific amount your
workload requires.

File system throughput is shared across all Amazon EC2 instances connected to a file system. For
example, a 1TB file system that can burst to 100 MB/s of throughput can drive 100 MB/s from
a single Amazon EC2 instance can each drive 10 MB/s. For more information, see Amazon EFS
performance in the Amazon Elastic File System User Guide.

Cost optimization

Amazon EFS simplifies scaling storage for you. Amazon EFS file systems grow automatically as you
add more data. Especially with Amazon EFS Bursting Throughput mode, throughput on Amazon
EFS scales as the size of your file system in the standard storage class grows. To improve the
throughput without paying an additional cost for provisioned throughput on an EFS file system,
you can share an Amazon EFS file system with multiple applications. Using Amazon EFS access
points, you can implement storage isolation in shared Amazon EFS file systems. By doing so, even
though the applications still share the same file system, they can't access data unless you authorize
it.

As your data grows, Amazon EFS helps you automatically move infrequently accessed files to a
lower storage class. The Amazon EFS Standard-Infrequent Access (IA) storage class reduces storage
costs for files that aren't accessed every day. It does this without sacrificing the high availability,
high durability, elasticity, and the POSIX file system access that Amazon EFS provides. For more
information, see Amazon EFS storage classes in the Amazon Elastic File System User Guide.

Consider using Amazon EFS lifecycle policies to automatically save money by moving infrequently
accessed files to Amazon EFS IA storage. For more information, see Amazon EFS lifecycle
management in the Amazon Elastic File System User Guide.

When creating an Amazon EFS file system, you can choose if Amazon EFS replicates your data
across multiple Availability Zones (Standard) or stores your data redundantly within a single
Availability Zone. The Amazon EFS One Zone storage class can reduce storage costs by a significant

Cost optimization 68

https://docs.aws.amazon.com/efs/latest/ug/limits-throughput.html
https://docs.aws.amazon.com/efs/latest/ug/limits-throughput.html
https://docs.aws.amazon.com/efs/latest/ug/storage-classes.html
https://docs.aws.amazon.com/efs/latest/ug/lifecycle-management-efs.html
https://docs.aws.amazon.com/efs/latest/ug/lifecycle-management-efs.html

Amazon Elastic Container Service Best Practices Guide

margin compared to Amazon EFS Standard storage classes. Consider using Amazon EFS One Zone
storage class for workloads that don't require multi-AZ resilience. You can further reduce the cost
of Amazon EFS One Zone storage by moving infrequently accessed files to Amazon EFS One Zone-
Infrequent Access. For more information, see Amazon EFS Infrequent Access.

Data protection

Amazon EFS stores your data redundantly across multiple Availability Zones for file systems
using Standard storage classes. If you select Amazon EFS One Zone storage classes, your data
is redundantly stored within a single Availability Zone. Additionally, Amazon EFS is designed to
provide 99.999999999% (11 9’s) of durability over a given year.

As with any environment, it's a best practice to have a backup and to build safeguards against
accidental deletion. For Amazon EFS data, that best practice includes a functioning, regularly
tested backup using AWS Backup. File systems using Amazon EFS One Zone storage classes are
configured to automatically back up files by default at file system creation unless you choose to
disable this functionality. For more information, see Data protection for Amazon EFS in the Amazon
Elastic File System User Guide.

Use cases

Amazon EFS provides parallel shared access that automatically grows and shrinks as files are added
and removed. As a result, Amazon EFS is suitable for any application that requires a storage with
functionalities like low latency, high throughput, and read-after-write consistency. Amazon EFS is
an ideal storage backend for applications that scale horizontally and require a shared file system.
Workloads such as data analytics, media processing, content management, and web serving are
some of the common Amazon EFS use cases.

One use case where Amazon EFS might not be suitable is for applications that require sub-
millisecond latency. This is generally a requirement for transactional database systems. We
recommend running storage performance tests to determine the impact of using Amazon EFS
for latency sensitive applications. If application performance degrades when using Amazon EFS,
consider Amazon EBS io2 Block Express, which provides sub-millisecond, low-variance I/O latency
on Nitro instances. For more information, see Amazon EBS volume types in the Amazon EC2 User
Guide for Linux Instances.

Some applications fail if their underlying storage is changed unexpectedly. Therefore, Amazon EFS
isn't the best choice for these applications. Rather, you might prefer to use a storage system that
doesn't allow concurrent access from multiple places.

Data protection 69

https://aws.amazon.com/efs/features/infrequent-access
https://docs.aws.amazon.com/efs/latest/ug/efs-backup-solutions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#io2-block-express

Amazon Elastic Container Service Best Practices Guide

Docker volumes

Docker volumes are a feature of the Docker container runtime that allow containers to persist data
by mounting a directory from the file system of the host. Docker volume drivers (also referred
to as plugins) are used to integrate container volumes with external storage systems, such as
Amazon EBS. Docker volumes are only supported when hosting Amazon ECS tasks on Amazon EC2
instances.

Amazon ECS tasks can use Docker volumes to persist data using Amazon EBS volumes. This is done
by attaching an Amazon EBS volume to an Amazon EC2 instance and then mounting the volume in
a task using Docker volumes. A Docker volume can be shared among multiple Amazon ECS tasks on
the host.

The limitation of Docker volumes is that the file system the task uses is tied to the specific Amazon
EC2 instance. If the instance stops for any reason and the task gets placed on another instance,
the data is lost. You can assign tasks to instances to ensure the associated EBS volumes are always
available to tasks.

For more information, see Docker volumes in the Amazon Elastic Container Service Developer Guide.

Amazon EBS volume lifecycle

There are two key usage patterns with container storage and Amazon EBS. The first is when an
application needs to persist data and prevent data loss when its container terminates. An example
of this type of application would be a transactional database like MySQL. When a MySQL task
terminates, another task is expected to replace it. In this scenario, the lifecycle of the volume is
separate from the lifecycle of the task. When using EBS to persist container data, it's a best practice
to use task placement constraints to limit the placement of the task to a single host with the EBS
volume attached.

The second is when the lifecycle of the volume is independent from the task lifecycle. This is
especially useful for applications that require high-performing and low latency storage but don’t
need to persist data after the task terminates. For example, an ETL workload that process large
volumes of data may require a high throughput storage. Amazon EBS is suitable for this type of
workload as it provides high performance volumes that provide up to 256,000 IOPS. When the task
terminates, the replacement replica can be safely placed on any Amazon EC2 hosts in the cluster.
As long as the task has access to a storage backend that can meet its performance requirements,
the task can perform its function. Therefore, no task placement constraints are necessary in this
case.

Docker volumes 70

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-volumes.html

Amazon Elastic Container Service Best Practices Guide

If the Amazon EC2 instances in your cluster have multiple types of Amazon EBS volumes attached
to them, you can use task placement constraints to ensure that tasks are placed on instances with
an appropriate Amazon EBS volume attached. For example, suppose a cluster has some instances
with a gp2 volume, while others use io1 volumes. You can attach custom attributes to instances
with io1 volumes and then use task placement constraints to ensure your I/O intensive tasks are
always placed on container instances with io1 volumes.

The following AWS CLI command is used to place attributes on an Amazon ECS container instance.

aws ecs put-attributes \
 --attributes name=EBS,value=io1,targetId=<your-container-instance-arn>

Amazon EBS data availability

Containers are typically short lived, frequently created, and terminated as applications scale in and
out horizontally. As a best practice, you can run workloads in multiple Availability Zones to improve
the availability of your applications. Amazon ECS provides a way for you to control task placement
using task placement strategies and task placement constraints. When a workload persists its
data using Amazon EBS volumes, its tasks need to be placed in the same Availability Zone as the
Amazon EBS volume. We also recommend that you set a placement constraint that limits the
Availability Zone a task can be placed in. This ensures that your tasks and their corresponding
volumes are always located in the same Availability Zone.

When running standalone tasks, you can control which Availability Zone the task gets placed by
setting placement constraints using the availability zone attribute.

attribute:ecs.availability-zone == us-east-1a

When running applications that would benefit from running in multiple Availability Zones, consider
creating a different Amazon ECS service for each Availability Zone. This ensures that tasks that
need an Amazon EBS volume are always placed in the same Availability Zone as the associated
volume.

We recommend creating container instances in each Availability Zone, attaching Amazon EBS
volumes using launch templates, and adding custom attributes to the instances to differentiate
them from other container instances in the Amazon ECS cluster. When creating services, configure
task placement constraints to ensure that Amazon ECS places tasks in the right Availability Zone
and instance. For more information, see Task placement constraint examples in the Amazon Elastic
Container Service Developer Guide.

Amazon EBS data availability 71

https://docs.aws.amazon.com/autoscaling/ec2/userguide/create-launch-template.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-constraints.html#add-attribute
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-constraints.html#constraint-examples

Amazon Elastic Container Service Best Practices Guide

Docker volume plugins

Docker plugins such as Portworx provide an abstraction between the Docker volume and the
Amazon EBS volume. These plugins can dynamically create an Amazon EBS volume when your task
that needs a volume starts. Portworx can also attach a volume to a new host when a container
terminates, and its subsequent replica gets placed on a different container instance. It also
replicates each container’s volume data among Amazon ECS nodes and across Availability Zones.
For more information, see Portworx.

FSx for Windows File Server

FSx for Windows File Server provides fully managed, highly reliable, and scalable file storage that
is accessible over the industry-standard Server Message Block (SMB) protocol. It's built on Windows
Server, delivering a wide range of administrative features such as user quotas, end-user file restore,
and Microsoft Active Directory (AD) integration. It offers single-AZ and multi-AZ deployment
options, fully managed backups, and encryption of data at rest and in transit.

Amazon ECS supports the use of FSx for Windows File Server in Amazon ECS Windows task
definitions enabling persistent storage as a mount point through SMBv3 protocol using a SMB
feature called GlobalMappings.

To setup the FSx for Windows File Server and Amazon ECS integration, the Windows container
instance must be a domain member on an Active Directory Domain Service (AD DS), hosted by an
AWS Directory Service for Microsoft Active Directory, on-premises Active Directory or self-hosted
Active Directory on Amazon EC2. AWS Secrets Manager is used to store sensitive data like the
username and password of an Active Directory credential which is used to map the share on the
Windows container instance.

To use FSx for Windows File Server file system volumes for your containers, you must specify the
volume and mount point configurations in your task definition. The following is a snippet of a task
definition that uses FSx for Windows File Server for container storage.

{
 "containerDefinitions": [{
 "name": "container-using-fsx",
 "image": "iis:2",
 "entryPoint": [
 "powershell",
 "-command"
],

Docker volume plugins 72

https://portworx.com/

Amazon Elastic Container Service Best Practices Guide

 "mountPoints": [{
 "sourceVolume": "myFsxVolume",
 "containerPath": "\\mount\\fsx",
 "readOnly": false
 }]
 }],
 "volumes": [{
 "fsxWindowsFileServerVolumeConfiguration": {
 "fileSystemId": "fs-ID",
 "authorizationConfig": {
 "domain": "ADDOMAIN.local",
 "credentialsParameter": "arn:aws:secretsmanager:us-
east-1:111122223333:secret:SecretName"
 },
 "rootDirectory": "share"
 }
 }]
}

For more information, see Amazon FSx for Windows File Server volumes in the Amazon Elastic
Container Service Developer Guide.

Security and access controls

FSx for Windows File Server offers the following access control features that you can use to ensure
that the data stored in an FSx for Windows File Server file system is secure and accessible only
from applications that need it.

Data encryption

FSx for Windows File Server supports two forms of encryption for file systems. They are encryption
of data in transit and encryption at rest. Encryption of data in transit is supported on file shares
that are mapped on a container instance that supports SMB protocol 3.0 or newer. Encryption
of data at rest is automatically enabled when creating an Amazon FSx file system. Amazon FSx
automatically encrypts data in transit using SMB encryption as you access your file system without
the need for you to modify your applications. For more information, see Data encryption in
Amazon FSx in the Amazon FSx for Windows File Server User Guide.

Folder level access control using Windows ACLs

The Windows Amazon EC2 instance access Amazon FSx file shares using Active Directory
credentials. It uses standard Windows access control lists (ACLs) for fine-grained file- and folder-

Security and access controls 73

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/wfsx-volumes.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/encryption.html

Amazon Elastic Container Service Best Practices Guide

level access control. You can create multiple credentials, each one for a specific folder within the
share which maps to a specific task.

In the following example, the task has access to the folder App01 using a credential saved in
Secrets Manager. Its Amazon Resource Name (ARN) is 1234.

"rootDirectory": "\\path\\to\\my\\data\App01",
"credentialsParameter": "arn-1234",
"domain": "corp.fullyqualified.com",

In another example, a task has access to the folder App02 using a credential saved in the Secrets
Manager. Its ARN is 6789.

"rootDirectory": "\\path\\to\\my\\data\App02",
"credentialsParameter": "arn-6789",
"domain": "corp.fullyqualified.com",

Use cases

Containers aren't designed to persist data. However, some containerized .NET applications might
require local folders as persistent storage to save application outputs. FSx for Windows File Server
offers a local folder in the container. This allows for multiple containers to read-write on the same
file system that's backed by a SMB Share.

Use cases 74

Amazon Elastic Container Service Best Practices Guide

Best Practices - Speeding up task launch

There are several improvements that you can make to shorten the time that it takes Amazon ECS
to launch your tasks.

Amazon ECS Task launch workflow

Understanding how Amazon ECS provisions your tasks is helpful in reasoning about optimizations
to speed up your task launches. When you launch Amazon ECS tasks (standalone tasks or by
Amazon ECS services), a task is created and initially put into the PROVISIONING state before it
is successfully launched into RUNNING state (for details, see Task lifecycle in the Amazon ECS
Developer Guide). In the PROVISIONING state, neither the task nor the containers exist as Amazon
ECS needs to find compute capacity for placing the task.

Amazon ECS selects the appropriate compute capacity for your task based on your launch type or
capacity provider configuration. The launch types are AWS Fargate (Fargate) and Amazon EC2 on
AWS, and the EXTERNAL type used with Amazon ECS Anywhere. Capacity providers and capacity
provider strategies can be used with both the Fargate and Amazon EC2 launch types. With Fargate,
you don’t have to think about provisioning, configuring, and scaling of your cluster capacity.
Fargate takes care of all infrastructure management for your tasks. For Amazon ECS with Amazon
EC2, you can either manage your cluster capacity by registering Amazon EC2 instances to your
cluster, or you can use Amazon ECS Cluster Auto Scaling (CAS) to simplify your compute capacity
management. CAS takes care of dynamically scaling your cluster capacity, so that you can focus
on just running tasks. Amazon ECS determines where to place the task based on the requirements
you specify in the task definition, such as CPU and memory, as well your placement constraints and
strategies. For more details on task placement, see Amazon ECS task placement.

After finding the capacity for placing your task, Amazon ECS provisions the necessary attachments
(e.g. Elastic Network Interfaces (ENIs) for tasks in awsvpc mode), and uses the Amazon ECS
container agent to pull your container images and start your containers. Once all this completes
and the relevant containers have launched, Amazon ECS moves the task into RUNNING state.

Amazon ECS Service Scheduler workflow

Amazon ECS provides a service scheduler for managing the state of your services. The service
scheduler ensures that the scheduling strategy that you specify is followed and reschedules failing

Task launch workflow 75

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-lifecycle.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduling_tasks.html

Amazon Elastic Container Service Best Practices Guide

tasks. For example, if the underlying infrastructure fails, the service scheduler can reschedule tasks.
A key responsibility of the service scheduler is to ensure that your application is always running
the desired number of tasks – based on the desired count that you specify in service configuration
or the auto scaled count of tasks based on application load if you use service autoscaling. The
service scheduler uses asynchronous workflows to launch tasks in batches. To understand how the
service scheduler functions, imagine that you create an Amazon ECS service for a large web API
that receives heavy traffic. You expect this service to serve a lot of web traffic, and determine that
the appropriate desired count for the service is 1,000 tasks. When you deploy this service, Amazon
ECS service scheduler will not launch all 1,000 tasks at once. Instead, it will begin executing
workflow cycles to bring the current state (0 tasks) towards the desired state (1,000 tasks), with
each workflow cycle launching a batch of new tasks. The service scheduler can provision up to
500 tasks for Fargate, Amazon EC2, and External launch types per service per minute. For more
information about the allowed rates and quotas in Amazon ECS, see Amazon ECS service quotas.

Now that you have an understanding of Amazon ECS task launch workflow, let’s discuss how you
can use some of this knowledge to speed-up your task launches.

Recommendations to speed up task launch

As discussed in the previous section, the time taken between the triggering of task launch (via
Amazon ECS APIs or service scheduler) and the successful start-up of your containers is affected
by a variety of factors within Amazon ECS, your configurations, and the container itself. In order to
speed up your task launches, consider the following recommendations.

• Cache container images and binpack instances.

If you are running Amazon ECS on Amazon EC2, you can configure the Amazon ECS container
agent to cache previously used container images to reduce image pull-time for subsequent
launches. The effect of caching is even greater when you have a high task density in your
container instances, which you can configure using the binpack placement strategy. Caching
container images is especially beneficial for windows-based workloads which usually have large
(tens of GBs) container image sizes. When using the binpack placement strategy, you can also
consider using Elastic Network Interface (ENI) trunking to place more tasks with the awsvpc
network mode on each container instance. ENI trunking increases the number of tasks you can
run on awsvpc mode. For example, a c5.large instance that may support running only 2 tasks
concurrently, can run up to 10 tasks with ENI trunking.

• Choose an optimal network mode.

76

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/service-quotas.html#service-quotas-ecs
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/pull-behavior.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking-networkmode.html

Amazon Elastic Container Service Best Practices Guide

Although there are many instances where awsvpc network mode is ideal, this network mode can
inherently increase task launch latency – for each task in awsvpc mode, Amazon ECS workflows
need to provision and attach an ENI by invoking Amazon EC2 APIs which adds an overhead of
several seconds to your task launches. By contrast, a key advantage of using awsvpc network
mode is that each task has a security group to allow or deny traffic. This means you have greater
flexibility to control communications between tasks and services at a more granular level. If the
benefits of deployment speed outweigh benefits from awsvpc mode, you can consider using
bridge mode to speed up task launches. For further reading on relative advantages of each
network mode, see the section called “AWSVPC mode” and the section called “Bridge mode”.

• Track your task launch lifecycle to find optimization opportunities.

It is often difficult to realize the amount of time it takes for your application to start-up.
Launching your container image, running start-up scripts, and other configurations during
application start-up can take a surprising amount of time. You can use the ECS Agent Metadata
endpoint to post metrics to track application start-up time from ContainerStartTime to
when your application is ready to serve traffic. With this data, you can understand how your
application is contributing to the total launch time, and find areas where you can reduce
unnecessary application-specific overhead and optimize your container images.

• Choose an optimal instance type (when using Amazon ECS on Amazon EC2).

Choosing the correct Instance type is based on the resource reservation (i.e. CPU, Memory,
ENI, GPU) that you configure on your task, hence when sizing the instance, you can calculate
how many tasks can be placed on a single instance. A simple example of a well-placed task,
will be hosting 4 tasks requiring 0.5 vCPU and 2GB of memory reservations in an m5.large
instance (supporting 2 vCPU and 8 GB memory). The reservations of this task definition take full
advantage of the instance’s resources.

• Use Amazon ECS service scheduler to concurrently launch services.

As discussed in the previous section, the service scheduler can concurrently launch tasks for
multiple services using asynchronous workflows. Thus, you can achieve faster deployment speed
by designing your applications as smaller services with fewer tasks rather than a large service
with a large number of tasks. For instance, instead of having a single service with 1,000 tasks,
having 10 services each with 100 tasks will result in a much faster deployment speed, since
service scheduler will initiate task provisioning for all services in parallel.

77

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint.html

Amazon Elastic Container Service Best Practices Guide

Best Practices - Speeding up deployments

You can choose rolling updates for your Amazon ECS service. Deployments might take longer
than you expect, but you can modify a few options to speed up your deployments. For context, by
choosing this deployment type, you tell the Amazon ECS service scheduler to replace any currently
running tasks with new tasks whenever a new service deployment is started. The deployment
configuration determines the specific number of tasks that Amazon ECS adds to or removes from
the service during a rolling update. The following is an overview of the deployment process:

1. The scheduler starts your application.

2. The scheduler then decides if your application is ready for web traffic.

3. When you scale down or create a new version of the application, the scheduler decides whether
your application is safe to stop. At the same time, it must maintain the availability of the
application during the rolling deployment.

The strategy of maintaining task availability can cause deployments to take longer than you
expect.

To speed up deployment times, modify the default load balancer, Amazon ECS agent, service and
task definition options. The following sections detail how you can modify all of these to speed up
deployments.

Topics

• Load balancer health check parameters

• Load balancer connection draining

• Container image type

• Container image pull behavior

• Task deployment

Load balancer health check parameters

The following diagram describes the load balancer health check process. The load balancer
periodically sends health checks to the Amazon ECS container. The Amazon ECS agent monitors
and waits for the load balancer to report on the container health. It does this before it considers
the container to be in a healthy status.

Load balancer health check parameters 78

Amazon Elastic Container Service Best Practices Guide

Two Elastic Load Balancing health check parameters affect deployment speed:

• Health check interval: Determines the approximate amount of time, in seconds, between health
checks of an individual container. By default, the load balancer checks every 30 seconds.

This parameter is named:

• HealthCheckIntervalSeconds in the Elastic Load Balancing API

• Interval on the Amazon EC2 console

• Healthy threshold count: Determines the number of consecutive health check successes required
before considering an unhealthy container healthy. By default, the load balancer requires five
passing health checks before it reports that the target container is healthy.

This parameter is named:

• HealthyThresholdCount in the Elastic Load Balancing API

• Healthy threshold on the Amazon EC2 console

With the default setting, the total time to determine the health of a container is two minutes and
30 seconds (30 seconds * 5 = 150 seconds).

Load balancer health check parameters 79

Amazon Elastic Container Service Best Practices Guide

You can speed up the health-check process if your service starts up and stabilizes in under 10
seconds. To speed up the process, reduce the number of checks and the interval between the
checks.

• HealthCheckIntervalSeconds (Elastic Load Balancing API name) or Interval (Amazon EC2
console name): 5

• HealthyThresholdCount (Elastic Load Balancing API name) or Healthy threshold (Amazon
EC2 console name): 2

With this setting, the health-check process takes 10 seconds compared to the default of two
minutes and 30 seconds.

Setting the Elastic Load Balancing health check parameters to speed up deployment

1. Go to the https://console.aws.amazon.com/ec2/.

2. From the left navigation, under Load Balancing, select Target Groups.

3. On the Target groups page, select the target group.

4. On the target group page, select the Health checks tab.

5. Click Edit.

6. Expand Advanced health check settings.

7. Set the health check parameters.

8. Click Save changes.

For more information about the Elastic Load Balancing health check parameters, see TargetGroup
in the Elastic Load Balancing API Reference.

Load balancer connection draining

To allow for optimization, clients maintain a keep alive connection to the container service. This is
so that subsequent requests from that client can reuse the existing connection. When you want to
stop traffic to a container, you notify the load balancer.

The following diagram describes the load balancer connection draining process. When you tell
the load balancer to stop traffic to the container, it periodically checks to see if the client closed
the keep alive connection. The Amazon ECS agent monitors the load balancer and waits the load
balancer to report that the keep alive connection is closed.

Load balancer connection draining 80

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/elasticloadbalancing/latest/APIReference/API_TargetGroup.html

Amazon Elastic Container Service Best Practices Guide

The amount of time that the load balancer waits is the deregistration delay. You can configure the
following load balancer setting to speed up your deployments.

• deregistration_delay.timeout_seconds: 300 (default)

When you have a service with a response time that's under one second, set the parameter to the
following value to have the load balancer only wait five seconds before it breaks the connection
between the client and the backend service:

• deregistration_delay.timeout_seconds: 5

Note

Do not set the value to 5 seconds when you have a service with long-lived requests, such as
slow file uploads or streaming connections.

Load balancer connection draining 81

Amazon Elastic Container Service Best Practices Guide

SIGTERM responsiveness

The following diagram shows how Amazon ECS terminates a task. Amazon ECS first sends a
SIGTERM signal to the task to notify the application needs to finish and shut down, and then
Amazon ECS sends a SIGKILL message. When applications ignore the SIGTERM, the Amazon ECS
service must wait to send the SIGKILL signal to terminate the process.

The amount of time that Amazon ECS waits is determined by the following Amazon ECS agent
option:

• ECS_CONTAINER_STOP_TIMEOUT: 30 (default)

For more information about the container agent parameter, see Container agent configuration in
the Amazon Elastic Container Service Developer Guide.

To speed up the waiting period, set the Amazon ECS agent option to the following value:

SIGTERM responsiveness 82

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-config.html

Amazon Elastic Container Service Best Practices Guide

Note

If your application takes more than one second, multiply the value by two and use that
number as the value.

• ECS_CONTAINER_STOP_TIMEOUT: 2

In this case, the Amazon ECS waits two seconds for the container to shut down, and then Amazon
ECS sends a SIGKILL message when the application didn't stop.

You can also modify the application code to trap the SIGTERM signal and react to it. The following
is example in JavaScript:

process.on('SIGTERM', function() {
 server.close();
})

This code causes the HTTP server to stop listening for any new requests, finish answering any in-
flight requests, and then the Node.js process terminates. This is because its event loop has nothing
left to do. Given this, if it takes the process only 500 ms to finish its in-flight requests, it terminates
early without having to wait out the stop timeout and get sent a SIGKILL.

Container image type

The time that it takes a container to start up varies, based on the underlying container image. For
example, a fatter image (full versions of Debian, Ubuntu, and Amazon1/2) might take longer to
start up because there are a more services that run in the containers compared to their respective
slim versions (Debian-slim, Ubuntu-slim, and Amazon-slim) or smaller base images (Alpine).

Container image pull behavior

Container image pull behavior for Fargate launch types

Fargate does not cache images, and therefore the whole image is pulled from the registry when a
task runs. The following are our recommendations for images used for Fargate tasks:

Container image type 83

Amazon Elastic Container Service Best Practices Guide

• Use a larger task size with additional vCPUs. The larger task size can help reduce the time that is
required to extract the image when a task launches.

• Use a smaller base image.

• Have the repository that stores the image in the same Region as the task.

Container image pull behavior for Fargate Windows launch types

Fargate Windows caches the most recent month's, and the previous month's, servercore base image
provided by Microsoft. These images match the KB/Build number patches updated each Patch
Tuesday. For example, on 8/8/2023 Microsoft released KB5029247 (17763.4737) for Windows
Server 2019. The previous month KB on 7/11/2023 was KB5028168 (17763.4645). So for the
platforms WINDOWS_SERVER_2019_CORE and WINDOWS_SERVER_2019_FULL the following
container images were cached:

• mcr.microsoft.com/windows/servercore:ltsc2019

• mcr.microsoft.com/windows/servercore:10.0.17763.4737

• mcr.microsoft.com/windows/servercore:10.0.17763.4645

Additionally, on 8/8/2023 Microsoft released KB5029250 (20348.1906) for Windows Server
2022. The previous months KB on 7/11/2023 was KB5028171 (20348.1850). So for the platforms
WINDOWS_SERVER_2022_CORE and WINDOWS_SERVER_2022_FULL the following container
images were cached:

• mcr.microsoft.com/windows/servercore:ltsc2022

• mcr.microsoft.com/windows/servercore:10.0.20348.1906

• mcr.microsoft.com/windows/servercore:10.0.20348.1850

Container image pull behavior for Amazon EC2 launch types

When the Amazon ECS agent starts a task, it pulls the Docker image from its remote registry, and
then caches a local copy. When you use a new image tag for each release of your application, this
behavior is unnecessary.

Container image pull behavior for Fargate Windows launch types 84

Amazon Elastic Container Service Best Practices Guide

The ECS_IMAGE_PULL_BEHAVIOR agent parameter determines the image pull behavior and has
the following values:

• ECS_IMAGE_PULL_BEHAVIOR: default

The image will be pulled remotely. If the pull fails, the cached image in the instance will be used.

• ECS_IMAGE_PULL_BEHAVIOR: always

The image will be pulled remotely. If the pull fails, the task fails.

To speed up deployment, set the Amazon ECS agent parameter to one of the following values:

• ECS_IMAGE_PULL_BEHAVIOR: once

The image is pulled remotely only if it wasn't pulled by a previous task on the same container
instance or if the cached image was removed by the automated image cleanup process.
Otherwise, the cached image on the instance is used. This ensures that no unnecessary image
pulls are attempted.

• ECS_IMAGE_PULL_BEHAVIOR: prefer-cached

Container image pull behavior for Amazon EC2 launch types 85

Amazon Elastic Container Service Best Practices Guide

The image is pulled remotely if there is no cached image. Otherwise, the cached image on the
instance is used. Automated image cleanup is disabled for the container to ensure that the
cached image isn't removed.

Setting the parameter to either of the preceding values can save time because the Amazon ECS
agent uses the existing downloaded image. For larger Docker images, the download time might
take 10-20 seconds to pull over the network.

Task deployment

To ensure that there's no application downtime, the deployment process is as follows:

1. Start the new application containers while keeping the existing containers running.

2. Check that the new containers are healthy.

3. Stop the old containers.

Depending on your deployment configuration and the amount of free, unreserved space in your
cluster it may take multiple rounds of this to complete replace all old tasks with new tasks.

There are two ECS service configuration options that you can use to modify the number:

• minimumHealthyPercent: 100% (default)

The lower limit on the number of tasks for your service that must remain in the RUNNING state
during a deployment. This is represented as a percentage of the desiredCount. It's rounded up
to the nearest integer. This parameter enables you to deploy without using additional cluster
capacity.

• maximumPercent: 200% (default)

The upper limit on the number of tasks for your service that are allowed in the RUNNING or
PENDING state during a deployment. This is represented as a percentage of the desiredCount. It's
rounded down to the nearest integer.

Consider the following service that has six tan tasks, deployed in a cluster that has room for eight
tasks total. The default Amazon ECS service configuration options don't allow the deployment to
go below 100% of the six desired tasks.

Task deployment 86

Amazon Elastic Container Service Best Practices Guide

The deployment process is as follows:

1. The goal is to replace the tan tasks with the blue tasks.

2. The scheduler starts two new blue tasks because the default settings require that there are six
running tasks.

3. The scheduler stops two of the tan tasks because there will be a total of six tasks (four tan and
two blue).

4. The scheduler starts two additional blue tasks.

5. The scheduler shuts down two of the tan tasks.

6. The scheduler starts two additional blue tasks.

7. The scheduler shuts down the last two tan tasks.

In the above example, if you use the default values for the options, there is a 2.5 minute wait for
each new task that starts. Additionally, the load balancer might have to wait 5 minutes for the old
task to stop.

You can speed up the deployment by setting the minimumHealthyPercent value to 50%.

Task deployment 87

Amazon Elastic Container Service Best Practices Guide

Consider the following service that has six tan tasks, deployed in a cluster that has room for eight
tasks total.

The deployment process is as follows:

1. The goal is to replace the tan tasks with the blue tasks.

2. The scheduler stops three of the tan tasks. There are still three tan tasks running which meets
the minimumHealthyPercent value.

3. The scheduler starts five blue tasks.

4. The scheduler stops the remaining three tan tasks.

5. The scheduler starts the final blue tasks.

You could also add additional free space so that you can run additional tasks.

Task deployment 88

Amazon Elastic Container Service Best Practices Guide

The deployment process is as follows:

1. The goal is to replace the tan tasks with the blue tasks.

2. The scheduler stops three of the tan tasks

3. The scheduler starts six blue tasks

4. The scheduler stops the three tan tasks.

Use the following values for the ECS service configuration options when your tasks are idle for
some time and don't have a high utilization rate.

• minimumHealthyPercent: 50%

• maximumPercent: 200%

Task deployment 89

Amazon Elastic Container Service Best Practices Guide

Best Practices - Operating Amazon ECS at scale

As you begin operating Amazon ECS at scale, consider how service quotas and API throttles for
Amazon ECS and the AWS services that integrate with Amazon ECS might affect you. This topic
describes the service quotas and API throttles in detail, and also covers other important scaling
considerations.

Topics

• Service quotas and API throttling limits

• Handling throttling issues

Service quotas and API throttling limits

Amazon ECS is integrated with several AWS services, including Elastic Load Balancing, AWS Cloud
Map, and Amazon EC2. With this tight integration, Amazon ECS includes several features such as
service load balancing, service discovery, task networking, and cluster auto scaling. Amazon ECS
and the other AWS services that it integrates with all maintain service quotas and API rate limits
to ensure consistent performance and utilization. These service quotas also prevent the accidental
provisioning of more resources than needed and protect against malicious actions that might
increase your bill.

By familiarizing yourself with your service quotas and the AWS API rate limits, you can plan for
scaling your workloads without worrying about unexpected performance degradation. For more
information, see Amazon ECS service quotas and Request throttling for the Amazon ECS API.

When scaling your workloads on Amazon ECS, we recommend that you consider the following
service quota. For instructions on how to request a service quota increase, see Managing your
Amazon ECS and AWS Fargate service quotas in the AWS Management Console.

• AWS Fargate has quotas that limit the number of concurrent running tasks in each AWS Region.
There are quotas for both On-Demand and Fargate Spot tasks on Amazon ECS. Each service
quota also includes any Amazon EKS pods that you run on Fargate. For more information about
the Fargate quotas, see AWS Fargate service quotas in the Amazon Elastic Container Service User
Guide for AWS Fargate.

• For tasks that run on Amazon EC2 instances, the maximum number of Amazon EC2 instances
that you can register for each cluster is 5,000. If you use Amazon ECS cluster auto scaling with an

Service quotas and API throttling limits 90

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.html#service-quotas-manage
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.html#service-quotas-manage
https://docs.aws.amazon.com/AmazonECS/latest/userguide/service-quotas.html#service-quotas-fargate

Amazon Elastic Container Service Best Practices Guide

Auto Scaling group capacity provider, or if you manage Amazon EC2 instances for your cluster on
your own, this quota might become a deployment bottleneck. If you require more capacity, you
can create more clusters or request a service quota increase.

• If you use Amazon ECS cluster auto scaling with an Auto Scaling group capacity provider, when
scaling your services consider the Tasks in the PROVISIONING state per cluster
quota. This quota is the maximum number of tasks in the PROVISIONING state for each cluster
for which capacity providers can increase capacity. When you launch a large number of tasks all
at the same time, you can easily meet this quota. One example is if you simultaneously deploy
tens of services, each with hundreds of tasks. When this happens, the capacity provider needs
to launch new container instances to place the tasks when the cluster has insufficient capacity.
While the capacity provider is launching additional Amazon EC2 instances, the Amazon ECS
service scheduler likely will continue to launch tasks in parallel. However, this activity might be
throttled because of insufficient cluster capacity. The Amazon ECS service scheduler implements
a back-off and exponential throttling strategy for retrying task placement as new container
instances are launched. As a result, you might experience slower deployment or scale-out times.
To avoid this situation, you can plan your service deployments in one of the following ones.
Either deploy a large number of tasks don't require increasing cluster capacity, or keep spare
cluster capacity for new task launches.

In addition to considering Amazon ECS service quota when scaling your workloads, consider also
the service quota for the other AWS services that are integrated with Amazon ECS. The following
section covers the key rate limits for each service in detail, and provides recommendations to deal
with potential throttling issues.

Elastic Load Balancing

You can configure your Amazon ECS services to use Elastic Load Balancing to distribute traffic
evenly across the tasks. For more information and recommended best practices for how to
choose a load balancer, see Service load balancing considerations and Load balancer health check
parameters.

Elastic Load Balancing service quotas

When you scale your workloads, consider the following Elastic Load Balancing service quotas. Most
Elastic Load Balancing service quotas are adjustable, and you can request an increase in the Service
Quotas console.

Application Load Balancer

Elastic Load Balancing 91

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html#load-balancing-considerations
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/load-balancer-healthcheck.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/load-balancer-healthcheck.html

Amazon Elastic Container Service Best Practices Guide

When you use an Application Load Balancer, depending on your use case, you might need to
request a quota increase for:

• The Targets per Application Load Balancer quota which is the number of targets
behind your Application Load Balancer.

• The Targets per Target Group per Region quota which is the number of targets behind
your Target Groups.

For more information, see Quotas for your Application Load Balancers.

Network Load Balancer

There are stricter limitations on the number of targets you can register with a Network Load
Balancer. When using a Network Load Balancer, you often will want to enable cross-zone support,
which comes with additional scaling limitations on Targets per Availability Zone Per
Network Load Balancer the maximum number of targets per Availability Zone for each
Network Load Balancer. For more information, see Quotas for your Network Load Balancers.

Elastic Load Balancing API throttling

When you configure an Amazon ECS service to use a load balancer, the target group health checks
must pass before the service is considered healthy. For performing these health checks, Amazon
ECS invokes Elastic Load Balancing API operations on your behalf. If you have a large number of
services configured with load balancers in your account, you might slower service deployments
because of potential throttling specifically for the RegisterTarget, DeregisterTarget,
and DescribeTargetHealth Elastic Load Balancing API operations. When throttling occurs,
throttling errors occur in your Amazon ECS service event messages.

If you experience AWS Cloud Map API throttling, you can contact AWS Support for guidance on
how to increase your AWS Cloud Map API throttling limits. For more information about monitoring
and troubleshooting such throttling errors, see Handling throttling issues.

Elastic network interfaces

With your tasks use the awsvpc network mode, Amazon ECS provisions a unique elastic network
interface (ENI) for each task. When your Amazon ECS services use an Elastic Load Balancing load
balancer, these network interfaces are also registered as targets to the appropriate target group
defined in the service.

Elastic network interfaces 92

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-limits.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-limits.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/operating-at-scale-dealing-with-throttles.html

Amazon Elastic Container Service Best Practices Guide

Elastic network interface service quotas

When you run tasks that use the awsvpc network mode, a unique elastic network interface is
attached to each task. If those tasks must be reached over the internet, assign a public IP address
to the elastic network interface for those tasks. When you scale your Amazon ECS workloads,
consider these two important quotas:

• The Network interfaces per Region quota which is the maximum number of network
interfaces in an AWS Region for your account.

• The Elastic IP addresses per Region quota which is the maximum number of elastic IP
addresses in an AWS Region.

Both of these service quotas are adjustable and you can request an increase from your Service
Quotas console for these. For more information, see Amazon VPC service quotas.

For Amazon ECS workloads that are hosted on Amazon EC2 instances, when running tasks that
use the awsvpc network mode consider the Maximum network interfaces service quota,
the maximum number of network instances for each Amazon EC2 instance. This quota limits
the number of tasks that you can place on an instance. You cannot adjust the quota and it's not
available in the Service Quotas console. For more information, see IP addresses per network
interface per instance type in the Amazon EC2 User Guide.

Although you can't change the number of network interfaces that can be attached to an Amazon
EC2 instance, you can use the elastic network interface trunking feature to increase the number
of available network interfaces. For example, by default a c5.large instance can have up to
three network interfaces. The primary network interface for the instance counts as one. So, you
can attach an additional two network interfaces to the instance. Because each task that uses the
awsvpc network mode requires a network interface, you can typically only run two such tasks
on this instance type. This can lead to under-utilization of your cluster capacity. If you enable
elastic network interface trunking, you can increase the network interface density to place a larger
number of tasks on each instance. With trunking turned on, a c5.large instance can have up to
12 network interfaces. The instance has the primary network interface and Amazon ECS creates
and attaches a "trunk" network interface to the instance. As a result, with this configuration you
can run 10 tasks on the instance instead of the default two tasks. For more information, see Elastic
network interface trunking.

Elastic network interfaces 93

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html#vpc-limits-enis
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html

Amazon Elastic Container Service Best Practices Guide

Elastic network interface API throttling

When you run tasks that use the awsvpc network mode, Amazon ECS relies on the following
Amazon EC2 APIs. Each of these APIs have different API throttles. For more information, see
Request throttling for the Amazon EC2 API.

• CreateNetworkInterface

• AttachNetworkInterface

• DetachNetworkInterface

• DeleteNetworkInterface

• DescribeNetworkInterfaces

• DescribeVpcs

• DescribeSubnets

• DescribeSecurityGroups

• DescribeInstances

If the Amazon EC2 API calls are throttled during the elastic network interface provisioning
workflows, the Amazon ECS service scheduler automatically retries with exponential back-offs.
These automatic retires might sometimes lead to a delay in launching tasks, which results in
slower deployment speeds. When API throttling occurs, you will see the message Operations
are being throttled. Will try again later. on your service event messages. If you
consistently meet Amazon EC2 API throttles, you can contact AWS Support for guidance on how
to increase your API throttling limits. For more information about monitoring and troubleshooting
throttling errors, see Handling throttling issues.

AWS Cloud Map

Amazon ECS service discovery uses AWS Cloud Map APIs to manage namespaces for your
Amazon ECS services. If your services have a large number of tasks, consider the following
recommendations. For more information, see Amazon ECS service discovery considerations.

AWS Cloud Map service quotas

When Amazon ECS services are configured to use service discovery, the Tasks per service
quota which is the maximum number of tasks for the service, is affected by the AWS Cloud Map
Instances per service service quota which is the maximum number of instances for that

AWS Cloud Map 94

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/operating-at-scale-dealing-with-throttles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html#service-discovery-considerationsl

Amazon Elastic Container Service Best Practices Guide

service. In particular, the AWS Cloud Map service quota decreases the amount of tasks that you can
run to at most 1,0000 tasks for service. You cannot change the AWS Cloud Map quota. For more
information, see AWS Cloud Map service quotas.

AWS Cloud Map API throttling

Amazon ECS calls the ListInstances, GetInstancesHealthStatus, RegisterInstance, and
DeregisterInstance AWS Cloud Map APIs on your behalf. They help with service discovery and
perform health checks when you launch a task. When multiple services that use service discovery
with a large number of tasks are deployed at the same time, this can result in exceeding the AWS
Cloud Map API throttling limits. When this happens, you likely will see the following message:
Operations are being throttled. Will try again later in your Amazon ECS service
event messages and slower deployment and task launch speed. AWS Cloud Map doesn't document
throttling limits for these APIs. If you experience throttling from these, you can contact AWS
Support for guidance on increasing your API throttling limits. For more recommendations on
monitoring and troubleshooting such throttling errors, see Handling throttling issues.

Handling throttling issues

This section provides an in-depth overview of some strategies that you can use to monitor and
troubleshoot API throttling errors. Throttling errors fall into two major categories: synchronous
throttling and asynchronous throttling.

Synchronous throttling

When synchronous throttling occurs, you immediately receive an error response from Amazon ECS.
This category of throttling typically occurs when you call Amazon ECS APIs while running tasks
or creating services. For more information about the throttling involved and the relevant throttle
limits, see Request throttling for the Amazon ECS API.

When your application initiates API requests, for example, by using the AWS CLI or an AWS SDK,
you can remediate API throttling. You can do this by either architecting your application to handle
the errors or by implementing an exponential backoff and jitter strategy with retry logic for the API
calls. For more information, see Timeouts, retries, and backoff with jitter.

If you use an AWS SDK, the automatic retry logic is already built-in and configurable.

Handling throttling issues 95

https://docs.aws.amazon.com/general/latest/gr/cloud_map.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/operating-at-scale-dealing-with-throttles.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/request-throttling.html
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

Amazon Elastic Container Service Best Practices Guide

Asynchronous throttling

Asynchronous throttling occurs because of asynchronous workflows where Amazon ECS
or AWS CloudFormation might be calling APIs on your behalf to provision resources. It's
important to know which AWS APIs that Amazon ECS invokes on your behalf. For example, the
CreateNetworkInterface API is invoked for tasks that use the awsvpc network mode, and the
DescribeTargetHealth API is invoked when performing health checks for tasks registered to a
load balancer.

When your workloads reach a considerable scale, these API operations might be throttled. That is,
they might be throttled enough to breach the limits enforced by Amazon ECS or the AWS service
that is being called. For example, if you deploy hundreds of services, each having hundreds of
tasks concurrently that use the awsvpc network mode, Amazon ECS invokes Amazon EC2 API
operations such as CreateNetworkInterface and Elastic Load Balancing API operations such as
RegisterTarget or DescribeTargetHealth to register the elastic network interface and load
balancer, respectively. These API calls can exceed the API limits, resulting in throttling errors. The
following is an example of an Elastic Load Balancing throttling error that's included in the service
event message.

{
 "userIdentity":{
 "arn":"arn:aws:sts::111122223333:assumed-role/AWSServiceRoleForECS/ecs-service-
scheduler",
 "eventTime":"2022-03-21T08:11:24Z",
 "eventSource":"elasticloadbalancing.amazonaws.com",
 "eventName":" DescribeTargetHealth ",
 "awsRegion":"us-east-1",
 "sourceIPAddress":"ecs.amazonaws.com",
 "userAgent":"ecs.amazonaws.com",
 "errorCode":"ThrottlingException",
 "errorMessage":"Rate exceeded",
 "eventID":"0aeb38fc-229b-4912-8b0d-2e8315193e9c"
 }
}

When these API calls share limits with other API traffic in your account, they might be difficult
monitor even though they're emitted as service events.

Asynchronous throttling 96

Amazon Elastic Container Service Best Practices Guide

Monitoring throttling

To monitor throttling, it's important to identify which API requests are throttled and who issues
these requests. You can use AWS CloudTrail to do it. This service monitors throttling, and can
be integrated with CloudWatch, Amazon Athena, and Amazon EventBridge. You can configure
CloudTrail to send specific events to CloudWatch Logs. These events are then parsed and analyzed
using CloudWatch Logs log insights. This identifies details in throttling events such as the user or
IAM role that made the call and the number of API calls that were made. For more information, see
Monitoring CloudTrail log files with CloudWatch Logs.

For more information about CloudWatch Logs insights and instructions on how to query log files,
see Analyzing log data with CloudWatch Logs Insights.

With Amazon Athena, you can create queries and analyze data using standard SQL. For example,
you can create an Athena table to parse CloudTrail events. For more information, see Using the
CloudTrail console to create an Athena table for CloudTrail logs.

After creating an Athena table, you can use simple SQL queries such as the following one to
investigate ThrottlingException errors.

select eventname, errorcode,eventsource,awsregion, useragent,COUNT(*) count
FROM cloudtrail-table-name
where errorcode = 'ThrottlingException'
AND eventtime between '2022-01-14T03:00:08Z' and '2022-01-23T07:15:08Z'
group by errorcode, awsregion, eventsource, username, eventname
order by count desc;

Amazon ECS also emits event notifications to Amazon EventBridge. There are resource
state change events and service action events. They include API throttling events such as
ECS_OPERATION_THROTTLED and SERVICE_DISCOVERY_OPERATION_THROTTLED. For more
information, see Amazon ECS service action events.

These events can be consumed by a service such as AWS Lambda to perform actions in response.
For more information, see Handling events.

If you run standalone tasks, some API operations such as RunTask are asynchronous, and retry
operations aren't automatically performed. In such cases, you can use services such as AWS
Step Functions with EventBridge integration to retry throttled or failed operations. For more
information, see Manage a container task (Amazon ECS, Amazon SNS).

Monitoring throttling 97

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/monitor-cloudtrail-log-files-with-cloudwatch-logs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html#create-cloudtrail-table-ct
https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html#create-cloudtrail-table-ct
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwe_events.html#ecs_service_events
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_cwet_handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/sample-project-container-task-notification.html

Amazon Elastic Container Service Best Practices Guide

Using CloudWatch to monitor throttling

CloudWatch offers API usage monitoring on the Usage namespace under By AWS Resource.
These metrics are logged with type API and metric name CallCount. You can create alarms to
start whenever these metrics reach a certain threshold. For more information, see Visualizing your
service quotas and setting alarms.

CloudWatch also offers anomaly detection. This feature uses machine learning to analyze and
establish baselines based on the particular behavior of the metric that you enabled it on. If
there's unusual API activity, you can use this feature together with CloudWatch alarms. For more
information, see Using CloudWatch anomaly detection.

By proactively monitoring throttling errors, you can contact AWS Support to increase the relevant
throttling limits and also receive guidance for your unique application needs.

Using CloudWatch to monitor throttling 98

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html

Amazon Elastic Container Service Best Practices Guide

Best Practices - Security

This guide provides security and compliance recommendations for protecting your information,
systems, and other assets that are reliant on Amazon ECS. It also introduces some risk assessments
and mitigation strategies that you can use to have a better grip on the security controls that are
built for Amazon ECS clusters and the workloads that they support. Each topic in this guide starts
with a brief overview, followed by a list of recommendations and best practices that you can use to
secure your Amazon ECS clusters.

Topics

• Shared responsibility model

• AWS Identity and Access Management

• Using IAM roles with Amazon ECS tasks

• Network security

• Secrets management

• Using temporary security credentials with API operations

• Compliance and security

• Logging and monitoring

• AWS Fargate security

• Task and container security

• Runtime security

• AWS Partners

Shared responsibility model

The security and compliance of a managed service like Amazon ECS is a shared responsibility of
both you and AWS. Generally speaking, AWS is responsible for security "of" the cloud whereas
you, the customer, are responsible for security "in" the cloud. AWS is responsible for managing
of the Amazon ECS control plane, including the infrastructure that's needed to deliver a secure
and reliable service. And, you're largely responsible for the topics in this guide. This includes data,
network, and runtime security, as well as logging and monitoring.

Shared responsibility model 99

Amazon Elastic Container Service Best Practices Guide

With respect to infrastructure security, AWS assumes more responsibility for AWS Fargate resources
than it does for other self-managed instances. With Fargate, AWS manages the security of the
underlying instance in the cloud and the runtime that's used to run your tasks. Fargate also
automatically scales your infrastructure on your behalf.

Before extending your services to the cloud, you should understand what aspects of security and
compliance that you're responsible for.

Shared responsibility model 100

Amazon Elastic Container Service Best Practices Guide

For more information about the shared responsibility model, see Shared Responsibility Model.

AWS Identity and Access Management

You can use AWS Identity and Access Management (IAM) to manage and control access to your
AWS services and resources through rule-based policies for authentication and authorization
purposes. More specifically, through this service, you control access to your AWS resources by using
policies that are applied to users, groups, or roles. Among these three, users are accounts that can
have access to your resources. And, an IAM role is a set of permissions that can be assumed by an
authenticated identity, which isn't associated with a particular identity outside of IAM. For more
information, see Overview of access management: Permissions and policies.

Managing access to Amazon ECS

You can control access to Amazon ECS by creating and applying IAM policies. These policies are
composed of a set of actions that apply to a specific set of resources. The action of a policy defines
the list of operations (such as Amazon ECS APIs) that are allowed or denied, whereas the resource
controls what are the Amazon ECS objects that the action applies to. Conditions can be added
to a policy to narrow its scope. For example, a policy can be written to only allow an action to be
performed against tasks with a particular set of tags. For more information, see How Amazon ECS
works with IAM in the Amazon Elastic Container Service Developer Guide.

Recommendations

We recommend that you do the following when setting up your IAM roles and policies.

Follow the policy of least privileged access

Create policies that are scoped to allow users to perform their prescribed jobs. For example, if a
developer needs to periodically stop a task, create a policy that only permits that particular action.
The following example only allows a user to stop a task that belongs to a particular task_family
on a cluster with a specific Amazon Resource Name (ARN). Referring to an ARN in a condition is also
an example of using resource-level permissions. You can use resource-level permissions to specify
the resource that you want an action to apply to.

AWS Identity and Access Management 101

https://aws.amazon.com/compliance/shared-responsibility-model
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security_iam_service-with-iam.html

Amazon Elastic Container Service Best Practices Guide

Note

When referencing an ARN in a policy, use the new longer ARN format. For more
information, see Amazon Resource Names (ARNs) and IDs in the Amazon Elastic Container
Service Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StopTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:region:account_id:cluster/cluster_name"
 }
 },
 "Resource": [
 "arn:aws:ecs:region:account_id:task-definition/task_family:*"
]
 }
]
}

Let the cluster resource serve as the administrative boundary

Policies that are too narrowly scoped can cause a proliferation of roles and increase administrative
overhead. Rather than creating roles that are scoped to particular tasks or services only, create
roles that are scoped to clusters and use the cluster as your primary administrative boundary.

Isolate end-users from the Amazon ECS API by creating automated pipelines

You can limit the actions that users can use by creating pipelines that automatically package
and deploy applications onto Amazon ECS clusters. This effectively delegates the job of creating,
updating, and deleting tasks to the pipeline. For more information, see Tutorial: Amazon ECS
standard deployment with CodePipeline in the AWS CodePipeline User Guide.

Recommendations 102

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html#ecs-resource-ids
https://docs.aws.amazon.com/codepipeline/latest/userguide/ecs-cd-pipeline.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/ecs-cd-pipeline.html

Amazon Elastic Container Service Best Practices Guide

Use policy conditions for an added layer of security

When you need an added layer of security, add a condition to your policy. This can be useful if
you're performing a privileged operation or when you need to restrict the set of actions that can
be performed against particular resources. The following example policy requires multi-factor
authorization when deleting a cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeleteCluster"
],
 "Condition": {
 "Bool": {
 "aws:MultiFactorAuthPresent": "true"
 }
 },
 "Resource": ["*"]
 }
]
}

Tags applied to services are propagated to all the tasks that are part of that service. Because
of this, you can create roles that are scoped to Amazon ECS resources with specific tags. In the
following policy, an IAM principals starts and stops all tasks with a tag-key of Department and a
tag-value of Accounting.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:RunTask"
],
 "Resource": "arn:aws:ecs:*",
 "Condition": {

Recommendations 103

Amazon Elastic Container Service Best Practices Guide

 "StringEquals": {"ecs:ResourceTag/Department": "Accounting"}
 }
 }
]
}

Periodically audit access to the Amazon ECS APIs

A user might change roles. After they change roles, the permissions that were previously granted
to them might no longer apply. Make sure that you audit who has access to the Amazon ECS
APIs and whether that access is still warranted. Consider integrating IAM with a user lifecycle
management solution that automatically revokes access when a user leaves the organization. For
more information, see Amazon ECS security audit guidelines in the Amazon Web Services General
Reference.

Using IAM roles with Amazon ECS tasks

We recommend that you assign a task an IAM role. Its role can be distinguished from the role of
the Amazon EC2 instance that it's running on. Assigning each task a role aligns with the principle of
least privileged access and allows for greater granular control over actions and resources.

When assigning IAM roles for a task, you must use the following trust policy so that each of your
tasks can assume an IAM role that's different from the one that your EC2 instance uses. This way,
your task doesn't inherit the role of your EC2 instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

When you add a task role to a task definition, the Amazon ECS container agent
automatically creates a token with a unique credential ID (for example, 12345678-90ab-

Using IAM roles with Amazon ECS tasks 104

https://docs.aws.amazon.com/general/latest/gr/aws-security-audit-guide.html

Amazon Elastic Container Service Best Practices Guide

cdef-1234-567890abcdef) for the task. This token and the role credentials are then
added to the agent's internal cache. The agent populates the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI in the container with the URI of the credential
ID (for example, /v2/credentials/12345678-90ab-cdef-1234-567890abcdef).

You can manually retrieve the temporary role credentials from inside a container by appending the
environment variable to the IP address of the Amazon ECS container agent and running the curl
command on the resulting string.

curl 169.254.170.2$AWS_CONTAINER_CREDENTIALS_RELATIVE_URI

The expected output is as follows:

{
 "RoleArn": "arn:aws:iam::123456789012:role/SSMTaskRole-SSMFargateTaskIAMRole-
DASWWSF2WGD6",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "Token": "IQoJb3JpZ2luX2VjEEM/Example==",

Using IAM roles with Amazon ECS tasks 105

Amazon Elastic Container Service Best Practices Guide

 "Expiration": "2021-01-16T00:51:53Z"
}

Newer versions of the AWS SDKs automatically fetch these credentials from the
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable when making AWS API
calls.

The output includes an access key-pair consisting of a secret access key ID and a secret key which
your application uses to access AWS resources. It also includes a token that AWS uses to verify that
the credentials are valid. By default, credentials assigned to tasks using task roles are valid for six
hours. After that, they are automatically rotated by the Amazon ECS container agent.

Task execution role

The task execution role is used to grant the Amazon ECS container agent permission to call specific
AWS API actions on your behalf. For example, when you use AWS Fargate, Fargate needs an IAM
role that allows it to pull images from Amazon ECR and write logs to CloudWatch Logs. An IAM role
is also required when a task references a secret that's stored in AWS Secrets Manager, such as an
image pull secret.

Note

If you're pulling images as an authenticated user, you're less likely to be impacted by the
changes that occurred to Docker Hub's pull rate limits. For more information see, Private
registry authentication for container instances.
By using Amazon ECR and Amazon ECR Public, you can avoid the limits imposed by Docker.
If you pull images from Amazon ECR, this also helps shorten network pull times and
reduces data transfer changes when traffic leaves your VPC.

Important

When you use Fargate, you must authenticate to a private image registry using
repositoryCredentials. It's not possible to set the Amazon ECS container agent
environment variables ECS_ENGINE_AUTH_TYPE or ECS_ENGINE_AUTH_DATA or modify
the ecs.config file for tasks hosted on Fargate. For more information, see Private registry
authentication for tasks.

Task execution role 106

https://www.docker.com/pricing/resource-consumption-updates
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth-container-instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Best Practices Guide

Amazon EC2 container instance role

The Amazon ECS container agent is a container that runs on each Amazon EC2 instance in an
Amazon ECS cluster. It's initialized outside of Amazon ECS using the init command that's
available on the operating system. Consequently, it can't be granted permissions through a task
role. Instead, the permissions have to be assigned to the Amazon EC2 instances that the agents run
on. The actions list in the example AmazonEC2ContainerServiceforEC2Role policy need to be
granted to the ecsInstanceRole. If you don't do this, your instances cannot join the cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeTags",
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:UpdateContainerInstancesState",
 "ecs:Submit*",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

In this policy, the ecr and logs API actions allow the containers that are running on your instances
to pull images from Amazon ECR and write logs to Amazon CloudWatch. The ecs actions allow
the agent to register and de-register instances and to communicate with the Amazon ECS control
plane. Of these, the ecs:CreateCluster action is optional.

Amazon EC2 container instance role 107

Amazon Elastic Container Service Best Practices Guide

Service-linked roles

You can use the service-linked role for Amazon ECS to grant the Amazon ECS service permission
to call other service APIs on your behalf. Amazon ECS needs the permissions to create and delete
network interfaces, register, and de-register targets with a target group. It also needs the necessary
permissions to create and delete scaling policies. These permissions are granted through the
service-linked role. This role is created on your behalf the first time that you use the service.

Note

If you inadvertently delete the service-linked role, you can recreate it. For instructions, see
Create the service-linked role.

Recommendations

We recommend that you do the following when setting up your task IAM roles and policies.

Block access to Amazon EC2 metadata

When you run your tasks on Amazon EC2 instances, we strongly recommend that you block access
to Amazon EC2 metadata to prevent your containers from inheriting the role assigned to those
instances. If your applications have to call an AWS API action, use IAM roles for tasks instead.

To prevent tasks running in bridge mode from accessing Amazon EC2 metadata, run the following
command or update the instance's user data. For more instruction on updating the user data of
an instance, see this AWS Support Article. For more information about the task definition bridge
mode, see task definition network mode.

sudo yum install -y iptables-services; sudo iptables --insert FORWARD 1 --in-interface
 docker+ --destination 192.0.2.0/32 --jump DROP

For this change to persist after a reboot, run the following command that's specific for your
Amazon Machine Image (AMI):

• Amazon Linux 2

sudo iptables-save | sudo tee /etc/sysconfig/iptables && sudo systemctl enable --now
 iptables

Service-linked roles 108

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html#create-service-linked-role
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-container-ec2-metadata/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#network_mode

Amazon Elastic Container Service Best Practices Guide

• Amazon Linux

sudo service iptables save

For tasks that use awsvpc network mode, set the environment variable
ECS_AWSVPC_BLOCK_IMDS to true in the /etc/ecs/ecs.config file.

You should set the ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST variable to false in the ecs-
agent config file to prevent the containers that are running within the host network from
accessing the Amazon EC2 metadata.

Use awsvpc network mode

Use the network awsvpc network mode to restrict the flow of traffic between different tasks or
between your tasks and other services that run within your Amazon VPC. This adds an additional
layer of security. The awsvpc network mode provides task-level network isolation for tasks that
run on Amazon EC2. It is the default mode on AWS Fargate. it's the only network mode that you
can use to assign a security group to tasks.

Use IAM Access Advisor to refine roles

We recommend that you remove any actions that were never used or haven't been used for some
time. This prevents unwanted access from happening. To do this, review the results produced by
IAM Access Advisor, and then remove actions that were never used or haven't been used recently.
You can do this by following the following steps.

Run the following command to generate a report showing the last access information for the
referenced policy:

aws iam generate-service-last-accessed-details --arn arn:aws:iam::123456789012:policy/
ExamplePolicy1

use the JobId that was in the output to run the following command. After you do this, you can
view the results of the report.

aws iam get-service-last-accessed-details --job-id 98a765b4-3cde-2101-2345-example678f9

For more information, see IAM Access Advisor.

Recommendations 109

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html

Amazon Elastic Container Service Best Practices Guide

Monitor AWS CloudTrail for suspicious activity

You can monitor AWS CloudTrail for any suspicious activity. Most AWS API calls are logged to
AWS CloudTrail as events. They are analyzed by AWS CloudTrail Insights, and you're alerted of
any suspicious behavior that's associated with write API calls. This might include a spike in call
volume. These alerts include such information as the time the unusual activity occurred and the
top identity ARN that contributed to the APIs.

You can identify actions that are performed by tasks with an IAM role in AWS CloudTrail by
looking at the event's userIdentity property. In the following example, the arn includes of
the name of the assumed role, s3-write-go-bucket-role, followed by the name of the task,
7e9894e088ad416eb5cab92afExample.

"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA36C6WWEJ2YEXAMPLE:7e9894e088ad416eb5cab92afExample",
 "arn": "arn:aws:sts::123456789012:assumed-role/s3-write-go-bucket-
role/7e9894e088ad416eb5cab92afExample",
 ...
}

Note

When tasks that assume a role are run on Amazon EC2 container instances, a request
is logged by Amazon ECS container agent to the audit log of the agent that's located
at an address in the /var/log/ecs/audit.log.YYYY-MM-DD-HH format. For more
information, see Task IAM Roles Log and Logging Insights Events for Trails.

Network security

Network security is a broad topic that encompasses several subtopics. These include encryption-in-
transit, network segmentation and isolation, firewalling, traffic routing, and observability.

Encryption in transit

Encrypting network traffic prevents unauthorized users from intercepting and reading data
when that data is transmitted across a network. With Amazon ECS, network encryption can be
implemented in any of the following ways.

Network security 110

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html#task_iam_roles-logs
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-insights-events-with-cloudtrail.html

Amazon Elastic Container Service Best Practices Guide

• With a service mesh (TLS):

With AWS App Mesh, you can configure TLS connections between the Envoy proxies that are
deployed with mesh endpoints. Two examples are virtual nodes and virtual gateways. The TLS
certificates can come from AWS Certificate Manager (ACM). Or, it can come from your own
private certificate authority.

• Enabling Transport Layer Security (TLS)

• Enable traffic encryption between services in AWS App Mesh using ACM certificates or
customer provided certs

• TLS ACM walkthrough

• TLS file walkthrough

• Envoy

• Using Nitro instances:

By default, traffic is automatically encrypted between the following Nitro instance types: C5n,
G4, I3en, M5dn, M5n, P3dn, R5dn, and R5n. Traffic isn't encrypted when it's routed through a
transit gateway, load balancer, or similar intermediary.

• Encryption in transit

• What's new announcement from 2019

• This talk from re:Inforce 2019

• Using Server Name Indication (SNI) with an Application Load Balancer:

The Application Load Balancer (ALB) and Network Load Balancer (NLB) support Server Name
Indication (SNI). By using SNI, you can put multiple secure applications behind a single listener.
For this, each has its own TLS certificate. We recommend that you provision certificates for
the load balancer using AWS Certificate Manager (ACM) and then add them to the listener's
certificate list. The AWS load balancer uses a smart certificate selection algorithm with SNI. If
the hostname that's provided by a client matches a single certificate in the certificate list, the
load balancer chooses that certificate. If a hostname that's provided by a client matches multiple
certificates in the list, the load balancer selects a certificate that the client can support. Examples
include self-signed certificate or a certificate generated through the ACM.

• SNI with Application Load Balancer

• SNI with Network Load Balancer

• End-to-end encryption with TLS certificates:

Encryption in transit 111

https://docs.aws.amazon.com/app-mesh/latest/userguide/tls.html
https://aws.amazon.com/blogs/containers/enable-traffic-encryption-between-services-in-aws-app-mesh-using-aws-certificate-manager-or-customer-provided-certificates/
https://aws.amazon.com/blogs/containers/enable-traffic-encryption-between-services-in-aws-app-mesh-using-aws-certificate-manager-or-customer-provided-certificates/
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-k8s-tls-acm
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-mutual-tls-file-provided
https://www.envoyproxy.io
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html#encryption-transit
https://aws.amazon.com/about-aws/whats-new/2019/10/introducing-amazon-ec2-m5n-m5dn-r5n-and-r5dn-instances-featuring-100-gbps-of-network-bandwidth/
https://youtu.be/oqHLLbOoxDg?t=2409
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html#https-listener-certificates
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/create-tls-listener.html#tls-listener-certificates

Amazon Elastic Container Service Best Practices Guide

This involves deploying a TLS certificate with the task. This can either be a self-signed certificate
or a certificate from a trusted certificate authority. You can obtain the certificate by referencing a
secret for the certificate. Otherwise, you can choose to run an container that issues a Certificate
Signing Request (CSR) to ACM and then mounts the resulting secret to a shared volume.

• Maintaining transport layer security all the way to your containers using the Network Load
Balancer with Amazon ECS part 1

• Maintaining Transport Layer Security (TLS) all the way to your container part 2: Using AWS
Private Certificate Authority

Task networking

The following recommendations are in consideration of how Amazon ECS works. Amazon ECS
doesn't use an overlay network. Instead, tasks are configured to operate in different network
modes. For example, tasks that are configured to use bridge mode acquire a non-routable IP
address from a Docker network that runs on each host. Tasks that are configured to use the
awsvpc network mode acquire an IP address from the subnet of the host. Tasks that are configured
with host networking use the host's network interface. awsvpc is the preferred network mode.
This is because it's the only mode that you can use to assign security groups to tasks. It's also the
only mode that's available for AWS Fargate tasks on Amazon ECS.

Security groups for tasks

We recommend that you configure your tasks to use the awsvpc network mode. After you
configure your task to use this mode, the Amazon ECS agent automatically provisions and attaches
an Elastic Network Interface (ENI) to the task. When the ENI is provisioned, the task is enrolled
in an AWS security group. The security group acts as a virtual firewall that you can use to control
inbound and outbound traffic.

Service mesh and Mutual Transport Layer Security (mTLS)

You can use a service mesh such as AWS App Mesh to control network traffic. By default, a virtual
node can only communicate with its configured service backends, such as the virtual services that
the virtual node will communicate with. If a virtual node needs to communicate with a service
outside the mesh, you can use the ALLOW_ALL outbound filter or by creating a virtual node
inside the mesh for the external service. For more information, see Kubernetes Egress How-To
Walkthrough.

Task networking 112

https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-using-the-network-load-balancer-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-using-the-network-load-balancer-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-part-2-using-aws-certificate-manager-private-certificate-authority/
https://aws.amazon.com/blogs/compute/maintaining-transport-layer-security-all-the-way-to-your-container-part-2-using-aws-certificate-manager-private-certificate-authority/
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-k8s-egress
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-k8s-egress

Amazon Elastic Container Service Best Practices Guide

App Mesh also gives you the ability to use Mutual Transport Layer Security (mTLS) where both the
client and the server are mutually authenticated using certificates. The subsequent communication
between client and server are then encrypted using TLS. By requiring mTLS between services in a
mesh, you can verify that the traffic is coming from a trusted source. For more information, see the
following topics:

• mTLS authentication

• mTLS Secret Discovery Service (SDS) walkthrough

• mTLS File walkthrough

AWS PrivateLink

AWS PrivateLink is a networking technology that allows you to create private endpoints for
different AWS services, including Amazon ECS. The endpoints are required in sandboxed
environments where there is no Internet Gateway (IGW) attached to the Amazon VPC and no
alternative routes to the Internet. Using AWS PrivateLink ensures that calls to the Amazon ECS
service stay within the Amazon VPC and do not traverse the internet. For instructions on how to
create AWS PrivateLink endpoints for Amazon ECS and other related services, see Amazon ECS
interface Amazon VPC endpoints.

Important

AWS Fargate tasks don't require a AWS PrivateLink endpoint for Amazon ECS.

Amazon ECR and Amazon ECS both support endpoint policies. These policies allow you to refine
access to a service's APIs. For example, you could create an endpoint policy for Amazon ECR that
only allows images to be pushed to registries in particular AWS accounts. A policy like this could be
used to prevent data from being exfiltrated through container images while still allowing users to
push to authorized Amazon ECR registries. For more information, see Use VPC endpoint policies.

The following policy allows all AWS principals in your account to perform all actions against only
your Amazon ECR repositories:

{
 "Statement": [
 {
 "Sid": "LimitECRAccess",

AWS PrivateLink 113

https://docs.aws.amazon.com/app-mesh/latest/userguide/mutual-tls.html
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-k8s-mtls-sds-based
https://github.com/aws/aws-app-mesh-examples/tree/master/walkthroughs/howto-mutual-tls-file-provided
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoint-policies

Amazon Elastic Container Service Best Practices Guide

 "Principal": "*",
 "Action": "*",
 "Effect": "Allow",
 "Resource": "arn:aws:ecr:region:account_id:repository/*"
 },
]
}

You can enhance this further by setting a condition that uses the new PrincipalOrgID property.
This prevents pushing and pulling of images by an IAM principal that isn't part of your AWS
Organizations. For more information, see aws:PrincipalOrgID.

We recommended applying the same policy to both the com.amazonaws.region.ecr.dkr and
the com.amazonaws.region.ecr.api endpoints.

Amazon ECS container agent settings

The Amazon ECS container agent configuration file includes several environment
variables that relate to network security. ECS_AWSVPC_BLOCK_IMDS and
ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST are used to block a task's access to Amazon EC2
metadata. HTTP_PROXY is used to configure the agent to route through a HTTP proxy to connect
to the internet. For instructions on configuring the agent and the Docker runtime to route through
a proxy, see HTTP Proxy Configuration.

Important

These settings aren't available when you use AWS Fargate.

Recommendations

We recommend that you do the following when setting up your Amazon VPC, load balancers, and
network.

Use network encryption where applicable

You should use network encryption where applicable. Certain compliance programs, such as PCI
DSS, require that you encrypt data in transit if the data contains cardholder data. If your workload
has similar requirements, configure network encryption.

Amazon ECS container agent settings 114

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/http_proxy_config.html

Amazon Elastic Container Service Best Practices Guide

Modern browsers warn users when connecting to insecure sites. If your service is fronted by a
public facing load balancer, use TLS/SSL to encrypt the traffic from the client's browser to the load
balancer and re-encrypt to the backend if warranted.

Use awsvpc network mode and security groups when you need to control traffic
between tasks or between tasks and other network resources

You should use awsvpc network mode and security groups when you need to control traffic
between tasks and between tasks and other network resources. If your service behind an ALB, use
security groups to only allow inbound traffic from other network resources using the same security
group as your ALB. If your application is behind an NLB, configure the task's security group to only
allow inbound traffic from the Amazon VPC CIDR range and the static IP addresses assigned to the
NLB.

Security groups should also be used to control traffic between tasks and other resources within the
Amazon VPC such as Amazon RDS databases.

Create clusters in separate Amazon VPCs when network traffic needs to be strictly
isolated

You should create clusters in separate Amazon VPCs when network traffic needs to be strictly
isolated. Avoid running workloads that have strict security requirements on clusters with workloads
that don't have to adhere to those requirements. When strict network isolation is mandatory,
create clusters in separate Amazon VPCs and selectively expose services to other Amazon VPCs
using Amazon VPC endpoints. For more information, see Amazon VPC endpoints.

Configure AWS PrivateLink endpoints when warranted

You should configure AWS PrivateLink endpoints endpoints when warranted. If your security
policy prevents you from attaching an Internet Gateway (IGW) to your Amazon VPCs, configure
AWS PrivateLink endpoints for Amazon ECS and other services such as Amazon ECR, AWS Secrets
Manager, and Amazon CloudWatch.

Use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks

You should use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks. Tasks
that use awsvpc network mode get their own ENI. Doing this, you can monitor traffic that goes to
and from individual tasks using Amazon VPC Flow Logs. A recent update to Amazon VPC Flow Logs

Recommendations 115

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Elastic Container Service Best Practices Guide

(v3), enriches the logs with traffic metadata including the vpc ID, subnet ID, and the instance ID.
This metadata can be used to help narrow an investigation. For more information, see Amazon VPC
Flow Logs.

Note

Because of the temporary nature of containers, flow logs might not always be an effective
way to analyze traffic patterns between different containers or containers and other
network resources.

Secrets management

Secrets, such as API keys and database credentials, are frequently used by applications to gain
access other systems. They often consist of a username and password, a certificate, or API key.
Access to these secrets should be restricted to specific IAM principals that are using IAM and
injected into containers at runtime.

Secrets can be seamlessly injected into containers from AWS Secrets Manager and Amazon EC2
Systems Manager Parameter Store. These secrets can be referenced in your task as any of the
following.

1. They're referenced as environment variables that use the secrets container definition
parameter.

2. They're referenced as secretOptions if your logging platform requires authentication. For
more information, see logging configuration options.

3. They're referenced as secrets pulled by images that use the repositoryCredentials
container definition parameter if the registry where the container is being pulled from requires
authentication. Use this method when pulling images from Amazon ECR Public Gallery. For more
information, see Private registry authentication for tasks.

Recommendations

We recommend that you do the following when setting up secrets management.

Secrets management 116

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-basics
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-basics
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_LogConfiguration.html#API_LogConfiguration_Contents
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

Amazon Elastic Container Service Best Practices Guide

Use AWS Secrets Manager or Amazon EC2 Systems Manager Parameter Store for
storing secret materials

You should securely store API keys, database credentials, and other secret materials in AWS Secrets
Manager or as an encrypted parameter in Amazon EC2 Systems Manager Parameter Store. These
services are similar because they're both managed key-value stores that use AWS KMS to encrypt
sensitive data. AWS Secrets Manager, however, also includes the ability to automatically rotate
secrets, generate random secrets, and share secrets across AWS accounts. If you deem these
important features, use AWS Secrets Manager otherwise use encrypted parameters.

Note

Tasks that reference a secret from AWS Secrets Manager or Amazon EC2 Systems Manager
Parameter Store require a Task Execution Role with a policy that grants the Amazon
ECS access to the desired secret and, if applicable, the AWS KMS key used to encrypt and
decrypt that secret.

Important

Secrets that are referenced in tasks aren't rotated automatically. If your secret changes, you
must force a new deployment or launch a new task to retrieve the latest secret value. For
more information, see the following topics:

• AWS Secrets Manager: Injecting data as environment variables

• Amazon EC2 Systems Manager Parameter Store: Injecting data as environment variables

Retrieving data from an encrypted Amazon S3 bucket

Because the value of environment variables can inadvertently leak in logs and are revealed when
running docker inspect, you should store secrets in an encrypted Amazon S3 bucket and use
task roles to restrict access to those secrets. When you do this, your application must be written
to read the secret from the Amazon S3 bucket. For instructions, see Setting default server-side
encryption behavior for Amazon S3 buckets.

Recommendations 117

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-secrets.html#secrets-envvar
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-secrets.html#secrets-logconfig
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html

Amazon Elastic Container Service Best Practices Guide

Mount the secret to a volume using a sidecar container

Because there's an elevated risk of data leakage with environment variables, you should run a
sidecar container that reads your secrets from AWS Secrets Manager and write them to a shared
volume. This container can run and exit before the application container by using Amazon ECS
container ordering. When you do this, the application container subsequently mounts the volume
where the secret was written. Like the Amazon S3 bucket method, your application must be written
to read the secret from the shared volume. Because the volume is scoped to the task, the volume
is automatically deleted after the task stops. For an example of a sidecar container, see the aws-
secret-sidecar-injector project.

Note

On Amazon EC2, the volume that the secret is written to can be encrypted with a AWS KMS
customer managed key. On AWS Fargate, volume storage is automatically encrypted using
a service managed key.

Additional resources

• Passing secrets to containers in an Amazon ECS task

• Chamber is a wrapper for storing secrets in Amazon EC2 Systems Manager Parameter Store

Using temporary security credentials with API operations

If you're making direct HTTPS API requests to AWS, you can sign those requests with the temporary
security credentials that you get from the AWS Security Token Service. For more information, see
Signing AWS API requests in the AWS General Reference.

Compliance and security

Your compliance responsibility when using Amazon ECS is determined by the sensitivity of your
data, and the compliance objectives of your company, and applicable laws and regulations.

AWS provides the following resources to help with compliance:

Additional resources 118

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDependency.html
https://github.com/aws-samples/aws-secret-sidecar-injector/blob/master/ecs-task-def/task-def.json
https://github.com/aws-samples/aws-secret-sidecar-injector/blob/master/ecs-task-def/task-def.json
https://aws.amazon.com/premiumsupport/knowledge-center/ecs-data-security-container-task/
https://github.com/segmentio/chamber
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

Amazon Elastic Container Service Best Practices Guide

• Security and compliance quick start guides: These deployment guides discuss architectural
considerations and provide steps for deploying security and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper: This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Services in Scope by Compliance Program: This list contains the AWS services in scope of
specific compliance programs. For more information, see AWS Compliance Programs.

Payment Card Industry Data Security Standards (PCI DSS)

It's important that you understand the complete flow of cardholder data (CHD) within the
environment when adhering to PCI DSS. The CHD flow determines the applicability of the PCI DSS,
defines the boundaries and components of a cardholder data environment (CDE), and therefore
the scope of a PCI DSS assessment. Accurate determination of the PCI DSS scope is key to defining
the security posture and ultimately a successful assessment. Customers must have a procedure
for scope determination that assures its completeness and detects changes or deviations from the
scope.

The temporary nature of containerized applications provides additional complexities when auditing
configurations. As a result, customers need to maintain an awareness of all container configuration
parameters to ensure compliance requirements are addressed throughout all phases of a container
lifecycle.

For additional information on achieving PCI DSS compliance on Amazon ECS, refer to the following
whitepapers.

• Architecting on Amazon ECS for PCI DSS compliance

• Architecting for PCI DSS Scoping and Segmentation on AWS

HIPAA (U.S. Health Insurance Portability and Accountability Act)

Using Amazon ECS with workloads that process protected health information (PHI) requires no
additional configuration. Amazon ECS acts as an orchestration service that coordinates the launch
of containers on Amazon EC2. It doesn't operate with or upon data within the workload being
orchestrated. Consistent with HIPAA regulations and the AWS Business Associate Addendum, PHI
should be encrypted in transit and at-rest when accessed by containers launched with Amazon ECS.

Payment Card Industry Data Security Standards (PCI DSS) 119

http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://d1.awsstatic.com/whitepapers/compliance/architecting-on-amazon-ecs-for-pci-dss-compliance.pdf
https://d1.awsstatic.com/whitepapers/pci-dss-scoping-on-aws.pdf

Amazon Elastic Container Service Best Practices Guide

Various mechanisms for encrypting at-rest are available with each AWS storage option, such as
Amazon S3, Amazon EBS, and AWS KMS. You may deploy an overlay network (such as VNS3 or
Weave Net) to ensure complete encryption of PHI transferred between containers or to provide
a redundant layer of encryption. Complete logging should also be enabled and all container logs
should be directed to Amazon CloudWatch. To design your AWS environment using the best
practices for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐
Architected Framework.

AWS Security Hub

Use AWS Security Hub to monitor your usage of Amazon ECS as it relates to security best practices.
Security Hub uses controls to evaluate resource configurations and security standards to help you
comply with various compliance frameworks. For more information about using Security Hub to
evaluate Amazon ECS resources, see Amazon ECS controls in the AWS Security Hub User Guide.

Recommendations

You should engage the compliance program owners within your business early and use the AWS
shared responsibility model to identify compliance control ownership for success with the relevant
compliance programs.

Logging and monitoring

Logging and monitoring are an important aspect of maintaining the reliability, availability, and
performance of Amazon ECS and your AWS solutions. AWS provides several tools for monitoring
your Amazon ECS resources and responding to potential incidents:

• Amazon CloudWatch Alarms

• Amazon CloudWatch Logs

• Amazon CloudWatch Events

• AWS CloudTrail Logs

You can configure the containers in your tasks to send log information to Amazon CloudWatch
Logs. If you're using the AWS Fargate launch type for your tasks, you can view the logs from your
containers. If you're using the Amazon EC2 launch type, you can view different logs from your
containers in one convenient location. This also prevents your container logs from taking up disk
space on your container instances.

AWS Security Hub 120

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/securityhub/latest/userguide/ecs-controls.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logging-using-cloudtrail.html

Amazon Elastic Container Service Best Practices Guide

For more information about Amazon CloudWatch Logs, see Monitor Logs from Amazon EC2
Instances in the Amazon CloudWatch User Guide. For instruction on sending container logs from
your tasks to Amazon CloudWatch Logs, see Using the awslogs log driver.

Container logging with Fluent Bit

AWS provides a Fluent Bit image with plugins for both Amazon CloudWatch Logs and Amazon Data
Firehose. This image provides the capability to route logs to Amazon CloudWatch and Amazon
Data Firehose destinations (which include Amazon S3, Amazon OpenSearch Service, and Amazon
Redshift). We recommend using Fluent Bit as your log router because it has a lower resource
utilization rate than Fluentd. For more information, see Amazon CloudWatch Logs for Fluent Bit
and Amazon Data Firehose for Fluent Bit.

The AWS for Fluent Bit image is available on:

• Amazon ECR on Amazon ECR Public Gallery

• Amazon ECR repository (in most Regions of high availability)

The following shows the syntax to use for the Docker CLI.

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:tag

For example, you can pull the latest AWS for Fluent Bit image using this Docker CLI command:

docker pull public.ecr.aws/aws-observability/aws-for-fluent-bit:latest

Also refer to the following blog posts for more information on Fluent Bit and related features:

• Fluent Bit for Amazon EKS on AWS Fargate

• Centralized Container Logging with Fluent Bit

• Building a scalable log solution aggregator with AWS Fargate, Fluentd, and Amazon Data
Firehose

Custom log routing - FireLens for Amazon ECS

With FireLens for Amazon ECS, you can use task definition parameters to route logs to an AWS
service or AWS Partner Network (APN) destination for log storage and analytics. FireLens works

Container logging with Fluent Bit 121

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit
https://gallery.ecr.aws/aws-observability/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit#amazon-ecr
https://aws.amazon.com/blogs/containers/fluent-bit-for-amazon-eks-on-aws-fargate-is-here/
https://aws.amazon.com/blogs/opensource/centralized-container-logging-fluent-bit/
https://aws.amazon.com/blogs/compute/building-a-scalable-log-solution-aggregator-with-aws-fargate-fluentd-and-amazon-kinesis-data-firehose/
https://aws.amazon.com/blogs/compute/building-a-scalable-log-solution-aggregator-with-aws-fargate-fluentd-and-amazon-kinesis-data-firehose/

Amazon Elastic Container Service Best Practices Guide

with Fluentd and Fluent Bit. We provide the AWS for Fluent Bit image. Or, you can alternatively use
your own Fluentd or Fluent Bit image.

You should consider the following conditions and considerations when using FireLens for Amazon
ECS:

• FireLens for Amazon ECS is supported for tasks that are hosted both on AWS Fargate and
Amazon EC2.

• FireLens for Amazon ECS is supported in AWS CloudFormation templates. For more information,
see AWS::ECS::TaskDefinition FirelensConfiguration in the AWS CloudFormation User Guide.

• For tasks that use the bridge network mode, containers with the FireLens configuration must
start before any of the application containers that rely on it start. To control the order that your
containers start in, use dependency conditions in your task definition. For more information, see
Container dependency.

AWS Fargate security

We recommend that you take into account the following best practices when you use AWS Fargate.
For additional guidance, see Security overview of AWS Fargate.

Use AWS KMS to encrypt ephemeral storage

You should have your ephemeral storage encrypted by AWS KMS. For Amazon ECS tasks that
are hosted on AWS Fargate using platform version 1.4.0 or later, each task receives 20 GiB of
ephemeral storage. You can increase the total amount of ephemeral storage, up to a maximum of
200 GiB, by specifying the ephemeralStorage parameter in your task definition. For such tasks
that were launched on May 28, 2020 or later, the ephemeral storage is encrypted with an AES-256
encryption algorithm using an encryption key managed by AWS Fargate.

For more information, see Using data volumes in tasks .

Example: Launching an Amazon ECS task on AWS Fargate platform version 1.4.0 with
ephemeral storage encryption

The following command will launch an Amazon ECS task on AWS Fargate platform version 1.4.
Because this task is launched as part of the Amazon ECS cluster, it uses the 20 GiB of ephemeral
storage that's automatically encrypted.

AWS Fargate security 122

https://www.fluentd.org/
https://fluentbit.io/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-firelensconfiguration.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task_definition_parameters.html#container_definition_dependson
https://d1.awsstatic.com/whitepapers/AWS_Fargate_Security_Overview_Whitepaper.pdf
https://docs.aws.amazon.com/AmazonECS/latest/userguide/using_data_volumes.html

Amazon Elastic Container Service Best Practices Guide

aws ecs run-task --cluster clustername \
 --task-definition taskdefinition:version \
 --count 1
 --launch-type "FARGATE" \
 --platform-version 1.4.0 \
 --network-configuration
 "awsvpcConfiguration={subnets=[subnetid],securityGroups=[securitygroupid]}" \
 --region region

SYS_PTRACE capability for kernel syscall tracing

The default configuration of Linux capabilities that are added or removed from your container are
provided by Docker. For more information about the available capabilities, see Runtime privilege
and Linux capabilities in the Docker run documentation.

Tasks that are launched on AWS Fargate only support adding the SYS_PTRACE kernel capability.

Refer to the tutorial video below that shows how to use this feature through the Sysdig Falco
project.

#ContainersFromTheCouch - Troubleshooting your AWS Fargate Task using SYS_PTRACE capability

The code discussed in the previous video can be found on GitHub here.

AWS Fargate security considerations

Each task has a dedicated infrastructure capacity because Fargate runs each workload on an
isolated virtual environment. Workloads that run on Fargate do not share network interfaces,
ephemeral storage, CPU, or memory with other tasks. You can run multiple containers within a task
including application containers and sidecar containers, or simply sidecars. A sidecar is a container
that runs alongside an application container in an Amazon ECS task. While the application
container runs core application code, processes running in sidecars can augment the application.
Sidecars help you segregate application functions into dedicated containers, making it easier for
you to update parts of your application.

Containers that are part of the same task share resources for the Fargate launch type because
these containers will always run on the same host and share compute resources. These containers
also share the ephemeral storage provided by Fargate. Linux containers in a task share network
namespaces, including the IP address and network ports. Inside a task, containers that belong to
the task can inter-communicate over localhost.

SYS_PTRACE capability for kernel syscall tracing 123

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://github.com/falcosecurity/falco
https://www.youtube.com/embed/OYGKjmFeLqI
https://github.com/paavan98pm/ecs-fargate-pv1.4-falco

Amazon Elastic Container Service Best Practices Guide

The runtime environment in Fargate prevents you from using certain controller features that are
supported on EC2 instances. Consider the following when you architect workloads that run on
Fargate:

• No privileged containers or access - Features such as privileged containers or access are currently
unavailable on Fargate. This will affect uses cases such as running Docker in Docker.

• Limited access to Linux capabilities - The environment in which containers run on Fargate is
locked down. Additional Linux capabilities, such as CAP_SYS_ADMIN and CAP_NET_ADMIN, are
restricted to prevent a privilege escalation. Fargate supports adding the CAP_SYS_PTRACE Linux
capability to tasks to allow observability and security tools deployed within the task to monitor
the containerized application.

• No access to the underlying host - Neither customers nor AWS operators can connect to a host
running customer workloads. You can use ECS exec to run commands in or get a shell to a
container running on Fargate. You can use ECS exec to help collect diagnostic information for
debugging. Fargate also prevents containers from accessing the underlying host’s resources, such
as the file system, devices, networking, and container runtime.

• Networking - You can use security groups and network ACLs to control inbound and outbound
traffic. Fargate tasks receive an IP address from the configured subnet in your VPC.

Task and container security

You should consider the container image as your first line of defense against an attack. An insecure,
poorly constructed image can allow an attacker to escape the bounds of the container and gain
access to the host. You should do the following to mitigate the risk of this happening.

Recommendations

We recommend that you do the following when setting up your tasks and containers.

Create minimal or use distroless images

Start by removing all extraneous binaries from the container image. If you’re using an unfamiliar
image from Amazon ECR Public Gallery, inspect the image to refer to the contents of each of the
container's layers. You can use an application such as Dive to do this.

Alternatively, you can use distroless images that only include your application and its runtime
dependencies. They don't contain package managers or shells. Distroless images improve the

Task and container security 124

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#other_task_definition_params
https://github.com/wagoodman/dive

Amazon Elastic Container Service Best Practices Guide

"signal to noise of scanners and reduces the burden of establishing provenance to just what you
need." For more information, see the GitHub documentation on distroless.

Docker has a mechanism for creating images from a reserved, minimal image known as scratch. For
more information, see Creating a simple parent image using scratch in the Docker documentation.
With languages like Go, you can create a static linked binary and reference it in your Dockerfile. The
following example shows how you can accomplish this.

############################
STEP 1 build executable binary
############################
FROM golang:alpine AS builder
Install git.
Git is required for fetching the dependencies.
RUN apk update && apk add --no-cache git
WORKDIR $GOPATH/src/mypackage/myapp/
COPY . .
Fetch dependencies.
Using go get.
RUN go get -d -v
Build the binary.
RUN go build -o /go/bin/hello
############################
STEP 2 build a small image
############################
FROM scratch
Copy our static executable.
COPY --from=builder /go/bin/hello /go/bin/hello
Run the hello binary.
ENTRYPOINT ["/go/bin/hello"]
This creates a container image that consists of your application and nothing else,
 making it extremely secure.

The previous example is also an example of a multi-stage build. These types of builds are attractive
from a security standpoint because you can use them to minimize the size of the final image
pushed to your container registry. Container images devoid of build tools and other extraneous
binaries improves your security posture by reducing the attack surface of the image. For more
information about multi-stage builds, see creating multi-stage builds.

Recommendations 125

https://github.com/GoogleContainerTools/distroless
https://docs.docker.com/develop/develop-images/baseimages/#create-a-simple-parent-image-using-scratch
https://docs.docker.com/develop/develop-images/multistage-build/

Amazon Elastic Container Service Best Practices Guide

Scan your images for vulnerabilities

Similar to their virtual machine counterparts, container images can contain binaries and application
libraries with vulnerabilities or develop vulnerabilities over time. The best way to safeguard against
exploits is by regularly scanning your images with an image scanner.

Images that are stored in Amazon ECR can be scanned on push or on-demand (once every 24
hours). Amazon ECR basic scanning uses Clair, an open-source image scanning solution. Amazon
ECR enhanced scanning uses Amazon Inspector. After an image is scanned, the results are logged
to the Amazon ECR event stream in Amazon EventBridge. You can also see the results of a scan
from within the Amazon ECR console or by calling the DescribeImageScanFindings API. Images
with a HIGH or CRITICAL vulnerability should be deleted or rebuilt. If an image that has been
deployed develops a vulnerability, it should be replaced as soon as possible.

Docker Desktop Edge version 2.3.6.0 or later can scan local images. The scans are powered by Snyk,
an application security service. When vulnerabilities are discovered, Snyk identifies the layers and
dependencies with the vulnerability in the Dockerfile. It also recommends safe alternatives like
using a slimmer base image with fewer vulnerabilities or upgrading a particular package to a newer
version. By using Docker scan, developers can resolve potential security issues before pushing their
images to the registry.

• Automating image compliance using Amazon ECR and AWS Security Hub explains how to surface
vulnerability information from Amazon ECR in AWS Security Hub and automate remediation by
blocking access to vulnerable images.

Remove special permissions from your images

The access rights flags setuid and setgid allow running an executable with the permissions of
the owner or group of the executable. Remove all binaries with these access rights from your image
as these binaries can be used to escalate privileges. Consider removing all shells and utilities like nc
and curl that can be used for malicious purposes. You can find the files with setuid and setgid
access rights by using the following command.

find / -perm /6000 -type f -exec ls -ld {} \;

To remove these special permissions from these files, add the following directive to your container
image.

Recommendations 126

https://github.com/quay/clair
https://docs.aws.amazon.com/AmazonECR/latest/APIReference/API_DescribeImageScanFindings.html
https://www.docker.com/products/docker-desktop
https://docs.docker.com/engine/scan/
https://snyk.io/
https://aws.amazon.com/blogs/containers/automating-image-compliance-for-amazon-eks-using-amazon-elastic-container-registry-and-aws-security-hub/

Amazon Elastic Container Service Best Practices Guide

RUN find / -xdev -perm /6000 -type f -exec chmod a-s {} \; || true

Create a set of curated images

Rather than allowing developers to create their own images, create a set of vetted images for
the different application stacks in your organization. By doing so, developers can forego learning
how to compose Dockerfiles and concentrate on writing code. As changes are merged into your
codebase, a CI/CD pipeline can automatically compile the asset and then store it in an artifact
repository. And, last, copy the artifact into the appropriate image before pushing it to a Docker
registry such as Amazon ECR. At the very least you should create a set of base images that
developers can create their own Dockerfiles from. You should avoid pulling images from Docker
Hub. You don't always know what is in the image and about a fifth of the top 1000 images
have vulnerabilities. A list of those images and their vulnerabilities can be found at https://
vulnerablecontainers.org/.

Scan application packages and libraries for vulnerabilities

Use of open source libraries is now common. As with operating systems and OS packages, these
libraries can have vulnerabilities . As part of the development lifecycle these libraries should be
scanned and updated when critical vulnerabilities are found.

Docker Desktop performs local scans using Snyk. It can also be used to find vulnerabilities and
potential licensing issues in open source libraries. It can be integrated directly into developer
workflows giving you the ability to mitigate risks posed by open source libraries. For more
information, see the following topics:

• Open Source Application Security Tools includes a list of tools for detecting vulnerabilities in
applications.

Perform static code analysis

You should perform static code analysis before building a container image. It's performed against
your source code and is used to identify coding errors and code that could be exploited by a
malicious actor, such as fault injections. SonarQube is a popular option for static application
security testing (SAST), with support for a variety of different programming languages.

Recommendations 127

https://vulnerablecontainers.org/
https://vulnerablecontainers.org/
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://www.sonarqube.org/features/security/

Amazon Elastic Container Service Best Practices Guide

Run containers as a non-root user

You should run containers as a non-root user. By default, containers run as the root user unless
the USER directive is included in your Dockerfile. The default Linux capabilities that are assigned by
Docker restrict the actions that can be run as root, but only marginally. For example, a container
running as root is still not allowed to access devices.

As part of your CI/CD pipeline you should lint Dockerfiles to look for the USER directive and fail the
build if it's missing. For more information, see the following topics:

• Dockerfile-lint is an open-source tool from RedHat that can be used to check if the file conforms
to best practices.

• Hadolint is another tool for building Docker images that conform to best practices.

Use a read-only root file system

You should use a read-only root file system. A container's root file system is writable by default.
When you configure a container with a RO (read-only) root file system it forces you to explicitly
define where data can be persisted. This reduces your attack surface because the container's file
system can't be written to unless permissions are specifically granted.

Note

Having a read-only root file system can cause issues with certain OS packages that expect
to be able to write to the filesystem. If you're planning to use read-only root file systems,
thoroughly test beforehand.

Configure tasks with CPU and Memory limits (Amazon EC2)

You should configure tasks with CPU and memory limits to minimize the following risk. A task's
resource limits set an upper bound for the amount of CPU and memory that can be reserved by all
the containers within a task. If no limits are set, tasks have access to the host's CPU and memory.
This can cause issues where tasks deployed on a shared host can starve other tasks of system
resources.

Recommendations 128

https://github.com/projectatomic/dockerfile_lint
https://github.com/hadolint/hadolint

Amazon Elastic Container Service Best Practices Guide

Note

Amazon ECS on AWS Fargate tasks require you to specify CPU and memory limits because
it uses these values for billing purposes. One task hogging all of the system resources isn't
an issue for Amazon ECS Fargate because each task is run on its own dedicated instance.
If you don't specify a memory limit, Amazon ECS allocates a minimum of 4MB to each
container. Similarly, if no CPU limit is set for the task, the Amazon ECS container agent
assigns it a minimum of 2 CPUs.

Use immutable tags with Amazon ECR

With Amazon ECR, you can and should use configure images with immutable tags. This prevents
pushing an altered or updated version of an image to your image repository with an identical tag.
This protects against an attacker pushing a compromised version of an image over your image with
the same tag. By using immutable tags, you effectively force yourself to push a new image with a
different tag for each change.

Avoid running containers as privileged (Amazon EC2)

You should avoid running containers as privileged. For background, containers run as privileged
are run with extended privileges on the host. This means the container inherits all of the Linux
capabilities assigned to root on the host. It's use should be severely restricted or forbidden. We
advise setting the Amazon ECS container agent environment variable ECS_DISABLE_PRIVILEGED
to true to prevent containers from running as privileged on particular hosts if privileged
isn't needed. Alternatively you can use AWS Lambda to scan your task definitions for the use of the
privileged parameter.

Note

Running a container as privileged isn't supported on Amazon ECS on AWS Fargate.

Remove unnecessary Linux capabilities from the container

The following is a list of the default Linux capabilities assigned to Docker containers. For more
information about each capability, see Overview of Linux Capabilities.

Recommendations 129

https://man7.org/linux/man-pages/man7/capabilities.7.html

Amazon Elastic Container Service Best Practices Guide

CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER, CAP_FSETID, CAP_KILL,
CAP_SETGID, CAP_SETUID, CAP_SETPCAP, CAP_NET_BIND_SERVICE,
CAP_NET_RAW, CAP_SYS_CHROOT, CAP_MKNOD, CAP_AUDIT_WRITE,
CAP_SETFCAP

If a container doesn't require all of the Docker kernel capabilities listed above, consider dropping
them from the container. For more information about each Docker kernel capability, see
KernalCapabilities. You can find out which capabilities are in use by doing the following:

• Install the OS package libcap-ng and run the pscap utility to list the capabilities that each
process is using.

• You can also use capsh to decipher which capabilities a process is using.

• Refer to Linux Capabilities 101 for more information.

Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR

You should use a customer managed key (CMK) to encrypt images that are pushed to Amazon
ECR. Images that are pushed to Amazon ECR are automatically encrypted at rest with a AWS Key
Management Service (AWS KMS) managed key. If you would rather use your own key, Amazon ECR
now supports AWS KMS encryption with customer managed keys (CMK). Before enabling server
side encryption with a CMK, review the Considerations listed in the documentation on encryption
at rest.

Runtime security

Runtime security provides active protection for your containers while they're running. The idea
is to detect and prevent malicious activity from occurring on your containers. Runtime security
configuration differs between Windows and Linux containers.

To secure a Microsoft Windows container, see Secure Windows containers.

To secure a Linux container, you can add or drop Linux kernel capabilities using the
linuxParameters and apply SELinux labels, or an AppArmor profile using the
dockerSecurityOptions, both per container within a task definition. SELinux or AppArmor have
to be configured on the container instance before they can be used. SELinux and AppArmor are not
available in AWS Fargate. For more information, see dockerSecurityOptions in the Amazon
Elastic Container Service API Reference, and Security configuration in the Docker run reference.

Runtime security 130

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_KernelCapabilities.html
https://people.redhat.com/sgrubb/libcap-ng/
https://www.man7.org/linux/man-pages/man1/capsh.1.html
https://linux-audit.com/linux-capabilities-101/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-security
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerDefinition.html#ECS-Type-ContainerDefinition-dockerSecurityOptions
https://docs.docker.com/engine/reference/run/#security-configuration

Amazon Elastic Container Service Best Practices Guide

AppArmor is a Linux security module that restricts a container's capabilities including accessing
parts of the file system. It can be run in either enforcement or complain mode. Because building
AppArmor profiles can be challenging, we recommend that you use a tool like bane. For more
information about AppArmor, see the official AppArmor page.

Important

AppArmor is only available for Ubuntu and Debian distributions of Linux.

Recommendations

We recommend that you take the following actions when setting up your runtime security.

Use a third-party solution for runtime defense

Use a third-party solution for runtime defense. If you're familiar with how Linux security works,
create and manage AppArmor profiles. Both are open-source projects. Otherwise, consider using
a different third-party service instead. Most use machine learning to block or alert on suspicious
activity. For a list of available third-party solutions, see AWS Marketplace for Containers.

AWS Partners

You can use any of the following AWS Partner products to add additional security and features to
your Amazon ECS workloads. For more information, see Amazon ECS Partners.

Aqua Security

You can use Aqua Security to secure your cloud-native applications from development to
production. The Aqua Cloud Native Security Platform integrates with your cloud-native resources
and orchestration tools to provide transparent and automated security. It can prevent suspicious
activity and attacks in real time, and help to enforce policy and simplify regulatory compliance.

Palo Alto Networks

Palo Alto Networks provides security and protection for your hosts, containers, and serverless
infrastructure in the cloud and throughout the development and software lifecycle.

Twistlock is supplied by Palo Alto Networks and can be integrated with Amazon ECS FireLens. With
it, you have access to high fidelity security logs and incidents that are seamlessly aggregated into

Recommendations 131

https://github.com/genuinetools/bane
https://www.apparmor.net/
https://aws.amazon.com/marketplace/features/containers
https://aws.amazon.com/ecs/partners/
https://partners.amazonaws.com/partners/001E000001LiLQqIAN/Aqua%20Security
https://partners.amazonaws.com/partners/001E0000013FeQXIA0/Palo%20Alto%20Networks

Amazon Elastic Container Service Best Practices Guide

several AWS services. These include Amazon CloudWatch, Amazon Athena, and Amazon Kinesis.
Twistlock secures workloads that are deployed on AWS container services.

Sysdig

You can use Sysdig to run secure and compliant cloud-native workloads in production scenarios.
The Sysdig Secure DevOps Platform has embedded security and compliance features to protect
your cloud-native workloads, and also offers enterprise-grade scalability, performance, and
customization.

AWS Partners 132

https://partners.amazonaws.com/partners/001E000000wNQeoIAG/Sysdig

Amazon Elastic Container Service Best Practices Guide

Document history for the Amazon ECS Best Practices
Guide

The following table describes the documentation releases for the Amazon ECS Best Practices
Guide.

Change Description Date

Operating Amazon ECS at
scale best practices

Added best practices for
operating Amazon ECS at
scale.

June 1, 2022

Speeding up task launch best
practices

Added best practices for
speeding up your Amazon
ECS task launches.

April 1, 2022

Application best practices Added best practices for
implementing your applicati
on with Amazon ECS.

October 28, 2021

Deployment best practices Added best practices for
speeding up Amazon ECS
deployments.

August 10, 2021

Security best practices Added best practices for
security management for
Amazon ECS workloads.

May 26, 2021

Auto scaling and capacity
management best practices

Added best practices for
auto scaling and capacity
management for Amazon ECS
workloads.

May 14, 2021

Persistent storage best
practices

Added best practices for
persistent storage for Amazon
ECS workloads.

May 7, 2021

133

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/operating-at-scale.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/operating-at-scale.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/task.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/task.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/application.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/deployment.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/security.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/capacity.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/capacity.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/storage.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/storage.html

Amazon Elastic Container Service Best Practices Guide

Networking best practices Added best practices for
networking management for
Amazon ECS workloads.

April 6, 2021

Initial release Initial release of the Amazon
ECS Best Practices Guide

April 6, 2021

134

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/networking.html
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/intro.html

	Amazon Elastic Container Service
	Table of Contents
	Introduction
	Best Practices - Running your application with Amazon ECS
	Container image
	Make container images complete and static
	Maintain fast container launch times by keeping container images as small as possible
	Only run a single application process with a container image
	Handle SIGTERM within the application
	Configure containerized applications to write logs to stdout and stderr
	Version container images using tags

	Task definition
	Use each task definition family for only one business purpose
	Match each application version with a task definition revision within a task definition family
	Use different IAM roles for each task definition family

	Amazon ECS service
	Use awsvpc network mode and give each service its own security group
	Turn on Amazon ECS managed tags and tag propagation

	Best Practices - Networking
	Connecting to the internet
	Using a public subnet and internet gateway
	Using a private subnet and NAT gateway

	Receiving inbound connections from the internet
	Application Load Balancer
	Network Load Balancer
	Amazon API Gateway HTTP API

	Choosing a network mode
	Host mode
	Bridge mode
	AWSVPC mode
	Increasing task density with ENI Trunking
	Preventing IP address exhaustion
	Using IPv6 dual stack mode

	Connecting to AWS services from inside your VPC
	NAT gateway
	AWS PrivateLink

	Networking between Amazon ECS services in a VPC
	Using Service Connect
	Using service discovery
	Using an internal load balancer

	Networking services across AWS accounts and VPCs
	Optimizing and troubleshooting
	CloudWatch Container Insights
	AWS X-Ray
	VPC Flow Logs
	Network tuning tips
	nofile ulimit
	sysctl net

	Best Practices - Auto scaling and capacity management
	Determining task size
	Stateless applications
	Other applications

	Configuring service auto scaling
	Characterizing your application
	Identifying a utilization metric
	Common application models and scaling properties
	The efficient CPU-bound server
	The efficient memory-bound server
	The worker-based server
	The waiting server
	The Java-based server
	Servers that use other garbage-collected runtimes
	Job processors

	Capacity and availability
	Maximizing scaling speed
	Handling demand shocks

	Cluster capacity
	Choosing Fargate task sizes
	Speeding up cluster capacity provisioning with capacity providers on Amazon EC2
	Capacity provider step scaling sizes
	Instance warm-up period
	Spare capacity

	Choosing the Amazon EC2 instance type
	Using Amazon EC2 Spot and FARGATE_SPOT

	Best Practices - Persistent storage
	Choosing the right storage type for your containers
	Amazon EFS volumes
	Security and access controls
	Performance
	Throughput
	Cost optimization
	Data protection
	Use cases

	Docker volumes
	Amazon EBS volume lifecycle
	Amazon EBS data availability
	Docker volume plugins

	FSx for Windows File Server
	Security and access controls
	Data encryption
	Folder level access control using Windows ACLs

	Use cases

	Best Practices - Speeding up task launch
	Amazon ECS Task launch workflow
	Amazon ECS Service Scheduler workflow
	Recommendations to speed up task launch

	Best Practices - Speeding up deployments
	Load balancer health check parameters
	Load balancer connection draining
	SIGTERM responsiveness

	Container image type
	Container image pull behavior
	Container image pull behavior for Fargate launch types
	Container image pull behavior for Fargate Windows launch types
	Container image pull behavior for Amazon EC2 launch types

	Task deployment

	Best Practices - Operating Amazon ECS at scale
	Service quotas and API throttling limits
	Elastic Load Balancing
	Elastic Load Balancing service quotas
	Elastic Load Balancing API throttling

	Elastic network interfaces
	Elastic network interface service quotas
	Elastic network interface API throttling

	AWS Cloud Map
	AWS Cloud Map service quotas
	AWS Cloud Map API throttling

	Handling throttling issues
	Synchronous throttling
	Asynchronous throttling
	Monitoring throttling
	Using CloudWatch to monitor throttling

	Best Practices - Security
	Shared responsibility model
	AWS Identity and Access Management
	Managing access to Amazon ECS
	Recommendations
	Follow the policy of least privileged access
	Let the cluster resource serve as the administrative boundary
	Isolate end-users from the Amazon ECS API by creating automated pipelines
	Use policy conditions for an added layer of security
	Periodically audit access to the Amazon ECS APIs

	Using IAM roles with Amazon ECS tasks
	Task execution role
	Amazon EC2 container instance role
	Service-linked roles
	Recommendations
	Block access to Amazon EC2 metadata
	Use awsvpc network mode
	Use IAM Access Advisor to refine roles
	Monitor AWS CloudTrail for suspicious activity

	Network security
	Encryption in transit
	Task networking
	Security groups for tasks

	Service mesh and Mutual Transport Layer Security (mTLS)
	AWS PrivateLink
	Amazon ECS container agent settings
	Recommendations
	Use network encryption where applicable
	Use awsvpc network mode and security groups when you need to control traffic between tasks or between tasks and other network resources
	Create clusters in separate Amazon VPCs when network traffic needs to be strictly isolated
	Configure AWS PrivateLink endpoints when warranted
	Use Amazon VPC Flow Logs to analyze the traffic to and from long-running tasks

	Secrets management
	Recommendations
	Use AWS Secrets Manager or Amazon EC2 Systems Manager Parameter Store for storing secret materials
	Retrieving data from an encrypted Amazon S3 bucket
	Mount the secret to a volume using a sidecar container

	Additional resources

	Using temporary security credentials with API operations
	Compliance and security
	Payment Card Industry Data Security Standards (PCI DSS)
	HIPAA (U.S. Health Insurance Portability and Accountability Act)
	AWS Security Hub
	Recommendations

	Logging and monitoring
	Container logging with Fluent Bit
	Custom log routing - FireLens for Amazon ECS

	AWS Fargate security
	Use AWS KMS to encrypt ephemeral storage
	SYS_PTRACE capability for kernel syscall tracing
	AWS Fargate security considerations

	Task and container security
	Recommendations
	Create minimal or use distroless images
	Scan your images for vulnerabilities
	Remove special permissions from your images
	Create a set of curated images
	Scan application packages and libraries for vulnerabilities
	Perform static code analysis
	Run containers as a non-root user
	Use a read-only root file system
	Configure tasks with CPU and Memory limits (Amazon EC2)
	Use immutable tags with Amazon ECR
	Avoid running containers as privileged (Amazon EC2)
	Remove unnecessary Linux capabilities from the container
	Use a customer managed key (CMK) to encrypt images pushed to Amazon ECR

	Runtime security
	Recommendations
	Use a third-party solution for runtime defense

	AWS Partners

	Document history for the Amazon ECS Best Practices Guide

